Contents

I___Foundations|

(1 The Language of co-Categories|

I

Simplicial Sets| . . . . . ...

[1.1.1  Face Operators| . . . . . . . . . . . . . o

[1.1.2  Degeneracy Operators| . . . . . . . . . . . ... ... .. ......

|[1.1.5  Discrete Simplicial Sets| . . . . . . ... o000 o000
[1.1.6  Directed Graphs as Simplicial Sets| . . . . . . . ... ...

T2

From Topological Spaces to Simplicial Sets| . . . . .. .. ... ... ...

[1.2.1  Connected Components of Simplicial Sets| . . . . . . . ... ... ..

[1.2.2  The Singular Simplicial Set of a Topological Space| . . . . . . . . ..

[1.2.3  The Geometric Realization of a Simplicial Set| . . . . . . . .. ... ..

[1.2.5 Kan Complexes|. . . . . .. . ... . . o

3

From Categories to Simplicial Sets| . . . . . . . ... .. ... ... .....

[1.3.1 The Nerve of a Category|. . . . . . . . . . ... ... ... .. ....
[1.3.2  Example: Monoids as Simplicial Sets| . . . . . . .. ... ... ....

[1.3.3 Recovering a Category from its Nerve| . . . . . . ... ... ... ..

[1.3.5 The Nerve of a Groupoid| . . . ... ... ... ... ... ......
[1.3.6  The Homotopy Category of a Simplicial Setf . . . . . ... ... ...
[1.3.7  Example: The Path Category of a Directed Graph| . . . . .. ... ..

!

00-Categories] . . . . . . .. e e e e e e e e

[1.4.1 Objects and Morphisms| . . . . . . . ... ... ... ... ...,
[1.4.2  The Opposite of an oco-Category] . . . . . .. . ... ... ... ...
[1.4.3 Homotopies of Morphisms| . . . . . . ... ... ... ... ... ..

[1.4.4  Composition of Morphisms| . . . . . ... ... ... .. .. .....

[1.4.5 The Homotopy Category of an oo-Category| . . . . . . . . ... ...

1



2 CONTENTS
[1.4.6  Isomorphisms| . . . . . . . . . . . . ... 90

[1.5  Functors of oo-Categories| . . . . . . . . . .. .. 93
[1.5.1 Examples of Functors| . . . . . .. ... ... .o 0. 94
[1.5.2  Commutative Diagrams| . . . . . . . ... .. ... .. ........ 97
[1.5.3  The oo-Category of Functors| . . . . ... ... ... ... ...... 103
[1.5.4  Digression: Litting Properties| . . . . . . . .. .. ... ... ..... 106
[1.L5.5  Trivial Kan Fibrationsl . . . . . . . . . .. ... 000 112
[1.5.6  Uniqueness of Composition| . . . . . .. . ... ... ... ...... 117
[1.5.7  Universality of Path Categories| . . . . . . .. .. .. .. ... .... 123

2 Examples of co-Categories| 130
2.1  Monoidal Categories| . . . . . . . . . . . .. 132
[2.1.1  Nonunital Monoidal Categories| . . . . . . . ... ... ... .. ... 134
[2.1.2  Monoidal Categories| . . . . . . . . . . .. .. ... ... ... 137
[2.1.3  Examples of Monoidal Categories|. . . . . . . .. ... ... ..... 144
2.1.4 Nonunital Monoidal Functorsl . . . . . .. .. ... ... ... .... 148
2.1.5 Lax Monoidal Functors] . . . . . .. ... ... ... ... ...... 160
2.1.6  Monoidal Functorsl . . . . . .. ... o oo oo 172
[2.1.7  Enriched Category Theory|. . . . . . . . . .. .. ... ... ..... 177

[2.2 The Theory of 2-Categories| . . . . . . . . .. ... ... ... .. ..., 182
[2.2.1  2-Categories|. . . . . . . . . .. 187
[2.2.2  Examples of 2-Categories| . . . . . . . . . .. ... ... ... ... 195
[2.2.3  Opposite and Conjugate 2-Categories| . . . . .. ... ... ... .. 197
[2.2.4  Functors ot 2-Categories| . . . . . . . . . . ... ... 200
[2.2.5  The Category ot 2-Categories| . . . . . . . . . . . . ... ... .... 207
[2.2.6  Isomorphisms of 2-Categories| . . . . . . . . . . .. ... .. ..... 210
[2.2.7  Strictly Unitary 2-Categories| . . . . . . . .. .. .. .. ... .... 215
[2.2.8  The Homotopy Category of a 2-Category] . . . ... ... ... ... 218

2.3 The Duskin Nerve of a 2-Category| . . . . . . . . ... ... .. ... .... 224
2.3.1 The Duskin Nervel . . . . .. ... ... . oo 226
[2.3.2  From 2-Categories to oo-Categories|. . . . . . . . .. ... ... ... 232
[2.3.3  Thin 2-Simplices of a Duskin Nervel. . . . . . . . .. ... ... ... 236
[2.3.4  Recovering a 2-Category from its Duskin Nerve| . . . . . . . ... .. 239
[2.3.5  The Duskin Nerve of a Strict 2-Category|. . . . . . . . .. ... ... 247

2.4 Simplicial Categories| . . . . . . . . . . .. L 253
[2.4.1  Simplicial Enrichment| . . . . . .. ... .0 0000000 254
[2.4.2  Examples of Simplicial Categories| . . . . . . . . .. ... ... ... 258
[2.4.3  The Homotopy Coherent Nerve| . . . . . . .. .. ... ... ..... 263

[2.4.4  'The Path Category of a Simplicial Setf . . . . .. .. ... ... ... 267




CONTENTS 3

[2.4.5  From Simplicial Categories to oo-Categories| . . . . . . . . . ... .. 277
[2.4.6  'The Homotopy Category of a Simplicial Categoryf. . . . . . ... .. 284
[2.4.7  Example: Braid Monoids| . . . . ... ... ... 0000 292

[2.5  Difterential Graded Categories| . . . . . . .. .. ... ... ... ...... 296
[2.5.1  Generalities on Chain Complexes| . . . . . . ... .. ... ... ... 300
[2.5.2  Ditterential Graded Categories . . . . . . .. .. .. .. ... .... 306
2.5.3 The Differential Graded Nervel . . . . .. ... ... ... ... ... 309
[2.5.4  The Homotopy Category of a Differential Graded Category| . . . . . 314
[2.5.5  Digression: The Homology of Simplicial Sets| . . . . ... ... ... 317
[2.5.6  The Dold-Kan Correspondence] . . . . . . ... ... .. .. ..... 322

2.5 7 The Shuffle Product] . . . . . ... ... .. ... .. 332
[2.5.8  The Alexander-Whitney Construction| . . . . . . ... ... ... .. 343
[2.5.9  Comparison with the Homotopy Coherent Nerve] . . . . . . .. . .. 348

[3 Kan Complexes| 357
3.1  The Homotopy Theory of Kan Complexes| . . . . ... ... ... ... ... 359
B.1.1 Kan Fibrations| . . . . . . .. . ... oo 360
8.1.2  Anodyne Morphisms| . . . . . . . ..o oo 362
[3.1.3  Exponentiation for Kan Fibrations| . . . . . . . . ... ... ... .. 367
[3.1.4 Covering Maps| . . . . . . . . ... 371
[3.1.5  The Homotopy Category of Kan Complexes| . . . . . . . . ... ... 376
[3.1.6  Homotopy Equivalences and Weak Homotopy Equivalences| . . . . . 380
[3.1.7  Fibrant Replacement|. . . . . . . . ... ... ... 0oL 386

3.2 Homotopy Groups| . . . . . . . . . . . 393
[3.2.1 Pointed Kan Complexes| . . . . . . .. .. .. ... ... ....... 395
18.2.2  The Homotopy Groups of a Kan Complex| . . . . . . ... ... ... 400
[3.2.3  The Group Structure on 7, (X, z)[. . . . . ... ... ... ... ... 405
[3.2.4  Contractibility] . . . . . . . . ... oo 409
[8.2.5 The Connecting Homomorphism| . . . . . ... ... ... ... ... 413
13.2.6  The Long Exact Sequence ot a Fibration|. . . . . . . ... ... ... 417
[3.2.7  Whitehead’s Theorem for Kan Complexes| . . . . . . ... ... ... 420
13.2.8  Closure Properties of Homotopy Equivalences| . . . . . . . . ... .. 423

3.3 _The Ex™ Functorl. . . . . . . . . . . . 425
[3.3.1  Digression: Braced Simplicial Sets| . . . . . . .. ... .00 . 429
[3.3.2  The Subdivision of a Simplex| . . . . ... ... ... ... ...... 433
[3.3.3  The Subdivision of a Simplicial Setf. . . . . . .. ... ... ... .. 437
8.3.4 The Last Vertex Map| . . . . . ... ... ... ... ..... 443
[3.3.5 Comparison of X with Ex(X)[. . . ... ... ... ... ....... 447

3.3.6  The Ex™ Functor] . . . ... ... ... . ... 452



CONTENTS

13.3.7 Application: Characterizations of Weak Homotopy Equivalences|

13.3.8 Application: Extending Kan Fibrations| . . . .. ... ... ... ..

B

Homotopy Pullback and Homotopy Pushout Squares| . . . . . . . ... ...

13.4.1 Homotopy Pullback Squares|. . . . . .. ... ... ... .......

[3.4.2  Homotopy Pushout Squares| . . . . . ... ... ... .. ... ....
3.4.3  Mather’s Second Cube Theorem!| . . ... ... ... ... .. ... .

[3.5.1 Connectivity] . . . . . . . . . . . e e
[3.5.2  Connectivity as a Lifting Property| . . . . . . .. ... ... .. ...
[3.5.3  Coskeletal Simplicial Sets| . . . . . . ... ... ... 00
[3.5.4  Weakly Coskeletal Simplicial Sets|. . . . . .. .. ... ... ... ..
[3.5.5  Higher Groupoids] . . . . . . . .. ... ... 0.
[3.5.6  Higher Fundamental Groupoids|. . . . . . .. .. ... ... .....
[3.5.7 Truncated Kan Complexes|. . . . . . .. ... .. ... ... .....
13.5.8  The Postnikov Tower ot a Kan Complex| . . . . . .. ... ... ...
[3.5.9  Truncated Morphisms| . . . . . . . . ... ... L.

[3.6

Comparison with Topological Spaces| . . . . . . . ... .. ... .. .....

[3.6.1  Digression: Finite Simplicial Sets| . . . . . . . .. .. ... ... ...

13.6.3  Weak Homotopy Equivalences in Topology|. . . . . . ... ... . ...
[3.6.4 The Unit Map w: X — Sing,(|X|)| . . . ... ... ... ... . ...
13.6.5  Comparison of Homotopy Categories| . . . . . . . ... ... ... ..
8.6.6  Serre Fibrationsl . . . . ... . ... ... Lo

[4 The Homotopy Theory of co-Categories|

4.1 Inner Fibrationsl . . . . . . . . . . . e

[4.1.1 Inner Fibrations of Simplicial Sets| . . . . . . .. .. ... ... ...

4.1.2  Subcategories of oo-Categories| . . . . . . . . . ... ... ... ..

4.1.3  Inner Anodyne Morphisms| . . . . .. .. ... ... ... ......

4.1.4  Exponentiation for Inner Fibrations| . . . . ... ... ... ... ..

4.1.5 Inner Covering Maps|. . . . . . . . . ... .. . ... ...

i)

Left and Right Fibrations| . . . . . ... ... ... .. 00 0.

4.2.1  Left and Right Fibrations of Simplicial Sets| . . . . . . ... ... ..
[4.2.2  Fibrations in Groupoids| . . . . . . . ... ...
[4.2.3  Left and Right Covering Maps| . . . . . ... ... ... ... .....

455
458
460
467
478
487
491
495
500
504
508
511
519
526
532
539
047
552
558
562
973
074
577
981
584
587
589

595



CONTENTS 5
4.2.4  Left Anodyne and Right Anodyne Morphisms|. . . . . . .. ... .. 628
4.2.5  Exponentiation for Left and Right Fibrations| . . . . . . . ... ... 633
[4.2.6  The Homotopy Extension Lifting Property] . . .. . ... ... ... 635

4.3 The Slice and Join Constructions| . . . . . . . .. .. ... ... ... ... 638
4.3.1  Slices of Categories|. . . . . . . . . . ..o 639
[4.3.2  Joins of Categories| . . . . . . . . . . .. Lo 643
4.3.3  Joins of Simplicial Sets|. . . . . . ..o 0oL 648
|4.3.4  Joins of Topological Spaces| . . . . .. ... ... ... ... ..... 657
[4.3.5  Slices of Simplicial Sets| . . . . . ... ... oo 0oL 661
4.3.6  Slices of oco-Categories| . . . . . . . . . . ... 668
[4.3.7  Slices of Left and Right Fibrations| . . . . . . . ... ... ... ... 675

4.4 Isomorphisms and Isofibrations| . . . . . . .. ... ... ... ........ 682
4.4.1  Isofibrations of co-Categories| . . . . . . . . . . ... ... .. .... 683
[4.4.2  Isomorphisms and Lifting Properties| . . . . . . . .. ... ... ... 686
4.4.3  The Core of an oo-Categoryl . . . . . . . . . . . ... .. ... .... 693
4.4.4  Natural Isomorphisms| . . . . . . . . ... ... ... L. 699
[4.4.5  Exponentiation for Isofibrations|. . . . . . . . .. ... ... ... .. 706

4.5 Equivalence| . . . . . ... 711
[4.5.1 Equivalences of oo-Categories| . . . . . . . ... ... ... ... ... 714
[4.5.2  Categorical Pullback Squares| . . . . . .. ... ... ... ...... 719
4.5.3  Categorical Equivalencel . . . . . . . ... .. o000 733
[4.5.4  Categorical Pushout Squares| . . . . .. ... ... ... ... .... 739
[4.5.5  Isofibrations of Simplicial Sets| . . . . . . .. .. ... 747
4.5.6  Isofibrant Diagrams| . . . . . . .. ... ... 0. 754
[4.5.7  Detecting Equivalences of oco-Categories| . . . . . . . .. ... .. .. 763
[4.5.8  Application: Universal Property of the Join| . . . . . . . .. ... .. 767
[4.5.9 Relative Exponentiation| . . . . . . . ... ... o 0oL 775

4.6 Morphism Spaces| . . . . . . . .. 781
4.6.1 Morphism Spaces|. . . . . . . ... 782
[4.6.2  Fully Faithtul and Essentially Surjective Functors|. . . . . . . . . .. 788
[4.6.3  Digression: Categorical Mapping Cylinders| . . . . .. ... ... .. 794
4.6.4 Oriented Fiber Productsl. . . . . . . . .. ... ... ... ... .... 801
[4.6.5 Pinched Morphism Spaces| . . . . . . .. ... ... oo 808
4.6.6  Digression: Diagrams in Slice co-Categories| . . . . . . . . . ... .. 814
[4.6.7 Initial and Final Objects|. . . . . . . . .. ... ... .. ... .... 818
[4.6.8  Morphism Spaces in the Homotopy Coherent Nerve] . . . . . . . .. 827
4.6.9  Composition of Morphisms| . . . . ... ... ... ... ... ... . 839

4.7 Size Conditions on oo-Categories| . . . . . . . . .. . ... ... .. ... 848




6 CONTENTS
[4.7.1  Ordinals and Well-Orderings| . . . . ... ... ... ... ...... 850
[4.7.2  Cardinals and Cardinality] . . . . . . . .. ... ... ... ... ... 856
473 Small Setsl. . . . . . oL 859
[4.7.4  Small Simplicial Sets|. . . . . . . . ... o oo 863
475 Issential Smallness|. . . . . . . ..o oo o000 oo 866
4.7.6  Minimal co-Categories| . . . . . . . . . . . . ... .. 869
[4.7.7  Small Kan Complexes| . . . . . .. ... ... . 0. 875
478 Local Smallnessf. . . . ... .. .. oo o oo 877
[4.7.9 Small Fibrations| . . . . . .. . .. ... .. oo 880

4.8  Truncations in Higher Category Theory| . . . . . . ... ... ... ... .. 884
[4.8.1 (n,1)-Categories| . . . . . . . ... ... ... ... ... 887
4.8.2  Locally Truncated oo-Categories| . . . . . .. ... ... ... .... 893
4.8.3  Minimality Conditions| . . . . . . . .. .. .. ... ... ....... 899
4.8.4  Higher Homotopy Categories| . . . . . . . ... ... ... .. .... 904
4.8.5 Full and Faithful Functorsl . . . . . . ... ... .. ... ... .... 912
4.8.6  Essentially Categorical Functors| . . . . . ... ... . ... ... ... 921
4.8.7  Categorically Connective Functors| . . . . . . .. .. ... ... ... 929
[4.8.8  Relative Higher Homotopy Categories . . . . . . .. ... ... ... 936
4.8.9  Categorically Connective Morphisms of Simplicial Sets| . . . . . . . . 946

[ Fibrations of co-Categories| 952

b.1 Cartesian Fibrations| . . . . . . . . .. . ... . oo 959
[b.1.1  Cartesian Edges of Simplicial Sets| . . . . . . .. .. ... ... ... 962
[5.1.2  Cartesian Morphisms of oo-Categories| . . . . . . . . ... ... ... 967
5.1.3  Locally Cartesian Edges| . . . . . . . ... ... ... ... ...... 976
b.1.4 Cartesian Fibrations| . . . . . . ... ... ... 0oL 979
5.1.5  Locally Cartesian Fibrations| . . . ... ... ... ... ....... 990
[b.1.6  Fiberwise Equivalence| . . . . . . . ... o o000 997
9.1.7  Equivalence of Inner Fibrations| . . . . . . ... ... ... .. .... 1004

5.2 Covariant Transport| . . . . . . . . . . .. ... 1014
[5.2.1  Exponentiation for Cartesian Fibrations| . . . . . ... ... ... .. 1017
9.2.2  Covariant Transport Functors|. . . . . . . ... ... .. ... .... 1023
9.2.3  Example: The Relative Join|. . . . . . ... ... ... ... ... ... 1031
[5.2.4  Fibrations over the I-Simplex| . . . . . .. ... ... ... ...... 1039
15.2.5  The Homotopy Transport Representation| . . . . .. ... ... ... 1046
5.2.6 Flements of Set-Valued Functors| . . . . ... ... ... ... .. .. 1049
9.2.7  Covering Space Theory| . . . . . . . ... ... ... ... 1052
[5.2.8  Parametrized Covariant Transport| . . . . . . .. .. ... ... ... 1055

[5.3  Fibrations over Ordinary Categories| . . . . . . ... ... ... ... .... 1062




CONTENTS 7

[5.3.1  The Strict Transport Representation| . . . . . . . .. ... ... ... 1065
15.3.2  Homotopy Colimits of Simplicial Sets| . . . . . . .. ... ... ... 1074
[5.3.3 The Weighted Nervel . . . . . . . .. ... ... ... ... ...... 1083
15.5.4  Scafiolds of Cocartesian Fibrationsl . . . . . . .. .. ... ... .. .. 1091
[9.3.5  Application: Classification of Cocartesian Fibrations| . . . . . . . . . 1098
[5.3.6  Application: Relative Exponentials| . . . . . ... ... ... ... .. 1104
[5.3.7  Application: Path Fibrations| . . . . . .. ... ... ... ...... 1113

[5.4  (00,2)-Categories| . . . . . . . . ... 1122
b.4.1  Definitions] . . . . . .. .o 1125
b.4.2 Interior Fibrations . . . . . . . .. ... . o 0oL 1128
[5.4.3  Slices of (00,2)-Categories| . . . . . . . . ... ... ... ....... 1133
b.4.4 The Local Thinness Criterionl . . . . . . . . . . . ... ... ..... 1139
[5.4.5 The Pith of an (00,2)-Category| . . . . . . . .. ... ... ... ... 1145
[5.4.6  The Four-out-of-Five Property| . . . . . . ... ... ... ... ... 1150
[5.4.7  Functors of (o0, 2)-Categories| . . . . . . . ... ... ... ... . 1156
[5.4.8  Strict (00,2)-Categories| . . . . . . ... ... oL 1162
15.4.9  Comparison of Homotopy Transport Representations|. . . . . . . .. 1170

5.5  The oo-Categories S and OC| . . . . . . . . . .. .. .. 1175
9.5.1  The oo-Category of Spaces| . . . . . . . . . ... ... ... ..... 1177
[9.5.2  Digression: Slicing and the Homotopy Coherent Nerve] . . . . . . . . 1180
[5.5.3  The oo-Category of Pointed Spaces|. . . . . . . ... ... ... ... 1189
[5.5.4  The oo-Category of co-Categories|. . . . . . . . . . ... ... .... 1194
[5.5.5  The (00, 2)-Category of co-Categories| . . . . . ... ... ... ... 1197
15.5.6  oo-Categories with a Distinguished Object|. . . . . . . . . ... ... 1199

0.6 Classification of Cocartesian Fibrationsl . . . . . ... ... ... ... ... 1205
5.6.1  Elements of Category-Valued Functors| . . . . . . .. ... ... ... 1208
0.6.2  Elements of 9C-Valued Functors| . . . . . . ... ... ... ..... 1214
9.6.3  Comparison with the Category of Elements| . . . . . . .. ... . ... 1221
[5.6.4 Comparison with the Weighted Nerve| . . . . . . ... ... ... .. 1227
[5.6.5 The Universality Theorem|. . . . . . .. ... ... ... ... ..... 1231
5.6.6  Application: Corepresentable Functors| . . . . ... ... ... . ... 1238
15.6.7 Application: Extending Cocartesian Fibrations| . . . . . . . .. . .. 1247
[5.6.8  Transport Witnesses| . . . . . . . . . . ... oL 1251
5.6.9  Proot of the Universality Theorem| . . . . . . .. .. ... ... ... 1258

(II  Higher Category Theory] 1265

[6 Adjoint Functors| 1266




CONTENTS

6.1 Adjunctions in 2-Categories| . . . . . . . . . . .. ... 1266
[6.1.1 Adjunctions| . . . . . . . ... 1269
[6.1.2 Adjuncts|. . . . . ... 1271
16.1.3  Uniqueness of Adjoints|. . . . . . . . ... .. ... ... ... .... 1279
[6.1.4  Adjoints of Isomorphisms| . . . . . . .. . ... oL 1283
[6.1.5 Composition of Adjunctions|. . . . . . . . .. .. ... ... ... .. 1288
[6.1.6  Duality in Monoidal Categories| . . . . . . .. ... ... ... .... 1293

6.2 Adjoint Functors Between oo-Categories| . . . . . . . . ... ... ... ... 1298
[6.2.1 Adjunctions of oco-Categories| . . . . . . . . . . . ... ... ..... 1298
[6.2.2  Reflective Subcategories| . . . . . . . . ... o o0 1305
6.2.3  Correspondences| . . . . . . . . . .. L o 1314
624 Tocal Existence Criterion] . . . . . . v v v v v v v oo 1317
16.2.5  Digression: oo-Categories with Short Morphisms| . . . . . . .. . .. 1320

6.3 Localization| . . . . . . . . . .. 1334
[6.3.1 Localizations of oco-Categories| . . . . . . . . . . ... ... ... ... 1337
6.3.2 FExistence of Localizations . . . . .. ... ... ... ... ...... 1342
6.3.3 Reflective Localizationd . . .. ... ... ... ... ... ...... 1346
16.3.4  Stability Properties of Localizations| . . . . ... .. ... ... ... 1349
[6.3.5  Fiberwise Localizationl . . . . . . .. .. ... ... ... ... ... 1354
[6.3.6  Universal Localizations] . . . ... ... ... ... .. ... . .... 1359
6.3.7 Subdivision and Localizationl . . . . . .. ... ... ... ... ... 1365

[z__Limits and Colimits| 1371

(.1 Dimits and Colimitsl . . . . . . . . . .« . 1372
[7.1.1 Limits and Colimits in co-Categories| . . . . . . . ... ... ... .. 1374
[r.1.2  Limit and Colimit Diagrams| . . . . .. . ... .. ... ... .... 1378
[7.1.5  Preservation of Limits and Colimitsl . . ... ... .. ... ... .. 1383
[7.1.4 Relative Initial and Final Objects|[. . . . . . . .. ... ... ... .. 1390
[r.1.50 Relative Limits and Colimitsl . . . . ... .. ... ... ... .... 1399
[r.1.6 DLimits and Colimits of Functors| . . . .. ... ... ... ... ... 1406

(7.2 Cofinality] . . . . . . . . . . 1413
[7.2.1 Cofinal Morphisms of Simplicial Sets| . . . . . . . .. ... ... ... 1415
[7.2.2  Cofinality and Limits| . . .. ... ... ... ... ... ....... 1423
[7.2.3  Quillen’s Theorem A for co-Categories| . . . . . . ... ... ... .. 1430
[7.2.4  Filtered co-Categories| . . . . . . . . . .. .. ... ... .. 1437
[7.2.5 Local Characterization of Filtered oo-Categories| . . . . . .. .. .. 1440
[7.2.6  Left Fibrations over Filtered oo-Categories| . . . . . ... ... ... 1448
[7.2.7 Cofinal Approximation|. . . . . . . . .. .. ... ... ... .. ..., 1451

[7.2.8 Sifted Simplicial Sets|. . . . . . . . ... oL 1456




CONTENTS 9

[(.3 Kan Extensionsl . . . . . . .. ... . 1459
[7.3.1 Kan Extensions along General Functors| . . . . . ... ... ... ... 1461
[7.3.2  Kan Extensions along Inclusions| . . . . . ... ... ... ... ... 1468
[r.3.3 Relative Kan Extensions|. . . . . . . .. ... ... ... ... .... 1474
[7.3.4  Kan Extensions along Fibrations| . . . . . . .. ... ... .. ... .. 1481
[r.3.50 FExistence of Kan Extensionsl . . ... ... ... ... .. ...... 1487
[7.3.6  The Universal Property of Kan Extensions| . . .. ... ... .... 1495
[7.3.7  Kan Extensions in Functor oo-Categories| . . . . . . ... ... ... 1506
[7.3.8  Transitivity of Kan Extensions| . . . . . . . ... ... ... ..... 1510
[7.3.9 Relative Colimits for Cocartesian Fibrationsl. . . . . . .. ... .. .. 1521

7.4 Limits and Colimits of oco-Categories| . . . . . . . .. . ... .. ... .... 1528
[7.4.1 Limits of co-Categories| . . . . . . .. .. .. ... ... ....... 1530
(4.2 Proof of the Diffraction Criterionl . . . . . .. .. ... ... ... .. 1537
[7.4.3  Colimits of co-Categories| . . . . . .. .. .. .. .. ... ...... 1540
[(.4.4 Proof of the Refraction Criterionl . . . . . . . . . ... ... ..... 1546
[7.4.5 Limits and Colimits of Spaces|. . . . . . . . . . . ... ... ..... 1554

7.5 Homotopy Limits and Colimits| . . . . . .. ... ... ... ... ....... 1561
[7.5.1 Homotopy Limits of Kan Complexes| . . . . . . ... ... .. .... 1563
[7.5.2  Homotopy Limits of oco-Categories| . . . . . . . . . ... ... .... 1566
[7.5.3 The Homotopy Limit as a Derived Functor| . . . ... ... ... .. 1570
[7.5.4 Homotopy Limit Diagrams| . . . . ... ... ... ... ....... 1576
[7.5.5 Categorical Limit Diagrams| . . . . . . . . .. ... ... ... .... 1582
[7.5.6  The Homotopy Colimit as a Derived Functor| . . . . . .. ... ... 1588
[7.5.7  Homotopy Colimit Diagrams| . . . . . . . ... ... ... .. .... 1593
[7.5.8 Categorical Colimit Diagrams|. . . . . . . .. .. .. .. ... .... 1595
[7.5.9 Application: Filtered Colimits of co-Categories| . . . . . . . . . . .. 1600

7.6 Examples of Limits and Colimits| . . . . . . . . . ... ... .. .. ..... 1604
[7.6.1 Products and Coproducts| . . . . . . ... .. ... ... ....... 1608
[(6.2 Powers and Tensorsl . .. ... ... ... ... .. .. ........ 1613
[[.63 Pullbacks and Pushouts . . . . . . ... .. ... ... ... ...... 1621
[7.6.4 Examples of Pullback and Pushout Squares) . . . . . .. ... ... .. 1631
[7.6.5 Equalizers and Coequalizers| . . . . . . . . ... ... ... ... ... 1638
[7.6.6 Sequential Limits and Colimits| . . . . . . .. ... ... ....... 1648
[r.6.7 Small Limits] . . . ... ... . 1655

[ The Yoneda Embedding| 1660

8.1 Twisted Arrows and Cospans| . . . . . . . . ... ... ... ... 1660

[8.1.1 The Twisted Arrow Constructionl . . . . . .. .. .. ... ... ... 1663

[8.1.2  Homotopy Transport for Twisted Arrows| . . . ... ... ... ... 1670




10

CONTENTS

[8.1.3  The Cospan Construction| . . . . . . . . ... ... ... ....... 1680
[8.1.4  Cospans in co-Categories| . . . . . . . . . .. ... ... .. ..... 1688
[8.1.5  Thin 2-Simplices of Cospan(C)| . . . . . .. .. ... ... ... ... 1695
[8.1.6  Restricted Cospans|. . . . . . .. . ... ... ... o 1701
[8.1.7  Comparing C with Cospan(C)| . . . . . . . ... ... ... ... ... 1706
[8.1.8  Morphisms in the Duskin Nervel. . . . . . . ... ... .00 1713
8.1.9  Cospan Fibrations| . . . . .. ... ... ... ... ... ... ... 1719
[8.1.10 Beck-Chevalley Fibrations| . . . . . . . . ... ... .. ... ..... 1725

8.2 Couplings of oo-Categories|. . . . . . . . . . . .. .. .. ... 1735
[8.2.1  Representable Couplings|. . . . . . . ... ... ... ... ...... 1738
[8.2.2  Morphisms of Couplings| . . . . .. ... ... ... ... ...... 1743
18.2.3  Representations of Couplings| . . . . ... ... ... ... ... .... 1751
[8.2.4  Presentations of Representable Couplings| . . . . ... ... ... .. 1755
[8.2.5  Adjunctions as Couplings| . . . . . . ... ... ... .. 1764
[8.2.6  Balanced Couplings| . . . ... ... ... ... ... ........ 1767

8.3 The Yoneda Embeddingl . . . . .. ... ... ... ... 0. 1773
8.3.1 Yonmeda’s Lemmal . . . . ... ... ... oo 1775
[8.3.2  Protunctors of oco-Categories| . . . . . . . .. ... ... ... .... 1779
[8.3.3  Hom-Functors for oo-Categories|. . . . . . .. . ... ... ... ... 1785
[8.3.4  Representable Profunctors|. . . . . . .. ... .. ... ... ... .. 1789
[8.3.5  Recognition of Hom-Functors| . . . . . .. ... ... ... ... ... 1795
[8.3.6  Strict Models for Hom-Functors. . . . .. .. ... ... ... ... . 1799

8.4 Cocompletion| . . . . . .. ... 1802
8.4.1 Dense Functors| . . . . . . . .. ... o o oo 1805
[8.4.2  Density of Yoneda Embeddings| . . . . . ... ... ... o0 1811
[8.4.3  Cocompletion via the Yoneda Embedding| . . . . . . .. .. ... .. 1813
[8.4.4  Example: Extensions as Adjoints| . . . . . . ... ... ... ... 1817
18.4.5 Adjoining Colimits to co-Categories| . . . . . . .. ... .. ... .. 1820
[8.4.6  Recognition of Cocompletions|. . . . . . .. ... ... ... ..... 1823
[8.4.7  Slices of Cocompletions] . . . . .. . ... ... ... ... ... 1828

8.5  Retracts and Idempotents| . . . . . . . ... ... ... ... 1831
[8.5.1 Retracts in co-Categories| . . . . . . . . . . ... ... 1835
[8.5.2  Idempotents in Ordinary Categories| . . . . . . . . . ... ... ... 1845
[8.5.3  Idempotents in oo-Categories| . . . . . . . . . . . . ... ... .. .. 1848
[8.5.4  Idempotent Completeness| . . . . . . ... ... ... ... ...... 1850
18.5.5  Idempotent Completion| . . . . . . . ... ... ... ... ...... 1854
[8.5.6  Idempotent Endomorphisms|. . . . . . . . .. ... 1858

[8.5.7  Homotopy Idempotent Endomorphisms| . . . . . .. ... ... ... 1865




CONTENTS

18.5.8  Partial Idempotents| . . . . . .. ... ... 0oL
18.5.9  The Thompson Groupoid| . . . . . ... ... ... ... .......
8.6 Conjugate and Dual Fibrations| . . . . . . .. ... ... ... . .......

[8.6.1 Conjugate Fibrations|. . . . . . . ... ... ... .. .........

18.6.2  Existence ot Conjugate Fibrations| . . . . .. ... ... .......

B.6.3 Dual Fibrationsl. . . . ... ... ... ... ... . ... ..

[8.6.5  Cocartesian Duality via Cospans| . . . . . .. .. .. ... ... ...

[8.6.6  Comparison of Dual and Conjugate Fibrations . . . ... ... ...
[8.6.7  The Opposition Functor| . . . . . . . ... ... ... ... .. ...

[9 Large co-Categories|

9.1 Local Objects and Factorization Systems|. . . . . . . . . ... ... ... ..
9.1.1 Local Objects|. . . . . . . . . . .
9.1.2  Digression: Transfinite Composition| . . . . . . . .. ... ... ...
9.1.3  Weakly Local Objects| . . . . ... ... .. ... ... .....
9.1.4  The Small Object Argument| . . . .. ... ... .. ... ......
9.1.5  Lifting Problems in oo-Categories|. . . . . . . . . . ... ... ....
9.1.6  Weak Factorization Systems|. . . . . . . . . ... ... ... .....
9.1.7  Orthogonality|. . . . . . . . . ... . . oo
9.1.8  Uniqueness of Factorizations| . . . . . ... ... ... ........

9.1.9  Factorization Systems| . . . . . . . . ... oL

9.2 Truncated Objects of oco-Categories| . . . . . . . . .. ... ... ... ....
9.2.1  Truncated Objects| . . . . . . . . . . . .. .. ... ... . ...
9.2.2  Example: Discrete and Subterminal Objects|. . . . . . . . . ... ..
9.2.3  Truncated Morphisms| . . . . . . . . ... Lo
9.2.4  Monomorphisms| . . . . . .. ... L oo

[0E [AD onl
[10.1 Simplicial Objects of oco-Categories| . . . . . . . . . . . ... ... ... ...
[10.1.1 Geometric Realizationl . . . . . . . . . ... ... ... ... .....

[10.1.2 Semisimplicial Objects| . . . . . . . ... ... ..o

[10.1.3 Skeletal Simplicial Objects] . . . . . . .. .. .. ... ... ... ..

10.1.4 Coskeletal Simplicial Objects| . . . . . . .. ... ... .. ... ...
10.1.5 The Cech Nerve of a Morphism| . . . . . . . . . ... ... ......
[10.1.6 Split Simplicial Objects| . . . . . . . . ... . ... ... ... ....

[10.2 Regular co-Categories| . . . . . . . . . . . . .




12

CONTENTS

10.2.3 Images|. . . . . . . . . 2076
[10.2.4 Universal Quotient Morphisms| . . . . . . . . ... ... ... .... 2083

[10.2.5 Regular oo-Categories| . . . . . . . . .. ... ... ... 2089




Kerodon

February 9, 2024



Contents



Part 1

Foundations



Chapter 1

The Language of co-Categories

A principal goal of algebraic topology is to understand topological spaces by means of 0001
algebraic and combinatorial invariants. Let us consider some elementary examples.

» To any topological space X, one can associate the set mo(X) of path components of X.
This is the quotient of X by an equivalence relation ~, where x ~ y if there exists a
continuous path p : [0,1] — X satisfying p(0) = = and p(1) = v.

o To any topological space X equipped with a base point x € X, one can associate the
fundamental group m (X, x). This is a group whose elements are homotopy classes of
continuous paths p : [0, 1] — X satisfying p(0) = z = p(1).

For many purposes, it is useful to combine the set 7y(X) and the fundamental groups
{m(X,z)}zex into a single mathematical object. To any topological space X, one can
associate an invariant w<;(X) called the fundamental groupoid of X. The fundamental
groupoid 7<1(X) is a category whose objects are the points of X, where a morphism from a
point € X to a point y € X is given by a homotopy class of continuous paths p : [0, 1] — X
satisfying p(0) = x and p(1) = y. The set of path components my(X) can then be recovered
as the set of isomorphism classes of objects of the category m<1(X), and each fundamental
group 71 (X, x) can be identified with the automorphism group of the point x as an object of
the category m<1(X). The formalism of category theory allows us to assemble information
about path components and fundamental groups into a single convenient package.

The fundamental groupoid 7<1(X) is a very important invariant of a topological space X,
but is far from being a complete invariant. In particular, it does not contain any information
about the higher homotopy groups {m,(X, z)},>2. We therefore ask the following:

Question 1.0.0.1. Let X be a topological space. Can one devise a “category-theoretic” |0002
invariant of X, in the spirit of the fundamental groupoid m<;(X), which contains information
about all the homotopy groups of X7
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We begin to address Question in by introducing the theory of simplicial sets.
A simplicial set S = S, is a collection of sets {.S),},>0, which are related by face operators
{d? : Sp — Sn—1}o<i<n and degeneracy operators {s}' : Sp, — Sn+1}o<i<n satisfying suitable
identities (see Definition and Proposition . Every topological space X
determines a simplicial set Sing,(X), called the singular simplicial set of X, with the
property that each Sing, (X) is the collection of continuous maps from the topological
n-simplex into X (Construction . Moreover, the homotopy groups of X can be
reconstructed from the simplicial set Sing,(X) by a simple combinatorial procedure (see
. Kan observed that this procedure can be applied more generally to any simplicial set
S satisfying the following Kan extension condition:

(¥) For 0 <1i <mn, every map og : A — S admits an extension o : A" — S.

Here A™ denotes a certain simplicial set called the standard n-simplex (Example ,
and A" denotes a certain simplicial subset of A™ called the ith horn (Construction [1.2.4.1)).
Simplicial sets satisfying condition () are called Kan complexes. Every simplicial set of
the form Sing,(X) is a Kan complex (Proposition [1.2.5.8)), and the converse is true up
to homotopy. More precisely, Milnor proved in [44] that the construction X — Sing,(X)
induces an equivalence from the (geometrically defined) homotopy theory of CW complexes
to the (combinatorially defined) homotopy theory of Kan complexes; we will discuss this
point in Chapter |3| (see Theorem .

The singular simplicial set Sing,(X) is a natural candidate for the sort of invariant
requested in Question it is a mathematical object of a purely combinatorial nature
which contains complete information about the homotopy groups of X and their interre-
lationship (from which we can even reconstruct X up to homotopy equivalence, provided
that X has the homotopy type of a CW complex). But in order to see that it qualifies as a
complete answer, we must address the following;:

Question 1.0.0.2. Let X be a topological space. To what extent does the simplicial set
Sing,(X) behave like a category? What is the relationship between Sing,(X) with the
fundamental groupoid of X?

Our answer to Question [[.0.0.2] begins with the observation that the theory of simplicial
sets is closely related to category theory. To every category C, one can associate a simplicial
set No(C), called the nerve of C (we will review the construction of Ne(C) in §1.3; see
Construction [1.3.1.1)). The construction C + Ng(C) is fully faithful (Proposition [1.3.3.1):
in particular, a category C is determined (up to canonical isomorphism) by the simplicial
set No(C). Throughout much of this book, we will abuse notation by not distinguishing
between a category C and its nerve No(C): that is, we will view a category as a special kind
of simplicial set. These special simplicial sets admit a simple characterization: according to
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Proposition [1.3.4.1] a simplicial set S has the form N(C) (for some category C) if and only
if it satisfies the following variant of the Kan extension condition (Proposition |1.3.4.1)):

(+") For 0 < i < n, every morphism o : A? — S admits a unique extension o : A™ — S.

The extension conditions (%) and () are closely related, but differ in two important
respects. The Kan extension condition requires that every map of simplicial sets o¢ : A} — S
admits an extension o : A™ — S. Condition (') requires the existence of an extension only
in the case 0 < i < n, but demands that the extension is unique. Neither of these conditions
implies the other: a simplicial set of the form N,(C) satisfies condition (x) if and only if the
category C is a groupoid (Proposition , and a simplicial set of the form Sing,(X)
satisfies condition (') if and only if every continuous path [0,1] — X is constant. However,
conditions (x) and (+') admit a common generalization. We will say that a simplicial set S
is an oo-category if it satisfies the following variant of (%) and (+'), known as the weak Kan
extension condition:

(") For 0 < i < n, every map og : A — S, admits an extension o : A™ — S,.

The theory of co-categories can be viewed as a simultaneous generalization of homotopy
theory and category theory. Every Kan complex is an co-category, and every category
C determines an oo-category (given by the nerve No(C)). In particular, the notion of co-
category answers the first part of Question simplicial sets of the form Sing,(X)
are almost never (the nerves of) categories, but are always oco-categories. At this point,
the reader might reasonably object that this is terminological legerdemain: to address the
spirit of Question we must demonstrate that simplicial sets of the form Sing,(X)
(or, more generally, all simplicial sets satisfying condition (x”)) really behave like categories.
We begin in by explaining how to extend various elementary category-theoretic ideas
to the setting of oo-categories. For example we can associate to each oco-category S = S, a
collection of objects (these are the elements of the set Sy), a collection of morphisms (these
are the elements of the set S7), and a composition law on morphisms. In particular, we show
that any oco-category S determines an ordinary category hS, called the homotopy category
of S (Proposition . The construction of the homotopy category allows us to answer
the second part of Question [I.0.0.2} for every topological space X, the singular simplicial
set Sing,(X) is an oo-category, whose homotopy category hSing,(X) is the fundamental
groupoid m<1(X) (see Example [1.4.5.5)).

Roughly speaking, the difference between an co-category S and its homotopy category
hS is that the former can contain nontrivial homotopy-theoretic information (encoded by
simplices of dimension n > 2, which can be loosely understood as “n-morphisms”) which is
lost upon passage to the homotopy category hS. We can summarize the situation informally
with the heuristic equation

{Categories} + {Homotopy Theory} = {oo-Categories},
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or more precisely with the diagram

{Categories} Ne, {oo-Categories} ) {Kan Complexes}
n Sing,
{Simplicial Sets} {Topological Spaces}

1.1 Simplicial Sets

0004 In this section we provide an introduction to the theory of simplicial sets, which will

play an essential role throughout this book. We begin with some preliminaries.

0009/ Notation 1.1.0.1. For every nonnegative integer n, we let [n] denote the linearly ordered
set {0<1<2<---<n—1<n}.

0004 Definition 1.1.0.2 (The Simplex Category). We define a category A as follows:
o The objects of A are linearly ordered sets of the form [n] for n > 0.

o A morphism from [m] to [n] in the category A is a function « : [m| — [n] which is
nondecreasing: that is, for each 0 < i < j < m, we have 0 < a(i) < a(j n.

We will refer to A as the simplex category.

000B| Remark 1.1.0.3. The category A is equivalent to the category of all nonempty finite linearly
ordered sets, with morphisms given by nondecreasing maps. In fact, we can say something
better: for every nonempty finite linearly ordered set I, there is a unique nondecreasing
bijection I ~ [n], for some n > 0.

000C| Definition 1.1.0.4. Let C be a category. A simplicial object of C is a functor A°® — C. A
cosimplicial object of C is a functor A — C.

000D Notation 1.1.0.5. We will often use an expression like Cy to denote a simplicial object of a
category C. In this case, we write C,, for the value of the functor C, on the object [n] € A.
Similarly, we often use an expression like C*® to indicate a cosimplicial object of C, and C™
for its value on [n] € A.

We will be primarily interested in the following special case of Definition [1.1.0.4

000H Definition 1.1.0.6. Let Set denote the category of sets. A simplicial set is a simplicial
object of Set: that is, a functor A°P — Set.
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Notation 1.1.0.7. We let Setpo = Fun(A°P, Set) denote the category of functors from A°P
to Set. We refer to Seta as the category of simplicial sets.

Remark 1.1.0.8. Since the category of sets has all (small) limits and colimits, the category
of simplicial sets also has all (small) limits and colimits. Moreover, these limits and colimits
are computed levelwise: for any functor

Se:C—Seta  (C€C)— Su(C),

and any nonnegative integer n, we have canonical bijections

(limg S(C))n =~ I (S,(€)) (i S(C))o = him(S0(C).

ceC ceC cec Ce

aQ

Example 1.1.0.9 (The Standard Simplex). Let n > 0 be an integer. We let A™ denote the
functor
AP — Set [m] — Homa ([m], [n]).

Then A" is a simplicial set, which we will refer to as the standard n-simplex. By convention,
we extend this construction to the case n = —1 by setting A~! = .

Example 1.1.0.10. The standard 0-simplex A is a final object of the category of simplicial
sets: that is, it carries each [n] € A°P to a set having a single element.

Definition 1.1.0.11. Let S, be a simplicial set and let n be a nonnegative integer. An
n-simplex of Se is an element of the set 5,,. We will also refer to elements of Sy as vertices
of Se, and to elements of S; as edges of S,. We often write v € S, to indicate that v is a
vertex of S,.

Proposition 1.1.0.12. Let n be a nonnegative integer and regard the identity map idp,) :
[n] — [n] as an n-simplex of A". For every simplicial set Se, evaluation on idy, induces a
bijection

HOIIlSe'EA (An, S.) — Sh f — f(ld[n])

Proof. This is a special case of Yoneda’s lemma. O

Notation 1.1.0.13. Let S, be a simplicial set and let ¢ € S,, be an n-simplex of C. By
virtue of Proposition [1.1.0.12] there is a unique morphism f, : A" — S, in the category
of simplicial sets which satisfies f,(id},)) = 0. In practice, we will often abuse notation by
identifying the n-simplex ¢ with the morphism f,.

Remark 1.1.0.14 (Simplicial Subsets). Let So be a simplicial set. Suppose that:

e For every integer n > 0, we are given a subset T;, C Sy,

0475

000J

0476

000M

04z7

0478

0479

000P
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o For every morphism « : [m] — [n] in the simplex category A, the associated map
S, — Sy, carries T,, into T},.

Then we the construction [n] — T;, determines another simplicial set T,. In this case, we
will say that T, is a simplicial subset of S and write Ty C S,.

Example 1.1.0.15. Let S, be a simplicial set and let v be a vertex of S,. Then v can be
identified with a map of simplicial sets A% — S,. This map is automatically a monomorphism
(note that A® has only a single n-simplex for every n > 0), whose image is a simplicial subset
of Se. It will often be convenient to denote this simplicial subset by {v}. For example, we
can identify vertices of the standard n-simplex A™ with integers ¢ satisfying 0 < i < n; every
such integer ¢ determines a simplicial subset {i} C A™ (whose k-simplices are the constant
maps [k] — [n] taking the value 7).

Our first goal in this section is to make Definition [I[.1.0.6) more concrete. To a first degree
of approximation, a simplicial set Se can be viewed as a collection of sets {5y, },>0. However,
this collection is endowed with additional structure, arising from morphisms in the simplex
category A. For example, let n be a positive integer. For each 0 < ¢ < n, there is a unique
order-preserving bijection [n — 1] ~ [n] \ {¢} C [n]. This induces a function d} : S, — Sp—_1
which we will refer to as a face operator for the simplicial set S, (Construction . For
n>2and 0 <i < j <n,itis not difficult to show that these face operators satisfy the
identity

di = (d}(0)) = dj=(d}(0)) (L.1)

(see Remark [1.1.1.7]). In §1.1.1} we prove a partial converse: a collection of sets {S,} and
face operators {d}' : S, — S,—_1} which satisfy , we can uniquely reconstruct the data
of a semisimplicial set: that is, a (contravariant) set-valued functor on the subcategory
Ajyj C A whose morphisms are strictly increasing functions (see Proposition .

To fully recover the structure of a simplicial set S,, it is not enough to remember

the face operators alone: one also needs to encode the data supplied by non-injective
maps in the simplex category A. For every pair of integers 0 < i < n, there is a unique
nondecreasing surjection [n+ 1] — [n] which is constant on the subset {i,7+1}. This induces
a function s : S,, = Sp41, which we refer to as the ith degeneracy operator (Construction
. In we show that a simplicial set Se can be reconstructed from its face and
degeneracy operators, which are required only to satisfy a handful of compatibility conditions
(Proposition [1.1.2.14)).

Let S, be a simplicial set. We say that an n-simplex o € S,, is degenerate if it belongs to
the image of some degeneracy operator s?_l : Sp—1 — Sy, (Definition . We say that
Se has dimension < k if every n-simplex of S, is degenerate for n > k (Definition .
Simplicial sets of low dimension are easy to describe:
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o A simplicial set of dimension < 0 is essentially just an ordinary set. More precisely, in
§1.1.5| we show that a simplicial set S, has dimension < 0 if and only if it is isomorphic
to a constant functor A°? — Set (Proposition [1.1.5.14)); in this case, we will say that

Se is discrete (Definition [1.1.5.10)).

o A simplicial set of dimension < 1 is essentially a directed graph. More precisely, in
§1.1.6| we construct a functor from the category of simplicial sets to the category of
directed graphs, and show that it is an equivalence when restricted to simplicial sets

of dimension < 1 (Proposition [1.1.6.9)).

Let S be an arbitrary simplicial set. For every integer k, there is a largest simplicial
subset of S which has dimension < k. We will denote this simplicial subset by sk (S) and
refer to it as the k-skeleton of S (Construction [1.1.4.1)). Allowing k to vary, we can realize S

as the union of an increasing sequence
0 =sk_1(S) C sko(S) C skq(S) Csko(S) C ---

which we refer to as the skeletal filtration. In we analyze the transition maps which
appear in the skeletal filtration. Our main result is that each of the inclusions sky_1(S) —
sk (.S) is a pushout of coproducts of the inclusion map OAF < AF (Proposition .
Here AF = skj_;(A*) denotes the boundary of the standard simplex A* (Construction
[1.1.4.10). Stated more informally, the k-skeleton sk;(S) can be obtained from the (k — 1)-
skeleton ski_1(S) by attaching cells of dimension k.

1.1.1 Face Operators

For some applications, it is useful to work with variant of Definition

Notation 1.1.1.1. Let Aj,; denote the category whose objects are linearly ordered sets of
the form [n] ={0 <1 < --- < n} (where n is a nonnegative integer) and whose morphisms
are strictly increasing functions « : [m] < [n].

Definition 1.1.1.2. Let C be a category. A semisimplicial object of C is a functor A — C.

inj

We typically use the notation C4 to indicate a semisimplicial object of C, whose value on an
object [n] € AR we denote by Cy,. A semisimplicial set is a semisimplicial object of the

category of sets.

Remark 1.1.1.3. The category Aj,; of Notation [1.1.1.1| can be regarded as a (non-full)
subcategory of the simplex category A of Definition [I.1.0.2] Consequently, any simplicial
object C4 of a category C has an underlying semisimplicial object, given by the composition

AP < AP o0

inj

04ZB

04ZC

047D

00BJ
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We will often abuse notation by identifying a simplicial object of C with its underlying
semisimplicial object.

The goal of this section is to make Definition [1.1.1.2| more concrete.

Construction 1.1.1.4 (Face Operators). Let n be a positive integer. For 0 < ¢ < n, we
let 8¢ : [n — 1] — [n] denote the unique strictly increasing function whose image does not
contain the element 4, given concretely by the formula

. j if j <
%O)—{

j+1 i j >

If Co is a (semi)simplicial object of a category C, then we can evaluate Co on the
morphism 5; to obtain a morphism from C,, to C,_1. We will denote this morphism by
di : Cp, — Cp—1 and refer to it as the ith face operator.

Example 1.1.1.5. Let n be a positive integer and let S, be a simplicial set. For 0 < i < n,
the face operator d}' of Construction [1.1.1.4] carries each n-simplex o of S, to an (n — 1)-
simplex d’ (o), which we will refer to as the ith face of o.

Example 1.1.1.6. Let S, be a simplicial set and let e € S, be an edge of S,. Then s = d%(e)
is a vertex of S, which we refer to as the source of e, and t = d(l)(e) is a vertex of Se which
we refer to as the target of e. We will sometimes write e : © — y to indicate that e is an
edge of S, having source vertex x and target vertex y.

Remark 1.1.1.7 (Relations Among Face Operators). Let n > 2 be an integer. For every
pair of integers 0 < i < 5 < n, the diagram of linearly ordered sets

n—2 — 1]
51 o
n—1]— o]

is commutative: both the clockwise and counterclockwise compositions can be identified
with the unique order-preserving bijection [n — 2] ~ [n] \ {i < j}. It follows that, if C, is
a semisimplicial object of a category C, then the face operators of Cy satisfy the following
condition:

(%) For 0 <i < j <n, we have d?‘l odj = d?__ll od? (as morphisms from C), to Cj,_2).
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Example 1.1.1.8. Let S, be a simplicial set and let ¢ be a 2-simplex of S,. Then ¢ has 04ZH
three faces: the edges f = d3(0), g = d3(0), and h = d?(o). In this case, Remark [1.1.1.7
asserts the following:

o The edges f and h have the same source vertex x € S,.
e The edges g and h have the same target vertex z € S,.
o The target of f and the source of g are the same vertex y € S,.

These relationships can be encoded visually in the diagram

T zZ.

Remark [I.1.1.7] admits the following converse:

Proposition 1.1.1.9. Let C be a category and let {Cp}n>0 be a sequence of objects of C. 04FQ
Then a system of morphisms {d} : Cy, = Cp_1}o<i<nn>0 arise as the face operators of a
semisimplicial object Co of C if and only if they satisfy condition (x) of Remark|1.1.1.7.

Moreover, if this condition is satisfied, then Co is uniquely determined.

Proof. Let Kinj denote the category which is freely generated by a collection of objects
{[n]}n>0 and a collection of morphisms {d}, : [n — 1] = [n]}n>0,0<i<n- Let Ajy; denote the
quotient of Aj,; obtained by imposing the relation

0 odl_y = dLod} (1.2) 04FR
for every integer n > 2 and every pair 0 < i < j < n. Using Remark we see that
there is a unique functor Fi; : Kinj — Ajy; which carries each object [n] € Kinj to itself, and
each generating morphism 0’ to the monomorphism &7 : [n—1] < [n] of Construction
To prove Proposition [[.T.1.9} it will suffice to show that the functor Fi,j is an isomorphism
of categories.

Fix integers 0 < m < n, and set b = n —m — 1. In the category Kinj, every morphism
3 : [m] — [n] admits a unique factorization 8 = 60 o gf}_l 0---0 giffb, where the superscripts
are nonnegative integers satisfying 0 < i, <n —a for 0 < a <b. Let us say that g is in
standard form if, in addition, the integers i, satisfy the inequalities iy > i1 > i9 > - -+ > 1.
Note that, by repeatedly applying the relation , we can convert any morphism of Zinj
to a morphism which is in standard form. More precisely, every morphism 3 : [m] — [n] in

Ajy,j can be lifted to a morphism § : [m] — [n] which is in standard form.
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By construction, the functor Fj,; is bijective on objects. To complete the proof, it
will suffice to show that for every morphism « : [m] < [n], there is a unique morphism
B:[m] — [n] in Ay satisfying Fipj(8) = a.. By virtue of the preceding discussion, it will
suffice to show that o can be lifted uniquely to a morphism 3 : [m] — [n] in the category Ay;
which is in standard form. We now observe that g = gzo o 5;171 0---0 gff_b is characterized by
the requirement that {i, < ip—1 < --- < ip} C [n] is the complement of the image of a. [

1.1.2 Degeneracy Operators

Let S, be a simplicial set. By virtue of Proposition [I.1.1.9] the underlying semisimplicial
set is determined by the sequence of sets {5y },>0 together with the face operators {d} :
Sp — Sn—1}o<i<n. To recover S, as a simplicial set, we need more information.

Construction 1.1.2.1 (Degeneracy Operators). For every pair of integers 0 < i < n we let
i

On

: [n + 1] — [n] denote the nondecreasing function given by the formula

o) =7 HIET
" j—1 ifj>i.

If C, is a simplicial object of a category C, then we can evaluate Cy on the morphism o? to
obtain a morphism from C), to Cy4i. We will denote this map by s} : C,, = Cp41 and refer
to it as the ¢th degeneracy operator.

Notation 1.1.2.2. Let S, be a simplicial set. Then the degeneracy operator s§ : Sy — Sy
carries each vertex x to an edge of S, which we will denote by id,. Note that the vertex z is
both the source and target of the edge id, (see Exercise [1.1.2.7)).

Definition 1.1.2.3. Let S, be a simplicial set. We say that an n-simplex o of S, is
?_1 : Sp—1 — S, for some

integer 0 < ¢ < n. We say that o is nondegenerate if it is not degenerate. In particular,

degenerate if it belongs to the image of the degeneracy operator s

every 0-simplex of S, is nondegenerate.

Example 1.1.2.4 (Degenerate Edges). Let S, be a simplicial set and let e be an edge of
Se. Then e is degenerate if and only if it has the form id,, for some vertex = € S,. If this
condition is satisfied, then the vertex x is uniquely determined (since it is both the source
and target of the edge e).

Remark 1.1.2.5. Let f : S¢ — To be a map of simplicial sets. If ¢ is a degenerate n-simplex
of S,, then f(o) is a degenerate n-simplex of T,. The converse holds if f is a monomorphism
of simplicial sets (for example, if S, is a simplicial subset of Ty).
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Remark 1.1.2.6. Let f :.S¢ — T, be a morphism of simplicial sets. If every nondegenerate 04ZN
simplex of T, belongs to the image of f, then f is an epimorphism: that is, it induces a
surjection S, —» T, for each n > 0.

Exercise 1.1.2.7 (Relations Between Face and Degeneracy Operators). Let Co be a 04FV
simplicial object of a category C. Show that the face and degeneracy operators of C satisfy
the following relations:

(+') For 0 <i,j < n, we have an equality

siTlody  ifi <
dit o st = qidg, ifi=jori=j+1

st lod! ) ifi>j 41

(as morphisms from C,, to Cy,).
Example 1.1.2.8 (Degenerate 2-Simplices). Let S, be a simplicial set and let o be a 04ZP

2-simplex of C. We say that o is left-degenerate if it has the form sj(e), for some edge
e:x — y of C. In this case, the faces of o are depicted in the diagram

We will say that o is right-degenerate if it has the form si(e), for some edge e : * — y of Ss;
in this case, the faces of o are depicted in the diagram

Yy
iVK
€

r—Y.
Note that o is degenerate if and only if it is either left-degenerate or right-degenerate.

Exercise 1.1.2.9. Let S, be a simplicial set and let o be a 2-simplex of S,. Show that o is 04ZQ
both left-degenerate and right-degenerate if and only if it is constant: that is, it factors as a
composition A? — A® < S, (for a more general statement, see Proposition [1.1.3.8)).

Proposition 1.1.2.10. Let S, be a simplicial set and let T € Sy, be an n-simplex of Se for 0011
some n > 0, which we will identify with a map of simplicial sets T : A™ — So. The following
conditions are equivalent:

(1) The simplex T belongs to the image of the degeneracy operator s?_l : Sp—1 — Sy for

some 0 <1i <n (see Construction|1.1.2.1]).
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(2) The map T factors as a composition A" i) A1 S, where f corresponds to a
surjective map of linearly ordered sets [n] — [n — 1].

(3) The map T factors as a composition A" i> A™ — S,, where m < n and f corresponds
to a surjective map of linearly ordered sets [n] — [m].

(4) The map T factors as a composition A™ — A™ — S, where m < n.

(5) The map T factors as a composition A" T A™ — S,, where 7' is not injective on

vertices.

Proof. The implications (1) < (2) = (3) = (4) = (5) are immediate. We will complete
the proof by showing that (5) implies (1). Assume that 7 factors as a composition A" -,

A™ g/—> Se, where 7/ is not injective on vertices. Then there exists some integer 0 < i < n
satisfying 7/(i) = 7/(i + 1). It follows that 7/ factors through the map of_; : A" — A"~! of
Construction [1.1.2.1} so that 7 belongs to the image of the degeneracy operator 8?_1. O
Remark 1.1.2.11 (Relations Among Degeneracy Operators). For every triple of integers
0 <i < j < n, the diagram of linearly ordered sets

i

n+ 2] [n+1]
41— )

is commutative. It follows that, if C, is a simplicial object of a category C, then the
degeneracy operators of C, satisfy the following condition:

1 n+1

n __ n 3
os? = s} osf (as morphisms from C,

(+") For 0 <i < j < n, we have an equality s;” f

to C”H—Q)'

We close this section by showing that a simplicial object Cy of a category C can be
recovered from the sequence of objects {Cy,}n>0, together with the face and degeneracy
operators given by Constructions [1.1.1.4] and [1.1.2.1] (Proposition [I.1.2.14)). We begin by
proving a simpler result, which involves only the degeneracy operators.

Notation 1.1.2.12. Let Ay denote the category whose objects are the linearly ordered
sets [n] = {0 <1< --- <n} for n >0, and whose morphisms are nondecreasing surjective
functions [m]| — [n].
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Proposition 1.1.2.13. Let C be a category and let {Cp}n>0 be a sequence of objects of
C. Then a system of morphisms {s}' : Cp, = Cp41}o<i<n can be obtained from a functor

C, : Aggrj — C if and only if they satisfy condition (¥") of Remark|1.1.2.11| In this case,
the functor Cy is uniquely determined.

Proof. We proceed as in the proof of Proposition [1.1.1.9] Let Xsurj denote the category
which is freely generated by a collection of objects {[n]},>0 and a collection of morphisms
{68 : [n+ 1] = [n]}o<i<n. Let Agyj denote the quotient of Agyj obtained by imposing the
relation

~j o~ =i ~j+l
07, 00,41 = 0,005, (1.3)

for every triple of integers 0 < i < j < n. Using Remark we see that there is a
unique functor Fyuyj : Aguj — Agurj which carries each object [n] € Agyyj to itself, and each
generating morphism &/, to the epimorphism o? : [n + 1] — [n] of Construction To
prove Proposition [[.T.2.13] it will suffice to show that the functor Fyu;j is an isomorphism of
categories.

Fix integers 0 < m < n, and set b =n —m + 1. In the category Ksurj, every morphism
A where the superscripts

B : [n] = [m] admits a unique factorization 8 = 5% 05"} L1000,

are nonnegative integers satisfying 0 < i, < m+a for 0 < a <b. Let us say that g is in

standard form if, in addition, the integers i, satisfy the inequalities ig < i1 < iy < -+ < 4.

Note that, by repeatedly applying the relation , we can convert any morphism of Ksurj
to a morphism which is in standard form. More precisely, every morphism 3 : [n] — [m] in
Agyrj can be lifted to a morphism 3 : [m] — [n] which is in standard form.

By construction, the functor Fi,; is bijective on objects. To complete the proof, it will
suffice to show that for every morphism « : [n] — [m] in Agyyj, there is a unique morphism
B [n] = [m] in Agyj satisfying Fui(8) = a. By virtue of the preceding discussion, it
will suffice to show that a can be lifted uniquely to a morphism 5 : [n] — [m] in the

category Agyrj which is in standard form. We now observe that 3 = 70 o Oy 00 fopid

m+b
is characterized by the requirement that {ip < i1 < --- < ip} is the collection of integers
0 < j < n satisfying a(j) = a(j + 1). O

Proposition 1.1.2.14. Let C be a category containing a sequence of objects {Cp}n>0. Then
morphisms
{d}" : Cp = Cn—ito<i<nmn>o {81 Cn = Cpti}o<i<n

are the face and degeneracy operators for a simplicial object Co of C if and only if they

satisfy condition (%) of Remark condition (") of Exercise and condition (x")
of Remark|1.1.2.11], and

Proof. We proceed as in the proofs of Propositions |1.1.1.9| and |1.1.2.13l Let A denote
the category which is freely generated by a collection of objects {[n]}n>0 together with

O4FT
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04FW


https://kerodon.net/tag/04FT
https://kerodon.net/tag/04FU
https://kerodon.net/tag/04FW

04FX

0478

0019

1.1. SIMPLICIAL SETS 17

morphisms {0 : [n — 1] — [n]}ns00<i<n and {G% : [n 4+ 1] = [n]}o<i<n. Let A denote the
quotient of A obtained by imposing the relations and , together with the following:
ohogl Tt ifi<
5 obhy = {idy ifi=jori=j+1 (1.4)
oitog! | ifi>j41.
for every triple of integers 0 < 4,j < n. There is a unique functor F : A — A which carries
each object [n] € A to itself and satisfies F'(8%) = 6% and F(5%,) = o'.. To prove Proposition
it will suffice to show that the functor F' is an isomorphism of categories.

Let Kinj and Ksurj be the categories appearing in the proofs of Proposition and
Proposition respectively. Let us identify Kinj and Ksurj with (non-full) subcategories
of A. We will say that a morphism 3 : [m] — [n] of A is weakly standard if it factors as
a composition [m)] LN [k] Pini, [n], where fin; belongs to Kinj and [surj belongs to Ksurj.
In this case, the morphisms fSinj and By are uniquely determined. We will say that 3 is
in standard form if it is weakly standard and, in addition, the morphisms Biy; and Beur

are in standard form (as in the proofs of Propositions|1.1.1.9[and [1.1.2.13]). Note that, by

repeatedly applying the relation , we can convert any morphism of A into a morphism
(£ which is weakly standard. Using the relations and , we can further arrange that
(3 is in standard form. It follows that every morphism 3 : [m] — [n] in A can be lifted to a
morphism 3 : [m] — [n] of A which is in standard form.

By construction, the functor F' is bijective on objects. To complete the proof, it will
suffice to show that for every morphism « : [m| — [n] in A, there is a unique morphism
B : [m] — [n] in A satisfying F(3) = a. Let F denote the composite functor A — A LA
By virtue of the preceding discussion, it will suffice to show that there is a unique morphism
B :[m] — [n] in A which is in standard form and satisfies F(3) = o. In the simplex category
A, the morphism o factors uniquely as a composition [m] —% [k] 2 [n], where Qinj 18
an injection and gy is a surjection. If B : [m] — [n] is a weakly standard morphism of A,
then the identity F(8) = « holds if and only if F(Binj) = ainj and F(Beurj) = surj- We are
therefore reduced to proving that ainj and ogyrj can be lifted uniquely to morphisms of Kinj
and Ksurj which are in standard form, which was established in the proofs of Proposition
1.1.1.9] and Proposition [1.1.2.13 O

1.1.3 Dimensions of Simplicial Sets

We now introduce an important complexity measure for simplicial sets.

Definition 1.1.3.1. Let S be a simplicial set and let k& be an integer. We will say that S
has dimension < k if every n-simplex of S is degenerate for n > k. If £ > 0, we say that S
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has dimension k if it has dimension < k but does not have dimension < k — 1. We say that
S is finite-dimensional if it has dimension < k for some k > 0.

Example 1.1.3.2. For each n > 0, the standard simplex A™ has dimension n.

Remark 1.1.3.3. Let S be the coproduct of a collection of simplicial sets {S(a)}qca. Then
S has dimension < k if and only if each S(a) has dimension < k.

Remark 1.1.3.4. Let f:S — T be an epimorphism of simplicial sets. If S has dimension
< n, then T has dimension < n.

Remark 1.1.3.5. Let k be an integer. If a simplicial set S has dimension < k, then every
simplicial subset of S has dimension < k (see Remark [1.1.2.5)).

04ZT

04ZU

04ZV

04ZW

Proposition 1.1.3.6. Let S~ and ST be simplicial sets having dimensions < k_ and < k,, 012R

respectively. Then the product S~ x ST has dimension < k_ + k.

Proof. Let 0 = (0_,04) be a nondegenerate n-simplex of the product S~ x S*. Using
Proposition [1.1.3.8] we see that o_ and o4 admit factorizations

A" 2 A Ty g A 25 A T gt

where 7_ and 7 are nondegenerate, so that n_ < k_ and ny < k. It follows that o factors

as a composition
a_,o T XT. _
AP 20Dy Ane o Ane TXTE o gt

The nondegeneracy of o guarantees that the map of partially ordered sets [n] M

[n_] X [n4] is a monomorphism, so that n <n_ +ny < k_ + ky. O

Exercise 1.1.3.7. Show that the inequality of Proposition [1.1.3.6| is sharp. That is, if 0128

S~ and ST are nonempty simplicial sets of dimensions k_ and k., respectively, then the
product S~ x ST has dimension k_ + k.

We next show that, if .S is a simplicial set of dimension < k, then it can be recovered from
its n-simplices for n < k (Proposition [1.1.3.11)). Our proof will make use of the following:

Proposition 1.1.3.8. Let o : A™ — S be a morphism of simplicial sets. Then o can be
factored as a composition
A" S A LS

where a corresponds to a surjective map of linearly ordered sets [n] — [m] and T is a
nondegenerate m-simplex of S. Moreover, this factorization is unique.

0014
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Proof. Let m be the smallest nonnegative integer for which o can be factored as a composition
A" & A™ 5 S Tt follows from the minimality of m that o must induce a surjection of
linearly ordered sets [n] — [m] (otherwise, we could replace [m] by the image of o) and that
the m-simplex 7 is nondegenerate. This proves the existence of the desired factorization.

We now establish uniqueness. Suppose we are given another factorization of ¢ as a
composition A" NNy S , and assume that o’ induces a surjection [n] — [m']. We
first claim that, for any pair of integers 0 < i < j < n satisfying o/(i) = &/(j), we also have
a(i) = a(j). Assume otherwise. Then a admits a section § : A™ — A™ whose images
include 7 and j. We then have

T=ToaofB=co0f=70dop.

Our assumption that /(i) = o/(j) guarantees that the map (a/ o 8) : A™ — A™ is not
injective on vertices, contradicting our assumption that 7 is nondegenerate.
It follows from the preceding argument that o factors uniquely as a composition A" *»
a//

A™ 2 A" for some morphism o : A™ — A™ (which is also surjective on vertices). Let
B’ be a section of o/, and note that we have

T'=70dof =copf =70a0f =70d"0d’ 0 =10d".

Consequently, if the simplex 7/ is nondegenerate, then o must also be injective on vertices.
It follows that m’ = m and «” is the identity map, so that « = o’ and 7 = 7. O

Construction 1.1.3.9 (The Category of Simplices). Let SS, be a simplicial set. We define
a category Ag as follows:

o The objects of Ag are pairs ([n], o), where [n] is an object of A and o is an n-simplex
of S.

o A morphism from ([n],o) to ([n],0’) in the category Ag is a nondecreasing function
f i [n] = [n/] with the property that the induced map S, — S, carries ¢’ to o.

We will refer to Ag as the category of simplices of S. If k is an integer, we let Ag < denote
the full subcategory of Ag spanned by those objects ([n], o) satisfying n < k.

Remark 1.1.3.10. Passage from a simplicial set S to the category of simplices Ag is a
special case of the category of elements construction (see Variant [5.2.6.2), which we will
return to in §5.2.6|

Proposition 1.1.3.11. Let k be an integer and let S be a simplicial set. The following
conditions are equivalent:

(1) The simplicial set S has dimension < k.
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(2) The simplicial set S can be realized as the colimit of a diagram lim |~ S(J), where each
S(J) has dimension < k.

(3) The simplicial set S can be realized as the colimit of a diagram hﬂl}ej S(J), where each
S(J) is a standard simplezx of dimension < k.

(4) The tautological map
lim A" — S
([n},U)GAsygk

is an isomorphism of simplicial sets.

Proof. The implication (4) = (3) is trivial, the implication (3) = (2) follows from Example
and the implication (2) = (1) follows from Remarks [1.1.3.3| and [1.1.3.4] It will
therefore suffice to show that (1) implies (4). Assume that S has dimension < k, and let T°
denote the colimit h_n>q ( A"™; we wish to show that the tautological map f: T — S

[n],0)€As <k
is an isomorphism of simplicial sets. Since S has dimension < k, it follows immediately from

the construction that the image of f contains every nondegenerate simplex of S. Applying
Remark we deduce that f is an epimorphism of simplicial sets. We will complete the
proof by showing that f is injective. Let 7 and 7’ be ¢-simplices of T satisfying f(7) = f(7');
we wish to show that 7 = 7/. Choose an object ([n],0) € Ag <) and a lift of 7 to an ¢-simplex
7 of A", which we can identify with a nondecreasing function from [¢] to [n]. Note that 7

factors uniquely as a composition [¢] = [m] LN [n], where « is surjective and f is injective.

Replacing n by £ and o by the associated ¢-simplex of S, we can reduce to the case where
T : [{] — [n] is a surjection. Using Proposition |1.1.3.8] we can factor ¢ as a composition

A" L AP L g

where 7 is surjective and p is a nondegerate p-simplex of S,. Replacing ([n],o) by ([p], p)
and 7 by the composition v o 7, we can further assume that ¢ is a nondegenerate n-simplex
of S,. Similarly, we may assume that 7 lifts to an m-simplex 7 of A™, for some object
([n'],0") of Ag <k where ¢’ is nondegenerate and 7’ : [m] — [n/] is surjective. We then have
an equality

coT=f(r)=f(r')=0 o7

The uniqueness assertion of Proposition [1.1.3.8| then implies that ([n],o) = ([n],¢’) and
7 =7 so that 7 and 7/ are the same m-simplex of T O

Remark 1.1.3.12. Proposition |1.1.3.11] can be reformulated using the language of Kan
extensions (see Definition [7.3.0.1)): it asserts that a simplicial set S : A°® — Set has
dimension < k if and only if it is left Kan extended from the full subcategory of A°P spanned
by the objects {[n]},<k-

04ZY
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Remark 1.1.3.13. It follows from the proof of Proposition |1.1.3.11| that every simplicial set
S can be recovered as the colimit hﬂ (n.0)cAs A" In fact, this is general feature of presheaf
categories: see Theorem [8.4.2.1] for an co-categorical counterpart.

Corollary 1.1.3.14. Let k be an integer and let fo : Se — 1o be a morphism between
simplicial sets having dimension < k. Suppose that, for every nonnegative integer n < k, the
map of sets frn 1 Sn — Ty is a bijection. Then f is an isomorphism of simplicial sets.

1.1.4 The Skeletal Filtration

Roughly speaking, one can think of the simplicial sets A™ of Example[1.1.0.9]as elementary
building blocks out of which more complicated simplicial sets can be constructed. In this
section, we make this idea more precise by introducing the skeletal filtration of a simplicial
set. This filtration allows us to write every simplicial set S as the union of an increasing
sequence of simplicial subsets

sko(S) C Sk1<5) - SkQ(S) - sk3(S) C--,

where each sk, (5) is obtained from sk,_1(S) by attaching copies of A" (see Proposition

1.1.4.12| below for a precise statement).

Construction 1.1.4.1. Let S = S, be a simplicial set and let k be an integer. For every
integer n, we let sk (.5),, denote the subset of S,, consisting of those n-simplices o : A™ — §
which satisfy the following condition:

() In the category of simplicial sets, o admits a factorizaton
A" - A" 5 S
where m < k.

It follows immediately from the definitions that the collection of subsets {sk(S)n C Sy }n>0
is stable under the face and degeneracy operators for the simplicial set S,, and therefore
defines a simplicial subset sk (S) C S. We will refer to ski(S) as the k-skeleton of S.

Example 1.1.4.2. For every simplicial set S, the k-skeleton sky(S) is empty for k& < 0.

Remark 1.1.4.3. Let m and n be integers with m < n. Then, for every simplicial set 5,
the m-skeleton sk, (.S) is contained in the n-skeleton sk, ().

Remark 1.1.4.4. Let S be a simplicial set and let k be an integer. If n < k, then sky(5)
contains every n-simplex of S. In particular, the union |J sk (.5) is equal to S.

Remark 1.1.4.5. Let S be a simplicial set and let o be a nondegenerate n-simplex of S.
Then o is contained in the k-skeleton sk (.S) if and only if n < k (see Proposition [1.1.2.10]).
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Proposition 1.1.4.6. Let S be a simplicial set and let k be an integer. Then:
(a) The simplicial set sky(S) has dimension < k.

(b) For every simplicial set T of dimension < k, composition with the inclusion map
sk (S) — S induces a bijection

HomSetA (Ta Skk(S)) — HomSetA (T7 S) .

In other words, the image of any map T — S is contained in sk (S).

Proof. Assertion (a) follows from Remark To prove (b), suppose that f: T — S is a
map of simplicial sets, where T has dimension < k. We wish to show that f carries every
n-simplex o of T' to an n-simplex of sk (S). Using Proposition we can reduce to the
case where ¢ is a nondegenerate n-simplex of T'. In this case, our assumption that 7" has

dimension < k guarantees that n < k, so that f(o) belongs to sk (S) by virtue of Remark
L144 O

Corollary 1.1.4.7. Let S be a simplicial set. For every integer k, the k-skeleton sky(S) is
the largest simplicial subset of S of dimension < k.

Corollary 1.1.4.8. Let k be an integer, let S be a simplicial set, and let Ag <) denote
the category of simplices of S having dimension < k (see Construction . Then the
tautological map
ligq — S
(In],0)€As,<k

is a monomorphism, whose image is the k-skeleton ski(S) C S.

Proof. By virtue of Remark|1.1.4.4] replacing S by the k-skeleton sk (S) does not change the
category Ag <j. We may therefore assume without loss of generality that S has dimension
< k, in which case the desired result follows from Proposition [1.1.3.11 O

Corollary 1.1.4.9. For every integer k, the skeleton functor sky : Setp — Seta preserves
small colimits.

Proof. Let S : J — Seta be a diagram of simplicial sets; we wish to show that the comparison
map
0 : %ﬂ skx(S(J)) — skk(@ S(J))
Jeg JeJg
is an isomorphism of simplicial sets. Using Propositions [1.1.4.6] and [1.1.3.11} we see that

the source and target of 6 are simplicial sets of dimension < k. It will therefore suffice to
show that 6 induces a bijection on n-simplices for n < k (Corollary [1.1.3.14)), which follows

immediately from Remark |1.1.4.4] (and Remark [1.1.0.8]). O
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Construction 1.1.4.10 (The Boundary of A™). Let n > 0 be an integer and let A"
denote the standard n-simplex (Example [1.1.0.9). We let JA™ denote the (n — 1)-skeleton
of A™. We will refer to 0A™ as the boundary of A™. More explicitly, the simplicial set
(OA™) : A°P — Set is defined by the formula

(0A™)([m]) = {& € Homa ([m], [n]) : « is not surjective}.
Example 1.1.4.11. The simplicial set A is empty.

Let S be a simplicial set. For each k > 0, we let S,‘gd denote the collection of all
nondegenerate k-simplices of S. Every element o € S,‘Sd determines a map of simplicial sets
AF — sk, (S). Since the boundary AAF C AF has dimension < k — 1, this map carries A*

into the (k — 1)-skeleton skj_1(S) (Proposition [1.1.4.6)).

Proposition 1.1.4.12. Let S be a simplicial set and let k > 0. Then the construction
outlined above determines a pushout square

I 0AF I A*

oespd ocespd

skp_1(S) ————ski(9)
in the category Seta of simplicial sets.
Proof. Unwinding the definitions, we must prove the following:

(%) Let 7 be an n-simplex of ski(S) which is not contained in sky_1(S). Then 7 factors
uniquely as a composition
A" 5 AR5 8,
where ¢ is a nondegenerate simplex of S and « does not factor through the boundary
AAF (in other words, a is surjective on vertices).

Proposition implies that any n-simplex of S admits a unique factorization A" %
A™ 2 S| where « is surjective on vertices and o is nondegenerate. Our assumption that 7
belongs to the ski(S) guarantees that m < k, and our assumption that 7 does not belong to
sk_1(S) guarantees that m > k. O

We close this section by analyzing the simplicial sets A™ of Construction|1.1.4.10/in a bit
more detail. Note that, for every pair of integers 0 < k < n, the morphism 6% : A"~1 — A"
of Construction |1.1.1.4] factors through the boundary dA™.


https://kerodon.net/tag/000R
https://kerodon.net/tag/000S
https://kerodon.net/tag/001B

24 CHAPTER 1. THE LANGUAGE OF oco-CATEGORIES

Proposition 1.1.4.13. Let n be a positive integer. For every simplicial set Se, the map
Homgeg, (OA™, Se) = (Sn—1)"t! fe{fodkock<n

is an injection, whose image consists of those tuples of (09,01, ,0n) of (n — 1)-simplices
of S which satisfy the identity d?_l(aj) = d;?__ll(ai) foro<i<j<n.

Example 1.1.4.14. When n = 1, Proposition |1.1.4.13| asserts that we can identify maps
OA' — S with ordered pairs (s,t) of vertices of S. Equivalently, the boundary dA! can be
identified with the coproduct of {0} and {1} (which we regard as simplicial subsets of A! as

in Example [1.1.0.15]).

Example 1.1.4.15. When n = 2, Proposition asserts that morphisms of simplicial
sets OA? — S can be identified with ordered triples (g, h, f) of edges of S having the property
that f and h have the same source vertex = € S, g and h have the same target vertex z € S,
and the target y of f coincides with the source of g; these relationships are summarized

Y
N
h
Proof of Proposition[T.14.13 Let w : [[p<p<, A" = QA" be the map given on the kth
summand by §%. To prove the first assertion of Proposition [1.1.4.13] we must show that w

visually in the diagram

T

zZ.

is an epimorphism of simplicial sets: that is, it is surjective on m-simplices for each m > 0.

In fact, we can be a bit more precise. Let a be an m-simplex of A", which we identify with
a nondecreasing function from [m] to [n]. Then « belongs to the boundary OA™ if and only
if it is not surjective: that is, if and only if there exists some integer 0 < i < n such that «
factors through [n] \ {¢}. In this case, there is a unique m-simplex (3; which belongs to the
ith summand of [Jy<r<, A™"! and satisfies w(f;) = a.

For every integer 0 < k < n, let uy : [[g<icr A" 2 — A" ! be the map given on the
ith summand by &%, and let vy, : i<j<n AP—2 5 AP by the map given on the jth
summand by 577;11. Passing to the coproduct over k£ and reindexing, we obtain a pair of maps

(u,v) : H N H AL

0<i<j<n 0<k<n

Let Coeq(u,v)e denote the coequalizer of u and v in the category of simplicial sets. The
morphism w satisfies w o u = w o v (see Remark , and therefore factors uniquely
through a map w : Coeq(u, v)e — OA™. Proposition [1.1.4.13|asserts that w is an isomorphism
of simplicial sets: that is, for every integer m > 0, it induces a bijection from Coeq(u,v), to
the set of m-simplices of 9A™. The surjectivity of this map was established above. To prove
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injectivity, it will suffice to observe that if a : [m] — [n] is as above and we are given two
elements 7, j € [n] which do not belong to the image of «, then 3; and /3; have the same image
in Coeq(u,v)s. If i = j, this is automatic; we may therefore assume without loss of generality
that ¢ < j. In this case, the desired result follows from the observation that we can write
Bj = u(y) and f; = v(7), where v is the m-simplex of the (i, j)th summand of [[p<; <, A"
corresponding to the nondecreasing function [m] < [n] \ {i < j} =~ [n — 2]. O

1.1.5 Discrete Simplicial Sets

Simplicial sets of dimension < 0 admit a simple classification:

Proposition 1.1.5.1. The evaluation functor
evp : Setp — Set Xe — Xp
restricts to an equivalence of categories
{Simplicial sets of dimension < 0} ~ Set .

We will give a proof of Proposition [1.1.5.1] at the end of this section. First, we make
some general remarks which apply to simplicial objects of any category C.

Construction 1.1.5.2. Let C be a category. For each object C € C, we let C' denote the
constant functor A°® — {C'} < C taking the value C. We regard C as a simplicial object
of C, which we will refer to as the constant simplicial object with value C.

Remark 1.1.5.3. Let C be an object of the category C. The constant simplicial object C
can be described concretely as follows:

e For each n > 0, we have C,, = C.
e The face and degeneracy operators
di:C,—C,_1 si:Cp — Chia
are the identity maps from C to itself.

Example 1.1.5.4. Let S = {s} be a set containing a single element. Then S is a final
object of the category of simplicial sets: that is, it is isomorphic to the standard simplex A°.

The constant simplicial object C of Construction [1.1.5.2] can be characterized by a
universal mapping property:

Proposition 1.1.5.5. Let C be a category and let C' be an object of C. For any simplicial
object Xo of C, evaluation at the object [0] € AP induces a bijection

Hompyp(aer 0y (C, Xo) — Home (C, Xo).
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Proof. Let f : C — Xy be a morphism in C; we wish to show that f can be promoted
uniquely to a map of simplicial objects f, : C' — X,. The uniqueness of f, is clear. For
existence, we define f, to be the natural transformation whose value on an object [n] € A°P
is given by the composite map

oA f Xa(n)
Qn = C — XO ? Xnv

where a(n) denotes the unique morphism in A from [n] to [0]. To prove the naturality of f,,
we observe that for any nondecreasing map [ : [m] — [n] we have a commutative diagram

Xa n
Cs X
f Xa(m)

where the commutativity of the square on the right follows from the observation that a(m)

is equal to the composition [m] LN [n] otn), [0]. O
Example 1.1.5.6. Let X, be a simplicial set and let S = Xy be the set of vertices of 0507
X.. It follows from Proposition that there is a unique morphism of simplicial sets

f S — X, which is the identity map on O-simplices. Using Proposition we see

that this map is an isomorphism from S to the 0-skeleton sko(X,). In particular, f is a
monomorphism, which is an isomorphism if and only if X, has dimension < 0.

Remark 1.1.5.7. Let C be a category. Proposition [1.1.5.5 can be rephrased as follows: OOFW

e For any simplicial object X, of C, the limit @[ X, exists in the category C.

nje AP

e The canonical map @M X, — X is an isomorphism.

€A

These assertions follow formally from the observation that [0] is a final object of the category
A (and therefore an initial object of the category A°P).

Corollary 1.1.5.8. Let C be a category. Then the evaluation functor 00FX
evg : Fun(A°?,C) —» C Xe — Xo

admits a left adjoint, given on objects by the formation of constant simplicial objects C — C
described in Construction [L.1.5.2

Corollary 1.1.5.9. Let C be a category. Then the construction C'— C determines a fully OOFY
faithful embedding from C to the category Fun(A°P,C) of simplicial objects of C.
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Proof. Let C and D be objects of C; we wish to show that the canonical map
¢ : Home(C, D) — Hompy,acr ¢y (C, D)
is a bijection. This is clear, since 6 is right inverse to the evaluation map
Hompyp(aer 0y (C, D) — Home(C, D)
which is bijective by virtue of Proposition [I.1.5.5 O

We now specialize to the case where C = Set is the category of sets.

Definition 1.1.5.10. Let X, be a simplicial set. We will say that X, is discrete if there
exists a set S and an isomorphism of simplicial sets X, ~ S; here S denotes the constant
simplicial set of Construction [[.1.5.2]

Specializing Corollary [[.1.5.9] to the case C = Set, we obtain the following:

Corollary 1.1.5.11. The construction S +— S determines a fully faithful embedding Set —
Seta. The essential image of this embedding is the full subcategory of Seta spanned by the
discrete simplicial sets.

Notation 1.1.5.12. Let S be a set. We will often abuse notation by identifying S with the
constant simplicial set S of Construction [1.1.5.20 (by virtue of Corollary [1.1.5.11} this is

mostly harmless).

Remark 1.1.5.13. The fully faithful embedding
Set < Seta S— S

preserves (small) limits and colimits (since limits and colimits of simplicial sets are computed
levelwise; see Remark [1.1.0.8)). It follows that the collection of discrete simplicial sets is
closed under the formation of (small) limits and colimits in Seta.

Proposition 1.1.5.14. Let X, be a simplicial set. The following conditions are equivalent:

(1) The simplicial set X, is discrete (Definition|1.1.5.10). That is, Xe is isomorphic to a
constant simplicial set S.

(2) For every morphism « : [m| — [n] in the category A, the induced map X, — X, is a
bijection.

(3) For every positive integer n, the Oth face operator dfj : X,, — Xp—1 is a bijection.

(4) The simplicial set Xo has dimension < 0, in the sense of Definition|1.1.3.1 That is, Xe
does not contain any nondegenerate n-simplices for n > 0.
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Proof. The implication (1) = (2) follows from Remark |1.1.5.3] and the implication (2) = (3)
is immediate. To prove that (3) = (4), we observe that if the face operator dj : X,, = X,_1
is bijective, then the degeneracy operator 88_1 : Xp—1 — X, is also bijective (since it is a

right inverse of df). In particular, 33_1 is surjective, so every n-simplex of X, is degenerate.
The implication (4) = (1) follows from Example [1.1.5.6 O

Proof of Proposition|1.1.5.1. By virtue of Proposition [1.1.5.14] it will suffice to show that

the construction X, — X induces an equivalence of categories
{Discrete simplicial sets} — Set .

This follows immediately from Corollary [[.1.5.11] O

1.1.6 Directed Graphs as Simplicial Sets

We now generalize Proposition [I.1.5.14] to obtain a concrete description of simplicial sets
of dimension < 1 (Proposition|1.1.6.9).
Definition 1.1.6.1. A directed graph G consists of the following data:

o A set Vert(G), whose elements we refer to as vertices of G.
o A set Edge(G), whose elements we refer to as edges of G.

A pair of functions s, : Edge(G) — Vert(G) which assign to each edge e € Edge(G)
a pair of vertices s(e), t(e) € Vert(G) that we refer to as the source and target of e,
respectively.

Warning 1.1.6.2. The terminology of Definition is not standard. Note that a
directed graph G can have distinct edges e # ¢’ having the same source s(e) = s(e’) and
target t(e) = t(¢/) (for this reason, directed graphs in the sense of Definition are
sometimes called multigraphs). Definition also allows graphs which contain loops:
that is, edges e satisfying s(e) = t(e).

Remark 1.1.6.3. It will sometimes be convenient to represent a directed graph G by a
diagram, having a node for each vertex v of G and an arrow for each edge e of G, directed
from the source of e to the target of e. For example, the diagram

represents a directed graph with three vertices and five edges.
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001H Example 1.1.6.4. To every simplicial set X, we can associate a directed graph Gr(X) as
follows:

o The vertex set Vert(Gr(X)) is the set of O-simplices of the simplicial set X.

o The edge set Edge(Gr(X)) is the set of nondegenerate 1-simplices of the simplicial set
X.

o For every edge e € Edge(Gr(X)), the source s(e) is the vertex di(e), and the target
t(e) is the vertex d{(e) (here d} and di denote the face operators of Construction

TIL3).

It will be convenient to construe Example as providing a functor from the category
of simplicial sets to the category of directed graphs. First, we need an appropriate definition
for the latter category.

001J Definition 1.1.6.5. Let G and G’ be directed graphs (in the sense of Definition [1.1.6.1)). A
morphism from G to G’ is a function f : Vert(G) I Edge(G) — Vert(G’) I1 Edge(G’) which
satisfies the following conditions:

(a) For each vertex v € Vert(G), the image f(v) belongs to Vert(G').

(b) Let e € Edge(G) be an edge of G with source v = s(e) and target w = t(e). Then
exactly one of the following conditions holds:

o The image f(e) is an edge of G’ having source s(f(e)) = f(v) and target ¢t(f(e)) =
f(w).
o The image f(e) is a vertex of G’ satisfying f(v) = f(e) = f(w).

We let Graph denote the category whose objects are directed graphs and whose morphisms
are morphisms of directed graphs (with composition defined in the evident way).

001K Warning 1.1.6.6. Note that part (b) of Definition allows the possibility that a
morphism of directed graphs G — G’ can “collapse” edges of G to vertices of G’. Many
other notions of morphism between (directed) graphs appear in the literature; we single
out Definition because of its close connection with the theory of simplicial sets (see

Proposition [1.1.6.7| below).

Let X = X, be a simplicial set and let Gr(X) be the directed graph of Example [1.1.6.4
Then the disjoint union Vert(Gr(X)) II Edge(Gr(X)) can be identified with the set X; of
all 1-simplices of X (by identifying each vertex x € X with the degenerate edge id;).
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Proposition 1.1.6.7. Let X = X, and Y =Y, be simplicial sets, and let f : X —Y be a
morphism of simplicial sets. Then the induced map

Vert(Gr(X)) II Edge(Gr(X)) ~ X; EN Y1 ~ Vert(Gr(Y)) I Edge(Gr(Y))
1s a morphism of directed graphs from Gr(X) to Gr(Y), in the sense of Definition|1.1.6.5|.
P f graphs f (X) (Y), f Defi

Proof. Since f commutes with the degeneracy operator s), it carries degenerate 1-simplices
of X to degenerate 1-simplices of Y, and therefore satisfies requirement (a) of Definition
1.1.6.5] Requirement (b) follows from the fact that f commutes with the face operators d}
and di. O

It follows from Proposition [1.1.6.7| that we can regard the construction X — Gr(X) as a

functor from the category Seta of simplicial sets to the category Graph of directed graphs.

Proposition 1.1.6.8. Let X and Y be simplicial sets. If X has dimension < 1, then the
canonical map

Homget, (X,Y) = Homgraph (Gr(X), Gr(Y))
1s bijective.
Proof. Set G = Gr(X). If X has dimension < 1, then Proposition [1.1.4.12|supplies a pushout
diagram

OA! I A!
ecEdge(G) ecEdge(G)
Vert(G) X.

It follows that, for any simplicial set Y = Y,, we can identify Homget, (X,Y’) with the fiber
product

( H Yl) X ( H Yb)a

ccBdge(@)  eemageaY0XY0) wevert(a))
which parametrizes morphisms of directed graphs from Gr(X) to Gr(Y). O

It follows from Proposition [I.1.6.8] that the theory of simplicial sets of dimension < 1 is
essentially equivalent to the theory of directed graphs.

Proposition 1.1.6.9. Let Seta denote the category of simplicial sets and let Seti1 C Seta
denote the full subcategory spanned by the simplicial sets of dimension < 1. Then the
construction X — Gr(X) induces an equivalence of categories Seti1 — Graph.
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Proof. Tt follows from Proposition |1.1.6.8| that the functor X — Gr(X) is fully faithful when
restricted to simplicial sets of dimension < 1. It will therefore suffice to show that it is
essentially surjective. Let G be any directed graph, and form a pushout diagram of simplicial

sets
OA! I A!
ecEdge(G) ecEdge(G)
(s,t)
[T A° X.
veVert(G)

Then X is a simplicial set of dimension < 1 (Proposition [I.1.3.11)), and the directed graph
Gr(X) is isomorphic to G. O

Remark 1.1.6.10. The proof of Proposition |1.1.6.9| gives an explicit description of the
inverse equivalence Graph ~ C < Seta: it carries a directed graph G to the 1-dimensional
simplicial set G given by the colimit of the diagram

( JT A%« I oah—=( [I ab.

veVert(G) ecEdge(G) ecEdge(G)

Example 1.1.6.11. Let GG be a directed graph and let G, denote the associated simplicial
set of dimension < 1 (Remark [1.1.6.10). Then G4 has dimension < 0 if and only if the edge
set Edge(G) is empty. In this case, G4 can be identified with the constant simplicial set

Vert(G).

1.2 From Topological Spaces to Simplicial Sets

Simplicial sets are connected to algebraic topology by two closely related constructions:

o To every topological space X, one can associate a simplicial set Sing,(X), whose
n-simplices are given by continuous functions from the topological n-simplex

|A™ = {(to,t1,...,tn) € [0,1]" " i tg+ 2t + -+ t, =1}

to X. We will refer to Sing,(X) as the singular simplicial set of X (Construction
1.2.2.2)). These simplicial sets tend to be quite large: in any nontrivial example, the
sets Sing,,(X) will be uncountable for every nonnegative integer n.

e Any simplicial set S, can be regarded as a “blueprint” for constructing a topological
space |Se| called the geometric realization of S,, which can be obtained as a quotient
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of the disjoint union [[,,> Sn X [A"| by an equivalence relation determined by the face
and degeneracy operators of So. Many topological spaces of interest (for example, any
space which admits a finite triangulation) can be realized as a geometric realization of
a simplicial set Se having only finitely many nondegenerate simplices.

These constructions determine adjoint functors

Set A<|*7‘>Top
Sing,
relating the category Seta of simplicial sets to the category Top of topological spaces. We
review the constructions of these functors in §1.2.2] and §1.2.3] viewing them as instances of
a general paradigm (Variant and Proposition which will appear repeatedly
in Chapter
Under mild assumptions, the entire homotopy type of X can be recovered from the

simplicial set Sing,(X). More precisely, there is a canonical map | Sing,(X)| — X (given
by the counit of the preceding adjunction), and Giever showed that it is always a weak
homotopy equivalence (hence a homotopy equivalence when X has the homotopy type of a
CW complex; see Proposition . Consequently, for the purpose of studying homotopy
theory, nothing is lost by replacing X by Sing,(X) and working in the setting of simplicial
sets, rather than topological spaces. In fact, it is possible to develop the theory of algebraic
topology in entirely combinatorial terms, using simplicial sets as surrogates for topological
spaces. In §1.2.1] we consider a simple example of this idea. We say that a simplicial set
is connected if it is nonempty and cannot be decomposed as a disjoint union of nonempty
simplicial subsets (Definition [1.2.1.6]). Every simplicial set S decomposes uniquely as disjoint
union of connected simplicial subsets (Proposition , indexed by a set which we
denote by mp(.5). In the special case where S = Sing,(X) is the singular simplicial set of
a topological space X, this construction recovers the set my(X) of path components of X

(Remark [1.2.2.5)).

The discussion of connectedness in §1.2.1|illustrates a general phenomenon: many useful

concepts from topology have combinatorial counterparts in the setting of simplicial sets.

However, one must take some care when applying those concepts to simplicial sets which
are not of the form Sing, (X).

Warning 1.2.0.1. Let fo, f1 : S — T be morphisms of simplicial sets. We define a homotopy
from fo to fi to be a morphism of simplicial sets h : Al x § — T satisfying h|{0}><5 = fo
and hlg1yxs = fi (Definition . In the special case where T' = Sing,(X) is the singular
simplicial set of a topological space X, this recovers the usual definition of homotopy between
the associated continuous functions Fy, F : |S| — X (Example [3.1.5.5). Beware that, if 7" is
a general simplicial set, then the definition of homotopy is not symmetric: the existence of
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a homotopy from fy to f; does not imply the existence of a homotopy from f; to fo (for
example, take T'= A! to be the standard simplex, and f; : {i} < A! to be the inclusion
maps).

In we introduce a class of simplicial sets called Kan complexes, for which the
bad behavior described in Warning cannot occur: if T is a Kan complex and S is
any simplicial set, then homotopy determines an equivalence relation on the collection of
morphisms f : S — T (see Proposition . By definition, T is a Kan complex if it
satisfies an extension condition with respect to certain maps of simplicial sets A}’ — A"
called horn inclusions, which we introduce in For every topological space X, the
singular simplicial set Sing, (X) is a Kan complex (Proposition. Moreover, a classical
theorem of Milnor ([44]) guarantees that the functor X — Sing,(X) induces an equivalence
from the homotopy category of CW complexes to the homotopy category of Kan complexes.
In particular, every Kan complex 7' is homotopy equivalent to a Kan complex of the form
Sing,(X), where X is a topological space (in fact, we can take X to be the geometric
realization |T'|; see Theorem . Heuristically, one can think that Kan complexes are
simplicial sets which “behave like” the singular simplicial sets of topological spaces. However,
there are many other examples having a more combinatorial flavor: for example, any
simplicial set which admits a group structure is automatically a Kan complex (Proposition

1.2.5.9).

1.2.1 Connected Components of Simplicial Sets

In this section, we introduce the notion of a connected simplicial set (Definition
and show that every simplicial set S decomposes uniquely as a disjoint union of connected
subsets (Proposition [1.2.1.13), indexed by a set mo(S) which we call the set of connected
components of S. Moreover, we characterize the construction S — m(S) as a left adjoint to

the functor I — I of Construction [1.1.5.2| (Corollary [1.2.1.21)).

Definition 1.2.1.1. Let S be a simplicial set and let S’ C S be a simplicial subset of S
(Remark [1.1.0.14). We will say that S’ is a summand of S if the simplicial set S decomposes
as a coproduct S’ [[S”, for some other simplicial subset S” C S.

Remark 1.2.1.2. In the situation of Definition , if S, C S, is a summand, then
the complementary summand S. is uniquely determined: for each n > 0, we must have
S =5, \ S/,. Consequently, the condition that S is a summand of S, is equivalent to the
condition that the construction

([n] € A°P) — S, \ S,

is functorial: that is, that the face and degeneracy operators for the simplicial set S, preserve
the subsets S, \ S),.


https://kerodon.net/tag/00G5
https://kerodon.net/tag/00G6
https://kerodon.net/tag/00G7

34 CHAPTER 1. THE LANGUAGE OF oco-CATEGORIES

Remark 1.2.1.3. Let S be a simplicial set. Then the collection of all summands of .S is
closed under the formation of unions and intersections (this follows immediately from the

criterion of Remark (1.2.1.2)).

Remark 1.2.1.4 (Transitivity). Let S be a simplicial set. If S’ C S is a summand of S and
S" C S’ is a summand of S’, then S” is a summand of S.

Remark 1.2.1.5. Let f: S — T be a map of simplicial sets and let 7" C T be a summand.

Then the inverse image f~1(T") ~ S x7 T is a summand of S.

Definition 1.2.1.6. Let S be a simplicial set. We will say that S is connected if it is
nonempty and every summand S’ C S is either empty or coincides with S.

Example 1.2.1.7. For each n > 0, the standard n-simplex A" is connected.

Definition 1.2.1.8 (Connected Components). Let S be a simplicial set. We will say that a
simplicial subset S” C S is a connected component of S if S’ is a summand of S (Definition
1.2.1.1) and S’ is connected (Definition [1.2.1.6). We let mo(S) denote the set of all connected
components of S.

Warning 1.2.1.9. Let S be a simplicial set. As we will soon see, the set 7y (.S) admits many
different descriptions:

o We can identify mo(S) with the set of connected components of S (Definition |1.2.1.8)).

o We can identify m(S) with a colimit of the diagram A°P? — Set given by the simplicial

set S (Remark |1.2.1.20)).

o We can identify my(S) with the quotient of the set of vertices of S by an equivalence
relation ~ generated by the set of edges of S (Remark [1.2.1.23]).

o We can identify 7y(S) with the set of connected components of the directed graph
Gr(S) introduced in §1.1.6| (Variant [1.2.1.24]).

o If S is a Kan complex, we can identify my(S) as the set of isomorphism classes of
objects in the fundamental groupoid m<;(S) (Remark [1.4.6.13)).

Because of this abundance of perspectives, it often will be convenient to view I = my(S) as
an abstract index set which is equipped with a bijection

I ~ {Connected components of S} (iel)— (S;C09),

rather than as the set of connected components itself.
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Example 1.2.1.10. Let I be a set and let I be the constant simplicial set associated to
I (Construction [1.1.5.2)). Then the connected components of I are exactly the simplicial
subsets of the form {7} for i € I. In particular, we have a canonical bijection I ~ mo(l).

Proposition 1.2.1.11. Let f: S — T be a map of simplicial sets, and suppose that S is
connected. Then there is a unique connected component T' C T such that f(S) CT".

Proof. Let T' be the smallest summand of T which contains the image of f (the existence of
T’ follows from Remark we can take T” to be the intersection of all those summands
of T which contain the image of f). We will complete the proof by showing that 7" is
connected. Since S is nonempty, 7" must be nonempty. Let 7”7 C T’ be a summand; we
wish to show that 7”7 = T' or 7" = (). Note that f~1(7”) is a summand of S (Remark
. Since S is connected, we must have f~1(7") = S or f~Y(T") = 0. Replacing 7" by
its complement if necessary, we may assume that f~!1(7”) = S, so that f factors through
T". Since T” is a summand of T (Remark [1.2.1.4)), the minimality of 7" guarantees that
T" =T’ as desired. O

Corollary 1.2.1.12. Let S be a simplicial set. The following conditions are equivalent:
(a) The simplicial set S is connected.
(b) For every set I, the canonical map
I ~ Homget, (A°, 1) — Homge , (S, I)
is bijective.

Proof. The implication (a) = (b) follows from Proposition and Example
Conversely, suppose that (b) is satisfied. Applying (b) in the case I = (), we conclude that
there are no maps from S to the empty simplicial set, so that S is nonempty. If S is a
disjoint union of simplicial subsets S’,S” C S, then we obtain a map of simplicial sets

S~ S [S" — A ]]A°

and assumption (b) guarantees that this map factors through one of the summands on the
right hand side; it follows that either S’ or S” is empty. O

Proposition 1.2.1.13. Let S be a simplicial set. Then S is the disjoint union of its
connected components.

Proof. Let o be an n-simplex of S; we wish to show that there is a unique connected
component of S which contains o. This follows from Proposition [1.2.1.11] applied to the
map A" — S classified by o (since the standard n-simplex A" is connected; see Example

1.2.1.7). O
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Corollary 1.2.1.14. Let S be a simplicial set. Then S is empty if and only if mo(S) is
empty.

Corollary 1.2.1.15. Let S be a simplicial set. Then S is connected if and only if mo(S)
has exactly one element.

Exercise 1.2.1.16 (Classification of Summands). Let S be a simplicial set. Show that a
simplicial subset S’ C S is a summand if and only if it can be written as a union of connected
components of S. Consequently, we have a canonical bijection

{Subsets of my(S)} ~ {Summands of S}.

Remark 1.2.1.17 (Functoriality of my). Let f : S — T be a map of simplicial sets. It
follows from Proposition that for each connected component S’ C S, there is a
unique connected component 77 C T such that f(S’) C T’. The construction S’ — T”
then determines a map of sets mo(f) : mo(S) — mo(7). This construction is compatible
with composition, and therefore allows us to view the construction S +— m(S) as a functor
o : Seta — Set from the category of simplicial sets to the category of sets.

We now show that the connected component functor mg : Seto — Set can be characterized
by a universal property.

Construction 1.2.1.18 (The Component Map). Let S be a simplicial set. For every
n-simplex o of S, Proposition [1.2.1.13] implies that there is a unique connected component
S’ C S which contains o. The construction o — S’ then determines a map of simplicial sets

u: S — m(S),

where 7 (.S) denotes the constant simplicial set associated to my(S) (Construction [1.1.5.2]).

We will refer to u as the component map.

Proposition 1.2.1.19. Let S be a simplicial set and let u : S — 7y(S) be the component
map of Construction[1.2.1.18. For every set J, composition with u induces a bijection

Homget (70 (S), J) — Homget , (S, ).

Proof. Decomposing S as the union of its connected components, we can reduce to the
case where S is connected, in which case the desired result is a reformulation of Corollary
1.2.1.12 L]

Remark 1.2.1.20 (7 as a Colimit). Let S be a simplicial set. It follows from Proposition
1.2.1.19| that the component map u : S — 7y(S) exhibits m(S) as the colimit of the diagram
A°P — Set determined by S.

00GK

00GL

00GM

OOGN

OOGP

00GQ

OOGR


https://kerodon.net/tag/00GK
https://kerodon.net/tag/00GL
https://kerodon.net/tag/00GM
https://kerodon.net/tag/00GN
https://kerodon.net/tag/00GP
https://kerodon.net/tag/00GQ
https://kerodon.net/tag/00GR

00GS

00GT

00GU

00GV

050A

1.2. FROM TOPOLOGICAL SPACES TO SIMPLICIAL SETS 37

Corollary 1.2.1.21. The connected component functor
o : Seta — Set S m(S)
of Remark|1.2.1.17 is left adjoint to the constant simplicial set functor

Set — Seta I—1

of Construction . More precisely, the construction S +— (u : S — mo(S)) is the unit of
an adjunction.

We now make Remark [[.2.1.20l more concrete.

Proposition 1.2.1.22. Let S, be a simplicial set, and let ug : So — mo(Se) be the map of
sets given by the component map of Construction|1.2.1.18. Then gy exhibits mo(Se) as the
coequalizer of the face operators dy, di : S1 = Sp.

Remark 1.2.1.23. Let S, be a simplicial set. Proposition supplies a coequalizer
diagram of sets

dg

Si ? So ———— mo(S,).
1

In other words, it allows us to identify 7y(Se) with the quotient of Sy/ ~, where ~ is the
equivalence relation generated by the set of edges of Se (that is, the smallest equivalence
relation with the property that dj(e) ~ di(e), for every edge e € S1). In particular, the set
70(Se) depends only on the 1-skeleton of S,.

Variant 1.2.1.24. Let S, be a simplicial set. Then the set of connected components 7o (.S,)
can also be described as the coequalizer of the pair of maps dj,d} : Si4 = Sy, where
Sid C ) denotes the set of nondegenerate edges of S, (since every degenerate edge e € Sy
automatically satisfies d§(e) = d}(e)). We therefore have a coequalizer diagram of sets

Edge(G) Vert(G) 70(Se ),

where G = Gr(S,) is the directed graph of Example [1.1.6.4] In other words, we can identify
m0(Se) with the set of connected components of G, in the usual graph-theoretic sense.

Corollary 1.2.1.25. For n > 2, the simplicial set OA"™ is connected.

Proof. Example [1.2.1.7] guarantees that the standard simplex A" is connected. The desired
result now follows from Proposition [1.2.1.22} since the inclusion map dA"™ < A" is bijective
on simplices of dimension < 1. ]
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Proof of Proposition[1.2.1.23. Let I be a set and let f : Sy — I be a function satisfying
fod} = fod! (as functions from S; to I). We wish to show that f factors uniquely as a
composition

So ﬂ) WU(S.) — 1.

By virtue of Proposition this is equivalent to the assertion that there is a unique
map of simplicial sets F': S¢ — I which coincides with f on simplices of degree zero. Let o
be an n-simplex of S,, which we identify with a map of simplicial sets o : A" — S,. For
0 < i < n, we regard o(i) as a vertex of S,. Note that if 0 < i < j < n, then we have
f(o(i)) = f(o(j)): to prove this, we can assume without loss of generality that i = 0 and
j =mn = 1, in which case it follows from our hypothesis that f o d} = f o d}. It follows

that there is a unique element F'(0) € I such that F(o) = f(o(i)) for each 0 < i < n.

The construction o — F(o) defines a map of simplicial sets F' : S — I with the desired
properties. O

Proposition 1.2.1.26. The collection of connected simplicial sets is closed under finite
products.

Proof. Since the final object A € Seta is connected (Example , it will suffice to show
that the collection of connected simplicial sets is closed under pairwise products. Let S,
and T, be connected simplicial sets; we wish to show that S x T is connected. Equivalently,
we wish to show that mo(Se x Ts) consists of a single element (Corollary [[.2.1.15)). By virtue
of Proposition [[.2.1.22] the component map supplies a surjection

up - So X TO —» TF[)(S. X T.)

It will therefore suffice to show that every pair of vertices (s,t), (s',t') € Sp x Ty belong to
the same connected component of Se X Ty. Let Ko C S X Ty be the connected component
which contains the vertex (s',t). Since S, is connected, the map

Se = S X {t} <> Se x T,

factors through a unique connected component of S, X Ty, which must be equal to K,. It
follows that K, contains the vertex (s,t). A similar argument (with the roles of So and T,
reversed) shows that K, contains (s', ). O

Corollary 1.2.1.27. The functor my : Seta — Set preserves finite products.

Proof. Since mo(AY) is a singleton (Example [1.2.1.7), it will suffice to show that for every

pair of simplicial sets S, and T,, the canonical map

ﬂ'o(S. X T.) — 7T0(S.) X 7T0(T.)
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is bijective. Writing Se and T, as a disjoint union of connected components (Proposition
1.2.1.13)), we can reduce to the case where S, and T, are connected, in which case the desired
result follows from Proposition [1.2.1.26 O

Warning 1.2.1.28. The collection of connected simplicial sets is not closed under infinite
products (so the functor 7y : Seta — Set does not commute with infinite products). For
example, let G be the directed graph with vertex set Vert(G) = Z>¢ = Edge(G), with source
and target maps

s,t : Edge(G) — Vert(G) s(n)=n t(n) =n+1.

More informally, G is the directed graph depicted in the diagram

0 1 2 3 4

The associated 1-dimensional simplicial set G4 is connected. However, the infinite product
Se = lnez., Go is not connected. By definition, the vertices of Se can be identified with
functions f : Z>9 — Z>o. It is not difficult to see that two such functions f,g: Z>¢ — Z>g
belong to the same connected component of S, if and only if the function n — |f(n) — g(n)|
is bounded. In particular, the identity function n — n and the zero function n +— 0 do not
belong to the same connected component of S,.

1.2.2 The Singular Simplicial Set of a Topological Space
Topology provides an abundant supply of examples of simplicial sets.

Notation 1.2.2.1 (The n-Simplex). For each integer n > 0, we let |A"| denote the set
of (n + 1)-tuples of nonnegative real numbers (tg,t1,- - ,t,) which satisfy the equation
to+t1+---+t, =1. We regard |A"| as a topological space (with the topology inherited
from standard topology on Euclidean space R"™1). If X is a topological space, we will refer
to a continuous function o : |A"| — X as a singular n-simplex in X.

Construction 1.2.2.2. Let X be a topological space. We define a simplicial set Sing,(X)
as follows:

« To each object [n] € A, we assign the set Sing,(X) = Homm,,(JA™], X) of singular
n-simplices in X.

o To each non-decreasing map « : [m| — [n], we assign the map Sing,,(X) — Sing,,(X)
given by precomposition with the continuous map

|A™] — [A"]
(tostr, .- tm) = (Y ti, tisooy Y i)

a(i)=0 «ai)=1 a(i)=n
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We will refer to Sing,(X) as the singular simplicial set of X. We view the construction
X — Sing,(X) as a functor from the category of topological spaces to the category of
simplicial sets, which we will denote by Sing, : Top — Seta.

Example 1.2.2.3. Let X be a topological space and let Sing,(X) be its singular simplicial
set. Then:

o Vertices of Sing,(X) can be identified with points of X.

o Edges of Sing,(X) can be identified with continuous paths p : [0,1] — X. Here the
source of p is the point z = p(0), and the target of p is the point y = p(1).

Remark 1.2.2.4. The functor X ~ Sing,(X) carries limits in the category of topological
spaces to limits in the category of simplicial sets (in fact, the functor Sing, admits a left
adjoint; see Corollary . It does not preserve colimits in general. However, it does
carry coproducts of topological spaces to coproducts of simplicial sets: this follows from the
observation that the topological n-simplex |A"| is connected for every n > 0.

Remark 1.2.2.5 (Connected Components of Sing,(X)). Let X be a topological space.

We let mo(X) denote the set of path components of X: that is, the quotient of X by the
equivalence relation

(z~y) e (Fp:[0,1] = X)[p(0) = z and p(1) = y|.

It follows from Remark [1.2.1.23| that we have a canonical bijection 7y (Sing, (X)) =~ mo(X).

That is, we can identify connected components of the simplicial set Sing,(X) (in the sense
of Definition [1.2.1.8]) with path components of the topological space X.

Remark 1.2.2.6 (Connectedness of Sing,(X)). Let X be a topological space. Then the
simplicial set Sing,(X) is connected if and only if X is path connected (this follows from

Remark |1.2.2.5).

Warning 1.2.2.7. Let X be a topological space. If the simplicial set Sing,(X) is connected,
then the topological space X is path connected and therefore connected. Beware that the
converse is not necessarily true: there exist topological spaces X which are connected but

not path connected, in which case the singular simplicial set Sing,(X) will not be connected.

It will be convenient to consider a generalization of Construction [1.2.2.2

Variant 1.2.2.8. Let C be a category and let @ be a cosimplicial object of C, which we view
as a functor A to C. For every object X € C, the construction ([n] € A) — Home(Q([n]), X)
determines a functor from A°P to the category of sets, which we can view as a simplicial
set. We will denote this simplicial set by Sing® (X), so that we have canonical bijections
Sing®?(X) ~ Home(Q", X). We view the construction X +— Sing@(X) as a functor from C
to the category of simplicial sets, which we denote by Sing® : C — Seta.
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Example 1.2.2.9. The construction [n| — |A"| determines a functor from the simplex
category A to the category Top of topological spaces, which assigns to each morphism
a : [m] — [n] the continuous map

A = |A"] (to, - tm) = (D iy Y t).
a(i)=0 a(i)=n
We regard this functor as a cosimplicial topological space, which we denote by |A®|. Applying

Variant [1.2.2.8) to this cosimplicial space yields a functor Sing'.A‘ : Top — Seta, which
coincides with the singular simplicial set functor Sing, of Construction [1.2.2.2

Example 1.2.2.10. The construction [n] — A" determines a functor from the simplex
category A to the category Seta = Fun(A°P,Set) of simplicial sets (this is the Yoneda
embedding for the simplex category A). We regard this functor as a cosimplicial object of
Seta, which we denote by A®. Applying Variant to this cosimplicial object, we obtain
a functor from the category of simplicial sets to itself, which is canonically isomorphic to
the identity functor idge, : Seta — Seta (see Proposition (1.1.0.12)).

Remark 1.2.2.11. The cosimplicial space |A®| of Example|1.2.2.9 can be described more
informally as follows:

« To each nonempty finite linearly ordered set I, it assigns a topological simplex |A!|
whose vertices are the elements of I: that is, the convex hull of the set I inside the
real vector space R[I] generated by I.

« To every nondecreasing map « : I — .J, the induced map |A| — |A7| is given by the
restriction of the R-linear map R[I] — R[J] determined by a. Equivalently, it is the
unique affine map which coincides with o on the vertices of the simplex |Af].

1.2.3 The Geometric Realization of a Simplicial Set

Let X be a topological space. By definition, n-simplices of the simplicial set Sing,(X)
are continuous functions |A"| — X. Using Proposition [1.1.0.12] we obtain a bijection

Homrop (JA"[, X) ~ Homget, (A™, Sing, (X)).

We now consider a generalization of this observation, where we replace A™ by an arbitrary
simplicial set.

Definition 1.2.3.1. Let S be a simplicial set and let Y be a topological space. We will say
that a map of simplicial sets u : S — Sing,(Y') exhibits Y as a geometric realization of S if,
for every topological space X, the composite map

HomTop(Yu X) — HomSetA (Singo (Y)7 Singo (X)) ﬂ} HomSetA (57 Sing. (X))

is a bijection.
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Example 1.2.3.2. For each n > 0, the identity map id : |A"| ~ |A"| determines an
n-simplex of the simplicial set Sing,(|]A"|), which we can identify with a morphism of
simplicial sets u : A™ — Sing,(|]A™]). It follows from Proposition that u exhibits
the topological space |A"| as a geometric realization of the simplicial set A™.

Notation 1.2.3.3. Let S be a simplicial set. It follows immediately from the definitions
that if there exists a map u : S — Sing,(Y’) which exhibits Y as a geometric realization of S,
then the topological space Y is determined up to homeomorphism and depends functorially
on S. We will emphasize this dependence by writing |S| to denote a geometric realization of
S. By virtue of Example this is compatible with the convention of Notation [1.2.2.T
in the special case where S = A" is a standard simplex.

Every simplicial set admits a geometric realization:

Proposition 1.2.3.4. For every simplicial set S, there exists a topological space Y and a
map u: S — Sing,(Y) which exhibits Y as a geometric realization of S.

Corollary 1.2.3.5. The singular simplicial set functor Sing, : Top — Seta admits a left
adjoint, given by the geometric realization construction S — |S]|.

Our proof of Proposition will make use of the following formal observation:

Lemma 1.2.3.6. Let J be a small category equipped with a functor S : J — Seta. Suppose
that, for each J € J, the simplicial set S(J) admits a geometric realization |S(J)|. Then
the colimit T = ligjej S(J) also admits a geometric realization, given by the colimit
Y=lim, |S(J)| in the category of topological spaces.

Proof. For each J € J, choose a topological space |S(J)| and a map uy : S(J) —
Sing, (|S(J)|) which exhibits |S(J)| as a geometric realization of S(.J). We can then amalga-
mate the composite maps

S(J) =% Sing,(|S(J)|) — Sing,(Y)

to a single map of simplicial sets u : T — Sing,(Y). We claim that u exhibits Y as a
geometric realization of the simplicial set T. Let X be any topological space; we wish to
show that the composite map

Homop (Y, X) — Homse , (Sing, (Y), Sing, (X)) == Homges, (T, Sing, (X))

is a bijection. This is clear, since this composite map can be written as an inverse limit
of the bijections Homrop(|S(J)[, X) = Homget, (S(J), Sing, (X)) determined by the maps
ug. ]
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It is possible to prove Proposition in a completely formal way from Lemma
since every simplicial set can be presented as a colimit of simplices (see Proposition
below). However, we will instead give a less formal argument which yields some additional
information about the structure of the geometric realization |S|. We begin by studying
simplicial subsets of the standard simplex A™.

Notation 1.2.3.7. Let n > 0 be an integer and let U be a collection of nonempty subsets
of [n] ={0,1,...,n}. We will say that U is downward closed if ) # I C J € U implies that
I € U. If this condition is satisfied, we let A7, denote the simplicial subset of A™ whose
m-simplices are nondecreasing maps « : [m] — [n] for which the image of « is an element of
U. Similarly, we set

A"y = {(to, ..., tn) € |A"] : {i € [n] : t: £ 0} € U}

Example 1.2.3.8. For each n > 0, the boundary 0A™ of Construction |1.1.4.10|is given by
A}y, where U is the collection of all nonempty proper subsets of [n].

Exercise 1.2.3.9. Show that every simplicial subset of the standard n-simplex A™ has the
form A7}, where U is some (uniquely determined) downward closed collection of nonempty
subsets of [n].

Proposition 1.2.3.10. Let n be a nonnegative integer and let U be a downward closed
collection of nonempty subsets of [n]. Then the canonical map A™ — Sing,(|A"™|) restricts to
a map of simplicial sets fy : Afy — Sing,(|A™|w), which exhibits the topological space |A™ |y
as a geometric realization of AJ.

Proof. We proceed by induction on the cardinality of U. If U is empty, then the simplicial
set A7 and the topological space |A™|;; are both empty, in which case there is nothing to
prove. We may therefore assume that U is nonempty. Choose some S € U whose cardinality
is as large as possible. Set

Up=U\{S} U ={TCS:T#0}  Un=UNUi.

Our inductive hypothesis implies that the maps fy, and fi,, exhibit |[A™|y, and |A"|y,,
as geometric realizations of Agy and A7y, respectively. Moreover, if S = {ip <i3 <--- <
im} C [n], then we can identify f;;, with the tautological map A™ — Sing,(]A™|), so that
fu, exhibits [A™[, as a geometric realization of A7y by virtue of Example It follows
immediately from the definitions that the diagram of simplicial sets

n n
AMOl AUo

n
Aul

Al
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is a pushout square. By virtue of Lemma [1.2.3.6] we are reduced to proving that the diagram
of topological spaces
Lﬁﬂum

|A”hm

|A"W1

|A™ [y

is also a pushout square. This is clear, since |A™|y, and |A™|y, are closed subsets of |A”|
whose union is |A"|;; and whose intersection is |A™ |y, - O

Example 1.2.3.11. Let n be a nonnegative integer. Combining Example |1.2.3.8] with (0029
Proposition [1.2.3.10, we see that the inclusion map OA™ — A" induces a homeomorphism
from | OA"™ | to the boundary of the topological n-simplex |A™|, given by

{(to,...,tn) € |A"| : t; = 0 for some j}.

Proof of Proposition[1.2.5.7) Let S = Se be a simplicial set; we wish to show that S admits
a geometric realization |S|. We first show that for each n > —1, the n-skeleton sk, (S) admits
a geometric realization. The proof proceeds by induction on n, the case n = —1 being trivial
(since sk_1(S) is empty). Let C' denote the collection of nondegenerate n-simplices of C. we
note that Proposition [1.1.4.12] provides a pushout diagram

1 oA™ N

oceC oeC

skp—1(S) —— sk, (9).

Combining our inductive hypothesis, Example [1.2.3.2] Example[1.2.3.11] and Lemma [1.2.3.6
we deduce that sk, (S) admits a geometric realization |sk,(S)| which fits into a pushout

diagram of topological spaces

I1 |0A™ | 1T |A"|

oceC oceC

| skn—1(S)| ———[skn(5)|-
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Combining the equality S = {J,, sk, (S) of Remark [1.1.4.4] with Lemma |1.2.3.6 we deduce

that the simplicial set S also admits a geometric realization, given by the direct limit

ling | sk, (S)]. O

Remark 1.2.3.12. The proof of Proposition [1.2.3.4] shows that the geometric realization
|S| of a simplicial set S has a canonical realization as a CW complex, having one cell of
dimension n for each nondegenerate n-simplex ¢ of S; this cell can be described explicitly

as the image of the map
[A"[\ [0A" | = |A™] % |S].

The proof of Proposition also yields the following fact, which we will use often
throughout this book:

Lemma 1.2.3.13. LetU be a full subcategory of the category Seta of simplicial sets. Suppose
that U satisfies the following three conditions:

(1) Suppose we are given a pushout diagram of simplicial sets

f

X Y

X/ Y/,

where f is a monomorphism. If X, Y, and X' belong to U, then Y’ belongs to U.
(2) Suppose we are given a sequence of monomorphisms of simplicial sets
X(0) = X(1) = X(2) — X(3)—---
If each X (m) belongs to U, then the sequentual colimit @mX(m) belongs to U.
(3) For each n >0 and every set I, the coproduct [[;c; A™ belongs to U.
Then every simplicial set belongs to U.

Proof. Let S be a simplicial set; we wish to show that S belongs to /. By virtue of Remark

1.1.4.4) we can identify S with the colimit lim sk, (S). By virtue of (2), it will suffice to

show that each skeleton sk, (S) belongs to /. We may therefore assume without loss of
generality that S has dimension < n, for some integer n. We proceed by induction on n. In
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the case n = —1, the simplicial set S is empty and the desired result is a special case of (3).

To carry out the inductive step, we invoke Proposition [1.1.4.12to choose a pushout diagram
I oA™ 1] A"

oeC oeC

skp—1(S) —— =5,

where C' is the collection of nondegenerate n-simplices of S. By virtue of assumption (1), it

will suffice to show that the simplicial sets sk,—1(S), [ A", and [] A" belong to U. In
oeC oeC
the first two cases, this follows from our inductive hypothesis. In the third, it follows from

assumption (3). O
Remark 1.2.3.14. In the statement of Lemma [1.2.3.13] we can replace (3) by the following

pair of conditions:

(3') For each n > 0, the standard n-simplex A™ belongs to U.

(3") The subcategory U C Setp is closed under the formation of coproducts.

In Chapter [2 we will encounter a number of variants of the geometric realization
construction S — | S|, which can be obtained from the following generalization of Corollary
1.2.3.0

Proposition 1.2.3.15. Let C be a category, let Q° be a cosimplicial object of C, and let
Sing? : C — Seta be the functor of Variant|1.2.2.8. If the category C admits small colimits,
then the functor Sing® admits a left adjoint Setx — C, which we will denote by S 1S|€.

Proof. Let S be a simplicial set; we wish to show that the functor
A:C—Set  C s Homge, (S, Sing@(C))

is corepresentable by an object |S|? € C. Since C admits small colimits, the collection of
corepresentable functors from C to Set is closed under the formation of small limits. Using

Remark 1.1.3.13| (or Lemma [1.2.3.13)), we can reduce to the case where S = A" is a standard

simplex. In this case, the functor X is corepresented by the object Q™ € C (see Proposition

T1012). 0

Remark 1.2.3.16. From the proof of Proposition [1.2.3.15, we can extract an explicit
description of the realization |S|?: it can be realized as the colimit of the composite functor

As— A
where Ag denotes the category of simplices of S (Construction |1.1.3.9)).

OOH3
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Remark 1.2.3.17. The functor 7y : Setpo — Set of Corollary|1.2.1.21f can be regarded as
special case of Proposition [1.2.3.15} it agrees with the functor | e |¢, where Q® : A — Set is
a constant functor whose value is a singleton set * € Seta (see Proposition [1.2.1.19)).

Proposition 1.2.3.18. Let S be a simplicial set. The following conditions are equivalent:
(1) The geometric realization |S| is a path-connected topological space.

(2) The geometric realization |S| is a connected topological space.

(3) The simplicial set S is connected, in the sense of Definition .

Proof. The implication (1) = (2) holds for any topological space. To prove that (2) = (3),
we observe that any decomposition S ~ S’ [[S” into disjoint nonempty simplicial subsets
determines a homeomorphism |S| ~ |S’| []]S”|. We will complete the proof by showing that
(3) = (1). Let Ag denote the category of simplices of S (Construction [1.1.3.9). We then
have a commutative diagram of sets

N

g oeas TUA") mo(|S)),

where the upper horizontal map is bijective (Remark and the right vertical map
is surjective. It follows that the lower horizontal map is also surjective. Since each of the
topological spaces |A™| is path connected, the colimit in the lower left can be identified with
the set mo(S) (Remark [1.2.3.17). If S is connected, the set 7my(S) consists of a single element,
so that mo(]S]) is also a singleton. O

Corollary 1.2.3.19. For every simplicial set S, we have a canonical bijection
WQ(S) ~ Wo(’S‘)

Proof. Writing S as a disjoint union of connected components (Proposition [1.2.1.11], we
can reduce to the case where S is connected, in which case both sets have a single element

(Proposition [1.2.3.18)). O

1.2.4 Horns

We now consider some elementary examples of simplicial sets which will play an important
role throughout this book.
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Construction 1.2.4.1 (The Horn A}"). Suppose we are given a pair of integers 0 <i <mn
with n > 0. We define a simplicial set A} : A°? — Set by the formula

(A7) ([m]) = {a € Homa([m], [n]) : [n] € a([m]) U{i}}.

We regard A}' as a simplicial subset of the boundary 0A™ C A”. We will refer to A} as the
ith horn in A™. We will say that A7 is an inner horn if 0 < i < n, and an outer hornif i =0
or ¢ = n.

Remark 1.2.4.2. Roughly speaking, one can think of the horn A} as obtained from the
n-simplex A™ by removing its interior together with the face opposite its ith vertex (see

Remark |1.2.4.6]).

Example 1.2.4.3. The horn A} C A! is the vertex {1}, and the horn A} C A! is the
vertex {0} (see Example[1.1.0.15). In particular, A} and A}l are abstractly isomorphic to the
standard 0-simplex AY. Moreover, the boundary dA! is the disjoint union of A} and A}

Example 1.2.4.4. The horns contained in A? are depicted in the following diagram:

{1} {1}
{2} {0} ------ - {2} {0}

Here the dotted arrows indicate edges of A% which are not contained in the corresponding

horn.

Remark 1.2.4.5. Let 0 < ¢ < n be integers with n > 0. Then the horn A7 is connected. If
n =1 or n = 2, this follows by inspection (see Examples [1.2.4.3[and [1.2.4.4]). For n > 3,

the inclusion map A} — A" is bijective on simplices of dimension < 1, so the desired result
follows from Proposition [1.2.1.22| (together with the connectedness of the standard simplex
A™; see Example [1.2.1.7)).

Remark 1.2.4.6. Let 0 < ¢ < n be integers with n > 0. It follows from Proposition |1.2.3.10
that the inclusion map A} < A" induces a homeomorphism from the geometric realization
|A?| to the closed subset of |A"| given by

{(to,...,tn) € |A"| : t; = 0 for some j # i}.

Let n be a positive integer. For every pair of distinct integers i,j € [n], the inclusion
map &) of Construction [1.1.1.4] can be regarded as a morphism of simplicial sets from A1
to the horn A}'. We have the following counterpart of Proposition [1.1.4.13
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Proposition 1.2.4.7. Let 0 < i < n be integers with n > 0. For any simplicial set So, the
map
Homget, (AF; Se) = (Sn-1)" [ = {f o] }o<j<n,jzi

18 an injection, whose image is the collection of “incomplete” sequences
(007 -5 0i—1,9,0541,- - - ,O'n)
which satisfy the identity d?il(ak) = d}"{(0j) for j, k € [n]\ {i} with j < k.

Proof. We proceed as in the proof of Proposition [1.1.4.13] with minor modifications. Set
Q = [n]\ {i} and let w : [[jeq A" "' — A} be the map given on the /th summand by §t. To
prove the first assertion of Proposition [[.2.4.7, we must show that w is an epimorphism of
simplicial sets: that is, it is surjective on m-simplices for each m > 0. In fact, we can be
a bit more precise. Let a be an m-simplex of A", which we identify with a nondecreasing
function from [m] to [n]. Then a belongs to the boundary A7 if and only its image does not
contain @): that is, if and only if there exists some integer j € () such that « factors through
[n] \ {j}. In this case, there is a unique m-simplex ; which belongs to the jth summand of
[Treq A" ! and satisfies w(8;) = a.

For every integer e @, let u: [lieq < A"2 5 A" ! be the map given on the
jth summand by &’ _,, and let vy : ke k>e A"? — A" ! be the map given on the kth
summand by 52:%. Passing to the coproduct over £ and reindexing, we obtain a pair of maps

(u,v) : H AN H AL

J,k€Q,i<k e

Let Coeq(u,v)es denote the coequalizer of u and v in the category of simplicial sets. The
morphism w satisfies wou = w o v (see Remark , and therefore factors uniquely
through a map w : Coeq(u,v) — A}'. Proposition asserts that w is an isomorphism
of simplicial sets: that is, for every integer m > 0, it induces a bijection from Coeq(u,v),
to the set of m-simplices of A?. The surjectivity of this map was established above. To
prove injectivity, it will suffice to observe that if « : [m] — [n] is as above and we are
given two elements j,k €  which do not belong to the image of o, then 3; and §; have
the same image in Coeq(u,v)s. If j = k, this is automatic; we may therefore assume
without loss of generality that 7 < k. In this case, the desired result follows from the
observation that we can write 5, = u(y) and §; = v(vy), where v is the m-simplex of
the (j, k)th summand of [; ;cq j<k A"~2 corresponding to the nondecreasing function
[m] S [n]\ {j < k} = [n — 2. =

1.2.5 Kan Complexes

We now articulate an important property enjoyed by simplicial sets of the form Sing, (X).
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Definition 1.2.5.1. Let S be a simplicial set. We will say that S is a Kan complex if it
satisfies the following condition:

(x) For every pair of integers 0 < i < n with n > 0, every morphism of simplicial sets
oo : A} — S can be extended to a map o : A" — S. Here A} C A" denotes the ith

horn (see Construction |1.2.4.1)).

Exercise 1.2.5.2. Show that for n > 0, the standard simplex A" is not a Kan complex (for
a more general statement, see Proposition |1.3.5.2)).

Example 1.2.5.3 (Products of Kan Complexes). Let {Sy}aca be a collection of simplicial
sets parametrized by a set A, and let S = [],c4 Sa be their product. If each S, is a Kan

complex, then S is a Kan complex. The converse holds provided that each S, is nonempty.

Example 1.2.5.4 (Coproducts of Kan Complexes). Let {S,}aca be a collection of simplicial
sets parametrized by a set A, and let S = [],c4 Sa be their coproduct. For every pair of
integers 0 < ¢ < n with n > 0, the restriction map

0 : Homger, (A", S) — Homge , (A7, S)

can be identified with the coproduct (formed in the arrow category Fun([1], Set)) of restriction
maps 6, : Homges,, (A", So) = Homges, (A}, Sq); this follows from the connectedness of the
simplicial sets A™ and A} (see Example and Remark . It follows that 6 is
surjective if and only if each 6, is surjective. Allowing n and i to vary, we conclude that S
is a Kan complex if and only if each summand S, is a Kan complex.

Remark 1.2.5.5. Let S be a simplicial set. Combining Example [1.2.5.4| with Proposition
[[.2.1.13] we deduce that S, is a Kan complex if and only if each connected component of S
is a Kan complex.

Example 1.2.5.6. Let S be a discrete simplicial set (Definition [1.1.5.10). Then every

connected component of S is isomorphic to the standard simplex A?, which is a Kan complex.

Applying Remark [I.2.5.5] we see that S is a Kan complex.

Example 1.2.5.7. Let S be a simplicial set of dimension exactly 1 (that is, a simplicial set

S which arises from a directed graph with at least one edge). Then S is not a Kan complex.

Proposition 1.2.5.8. Let X be a topological space. Then the singular simplicial set Singq(X)

is a Kan complez.

Proof. Let og : A} — Sing,(X) be a map of simplicial sets for n > 0; we wish to show that
oo can be extended to an n-simplex of X. Using the geometric realization functor, we can
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identify o¢ with a continuous map of topological spaces fy : |A?| — X; we wish to show that
fo factors as a composition

A7 — a7 L x.
Using Remark [1.2.4.6) we can identify |A?| with the subset
{(to,...,tn) € |A"| : t; =0 for some j # i} C |A"|.

In this case, we can take f to be the composition fyor, where r is any continuous retraction
of |A™| onto the subset |A|. For example, we can take r to be the map given by the formula

T(to,...,tn) = (to—c,...,ti,l—c,ti—l—nc,tHl —c,...,tn—c)

Cc = min{to, ce atz’—lati—l—l: v ,tn}.

Algebra furnishes another rich supply of examples of Kan complexes:

Proposition 1.2.5.9. Let G4 be a simplicial group (that is, a simplicial object of the category
of groups). Then (the underlying simplicial set of) Ge is a Kan complex.

Proof. Let n be a positive integer and ¢ : A} — G, be a map of simplicial sets for
some 0 < i < n, which we will identify with a tuple (0g,01,...,0i—1,9,0i41,...,0p) of
elements of the group G,_1 (Proposition . We wish to prove that there exists
an element 7 € G, satistying dT = o; for j = 4. Let e denote the identity element of
Gp—1. We first treat the special case where 0,41 = -+ = 0, = e. If, in addition, we
have 09 = 01 = -+ = 0;_1 = e, then we can take 7 to be the identity element of G,,.
Otherwise, there exists some smallest integer j < 7 such that o; # e. We proceed by
descending induction on j. Set 7" = s?ilaj € Gy, and consider the map ¢ : A? — G,
given by the tuple (c(,01,...,0/_;,8,00,,...,05,) with o}, = o(d7")~*. We then have
oy =01 = =0;=ecand 0;,; =+ = 0, = e. Invoking our inductive hypothesis we
conclude that there exists an element 7/ € Gy, satisfying dj'7’ = o7, for k # i. We can then
complete the proof by taking 7 to be the product 7/7”.

If not all of the equalities o;41 = - - - = 0, = e hold, then there exists some largest integer
J > i such that o; # e. We now proceed by ascending induction on j. Set 7" = sqjljllaj
) with
= e, so the inductive

and let &’ : A} — G, be the map given by the tuple (og,01,...,0;_1,®,0/,4,...,0,
1 /
n

oy, = or(dg7")~", as above. We then have o} = 0j,; =+ =0

J
hypothesis guarantees the existence of an element 7/ € G, satisfying d'7" = oy, for k # i.

As before, we complete the proof by setting 7 = 7/7”. O
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Let S = S, be a simplicial set. According to Remark we can identify the
set of connected components m(S) with the quotient Sy/ ~, where ~ is the equivalence
relation generated by the image of the map (d3,d}l) : S1 — Sp x Sp. In the special case
where S = Sing,(X) is the singular simplicial set of a topological space X, this description
simplifies: the image of the map (dj, d?}) : Sing;(X) — Singy(X) x Singy(X) = X x X is
already an equivalence relation, and my(Se) can be identified with the set of path components
mo(X) (Remark [1.2.2.5). A similar phenomenon occurs for any Kan complex:

Proposition 1.2.5.10. Let S be a Kan complex and let x and y be vertices of S. Then x
and y belong to the same connected component of S if and only if there exists an edge e of S
having source x and target y.

Proof. Let Sy denote the set of vertices of S. Let R be the collection of pairs (z,y) € Sy for
which there exists an edge e of S having source x and target y. Using Remark we
can identify m(S) with the quotient of Sy by the equivalence relation generated by R. It
will therefore suffice to show that R is already an equivalence relation on Sy. To prove this,
we must verify three things:

e The relation R is reflexive. This follows from the observation that for every vertex
x € Sy, the degenerate edge id, has source x and target x.

o The relation R is symmetric. Suppose that (z,y) € R: that is, there exists an edge
e of S having source = and target y. Then the tuple (e,id,,e) determines a map of
simplicial sets og : A2 — S (see Proposition [1.2.4.7)), which we depict as a diagram

idg N\
x xZ.

Since S is a Kan complex, we can complete this diagram to a 2-simplex o : A% — S.

Then ¢’ = d3(o) is an edge of S having source y and target z, so the pair (y,z) also
belongs to R.

e The relation R is transitive. Suppose that we are given vertices x,y,z € Sy with
(z,y) € R and (y, z) € R; we wish to show that (z,z) € R. Let e be an edge of S
having source x and target y, and let ¢ be an edge of S having source y and target
z. Then the tuple (¢’,e,¢e) determines a map of simplicial sets 79 : A2 — S (see

OOHC
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Proposition |1.2.4.7)), which we depict as a diagram

Our assumption that S is a Kan complex guarantees that we can extend 7y to a
2-simplex 7 : A%2 — S. Then €” = d3(7) is an edge of S having source = and target z,
so that (x, z) belongs to R.

O]

O0OHD Corollary 1.2.5.11. Let {Sy}aca be a collection of Kan complexes parametrized by a set
A, and let S = [[,ca Sae denote their product. Then the canonical map

7T0(S) — H 7T()(Sa>

a€A

is bijective. In particular, S is connected if and only if each factor S, is connected.

1.3 From Categories to Simplicial Sets

002L In we introduced the theory of simplicial sets and discussed its relationship to the
theory of topological spaces. Every topological space X determines a simplicial set Sing,(X)
(Construction , and simplicial sets of the form Sing,(X) have a special property:
they are Kan complexes (Proposition . In this section, we will study a different class
of simplicial sets, which arise instead from the theory of categories. In we associate
to every category C a simplicial set No(C), called the nerve of C. We show in that
the construction C — Ng(C) is fully faithful (Proposition [1.3.3.1)). In §1.3.4] we show that
a simplicial set S belongs to the essential image of the functor C — Ng(C) if and only if it
satisfies a certain lifting condition (Proposition . This lifting condition is similar to
the Kan extension condition (Definition , but not identical to it: in we show
that a simplicial set of the form N4(C) is a Kan complex if and only if every morphism in C
is invertible (Proposition [1.3.5.2).
In we show that the construction C — N¢(C) has a left adjoint, which associates
to each simplicial set S a category hS which we call the homotopy category of S (Definition

1.3.6.1). This category admits a particularly simple description in the case where the
simplicial set S has dimension < 1: in we show that it can be identified with the path
category of the directed graph G corresponding to S (under the equivalence of Proposition

1.1.6.9).
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1.3.1 The Nerve of a Category

We begin with a few definitions.

Construction 1.3.1.1. For every integer n > 0, let us view the linearly ordered set
[n]={0<1<---<n—1<n} as a category (where there is a unique morphism from i to
j when i < j). For any category C, we let N,,(C) denote the set of all functors from [n] to
C. Note that for any nondecreasing map « : [m] — [n], precomposition with o determines
a map of sets N,,(C) — N,,,(C). We can therefore view the construction [n] — N, (C) as a
simplicial set. We will denote this simplicial set by Ne(C) and refer to it as the nerve of C.

Remark 1.3.1.2 (The Classifying Space of a Category). Let C be a category. Then the
topological space | No(C)| is called the classifying space of the category C.

Remark 1.3.1.3. Let C be a category and let n > 1. Elements of N,,(C) can be identified
with diagrams

Cof—1>01£>02—>---f—n>cn

in the category C (see Remark [1.5.7.8)). In other words, we can identify elements of N,,(C)
with n-tuples (fi,..., fn) of morphisms of C having the property that, for 0 < i < n, the
source of f;;1 coincides with the target of f;.

Example 1.3.1.4. Let C be a category. Then:
o Vertices of the simplicial set No(C) can be identified with objects of the category C.
o Edges of the simplicial set No(C) can be identified with morphisms in the category C.

o Let f: X — Y be a morphism in C, regarded as an edge of the simplicial set Ng(C).
Then the faces of f are given by the target d(f) = Y and the source di(f) = X,
respectively.

o Let X be an object of C, which we regard as a vertex of the simplicial set Ng(C). Then
the degenerate edge sJ(X) is the identity morphism idy : X — X.

Exercise 1.3.1.5. Let C be a category. Show that the restriction map
Homget, (A", No(C)) — Homget, (OA™,No(C))
is an injection for n = 2 and a bijection for n > 2.

Variant 1.3.1.6. Let C be a category. For every integer n > 0, we let N<,,(C) denote the
n-skeleton of the simplicial set No(C). In the special case n = 0, this recovers the discrete
simplicial set associated to the set of objects Ob(C) (Example [1.3.1.4)).
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0028 Remark 1.3.1.7 (Face Operators on No(C)). Let C be a category and suppose we are given
an n-simplex o of the simplicial set No(C) for some n > 0, which we identify with a diagram

oo e,
Then:

o The Oth face dj(o) € N,,—1(C) can be identified with the diagram

le—2>02£>03—>---f—n>cn

obtained from o by “deleting” the object Cy (and the morphism f; with source Cjp).

o The nth face d'(0) € N,,_1(C) can be identified with the diagram

C()L)C&%"-—)Cn_gkl—)cn_l

obtained from o by “deleting” the object C), (and the morphism f,, with target C,,).

o For 0 < i < n, the ith face d}'(c) € N,,_1(C) can be identified with the diagram

fit10fs

Cof—1>01—>'-'—>01;1 Cz+1—>ﬁ>0n

obtained by “deleting” the object C; (and composing the morphisms f; and f;11).

002T Remark 1.3.1.8 (Degeneracy Operators on No(C)). Let C be a category and suppose we
are given an n-simplex o of the simplicial set Ng(C) which we identify with a diagram

Cof—1>C1f—2>CQ—>~-f—n>Cn.

Then, for 0 < i < n, we can identify the degenerate simplex s'(0) € Ny41(C) with the
diagram

i— i id 7 [ n
obtained from o by “inserting” the identity morphism id¢;.

002U Remark 1.3.1.9. Let C be a category and let o be an n-simplex of Ng(C), corresponding
to a diagram

C()f—l>le—Q>C2—>~-f—n>Cn.

Then o is degenerate (Definition [1.1.2.3) if and only if some f; is an identity morphism of C
(in which case we must have C;_1 = C;).
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Remark 1.3.1.10. Let I be a set equipped with a partial ordering <;. Then we can regard
I as a category whose objects are the elements of I, with morphisms given by

x* ife<pyj

() otherwise.

Hom;(i,j) = {

We will denote the nerve of this category by Ne(I), and refer to it as the nerve of the partially
ordered set I. For each n > 0, we can identify n-simplices of N¢(I) with monotone functions
[n] — I: that is, with nondecreasing sequences (ig <7 i1 <y --- < iy) of elements of I.

Example 1.3.1.11. For each n > 0, the nerve Nq([n]) can be identified with the standard
n-simplex A" of Example [1.1.0.9

Remark 1.3.1.12. The construction C — Ng(C) determines a functor N : Cat — Seta
from the category Cat of (small) categories to the category Seta of simplicial sets. This
is a special case of the construction described in Variant More precisely, we can
identify N, with the functor Sing?, where @ : A — Cat is the functor which carries each
object [n] € A to itself, regarded as a category. It follows from Proposition that
this functor admits a left adjoint, which we will study in

1.3.2 Example: Monoids as Simplicial Sets
We now specialize Construction to categories having a single object.
Definition 1.3.2.1. A monoid is a set M equipped with a multiplication map
m:MxM— M (z,y) — zy
which satisfies the following conditions:

(a) The multiplication m is associative. That is, we have z(yz) = (zy)z for each triple of
elements x,y,z € M.

(b) There exists an element e € M such that ex = x = ze for each € M (in this case, the
element e is uniquely determined; we refer to it as the unit element of M).

Monoids are ubiquitous in mathematics:

Example 1.3.2.2. Let C be a category and let X be an object of C. An endomorphism of
X is a morphism from X to itself in the category C. We let End¢(X) = Home (X, X) denote
the set of all endomorphisms of X. The composition law on C determines a map

End¢(X) x Ende(X) — Ende(X) (f,9)— fog,

which exhibits End¢(X) as a monoid; the unit element of Ende(X) is the identity morphism
idx : X — X. We refer to End¢(X) as the endomorphism monoid of X.
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The collection of monoids can be organized into a category:

Definition 1.3.2.3. Let M and M’ be monoids having unit elements e and ¢/, respectively.
A function f: M — M’ is a monoid homomorphism if it satisfies the identities

fle)=¢€  f(zy) = f(z)f(y)

for every pair of elements xz,y € M. We let Mon denote the category whose objects are
monoids and whose morphisms are monoid homomorphisms.

Remark 1.3.2.4. The construction C — End¢(X) of Example|1.3.2.2{induces an equivalence
{Categories C with Ob(C) = {X}} = {Monoids}.
More precisely, there is a pullback diagram of categories

Mon M= BM Cat

| Jon

{} ———— Set,

where * = {X} is the set having a single element X. Here the upper horizontal functor
assigns to each monoid M the category BM of Construction [1.3.2.5] given concretely by

Ob(BM) ={X}  Hompy(X,X)= M.

Construction 1.3.2.5. Let M be a monoid. We let B, M denote the nerve of the category
BM described in Remark [I.3.2.4] We will refer to BsM as the classifying simplicial set of
the monoid M.

Remark 1.3.2.6. Let M be a monoid with unit element e and let B, M denote its classifying
simplicial set. By definition, n-simplices of the simplicial set B, M are functors from the
linearly ordered set [n] = {0 <1 < --- < n} to the category BM. Such a functor can be
identified with a collection of elements {a;; € M }o<i<j<n (Where o ; denotes the image in
BM of the unique element of Hom, (4, 7)) which are required to satisfy the identities

g =€  ogg =gy for 0<i<j<k<n.
For each n > 0, the construction

{Oéj,i}ogigjgn = (Oén,n—1704n—1,n—27 T 7041,0)
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induces a bijection B, M ~ M™. Under the resulting identification, the face and degeneracy
operators of BeM are given concretely by the formulae

(Tny Tp—1y -+, X2) ifi=0
d?(xn,$n_1,...,$1) = (l'n,...,xi+2,l’i+1l’i,xi,1,...,:L‘l) if0<i<n
(Tp—1,Tp-2,-..,21) ifi=n
S (T Ty e oy 1) = Ty o vy Tig 1, €, Ty o vy T1)

(see Remarks|1.3.1.7/ and [1.3.1.8)).

Proposition 1.3.2.7. The construction M — BeM determines a fully faithful embedding 04G2
Mon < Seta. The essential image of this functor consists of those simplicial sets Se which
satisfy the following condition for each n > 0:

() For 1 <i<mn, let p; : S, — S1 denote the map associated to the inclusion of linearly
ordered sets [1] ~ {i — 1,i} < [n]. Then the maps {pi}ti<i<n determine a bijection

We will give the proof of Proposition [1.3.2.7] at the end of this section. As a first step,
we establish a simpler result in the setting of semisimplicial sets.

Variant 1.3.2.8. A nonunital monoid is a set M equipped with a map 04G3
m:MxM— M (z,y) — zy

which satisfies the associative law z(yz) = (xy)z for z,y,z € M. If M and M’ are nonunital
monoids, a function f : M — M’ is a nonunital monoid homomorphism if it satisfies the
equation f(xy) = f(z)f(y) for every pair of elements x,y € M. We let Mon™ denote the
category whose objects are nonunital monoids and whose morphisms are nonunital monoid

homomorphisms.

Warning 1.3.2.9. The terminology of Variant [1.3.2.8|is not standard. Many authors use 00BQ
the term semigroup for what we call a nonunital monoid.

Remark 1.3.2.10. The category Mon of monoids (Definition [1.3.2.1]) can be regarded as 04G4
a subcategory of the category Mon™ of nonunital monoids (Variant [1.3.2.8). Beware that
this subcategory is not full. If M and M’ are monoids containing unit elements e and ¢/,

respectively, then a nonunital monoid homomorphism f : M — M’ need not satisfy the
identity f(e) = ¢€'.

Remark 1.3.2.11. Let M be a nonunital monoid, and let M+ = M U{e} be the enlargement 04G5
of M obtained by formally adjoining a new element e. Then the multiplication on M extends
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uniquely to a monoid structure on M ™ having unit element e. Moreover, if M’ is any other
monoid, then the restriction map f — f|ps induces a bijection

{Monoid homomorphisms f : M — M’}

{Nonunital monoid homomorphisms fy : M — M'}.

Consequently, the inclusion functor Mon < Mon™ has a left adjoint, given on objects by
the construction M s M™T.

Variant 1.3.2.12. Let M be a nonunital monoid. We let BqM denote the semisimplicial
set which assigns to each object [n] € Aﬁ% the collection of tuples {a;; € M }o<i<j<n which
satisfy the identity oy; = oy o, for 0 < i < j < k < n. As in Remark the
construction

{0ji}o<icj<n = (-1, 0n—1n—2, - , Q1)
induces an identification B,,M ~ M"™. Under this identification, the face operators of Be M
are given by the formula

(Tny Tp—1,y - -+, X2) ifi=0

mn . .
di (wn,aﬁn_l,...,xl) = (l'n,...,:1,‘1'+2,l’i+1l'i,l‘i,1,...,131) if0<i<n

(Tp—1,Tp-2,-..,21) if i = n.

Remark 1.3.2.13. Construction [1.3.2.5( and Variant [1.3.2.12| are compatible: if M is a
monoid and B M is the classifying simplicial set of Construction [I.3.2.5] then the underlying
semisimplicial set of BeM is given by Variant [1.3.2.12

Proposition has the following nonunital counterpart:

Proposition 1.3.2.14. The construction M +— BeM determines a fully faithful functor
from the category Mon™ of nonunital monoids to the category of semisimplicial sets. The
essential image of this functor consists of those semisimplicial sets which satisfy condition

(*n) of Proposition for each n > 0.

Proof. We first show that the functor M +— B,M is fully faithful. Fix a pair of nonunital
monoids M and M’, and let fo : B¢M — BeM' be a morphism of semisimplicial sets. We
wish to show that there is a unique nonunital monoid homomorphism g : M — M’ such that
fe can be recovered by applying the functor Be to g. Let us abuse notation by identifying
M and M’ with the sets B1M and By M’, respectively, so that f, determines a function
f1: M — M’'. The uniqueness of g is now clear: if fo = Beg, then g must coincide with f;
(as a function). To prove existence, we must establish the following:
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(1) The function f; : M — M’ is a nonunital monoid homomorphism.

(2) The morphism of semisimplicial sets f, is obtained by applying the functor B, to the
homomorphism f;.

We first prove (1). Fix a pair of elements z,y € M and regard the pair (z,y) as a 2-simplex
o of the semisimplicial set B¢M. Since f, is a morphism of semisimplicial sets, we have

filay) = fi(di(0)) = di(f2(0)) = fi(2) 1(y)-

Assertion (1) now follows by allowing x and y to vary. To prove (2), let f, : BeM — BeM’
be the morphism of semisimplicial sets determined by the homomorphism f;, and let 7 be
an n-simplex of BeM; we wish to show that f,(7) = f/(7). Since 7 is determined by its
1-dimensional faces, we can assume without loss of generality that n = 1, in which case the
result is clear. This completes the proof that the functor M +— BeM is fully faithful.

Now suppose that Se is a semisimplicial set which satisfies condition (x,) of Propo-
sition for every integer n > 0, and set M = S;. For every n-tuple of elements
(Tn, Tp—1,- -+ ,x1) of M, condition (*,) guarantees that there is a unique n-simplex oy, ... 4,
of S, satisfying p;(o) = z;, where p; : S,, = S1 = M is the function induced by the inclusion
map [1] ~{i — 1 < i} < [n]. We can then define a multiplication m : M x M — M by the
formula m(x,y) = d3(04,). This multiplication is associative: for every triple of elements
z,y,2 € M, we compute

3

m(m(z,y),z) =

\
Y

QU
=N RN =N =N

|
Y

x,m(y, z)).

It follows that we can regard M as a nonunital commutative monoid. Moreover, for
every integer n > 0, the construction (xy,---,2z1) — 0y, .. », determines a bijection
fn: BpM — S,,. We will complete the proof by showing that the collection { fy, }n>0 is an
isomorphism of semisimplicial sets: that is, that it commutes with the face operators. Fix
an integer n > 0 and an n-simplex 7 of BeM; we wish to show that d}'(fn(7)) = fr—1(d}(7))
for 0 < ¢ < n. Let us identify 7 with a tuple of elements (x,, zy, -+ ,z1) of M; we wish to
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verify the identity

oZ iti=0

m _ . .
di (O—znﬁrnfly'” ,Zl> - O-:En,~~~ ,xi+27m(;pi+1’zi),xi_h... Tl lf 0 <ir<n

Ot 1 ifi =n.

For1<j<n-—1,let p;j:S,_1 = S1 = M be defined as above; we can then rewrite the
preceding identity as

T; if j <1
P (i Oz zn1y21)) = § M1, 25)  ifj =1
Tjt1 if 5 >1.

This follows immediately from the definition of the simplex 0y, %, ;... «, in the case j # 1,
and from the construction of the multiplication m in the case j = . O

Proof of Proposition[1.3.2.7. We first show that Construction is fully faithful. Fix
monoids M and M’ and let f, : B¢M — BeM' be a morphism of simplicial sets. Applying
Proposition (together with Remark , we deduce that there is a unique
nonunital monoid homomorphism ¢ : M — M’ such that f, coincides with Beg (as a
morphism of semisimplicial sets). Since fo is a morphism of simplicial sets, it carries the
(unique) degenerate edge of BeM to the (unique) degenerate edge of BeM'. It follows
that g carries the unit element of M to the unit element of M’: that is, it is a monoid
homomorphism.

Now suppose that S, is a simplicial set satisfying condition () for each n > 0. Applying
Proposition [1.3.2.14] we deduce that there is a nonunital monoid M and an isomorphism
of semisimplicial sets fo : BeM — Se, which carries each n-tuple (z,, -+ ,2z1) € M to the
n-simplex o, ... ;; of S, appearing in the proof of Proposition Let e € M be
the element corresponding to the unique degenerate 1-simplex of S,. For 0 < i < n, the
degeneracy operator s’ : S, — S, 11 satisfies the identity

87 (Ozp,eme 31) = O,y ig1,€,Tiy e ,T1 (1.5)
Specializing to the case i = n = 1 and applying the face operator d%, we obtain an equality

Oz = d%(s%(aw))

= d% (Ue,a:)

= Oex;

that is, e is a left unit with respect to the multiplication on M. A similar argument shows
that e is a right unit with respect to the multiplication on M: that is, M is a monoid with
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unit element e. To complete the proof, it will suffice to show that f, : BeM — Se is an
isomorphism of simplicial sets: that is, it commutes with degeneracy operators as well as
face operators. This is a restatement of the identity ([1.5]). O

1.3.3 Recovering a Category from its Nerve
Passage from a category C to the nerve No(C) does not lose any information:

Proposition 1.3.3.1. The nerve functor No : Cat — Seta is fully faithful.

Throughout this book, we will often abuse terminology by identifying a category C with
its nerve No(C). By virtue of Proposition |1.3.3.1} this is essentially harmless: the nerve
construction allows us to identify categories with certain kinds of simplicial sets.

Remark 1.3.3.2. If we restrict our attention to categories having a single object, Proposition

1.3.3.1] follows from Proposition (see Remark [1.3.2.4)).

Proof of Proposition[1.3.3.1. Let C and C’ be categories. We wish to show that the nerve
functor No induces a bijection

6 : Homcyt (C,C') — Homget, (No(C), No(C')).

Here the source of 6 is the set of all functors from C to C’. We first note that 6 is injective:
a functor F': C — C is determined by its behavior on the objects and morphisms of C, and
therefore by the behavior of #(F') on the vertices and edges of the simplicial set No(C) (see
Example . Let us prove the surjectivity of 6. Let f : Ng(C) — N¢(C’) be a morphism

of simplicial sets; we wish to show that there exists a functor F : C — C’ such that f = 0(F).

For each n > 0, the morphism f determines a map of sets N,,(C) — N,,(C’), which we will
also denote by f. In the case n = 0, this map carries each object C € C to an object of (',
which we will denote by F(C'). For every pair of objects C, D € C, the map f carries each
morphism v : C — D to a morphism f(u) in the category C’. Since f commutes with face
operators, the morphism f(u) has source F(C) and target F(D) (see Example [1.3.1.4)), and
can therefore be regarded as an element of Homg/(F(C), F(D)); we denote this element by
F(u). We will complete the proof by verifying the following:

(a) The preceding construction determines a functor F': C — C'.
(b) We have an equality f = 6(F) of maps from N(C) to Ne(C').

To prove (a), we first note that the compatibility of f with degeneracy operators implies
that we have F'(id¢) = idp(cy for each C' € C (see Example [1.3.1.4). It will therefore suffice
to show that for every pair of composable morphisms v : C — D and v : D — FE in the
category C, we have F'(v) o F(u) = F(vou) as elements of the set Home (F(C), F(E)). For
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this, we observe that the diagram C = D 2 E can be identified with a 2-simplex o of
N.(C). Using the equality d?(f(o)) = f(d?(o)) for i = 0,2, we see that f(o) corresponds to

the diagram F'(C') ) F(D) ) F(E) in C'. We now compute

F(v) o F(u) = di(f(0)) = f(di(0)) = F(vou).

This completes the proof of (a). To prove (b), we must show that f(7) = 6(F)(r) for
each n-simplex 7 of N¢(C). This follows by construction in the case n < 1, and follows in
general since an n-simplex of N¢(C’) is determined by its 1-dimensional faces (see Remark

513, 0

1.3.4 Characterization of Nerves

We now describe the essential image of the functor N, : Cat — Setn.

Proposition 1.3.4.1. Let S be a simplicial set. Then S is isomorphic to the nerve of a
category if and only if it satisfies the following condition:

(") For every pair of integers 0 < i < n and every map of simplicial sets og : A" — S, there
exists a unique map o : A™ — S such that oy = O’|A?.

The proof of Proposition [[.3.4.1] will require some preliminaries. We begin by establishing
the necessity of condition ().

Lemma 1.3.4.2. Let C be a category. Then the simplicial set No(C) satisfies condition (*")
of Proposition|1.5.4.1].

Proof. Choose integers 0 < i < n together with a map of simplicial sets o¢ : A — No(C);
we wish to show that oy can be extended uniquely to a n-simplex of No(C). For 0 < j < n,
let C;j € C denote the image under o of the jth vertex of A™ (which belongs to the horn
A). We first consider the case where n > 3. In this case, A7 contains every edge of A™. For
0<j<k<n,let f;:C; — Cj denote the 1-simplex of No(C) obtained by evaluating o
on the edge of A" corresponding to the pair (j, k). We claim that the construction

Jj—Cj (G <Ek)— fr;

determines a functor [n] — C, which we can then identify with an n-simplex of Ng(C) having
the desired properties. It is easy to see that f;; = id¢, for each 0 < j < n, so it will
suffice to show that fy; o fi; = fo; for every triple 0 < j < k < /¢ < n. The triple (j,k,¥)
determines a 2-simplex 7 of A™. If 7 is contained in A7, then 7/ = o¢(7) is a 2-simplex of
N.(C) satisfying d3(7') = fox, d3(7') = fij, and d3(7') = fx,;, so that 7/ “witnesses” the
identity for o fr,j = fo;. It will therefore suffice to treat the case where the simplex 7 does
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not belong to the A?. In this case, our assumption that n > 3 guarantees that we must have
{j,k, 2} = [n] \ {i}. It follows that n = 3, so that either i = 1 or i = 2. We will treat the
case i = 1 (the case i = 2 follows by a similar argument). Note that A contains all of the
nondegenerate 2-simplices of A3 other than 7; applying the map o, we obtain 2-simplices
of N¢(C) which witness the identities

f3.0=f310° f10 fa1=f320 fa1 f2.0= f210 fio0.

We now compute

f30=fa10 fio=(fs20 fa1)0 fio = fa2o(f210 fi0) = fa20 fop

so that fy; = for o fr;, as desired.

It remains to treat the case n = 2. In this case, the inequality 0 < ¢ < n guarantees that
i = 1. The morphism og : A} — N¢(C) can then be identified with a pair of composable
morphisms f19: Co — C1 and fa1 : C1 — Cs in the category C. This data extends uniquely
to a 2-simplex o of C satisfying d3(c) = fa1 0 f1,0 (see Remark [1.3.1.3). O

Lemma 1.3.4.3. Let f: S — T be a morphism of simplicial sets which is bijective on both 0033
vertices and edges. If both S and T satisfy condition (x') of Proposition|1.5.4.1], then f is

an isomorphism.

Proof. We claim that, for every simplicial set K, composition with f induces a bijection
9[( : HOIIlsetA (K, S) — HOHlSetA (K, T).

Writing K as a union of its skeleta sk, (K'), we can reduce to the case where K has dimension
< n, for some integer n > —1 (see Definition . We now proceed by induction on
n. The case n = —1 is trivial (since a simplicial set of dimension < —1 is empty). Let us
therefore assume that n > 0, so that Proposition [1.1.4.12| supplies a pushout diagram of
simplicial sets

[]OA™ [[A"

skp_1 (K) K.

It follows from our inductive hypothesis that the maps ga» and Oy, (k) are bijective.
Consequently, to show that 05 is bijective, it will suffice to show that Oa» is bijective: that
is, that f induces a bijection on n-simplices. For n < 1, this follows from our hypothesis. To
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handle the case n > 2, we observe that there is a commutative diagram

Homget, (A", S) Homge, (AT, S)

Oan Oan

Homge, (A", T)

Homge, (AT, T).

Here the right vertical map is bijective by virtue of our inductive hypothesis, and the
horizontal maps are bijective by virtue of our assumption that both S and T satisfy
condition (+'). It follows that the left vertical map is also bijective, as desired. O

Proof of Proposition[I.5.7.1. Let S be a simplicial set satisfying condition (") of Proposition
[[.3:4.1} we will show that there is a category C and an isomorphism of simplicial sets
u: S — Ng(C) (the converse follows from Lemma[1.3.4.2)). It follows from Proposition
that the category C is uniquely determined (up to isomorphism), and from the proof of
Proposition we can extract an explicit construction of C:

e The objects of C are the vertices of S.

o Given a pair of objects C, D € C, we let Hom¢(C, D) denote the collection of edges e
of S having source C' and target D.

o For each object C' € C, we define the identity morphism id¢e € Home(C, C) to be the
degenerate edge sJ(C).

o Given a triple of objects C, D, E € C and a pair of morphisms f € Hom¢(C, D) and
g € Home (D, E), we can apply hypothesis (') (in the special case n =2 and i = 1) to
conclude that there is a unique 2-simplex o of S, satisfying d3(c) = f and d3(o) = g.
We define the composition g o f € Home(C, E) to be the edge d?(o).

We claim that C is a category. For this, we must check the following:

e The composition law on C is unital: for every morphism f : C — D in C, we have
equalities

idpof=f=foideo.

Let us verify the identity on the left; the proof in the other case is similar. For this,
we must construct a 2-simplex o of S such that d3(o) = idp and d3(o) = d3(o) = f.
The degenerate 2-simplex s}(f) has these properties.
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e The composition law on C is associative. That is, for every triple of composable
morphisms
fW—=X g: X—=Y h:Y —Z

in C, we have an identity ho(go f) = (hog)o f in C. Applying condition (x) repeatedly,
we deduce the following:
— There is a unique 2-simplex o of S satisfying d3(o¢) = h and d3(og) = g (it
follows that d?(og) = ho g).

— There is a unique 2-simplex o3 of S satisfying d2(o3) = g and d3(o3) = f (it
follows that d?(o3) = g o f).

— There is a unique 2-simplex o9 of S satisfying d3(o2) = h o g and d3(o9) = f (it
follows that d?(o2) = (ho g) o f).

— There is a unique 3-simplex 7 of S satisfying d3(7) = 09, d3(7) = o2, and
d3(7) = o3 (this follows by applying (') to the horn inclusion A — A3).

The 3-simplex 7 can be depicted in the following diagram

9 Y

/ \
(hog)of 7

Set o1 = d3(7). Then oy is a 2-simplex of S satisfying d3(o1) = h, d3(01) = (hog)o f,
and d3(o1) = go f. It follows that oy “witnesses” the identity ho (go f) = (hog)o f.

X

w

Note that every n-simplex o : A™ — S determines a functor [n] — C, given on objects by
the values of o on the vertices of A™ and on morphisms by the values of o on the edges of
A™. This construction determines a map of simplicial sets u : S — Ng(C) which is bijective
on simplices of dimension < 1. Since the simplicial sets S and Ne(C) both satisfy condition

(+") (Lemma [1.3.4.2)), it follows from Lemma [1.3.4.3| that  is an isomorphism. O

Remark 1.3.4.4. The characterization of Proposition [1.3.4.1| has many variants. For 0034
example, one can replace condition (x") by the following a priori weaker condition:

(x() For every n > 2 and every morphism of simplicial sets og : AT — S, there is a unique
n-simplex o : A" — S, satisfying o9 = o|sn.
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1.3.5 The Nerve of a Groupoid

According to Proposition every category C can be recovered, up to canonical
isomorphism, from the nerve Ng(C). In particular, any isomorphism-invariant condition on a
category C can be reformulated as a condition on the simplicial set No(C). We now illustrate
this principle with a simple example.

Definition 1.3.5.1. Let C be a category. Recall that a morphism f: C — D in C is an
isomorphism if there exists a morphism ¢ : D — C satisfying the identities

fog=idp go f=idco.

In this case, the morphism g is uniquely determined and we write g = f~'. We say that C is
a groupoid if every morphism in C is an isomorphism.

Proposition 1.3.5.2. Let C be a category. Then C is a groupoid (Definition|1.5.5.1)) if and
only if the simplicial set No(C) is a Kan complex (Definition|1.2.5.1)).

Example 1.3.5.3. Let G be a group. Then the category BG of Remark is a groupoid.
It follows from Proposition [I.3.5.2] that the simplicial set BoG of Construction [I.3.2.5]is a
Kan complex. The geometric realization |B,G| is a topological space called the classifying
space of G. It can be characterized (up to homotopy equivalence) by the fact that it is a
CW complex with either of the following properties:

o The space |B,G| is connected, and its homotopy groups (with respect to any choice of
base point) are given by the formula

G ifx=1
0 if x> 1.

(| BeGl) = {

o For any paracompact topological space X, there is a canonical bijection

{Continuous maps f : X — |BeG|}/homotopy ~ {G-torsors P — X} /isomorphism.

We refer the reader to [43] for a more detailed discussion (including an extension to the
setting of topological groups).

Proof of Proposition[1.3.5.3. Suppose first that No(C) is a Kan complex; we wish to show
that C is a groupoid. Let f : C — D be a morphism in C. Using the surjectivity of
the map Homget, (A%, No(C)) — Homsget, (A3, No(C)), we see that there exists a 2-simplex
o of No(C) satisfying d3(c) = f and d3(0) = idp. Setting g = d3(c0), we conclude that
fog = idp: that is, g is a left inverse to f. Similarly, the surjectivity of the map


https://kerodon.net/tag/0035
https://kerodon.net/tag/0036
https://kerodon.net/tag/0037
https://kerodon.net/tag/0038

68 CHAPTER 1. THE LANGUAGE OF oco-CATEGORIES

Homges , (A%, No(C)) — Homsget, (A3, No(C)) allows us to construct a map h : D — C
satisfying h o f = id¢. The calculation

g=idcog=(hof)og=ho(fog)=hoidp=nh

then shows that g = h is an inverse of f, so that f is invertible as desired.

Now suppose that C is a groupoid. We wish to show that, for 0 < i < n, every map
0o : A" = N¢(C) can be extended to an n-simplex o : A" — Ng(C). For 0 < i < n, this
follows from Lemma (and does not require the assumption that C is a groupoid). We
will treat the case where i = 0; the case ¢ = n follows by similar reasoning. We consider

several cases:

o In the case n = 1, the map op : Afj — No(C) can be identified with an object C € C.
In this case, we can take o to be an edge of Ng(C) corresponding to any morphism
with target C' (for example, we can take o to be the identity morphism id¢).

e In the case n = 2, we can identify oy with a pair of morphisms in C having the same
source, which we can depict as a diagram

C g E.

Our assumption that C is a groupoid guarantees that we can extend this diagram to a
2-simplex of C, whose Oth face is given by the morphism go f~!: D — E.

o In the case n > 3, the map oy determines a collection of objects {C;}o<i<, and
morphisms f;; : C; = Cj for i < j (as in the proof of Lemma . We wish to
show that these morphisms determine a functor [n] — C (which we can then identify
with an n-simplex o of No(C) satisfying ofsp = 0¢). For this, we must verify the
identity fi ;o fji = frs for 0 < i < j < k < n. Note that this identity is satisfied
whenever the triple (i < j < k) determines a 2-simplex of A" belonging to the horn
Af. This is automatic unless n = 3 and (4, j, k) = (1,2, 3). To handle this exceptional

case, we compute

(fszofa1)o fio = fiszo(f210 fip)
= f320 fap0
13,0
= fs10 fio
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Since C is a groupoid, composing with fi, (} on the right yields the desired identity
f320 f21=f351.
O
We close this section by introducing some notation which will be useful later.
007G Construction 1.3.5.4. Let C be a category. We define a subcategory C~ C C as follows:
o Every object of C belongs to C~.
e A morphism f: X — Y of C belongs to C~ if and only if f is an isomorphism.
We will refer to C= as the core of C.

007H Remark 1.3.5.5. Let C be a category. The core C~ is determined (up to isomorphism) by
the following properties:

o The category C~ is a groupoid.

o If D is a groupoid, then every functor F': D — C factors (uniquely) through C=.

1.3.6 The Homotopy Category of a Simplicial Set
OOHE We now show that the functor C — N¢(C) of Construction [1.3.1.1| admits a left adjoint

(Corollary [1.3.6.5)).

004J Definition 1.3.6.1. Let C be a category. We will say that a map of simplicial sets
u : S — No(C) exhibits C as the homotopy category of S if, for every category D, the
composite map

Homcag (C, D) — Homge, (No(C), No(D)) =% Homsgeq, (S, No(D))

is bijective (note that the map on the left is always bijective, by virtue of Proposition

1.3.3.1).

OOHF Exercise 1.3.6.2. Let X be a topological space and let 7<;(X) denote its fundamental
groupoid. Show that there is a unique map of simplicial sets u : Sing,(X) — Ne¢(7m<1(X))
with the following properties:

o On O-simplices, u carries each point z € X (regarded as a vertex of Sing, (X)) to itself
(regarded as an object of m<1(X)).

o On 1-simplices, u carries each path p: [0,1] — X (regarded as an edge of Sing, (X))
to its homotopy class [p] (regarded as a morphism of the category m<i(X)).
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Moreover, u exhibits the fundamental groupoid m<1(X) as a homotopy category of the
singular simplicial set Sing,(X). For a generalization, see Proposition [1.4.5.7]

Notation 1.3.6.3. Let S be a simplicial set. It follows immediately from the definition that
if there exists a category C and a morphism u : S — N¢(C) which exhibits C as a homotopy
category of S, then the category C is unique up to isomorphism and depends functorially
on S. To emphasize this dependence, we will refer to C as the homotopy category of .S and
denote it by hS.

Proposition 1.3.6.4. Let S = S, be a simplicial set. Then there exists a category C and a
map of simplicial sets u : S — No(C) which exhibits C as a homotopy category of S.

Proof. Let Q* denote the cosimplicial object of Cat given by the inclusion A — Cat.

Unwinding the definitions, we see that a homotopy category of S can be identified with a
realization |S|%, whose existence is a special case of Proposition [1.2.3.15, Alternatively, we
can give a direct construction of the homotopy category hS:

o The objects of hS are the vertices of S.

« Every edge e of S determines a morphism [e] in hS, whose source is the vertex di(e)

and whose target is the vertex d}(e).

e The collection of morphisms in hS is generated under composition by morphisms of
the form [e], subject only to the relations

[s0(2)] = ids forz € Sy [di(0)] = [d(0)] o [d5(0)] for o € Sa.

O]

Corollary 1.3.6.5. The nerve functor No : Cat — Seta admits a left adjoint, given on
objects by the construction S — hS.

Remark 1.3.6.6. Let C be a category. Then the counit of the adjunction described in
Corollary induces an isomorphism of categories hN(C) = C (this is a restatement of
Proposition . In other words, every category C can be recovered as the homotopy
category of its nerve No(C).

Warning 1.3.6.7. Let S be a simplicial set. The proof of Proposition gives a
construction of the homotopy category h.S by generators and relations. The result of this
construction is not always easy to describe. If z and y are vertices of S, then every morphism
from « to y in hS can be represented by a composition

[en] 0 [en—a] 0+ -ofe],

004K

004M

004N

OOHG

OOHH
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where {e; }o<i<n is a sequence of edges satisfying
difer) =z dole;) =dilei)  dolen) =y

In general, it can be difficult to determine whether or not two such compositions represent
the same morphism of hS (even for finite simplicial sets, this question is algorithmically
undecidable). However, there are two situations in which the homotopy category hS admits
a simpler description:

e Let S be a simplicial set of dimension < 1, which we can identify with a directed graph
G (Proposition [1.1.6.9). In this case, the homotopy category hS is generated freely
by the vertices and edges of the graph G: that is, it can be identified with the path

category of G (Proposition |1.3.7.5)) which we study in §1.3.7]

e Let S be an oo-category. In this case, every morphism in the homotopy category
C = hS can be represented by a single edge of S, rather than a composition of edges
(in other words, the canonical map u : § — N4(C) is surjective on edges), and two
edges of S represent the same morphism in hS if and only if they are homotopic
(Definition . This leads to a more explicit description of the homotopy category

C (generalizing Exercise|1.3.6.2)) which we will discuss in §1.4.5| (see Proposition (1.4.5.7)).

1.3.7 Example: The Path Category of a Directed Graph

Let S be a simplicial set of dimension < 1. In this section, we will show that the
homotopy category hS of Notation [1.3.6.3| admits a concrete description, which can be
conveniently described using the language of directed graphs.

Construction 1.3.7.1 (The Path Category). Let G be a directed graph (Definition .
For each edge e € Edge(G), we let s(e),t(e) € Vert(G) denote the source and target of e,
respectively. If z and y are vertices of Vert(G), then a path from x to y is a sequence of
edges (en,en—1,...,e1) satisfying

s(er) =z tle;) =s(eir1)  tlem) =y,

By convention, we regard the empty sequence of edges as a path from each vertex z € Vert(G)
to itself.
We define a category Path[G] as follows:

o The objects of Path[G] are the vertices of G.

o For every pair of vertices z,y € Vert(G), we let Homp,,(g) (7, y) denote the set of all
paths (ém,...,e1) from x to y.
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o For every vertex = € Vert(G), the identity morphism id, in the category Path|[G] is
the empty path from x to itself.

o Let z,y,z € Vert(G). Then the composition law

o : Hompyinjg) (¥, 2) X Hompaenjg) (7, y) — Hompamg (2, 2)
is described by the formula

(en"" 761)O(elma""€/1):(ena"' aelaelrm'“ae,l)'

In other words, composition in Path[G] is given by concatentation of paths.
We will refer to Path[G] as the path category of the directed graph G.

Example 1.3.7.2. Fix an integer n > 0. Let G be the directed graph with vertex set OOHL
Vert(G) = {vo,v1,...,v,}, and edge set Edge(G) = {e1,...,e,}, where each edge e; has
source s(e;) = v;—1 and target t(e;) = v;; we can represent G graphically by the diagram

el e €n—1 n
Vo U1 Un—1 —————>Up.

Let v; and v; be a pair of vertices of G. Then:

o If i+ < j, there is a unique path from v; to v;, given by the sequence of edges

(ej7 €j—1,--- 7ei+1)'
o If 7 > j, then there are no paths from v; to v;.

It follows that the path category Path[G] is isomorphic to the linearly ordered set [n] =
{0<1<2<---<n} (regarded as a category).

Example 1.3.7.3. Let G be a directed graph having a single vertex Vert(G) = {x}. Then |00HM
the path category Path[G] has a single object z, and can therefore be identified with

the category BM associated to the monoid M = Endpag() = Hompagy (@, ) (see
Construction . Note that the elements of M can be identified with (possibly empty)
sequences of elements of the set Edge(G), and that the multiplication on M is given by
concatenation of sequences. In other words, M can be identified with the free monoid
generated by the set Edge(M) (this identification is not completely tautological: it can be
regarded as a special case of Proposition below).

Example 1.3.7.4. Let G be a directed graph having a single vertex Vert(G) = {z} and a 0OHN
single edge Edge(G) = {e} (necessarily satisfying s(e) = z = t(e)). Then the path category
Path[G] has a single object 2 whose endomorphism monoid Endp,p (g (%) = Hompg g (, ©)

can be identified with the set Z>( of nonnegative integers (with monoid structure given by
addition).
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Let G be a directed graph, and let G4 denote the associated 1-dimensional simplicial
set (see Proposition . Then there is an evident map of simplicial sets v : Go —
No(Path[G]), which carries each vertex v € Vert(G) to itself and each edge e € Edge(G) to
the path consisting of the single edge e.

Proposition 1.3.7.5. Let G be a directed graph. Then the map of simplicial sets u : G4 —
No(Path[G]) ezhibits Path[G] as the homotopy category of the simplicial set G, in the sense
of Definition[1.3.6.1. In other words, for every category C, the composite map

Hom gt (Path[G], C) — Homge . (Ne(Path[G]), Ne(C)) =% Homges , (G, No(C))
s a bijection.

Proof. Let f: Ge — No(C) be a morphism of simplicial sets. We wish to show that there is
a unique functor F': Path[G] — C for which the composite map

No(F)

Ge % No(Path]G]) =% N, (€)

coincides with f. Unwinding the definitions, we see that this agreement imposes the following
requirements on F":

(a) For each vertex v € Vert(G), we have F'(z) = f(x) (as objects of C).

(b) For each edge e € Edge(G) having x = s(e) and target y = t(e), the functor F' carries
the path (e) to the morphism f(e) : f(z) = f(y) in C.

The existence and uniqueness of the functor F' is now clear: it is determined on objects by
property (a), and on morphisms by the formula

F(ernen—l"" 761) = f(en) Of(en—l) O--- Of(el)-
]

Remark 1.3.7.6. In the proof of Proposition we have implicitly invoked the fact
that every category C satisfies the generalized associative law: every sequence of composable
morphisms

X0£>X1f—2>X2—>"'f—n>Xn

has a well-defined composition f, o f,—1 oo f1, which can be computed in terms of the
binary composition law by inserting parentheses arbitrarily. One might object that this logic
is circular: the generalized associative law is essentially equivalent to Proposition [1.3.7.5
(applied to the directed graph G described in Example . In we will establish

an oo-categorical generalization of Proposition [1.3.7.5| (Theorem [1.5.7.1]), whose proof will
avoid this sort of circular reasoning (see Remark [1.5.7.4)).
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Definition 1.3.7.7. A category C is free if it is isomorphic to Path[G], for some directed
graph G.

We close this section with a characterization of those categories which are free in the
sense of Definition [L.3.7.7]

Definition 1.3.7.8. Let C be a category. We will say that a morphism f: X — Y in C is
indecomposable if f is not an identity morphism, and for every factorization f = g o h have
either g = idy (so h = f) or h =idx (so g = f).

Example 1.3.7.9. Let G be a directed graph and let € be a morphism in the path category
Path[G], given by a sequence of edges (en,en—1, ..., e1) satisfying t(e;) = s(e;+1). Then €'is
indecomposable if and only if n = 1.

Warning 1.3.7.10. Definitions |1.3.7.7| and |1.3.7.8| are not invariant under equivalence of

categories. If F': C — D is an equivalence of categories and C is free, then D need not be
free; if f is an indecomposable morphism in C, then F(f) need not be an indecomposable
morphism of D.

Let C be any category. We define a directed graph Gro(C) as follows:
o The vertices of Gro(C) are the objects of C.

o The edges of Gry(C) are the indecomposable morphisms of C (where an indecomposable
morphism f : X — Y is regarded as an edge with source s(f) = X and target

t(f)=Y).
By construction, the graph Gro(C) comes equipped with a canonical map Grg(C)e — No(C),

which we can identify (by means of Proposition [1.3.7.5|) with a functor F' : Path[Gr(C)] — C.

Proposition 1.3.7.11. Let C be a category. The following conditions on C are equivalent:

(a) The category C is free. That is, there exists a directed graph G and an isomorphism of
categories C ~ Path[G].

(b) The functor F : Path[Gro(C)] — C is an isomorphism of categories.

(¢) The functor F : Path[Gro(C)] — C is an equivalence of categories.

(d) The functor F : Path[Gro(C)] — C is fully faithful.

(e)

e) Every morphism f in C admits a unique factorization f = f, o fn_10---0 f1, where

each f; is an indecomposable morphism of C.

Proof. The functor F' is bijective on objects, which shows that (b) < (¢) < (d). The
equivalence of (d) and (e) follows from the definition of morphisms in the path category
Path[Gro(C)]. The implication (b) = (a) is immediate, and the converse follows from
Example O
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1.4 oo-Categories

In and we considered two closely related conditions on a simplicial set S:

(¥) For n > 0 and 0 < i < n, every morphism of simplicial sets o : A} — S can be extended
to an n-simplex o : A™ — S.

(") For 0 < i < n, every morphism of simplicial sets o¢ : A} — S, can be extended uniquely
to an n-simplex o : A" — S,.

Simplicial sets satisfying (x) are called Kan complexes and form the basis for a combina-
torial approach to homotopy theory, while simplicial sets satisfying (%) can be identified with

categories (Propositions |1.3.3.1] and [1.3.4.1)). These notions admit a common generalization:

Definition 1.4.0.1. An oo-category is a simplicial set S which satisfies the following
condition:

(+"") For 0 < i < n, every morphism of simplicial sets op : A — S can be extended to an
n-simplex o : A" — S,.

Remark 1.4.0.2. Condition (x”) is commonly known as the weak Kan extension condition.
It was introduced by Boardman and Vogt in [5], who refer to co-categories as weak Kan
complezes. The theory was developed further by Joyal ([32] and [31]), who refers to co-
categories as quasicategories.

Example 1.4.0.3. Every Kan complex is an oco-category. In particular, if X is a topological
space, then the singular simplicial set Sing,(X) is an oo-category.

Example 1.4.0.4. For every category C, the nerve N¢(C) is an oco-category.

Remark 1.4.0.5. We will often abuse terminology by identifying a category C with its
nerve No(C) (this abuse is essentially harmless by virtue of Proposition [1.3.3.1)). Adopting
this convention, we can state Example more simply: every category is an oco-category.
To minimize the possibility of confusion, we will sometimes refer to categories as ordinary

categories.

Example 1.4.0.6 (Products of co-Categories). Let {Ss}aca be a collection of simplicial
sets parametrized by a set A, and let S = [],c4 Sa denote their product. If each S, is an
oo-category, then S is an oco-category. The converse holds provided that each factor S, is
nonempty.

Example 1.4.0.7 (Coproducts of oo-Categories). Let {Sq}aca be a collection of simplicial
sets parametrized by a set A, and let S = J],c4 So denote their coproduct. For each
0 < ¢ < n, the restriction map

6 : Homge, (A", S) — Homges,, (A7, S)
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can be identified with the coproduct (formed in the arrow category Fun([1], Set)) of restriction
maps 0, : Homget, (A", So) = Homges, (A7, Sq); this follows from the connectedness of the
simplicial sets A™ and A} (see Example and Remark . It follows that 0 is a
surjection if and only if each 6, is a surjection. Allowing n and 7 to vary, we conclude that
S is an oco-category if and only if each summand S, is an co-category.

Remark 1.4.0.8. Let S be a simplicial set. Combining Example [1.4.0.7| with Proposition
1.2.1.13] we deduce that S is an oo-category if and only if each connected component of S is
an oo-category.

Remark 1.4.0.9. Suppose we are given a filtered diagram of simplicial sets {S(«)} having
colimit § = lim S (). If each S(«) is an oco-category, then S is an co-category.

Throughout this book, we will generally use calligraphic letters (like C, D, and &) to
denote co-categories, and we will generally describe them using terminology borrowed from
category theory. For example, if C = S is an oo-category, then we will refer to vertices of
the simplicial set S as objects of the co-category C, and to edges of the simplicial set S as
morphisms of the co-category C (see . One of the central themes of this book is that
oo-categories behave much like ordinary categories. In particular, for any oco-category C,
there is a notion of composition for morphisms of C, which we study in Given a pair
of morphisms f: X — Y and g: Y — Z in C (corresponding to edges f, g € S; satisfying
di(f) = di(g)), the pair (f,g) defines a map of simplicial sets o9 : A — C. Applying
condition (x”), we can extend ¢ to a 2-simplex o of C, which we can think of heuristically
as a commutative diagram

In this case, we will refer to the morphism h = d2(c) as a composition of f and g. However,
this comes with a caveat: the extension ¢ is usually not unique, so the morphism A is not
completely determined by f and g. However, we will show that it is unique up to a certain
notion of homotopy which we study in We apply this observation in to give a
concrete description of the homotopy category hC (in the sense of Definition when C

is an oo-category (see Definition |1.4.5.3| and Proposition [1.4.5.7)).

1.4.1 Objects and Morphisms

We begin by introducing some terminology.

OOHY

01G8

OO3F
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Definition 1.4.1.1. Let C = S, be an co-category. An object of C is a vertex of the simplicial
set S, (that is, an element of the set Sy). A morphism of C is an edge of the simplicial set
Se (that is, an element of S7). If f € S; is a morphism of C, we will refer to the object
X = d}(f) as the source of f and to the object Y = d}(f) as the target of f. In this case,
we will say that f is a morphism from X to Y. For any object X of C, we can regard the
degenerate edge sy(X) as a morphism from X to itself; we will denote this morphism by
idx and refer to it as the identity morphism of X.

Notation 1.4.1.2. Let C be an co-category. We will often write X € C to indicate that X
is an object of C. We use the phrase “f : X — Y is a morphism of C” to indicate that f is a
morphism of C having source X and target Y.

Example 1.4.1.3. Let C be an ordinary category, and regard the simplicial set No(C) as an
oo-category. Then:

o The objects of the co-category No(C) are the objects of C.

o The morphisms of the oco-category No(C) are the morphisms of C. Moreover, the source
and target of a morphism of C coincide with the source and target of the corresponding
morphism in N¢(C).

e For every object X € C, the identity morphism idx does not depend on whether we
view X as an object of the category C or the co-category No(C).

Example 1.4.1.4. Let X be a topological space, and regard the simplicial set Sing,(X) as
an oo-category. Then:

o The objects of Sing,(X) are the points of X.

e The morphisms of Sing,(X) are continuous paths f : [0,1] — X. The source of a
morphism f is the point f(0), and the target is the point f(1).

o For every point x € X, the identity morphism id, is the constant path [0,1] — X

taking the value .

Definition 1.4.1.5 (Endomorphisms). Let C be an co-category. An endomorphism in C is
a morphism f : X — X of C for which the source and target of f are the same. In this case,
we will say that f is an endomorphism of X.

1.4.2 The Opposite of an co-Category

Let C be an ordinary category. Then we can construct a new category C°P, called the
opposite category of C, as follows:
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e The objects of the opposite category C°? are the objects of C.
o For every pair of objects C, D € C, we have Hom¢or (C, D) = Hom¢(D, C).

o Composition of morphisms in C°P is given by the composition of morphisms in C, with
the order reversed.

The construction C +— C°? admits a straightforward generalization to the setting of
oo-categories. In fact, it can be extended to arbitrary simplicial sets.

Notation 1.4.2.1. Let Lin denote the category whose objects are finite linearly ordered sets
and whose morphisms are nondecreasing functions. Let I be an object of Lin, regarded as a
set with a linear ordering <;. We let I°P denote the same set with the opposite ordering, so
that

('l S[op ]) = (] S[ Z)
The construction I +— I°P determines an equivalence from the category Lin to itself.
Recall that the simplex category A of Definition [1.1.0.2]is the full subcategory of Lin
spanned by objects of the form [n] = {0 < 1 < --- < n}, and is equivalent to the full

subcategory of Lin spanned by those linearly ordered sets which are finite and nonempty
(Remark [1.1.0.3)). There is a unique functor Op : A — A for which the diagram

A Lin
Op I I°P
A Lin

commutes up to isomorphism, where the horizontal maps are given by the inclusion. The
functor Op can be described more concretely as follows:

o For each object [n] € A, we have Op([n]) = [n] (note that the construction ¢ — n —1
determines an isomorphism of [n] with the opposite linear ordering [n]°P).

o For each morphism « : [m] — [n] in A, the morphism Op(«) : [m] — [n] is given by
the formula Op(«)(i) =n — a(m — 7).

Construction 1.4.2.2. Let S be a simplicial set, which we regard as a functor A°® — Set.

We let S°P denote the simplicial set given by the composition
A 2y Aop 5y ot

where Op is the functor described in Notation [1.4.2.1] We will refer to S°P as the opposite
of the simplicial set S.
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Remark 1.4.2.3. Let S, be a simplicial set. Then the opposite simplicial set Se* can be
described more concretely as follows:

o For each n > 0, we have SpP = 5,,.

e The face and degeneracy operators of Se¥ are given by
(d - S — S ) = (d"_;  Sp — Sn_1)
(57 S2 = S) = (2 S = Surn).

Example 1.4.2.4. Let C be a category. For each n > 0, we can identify n-simplices o of
No(C) with diagrams

Colhoy B e e,

in the category C. Then o determines an n-simplex ¢’ of No(C°P), given by the diagram
SN BN L= N NG LN 6

in the opposite category C°?. The construction o — ¢’ determines an isomorphism of
simplicial sets Ng(C)°P =~ No(CP).
Example 1.4.2.5. Let X be a topological space. Then there is a canonical isomorphism of
simplicial sets Sing,(X) ~ Sing, (X )°P, which carries each singular n-simplex o : |[A"| — X
to the composite map

A" 5 A" S X
where r is denotes the homeomorphism of |A"| with itself given by r(to,t1,...,tn—-1,tn) =
(tn7 tn—17 s 7t1> tO)
Proposition 1.4.2.6. Let C be an co-category. Then the opposite simplicial set C°P is also
an oo-cateqgory.
Proof. Let oo : A} — C°P be a map of simplicial sets for 0 < ¢ < n; we wish to show that og
can be extended to an n-simplex of C°P. Passing to opposite simplicial sets, we are reduced
to showing that the map oy : (A?)°P — C can be extended to a map (A")°° — C. This

follows from our assumption that C is an oco-category, since there is a unique isomorphism
(A™)°P ~ A™ which carries the simplicial subset (A}")°P to A7_.. O

Remark 1.4.2.7. Let C be an oo-category. We will refer to the co-category C°P of Proposition
1.4.2.6| as the opposite of the oo-category C. Note that:
e The objects of C°? are the objects of C.
e Given a pair of objects X,Y € C, the datum of a morphism from X to Y in C°P is
equivalent to the datum of a morphism from Y to X in C.

Variant 1.4.2.8. If X is a Kan complex, then the opposite simplicial set X°P is also a Kan

complex.
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1.4.3 Homotopies of Morphisms

For any topological space X, we can view the singular simplicial set Sing,(X) as an
oo-category, where a morphism from a point x € X to a point y € X is given by a continuous
path f:[0,1] — X satisfying f(0) = z and f(1) = y. For many purposes (for example, in
the study of the fundamental group 71 (X, z)), it is useful to work not with paths but with
homotopy classes of paths (having fixed endpoints). This notion can be generalized to an
arbitrary oco-category:

Definition 1.4.3.1. Let C be an oco-category and let f,g: C' — D be a pair of morphisms
in C having the same source and target. A homotopy from f to g is a 2-simplex o of C
satisfying d3(c) = idp, d3(0) = g, and d3(0) = £, as depicted in the diagram

C g D.

We will say that f and g are homotopic if there exists a homotopy from f to g.

Example 1.4.3.2. Let C be an ordinary category. Then a pair of morphisms f,g: C — D
in C (having the same source and target) are homotopic as morphisms of the oco-category
N.(C) if and only if f = g.

Example 1.4.3.3. Let X be a topological space. Suppose we are given points z,y € X and

a pair of continuous paths f,g : [0,1] — X satisfying f(0) =z = ¢(0) and f(1) =y = g(1).

Then f and g are homotopic as morphisms of the co-category Sing,(X) (in the sense of
Definition |1.4.3.1)) if and only if the paths f and g are homotopic relative to their endpoints:
that is, if and only if there exists a continuous function H : [0, 1] x [0, 1] — X satisfying

H(s,0) = f(s) H(s,1)=g(s) H(0,t)=2 H(1,t)=y
(see Exercise [1.4.3.4) for a more precise statement).

Exercise 1.4.3.4. Let 7 : [0,1] x [0,1] — |A2?| denote the continuous function given by
the formula 7(s,t) = (1 — s, (1 — t)s,ts). For any topological space X, the construction
o — oo determines a map from the set Sing,(X) of singular 2-simplices of X to the set of
all continuous functions H : [0,1] x [0,1] — X. Show that, if f,¢:[0,1] — X are continuous
paths satisfying f(0) = ¢(0) and f(1) = g(1), then the construction o — o o 7 induces a
bijection from the set of homotopies from f to g (in the sense of Definition to the
set of continuous functions H satisfying the requirements of Example
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Proposition 1.4.3.5. Let C be an oo-category containing objects X,Y € C, and let E denote
the collection of all morphisms from X toY in C. Then homotopy is an equivalence relation
on E.

Proof. We first observe that for any morphism f : X — Y in C, the degenerate 2-simplex
s1(f) is a homotopy from f to itself. It follows that homotopy is a reflexive relation on E.

We will complete the proof by establishing the following;:

(%) Let f,g,h: X — Y be three morphisms from X to Y. If f is homotopic to g and f is
homotopic to h, then g is homotopic to h.

Let us first observe that assertion () implies Proposition Note that in the special
case f = h, (x) asserts that if f is homotopic to g, then g is homotopic to f (since f is always
homotopic to itself). That is, the relation of homotopy is symmetric. We can therefore
replace the hypothesis that f is homotopic to g in assertion (x) by the hypothesis that g is
homotopic to f, so that (x) is equivalent to the transitivity of the relation of homotopy.

It remains to prove (). Let oy and o3 be 2-simplices of C which are homotopies from
f to h and f to g, respectively, and let og be the 2-simplex given by the constant map
A2 5+ A® X5 ¢, Then the tuple (oq, ®, 02, 03) determines a map of simplicial sets 79 : A} — C
(see Proposition , depicted informally by the diagram

here the dotted arrows represent the boundary of the “missing” face of the horn A3. Our
hypothesis that C is an oo-category guarantees that 79 can be extended to a 3-simplex 7 of
C. We can then regard the face d?(7) as a homotopy from g to h. O

Note that there is a potential asymmetry in Definition if f,g: X — Y are two
morphisms in an co-category C, then the datum of a homotopy from f to g in the co-category
C is not identical to the datum of a homotopy from f to ¢ in the opposite co-category C°P.
Nevertheless, we have the following:

Proposition 1.4.3.6. Let C be an oo-category, and let f,g : X — Y be morphisms of C
having the same source and target. Then f and g are homotopic if and only if they are
homotopic when regarded as morphisms of the opposite co-category C°P. In other words, the
following conditions are equivalent:
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(1) There exists a 2-simplex o of C satisfying d3(c) = idy, d3(c) = g, and d3(o) = f, as

Y
/ \
X g Y.

2) There exists a 2-simplex T of C satisfying d3(1) = f, d3(1) = g, and d3(7) = idx, as
0 1 2

X
/ \
X 9 Y.

Proof. We will show that (1) implies (2); the proof of the reverse implication is similar.

depicted in the diagram

depicted in the diagram

Assume that f is homotopic to g. Since the relation of homotopy is symmetric (Proposition
, it follows that ¢ is also homotopic to f. Let o be a homotopy from g to f. Then we
can regard the tuple of 2-simplices (o, s1(g), e, s3(g)) as a map of simplicial sets pg : A3 — C
(see Proposition , depicted informally in the diagram

where the dotted arrows indicate the boundary of the “missing” face of the horn A3. Using
our assumption that C is an co-category, we can extend pg to a 3-simplex p of C. Then the
face 7 = d3(p) has the properties required by (2). O

Using Proposition we can formulate the notion of homotopy in a more symmetric
form:

Corollary 1.4.3.7. Let C be an co-category, and let f,g: X — Y be morphisms of C having |00VO
the same source and target. Then f and g are homotopic (in the sense of Definition|1.4.3.1
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if and only if there exists a map of simplicial sets H : A1 x A — C satisfying Hloyxar = f,
H|gyxar = g, Hlarxqoy = 1dx, and H|a1y 1y = idy, as indicated in the diagram

ldX idY

Proof. The “only if” direction is clear: if ¢ is a homotopy from f to g (in the sense of
Definition [1.4.3.1)), then we can extend o to a map H : A' x A — C by taking 7 to be the
degenerate simplex s{(g). Conversely, suppose that there exists a map Al x Al — C, as
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indicated in the diagram

X Y

idx idy

X 9 Y.

Then the 2-simplex o is a homotopy from f to h, and the 2-simplex 7 guarantees that g is
homotopic to h (by virtue of Proposition [1.4.3.6)). Since homotopy is an equivalence relation
(Proposition [1.4.3.5)), it follows that f is homotopic to g. O

1.4.4 Composition of Morphisms

We now introduce a notion of composition for morphisms in an co-category. 0041

Definition 1.4.4.1. Let C be an oco-category. Suppose we are given objects X, Y, Z € C and 0042
morphisms f: X =Y, g:Y — Z and h: X — Z. We will say that h is a composition of

f and g if there exists a 2-simplex o of C satisfying d3(o) = g, d3(0) = h, and d3(c) = f. In

this case, we will also say that the 2-simplex o witnesses h as a composition of f and g.

Beware that, in the situation of Definition [1.4.4.1] the morphism A is not determined by
f and g. However, it is determined up to homotopy:

Proposition 1.4.4.2. Let C be an oco-category containing morphisms f : X — Y and 0043
g:Y — Z. Then:

(1) There exists a morphism h : X — Z which is a composition of f and g.


https://kerodon.net/tag/0041
https://kerodon.net/tag/0042
https://kerodon.net/tag/0043

0044

1.4. 0co-CATEGORIES 85

(2) Let h: X — Z be a composition of f and g, and let h' : X — Z be another morphism in
C having the same source and target. Then h' is a composition of f and g if and only
if b’ is homotopic to h.

Proof. The tuple (g, e, f) determines a map of simplicial sets oo : A? — C (Proposition
[1.2.4.7)). Since C is an co-category, we can extend oq to a 2-simplex o of C. Then o witnesses
the morphism h = d3(o) as a composition of f and g. This proves (1). To prove (2), let us
first suppose that b’ : X — Z is some other morphism in C which is a composition of f and
g. We will show that h is homotopic to h’. Choose a 2-simplex o’ which witnesses I’ as a
composition of f and g. Then the tuple (si(g),e, o', o) determines a morphism of simplicial
sets 7o : A3 — C (Proposition , which we depict informally as a diagram

A

where the dotted arrows indicate the boundary of the “missing” face of the horn A$. Using
our assumption that C is an co-category, we can extend 79 to a 3-simplex 7 of C. Then the
face d3(7) is a homotopy from h to h'.

We now prove the converse. Let o be a 2-simplex of C which witnesses h as a composition
of f and g, and let A’ : X — Z be a morphism of C which is homotopic to h. Let ¢” be a
2-simplex of C which is a homotopy from h to h’. Then the tuple (si(g), 0", e, o) determines
a map of simplicial sets pg : A3 — C (Proposition , which we depict informally as a
diagram

Our assumption that C is an co-category guarantees that we can extend pg to a 3-simplex p
of C. Then the face d3(p) witnesses b’ as a composition of f and g. O]

Notation 1.4.4.3. Let C be an oco-category and let f: X — Y and g : Y — Z be a pair of
morphisms in C. We will write h = g o f to indicate that h is a composition of f and ¢ (in
the sense of Definition [1.4.4.1)). In this case, it should be implicitly understood that we have
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chosen a 2-simplex that witnesses h as a composition of f and g. We will sometimes abuse
terminology by referring to h as the composition of f and g. However, the reader should
beware that only the homotopy class of h is well-defined (Proposition [1.4.4.2)).

Example 1.4.4.4. Let C be an ordinary category containing a pair of morphisms f: X — Y
and g : Y — Z. Then there is a unique morphism h : X — Z in the oo-category No(C)
which is a composition of f and g, given by the usual composition g o f in the category C.

Example 1.4.4.5. Let X be a topological space and suppose we are given continuous paths
fyg:10,1] — X which are composable in the sense that f(1) = ¢g(0), and let g f : [0,1] = X
denote the path obtained by concatenating f and g, given concretely by the formula

F(2t) if0<t<1/2
g2t —1) if1/2<t<1.

(gx f)t) = {

Then g x f is a composition of f and g in the co-category Sing,(X). More precisely, the
continuous map

flt1+2t2) iftg>ta

g ’A2|—>X U(to,tl,tQ):
glta —to) i to <to.

can be regarded as a 2-simplex of Sing,(X) which witnesses g x f as a composition of f and
g.

Warning 1.4.4.6. In the situation of Example the concatenation g f is not the only
path which is a composition of f and g in the oco-category Sing,(X). Any path in X which
is homotopic to g x f (with endpoints fixed) has the same property, by virtue of Proposition
1.4.4.2| (and Example . For example, we can replace g x f by a reparametrization,
such as the path

3s if0<s<1/3
SERVIES Kb el
g(3s—1) f1/3<s<1
When viewing Sing,(X) as an oco-category, all of these paths have an equal claim to be
regarded as “the” composition of f and g.

We now show that composition respects the relation of homotopy:

Proposition 1.4.4.7. Let C be an oco-category. Suppose we are given a pair of homotopic
morphisms f, f' : X =Y in C and a pair of homotopic morphisms g,q' : Y — Z in C. Let h
be a composition of f and g, and let h' be a composition of ' and g'. Then h is homotopic
to .
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Proof. Let h” be a composition of f and ¢’. Since homotopy is an equivalence relation
(Proposition [1.4.3.5)), it will suffice to show that both h and k' are homotopic to h”. We will
show that h is homotopic to h”; the proof that A’ is homotopic to h” is similar. Let o3 be a
2-simplex of C which witnesses h as a composition of f and g, let o5 be a 2-simplex of C
which witnesses b as a composition of f and ¢’, and let oy be a 2-simplex of C which is a
homotopy from g to ¢’. Then the tuple (0¢, e, 02,03) determines a map of simplicial sets
70 : A3 — C (Proposition , which we depict informally as a diagram

where the dotted arrows indicate the boundary of the “missing” face of the horn A$. Using
our assumption that C is an co-category, we can extend 79 to a 3-simplex 7 of C. Then the
face d?(7) is a homotopy from h to h”. O

1.4.5 The Homotopy Category of an co-Category

To any topological space X, one can associate a category m<1(X), called the fundamental
groupoid of X. This category can be described informally as follows:

o The objects of m<1(X) are the points of X.

o Given a pair of points z,y € X, we can identify Hom,_, (x)(v,y) with the set of
homotopy classes of continuous paths p : [0,1] — X satisfying p(0) = x and p(1) = y.

o Composition in m<1(X) is given by concatenation of paths (see Example |1.4.4.5)).

All of the concepts needed to define the fundamental groupoid 7<;(X) (such as points,
paths, homotopies, and concatenation) can be formulated in terms of singular n-simplices
of X (for n < 2). Consequently, one can view the fundamental groupoid m<;(X) as an
invariant of the simplicial set Sing,(X), rather than the topological space X. In this section,
we describe an extension of this invariant, where the simplicial set Sing,(X) is replaced by
an arbitrary oo-category C. In this case, the fundamental groupoid 7<;(X) is replaced by a
category hC which we call the homotopy category of C (beware that the homotopy category
hC is generally not a groupoid: in fact, we will later see that it is a groupoid if and only if C

is a Kan complex (Proposition [4.4.2.1)).
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Construction 1.4.5.1. Let C be an oo-category. For every pair of objects X,Y € C, we let
Homype(X,Y') denote the set of homotopy classes of morphisms from X to Y in C. For every
morphism f: X — Y, we let [f] denote its equivalence class in Homy¢(X,Y).

It follows from Propositions[1.4.4.2)and [1.4.4.7|that, for every triple of objects X,Y, Z € C,
there is a unique composition law

o: HOmhc(}/, Z) X Hoth(X,Y) — HOmhc(X, Z)

satisfying the identity [g] o [f] = [h] whenever h : X — Z is a composition of f and g in the
oo-category C.

Proposition 1.4.5.2. Let C be an co-category. Then:

(1) The composition law of Construction|1.4.5.1| is associative. That is, for every triple of
composable morphisms f: W — X, g: X =Y, and h:Y — Z in C, we have an

equality ([h] o [g]) o [f] = [h] o ([g] o [f]) in Hompe (W, Z).

(2) For every object X € C, the homotopy class [idx] € Homye (X, X) is a two-sided identity
with respect to the composition law of Construction[I.7.5.1 That is, for every morphism
f:W — X in C and every morphism g : X — Y in C, we have [idx] o [f] = [f] and
9] o [idx] = [g]-

Proof. We first prove (1). Let u : W — Y be a composition of f and g, let v : X — Z
be a composition of ¢ and h, and let w : W — Z be a composition of f and v. Then
([h]o[g]) o [f] = [w] and [h] o ([g] o [f]) = [h] o [u]. Tt will therefore suffice to show that w is a
composition of u and h. Choose a 2-simplex oy of C which witnesses v as a composition of g
and h, a 2-simplex o9 of C which witnesses w as a composition of f and v, and a 2-simplex
o3 of C which witnesses u as a composition of f and g. Then the sequence (oy, e, 09,03)
determines a map of simplicial sets 7 : A3 — C (Proposition , which we depict
informally as a diagram

Using our assumption that C is an oco-category, we can extend 7y to a 3-simplex 7 of C. Then
the 2-simplex d3(7) witnesses w as a composition of u and .

We now prove (2). Fix an object X € C and a morphism ¢g : X — Y in C; we will
show that [g] o [idx] = [g] (the analogous identity [idx] o [f] = [f] follows by a similar
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argument). For this, it suffices to observe that the degenerate 2-simplex s} (g) witnesses g as
a composition of idx and g. O

Definition 1.4.5.3 (The Homotopy Category). Let C be an oo-category. We define a
category hC as follows:

e The objects of hC are the objects of C.

o For every pair of objects X,Y € C, we let Hompe(X,Y) denote the collection of
homotopy classes of morphisms from X to Y in the co-category C (as in Construction

Ta53).

e For every object X € C, the identity morphism from X to itself in hC is given by the
homotopy class [idx].

e Composition of morphisms is defined as in Construction [1.4.5.1
We will refer to hC as the homotopy category of the oo-category C.

Example 1.4.5.4. Let C be an ordinary category. Then the homotopy category of the
oo-category No(C) can be identified with C. In particular, for each n > 0, the homotopy
category hA™ can be identified with [n] = {0 <1 <--- <n}.

Example 1.4.5.5. Let X be a topological space, and regard the singular simplicial set
Sing,(X) as an oo-category. Then the homotopy category hSing,(X) can be identified with
the fundamental groupoid 7<;(X). More precisely, we can regard the contents of
when specialized to co-categories of the form Sing,(X), as providing a construction of the
fundamental groupoid of X. By virtue of Exercise [[.4.3.4] and Example [[.4.4.5] the resulting
category hSing, (X ) matches the informal description of m<;(X) given in the introduction

to §LL,

Let C be an co-category. Beware that we have now introduced two different definitions
of the homotopy category hC:

e The homotopy category hC of Definition defined by an explicit construction
using the assumption that C is an oco-category.

o The homotopy category hC of Notation [I.3.6.3] defined for any simplicial set C by a
universal mapping property.

We conclude this section by showing that these definitions are equivalent (Proposition

a5,
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Construction 1.4.5.6. Let C be an oco-category and let o : A™ — C be an n-simplex of

C. For 0 <i < n, let C; denote the object of C given by the image of the ith vertex of A™.

For 0 <i < j <n,let f;; : C; = C; denote the image under o of the edge of A" joining the

ith vertex to the jth vertex, and let [f;;] € Homyc(C;, C;) denote the homotopy class of f;;.

Then we can regard ({C;}o<i<n, {[fij]}o<i<j<n) as a functor from the linearly ordered set

[n] to the homotopy category hC. Let u(o) denote the corresponding n-simplex of Ng(hC).

Then the construction o — u(o) determines a map of simplicial sets
u: C — Ng(hC).
The comparison map of Construction has the following universal property:

Proposition 1.4.5.7. Let C be an oo-category and let u : C — No(hC) be as in Construction
[1.4.5.6. Then u exhibits hC as a homotopy category of the simplicial set C, in the sense of
Definition [1.5.6.1. In other words, for every category D, the composite map

Homcag (hC, D) — Homgey, (No(hC), No(D)) =% Homges, (C, No(D))
s a bijection.

Proof. Let F' : C — No(D) be a morphism of simplicial sets. Then F' induces a functor of
homotopy categories G : hC — hN4(D) ~ D (where the second identification comes from
Example [1.4.5.4]). By construction, the morphism of simplicial sets

¢ % No(he) 229 N, (D)

coincides with F' on the vertices and edges of C, and therefore coincides with F' (since a
simplex of No(D) is determined by its 1-dimensional facets; see Remark [1.3.1.3)). We leave it
to the reader to verify that G is the unique functor with this property. O

1.4.6 Isomorphisms

Recall that a morphism f : X — Y in a category C is an isomorphism if there exists
a morphism ¢ : Y — X satisfying f o g = idy and g o f = idx. This notion has an
oo-categorical analogue:

Definition 1.4.6.1. Let C be an oo-category and let f : X — Y be a morphism of C.

We will say that f is an isomorphism if the homotopy class [f] is an isomorphism in the
homotopy category hC. We will say that two objects X,Y € C are isomorphic if there exists
an isomorphism from X to Y (that is, if X and Y are isomorphic as objects of the homotopy
category hC).
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Example 1.4.6.2. Let C be an ordinary category. Then a morphism f: X — Y of C is
an isomorphism if and only if it is an isomorphism when regarded as a morphism of the
oo-category No(C).

Remark 1.4.6.3 (Two-out-of-three). Let f: X — Y and g : Y — Z be morphisms in an
oo-category C and let h be a composition of f and g. If any two of the morphisms f, g, and
h is an isomorphism, then so is the third.

Definition 1.4.6.4. Let C be an oco-category and suppose we are given a pair of morphisms
f: X —=>Yandg:Y — X in C. We say that g is a left homotopy inverse of f if the identity
morphism idx is a composition of f and g: that is, if we have an equality [idx] = [g] o [f] in
the homotopy category hC. We say that g is a right homotopy inverse of f if the identity
morphism idy is a composition of g and f: that is, if we have an equality [idy| = [f] o [g] in
the homotopy category hC. We will say that g is a homotopy inverse of f if it is both a left
and a right homotopy inverse of f.

Remark 1.4.6.5. Let f: X — Y and g: Y — X be morphisms in an oco-category C. Then
the condition that g is a left homotopy inverse (right homotopy inverse, homotopy inverse)
to f depends only on the homotopy classes [f] and [g].

Remark 1.4.6.6. Let f: X — Y and g: Y — X be morphisms in an oco-category C. Then
g is left homotopy inverse to f if and only if f is right homotopy inverse to g. Both of
these conditions are equivalent to the existence of a 2-simplex o of C satisfying d3(o) = g,
d?(c) = idy, and d3(c) = f, as depicted in the diagram

Y

idx

X X.

Remark 1.4.6.7. Let f : X — Y be a morphism in an oo-category C. Suppose that
f admits a left homotopy inverse g and a right homotopy inverse h. Then g and h are
homotopic: this follows from the calculation

[9] = [g] e [idy] = [g] o ([f] o [n]) = ([g] o [f]) o [n] = [idy] o [A] = [A].
It follows that both g and A are homotopy inverse to f.

Remark 1.4.6.8. Let f : X — Y be a morphism in the oo-category C. It follows from
Remark that the following conditions are equivalent:

(1) The morphism f is an isomorphism.
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(2) The morphism f admits a homotopy inverse g.
(3) The morphism f admits both left and right homotopy inverses.

In this case, the morphism ¢ is uniquely determined up to homotopy; moreover, any left or
right homotopy inverse of f is homotopic to g. We will sometimes abuse notation by writing
f~! to denote a homotopy inverse to f.

Warning 1.4.6.9. Let f: X — Y be a morphism in an oco-category C, and suppose that
g,h Y — X are left homotopy inverses to f. If f does not admit a right homotopy inverse,
then g and h need not be homotopic.

Proposition 1.4.6.10. Let C be a Kan complex. Then every morphism in C is an isomor-
phism.

Remark 1.4.6.11. We will see later that the converse to Proposition [1.4.6.10|is also true:
if C is an oo-category in which every morphism is an isomorphism, then C is a Kan complex

(Proposition 4.4.2.1)).

Proof of Proposition[1.4.6.10. Let f : X — Y be a morphism in C. Then the tuple (e,idx, f)
determines a map of simplicial sets o : A2 — C (Proposition [1.2.4.7)), which we depict as

X

If C is a Kan complex, then we can extend og to a 2-simplex o of C. Then o exhibits the
morphism g = d3(o) as a left homotopy inverse to f. A similar argument shows that f admits
a right homotopy inverse, so that f is an isomorphism by virtue of Remark [1.4.6.8 O

Definition 1.4.6.12 (The Fundamental Groupoid of a Kan Complex). Let X be a Kan
complex. It follows from Proposition [I.4.6.10] that the homotopy category hX of Definition
is a groupoid. We will denote this groupoid by m<i(X) and refer to it as the
fundamental groupoid of X.

Remark 1.4.6.13. Let X be a Kan complex. By construction, the objects of the fundamental
groupoid m<1(X) are the vertices of X, and a pair of vertices =,y € X are isomorphic in
m<1(X) if and only if there exists an edge e : © — y in X. Applying Proposition
we deduce that x,y € X are isomorphic if and only if they belong to the same connected
component of X. In other words, we have a canonical bijection

70(X) =~ {Objects of m<1(X)}/Isomorphism.
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Example 1.4.6.14. Let X be a topological space. Then the singular simplicial set Sing, (X)
is a Kan complex (Proposition [1.2.5.8), and its fundamental groupoid 7<;(Sing,(X)) can be
identified with the usual fundamental groupoid m<;(X) of the topological space X (where
objects are the points of X and morphisms are given by homotopy classes of paths in X).

1.5 Functors of co-Categories

Let C and D be categories, and let No(C) and Ne(D) denote the corresponding oo-
categories. According to Proposition [1.3.3.1] the nerve functor N, induces a bijection

{Functors F': C — D} ~ {Morphisms of simplicial sets No(C) — No(D)}.

Consequently, the notion of functor admits an obvious generalization to the setting of
oo-categories:

Definition 1.5.0.1. Let C and D be oo-categories. A functor from C to D is a morphism of
simplicial sets F': C — D.

This section is devoted to the study of functors between oco-categories, in the sense
of Definition We begin in with some simple examples, which illustrate the
meaning of Definition in the case of co-categories which arise from ordinary categories
(via the construction £ — Ne(&)) or topological spaces (via the construction X + Sing,(X)).

In ordinary category theory, one can think of a functor F' : C — D as a kind of
commutative diagram in D, having vertices indexed by the objects of C and arrows indexed
by the morphisms of C. This perspective is quite useful: if the category C is sufficiently
small, one can communicate the datum of a functor by drawing a graphical representation of
the corresponding diagram. In we discuss the notion of commutative diagram in an
oo-category (Convention and describe some dangers associated with diagrammatic
reasoning in the higher-categorical setting (Remark .

If C and D are ordinary categories, then the collection of all functors from C to D can
itself be organized into a category, which we denote by Fun(C, D). In we describe a
counterpart of this construction in the setting of co-categories. For every pair of simplicial
sets S and T', one can form a new simplicial set Fun(.S,T") whose vertices are maps from S to
T (Construction . The main result of this section asserts that if T is an oo-category,
then Fun(S, T') is also an oo-category (Theorem[1.5.3.7)). Moreover, our notation is consistent:
in the case where S and T are isomorphic to the nerves of categories C and D, the co-category
Fun(S, T') is isomorphic to the nerve of the functor category Fun(C, D) (Proposition [L.5.3.3).

In order to prove Theorem we will need to introduce some auxiliary ideas. Recall
that if f: X — Y and g : Y — Z are composable morphisms in an oo-category C, then we
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can form a composition of f and g by choosing a 2-simplex o of C which satisfies d3(c) = g
and d%(c) = f, as indicated in the diagram

Y

X 9o Z.
We proved in that the resulting morphism g o f is well-defined up to homotopy
(Proposition |1.4.4.2]). In §1.5.6] we prove a variant of this assertion which asserts that the 2-

simplex o is “unique up to a contractible space of choices” (see Corollary for a precise
statement, and for an extension to more general path categories). Moreover, we show
that a strong version of this uniqueness result is equivalent to the assumption that C is an
oo-category (Theorem , and deduce the existence of functor co-categories Fun(C, D)
as a consequence (Theorem . The precise formulation and proof of Theorem
will require some general ideas about categorical lifting properties and the homotopy theory
of simplicial sets, which we develop in §1.5.4] and §1.5.5] respectively.

1.5.1 Examples of Functors

Let us begin by illustrating Definition [L.5.0.1] in some special cases.

Example 1.5.1.1. Let C and D be ordinary categories. It follows from Proposition [1.3.3.1
that the formation of nerves induces a bijection

{Functors of ordinary categories from C to D}

{Functors of co-categories from No(C) to No(D)}.

In other words, Definition [I.5.0.1] can be regarded as a generalization of the usual notion of
functor to the setting of co-categories.

Example 1.5.1.2. Let C be an oco-category and let D be an ordinary category. Using
Proposition we obtain a bijection

{Functors of oo-categories from C to Ne(D)}

{Functors of ordinary categories from hC to D}.

0057
0058

0059


https://kerodon.net/tag/0057
https://kerodon.net/tag/0058
https://kerodon.net/tag/0059

OO5A

005B

005C

005D

OO5E

1.5. FUNCTORS OF oco-CATEGORIES 95

Remark 1.5.1.3. Let F': C — D be a functor of co-categories. Then:

(a) To each object X € C the functor F assigns an object of D, which we will denote by
F(X) (or sometimes more simply by F'X).

(b) To each morphism f: X — Y in the co-category C, the functor F' assigns a morphism
F(f): F(X) — F(Y) in the co-category D.

(c) For every object X € C, the functor F' carries the identity morphism idx : X — X in C
to the identity morphism idp(x) : F((X) — F(X) in D.

(d)If f: X Y and g : Y — Z are morphisms in C and h is a composition of f and
g (in the sense of Definition [1.4.4.1)), then the morphism F(h) : F(X) — F(Z) is a
composition of F(f) and F(g).

Warning 1.5.1.4. To define a functor F from an ordinary category C to an ordinary
category D, it suffices to specify the values of F' on objects and morphisms (as described
in (a) and (b) of Remark and to verify that F is compatible with the formation of
composition and identity morphisms (as described in (¢) and (d) of Remark [1.5.1.3). In
the oo-categorical setting, this is not enough: to give a functor of co-categories F': C — D,
one must specify its values on simplices of all dimensions. Roughly speaking, these values
encode the requirement that F' is compatible with composition “up to coherent homotopy.”
For example, suppose that we are given objects X,Y,Z € C and morphisms f: X — Y,
g:Y = Z and h: X — Z. Part (d) of Remark asserts that if h is a composition of
f and g, then F'(h) is a composition of F(f) and F(g). However, we can say more: if o is a
2-simplex of C which witnesses h as a composition of f and g, then F(¢) is a 2-simplex of D
which witnesses F'(h) as a composition of F(f) and F(g).

Remark 1.5.1.5. Let F' : C — D be a functor between oo-categories. If f,g: X — Y are
homotopic morphisms of C, then F(f), F(g): F(X) — F(Y) are homotopic morphisms of
D. More precisely, the functor F' carries homotopies from f to g (viewed as 2-simplices of C)
to homotopies from F(f) to F(g) (viewed as 2-simplices of D).

Remark 1.5.1.6. Let F': C — D be a functor of co-categories. If f: X — Y is a morphism
inC and g : Y — X is a homotopy inverse to f, then F(g) is a homotopy inverse to F(f).
In particular, if f is an isomorphism in C, then F(f) is also an isomorphism in D.

Example 1.5.1.7. Let X be a topological space and let C be an ordinary category. To
specify a functor of co-categories F : Sing,(X) — No(C), one must give a rule which assigns
to each continuous map o : |A"| — X (viewed as an n-simplex of Sing,(X)) a diagram

F(o) = (Co f—1> 1 f—2> Cy— - f—"> Cp). In particular:

(a) To each point x € X, the functor F assigns an object F(z) € C.
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(b) To each continuous path f : [0,1] — X starting at the point z = f(0) and ending at the
point y = f(1), the functor F assigns a morphism F'(f) : F(z) — F(y) in the category
C. The morphism F(f) is automatically an isomorphism (by virtue of Proposition

1.4.6.10] and Remark [1.5.1.6]).

(¢) For each continuous map o : |A%| — X with boundary behavior as depicted in the

Yy
/ \
h
T 2,

we have an identity F'(h) = F(g) o F(f) in Home(F(z), F(2)).
The data of a collection of objects {F'(7)},ex and isomorphisms {F(f)} f.j0,1]—x satisfying

diagram

(c) is called a C-valued local system on X. The preceding discussion determines a bijection

{Functors of oo-categories from Sing,(X) to Ne(C)}

{ C-valued local systems on X }.
By virtue of Example [I.5.1.2] we can also identify local systems with functors from the
fundamental groupoid m<;(X) into C.

Remark 1.5.1.8. Let X be a topological space and let C be an arbitrary oo-category. 005F
Motivated by Example one can define a C-valued local system on X to be a functor

of co-categories Sing,(X) — C. Beware that this notion generally cannot be reformulated in
terms of the fundamental groupoid 7<;(X).

Example 1.5.1.9. Let C be an oo-category and let X be a topological space. Then we have 005G
a canonical bijection

{Functors of oo-categories from C to Sing,(X)}

{Continuous functions from |C| to X}.

Here |C | denotes the geometric realization of the simplicial set C (see Definition [1.2.3.1]).
Beware that neither side has an obvious interpretation in terms of functors between ordinary
categories (even in the special case where C is the nerve of a category).
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1.5.2 Commutative Diagrams

We now consider a variant of the terminology introduced in §1.5.1]

Definition 1.5.2.1. Let C be an oco-category. A diagram in C is a map of simplicial sets
f: K — C. We will also refer to a map f : K — C as a diagram in C indexed by K, or a
K-indexed diagram in C.

If C is an ordinary category, then a (K-indezed) diagram in C is a (K-indexed) diagram
in the oo-category No(C).

In the special case where K is the nerve No(I) of a partially ordered set I (Remark
, we will refer to a map f: K — C as a diagram in C indexed by I, or an [-indexed
diagram in C.

Remark 1.5.2.2. In the case where K is an oo-category, Definition is superfluous:
a K-indexed diagram in C (in the sense of Definition is just a functor from K to C
(in the sense of Definition . However, the redundant terminology will be useful to
signal a shift in emphasis. We will generally refer to a map f : C — D as a functor when we
wish to regard the co-categories C and D on an equal footing. By contrast, we will refer to a
morphism f : K — C as a diagram if we are primarily interested in the oco-category C (in
many cases, K will be a very simple simplicial set).

Remark 1.5.2.3 (Diagrams of Dimension < 1). Let C be an oo-category and let K be a
simplicial set of dimension < 1, corresponding to a directed graph G (Proposition .
In this case, a diagram K — C can be identified with a pair ({Cy }yevert(@) {fetecrdge(@))s
where each ), is an object of the oo-category C and each f : Cy) — Cy(e) is a morphism of
C (here s(e) and t(e) denote the source and target of the edge e). It is often convenient to
specify diagrams K — C by drawing a graphical representation of G (as in Remark ,
where each node is labelled by an object of C and each arrow is labelled by a morphism in C
(having the indicated source and target).

Example 1.5.2.4 (Non-Commuting Squares). Let K denote the boundary of the product
A x Al: that is, the simplicial subset of Al x A! given by the union of the simplicial
subsets A x Al and A! x AL, Then K, is a 1-dimensional simplicial set, corresponding
to a directed graph which we can depict as

|

—

o< o
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We can then display a K-indexed diagram in an co-category C pictorially

f
Coo Co1
g q
Cho Ci1,

where each Cj; is an object of C, f is a morphism in C from Cpyy to Cp1, ¢ is a morphism in

C from Cyg to Cg, f’ is a morphism in C from Cyg to C11, and ¢’ is a morphism in C from
C()1 to 011.

In classical category theory, it is useful to extend the notational conventions of Remark
1.5.2.3 to more general situations by introducing the notion of a commutative diagram.

Definition 1.5.2.5. Let K be a simplicial set of dimension < 1, which we will identify 005N
with a directed graph G (see Proposition [1.1.6.9)). Assume that G satisfies the following
additional conditions:

(a) For every pair of vertices v, w € Vert(G), there is at most one edge of G with source v
and target w. We will denote this edge (if it exists) by (v, w) € Edge(G).

(b) The graph G has no directed cycles. That is, if there exists a sequence of vertices
V0, V1, . .., Uy € Vert(G) with the property that the edges (v;—1,v;) exist for 1 <i <n,
then either n = 0 or vg # vy,

Let C be an ordinary category and suppose we are given a diagram o : K — N4(C), which
we identify with a pair ({Cy}yevert(@) {fww © Co = Cuwl(vw)erdge(@)). We will say that
the diagram o commutes (or that o is a commutative diagram) if the following additional
condition is satisfied:

(c) Let v and w be vertices of G which are joined by directed paths (v = vg,v1, ..., v, = w)
and (v = v, vy, ..., v, = w) (so that the edges (vi—1,vi), (vj_;,v;) € Edge(G) exist
for 1 <i<mand 1 <j <n). Then we have an identity

fvm7?)m—1 © fﬂm—lavm—Z 0r:-0 fvlﬂlo = f”%v”;_1 © f’u%_l,v%_z ©---0 fvi,v(’)

in the set Home(Cy, Cyp)-

Proposition 1.5.2.6. Let K be a simplicial set of dimension < 1, corresponding to a 005P
directed graph G which satisfies conditions (a) and (b) of Definition |1.5.2.5 Let C be an
ordinary category, and let o : K — No¢(C) be a diagram. Then:
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(1) There is a partial ordering < on the vertex set Vert(G), where we have v < w if and
only if there exists a sequence of vertices (v = vg,v1,...,v, = w) with the property
that the edges (vi—1,v;) € Edge(G) exist for 1 <i < n.

(2) There is a unique monomorphism of simplicial sets K < Nq(Vert(G)) which carries
each vertex to itself.

(3) The diagram o extends to a map & : Ne¢(Vert(G)) — No(C) (that is, to a functor
Vert(G) — C) if and only if it is commutative, in the sense of Definition |1.5.2.5

Moreover, if the extension & exists, then it is unique.

Proof. Tt follows immediately from the definitions that the relation < defined in (1) is
reflexive and transitive. Antisymmetry follows from our assumption that the graph G has
no directed loops (condition (b) of Definition [1.5.2.5)). By construction, we have v < w
whenever v and w are connected by an edge (v,w) € Edge(G). From the description of the
simplicial set K given in Remark [I.1.6.10, we immediately see that there is a unique map
of simplicial sets ¢ : K — Ng(Vert(G)) which is the identity on vertices. It follows from
assumption (a) of Definition that the map 7 is a monomorphism. Let us henceforth
identify K with a simplicial subset of Ng(Vert(G)) given by the image of i. Let us identify
o with a pair ({Cy}yevert(@), {fww : Co = Cuw}(vw)cEdge())- Suppose that the diagram o
extends to a functor @ : Ne(Vert(G)) — C. If v and w are a pair of vertices of G with v < w,
then we can choose a directed path (v = vg,v1,...,v, = w) from v to w. The compatibility
of @ with composition then guarantees that @ must carry the edge (v, w) of No(Vert(G))
to the iterated composition fu, v, 1 © fo,_1wn 50 0 fu,we € Home(Cy, Cyy). Since the
morphism 7 (v, w) is independent of the choice of directed path, it follows that the diagram o
is commutative. Conversely, if o is commutative, then we can define @ on morphisms by the
formula (v, w) = fu, vn_1 © fon_1,0m_0 0O fo v, to obtain the desired extension of o. [

Remark 1.5.2.7. In the situation of Proposition an arbitrary morphism of simplicial
sets 0 1 K — Ng(C) can be identified with a functor F' : Path[G] — C, where Path|G]|
denotes the path category of the graph G (Proposition . The commutativity of the
diagram o is equivalent to the requirement that F' factors through the quotient functor
Path|[G] — Vert(G): that is, the value of F' on a path p depends only the endpoints of p.

Example 1.5.2.8 (Commutative Squares in a Category). Let K = 9(A! x Al) be as in
Example [1.5.2.4] For any ordinary category C, we can display a diagram o : K — N¢(C)
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pictorially as

Coo Co1
g g’

!
Cio Cii.

The diagram o is commutative if and only if we have ¢’o f = f’og in Hom¢(Cog, C11). In this

case, Proposition [1.5.2.6 ensures that o extends uniquely to a diagram @ : A! x Al — No(C),
or equivalently to a functor of ordinary categories [1] x [1] — C.

In the setting of oo-categories, assertion (3) of Proposition [1.5.2.6] is false in general.

Example 1.5.2.9 (Square Diagrams in an co-Category). Let I denote the partially ordered 005R
set [1] x [1]. The simplicial set No(I) ~ Al x Al has four vertices (given by the elements of

I), five nondegenerate edges, and two nondegenerate 2-simplices. Unwinding the definitions,

we see that an [-indexed diagram in an oco-category C is equivalent to the following data:

A collection of objects {C;;}o<i j<1 in C.

e A collection of morphisms f : Cog — Co1, g : Coo — Cio, f': C19 — C11, ¢’ : Co1 —
Cll, and h : C[)O — 011.

e A 2-simplex o of C which witnesses h as a composition of f with ¢, and a 2-simplex 7
of C which witnesses h as a composition of g with f.
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This data can be depicted graphically as follows:

C()o ! COl

f/
Cho Ch.

Beware that such a diagram is usually not determined by its restriction to the simplicial
subset K C No(I) of Example [1.5.2.8

Exercise 1.5.2.10. Let C be an oco-category and let K C A! x Al be the simplicial subset
appearing in Example Suppose we are given a diagram o : K — C, which we depict
graphically as

Coo Co1
g g’

!
Cio Ci1.

Composing with the unit map C — N4 (hC), we obtain a diagram ¢’ in the homotopy category
hC, which we can depict as

f
Coo 7 Co1
lq] [9']
f/
Co il Ci.


https://kerodon.net/tag/005S

102 CHAPTER 1. THE LANGUAGE OF oco-CATEGORIES

Show that the diagram o’ is commutative if and only if o can be extended to a map
7 : Al x A" — C. Beware that this extension is generally not unique.

Warning 1.5.2.11. Let I be a partially ordered set and let C be an co-category. In the case
I = [1] x [1], Exercise implies that every functor of ordinary categories I — hC can
be lifted to a functor of co-categories No(/) — C. Beware that this conclusion is generally
false for more complicated partially ordered sets. For example, it fails for the partially
ordered set I = [1] x [1] x [1].

Example illustrates that the notion of “commutative diagram” becomes con-
siderably more subtle in the setting of oco-categories. To specify an I-indexed diagram
F : Ng(I) — C of an oo-category C, one generally needs to specify the values of F' on all the
simplices of the simplicial set N¢(I). In general, it is not feasible to graphically encode all
of this data in a comprehensible way. On the other hand, the formalism of commutative
diagrams is too useful to completely abandon. We will therefore sacrifice some degree of

mathematical precision in favor of clarity of exposition.

Convention 1.5.2.12. Let C be an oco-category and let G be a directed graph satisfying
conditions (a) and (b) of Definition so that the vertex set Vert(G) inherits a partial
ordering (Proposition . We will sometimes refer to the notion of a commutative
diagram o in C, which we indicate graphically by a collection of objects {Cv}vevert(g) of
C, connected by arrows which are labelled by morphisms {fe}ccpdge(e)- In this case, it
should be understood that o is a diagram N(Vert(G)) — C, which carries each vertex v
of Ne(Vert(G)) to the object C, € C and each edge e = (v,w) of G to the morphism f.
in C. Beware that in this case, the map ¢ need not be completely determined by the pair
({Cu}vevert(@)s { fe}ecEdge(q)) (this pair can instead be identified with the restriction |k,
where K is the 1-dimensional simplicial subset of N¢(Vert(G)) corresponding to G).

Remark 1.5.2.13. In the situation of Convention suppose that C = N¢(Cp), where
Co is an ordinary category. Then giving a commutative diagram in the oo-category C (in the
sense of Convention is equivalent to giving a commutative diagram in the ordinary
category Cop (in the sense of Definition . In this case, commutativity is a property
that the underlying diagram (indexed by a 1-dimensional simplicial set) does or does not
possess. For a general oo-category C, commutativity of a diagram in C is not a property but
a structure; to promote a diagram to a commutative diagram, one must specify additional
data to witness the requisite commutativity.

005T

005U

005V
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005W Example 1.5.2.14. Let C be an oco-category. If we refer to a commutative diagram o :

Y

X

Z,

then we mean that o is a 2-simplex of C satisfying d3(o) = g, d?(o) = h, and d3(c) = f. In
other words, we mean that o is a 2-simplex which witnesses h as a composition of f and g,
in the sense of Definition [.4.4.1]

005X Example 1.5.2.15. Let C be an oco-category. If we refer to a commutative diagram o :

Coo Co1
g g’

f/
Cio C,

we implicitly assume that o is a map from the entire simplicial set Al x A! to C. In other
words, we assume that we have specified another morphism A : Cyg — C11, which is not
indicated in the picture, together with a 2-simplex o witnessing h as the composition of f
and ¢’ and a 2-simplex 7 witnessing h as the composition of g and f’.

005Y Warning 1.5.2.16. In ordinary category theory, it is sometimes useful to refer to the
commutativity of diagrams in situations which do not fit the paradigm of Definition [1.5.2.5
For example, the commutativity of a diagram

f

X Y VA

v

is often understood as the requirement that uwo f = vo f. Beware that this usage is potentially
ambiguous (from the shape of the diagram alone, it is not clear that commutativity should
enforce the identity uo f = v o f, but not the identity u = v), so we will take special care
when applying similar terminology in the oo-categorical setting.

1.5.3 The oo-Category of Functors

005Z Let C and D be categories. Then we can form a new category Fun(C, D), whose objects
are functors from C to D and whose morphisms are natural transformations. In this section,
we describe an analogous construction in the setting of co-categories.
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Construction 1.5.3.1. Let S and T be simplicial sets. Then the construction
([n] € A°P) — Homget, (A" x S, T)

determines a functor from the category A°P to the category of sets. We regard this functor
as a simplicial set which we will denote by Fun(S,T).
Note that, given an n-simplex f of Fun(S,T') and an n-simplex o of S, we can construct
an n-simplex ev(f, o) of T, given by the composition
A™ S AT s An X9 AR g Ty
This construction determines a map of simplicial sets ev : Fun(S,T) x S — T, which we will
refer to as the evaluation map.

Proposition 1.5.3.2. Let S, T, and U be simplicial sets. Then the composite map

6 : Homge, (U, Fun(S,T)) —  Homget, (U x S, Fun(S,T) x S)

€ev o

— Homge, (U x S,T)
1s bijective.

Proof. Let f: U xS — T be a map of simplicial sets. For each n-simplex ¢ of U, the
composite map

A" x 8§ sty

can be regarded as an n-simplex of Fun(,S, T"), which we will denote by g(¢). The construction
o — g(o) determines a map of simplicial sets g : U — Fun(S,T"). We leave as an exercise
for the reader to verify that g is the unique map satisfying 0(g) = f. O

Beware that the notation of Construction [I.5.3.1] is potentially confusing, because it
conflicts with our use of Fun(C, D) to denote the category of functors from a category C to a
category D. However, these usages are compatible:

Proposition 1.5.3.3. Let C and D be categories and let e : Fun(C, D) x C — D denote the
evaluation functor, given on objects by the formula e(F,C) = F(C). Then the composite

map

N.(Fun(C, D)) x No(C) = No(Fun(C, D) x €) ' N (D)

corresponds, under the bijection of Proposition to an isomorphism of simplicial sets
p: Ne(Fun(C, D)) — Fun(Ne(C),N¢(D)).

0060

0061

0062
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Proof. For each n > 0, the map p is given on n-simplices by the composition

I’IOHISetA (An, No (Fun(cu D)))

1

Homc,y([n], Fun(C, D))
[n]

1

~ Homcyu([n] x C,D)
= Homger, (No([1] x C),No(D))
~ Homsger, (No([n]) X No(C), No(D))
~ Homget, (A" x No(C),No(D))
(

Homget, (A", Fun(Ne(C), No(D))).

It will therefore suffice to show that v is bijective, which is a special case of Proposition

L3311 O

Passing to homotopy categories, we obtain the following weaker result:

0063/ Corollary 1.5.3.4. Let C and D be categories. Then there is a canonical isomorphism of
categories
Fun(C,D) = hFun(N4(C), N+(D)).

We can also generalize Proposition [I.5.3.3] as follows:

0064 Corollary 1.5.3.5. Let S be a simplicial set having homotopy category hS. Then, for any
category D, the composite map

No(Fun(hS,D)) x S — Ne(Fun(hS, D)) x Ng(hS) ~ Ng(Fun(hS, D) x hS) — No(D)
induces an isomorphism of simplicial sets pg : No(Fun(hS D)) ~ Fun(S, N¢(D)).

Proof. The construction S +— pg carries colimits (in the category Seta of simplicial sets) to
limits (in the category Fun([1], Seta) of morphisms between simplicial sets). Since every
simplicial set can be realized as a colimit of standard simplices (Remark , it will
suffice to prove Corollary in the special case where S = A" for some n > 0. In this
case, the desired result follows from Proposition since S is isomorphic to the nerve
of the category C = [n]. O

0065 Corollary 1.5.3.6. The formation of homotopy categories determines a functor Setp — Cat
which commutes with finite products.

Proof. Since the construction S — hS preserves final objects, it will suffice to show that
for any pair of simplicial sets S and 7', the canonical map u : h(S x T) — hS x hT. s
an isomorphism of categories. In other words, we wish to show that for any category C,
composition with u induces a bijection

Homeyt (hS x hT,C) — Homeui (h(S x T),C).
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Unwinding the definitions, we see that this map is given by the composition

Homcyt(hS x hT,C)

12

Homcyt (hS, Fun(hT,C))
Homge, (S, No(Fun(h7,C)))
— Homget, (S, Fun(7, No(C)))
Homget, (S % T, No(C))
Homcyy (h(S x T),C),

12

RS}
S
]

1

12

where pr is the isomorphism appearing in the statement of Corollary [1.5.3.5 ]

We will be primarily interested in the special case of Construction [1.5.3.1] where the
target simplicial set T" is an oco-category. In this case, we have the following result:

Theorem 1.5.3.7. Let S be a simplicial set and let D be an co-category. Then the simplicial 0066
set Fun(S, D) is an co-category.

The proof of Theorem [1.5.3.7] will require some combinatorial preliminaries; we defer the

proof to §1.5.6

Definition 1.5.3.8. Let C and D be oco-categories. It follows from Theorem |1.5.3.7|that the 0067
simplicial set Fun(C, D) is also an oco-category. We will refer to Fun(C, D) as the oco-category
of functors from C to D.

Remark 1.5.3.9. Let C and D be oco-categories. By definition, the objects of the co-category 0068
Fun(C,D) can be identified with functors from C to D, in the sense of Definition [1.5.0.1
(that is, with maps of simplicial sets from C to D).

Remark 1.5.3.10. Let C and D be oco-categories, and suppose we are given a pair of functors 0069
F,G : C — D. We define a natural transformation from F to G to be a map of simplicial

sets u : Al x C — D satisfying ulgoyxc = F and u|(1yx¢ = G. In other words, a natural
transformation from F' to G is a morphism from F' to G in the oco-category Fun(C, D).

Remark 1.5.3.11. Let us abuse notation by identifying each ordinary category £ with the 006A
oo-category No(€). In this case, Corollary implies that when C is an oco-category and

D is an ordinary category, then we have a canonical isomorphism Fun(C, D) ~ Fun(hC, D).

In particular, the functor co-category Fun(C, D) is also an ordinary category.

1.5.4 Digression: Lifting Properties

We now review some categorical terminology which will be useful in the proof of Theorem |006B
1.5.3.7], and in several other parts of this book.
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Definition 1.5.4.1. Let C be a category. A lifting problem in C is a commutative diagram
o
A v X
f g
B L Y

in C. A solution to the lifting problem o is a morphism h : B — X in C satisfying goh = v
and h o f = u, as indicated in the diagram

A" X
;o g
BY .y

Remark 1.5.4.2. In the situation of Definition [1.5.4.1) we will often indicate a lifting
problem by a commutative diagram

A ¢ X
7
/
g 9
/
7 v
B Y,

which includes a dotted arrow representing a hypothetical solution.

Definition 1.5.4.3. Let C be a category and suppose we are given a morphism f: A — B
and g: X — Y in C. We will say that f is weakly left orthogonal to g if, for every pair of
morphisms u: A — X and v: B — Y satisfying g ou = v o f, the associated lifting problem

A—2 > X
1
/

AV
/

/’U

B Y

admits a solution (that is, there exists a map h : B — X satisfying goh =v and ho f = u).
In this case, we will also say that g is weakly right orthogonal to f.

If S and T are collections of morphisms of C, we say that S is weakly left orthogonal to
T if every morphism f € S is weakly left orthogonal to every morphism g € T'. In this case,
we also say that T is weakly right orthogonal to S. In the special case where S = {f} is a
singleton, we abbreviate this condition by saying that f is weakly left orthogonal to T, or T
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is weakly right orthogonal to f. In the special case T' = {g} is a singleton, we abbreviate
this condition by saying that g is weakly right orthogonal to S, or S is weakly left orthogonal
to g.

Let T be a collection of morphisms in a category C. We now summarize some closure
properties enjoyed by the collection of morphisms which are weakly left orthogonal to T

Definition 1.5.4.4. Let C be a category which admits pushouts and let S be a collection of 006F
morphisms of C. We will say that S is closed under pushouts if, for every pushout diagram

A A
f f!
B B’

in the category C where the morphism f belongs to S, the morphism f also belongs to S.

Proposition 1.5.4.5. Let C be a category which admits pushouts, let T be a collection of 006G
morphisms of C, and let S be the collection of all morphisms of C which are weakly left
orthogonal to T. Then S is closed under pushouts.

Proof. Suppose we are given a pushout diagram o :

A— 5 LN
f £
Bt .p

where f belongs to S. We wish to show that f’ also belongs to S. For this, we must show
that every lifting problem

Al LIS '¢
7
/
I // g
//
B’ v Y

admits a solution, provided that the morphism g belongs to T'. Using our assumption that
o is a pushout square, we are reduced to solving the associated lifting problem

A uos X
7
7/
;o7 9
7 /vot
B Y,

which is possible by virtue of our assumption that f is weakly left orthogonal to g. O
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Definition 1.5.4.6. Let C be a category containing a pair of objects C and C’. We will say
that C is a retract of C' if there exist maps ¢ : C — C’" and r : ¢/ — C such that roi = idc¢.

006J Variant 1.5.4.7. Let C be a category. We will say that a morphism f:C — D of C is a

006K

006L

retract of another morphism f’: C' — D’ if it is a retract of f’ when viewed as an object
of the functor category Fun([1],C). In other words, we say that f is a retract of f if there
exists a commutative diagram

D . D’ d D

in the category C, where r o4 = id¢ and 7 o ¢ = idp.
We say that a collection of morphisms T of C is closed under retracts if, for every pair of
morphisms f, f in C, if f is a retract of f’ and f’ belongs to T', then f also belongs to T'.

Exercise 1.5.4.8. Let C be a category and let S be the collection of all monomorphisms in
C. Show that S is closed under retracts.

Proposition 1.5.4.9. Let C be a category, let T be a collection of morphisms of C, and let
S be the collection of all morphisms of C which are weakly left orthogonal to S. Then S is
closed under retracts.

Proof. Let f’ be a morphism of C which belongs to S and let f be a retract of f’, so that

there exists a commutative diagram

D—spD —" ->D

with r o4 = idg and 7o i = idp. We wish to show that f also belongs to S. Consider a
lifting problem o :
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where g belongs to T. Our assumption f’ € S ensures that the associated lifting problem

uor

C’ X
1
7

7/

o 9
7

7 _

D/ vor Y

admits a solution: that is, we can choose a morphism A’ : D’ — X satisfying goh/ =voT
and b/ o f' = wor. Then the morphism h = h/ 07 is a solution to the lifting problem o, by
virtue of the calculations
goh=goh oi=voTFoi=uv
hof=hoiof=hof oi=uoroi=u.

O]

In what follows, we assume that the reader is familiar with the theory of ordinals (see

§4.7.1| for a quick review).

Definition 1.5.4.10. For every ordinal «, let Ord<, = {8 : § < a} denote the collection of 006M
all ordinal numbers which are less than or equal to «, regarded as a linearly ordered set.

Let C be a category and let S be a collection of morphisms of C. We will say that a
morphism f of C is a transfinite composition of morphisms of S if there exists an ordinal
a and a functor F': Ord<, — C, given by a collection of objects {Cs}s<, and morphisms
{fy,p: Cs = C,}p< with the following properties:

(a) For every nonzero limit ordinal A < «, the functor F' exhibits C) as a colimit of the
diagram ({Cg}sax. {fy,8}8<y<)-

(b) For every ordinal 3 < «, the morphism fg;1 3 belongs to S.
(¢) The morphism f is equal to fo0: Co — Cy.

We will say that S is closed under transfinite composition if, for every morphism f which is
a transfinite composition of morphisms of S, we have f € S.

Proposition 1.5.4.11. Let C be a category, let T be a collection of morphisms in C, and 006R
let S be the collection of all morphisms of C which are weakly left orthogonal to T'. Then S
is closed under transfinite composition.

Proof. Let o be an ordinal and suppose we are given a functor Ord<, — C, given by a pair

({Cs}p<ar {f1.8}p<r<a)
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which satisfies condition (a) of Definition |1.5.4.10, Assume that each of the morphisms
f3+1,3 belongs to S. We wish to show that the morphism f, o also belongs to S. For this,
we must show that every lifting problem o :

Co “ X
4
7/
7/
fa,0 7 g
Ve
Ve
d v
Ca Y

admits a solution, provided that g belongs to T'. We construct a collection of morphisms
{ug : O3 = X}g<q, satisfying the requirements g o ug = v o f, 3 and ug = u, o fy g for
B < v, using transfinite recursion. Fix an ordinal v < «a, and assume that the morphisms
{up}s<~y have been constructed. We consider three cases:

o If v=0, we set u, = u.

o If v is a nonzero limit ordinal, then our hypothesis that C is the colimit of the
diagram {Cs} 3« guarantees that there is a unique morphism u, : C,, — X satisfying
ug = uy o fy g for B <. Moreover, our assumption that the equality goug =vo f,
holds for 5 < v guarantees that it also holds for 5 = ~.

e Suppose that v = 8+ 1 is a successor ordinal. In this case, we take u, to be any
solution to the lifting problem

C o X
A 7
7/
/
7/
7/
fo+1,8 7 g
/
/
/

d v0fa,B+1

Cﬁ-f—l Y7

which exists by virtue of our assumption that fgi1 g belongs to S.
We now complete the proof by observing that u, is a solution to the lifting problem . [
Motivated by the preceding discussion, we introduce the following:

006S| Definition 1.5.4.12. Let C be a category which admits small colimits and let S be
a collection of morphisms of C. We will say that S is weakly saturated if it is closed
under pushouts (Definition [1.5.4.4)), retracts (Variant |[1.5.4.7)), and transfinite composition

(Definition [1.5.4.10)).
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Proposition 1.5.4.13. Let C be a category which admits small colimits, let T' be a collection 006T
of morphisms of C, and let S be the collection of all morphisms of C which are weakly left
orthogonal to T. Then S is weakly saturated.

Proof. Combine Propositions [1.5.4.5] [1.5.4.9] and [1.5.4.11] O

Remark 1.5.4.14. Let C be a category and let Sy be a collection of morphisms of C. Then 006U
there exists a smallest collection of morphisms S of C such that Sy C S and S is weakly

saturated (for example, we can take S to be the intersection of all the weakly saturated
collections of morphisms containing Sy). We will refer to S as the weakly saturated collection
of morphisms generated by So. It follows from Proposition that if Sy is weakly left
orthogonal to some collection of morphisms 7', then S has the same property.

1.5.5 Trivial Kan Fibrations
We now specialize the ideas of to the category of simplicial sets. 006V

Definition 1.5.5.1. Let ¢ : X — Y be a morphism of simplicial sets. We say that p is a 006W
trivial Kan fibration if, for each n > 0, every lifting problem

OA™ X
/1
s
7 P 7 q
s
A" Y

admits a solution; here i : 0A™ — A"™ denotes the inclusion map.

Remark 1.5.5.2. Suppose we are given a pullback diagram of simplicial sets 006X
X' X
q q
Y’ Y.

If g is a trivial Kan fibration, then so is ¢’ (this follows from Proposition [1.5.4.5, applied to
the opposite of the category Seta).

Remark 1.5.5.3. The collection of trivial Kan fibrations is closed under filtered colimits 02L0
(when regarded as a full subcategory of the arrow category Fun([1], Seta)).

Proposition 1.5.5.4. Let p: X — Y be a map of simplicial sets. The following conditions 006Y
are equivalent:
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(1) The map p is a trivial Kan fibration (in the sense of Definition|1.5.5.1]).

(2) The map p is weakly right orthogonal to every monomorphism of simplicial setsi : A — B.

In other words, every lifting problem

A X
4
%
7 // p
/s
s
B Y

admits a solution, provided that i is a monomorphism.
We will give the proof of Proposition [I.5.5.4] at the end of this section.
006Z Corollary 1.5.5.5. Let p: X — Y be a trivial Kan fibration of simplicial sets. Then:

(a) The map p admits a section: that is, there is a map of simplicial sets s : Y — X such
that the composition p o s is the identity map idy : Y — Y.

(b) Let s be any section of p. Then the composition sop: X — X is fiberwise homotopic to
the identity. That is, there exists a map of simplicial sets h : A' x X — X, compatible
with the projection to 'Y, such that hloyxx = sop and hlgyx = idx.

Proof. To prove (a), we observe that a section of p can be described as a solution to the

lifting problem

0 X
4
/
AT
/
y 4y

which exists by virtue of Proposition Given any section s, a fiberwise homotopy
from s o p to the identity can be identified with a solution to the lifting problem

(sop,id)

OA' x X L X
/1
h// »
Ve
//
Al x X Y,

which again exists by virtue of Proposition [1.5.5.4 O
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Corollary 1.5.5.6. Let p : X — Y be a trivial Kan fibration of simplicial sets and let 0070
i: A— B be a monomorphism of simplicial sets. Then the canonical map

¢ : Fun(B, X) — Fun(B,Y) Xpun(a,y) Fun(4, X)
s also a trivial Kan fibration.

Proof. Fix an integer n > 0; we wish to show that every lifting problem

OA™ Fun(B, X)
_ 7
- - g 0
An Fun(B,Y) Xpun(ay) Fun(4, X)

admits a solution. Unwinding the definitions, we see that this is equivalent to solving an
associated lifting problem

OA" xB) ] (A" x A) X
OA™ x A 7

i /// P

A" x B Y.

This is possible by virtue of Proposition [1.5.5.4] since p is a trivial Kan fibration and 7 is a
monomorphism. O

Corollary 1.5.5.7. Let p: X — Y be a trivial Kan fibration of simplicial sets. Then, for 0071
every simplicial set B, the induced map Fun(B, X) — Fun(B,Y) is a trivial Kan fibration.

Proof. Apply Corollary [1.5.5.6] in the special case A = (). O

Definition 1.5.5.8. Let X be a simplicial set. We say that X is a contractible Kan complexr 0072
if the projection map X — AY is a trivial Kan fibration (Definition . In other
words, X is a contractible Kan complex if every map og : 0A™ — X can be extended to an
n-simplex of X.

Example 1.5.5.9. Let X be a topological space. Then the singular simplicial set Sing,(X) 0073
is a contractible Kan complex if and only if the space X is weakly contractible: that is, if and
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only if every continuous map o : S"~! — X is nullhomotopic (here S"~! ~ | A" | denotes
the sphere of dimension n — 1, so that oy is nullhomotopic if and only if it extends to a
continuous map defined on the disk D™ ~ |A"|). In particular, if the topological space X is
contractible, then the simplicial set Sing,(X) is a contractible Kan complex.

Remark 1.5.5.10. Let p: X — Y be a trivial Kan fibration. Then, for every vertex y of Y,
the fiber X xy {y} is a contractible Kan complex (this is a special case of Remark [1.5.5.2]).
For a partial converse, see Proposition |3.3.7.6)

Proposition 1.5.5.11. Let p: X — Y be a trivial Kan fibration of simplicial sets. Then:
(1) If X is a Kan complez, then Y is a Kan complez.

(2) If X is a contractible Kan complex, then Y is a contractible Kan complex.

(3) If X is an oo-category, then Y is an oco-category.

Proof. We will prove (1); the proofs of (2) and (3) are similar. Suppose we are given a pair
of integers 0 < i < n with n > 0; we wish to show that every morphism of simplicial sets
oo : A7 = Y can be extended to an n-simplex of Y. Since p is a trivial Kan fibration, we
can write g = p o 7y for some morphism 7y : A} — X (Proposition . If X is a Kan
complex, we can extend 7y to an n-simplex 7 of X. Then ¢ = p o 7 is an n-simplex of Y
satisfying oy = o AT O

Applying Proposition [1.5.5.4]in the case Y = A", we obtain the following:
Corollary 1.5.5.12. Let X be a simplicial set. The following conditions are equivalent:
(1) The simplicial set X is a contractible Kan complex.

(2) For every monomorphism of simplicial sets i : A — B and every map of simplicial sets
fo: A— X, there exists a map f: B — X such that fo = f oi.

Corollary 1.5.5.13. Let X be a contractible Kan complex. Then X is a Kan complex. In
particular, X is an co-calegory.

We will deduce Proposition from the following:

Proposition 1.5.5.14. Let T be the collection of all monomorphisms in the category Seta
of simplicial sets. Then:

(a) The collection T is weakly saturated, in the sense of Definition|1.5.4.12

(b) As a weakly saturated collection of morphisms, T is generated by the collection of inclusion

maps {OA™ — A"}, >0 (see Remark .
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Proof. To prove (a), we must establish the following:

e The collection T is closed under pushouts. That is, if we are given a pushout diagram
of simplicial sets

A A
f f!
B B’

where f is a monomorphism, then f’ is also a monomorphism. This is clear, since we
have a pushout diagram
Ay,

A/

B,

By,
in the category of sets for each n > 0 (where the left vertical map is injective, so the
right vertical map is injective as well).

o The collection T is closed under retracts. This is a special case of Exercise [1.5.4.8]

e The collection T is closed under transfinite composition. Suppose we are given an
ordinal a and a functor S : Ord<, — Seta, given by a collection of simplicial sets
{5(8)}p<a and transition maps f, 3 : S(B) = S(v). Assume that the maps fg41
are monomorphisms for § < « and that, for every nonzero limit ordinal A < «, the

induced map lim . S(8) — S(}) is an isomorphism. We must show that the map

fa0:5(0) =S (of)<i)\s a monomorphism of simplicial sets. In fact, we claim that for
each v < «, the map f, o : 5(0) = S(v) is a monomorphism. The proof proceeds by
transfinite induction on . In the case v = 0, the map f, o = idg(g) is an isomorphism.
If v is a nonzero limit ordinal, then the desired result follows from our inductive
hypothesis, since the collection of monomorphisms in Seta is closed under filtered
colimits. If v+ = B + 1 is a successor ordinal, then we can identify f,o with the
composition

S(0) L2 S(8) =5 5(),

where f, 3 is a monomorphism by assumption and fg is a monomorphism by virtue
of our inductive hypothesis.

We now prove (b). Let 7" be a collection of morphisms in Set which is weakly saturated
and contains each of the inclusions OA™ — A™; we wish to show that every monomorphism
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i: A — B belongs to T'. For each k > —1, let B(k) C B denote the simplicial subset given
by the union of the skeleton sky(B) (Construction |1.1.4.1)) with the image of i. Then the
inclusion 7 can be written as a transfinite composition

A~ B(-1) = B(0) — B(l) = B(2) < ---

Since T is closed under transfinite composition, it will suffice to show that each of the
inclusion maps B(k — 1) < B(k) belongs to T’. Applying Proposition [1.1.4.12|to both A
and B, we obtain a pushout diagram

I AF 1 A*
ceQ oeqQ
B(k—1) B(k)

where () denotes the collection of all nondegenerate k-simplices of B which do not belong
to the image of 7. Since T” is closed under pushouts, we are reduced to showing that the

j: [] oa* — JJ A*

oeQR oeqQ
belongs to T”. By virtue of Theorem [4.7.1.34] the set Q admits a well-ordering. Then j can

be written as a transfinite composition of morphisms

Jo o (JT 0AM I (IT &%) = (TT 0Aa") I (T &%),

T>0 T<0 T>0 <o

inclusion map

each of which is a pushout of the inclusion AF < AF. O

Proof of Proposition[1.5.5.4) Let p : X — Y be a trivial Kan fibration of simplicial sets
and let S be the collection of all morphisms in Setp which are weakly left orthogonal to
p. Then S contains each of the inclusions OA™ — A™ (by virtue of our assumption that p
is a trivial Kan fibration) and is weakly saturated (Proposition . It follows from
Proposition [I.5.5.14] that every monomorphism of simplicial sets i : A < B belongs to S
(and is therefore weakly left orthogonal to p). O

1.5.6 Uniqueness of Composition
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Let C be an oco-category. Given a composable pair of morphisms f : X — Y and
g:Y — Z in C, one can form a composition g o f by choosing a 2-simplex ¢ with d3(c) = g
and d3(o) = f, as indicated in the diagram

In general, neither the 2-simplex ¢ nor the resulting morphism g o f = d?(o) is uniquely
determined. However, we saw in that the composition g o f is unique up to homotopy
(Proposition . We now prove a stronger result, which asserts that the 2-simplex o
(hence also the composite morphism g o f = d2(¢)) is unique up to a contractible space of
choices.

Theorem 1.5.6.1 (Joyal). Let S be a simplicial set. The following conditions are equivalent: 0079
(1) The simplicial set S is an co-category.
(2) The inclusion of simplicial sets A2 — A? induces a trivial Kan fibration

Fun(A?%, S) — Fun(A%, S).

Corollary 1.5.6.2. Let f : X =Y and g: Y — Z be a composable pair of morphisms in 007A
an oo-category C, so that the tuple (g, e, f) determines a map of simplicial sets A2 — C (see

Proposition . Then the fiber product
Fun(A2,€) Xpuaz o) 1(9:0: 1)}
is a contractible Kan complez.
Proof. Combine Theorem [[.5.6.1] with Remark [1.5.5.10] O

Remark 1.5.6.3. In the situation of Corollary |1.5.6.2) one can think of the simplicial set [007B

Z =Fun(A%C) x  {(g,e f)}
Fun(A%,C)

as a “parameter space” for all choices of 2-simplex o satisfying d3(¢) = g and d3(c) = f
(note that such 2-simplices can be identified with the vertices of Z).

We will give the proof of Theorem [1.5.6.1| at the end of this section. First, let us note
one of its consequences.
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Proof of Theorem [1.5.3.74. Let S be a simplicial set and let D be an co-category. We wish
to show that the simplicial set Fun(.S, D) is an oo-category. By virtue of Theorem [1.5.6.1] it
will suffice to show that the restriction map

r: Fun(A?, Fun(S, D)) — Fun(A?, Fun(S, D))
is a trivial Kan fibration. Note that we can identify r with the canonical map
Fun(S, Fun(A?, D)) — Fun(S, Fun(A%, D)),
which is a trivial Kan fibration by virtue of Corollary and Theorem O

We now introduce some terminology which will be useful for the proof of Theorem [I.5.6.1}

Definition 1.5.6.4. Let f: A — B be a morphism of simplicial sets. We will say that f is
inner anodyne if it belongs to the weakly saturated class of morphisms generated by the
collection of all inner horn inclusions A} < A™ (so that 0 <i < n).

Remark 1.5.6.5. Let f: A — B be an inner anodyne map of simplicial sets. Then f is a
monomorphism. This follows from the observation that the collection of monomorphisms
is weakly saturated (Proposition |1.5.5.14), since every inner horn inclusion A < A" is a

monomorphism.

Exercise 1.5.6.6. Let f : A < B be an inner anodyne morphism of simplicial sets. Show
that the underlying map on vertices Ag — By is a bijection.

Proposition 1.5.6.7. Let S be a simplicial set. The following conditions are equivalent:
(1) The simplicial set S is an oco-category.

(2) For every inner anodyne map of simplicial sets i : A — B and every map fo: A — S,
there exists a map f : B — S such that fo = f oi.

Proof. The implication (2) = (1) is immediate (since every inner horn inclusion A} — A"
is inner anodyne). Conversely, if (1) is satisfied, then every inner horn inclusion A} — A"
is weakly left orthogonal to the projection map p: S — A, It then follows from Remark

1.5.4.14] that every inner anodyne map is weakly left orthogonal to p. O
Variant 1.5.6.8. Let S be a simplicial set. The following conditions are equivalent:

(1) The simplicial set S is isomorphic to the nerve of a category.

(2) For every inner anodyne map of simplicial sets i : A < B and every map fy: A — S,
there exists a unique map f : B — S such that fo = foq.
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Proof. Let us regard the simplicial set S as fixed, and let T" be the collection of all morphisms
of simplicial sets i : A — B for which the induced map Homge, (B,S) — Homget, (4, 5) is
bijective. Then T is weakly saturated (in the sense of Definition [1.5.4.12). It follows that
(2) is equivalent to the following a priori weaker assertion:

(2") For every pair of integers 0 < ¢ < n, the map Homge, (A", S) — Homget, (A}, S) is
bijective.

The equivalence of (1) and (2') is the content of Proposition [1.3.4.1 O
We will deduce Theorem [1.5.6.1| from the following technical result:
Lemma 1.5.6.9 (Joyal). 007F

(a) For every monomorphism of simplicial sets i : A — B, the induced map

(BxA}) ] (Ax A% CBxA?
AXA2

is inner anodyne.

(b) The collection of inner anodyne morphisms is generated (as a weakly saturated class) by
the inclusion maps

(A" x A2 [ 0A™x A% CA™ x A?
DA™ x A2

form > 0.

Proof. Let T be the weakly saturated class of morphisms generated by all inclusions of the
form
(A" x A7) ] (0A™ x A*) €A™ x A%,
OA™ x A2

and let S be the collection of all morphisms of simplicial sets A — B for which the map

(BxA}) ] (Ax A% CBxA?
AxA?

belongs to T'. By construction, S contains all inclusions of the form 0A™ < A™. Moreover,
since T is weakly saturated, the class S is also weakly saturated. It follows that every
monomorphism of simplicial sets belongs to S (Proposition . Consequently, to prove
Lemma it will suffice to show that T coincides with the class of inner anodyne
morphisms of Setp. We first show that every inner anodyne morphism belongs to T". Since T’
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is weakly saturated, we are reduced to showing that every inner horn inclusion f : A7 — A"
belongs to T'. Since f belongs to S, the monomorphism

Fe(A"xAD) T (A} x A%) C A" x A%
AT x A2

belongs to T. We conclude by observing that the morphism f is a retract of f. More
precisely, we have a commutative diagram of simplicial sets

AT (A" x AD) TTam ez (A7 x A2) A7
f 7 f
AP s A" x A2 r A",

where the maps s and r are given on vertices by the formulae

(7,0) ifj<i
s()=140,1) ifj=i
(j,2) if j >4

joifj<ik=0
r(j, k) =24 ifj>ik=2

1 otherwise.

We now show that every morphism of 7" is inner anodyne. Since the collection of inner
anodyne morphisms is weakly saturated, it will suffice to show that the inclusion map

(A" x A7) ] (0A™ x A%) C A™ x A®
DA™ X A2

is inner anodyne for each m > 0. For each 0 < i < j < m, we let 0;; denote the (m + 1)-
simplex of A™ x A? given by the map of partially ordered sets

fij : [m+ 1] — [m] X [2]

(k,0) if0<k<i
fij(B) =< (k—1,1) ifi+1<k<j+1
(k—1,2) fj+2<k<m+1
For each 0 < i < j < m, we let 7;; denote the (m + 2)-simplex of A™ x A? given by the

map of partially ordered sets

gij : [m+2] = [m] x [2]
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(k,0) ifO<k<i
gij(k) = (k—1,1) ifi+1<k<j+1
(k—2,2) ifj+2<k<m+2.

We will regard each o;; and 7;; as a simplicial subset of A™ x A2
Set X(0) = (A™ x A}) [Iyam XA%(@Am x A?). For 0 < j < m, we let

X(j—i—l):X(j)UUOjU---UJjj.
We have a chain of inclusions
X(J) CX(j)Uoo; €~ CX(j)UogjU---Uayj = X(j+1).

Fach of these inclusions fits into a pushout diagram

Aﬁﬁl X(j)UUQjU'-'UU(i_l)j
Oij X(j)UJOjU'--UJZ'j,

and is therefore inner anodyne. Set Y (0) = X (m), so that the inclusion X (0) C Y (0) is
inner anodyne. We now set Y (j +1) =Y (j) U7g; U--- Uy, for 0 < j < m. As before, we
have a chain of inclusions

Y(§) SY([§)Um; €--- CY () U, U--- Uy =Y (G + 1),

each of which fits into a pushout diagram

A2 Y(j) Ut U+ Uty
Tij Y(j)UTojU"'UTij,

and is therefore inner anodyne. It follows that each inclusion Y'(j) C Y (5 + 1) is inner
anodyne. Since the collection of inner anodyne morphisms is closed under composition, we
conclude that the inclusion map X (0) < Y (0) < Y (1) < --- Y (m + 1) = A™ x A? is inner
anodyne, as desired. O
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Proof of Theorem[1.5.6.1. Let S be a simplicial set and let p : Fun(A2%,S) — Fun(A%,S)
denote the restriction map. Then p is a trivial Kan fibration if and only if every lifting

problem
OA™ Fun(AZ2, S)
P 7
e - - p
A™ Fun(A2,S)

admits a solution. Unwinding the definitions, we see that this is equivalent to the requirement
that every lifting problem of the form

(Am X A%) I (@A™ x A2) S
OA™ x A2 Pag
A™ x A2 A

admits a solution. Let T be the collection of all morphisms of simplicial sets which are
weakly left orthogonal to the projection S — AC. Then p is a trivial Kan fibration if and
only if T" contains each of the inclusion maps

(A" x A7) ] (0A™ x A*) C A™ x A%,
DA™ x A2

Since T is weakly saturated (Proposition [1.5.4.13)), this is equivalent to the requirement that
T contains all inner anodyne morphisms (Lemma |1.5.6.9)), which is in turn equivalent to the
requirement that S is an oo-category (Proposition [1.5.6.7)). ]

1.5.7 Universality of Path Categories

Let G be a directed graph, let G4 denote the associated 1-dimensional simplicial set (see
Proposition [1.1.6.9), and let Path[G] denote the path category of G' (Construction [1.3.7.1]).
There is an evident map of simplicial sets u : Go¢ — No(Path[G]). By virtue of Proposition
this map exhibits Path[G] as the homotopy category of the simplicial set Go. In
other words, the path category Path[G] is universal among categories C which are equipped
with a Ge-indexed diagram (see Definition . Our goal in this section is to establish a
variant of this statement in the setting of co-categories:

Theorem 1.5.7.1. Let G be a directed graph and let C be an oo-category. Then composition
with the map of simplicial sets u : Go — No(Path[G]) induces a trivial Kan fibration of
simplicial sets Fun(Ne(Path[G]),C) — Fun(G,,C).


https://kerodon.net/tag/00J3
https://kerodon.net/tag/00J4

124 CHAPTER 1. THE LANGUAGE OF oco-CATEGORIES

More informally, Theorem [1.5.7.1] asserts that any G-indexed diagram in an oco-category
C admits an essentially unique extension to a functor of co-categories No(Path[G]) — C.

Example 1.5.7.2. Let GG be the directed graph depicted in the diagram

Then the map u : Go — No(Path[G]) can be identified with the inclusion of simplicial sets
A% < AZ2. In this case, Theorem [1.5.7.1] reduces to the statement that the map

Fun(A?,C) — Fun(A%,C)

is a trivial Kan fibration, which is equivalent to the assumption that C is an oco-category by
virtue of Theorem [1.5.6.1]

We will deduce Theorem from the following more precise assertion.

Proposition 1.5.7.3. Let G be a directed graph. Then the map of simplicial sets u : Go —
No(Path[G]) is inner anodyne (Definition |1.5.6.4}).

Remark 1.5.7.4. Let G be a directed graph and let C be an ordinary category. Combining
Proposition with Variant [1.5.6.8] we deduce that the canonical map

Homget , (No(Path[G]), Ne(C)) — Homge, (Ge, No(C))
is bijective. Combining this observation with Proposition [I.3.3.1] we obtain a bijection
Homc,t (Path[G],C) — Homget, (G, No(C)).

Allowing C to vary, we recover the assertion that u : Ge — No(Path[G]) exhibits Path[G] as
the homotopy category of G (Proposition |1.3.7.5)).

Let us first show that Proposition [1.5.7.3] implies Theorem [1.5.7.1

Lemma 1.5.7.5. Let f: X — Y and ' : X' — Y’ be monomorphisms of simplicial sets.
If f is inner anodyne, then the induced map

upp (Y xX) [ XxY)=Y <Y
(X xX")
s inner anodyne.
Proof. Let us regard the morphism f’' : X’ < Y’ as fixed. Let T be the collection of all

morphisms f : X — Y for which the map uy s is inner anodyne. Then T is weakly saturated.
To prove Lemma [1.5.7.5] we must show that T" contains all inner anodyne morphisms of

00J5
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00J7

00J8
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simplicial sets. By virtue of Lemma [1.5.6.9] it will suffice to show that T' contains every
morphism of the form

uj: (B x AY) H (A x A?) C B x A%
AxNA?

where i : A — B is a monomorphism of simplicial sets and j : A} < A? is the inclusion.
Setting
Al=BxX) [] AxY) B =BxY/
(AxX")

we are reduced to the problem of showing that the map

up (B xA) [ (A x A%) C B x A?,
ATXA2

is inner anodyne, which follows from Lemma [1.5.6.9 O

Proposition 1.5.7.6. Let C be an oo-category and let f : X — Y be an inner anodyne
morphism of simplicial sets. Then the induced map p : Fun(Y,C) — Fun(X,C) is a trivial
Kan fibration.

Proof. To show that p is a trivial Kan fibration, it will suffice to show that it is weakly right
orthogonal to every monomorphism of simplicial sets f’ : X’ < Y. This is equivalent to the
assertion that every map of simplicial sets

go: (Y xX') JI XxY)—cC
(XxX")
can be extended to a map g : Y x Y’ — C. This follows from Proposition [1.5.6.7} since C is

an oo-category and the map

upp (Y xX) [ XxY)—=YxY’
(XxX")

is inner anodyne (Lemma [1.5.7.5)). t

Proof of Theorem[1.5.7.1. Let G be a graph and let C be an oo-category; we wish to show
that the canonical map
Fun(N4(Path[G]),C) — Fun(G.,C)

is a trivial Kan fibration. This follows from Proposition [I.5.7.6] since the inclusion Go <
No(Path[G]) is inner anodyne (Proposition [1.5.7.3)). O

Before giving the proof of Proposition let us illustrate its contents with some

examples.
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Example 1.5.7.7 (The Spine of a Simplex). Let n > 0 and let A™ be the standard n-simplex
(Example [1.1.0.9). We let Spine[n] denote the simplicial subset of A™ whose k-simplices are
monotone maps o : [k] — [n] satisfying o(k) < ¢(0) + 1. We will refer to Spine[n] as the
spine of the simplex A™. More informally, it is comprised of all vertices of A™, together with
those edges which join adjacent vertices. The spine Spine[n] is a simplicial set of dimension
< 1, which we can identify with the directed graph G depicted in the diagram

0 1 2 n.

Under this identification, the map u : Go — No(Path[G]) corresponds to the inclusion

Spine[n] < A" (see Example[1.3.7.2)). Invoking Proposition [1.5.7.3|and Theorem |1.5.7.1] we

obtain the following:
(a) The inclusion Spine[n| < A" is inner anodyne.

(b) For any oo-category C, the restriction map Fun(A”",C) — Fun(Spine[n],C) is a trivial
Kan fibration.

Remark 1.5.7.8 (The Generalized Associative Law). Let C be an ordinary category and let
n > 0 be an integer. Applying Remark [1.5.7.4]to the inner anodyne inclusion Spine[n] < A™
of Example we deduce that every diagram

Xomox, & ox, o Iy x,

can be extended uniquely to a functor [n] — C. In particular, it shows that C satisfies
the “generalized associative law”: the iterated composition f, o fp_10---0 fao f; is well-
defined (that is, it does not depend on a choice of parenthesization). In essence, Proposition
1.5.7.3| can be regarded as an extension of this generalized associative law to the setting of

oo-categories.

Remark 1.5.7.9. Let C be an oo-category and let hC denote its homotopy category
(Definition . Then the canonical map C — N4 (hC) is an epimorphism of simplicial
sets: that is, it induces a surjection on n-simplices for each n > 0. To prove this, we note
that there is a commutative diagram

Homge, (A™,C) Homget, (A", No(hC))

Homget , (Spine[n],C) Homget, (Spine[n], No(hC)),

00JA

00JB

01C4
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where the left vertical map is surjective (Example [1.5.7.7) and the right vertical map is
bijective (Remark [1.5.7.8)). It therefore suffices to show that the bottom horizontal map is
surjective: that is, every sequence of composable morphisms

Xobhx Bx, B x, o Inx,

in the homotopy category hC can be lifted to a sequence of composable morphisms in C,
which is immediate from the definition of hC.

Example 1.5.7.10 (The Simplicial Circle). Let A'/HA® denote the simplicial set obtained
from Al by collapsing the boundary dA' to a point, so that we have a pushout diagram of
simplicial sets

AA" Al

AO

A/ OAL.

We will refer to A'/ DA as the simplicial circle; note that the geometric realization |A/ DA |
is isomorphic to the standard circle S' as a topological space. The simplicial set A/ OA!
has dimension < 1, and can therefore be identified with the directed graph G depicted in

the diagram O

Note that the path category Path[G] can be identified with the category B Zx>( associated
to the monoid Z>( of nonnegative numbers under addition (Example whose nerve is
the simplicial set Be Z>( of Construction Invoking Proposition [I.5.7.3] and Theorem
we obtain the following:

(a) The inclusion of simplicial sets A'/ AA! < By Zs( is inner anodyne.

(b) For any oo-category C, the restriction map Fun(Be Z>0,C) — Fun(A'/9A',C) is a
trivial Kan fibration.

If C is an oco-category, then a morphism of simplicial sets Al/ OA = C can be identified
with a pair (X, f), where X is an object of C and f : X — X is an endomorphism of X

(Definition [1.4.1.5). Theorem [1.5.7.1 then guarantees that the pair (X, f) can be extended
to a functor of oco-categories By Z>o — C.

Example 1.5.7.11 (Free Monoids). Let M be the free monoid generated by a set E. Then
we can identify BM with the path category Path[G] of a directed graph G satisfying

Vert(G) = {z} Edge(G) = E;
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see Example Invoking Proposition and Theorem [1.5.7.1] we obtain the
following:

(a) The inclusion of simplicial sets G¢ < BeM is inner anodyne.

(b) For any oo-category C, the restriction map Fun(BeM,C) — Fun(G,,C) is a trivial Kan
fibration.

Note that if C is an oco-category, then a map of simplicial sets o : Ge¢ — C can be identified
with a choice of object X € C together with a collection of morphisms {f. : X — X}ecr
indexed by E. It follows from (b) that any such map admits an (essentially unique) extension
to a functor o : BeM — C, which we can interpret as an action of the monoid M on the
object X € C.

Proof of Proposition[1.5.7.3. Let G be a directed graph and let Path[G] denote its path
category. By definition, a morphism from z € Vert(G) to y € Vert(G) in the category
Path[G] is given by a sequence of edges € = (e, €m—1,- .., e1) satisfying

s(e1) == t(e;) = s(eit1) tlem) = v.

In this case, we will refer to m as the length of the morphism € and write m = ¢(¢€). If
o : A" — Ng(Path[G]) is an n-simplex given by a diagram

el e €n
rog —> L1 —> " —> Tp

in Path[G], we define the length ¢(c) to be the sum ¢(€1) + -+ + £(€,) = (€, 0 -0 €}).
For each positive integer k, let Ns*(Path[G]) denote the simplicial subset of No(Path[G])
consisting of those simplices having length < k. We then have inclusions

N=!(Path[G]) € NS2(Path[G]) € N=3(Path[G]) € NS4 (Path[G]) C - -,

where NS (Path[G]) = G, and No(Path[G]) = UNS*(Path[G]). Consequently, to show that
the inclusion Go — N (Path[G]) is inner anodyne, it will suffice to show that each of the
inclusion maps N5*(Path[G]) < N**1(Path[G]) is inner anodyne.

We henceforth regard the integer £ > 1 as fixed. Let o : A" — Ng(Path[G]) be an
n-simplex of Ng(Path[G]) having length &k + 1, corresponding to a diagram

el éb €n
rg — X1 —> " —> Iy

as above. Note that ¢ is nondegenerate if and only if each €; has positive length. We will
say that o is normalized if it is nondegenerate and £(€1) = 1. Let S(n) be the collection of
all normalized n-simplices of NS¥*1(Path[G]) having length k 4 1. We make the following

observations:
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(1) If o belongs to S(n), then the faces dij(o) and d (o) have length < k, and are therefore
contained in NS*(Path[G]).

(74) If o belongs to S(n) and 1 < i < n, then the face d}'(0) is a normalized (n — 1)-simplex
of Ns**+1(Path[G]) of length k + 1, and therefore belongs to S(n — 1).

(7i7) If o belongs to S(n), then the face df (o) is not normalized. Moreover, the construction
o +— d(o) induces a bijection from S(n) to the collection of (n — 1)-simplices of
Ns*+1(Path[G]) which are nondegenerate, of length k + 1, and not normalized.

For each n > 1, let X (n) denote the simplicial subset of Ns**1(Path[G]) given by the
union of the (n — 1)-skeleton sk, 1 (NS**1(Path[G])), the simplicial set NS¥(Path[G]), and
the collection of normalized n-simplices of N3*1(Path[G]). We have inclusions

X(1) S X(2) S X(3) S X(4) C -,

where N5¥(Path[G]) = X (1) and NS¥1(Path[G]) = U, X (n). It will therefore suffice to
show that the inclusion maps X (n—1) < X (n) are inner anodyne for n > 2. We conclude by
observing that (i), (i7), and (ii7) guarantee the existence of a pushout diagram of simplicial
sets

oesmy AT Hoesm) A"

X(n—-1)




Chapter 2

Examples of oco-Categories

In Chapter |1} we introduced the notion of an co-category: that is, a simplicial set which 007J
satisfies the weak Kan extension condition (Definition . The theory of co-categories
can be understood as a synthesis of classical category theory and algebraic topology. This
perspective is supported by the two main examples of co-categories that we have encountered
so far:

e Every ordinary category C can be regarded as an oo-category, by identifying C with
the simplicial set No(C) of Construction |1.3.1.1

e Every Kan complex is an oco-category. In particular, for every topological space X,
the singular simplicial set Sing,(X) is an oco-category.

Beware that, individually, both of these examples are rather special. An oco-category C
can be regarded as a mathematical structure which encodes information not only about
objects and morphisms (given by the vertices and edges of C, respectively), but also about
homotopies between morphisms (Definition [1.4.3.1)). When C is (the nerve of) an ordinary
category, the notion of homotopy is trivial: two morphisms in C (having the same source
and target) are homotopic if and only if they are identical. On the other hand, if C is a
Kan complex, then every morphism in C is invertible up to homotopy (Proposition ;
from a category-theoretic perspective, this is a very restrictive condition.

Our goal in this chapter is to supply a larger class of examples of co-categories, which
are more representative of the subject as a whole. To this end, we introduce three variants
of the nerve construction C — N¢(C) which can be used to produce oco-categories out of
other (possibly more familiar) mathematical structures. To describe these constructions in
a uniform way, it will be convenient to employ the language of enriched category theory,
which we review in Let A be a monoidal category: that is, a category equipped with a
tensor product operation ® : A x A — A, which is unital and associative up to (specified)

130
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isomorphisms (see Definition [2.1.2.10). An A-enriched category is a mathematical structure
C consisting of the following data (see Definition [2.1.7.1)):

o A collection Ob(C) whose elements we refer to as objects of C.
o For every pair of objects X,Y € Ob(C), a mapping object Hom.(X,Y) € A.
o For every triple of objects X,Y, Z € Ob(C), a composition law
o : Homg (Y, Z) @ Homg (X, Y) — Home(X, 2),
which we require to be unital and associative.
Taking our cues from Examples [?], [7], and [?], we consider three examples of this paradigm:

e Let A = Seta be the category of simplicial sets, equipped with the monoidal structure
given by cartesian product. In this case, we refer to an A-enriched category as a
simplicial category (Definition . In we associate to each simplicial category
C a simplicial set NE‘C(C), which we refer to as the homotopy coherent nerve of C
(Definition [2.4.3.5]). Moreover, we show that if each of the simplicial sets Hom,(X,Y)
is a Kan complex, then the homotopy coherent nerve Nl;‘C(C ) is an oo-category (Theorem

Ea5d).

o Let A = Ch(Z) be the category of chain complexes of abelian groups, equipped with
the monoidal structure given by tensor product of chain complexes. In this case, we
refer to an A-enriched category as a differential graded category (Definition [2.5.2.1)).
In we associate to each differential graded category C a simplicial set N‘,lg(C),
which we refer to as the differential graded nerve of C (Definition , and show
that N98(C) is always an oo-category (Theorem [2.5.3.10)).

o Let A = Cat be the category of (small) categories, equipped with the monoidal
structure given by the cartesian product. In this case, we refer to an A-enriched
category as a strict 2-category (Definition . This is a special case of the more
general notion of 2-category (or bicategory, in the terminology of Bénabou), which we
review in §2.2| In we will associate to each 2-category C a simplicial set NP (C),
which we refer to as the Duskin nerve of C (Construction [2.3.1.1). Moreover, we show
that if each of the categories Hom.(X,Y) is a groupoid, then ND(C) is an co-category

(Theorem [2.3.2.1)).

Simplicial categories, differential graded categories, and 2-categories are ubiquitous in
algebraic topology, homological algebra, and category theory, respectively. Consequently,
the constructions of this section furnish a rich supply of examples of co-categories.
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2.1 Monoidal Categories
Recall that a monoid is a set M equipped with a multiplication map
MxM—M (x,y) — zy

which is unital and associative (Definition [1.3.2.1]). In the setting of category theory, one
often encounters analogous structures which satisfy a more subtle form of associativity.

Example 2.1.0.1. Let k be a field and let U, V, and W be vector spaces over k. Recall
that a function b : U x V — W is said to be k-bilinear if it satisfies the identities

b(u+u',v) = b(u,v) + b, v) b(u,v +v") = b(u,v) + b(u, v')

b(Au,v) = Ab(u,v) = b(u, Av) for X € k.

We say that a k-bilinear map b : U x V. — W is universal if, for any k-vector space W/,
composition with b induces a bijection

{k-linear maps W — W'} ~ {k-bilinear maps U x V — W'}.

If this condition is satisfied, then W is determined (up to unique isomorphism) by U and V/;
we refer to W as the tensor product of U and V' and denote it by U ®; V' . The construction
(U,V) = U ® V then determines a functor

®y, : Vecty X Vectp, — Vecty,

which we will refer to as the tensor product functor. 1t is associative in the following sense:
for every triple of vector spaces U, V, W € Vecty, there exists a canonical isomorphism

Ur(VerW) = Uk V)W u®@weow)— (u®v)®@w.

Our goal in this section is to review the theory of monoidal categories, which axiomatizes
the essential features of Example [2.1.0.1] To simplify the discussion, we begin by developing
the nonunital version of this theory. In we introduce the notion of a nonunital
monoidal structure on a category C (Definition [2.1.1.5). Roughly speaking, a nonunital
monoidal structure on C is a tensor product functor ® : C x C — C which is associative
up to isomorphism. More precisely, it consists of the functor ® together with a choice of
isomorphism axyz: X ® (Y ® Z) = (X ® Y) ® Z for every triple of objects X,Y,Z € C
(these isomorphisms are called the associativity constraints of C). The isomorphisms ax y. z
are required to depend functorially on X, Y, and Z, and to satisfy a further coherence
condition called the pentagon identity (this condition was introduced by MacLane in [40],
and is sometimes known as MacLane’s pentagon identity).

OOBL

OOBN


https://kerodon.net/tag/00BL
https://kerodon.net/tag/00BN

2.1. MONOIDAL CATEGORIES 133

By definition, a nonunital monoid M is a monoid if and only if there exists an element
e € M satisfying ex = & = ze for each x € M. If this condition is satisfied, then the element
e is uniquely determined. The categorical analogue of this statement is a bit more subtle.
Let X be an object of a nonunital monoidal category C, and let £x,rx : C — C denote the
functors given by £x(Y) =X @Y and rx(Y) =Y ® X. In we define a unit in C to
be an object 1 with the property that the functors 1 and ry are fully faithful, together with
a choice of isomorphism v : 1 ® 1 = 1. In this case, the pair (1,v) is not unique; however,
it is unique up to (unique) isomorphism (Proposition . One can use v to construct
natural isomorphisms

Adyv: 1Y 5 Y py 1Y @1 5Y,

so that 1 really behaves like a unit for the tensor product ® (Construction . We
define a monoidal category to be a nonunital monoidal category C together with a choice of
unit (1, v) (Definition . A basic prototype is the category Vecty of vector spaces over
a field k (equipped with the tensor product and associativity constraints given in Example
and the unit given by the object k& € Vecty). We give a more detailed description of
this and other examples in §2.1.3]

Most of the rest of this section is devoted to studying functors between monoidal
categories. We start in with the nonunital case. If C and C’ are nonunital monoidal
categories, we define a nonunital monoidal functor from C to C’ to be a functor F : C — C’
together with a collection of isomorphisms

uX’y:F(X)(@F(Y)l)F(X@Y),

which depend functorially on X,Y € C and are compatible with the associativity constraints
on C and C' (Definition . We also introduce the more general notion of nonunital
lax monoidal functor, where we do not require the morphisms pxy to be isomorphisms
(Definition . Both of these definitions have unital analogues, which we study in
and respectively.

We conclude this section in with a brief review of enriched category theory. If A is
a monoidal category, then an A-enriched category C consists of a collection Ob(C) of objects
of C, a collection of mapping objects Hom,(X,Y') € A for each pair of objects X, Y € Ob(C),
and a composition law

Hom,(Y, Z) ® Hom.(X,Y) — Hom.(X, Z)

which is required to be unital and associative (see Definition [2.1.7.1)). Enriched category
theory will play an important role throughout this chapter: we will be particularly interested
in the special case where A = Cat is the category of small categories (in which case we
recover the notion of strict 2-category, which we study in , where A = Setp is the
category of simplicial sets (in which case we recover the notion of simplicial category, which
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we study in §2.4)), and where A = Ch(Z)(Ab) is the category of chain complexes of abelian
groups (In which case we recover the notion of differential graded category, which we study

in 275

2.1.1 Nonunital Monoidal Categories

Let Cat denote the category whose objects are (small) categories and whose morphisms
are functors. Then Cat admits finite products. One can therefore consider (nonunital)
monoids in Cat: that is, small categories C equipped with a strictly associative multiplication
® : C xC — C. For the convenience of the reader, we spell out this definition in detail (and
abandon the smallness assumption on C):

Definition 2.1.1.1. Let C be a category. A nonunital strict monoidal structure on C is a
functor

®:CxC—C (X,)Y)—» XY

which is strictly associative in the following sense:

o For every triple of objects X, Y, Z € C, we have an equality X @ (Y ®Z) = (XQY)®Z
(as objects of C).

o For every triple of morphisms f: X — X', g:Y =Y’ h:Z — Z', we have an
equality
felgeoh)=(fog) @h

of morphisms in C from the object X @ (Y ® Z) = (X ® Y) ® Z to the object
XY oz)=X'oY ) Z.

A nonunital strict monoidal category is a pair (C,®), where C is a category and ® : C xC — C
is a nonunital strict monoidal structure on C.

Remark 2.1.1.2. We will often abuse terminology by identifying a nonunital strict monoidal
category (C,®) with the underlying category C. If we refer to a category C as a nonunital
strict monoidal category, we implicitly assume that C has been endowed with a tensor
product functor ® : C x C — C which is strictly associative in the sense of Definition [2.1.1.1

Example 2.1.1.3. Let M be a set, which we regard as a category having only identity
morphisms. Then nonunital strict monoidal structures on M (in the sense of Definition
2.1.1.1)) can be identified with nonunital monoid structures on M (in the sense of Variant
. In particular, any nonunital monoid can be regarded as a nonunital strict monoidal
category (having only identity morphisms).
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Example 2.1.1.4 (Endomorphism Categories). Let C be a category, and let End(C) =
Fun(C,C) denote the category of functors from C to itself. Then the composition functor

o: Fun(C,C) x Fun(C,C) — Fun(C,C) (F,G) — F oG,
is a nonunital strict monoidal structure on End(C).

For many purposes, Definition [2.1.1.1]is too restrictive. Note that if k is a field, then the
tensor product functor ®;, : Vecty x Vecty — Vecty of Example does not quite fit the
framework described in Definition [2.1.1.1] Given vector spaces X, Y, and Z over k, there
is no reason to expect the iterated tensor products X ®j (Y ®; Z) and (X @ Y) ® Z to
be identical. In fact, this is impossible to determine based from the definition sketched in
Example 2.1.0.1] To construct the functor ®j, explicitly, we need to make certain choices:
namely, a choice of universal bilinear map b : U x V' — U ®, V for every pair of vector spaces
U,V € Vecty. Without an explicit convention for how these choices are to be made, we
cannot answer the question of whether the vector spaces X ® (Y ®¢ Z) and (X ®Y) ®k Z
are equal. However, this is arguably the wrong question to consider: in the setting of vector
spaces, the appropriate notion of “sameness” is not equality, but isomorphism. The iterated
tensor products X ®j (Y ®; Z) and (X ®; Y) ® Z are isomorphic, because they can be
characterized by the same universal property: both are universal among vector spaces W
equipped with a k-trilinear map ¢ : X xY x Z — W. Even better, there is a canonical
isomorphism

axyz X, Y @pZ) = (X®pY)® Z,
which depends functorially on X, Y, and Z. Motivated by this example, we introduce the
following generalization of Definition 2.1.1.1}

Definition 2.1.1.5. Let C be a category. A nonunital monoidal structure on C consists of
the following data:

e A functor ® : C x C — C, which we will refer to as the tensor product functor.

o A collection of isomorphisms ax )y z : X®(Y®Z) ~ (XQY)®Z, for X, Y, Z € C, called
the associativity constraints of C. We demand that the associativity constraints ax y,z
depend functorially on X, Y, Z in the following sense: for every triple of morphisms
f:X—>X,9:Y =Y and h: Z — Z', the diagram

ax\y,z

XY ®2)

XeY)®Zz

fe(geh) (f®g)®h

X/ ® (Y/ ® Z/) aX/’Y/’Z/ (Xl ® Y/) ® Z/

~
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is commutative. In other words, we require that a« = {ax vz} x,v,zec can be regarded
as a natural isomorphism from the functor

(XY, 2)~»Xe(YRZ)

CxCxC C

to the functor
(XY, 2)~(XQY)QZ

CxCxC C.

The associativity constraints of C are required to satisfy the following additional condition:

(P) For every quadruple of objects W, X, Y, Z € C, the diagram of isomorphisms

AW, XRQY,Z

RX®Y)® Z) We((XeY))
ldWW w®1dz
RXe(Y®2) (WeX)eY)® Z

%\ /QW{
WeX)e (Y 2)

comiutes.

A nonunital monoidal category is a triple (C, ®, a), where C is a category and (®, «) is a
nonunital monoidal structure on C.

Remark 2.1.1.6. In the setting of Definition we will refer to (P) as the pentagon 00BZ
identity. It is a prototypical example of a coherence condition: the associativity constraints
axyz XY ®Z)~(X®Y)® Z “witness” the requirement that the tensor product

is associative up to isomorphism, and the pentagon identity is a sort of “higher order”
associative law required of the witnesses themselves.

Example 2.1.1.7. Let C be a category equipped with a nonunital strict monoidal structure 00CO
® : C xC — C (in the sense of Definition [2.1.1.1)). Then ® determines a nonunital monoidal
structure on C (in the sense of Definition by taking the associativity constraints
axyz X®Y ®2Z)~(X®Y)® Z to be identity morphisms. Conversely, if C is equipped
with a nonunital monoidal structure (®, ) where each of the associativity constraints ax y,z
is an identity morphism, then ® : C x C — C is a nonunital strict monoidal structure on C.

Remark 2.1.1.8. Let C be a category equipped with a nonunital monoidal structure (®, ). 00C1
We will often abuse terminology by identifying the nonunital monoidal structure (®, ) with
the underlying tensor product functor ® : C x C — C. If we refer to a functor ® : C xC — C
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as a nonunital monoidal structure on C, we implicitly assume that C has been equipped with
associativity constraints axy z : X®@ (Y ®7Z) ~ (X ®Y)® Z satisfying the pentagon identity
of Definition [2.1.1.5] Beware that, in the non-strict case, the associativity constraints are an
essential part of the data: it is possible to have inequivalent nonunital monoidal categories
(C,®,a) and (C',®",0/) with C = C' and ® = @’ (see Example [2.1.3.3).

Remark 2.1.1.9 (Full Subcategories of Nonunital Monoidal Categories). Let C be a category
equipped with a nonunital monoidal structure (®, «), and let Cy C C be a full subcategory.
Suppose that, for every pair of objects X,Y € Cy, the tensor product X ® Y also belongs to
Co. Then Cy inherits a nonunital monoidal structure, with tensor product functor given by
the composition

CoxCoCCxC3¢C

(which factors through Cy by hypothesis), and associativity constraints given by those of C.

Remark 2.1.1.10 (Nonunital Monoidal Structures on Functor Categories). Let C and D
be categories. Then every nonunital monoidal structure (®, «) on D determines a nonunital
monoidal structure on the functor category Fun(C, D), whose underlying tensor product is
given by the composition

Fun(C, D) x Fun(C, D) ~ Fun(C, D x D) £% Fun(C, D)

and whose associativity constraint assigns to each triple of functors F,G, H : C — D the

natural isomorphism

Fo(GoH) > (FG)®H C — ap),ac)H(C)

2.1.2 Monoidal Categories

We now introduce unital versions of Definitions B.1.1.1] and 2.1.1.5l

Definition 2.1.2.1. Let C be a category. A strict monoidal structure on C is a nonunital
strict monoidal structure ® : C x C — C for which there exists an object 1 € C satisfying the
following condition:

(*) For every object X € C, we have X ® 1 = X =1 ® X (as objects of C). Moreover, for
every morphism f: X — X' in C, we have f ® id; = f =id; ®f (as morphisms from
X to X').

A strict monoidal category is a pair (C,®), where C is a category and ® : C xC — C is a
strict monoidal structure on C.
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Remark 2.1.2.2. Let C be a nonunital strict monoidal category. We will say that an object
1 € C is a strict unit if it satisfies condition () of Definition Note that if such an
object exists, then it is uniquely determined: it can be characterized as the unit element of
the monoid Ob(C).

It follows from Remark that the notion of strict unit is not invariant under
isomorphism. To address this, it will be convenient to consider a more general notion of
unit object, which makes sense in the non-strict setting as well. We will use an efficient
formulation due to Saavedra ([49]); see also [38]. To motivate the definition, we begin with

a simple observation about units in a more elementary setting.

Proposition 2.1.2.3. Let M be a nonunital monoid, let e be an element of M, and let
le : M — M denote the function given by the formula le(x) = ex. The following conditions
are equivalent:

(a) The element e is a left unit of M : that is, L. is the identity function from M to itself.

(b) The element e is idempotent (that is, it satisfies ee = e) and the function b, : M — M
is a bijection.
(¢) The element e is idempotent and the function £e : M — M is a monomorphism.

Proof. The implications (a) = (b) = (c¢) are immediate. To complete the proof, assume
that e satisfies condition (¢) and let = be an element of M. Using the assumption that e
is idempotent (and the associativity of the multiplication on M), we obtain an identity
le(x) = ex = (ee)x = e(ex) = Le(ex). Since l. is a monomorphism, it follows that z = ex. [

Corollary 2.1.2.4. Let M be a nonunital monoid. Then an element e € M is a unit if and
only if the following conditions are satisfied:

(i) The element e is idempotent: that is, we have ee = e.

(ii) The element e is left cancellative: that is, the function x — ex is a monomorphism from
M to itself.

(7i1) The element e is right cancellative: that is, the function x — xe is a monomorphism
from M to itself.

We now adapt the characterization of Corollary [2.1.2.4] to the setting of nonunital
monoidal categories.

Definition 2.1.2.5. Let C be a nonunital monoidal category. A unit of C is a pair (1,v),

where 1 is an object of C and v : 1 ® 1 = 1 is an isomorphism, which satisfies the following
additional condition:
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(%) The functors
c—=¢C C—1eC

C—C C—C®1

are fully faithful.

Remark 2.1.2.6. Condition (x) of Definition [2.1.2.5( depends only on the object 1 € C, and
not on the choice of isomorphism v:1®1 = 1.

Example 2.1.2.7. Let C be a strict monoidal category, and let 1 € C be the strict unit

(Remark [2.1.2.2). Then (1,id1) is a unit of C.

Example 2.1.2.8. Let M be a nonunital monoid, regarded as a (strict) nonunital monoidal
category having only identity morphisms (Example . Then the converse of Example
holds: a pair (1,v) is a unit structure on M (in the sense of Definition if and
only if 1 is a unit element of M and v = idy. This is a restatement of Corollary

If M is a nonunital monoid, then a unit element e € M is unique if it exists. For
nonunital monoidal categories, the analogous statement is more subtle. If a nonunital
monoidal category C admits a unit (1,v), then it has many others: we can replace 1 by any
object 1’ which is isomorphic to it, and v by any choice of isomorphism v' : 1’ ® 1/ ~ 1’
Nevertheless, we have the following strong uniqueness result:

Proposition 2.1.2.9 (Uniqueness of Units). Let C be a nonunital monoidal category equipped
with units (1,v) and (1’,0") (in the sense of Definition . Then there is a unique
isomorphism u : 1 = 1’ for which the diagram

1®1 L 1
uQu u
1/®11%1/

commutes.
We will give the proof of Proposition [2.1.2.9| at the end of this section.

Definition 2.1.2.10. Let C be a category. A monoidal structure on C is a nonunital
monoidal structure (®,«) on C (Definition together with a choice of unit (1,v)
(in the sense of Definition . A monoidal category is a category C together with a
monoidal structure (®, a, 1,v) on C. In this case, we refer to 1 as the unit object of C and
the isomorphism v : 1 ® 1 = 1 as the unit constraint of C.


https://kerodon.net/tag/00C8
https://kerodon.net/tag/00C9
https://kerodon.net/tag/00CA
https://kerodon.net/tag/00CB
https://kerodon.net/tag/00CC

140 CHAPTER 2. EXAMPLES OF oco-CATEGORIES

Remark 2.1.2.11. It is possible to adopt the following variant of Definition [2.1.2.10

e A monoidal category is a nonunital monoidal category C which admits a unit, in the
sense of Definition 2.1.2.5]

This is essentially equivalent to Definition since a unit (1,v) of C is uniquely
determined up to unique isomorphism (Proposition . However, for our purposes it
will be more convenient to adopt the convention that a monoidal structure on a category C
includes a choice of unit object 1 € C and unit constraint v:1® 1 ~ 1.

Remark 2.1.2.12. Let C be a category. We will sometimes abuse terminology by identifying
a monoidal structure (®, «, 1,v) with the underlying nonunital monoidal structure (®, «)
on C (or with the underlying tensor product functor ® : C x C — C). This is essentially
harmless, by virtue of Remark We will also abuse terminology (in a less harmless
way) by identifying a monoidal category (C,®, o, 1,v) with the underlying category C.

Notation 2.1.2.13. Let C be a monoidal category. We will generally use the symbol 1 to
denote the unit object of C. In situations where this notation is potentially confusing (for
example, if we are comparing C with another monoidal category), we will often disambiguate
by instead writing 1¢ for the unit object of C.

Example 2.1.2.14. Let C be a category. Then every strict monoidal structure ® : C x C — C
(in the sense of Definition can be promoted to a monoidal structure (®,«,1,v) on
C, by taking 1 to be the strict unit of C and the associativity and unit constraints to be
identity morphisms of C. Conversely, if C is equipped with a monoidal structure (®, a, 1,v)
for which the associativity and unit constraints are identity morphisms, then ® : C xC — C
is a strict monoidal structure on C and 1 is the strict unit.

Example 2.1.2.15. Let C be a monoidal category and let Cy C C be a full subcategory.

Assume that Cy contains the unit object 1 and is closed under the formation of tensor
products in C. Then Cy inherits the structure of a monoidal category: the underlying
nonunital monoidal structure on Cy is given by the construction of Remark 2.1.1.9} and the
unit (1,v) of Cp coincides with the unit of C.

Example 2.1.2.16. Let C and D be categories. Then every monoidal structure on D
determines a monoidal structure on the functor category Fun(C,D), whose underlying
nonunital monoidal structure is given by the construction of Remark 2.1.1.10] and whose
unit object is the constant functor C — {1} — D (and whose unit constraint v:1®1~1
is the constant natural transformation induced by the unit constraint of D).

Let C be a monoidal category. In general, the unit object 1 of C need not be strict, in
the sense that the functors
c—=¢C X—1X

00CD

O00CE

OOCF

00CG

OOMK

OOML
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C—C X—=X®1

need not be equal to the identity functor ide. However, they are always (canonically)
isomorphic to ide.

00CH Construction 2.1.2.17 (Left and Right Unit Constraints). Let C = (C,®, a, 1,v) be a
monoidal category. For each object X € C, we have canonical isomorphisms

a1,1,X vRid x

19(1X) — (191) X — 1 X.

Since the functor Y +— 1 ® Y is fully faithful, it follows that there is a unique isomorphism
Ax :1® X = X for which the diagram

@1,1,X

1®X 1®1

19X

commutes. We will refer to Ax as the left unit constraint. Similarly, there is a unique
isomorphism px : X ® 1 ~ X for which the diagram

2(1®1) axan (X®1)®
X®1

commutes; we refer to px as the right unit constraint.

00CJ Remark 2.1.2.18. Let C be a monoidal category. Then the left and right unit constraints
Ax:1®X 5 X and py : X ®1 = X depend functorially on X. In other words, for every
morphism f: X — Y, the diagram

loX — X _x<"  xoi1
id1 ®f f f®idy
190y — Y y " ygi1

~ ~

is commutative.
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Proposition 2.1.2.19 (The Triangle Identity). Let C be a monoidal category with unit 00CK

object 1. Let X and Y be objects of C, and let px : X ® 1>~ X and Ay : 1 ®Y — Y be the
right and left unit constraints of Construction|2.1.2.17. Then the diagram of isomorphisms

ax 1Y

®(ARY) (X®1)®

Proof. We have a diagram of isomorphisms

s commutative.

X2(1®1)®Y) = (X®121)QY
o/ X@(1eY) R1)RY \¢

[0
Ay / px

Xo1®(1eY)) X®1®Y——»X®Y«——X®1®W(W®U®D®Y

\ o
X®1 1®Y

Here the outer cycle commutes by the pentagon identity (P) of Definition the upper
rectangle and outer quadrilaterals by the functoriality of the associativity constraint, the side
triangles by the definition of the left and right unit constraints, and the lower quadrilateral
by the functoriality of the tensor product ®. It follows that the middle square is also
commutative, which is equivalent to the statement of Proposition [2.1.2.19] O

Exercise 2.1.2.20. Let C be a monoidal category with unit object 1. Show that, for every 00CL
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pair of objects X, Y € C, the diagrams

X® (Y ®1) axn XoY)o1
idx ®@py PXRY
XoY
18 (X®Y) Xy 1eX)®Y
AXeYy Ax ®idy
XoY

are commutative (for a more general statement, see Proposition [2.2.1.16)).

00CM Corollary 2.1.2.21. Let C be a monoidal category with unit object 1. Then the left and
right unit constraints A1, p1 : 1 ® 1 = 1 are equal to the unit constraint v:1®1 = 1.

Proof. Let X be any object of C. Then the left unit contraint Ax is characterized by the
commutativity of the diagram

ai1,1,x

121 X) 1®1)eX

id1 @A x vRid x
1 X.

Using Proposition [2.1.2.19] we deduce that v ®idx = p1 ®idx as morphisms from (1®1)®X
to 1 ® X. In other words, the morphisms v, p; : 1 ® 1 — 1 have the same image under the
functor

C—¢C Y—Y®X.

In the case X = 1, this functor is fully faithful; it follows that v = p;. The equality v = A1
follows by a similar argument. O

Proof of Proposition|2.1.2.9. Let C be a nonunital monoidal category equipped with units
(1,v) and (1’,v"). We can then regard C as a monoidal category with unit object 1 and unit
constraint v. For each object X € C, let A\x : 1 ® X = X be the left unit constraint of
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Construction [2.1.2.17, We wish to show that there is a unique isomorphism u : 1 ~ 1’ for
which the outer rectangle in the diagram of isomorphisms

191 — 1

id1 ®u u

Aqr
191 —2 1/

u®id1/ idl/

1/@1/#1/

is commutative. Since the upper square commutes (Remark [2.1.2.18)), this is equivalent to
the commutativity of the lower square. The existence and uniqueness of u now follows from
the assumption that the functor X — X ® 1’ is fully faithful. O

Remark 2.1.2.22. Let C be a nonunital monoidal category. Suppose we are given objects 00CN
1,1’ € C together with isomorphisms

v:lel~l V1l ~1.
To carry out the proof of Proposition [2.1.2.9] it is sufficient to assume that the functors
C—C X—=1eX

C—C X=Xl

are fully faithful: the first assumption is sufficient to construct the left unit constraints of
Construction [2.1.2.17] and the second is used at the end of the proof. This can be regarded
as a categorical analogue of the observation that if a nonunital monoid admits a left unit e
and a right unit ¢/, then we must have e = ¢’

2.1.3 Examples of Monoidal Categories

We now illustrate Definition [2.1.2.10| with some examples. 00CP

Example 2.1.3.1. Let k£ be a field and let Vect denote the category of vector spaces over 00CQ
k (where morphisms are k-linear maps). For every pair of vector spaces V, W € Vecty, let
us choose a vector space V ®; W and a bilinear map

VW=V W (v,w) VR W
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which exhibits V ®; W as a tensor product of V and W (see Example [2.1.0.1). The
construction (V, W) — V ®@; W determines a functor

®y  Vecty X Vect, — Vecty,
whose value on a pair of k-linear maps ¢ : V. — V', ¢ : W — W’ is characterized by the
identity
(v @k ¥)(v @ w) = ¢(v) @ Pp(w).

For every triple of vector spaces U, V, W & Vecty, there is a canonical isomorphism
agyvw : U ® (V @, W) = Uk V), W,

characterized by the identity apyyvw (u® (v w)) = (u@v)Qw foru e U,v € V,and w € W.
The pair (®, ) = (Qk, {av,v,w tv,v,weveet,,) is then a nonunital monoidal structure on
the category Vecty, in the sense of Definition We can upgrade this to a monoidal
structure by taking the unit object 1 to be the field k& (regarded as a vector space over
itself), and the unit constraint v : 1 ®; 1 ~ 1 to be the linear map corresponding to the
multiplication on k (so that v(a ® b) = ab).

00CR, Example 2.1.3.2 (Cartesian Products). Let C be a category. Assume that every pair of
objects X,Y € C admits a product in C. This product is not unique: it is only unique up to
(canonical) isomorphism. However, let us choose an object X x Y together with a pair of
morphisms

!
TX,Y X,y
X+—— XxY —Y

which exhibit X x Y as a product of X and Y in the category C. Then the construction
(X,Y) — X x Y determines a functor C x C — C, given on morphisms by the construction

(f X = X),(g:Y = Y)) = ((f xg): (X xY) = (X' xY)),

where f x g is the unique morphism for which the diagram

/

TX)Y X,y
X XxY Y
f fxg g
Tyt ! Trl ! !
X <2 xxy 2y

is commutative.
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For every triple of objects X,Y,Z € C, there is a canonical isomorphism axy,z :
X x (Y xZ) = (X xY) x Z, which is characterized by the commutativity of the diagram

ax\y,z

x (Y x Z) (X xY)xZ

X,y /

X Z.

The category C admits a nonunital monoidal structure, with tensor product given by the
functor (X,Y) — X x Y, and associativity constraints given by (X,Y,Z) — axyz.

If we assume also that the category C has a final object 1 (so that C admits all finite
products), then we can upgrade the nonunital monoidal structure above to a monoidal
structure, where the unit object of C is 1 and the unit constraint v is the unique morphism
from 1 x1 to 1 in C. We refer to this monoidal structure as the cartesian monoidal structure
on C.

Example 2.1.3.3 (Group Cocycles). Let G be a group with identity element 1 € G, and 00CS
let I' be an abelian group on which G acts by automorphisms; we denote the action of an
element g € G by (y € ') — g(v) € I'. A 3-cocycle on G with values in ' is a map of sets

a:GxGExGE—-T (,y,2) = gy .
which satisfies the equations

for every quadruple of elements w, x,y, 2z € G.
Let C denote the category whose objects are the elements of GG, and whose morphisms
are given by
I ifg=h
Home (97 h) = I
() otherwise.
Using the action of G on I', we can construct a functor
®:CxC—C,
given on objects by (g, h) — gh and on morphisms by

(v:9—=9),(6:h—h))—(v+9(d): gh — gh).
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Unwinding the definitions, one sees that upgrading the functor ® to a nonunital monoidal
structure on the category (®, «) on C is equivalent to choosing a 3-cocycle a: G X GXx G — T.
More precisely, any map a: G X G X G — I' can be regarded as a natural transformation of
functors

eR(eRe) > (eRe)Re,

and pentagon identity (P) of Definition translates to the cocycle condition
above.

For any choice of cocycle o : G x G x G — I, we can upgrade the associated nonunital
monoidal structure (®, ) to a monoidal structure on the category C, by taking the unit
object of C to be the identity element 1 € G and the unit constraint v :1® 1 ~ 1 to be the
element 0 € T

Example 2.1.3.4 (The Opposite of a Monoidal Category). Let C be a category equipped
with a nonunital monoidal structure (®, {ax y,z}x v.zec). Then the opposite category C°P
inherits a nonunital monoidal structure, which can be described concretely as follows:

e The tensor product on C°P is obtained from the tensor product functor ® : C xC — C
by passing to opposite categories.

e Let X, Y, and Z be objects of C, and let us write X°P, Y°P and Z° for the
corresponding objects of C°?. Then the associativity constraint cxop yop zop for CP is
the inverse of the associativity constraint ax y 7 for C.

If the nonunital monoidal category C is equipped with a unit structure (1,v), then we can
regard (1°P,v~1) as a unit structure for the nonunital monoidal category C°P. In particular,
every monoidal structure on a category C determines a monoidal structure on the opposite
category C°P.

Example 2.1.3.5 (The Reverse of a Monoidal Structure). Let C be a category equipped with
a nonunital monoidal structure (®,{axy z}x,y,zec). Then we can equip C with another
nonunital monoidal structure (&, {a’¢Yy 7} xv,zec), defined as follows:
e The tensor product functor ®¥ : C xC — C is given on objects by the formula
X @Y =Y ® X (and similarly on morphisms).

o The associativity constraint on @ is given by the formula o’¢% , = a,} y-

We will refer to the nonunital monoidal structure (&, {a¢Yy s} x v,zec) as the reverse of
the nonunital monoidal structure (®, {ax vz} x,v,zec). In this case, we will write C*V to
denote the nonunital monoidal category whose underlying category is C, equipped with the
nonunital monoidal structure (2", {a’¢Yy 7} x,v,zec)-
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If the nonunital monoidal category C is equipped with a unit structure (1,v), then we
can also regard (1,v) as a unit structure for the nonunital monoidal category C™V. In other
words, if C is a monoidal category, then we can regard C™¥ as a monoidal category (having
the same underlying category and unit object, but “reversed” tensor product).

2.1.4 Nonunital Monoidal Functors

We now study functors between (nonunital) monoidal categories.

Definition 2.1.4.1 (Nonunital Strict Monoidal Functors). Let C and D be nonunital
monoidal categories (Definition [2.1.1.5). A nonunital strict monoidal functor from C to D is
a functor F': C — D with the following properties:

e The diagram of functors

DxD—2 oD

is strictly commutative. In particular, for every pair of objects X,Y € C, we have an
equality F(X)® F(Y) = F(X ®Y) of objects of D.

e For every triple of objects X, Y, Z € C, the functor I carries the associativity constraint
axyz: XY ®Z)~ (X®Y)®Z (for the monoidal structure on C) to the associativity
constraint ap(x) p(v),r(z)  F(X)@ (FY)@F(Z)) ~ (F(X)® F(Y))® F(Z) (for the
monoidal structure on D).

Example 2.1.4.2. Let C be a nonunital monoidal category. Then the identity functor ide
is a nonunital strict monoidal functor from C to itself.

For many applications, Definition [2.1.4.1] is too restrictive. In practice, the definition of
a (nonunital) monoidal structure ® : C x C — C on a category C often involves constructions
which are only well-defined up to isomorphism (see Examples [2.1.3.1] and [2.1.3.2). In

such cases, it is unreasonable to require that a functor /' : C — D has the property that
F(X)® F(Y) and F(X ® Y) are the same object of D. Instead, we should ask for any
isomorphism puxy : F(X)® F(Y) = F(X ®Y). To get a well-behaved theory, we should
further demand that the isomorphisms pxy depend functorially on X and Y, and are
suitably compatible with the associativity constraints on C and D. We begin by considering

a slightly more general situation, where the morphisms py y are not required to be invertible.

00CV

00CW

00CX
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00CY Definition 2.1.4.3 (Nonunital Lax Monoidal Functors). Let C and D be nonunital monoidal
categories, and let ' : C — D be a functor from C to D. A nonunital lax monoidal structure
on F'is a collection of morphisms p = {pxy : F(X)® F(Y) = F(X ® Y)}x yec which
satisfy the following pair of conditions:

(a) The morphisms pyy depend functorially on X and Y: that is, for every pair of
morphisms f: X = X', g: Y — Y’ in C, the diagram

FX)oFY)—2Y S F(X®Y)
F(f)®F(9) F(f9g)
FIXY e FY)—2Y L p(x oY)

commutes (in the category D). In other words, we can regard p as a natural transfor-
mation of functors as indicated in the diagram

®

CxC—=C

FxF / F

®

DxD D.

(b) The morphisms pxy are compatible with the associativity constraints on C and D in
the following sense: for every triple of objects X, Y, Z € C, the diagram

OF(X),F(Y),F(Z)
_—

FX)® (FY)®F(Z2)) (FIX)®F(Y))® F(Z)

idp(x) ®uy,z px,y®idp(z)
FX)@F(Y ®Z) FIX®Y)®F(Z)
EX,Y®Z BXQY,Z
F(ax,y,z)

FX®(Y®Z2) F(X®Y)® 2)
commutes (in the category D).

A nonunital lax monoidal functor from C to D is a pair (F, i), where F : C — D is a
functor and p = {px v} x,vec is a nonunital lax monoidal structure on F. In this case, we
will refer to the morphisms {u X7y} X, vec as the tensor constraints of F'.
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Definition 2.1.4.4. Let C and D be nonunital monoidal categories, and let F': C — D be
a functor from C to D. A nonunital monoidal structure on F is a lax nonunital monoidal
structure p = {uxy} X,yec on I with the property that each of the tensor constraints
pxy : F(X)®@ F(Y) - F(X ®Y) is an isomorphism.

A nonunital monoidal functor from C to D is a pair (F, i), where F : C — D is a functor
and g is a nonunital monoidal structure on F.

Example 2.1.4.5. Let k be a field and let Vecty denote the category of vector spaces
over k, endowed with the monoidal structure of Example The construction of this
monoidal structure involved certain choices: for every pair of vector spaces U,V € Vecty,
we selected a universal k-bilinear map byy : U x V — U ®;, V. The collection of functions
b = {buv }uvevee, is then a nonunital lax monoidal structure on the forgetful functor
Vecty, — Set (where we equip Set with the monoidal structure given by cartesian products;
see Example . Note that the tensor product functor ®; : Vect, x Vecty — Vecty is
characterized by the requirement that it is given on objects by (U, V') — U ®; V and satisfies
condition (a) of Definition and the associativity constraint on Vecty, is characterized
by the requirement that it satisfies condition (b) of Definition Note that b is not a
nonunital monoidal structure: the bilinear maps by : U x V — U ®;, V' are never bijective,
except in the trivial case where U ~ 0 ~ V.

Example 2.1.4.6. Let C and D be nonunital monoidal categories, and let F' : C — D
be a nonunital strict monoidal functor. Then F' admits a nonunital monoidal structure
{uxy}x,yec, where we take each pxy to be the identity morphism from F(X) ® F(Y) =
F(X®Y) to itself.

Conversely, if (F,u) is a nonunital monoidal functor from C to D with the property
that the tensor constraints px y is an identity morphism in D, then F' is a nonunital strict
monoidal functor.

Example 2.1.4.7. Let M and M’ be nonunital monoids, regarded as nonunital monoidal
categories having only identity morphisms (Example . Then nonunital lax monoidal
functors from M to M’ (in the sense of Definition can be identified with nonunital
monoid homomorphisms from M to M’ (in the sense of Variant . Moreover, every
nonunital lax monoidal functor from M to M’ is automatically strict.

Example 2.1.4.8 (The Left Regular Representation). Let C be a nonunital monoidal
category and let End(C) = Fun(C,C) be the category of functors from C to itself, endowed
with the strict monoidal structure of Example For each object X € C,let £x : C — C
denote the functor given on objects by the formula {x(Y) = X ® Y. The construction
X +— lx then determines a functor ¢ : C — Fun(C,C). For every pair of objects X,Y € C,
there is a natural isomorphism pxy : £x o ly =0 x®v, whose value on an object Z € C is

00CZ

00DO

00D1

00D2

00D3
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given by the associativity constraint

XY,z

Uxoly)(Z2) =X (Y ®Z) —5 (XQY)®Z =lxey(Z).

Then p = {px vy }x,y is a nonunital monoidal structure on the functor X — fx: property
(a) of Definition [2.1.4.3| follows from the naturality of the associativity constraint on C, and
property (b) is a reformulation of the pentagon identity.

Warning 2.1.4.9. Let C and D be nonunital monoidal categories. A nonunital strict
monoidal functor from C to D is a functor F' : C — D possessing certain properties. However,
a nonunital (lax) monoidal functor from C to D is a functor F' : C — D together with
additional structure, given by the tensor constraints uxy : F(X)@ F(Y) - F(X®Y). We
will often abuse terminology by identifying a nonunital (lax) monoidal functor (F,u) with
the underlying functor F'; in this case, we implicitly assume that the tensor constraints px y
have been specified.

Definition 2.1.4.10. Let C and D be nonunital monoidal categories. Let F, F’ : C — D be
functors equipped with nonunital lax monoidal structures p and p/, respectively. We say
that a natural transformation of functors v : F' — F” is nonunital monoidal if, for every pair
of objects X,Y € C, the diagram

F(X)® F(Y) ——" = F(X®Y)
Y(X)@y(Y) Y(X®Y)
F(X)oF(Y)— . P(XoY)

is commutative.

We let Fun'®*(C, D) denote the category whose objects are nonunital lax monoidal functors
(F,u) from C to D, and whose morphisms are nonunital monoidal natural transformations,
and we let Fun® (C, D) denote the full subcategory of Fun®*(C, D) spanned by the nonunital

monoidal functors (F, i) from C to D.

Example 2.1.4.11 (Nonunital Algebras). Let C be a nonunital monoidal category and let
A be an object of C. A nonunital algebra structure on A is a map m: A ® A — A for which
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the diagram

®(A® A) (AR A)®

is commutative. A nonunital algebra object of C is a pair (A, m), where A is an object of C

QA AA

and m is a nonunital algebra structure on A. If (4, m) and (A’,m’) are nonunital algebra
objects of C, then we say that a morphism f : A — A’ is a nonunital algebra homomorphism
if the diagram

AR A m A

ref f

A A A

is commutative. We let Alg™(C) denote the category whose objects are nonunital algebra

objects of C and whose morphisms are nonunital algebra homomorphisms.

Let {e} denote the trivial monoid, regarded as a (strict) monoidal category having only
identity morphisms (Example . Then we can identify objects A € C with functors
F : {e} — C (by means of the formula A = F(e)). Unwinding the definitions, we see that
nonunital lax monoidal structures on the functor F' (in the sense of Definition can be
identified with nonunital algebra structures on the object A = F'(e). Under this identification,
nonunital monoidal natural transformations correspond to homomorphisms of nonunital
algebras. We therefore have an isomorphism of categories Fun'®*({e},C) ~ Alg™(C).

Example 2.1.4.12. Let Set denote the category of sets, endowed with the monoidal 00D7
structure given by cartesian product of sets (Example . For each set S, we can
identify nonunital algebra structures on S (in the sense of Example with nonunital
monoid structures on S (in the sense of Variant . This observation supplies an
isomorphism of categories Alg™(Set) ~ Mon"™, where Mon™ is the category of nounital
monoids.

Example 2.1.4.13. Let C and D be nonunital monoidal categories, and let C*® and D™V |00D8
denote the same categories with the reversed nonunital monoidal structure (Example [2.1.3.5)).
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Then every functor F': C — D can be also regarded as a functor from C™" to D"V, which
we will denote by F™V. There is a canonical bijection

{Nonunital lax monoidal structures on F'}

{Nonunital lax monoidal structures on F"V},

which carries a nonunital lax monoidal structure p to the nonunital lax monoidal structure
I
morphism of categories Funl®(C, D) ~ Fun!®*(C™", D"V), which restricts to an isomorphism
Fun® (C, D) ~ Fun&, (C*v, D*V).

rev rev

given by the formula p'¢Yy, = py,x. Using these bijections, we obtain a canonical iso-

00D9| Example 2.1.4.14. Let C and D be nonunital monoidal categories, and regard the opposite
categories C°? and D°P as equipped with the nonunital monoidal structures of Example
Then every functor F' : C — D determines a functor F°P : C°? — D°P. There is a
canonical bijection

{Nonunital monoidal structures on F'} ~ {Nonunital monoidal structures on F°P},

which carries a nonunital monoidal structure  on F' to a nonunital monoidal structure p/
on F°P given concretely by ,u’Xy = ,u}}y. Using these bijections, we obtain a canonical
isomorphism of categories Fun®, (C, D)°P ~ Fun&, (C°P, D°P).

00DA Warning 2.1.4.15. The analogue of Example [2.1.4.14| for nonunital lax monoidal functors
is false. The notion of nonunital lax monoidal functor is not self-opposite: in general, there

is no simple relationship between the categories Fun'®(C, D) and Funl®*(C°P, DP).

Motivated by Warning [2.1.4.15] we introduce the following:

OOMM Variant 2.1.4.16. Let C and D be nonunital monoidal categories, and let F': C — D be a
functor. A nonunital colax monoidal structure on F' is a nonunital lax monoidal structure on
the opposite functor F°P : C°P — DP (Definition . In other words, a colax monoidal
structure on F' is a collection of morphisms p = {uxy : F(X ®Y) = F(X)® F(Y)}x,vec
which satisfy the following pair of conditions:

(a) The morphisms pxy depend functorially on X and Y: that is, for every pair of
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morphisms f: X - X', g: Y — Y’ in C, the diagram

KXY

F(X®Y) F(X)® F(Y)
F(f®g) F(f)®F(g)
FIX oY) 2 L p(X)) @ F(Y)

commutes (in the category D).

(b) For every triple of objects X,Y,Z € C, the diagram

F(X® (Y ®2) Floxv.z) F(X®Y)®2)
X, Y®Z BXQY,Z
F(X) 2 F(Y ® Z) F(X®Y)® F(Z)
id®py,z px,y ®id

AF(X),F(Y),F(2)
_— >

FX)®(F(Y)® F(2)) (FIX)®@F(Y))® F(Z)

comimutes.

Construction 2.1.4.17 (Composition of Nonunital Monoidal Functors). Let C, D, and £ 00DB
be nonunital monoidal categories, and suppose we are given a pair of functors F : C — D

and G : D — &. If p= {puxy}xyvec is a nonunital lax monoidal structure on the functor

F and v = {vyv}uvep is a nonunital lax monoidal structure on G, then the composite
functor G o F' inherits a nonunital lax monoidal structure, which associates to each pair of
objects X,Y € C the composite map

VF(X),F(Y)
e

(GoF)(X)® (GoF)(Y) GF(X) @ F(Y)) S (Go F)(X ® V).

This construction determines a composition law
o : Fun!®(D, £) x Fun'®™(C, D) — Fun'®(C, &).

Remark 2.1.4.18. In the situation of Construction [2.1.4.17], suppose that u and v are 00DC
nonunital monoidal structures on F' and G, respectively: that is, assume that all of the
tensor constraints
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are isomorphisms. Then Construction [2.1.4.17] supplies a nonunital monoidal structure on
the composite functor G o F'. We therefore obtain a composition law

o:Fun® (D, &) x Fun? (C,D) — Fun®,(C, £).

We close this section by describing an alternative perspective on nonunital lax monoidal
functors. First, we need to review a bit of terminology.

OOMN| Notation 2.1.4.19 (Oriented Fiber Products). Let C, D, and £ be categories, and suppose
we are given a pair of functors F': C — £ and G : D — £. We let C x¢ D denote the iterated
pullback C X pyn({o},6) Fun([1], £) Xpun(f1},6) - We will refer to C x¢ D as the oriented fiber
product of C with D over £. More concretely:

e An object of the oriented fiber product C x¢ D is a triple (C, D,n) where C is an
object of the category C, D is an object of the category D, and n: F(C) — G(D) is a
morphism in the category £.

o If (C,D,n) and (C',D',n) are objects of the oriented fiber product C x¢ D, then a
morphism from (C, D, n) to (C’, D’,n’) is a pair (u,v), where u : C — C’ is a morphism
in the category C, v : D — D’ is a morphism in the category D, and the diagram

F(C) ! G(D)

F(u) G(v)

F(C") ! G(D')

commutes in the category &.

02AP| Remark 2.1.4.20. Let F : C — £ and G : D — £ be functors. The oriented fiber product
C x¢ D is often referred to in the literature as the comma construction on the functors F
and G, and is commonly denoted by F | G.

OOMP, Proposition 2.1.4.21. Let C and D be nonunital monoidal categories, let G : D — C be a
functor, and let C x¢ D denote the oriented fiber product of Notation|2.1.4.19 Then:

o Let p={up p}tppep be a nonunital lax monoidal structure on the functor G. Then
there is a unique nonunital monoidal structure ®,, on the oriented fiber product C x¢ D
with the following properties:

(1) The forgetful functor
U:Cxe¢D—CxD (C,D,n) — (C,D)

is a strict nonunital monoidal functor.


https://kerodon.net/tag/00MN
https://kerodon.net/tag/02AP
https://kerodon.net/tag/00MP

156 CHAPTER 2. EXAMPLES OF oco-CATEGORIES

(2) On objects, the tensor product ®,, is given by the formula

(C,D,n) ®, (C",D',n') = (C®C", Do D' tnn)),

KUp, D’

where t(n,n') is the composition C @ C’ e, GD)® G(D') —— G(D® D).
o The construction p — ®,, induces a bijection

{Nonunital lax monoidal structures on G}

{Nonunital monoidal structures on C X¢ D satisfying (1)}.

Remark 2.1.4.22. Let C and D be nonunital monoidal categories. We can summarize 00MQ
Proposition [2.1.4.21] more informally as follows: for any functor G : D — C, choosing

a nonunital lax monoidal structure on G is equivalent to choosing a nonunital monoidal
structure on the oriented fiber product C x¢ D which is compatible with the existing nonunital
monoidal structures on C and D, respectively.

Proof of Proposition|2.1.4.21 Unwinding the definitions, we see that to describe nonunital
monoidal structure on the category C x¢ D satisfying condition (1), one must give the
following data:

o For every pair of objects (C, D,n) and (C’, D', n') of the oriented fiber product C x¢ D,
we must supply a tensor product (C, D,n) ® (C’, D’,n’). By virtue of the assumption
that U is nonunital strict monoidal, this tensor product must be given as a triple
(CoC",D® D' t(n,n)), for some morphism t(n,7") : C ® C' — G(D ® D’') in the
category D.

o For every pair of morphisms (u,v) : (C, D,n) — (C,D,7) and (v/,v) : (C',D',n') —
(él,ﬁ/,ﬁ’ ) in the oriented fiber product C X¢ D, we must supply a tensor product
morphism (C ® C',D ® D', t(n,1)) — (C ® C',D ® D',t(7,7)). Note that this
morphism is uniquely determined: for U to be a nonunital strict monoidal functor, it
must be the pair (u ® v/, v ® v'). However, the existence of this morphism imposes the
following condition:
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(7) If the diagrams

c—"1 ~G(D) c—1 G(D')
u G(v) u’ G(v')
c—"1 _.aD d—"7 . aDd)

commute (in the category C), then the diagram

t(nn'")

cCaC G(D® D)
u@u'’ G(vav')

— = @) = =

Col ") _aDeD)

also commutes.

o For every triple of objects (C, D,n), (C',D',;n'), and (C”, D",n") of the oriented fiber
product C x¢ D, we must supply an associativity constraint

(C,D,n)® ((C",D',n') @ (C",D",n")) ~ ((C,D,n) ® (C",D',n")) & (C", D", ")

in C x¢D. By virtue of our assumption that U is nonunital strict monoidal, this
associativity constraint is uniquely determined: it must be the pair (ac,cr.cv, ap p/.pr)
given by the associativity constraints for the nonunital monoidal structures on C and D,
respectively. However, the existence of this morphism imposes the following condition:

(i4) For every triple of morphisms n : C — G(D), ' : ¢! — G(D'), and 0" : C" —
G(D"), the diagram

aC’C/’C//

C®(([C"aC") CcCech)el"

t(n,t(n’' ")) t(t(nn')m")

G(O‘D,D’,D”)

G(D ® (D' ® D")) G((D® D")® D")

commutes (in the category C).
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If this condition is satisfied, then the associativity constraints are automatically
functorial and satisfy the pentagon identity (since the analogous conditions hold in
the categories C and D, respectively).

Given a collection of morphisms #(n,n') satisfying these conditions, we define y =
{up,p'}p,prep by the formula pup p = t(idg(p),idgpr)). Note that, if (C,D,n) and
(C", D', 1) are arbitrary objects of the oriented fiber product C x¢ D, then we have canonical
maps

(777 ldD) : (Ca D, 77) - (G(D)v D, 1dG(D)) (77,7 idD') : (C,a Dla 77/) - (G(D/)a Dl? idG(D’))'

Applying condition (i), we see that the morphism ¢(n,n’) can then be recovered as the
composition

Ced 7 (D)o GW) 22 a(D e D).

To complete the proof, it will suffice to show that if we are given any system of morphisms

p=A{upp :GD)RGD") = GD®D')}p pep and we define t(n,n') as above, then p is

a nonunital lax monoidal structure on G if and only if conditions (i) and (ii) are satisfied.
Using the formula for ¢(n,n’) in terms of u, we can rewrite condition (i) as follows:

(i) If the diagrams

¢c—"'~G(D) o — G(D')
u G(v) u’ G(')
c G(D) c—" . qm)

commute (in the category C), then the outer rectangle in the diagram

! KD, D!

Coc —"" . (D)o GD) G(D® D)
u@u’ G)®G(v') G(vav')

_ _ 7 . . H= =/ _ _

Cold —"" . aD)eGD)—22~GDeD)

commutes.

Note that the left square appearing in this diagram is automatically commutative. Assertion
(') is therefore a consequence of the following:
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(a) For every pair of morphisms v : D — D and v’ : D' — D' in the category D, the diagram

G(D)® (D)) —2P (D & D)
G()®G (V') G(vxv')
— — MBF — =
G(D) e G(D) GDeD)

commutes (in the category C).

Conversely, if (i) is satisfied, then (a) can be deduced by specializing to the case = idg(p),
n =idgpn, 1= idgp), and 7= idG(E’)' It follows that (¢) is satisfied if and only if (a) is
satisfied: that is, if and only if u = {up p/} p.prep is a natural transformation.

We can reformulate condition (i7) as follows:

(7") For every triple of morphisms n: C' — G(D), ' : ¢! — G(D'), and " : C"" — G(D"),
the outer rectangle in the diagram

acjclﬁc//

C® (C/ Q C//) (C® C/) QC"

n®(n'®@n") (nen")®n"

@G (D),G(D"),G(D")

G(D)® (G(D") @ G(D")) (G(D)®G(D")) @ G(D")

idg(p) ®ep,pr kp,p'®idg(prry
G(D)® G(D'® D") (G(D)® G(D")) @ G(D")
Hp.D'@D! MpgD!, D!

G(QD,D’,D”)

G(D® (D' ® D")) G((D® D")® D")

commutes (in the category C).

Since the upper square in this diagram automatically commutes (by the naturality of the
associativity constraints on C), assertion (i7') is a consequence of the following simpler
assertion:
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(b) For every triple of objects D, D', D" € D, the diagram

®G(D),G(D'),G(D")

G(D)® (G(D") @ G(D")) (G(D)®G(D")) @ G(D")

\LidG(D) ®MD,D/ iuD,D’®idG(D//)
G(D)® G(D'® D") (G(D)®G(D")) ® G(D")
\L#D’D,®DN iuD@D/’D”

G(QD’D/7DII)

G(D ® (D' ® D")) G((D® D")® D")

commutes (in the category C).

Conversely, if (i4') is satisfied, then (b) can be deduced by specializing to the case 1 = idg(p),
7 =idg(py, and " = idg(pry. We conclude by observing that conditions (a) and (b) assert
precisely that p is a nonunital lax monoidal structure (Definition [2.1.4.3)). O

Remark 2.1.4.23 (Adjoint Functors). Let C and D be nonunital monoidal categories and

F
suppose we are given a pair of adjoint functors C?D, so that we have an isomorphism

of oriented fiber products C x¢ D ~ C xp D (see Notation [2.1.4.19)). Applying Proposition
2.1.4.21| (and the dual characterization of nonunital colax monoidal functors), we see that
the following are equivalent:

¢ The datum of a nonunital lax monoidal structure on the functor G : D — C.
e The datum of a nonunital colax monoidal structure on the functor ' : C — D.

e The datum of a nonunital monoidal structure on the oriented fiber product C x¢ D =~
C Xp D which is compatible with the nonunital monoidal structures on C and D
(meaning that the projection map C x¢D — C x D is a nonunital strict monoidal
functor).

2.1.5 Lax Monoidal Functors

We now introduce a unital version of Definition [2.1.4.3] To motivate the discussion, we
begin with a special case.

Definition 2.1.5.1. Let C be a monoidal category with unit object 1, and let A be a
nonunital algebra object of C (Example [2.1.4.11)) with multiplication m: A®@ A — A. We
say that a morphism e¢: 1 — A is a left unit for A if the composite map

)\71 i
AA 10429 44 ™ 4

OOMR

00DD

OODE
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is the identity map from A to itself; here Ay : 1 ® A =+ A denotes the left unit constraint of
Construction 2.1.2.17] We say that € is a right unit of A if the composite map

—1 .
A4 A1 1485 A A ™ 4
is equal to the identity. We say that € is a unit of A if it is both a left and a right unit of A.

By virtue of Example 2.1.4.11 we can view the theory of nonunital algebras as a special
case of the theory of nonunital lax monoidal functors F' : C — D, where we take C to be
the trivial monoid {e} (regarded as a category having only identity morphisms). Definition
[2.1.5.7] has an analogue for nonunital lax monoidal functors in general.

Definition 2.1.5.2. Let C and D be monoidal categories with unit objects 1¢ and 1p,
respectively. Let F' : C — D be a nonunital lax monoidal functor with tensor constraints
w={pxy}xyec Let e:1p — F(1c) be a morphism in D. We say that € is a left unit for
F if, for every object X € C, the left unit constraint Ap(x) : 1p ® F(X) = F(X) in the
category D is equal to the composition

1p ® F(X) 29 p(10) @ F(X) 2% F1e o x) T2

F(X),

where A\x : 1c ® X = X is the left unit constraint in the monoidal category C. We
say that e is a right unit for F if, for every object X € C, the right unit constraint
pr(x) s F(X) ®1p = F(X) is equal to the composition

F(px)

id €
LrOF px) @ F(1e) 2 RX @ 10) 2P F(X).

F(X)®1p
We say that € is a unit for F if it is both a left and a right unit for F'.

Example 2.1.5.3. Let C be a monoidal category and let A be a nonunital algebra object
of C, which we identify with a nonunital lax monoidal functor F : {e} — C as in Example
2.1.4.11] Then a map €¢:1 — A = F(e) is a unit (left unit, right unit) for A (in the sense
of Definition if and only if it is a unit (left unit, right unit) for F' (in the sense of

Definition [2.1.5.2)).

We now show that if a nonunital lax monoidal functor F' admits a unit €, then € is
uniquely determined. This is a consequence of the following:

Proposition 2.1.5.4. Let C and D be monoidal categories with unit objects 1¢ and 1p,
respectively, and let F' : C — D be a nonunital lax monoidal functor. Suppose that F admits
a left unit €, : 1p — F(1¢) and a right unit eg : 1p — F(1¢). Then e, = €R.
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Proof. We first observe that there is a commutative diagram

id ®e € id
1p®1p — 2R 15 @ F(le) —E2% + F(10) ® F(1c)
l“lcﬂc
A1p N F(lc X 16)
F(lc)
lFO‘lc)
1p s F(1¢);

the left square commutes by the naturality of the left unit constraints for C (Remark [2.1.2.18)),
and the right square commutes by virtue of our assumption that €y, is a left unit for C. Using
Corollary [2.1.2.21], we see that the unit constraints

ve:le®@1e = 1c vp:lp®1p = 1p

are equal to the left unit constraints A1, and A1, respectively. It follows that the composition
€r © vp coincides with the composition

: F

1p @ 1p L% P(10) @ F(le) 2% F(1e @ 1¢) 27 F(10).
A similar argument shows that this composition coincides with €7, o vp. Since vp is an
isomorphism, it follows that ep = €. O

Corollary 2.1.5.5. Let C and D be monoidal categories and let F': C — D be a nonunital 00DK
lax monoidal functor. Then F admits a unit € : 1p — F(1¢) if and only if it has both a left
unit and a right unit. In this case, the unit € is unique.

Proposition 2.1.5.6. Let C and D be monoidal categories with unit objects 1¢ and 1p, 00MS
respectively. Let G : D — C be a functor equipped with a nonunital lax monoidal structure,
which we will identify with the corresponding nonunital monoidal structure on the oriented

fiber product C x¢ D (see Proposition . Let € : 1¢ — G(1p) be a morphism in C,

and regard the triple 1 = (1¢, 1p,€) as an object of C x¢ D. Then:

(1) The morphism € is a left unit for G if and only if, for every object (C, D,n) of the oriented
fiber product C x¢ D, the left unit constraints \c : 1c @ C ~ C and A\p : 1lp @ D ~ D
determine an isomorphism (A\c,Ap) : 1 ® (C, D,n) ~ (C,D,n) in the category C x¢ D.

(2) The morphism € is a right unit for G if and only if, for every object (C,D,n) of
the oriented fiber product C x¢ D, the right unit constraints pc : C @ 1¢ ~ C and
pp : D ® 1p ~ D determine an isomorphism (pc,pp) : (C,D,n) ® 1 ~ (C,D,n) in
the category C x¢ D.
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Proof. We will prove (1); the proof of (2) is similar. Fix an object (C, D, n) of the oriented
fiber product C ®¢ D. Unwinding the definitions, we see that the pair (Ac, Ap) determines a
morphism from 1 ® (C, D,n) to (C,D,n) in C x¢ D if and only if the outer rectangle of the

diagram
Ac

1c®C C
id ®n n
le ® G(D) —P__ (D)
e®id
G(1p) ® G(D) "
#
G(1p @ D) —222) _ c(p)

is commutative. Here the upper square commutes by the functoriality of the left unit
constraints in C (Remark , and the commutativity of the lower rectangle follows
from the assumption that € is a left unit. This proves the “only if” direction of (1). The
converse follows by specializing to the case where C' = G(D) and 7 is the identity map. [

Corollary 2.1.5.7. Let C and D be monoidal categories with units (1¢,ve) and (1p,vp),
respectively. Let G : D — C be a nonunital lax monoidal functor. Let € : 1¢ — G(1p) be a
morphism in C and regard the triple 1 = (1¢, 1p, €) as an object of the oriented fiber product
C xcD. The following conditions are equivalent:

(1) The morphism € is a unit for G (in the sense of Definition .

(2) The pair v = (ve,vp) is a morphism from 1®1 to 1 in the oriented fiber product C X¢ D,
and the pair (1,v) is a unit with respect to the tensor product ®, of Proposition

1421
Proof. Assume first that (1) is satisfied. Then Proposition [2.1.5.6[ implies that the functors
CxecD—CxcD X—1eX,X—»X®1

are naturally isomorphic to the identity, and are therefore fully faithful. To complete the
proof of (2), it will suffice to show that the pair (ve,vp) is a morphism from 1 ® 1 to 1 in
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C ¢ D. This also follows from Proposition by virtue of the identities v¢ = A1, and
vp = A1, (Corollary .

Now suppose that (2) is satisfied, so that we can regard C x¢ D as a monoidal category
with unit (1,v). It follows that the forgetful functor C x¢ D — C x D carries the left and
right unit constraints of C X¢ D to the left and right unit constraints of C and D. Applying
Proposition we conclude that e is both a left and right unit for the nonunital lax
monoidal functor G. ]

Definition 2.1.5.8. Let C and D be monoidal categories and let F': C — D be a functor.

A laz monoidal structure on F' is a nonunital lax monoidal structure p = {uxy}x vec
(Definition for which there exists a unit € : 1p — F(1¢).

A lax monoidal functor from C to D is a pair (F, u), where F': C — D is functor and pu
is a lax monoidal structure on F'. In this case, we will refer to the morphism € : 1p — F(1¢)
as the unit of F.

Remark 2.1.5.9. Let C and D be monoidal categories and let F': C — D be a nonunital
lax monoidal functor. The condition that F' is a lax monoidal functor depends only on the
underlying nonunital monoidal structures on C and D, and not on the particular choice of

units (1¢,ve) and (1p,vp) for C and D, respectively (see Remark [2.1.2.11)).
Combining Proposition 2.1.4.21] with Corollary [2.1.5.7, we obtain the following:

Corollary 2.1.5.10. Let C and D be monoidal categories, let G : D — C be a functor, let
C %¢ D be the oriented fiber product of Notation[2.1.4.19, and let U : C x¢ D — C x D denote
the forgetful functor (C,D,n) — (C,D). Then the construction u — ®, of Proposition
12.1.4.21| restricts to a bijection

{Lax monoidal structures on G}

Monoidal structures on C X¢ D
with U strict monoidal

(see Example .

Variant 2.1.5.11. Let C and D be monoidal categories and let ' : C — D be a functor.
A colax monoidal structure on F' is a lax monoidal structure on the opposite functor
FoP : C°P — DCP: that is, a collection of maps = {uxy : F(X®Y) - F(X)®F(Y)}xyvec
satisfying the requirements of Variant together with the additional condition that

OODL

0ODM

OOMU

OO0MV
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there exists a counit € : F'(1¢) — 1p having the property that, for every object X € C, the
left and right unit constraints of F'(X) the inverses of the composite maps

F(Ax)
—=%

F(X) Fle® X) 225 P10) @ F(X) €9 15 @ F(X)

Fx) 29 px @ 10) 22 F(X) @ F(1e) 425 F(X) @ 1c.
Remark 2.1.5.12 (Adjoint Functors). Let C and D be monoidal categories and suppose

F
we are given a pair of adjoint functors C ?D, given by an isomorphism of oriented fiber

products C X¢ D ~ C xp D (see Notation [2.1.4.19)). Applying Corollary [2.1.5.10| (and the

dual characterization of colax monoidal functors), we see that the following are equivalent:
e The datum of a lax monoidal structure on the functor G : D — C.
e The datum of a colax monoidal structure on the functor F' : C — D.

e The datum of a monoidal structure on the oriented fiber product C x¢D ~ C xp D
which is compatible with the monoidal structures on C and D.

The compatibility conditions appearing in Definition can be formulated more
directly in terms of the unit constraints of C and D (without referring the left and right unit

constraints of Construction [2.1.2.17]).

Proposition 2.1.5.13. Let C and D be monoidal categories with unit objects 1¢ and 1p,
respectively, let F': C — D be a nonunital lax monoidal functor, and let € : 1p — F(1¢) be a
morphism in C. Then € is a left unit for F' if and only if it satisfies the following pair of
conditions:

(1) The diagram

1p ® 1p — = F(1¢) ® F(1c)
Hic.1c
vp F(1le®1c)
F(vc)
1p = F(1¢)

commutes (in the category D). Here ve and vp denote the unit constraints of C and
D, respectively.


https://kerodon.net/tag/00MW
https://kerodon.net/tag/00DN

166 CHAPTER 2. EXAMPLES OF co-CATEGORIES

(2) For every object X € C, the composite map
®idp(x) Fig,x
1p @ F(X) 2259, pr1g) @ P(X) 2% F1ee X)

is a monomorphism in the category C.

Moreover, if these conditions are satisfied, then the map

) H1p,Xx

®id
1p ® F(X) —% F(1e) @ F(X F(le @ X)

s an isomorphism for each X € C.

Example 2.1.5.14. In the special case where C = {e}, we can identify a nonunital lax 0ODP
monoidal functor F' : C — D with a nonunital algebra object A of D. In this case, Proposition

2.1.5.13| asserts that a morphism € : 1p — A is a left unit (in the sense of Definition [2.1.5.1))
if and only if the diagram

1p®1p e AR A

1p € A

is commutative (that is, € is idempotent) and the map
e®id 4 m
Ip@A—5 A A — A

is a monomorphism in D (that is, € is left cancellative). When D is the category of sets
(equipped with the cartesian monoidal structure of Example [2.1.3.2)), this reduces to the
statement of Proposition 2.1.2.3]

Proof of Proposition[2.1.5.13. To simplify the notation, let us use the symbol 1 to denote
the unit objects of both C and D, v : 1 ® 1 = 1 for the unit constraints of both C and D,
and A for the unit constraints of both C and D. Let F': C — D be a functor equipped with
a nonunital lax monoidal structure u = {px v} x,yec. Suppose first that e : 1 — F(1) is a
left unit for F'. Then the diagram

id1 ®e e®idp(1)

181 ——1® F(1) F(1)® F(1)
\L,Ual,l
A1 F(l ® 1)
AF(1)
\LF()\l)

[y

: F(1)
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commutes: the region on the left commutes by the naturality of the left unit constraints for
D (Remark , and the region on the right commutes by virtue of our assumption
that € is a left unit. The commutativity of the outer square shows that e satisfies condition
(1) of Proposition (by virtue of the fact that the unit constraints of C and D are
given by v = Aq; see Corollary . For every object X € C, the composition

H1,x

e®id
1@ F(X) 25509 p1) @ F(X) M5 P(1e x) L0,

F(X)

is the left unit constraint Ap(x), which is an isomorphism. Since F'()Ax) is also an isomorphism,
it follows that the composition 3 x o (¢ ® idp(x)) is an isomorphism.

Now suppose that e satisfies conditions (1) and (2); we wish to show that it is a left unit
for F'. Fix an object X € C, and let f: 1 ® F(X) — F(X) denote the composition

H1,X

e®id
10 F(X) 2959 p1y o F(X) 225 P(1e x) LA,

F(X).

We wish to show that f is equal to the left unit constraint Ap(x) for the monoidal category
D. Unwinding the definitions, this is equivalent to the assertion that id; ® f is equal to the

composition

a1,1,Xx

1o (1o F(X) 2% 191) @ F(X) 2290w,

19 F(X).

By virtue of assumption (2), it will suffice to prove that these morphisms agree after
postcomposition with the monomorphism

H1,x

1o F(X) 299 pay g FX) 25 P(1 e X),
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This is equivalent to the commutativity of the outer rectangle in the diagram

1010 FX) — =10 (F(1)® F(X)) —* 10 F1oX) 15 F(X)
e 6 E E
o F(1)® (F(1) @ F(X)) > F1) o F1lo X) " ra) e F(X)
o ’ ’
191)® F(X) <2 (F(1) © F(1)) @ F(X) FAe (1o X)) p g X)
" F(a)
v F1l®1)@F(X)——=F(1®1)® X) id
o Fsid)
1® F(X) < F(1)® F(X) a F(1® X).

In fact, the whole diagram commutes: the rectangle on the lower left commutes by virtue
of our assumption that e satisfies (1), the rectangle in the middle commutes by virtue of
the compatibility of the p with the associativity constraints of C and D, the square on the
lower right commutes by the construction of the left unit constraint Ax, and the remaining
regions commute by naturality. O

Example 2.1.5.15. Let k be a field, let Vecty denote the category of vector spaces over k, 00DQ
and let F': Vectp — Set be the forgetful functor, endowed with the nonunital lax monoidal
structure described in Example Then F' is a lax monoidal functor: the function

e: {x} = F(k) e(x)=1€k
is a left and right unit for F.

Example [2.1.5.15] illustrates a special case of a general phenomenon:

Example 2.1.5.16. Let C be a monoidal category, and let F' : C — Set denote the functor OODR
corepresented by the unit object 1 € C, given concretely by the formula F'(X) = Home(1, X).
For every pair of objects X,Y € C, we have a canonical map

pxy  F(X)x F(Y) » F(X®Y),
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which carries a pair of elements x € FI(X), y € F(Y) to the composite map

vt TRy

1 11 » X ®Y.

The collection of maps {ux,y} X,yec determines a lax monoidal structure on the functor F,
with unit given by the map

€:{x} - F(1) = Hom¢(1,1) e(x) =1idy .

Example 2.1.5.17. Let C and D be categories which admit finite products, and regard
C and D as endowed with the cartesian monoidal structures described in Example
Let F': C — D be any functor, and let F°P : C°® — D°P be the induced functor of opposite
categories. Then the functor F°P admits a lax monoidal structure, which associates to
each pair of objects X,Y € C the canonical map puxy : F(X xY) = F(X) x F(Y) in the
category D (which we can view as a morphism from F°P(X)® FP(Y) —» FP(X ®Y) in
the category DP). The unit for F' is given by the unique morphism € : F(1¢) — 1p in the
category D (where 1¢ and 1p are final objects of C and D, respectively).

Definition 2.1.5.18. Let C and D be monoidal categories and let F, F’ : C — D be lax
monoidal functors from C to D. We will say that a natural transformation v : F — F’ is
monoidal if it satisfies the following pair of conditions:

o The natural transformation v is nonunital monoidal, in the sense of Definition [2.1.4.10}
That is, for every pair of objects X,Y € C, the diagram

F(X)® F(Y) ——" = F(X®Y)
Y(X)@(Y) Y(X®Y)
F(X)® F'(Y)—2 L (X aY)

commutes, where p and p are the tensor constraints of F' and F’, respectively.

« The unit of F' is equal to the composition 1p = F(1¢) 2(e), F'(1¢), where € is the
unit of F.

We let Fun'®* (C, D) denote the category whose objects are lax monoidal functors from
C to D and whose morphisms are monoidal natural transformations, which we regard as a
(non-full) subcategory of the category Fun'®*(C, D) introduced in Definition [2.1.4.10)

Remark 2.1.5.19 (Compatibility with Reversal). Let C and D be monoidal categories, let
F : C — D be a nonunital lax monoidal functor, and let £V : C**V — D' be as in Example
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2.1.4.13, Then F is a lax monoidal functor if and only if F™V is a lax monoidal functor.
This observation (and its counterpart for monoidal natural transformations) supplies an
isomorphism of categories Fun'®(C, D) ~ Fun'®*(C*¥, D*V).

Remark 2.1.5.20 (Closure under Composition). Let C, D, and £ be monoidal categories
and let /' : C — D and G : D — £ be functors equipped with nonunital lax monoidal
structures p and v, respectively, so that the composite functor G o F' inherits a nonunital
lax monoidal structure (Construction 2.1.4.17)). If F and G admit units

§:1p = F(l¢)  e:1g — G(1p),

then the composite map
1¢ % G(1p) 2% (G o F)(1c)

is a unit for the composite functor G o F'. This observation (and its counterpart for monoidal
natural transformations) imply that the composition law of Construction restricts
to a functor

o : Fun'™ (D, £) x Fun'®(C, D) — Fun'®(C, &).

Example 2.1.5.21 (Algebra Objects). Let C be a monoidal category. An algebra object
of C is a pair (A, m), where A is an object of C and m : A® A — A is a nonunital algebra
structure on A (Example for which there exists a unit € : 1 — A (in the sense of
Definition 2.1.5.1)). If (A4,m) and (A’,m’) are algebra objects of C with units e : 1 — A and
€ 11— A’, then we say that a morphism f : A — A’ is an algebra homomorphism if it is
a nonunital algebra homomorphism (Example which satisfies € = foe. We let
Alg(C) denote the category whose objects are algebra objects of C and whose morphisms
are algebra homomorphisms. We regard Alg(C) as a (non-full) subcategory of the category
Alg"™(C) of nonunital algebra objects of C defined in Example m

Let {e} denote the trivial monoid, regarded as a (strict) monoidal category having only
identity morphisms (Example . Then algebra objects of C can be identified with lax
monoidal functors {e} — C. More precisely, the isomorphism Fun'®*({e},C) ~ Alg™(C) of
Example specializes to an isomorphism of (non-full) subcategories Fun'®({e},C) ~
Alg(C).

Example 2.1.5.22. Let Set denote the category of sets, equipped with the cartesian
monoidal structure of Example Then we can identify algebra objects of Set with
monoids. More precisely, there is a canonical isomorphism of categories Alg(Set) ~ Mon,
where Mon denotes the category of monoids (Definition .

For later use, we record the following elementary fact about algebra objects of a monoidal
category C:

00DV

OODW

OODF
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02AQ Proposition 2.1.5.23. Let C be a monoidal category and let (A, m) be an algebra object of
C. The following conditions are equivalent:

(1) The unit map € : 1 — A is an isomorphism in C.

(2) The object A is invertible: that is, there exists an object B € C for which the tensor
products A ® B and B ® A are isomorphic to 1.

(3) The construction X — A ® X determines a fully faithful functor from C to itself.

Proof. The implications (1) = (2) = (3) are immediate. We will prove that (3) implies (1).
It follows from assumption that (3) that there is a unique morphism f: A — 1 for which
the lower right triangle in the diagram

Agl—9% 404
PA m ida ®f
021
A—— s A®1

commutes. The upper left triangle also commutes, since € is a right unit with respect to the
multiplication m. It follows that the square commutes: that is, the composition

Aw1 9498 g g Ma® 4 oq

is equal to the identity. Invoking assumption (3), we conclude that f is a left inverse to e:
that is, the composition f o€ is equal to the identity on the unit object 1.

We now show that f is also a right inverse to e: that is, the composition € o f is equal to
the identity morphism id4. Consider the diagram

A7t i
A A 1A _ ®ida g ® A
id1 ®f ida ®f
e®idy
! 1®1 A1
v
pa
1 < A.

The defining property of f guarantees that the vertical composition on the right coincides
with the multiplication map m : A ® A — A. The assumption that € is a left unit with
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respect to the multiplication m shows that clockwise composition around the diagram gives
the identity map id4 : A — A. To complete the proof, it will suffice to show that the diagram
commutes. The commutativity of the upper right square follows from the functoriality of
the tensor product, the commutativity of the trapezoidal region on the left follows from the
functoriality of the left unit constraints of C, and the commutativity of the trapezoidal region
on the bottom from the functoriality of the right unit constraints of C (here we invoke the
fact that the map v:1® 1 = 1 coincides with both A\; and py; see Corollary . O

2.1.6 Monoidal Functors

We now introduce the unital analogue of Definition [2.1.4.4]

Definition 2.1.6.1. Let C and D be monoidal categories, and let F' : C — D be a functor. A
monoidal structure on F' is a nonunital lax monoidal structure p = {pxy }x,yec (Definition
2.1.4.3)) which satisfies the following additional conditions:

o For every pair of objects X,Y € C, the tensor constraint puxy : F(X)® F(Y) —

F(X ®Y) is an isomorphism in D (that is, x is a nonunital monoidal structure on F).

o There exists an isomorphism € : 1p — F(1¢) which is a unit for F (in the sense of
Definition [2.1.5.2)).

A monoidal functor from C to D is a pair (F, u), where F' is a functor from C to D and p is
a monoidal structure on F.

Remark 2.1.6.2. Let C and D be monoidal categories. We will generally abuse terminology

by identifying a monoidal functor (F, u) from C to D with the underlying functor F': C — D.

If we refer to F' as a monoidal functor, we implicitly assume that it has been equipped with
a monoidal structure p = {uxy}xvec-

Warning 2.1.6.3. Let C and D be monoidal categories, and let F' : C — D be a nonunital lax
monoidal functor. If F is a monoidal functor from C to D, then it is both a nonunital monoidal
functor (that is, the tensor constraints pxy : F(X)® F(Y) — F(X ® Y') are isomorphisms)
and a lax monoidal functor (that is, it admits a unit € : 1p — F'(1¢)). However, the converse
is false: to qualify as a monoidal functor, F' must satisfy the additional condition that € is

an isomorphism.

Remark 2.1.6.4. Let C and D be monoidal categories and let F': C — D be a nonunital
monoidal functor. Let € : 1p — F(1¢) be an isomorphism in the category C. Then €
automatically satisfies condition (2) of Proposition [2.1.5.13f for each X € C, both of the
maps
®idp(x) g x
Ip@F(X) ——= F(1¢) @ F(X) —— F(1lc ® X)

00DX

00DY

00DZ

(010)00)
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are isomorphisms. It follows that € is a unit for F' if and only if it satisfies condition (1) of
Proposition [2.1.5.13} that is, if and only if the diagram

1p®1p — =+ F(1¢) ® F(1¢)
pc e
Up F(le®1e)
F(ve)
1p ‘ F(1c)

is commutative. By virtue of Proposition there exists an isomorphism e satisfying
this condition if and only if the pair (F'(1¢), F'(ve) © p1,.,1,) is a unit of C (in the sense of
Definition .
In other words, a nonunital monoidal functor F': C — D is monoidal if and only if the
functors
D—7D X—Flo)eX

DD X X®F(l)

are fully faithful (in which case they are both canonically isomorphic to the identity functor
idp : D ~ D).

00E2 Example 2.1.6.5 (Strict Monoidal Functors). Let C and D be strict monoidal categories
(Definition . We say that a functor F': C — D is strict monoidal if it is a nonunital
strict monoidal functor (Definition [2.1.4.1)) which carries the strict unit object 1¢ to the
strict unit object 1p.

Every strict monoidal functor F' : C — D can be regarded as a monoidal functor
from C to D, by taking each tensor constraint uxy to be the identity morphisms from
FX)® F(Y)=F(X®Y) to itself. Conversely, if (F,u) is a monoidal functor for which
the tensor constraints pxy and the unit morphism € : 1p — F'(1¢) are identity morphisms
in D, then F' is a strict monoidal functor from C to D.

00E3 Example 2.1.6.6. Let M and M’ be monoids, regarded as monoidal categories having only
identity morphisms (Example . Then lax monoidal functors from M to M’ (in the
sense of Definition can be identified with monoid homomorphisms from M to M’
(in the sense of Definition [1.3.2.3)). Moreover, every lax monoidal functor from M to M’ is
automatically strict monoidal (and therefore monoidal).
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Example 2.1.6.7. Let C be a monoidal category, and let £ : C — Fun(C,C) be the nonunital
monoidal functor of Example (carrying each object X € C to the functor £x : C — C
given by £x(Y) = X ®Y). Then ¢ is a monoidal functor: it admits a unit € : ide — ¢1 given
by the inverse of the left unit constraint of Construction To prove this, it suffices
to verify that e satisfies property (1) of Proposition (Remark . Unwinding
the definitions, this is equivalent to the assertion that for every object X € C, the outer
cycle of the diagram

X

19X

is commutative. In fact, the whole diagram commutes: for the inner cycle on the left this is
immediate, and for the inner cycle on the right it follows from the definition of the left unit

constraing Ax (Construction [2.2.1.11])).

Example 2.1.6.8 (2-Cochains as Monoidal Structures). Let G be a group and let I be an
abelian group equipped with an action of G. Let C be the category introduced in Example
2.1.3.3] whose objects are the elements of G and morphisms are given by

I' ifg=h

@ otherwise.

Home (g, h) = {

Then every 3-cocycle o : G x G X G — I' can be regarded as the associativity constraint for
a monoidal structure (®,a) on C. Let us write C(«) to indicate the category C, endowed
with the monoidal structure (®, o).

Suppose that we are given a pair of cocycles a,a’ : G x G x G — I'. Unwinding the
definitions, we see that monoidal structures on the identity functor ide : C(a) — C(o) are
given by functions

w:GxG—T (z,y) = Ly

which satisfy the identity
Qay,z + Hayz + T(fy,2) = fay,z + Hay + O‘:lv,yvz

for x,y,z € G. We can rewrite this identity more compactly as an equation o + du = o/,

where

d : {2-Cochains G x G — I'} — {3-Cochains G x G x G — T'}

OOE4

OOEbS
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is defined by the formula (dit)zy.> = (ly,2) — Hay,> + oy — Bay-

In particular, the identity functor ide can be promoted to a monoidal functor from C(«)
to C(d’) if and only if the cocycles « and o are cohomologous: that is, they represent the
same element of the cohomology group H?(G;T).

Notation 2.1.6.9. Let C and D be monoidal categories, and let F, F’ : C — D be monoidal
functors. We say that a natural transformation v : F' — F’ is monoidal if it is monoidal
when viewed as a natural transformation of lax monoidal functors (Definition 2.1.5.18). We
let Fun®(C, D) denote the category whose objects are monoidal functors from C to D and
whose morphisms are monoidal natural transformations. We regard Fun®(C, D) as a full
subcategory of the category Fun'® (C, D) of Definition (or as a non-full subcategory
of the category Fun%, (C, D) of nonunital monoidal functors from C to D).

Warning 2.1.6.10. We will not be consistent in our usage of Notation|2.1.6.9] For example, if
C and D are symmetric monoidal categories ([?]), then we will sometimes write Fun®(C, D) to

denote the category of symmetric monoidal functors from C to D (which is a full subcategory
of the category of monoidal functors from C to D defined in Notation [2.1.6.9)).

Remark 2.1.6.11 (Compatibility with Reversal). Let C and D be monoidal categories,
let £ : C — D be a nonunital lax monoidal functor, and let F**V : C*®V — D™ be as in
Example 2.1.4.13] Then F is a monoidal functor if and only if F™" is a monoidal functor.
This observation (and its counterpart for monoidal natural transformations) supplies an
isomorphism of categories Fun®(C, D) ~ Fun®(C*", D*®V).

Remark 2.1.6.12 (Opposite Functors). Let C and D be monoidal categories, let F': C — D
be a nonunital monoidal functor, and let F°P : C°® — D°P be the induced nonunital monoidal
functor on opposite categories (Example . Then F' is a monoidal functor if and only
if F°P is a monoidal functor. This observation (and its counterpart for monoidal natural
transformations) supplies an isomorphism of categories Fun®(C, D)°P ~ Fun®(C°P, D°P).

Remark 2.1.6.13 (Composition of Monoidal Functors). Let C, D, and £ be monoidal
categories and let F' : C — D and G : D — &£ be functors equipped with nonunital lax
monoidal structures p and v, respectively, so that the composite functor G o F' inherits a
nonunital lax monoidal structure (Construction . If 1 and v are monoidal structures
on F and G, then G o F' inherits a monoidal structure. This observation (and its counterpart
for monoidal natural transformations) imply that the composition law of Construction
restricts to a functor

o: Fun®(D, &) x Fun®(C, D) — Fun®(C, £).

Example 2.1.6.14. Let C and D be categories which admit finite products, endowed with
the cartesian monoidal structure described in Example [2.1.3.2] For any functor F': C — D,
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we can regard the opposite functor F°P : C°? — D as endowed with the lax monoidal
structure described in Example This lax monoidal structure is a monoidal structure
if and only if the functor F' preserves finite products. If this condition is satisfied, then the
original functor F inherits a monoidal structure (Remark [2.1.6.12).

Example 2.1.6.15 (1-Cochains as Natural Transformations). Let G be a group, let I' be
an abelian group equipped with an action of GG, and choose a pair of 3-cocycles

a,d/ G xGxG—=T,

which we can regard as associativity constraints for monoidal categories C(«) and C()
having the same underlying category C (Example . Suppose we are given a pair
of monoidal structures p and g/ on the identity functor ide, which we can identify with
2-cochains p, i/ : G x G — T satisfying

a+dp=d a+dy =d.
Then the difference v = p — p/ is a 2-cocycle: that is, it satisfies the identity
Ty > = Vayz + Vayz — Vaoy =0

for every triple of elements x,y,z € G.
Note that a natural transformation from the identity functor id¢ to itself can be identified

with a function

v:G—=T T = Va5

that is, with a 1-cochain on G taking values in the group I'. Unwinding the definitions, we
see that the natural transformation ~ is monoidal (with respect to the monoidal structures
supplied by p and ', respectively) if and only if it satisfies the identity

:U*gc,y + XYy + Ve = bay + Vay

for every pair of elements z,y € G. We can rewrite this identity more conceptually as
' + dvy = p, where

d : {1-Cochains G — I'} — {2-Cochains G x G — I'}

is defined by the formula (dv)s,y = () — Y2y + V2 In particular, the monoidal functors
(ide, i) to (ide, p') are isomorphic if and only if the 2-cocycle v = p — p/ is a coboundary:
that is, it has vanishing image in the cohomology group H?(G;T).

OOEC
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2.1.7 Enriched Category Theory

OOED
Let C be a category. For every pair of objects X,Y € C, we let Hom¢(X,Y') denote the

set of morphisms from X to Y in C. In many cases of interest, the sets Hom¢(X,Y) can be
endowed with additional structure, which are respected by the composition law on C. To
give a systematic discussion of this phenomenon, it is convenient to use the formalism of
enriched category theory.

OOEE| Definition 2.1.7.1. Let A be a monoidal category with unit object 1. An A-enriched
category C consists of the following data:

(1) A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X € C to indicate that X is an element of Ob(C).

(2) For every pair of objects X,Y € Ob(C), an object Hom(X,Y') of the monoidal category
A.

(3) For every triple of objects X,Y, Z € Ob(C), a morphism

czy,x : Home (Y, Z) ® Home(X,Y) — Home (X, Z)

in the category A, which we will refer to as the composition law.

(4) For every object X € Ob(C), a morphism ex : 1 — Hom.(X, X) in the category A,
which we refer to as the identity of X.

These data are required to satisfy the following conditions:
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(A) For every quadruple of objects W, X,Y, Z € Ob(C), the diagram
Hom, (Y, Z) ® Hom,(W,Y)

%

Hom, (Y, Z) ® (Hom,(X,Y) ® Homg( cz,y,w
o Hom. (W, Z)
(Hom, (Y, Z) ® Hom,( ) ® Home( cz,xXW

M\

Hom, (X, Z) ® Hom.(W, X)
commutes. Here av denotes the associativity constraint on the monoidal category .A.
(U) For every pair of objects X,Y € Ob(C), the diagrams

1 ® Home(X,Y) ernd Home(Y,Y) ® Home (X, Y)

)
\ /

Hom, (X,
Hom(X,Y)® 1 d@ex Hom,(X,Y) ® Home (X, X)
Hom,(X,Y)

commute, where A and p denote the left and right unit constraints on A (see Construc-
tion [2.1.2.17)).

Example 2.1.7.2 (Categories Enriched Over Sets). Let A = Set be the category of sets, 00EF
endowed with the monoidal structure given by the cartesian product (see Example .
Then an A-enriched category (in the sense of Definition can be identified with a
category in the usual sense.
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Example 2.1.7.3. Let A be a monoidal category. If C is a category enriched over A and X
is an object of C, then the composition law

cx,x,x : Home (X, X) ® Home (X, X) — Hom, (X, X)

exhibits Hom, (X, X)) as an algebra object of A, in the sense of Example [2.1.5.21} Moreover,
this construction induces a bijection

{A-Enriched Categories C with Ob(C) = {X}} ~ {Algebra objects of A}.

Consequently, the theory of enriched categories can be regarded as a generalization of the
theory of associative algebras (See Example [2.1.7.14] for a more precise statement).

Remark 2.1.7.4 (Functoriality). Let A and A" be monoidal categories, and let F': A — A’
be a lax monoidal functor (with tensor constraints s g : F'(A)®@ F(B) — F(A® B) and unit
€:14 — F(14)). Then every A-enriched category C determines an A’-enriched category C’,
which can be described concretely as follows:

o The objects of C" are the objects of C: that is, we have Ob(C’) = Ob(C).
o For every pair of objects X, Y € Ob(C’), we set Hom (X,Y) = F(Hom,(X,Y)).

o For every triple of objects X,Y, Z € Ob(C’), the composition law c’Z,K « for C' is given
by the composition

Home (Y, Z) ® Home (X, Y) Y,Z)) ® F(Homq(X,Y))

= (Home (
Y F(Home(Y, )®Ho4mc(X7 Y))
(Home (

 For every object X € Ob(C’), the identity morphism €’y for X in C’ is given by the
composition

1o 5 F(1a) 29 F(Homg (X, X)) = Home (X, X).

Example 2.1.7.5 (The Underlying Category of an Enriched Category). Let A be a monoidal
category and let F': A — Set be the functor given by F(A) = Hom4(1, A), endowed with
the lax monoidal structure of Example If C is a category enriched over A, then
we can apply the construction of Remark to obtain a Set-enriched category, which
we can identify with an ordinary category (Example [2.1.7.2)). We will refer to this category
as the underlying category of the A-enriched category C, and we will generally abuse
notation by denoting it also by C. Concretely, this underlying category has the same
objects as the enriched category C, with morphism sets given by the formula Hom¢(X,Y) =
Horm4(1, Home (X, ).
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Remark 2.1.7.6. Let A be a monoidal category and let C be an ordinary category. We
define an A-enrichment of C to be an A-enriched category C together with an identification
of C with the underlying category of C, in the sense of Example [2.1.7.5

Example 2.1.7.7 (Enrichment in Vector Spaces). Let k be a field and let Vecty denote
the category of vector spaces over k, endowed with the monoidal structure given by tensor
product over k (Example . Then choosing an Vecty-enrichment of C is equivalent to
endowing each of the sets Home (X, Y') with the structure of a k-vector space, for which the
composition maps

Home (Y, Z) x Home(X,Y) — Home (X, Z)

are k-bilinear.

Example 2.1.7.8 (Topologically Enriched Categories). Let Top denote the category of
topological spaces, endowed with the monoidal structure given by the cartesian product
(Example . We will refer to a Top-enriched category as a topologically enriched
category. Note that the functor F' of Example is (canonically isomorphic to) the
forgetful functor Top — Set. Consequently, if C is a topologically enriched category, then
the underlying ordinary category Cq can be described concretely as follows:

o The objects of the ordinary category Cq are the objects of the Top-enriched category C.

o Given a pair of objects X,Y € Cp, a morphism f from X to Y (in the ordinary category
Co) is a point of the topological space Hom,(X,Y).

e Given a pair of morphisms f: X — Y and g: Y — Z in Cyp, the composition go f is
given by the image of (g, f) under the continuous map

czy,x  Home (Y, Z) ® Home(X,Y) — Home (X, Z).

It follows that, for any ordinary category Cg, promoting Cg to a topologically enriched
category C is equivalent to endowing each of the morphism sets Home,(X,Y) with a
topology for which the composition maps o : Home, (Y, Z) x Home, (X,Y) — Home, (X, Z)

are continuous.

Exercise 2.1.7.9 (Uniqueness of Identities). Let A be a monoidal category. A nonunital
A-enriched category C consists of a collection Ob(C) of objects of C, together with objects
{Hom¢(X,Y)} x yeon(c) of the category A and composition laws

czy,x : Home (Y, Z) @ Home(X,Y) — Home (X, Z)

which satisfy the associative law (A) appearing in Definition[2.1.7.1, Show that, if a nonunital
A-enriched category C can be promoted to an A-enriched category C, then C is unique: that
is, the identity maps ex : 1 — Hom(X, X) are determined by axiom (U) of Definition
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00JE| Definition 2.1.7.10. Let A be a monoidal category, and let C and D be A-enriched
categories. An A-enriched functor F' : C — D consists of the following data:

(1) For every object X € Ob(C), and object F(X) € Ob(D).
(2) For every pair of objects X,Y € Ob(C), a morphism
Fxy : Home(X,Y) — Homp(F(X), F(Y))
in the category A.
These data are required to satisfy the following conditions:

e For every object X € Ob(C), the morphism ep(x) : 1 — Homp(F(X), F'(X)) factors
as a composition

Fx x

1 =5 Home (X, X) —= Homp(F(X), F(X)).

o For every triple of objects X,Y, Z € Ob(C), the diagram

Hom,(Y, Z) ® Hom.(X,Y) Hom.(X, Z)
Fy z®Fxy Fx .z

Homp (F(Y), F(Z)) ® Homp (F(X), F(Y)) Homp (F(X), F(Z))
commutes (in the category A); here the horizontal maps are given by the composition
laws on C and D.

00JF Notation 2.1.7.11 (The Category of Enriched Categories). Let A be a monoidal category.
We say that an A-enriched category C is small if the collection of objects Ob(C) is small.
The collection of small A-enriched categories can itself be organized into a category Cat(.A),
whose morphisms are given by A-enriched functors (in the sense of Definition .

00JG Example 2.1.7.12. Let C and D be small categories, which we regard as Set-enriched
categories by means of Example Then Set-enriched functors from C to D (in the
sense of Definition can be identified with functors from C to D in the usual sense.
This identification determines an isomorphism of categories Cat ~ Cat(Set).

00JH Remark 2.1.7.13. Let F : A — A’ be a lax monoidal functor between monoidal categories.
Then the construction of Remark [2.1.7.4] determines a functor Cat(A) — Cat(A’). In the
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special case where A" = Set and F' is the functor A — Hom 4(1,.4) corepresented by the
unit object 1 € A, we obtain a forgetful functor

Cat(A) — Cat(Set) ~ Cat,

which assigns to each (small) A-enriched category C its underlying ordinary category

(Example [2.1.7.5)).
Example 2.1.7.14. Let A be a monoidal category, let A be an algebra object of A, which

we can identify with an A-enriched category C 4 having a single object X (Example [2.1.7.3)).

For any A-enriched category D containing an object Y, we have a canonical bijection

{A-Enriched Functors F': C4 — D with F(X) =Y}

{Algebra homomorphisms A — Homp(Y,Y)}.
In particular, if D = Cp for some other algebra object B € Alg(.A), we obtain a bijection
Homcyg(4)(Ca,Cp) =~ Hompye( 4) (A, B).

In other words, the construction A — C4 induces a fully faithful embedding Alg(A) —
Cat(A), whose essential image is spanned by those A-enriched categories having a single
object.

2.2 The Theory of 2-Categories

The collection of (small) categories can itself be organized into a (large) category Cat,
whose objects are small categories and whose morphisms are functors. However, the structure
of Cat as an abstract category fails to capture many of the essential features of category
theory:

(i) Given a pair of functors F,G : C — D with the same source and target, we are usually
not interested in the question of whether or not F' and G are equal. Instead, we should

regard F' and G as interchangeable if there exists a natural isomorphism «a : F ~ G.

This sort of information is not encoded in the structure of the category Cat.

(ii) Given a pair of categories C and D, we are usually not interested in the question
of whether or not C and D are isomorphic. Instead, we should regard C and D as
interchangeable if there exists an equivalence of categories from F : C — D. In this
case, the functor F' need not be invertible when regarded as a morphism in Cat.

00JJ
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To remedy the situation, it is useful to contemplate a more elaborate mathematical
structure.

007L| Definition 2.2.0.1. A strict 2-category C consists of the following data:

o A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X € C to indicate that X is an element of Ob(C).

o For every pair of objects X, Y € C, a category Hom,(X,Y"). We refer to objects f of the
category Hom,(X,Y') as 1-morphisms from X to Y and write f : X — Y to indicate
that f is a I-morphism from X to Y. Given a pair of 1-morphisms f, g € Hom,(X,Y),
we refer to morphisms from f to g in the category Hom,(X,Y") as 2-morphisms from
f tog.

e For every triple of objects X,Y, Z € C, a composition functor

o: Hom,(Y, Z) x Hom,(X,Y) — Hom.(X, Z).

o For every object X € C, an identity 1-morphism idx € Homq(X, X).

These data are required to satisfy the following conditions:

(1) For each object X € C, the identity 1-morphism idy is a unit for both right and left
composition. That is, for every object Y € C, the functors

Hom,(X,Y) — Hom.(X,Y) [ foidx
Hom,(Y, X) — Hom,(Y, X) g — idx og
are both equal to the identity.

(2) The composition law of C is strictly associative. That is, for every quadruple of objects
W, X,Y, Z € C, the diagram of categories

Hom, (Y, Z) x Hom.(X,Y) x Hom. (W, X) dxe Hom(Y, Z) x Hom.(W,Y')
oxid o
Hom, (X, Z) x Hom (W, X) : Hom. (W, Z)

commutes (in the ordinary category Cat).
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Remark 2.2.0.2 (Strict 2-Categories as Enriched Categories). Let Cat denote the category
whose objects are (small) categories and whose morphisms are functors. Then Cat admits
finite products, and therefore admits a monoidal structure given by the formation of cartesian
products (Example . Neglecting set-theoretic technicalities, a strict 2-category (in
the sense of Definition can be identified with a Cat-enriched category (in the sense

of Definition [2.1.7.1]).

Remark 2.2.0.3. To every strict 2-category C, we can associate an ordinary category Cg,
whose objects and morphisms are given by

Ob(Cy) = Ob(C) Home, (X,Y) = Ob(Hom.(X,Y)).

We will refer to Cy as the underlying ordinary category of C (note that Cy can be obtained
from C by the general procedure of Example [2.1.7.5)). More informally, the underlying
category Cq is obtained from C by “forgetting” its 2-morphisms.

Example 2.2.0.4. We define a strict 2-category Cat as follows:
o The objects of Cat are (small) categories.

o For every pair of small categories C, D € Cat, we take Homc,¢(C, D) to be the category
Fun(C, D) of functors from C to D.

e The composition law on Cat is given by the usual composition of functors.

We will refer to Cat as the strict 2-category of (small) categories. Note that the underlying
ordinary category of Cat is the category Cat (whose objects are small categories and
morphisms are functors).

We can obtain many more examples by studying categories equipped with additional
structure.

Example 2.2.0.5. We define a strict 2-category MonCat as follows:
o The objects of MonCat are (small) monoidal categories.

o For every pair of small monoidal categories C and D, we take Hompioncat (C, D) to be
the category Fun®(C, D) of monoidal functors from C to D (Notation [2.1.6.9).

e The composition law on MonCat is given by the composition of monoidal functors
described in Remark [2.1.6.13)

There are several obvious variants on this construction: for example, we can work with
nonunital monoidal categories in place of monoidal categories, or lax monoidal functors in

place of monoidal functors.

OOEN

OOEP

007M

OOEQ


https://kerodon.net/tag/00EN
https://kerodon.net/tag/00EP
https://kerodon.net/tag/007M
https://kerodon.net/tag/00EQ

007W

OOER

OOES

2.2. THE THEORY OF 2-CATEGORIES 185

Example 2.2.0.6 (Ordinary Categories). Every ordinary category can be regarded as a
strict 2-category. More precisely, to each category C we can associate a strict 2-category C’
as follows:

e The objects of C" are the objects of C.

o For every pair of objects X,Y € C, objects of the category Hom./ (X,Y") are elements
of the set Hom¢(X,Y'), and every morphism in Hom/(X,Y) is an identity morphism.

e For every triple of objects X, Y, Z € C, the composition functor
o: Homp (Y, Z) x Homy(X,Y) — Home (X, Z)
is given on objects by the composition map Home (Y, Z) x Home(X,Y) — Home (X, Z).

o For every object X € C, the identity object idy € Homg (X, X) coincides with the
identity morphism idx € Home (X, X).

In this situation, we will generally abuse terminology by identifying the strict 2-category C’
with the ordinary category C (see Example [2.2.5.7]).

Remark 2.2.0.7 (Endomorphism Categories). Let C be a strict 2-category and let X be an
object of C. We will write End(X) for the category Hom. (X, X). Then the composition
law

o: Homy(X, X) x Hom,(X, X) — Hom, (X, X)

determines a strict monoidal structure on the category Endq(X).

Note that, if C is an ordinary category (regarded as a strict 2-category by means of
Example [2.2.0.6), then the endomorphism category End.(X) can be identified with the
endomorphism monoid End¢(X) of Example regarded as a (strict) monoidal category

via Example [2.1.2.8

Example 2.2.0.8 (Delooping). Let M be a category equipped with a strict monoidal
structure ® : M x M — M (Definition [2.1.2.1)). We define a strict 2-category B M as
follows:

o The set of objects Ob(B M) is the singleton set {X}.
o The category Homp y,(X, X) is equal to M.

o The composition functor o : Homp r,(X, X) x Hompg (X, X) — Homp (X, X) is
equal to the tensor product ® : M x M — M.

e The identity morphism idx is the strict unit object of M.
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We will refer to B M as the delooping of M.
Note that the constructions

M~ BM C — End.(X)
induce mutually inverse bijections
{Strict Monoidal Categories M} ~ {Strict 2-Categories C with Ob(C) = {X}},

generalizing the identification of Remark

The reader might at this point object that the definition of strict 2-category violates a
fundamental principle of category theory: axioms (1) and (2) of Definition require
that certain functors are equal. In practice, one often encounters mathematical structures C
which do not quite fit in the framework of Definition because the associative law
for composition of 1-morphisms in C holds only up to isomorphism. To address this point,
Bénabou introduced a more general type of structure which he called a bicategory, which we
will refer to here as a 2-category.

Our goal in this section is to give a brief introduction to the theory of 2-categories. We
begin in by reviewing the definition of a 2-category (Deﬁnition and establishing
some notational and terminological conventions. Every strict 2-category can be regarded as
a 2-category (Example , but many of the 2-categories which arise “in nature” fail to
be strict: we discuss several examples of this phenomenon in

To articulate the relationship between 2-categories and strict 2-categories more precisely,
it is convenient to view each as the objects of a suitable (ordinary) category. In we
introduce the notion of a functor between 2-categories (Definition . Roughly speaking,
a functor F': C — D is an operation which carries objects, 1-morphisms, and 2-morphisms of
C to objects, 1-morphisms, and 2-morphisms of D, which is compatible with the composition
laws on C and D. Here again there are several possible definitions, depending on whether
one demands that the compatibility holds strictly (in which case we say that F' is a strict
functor), up to isomorphism (in which case we say that F' is a functor), or up to possible
non-invertible 2-morphism (in which case we say that F'is a laz functor). We use this notion
in to introduce an (ordinary) category 2Cat, whose objects are 2-categories and whose
morphisms are functors between 2-categories (and consider several other variations on this
theme).

The notion of 2-category is more general than the notion of strict 2-category defined above:
in general, a 2-category C need not be strict or even isomorphic (as an object of 2Cat) to a
strict 2-category C’. However, we will prove in that every 2-category C is isomorphic
to a strictly unitary 2-category C’: that is, a 2-category C’ in which the composition law is
strictly unital, but not necessarily strictly associative (Proposition . The proof will
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make use of a certain twisting procedure in the setting of 2-categories (Construction [2.2.6.8)),
which we will describe in 2.2.6]

Remark 2.2.0.9. Let C be a 2-category. It is generally not possible to find a strict 2-category
C' which is isomorphic to C (as an object of the category 2Cat we will introduce in .
However, it is always possibly to find a strict 2-category C’ which is equivalent to C; we will
return to this point in §[?].

2.2.1 2-Categories

Let C be a strict 2-category (Definition [2.2.0.1)). Then the composition of 1-morphisms
in C is strictly associative: that is, given a triple of composable 1-morphisms

fWw—-=X g: X =Y h:Y - Z

of C, we have an equality ho (go f) = (hog)o f. Our goal in this section is to introduce the
more general notion of (non-strict) 2-category, where we weaken the associativity requirement:
rather than demand that the 1-morphisms ho (go f) and (hog) o f are identical, we instead
ask for a specified isomorphism ay, 4 : ho(go f) = (hog)o f in the category Hom.(W, Z).
In order to obtain a sensible theory, we must require that these isomorphisms satisfy an
analogue of the pentagon identity which appears in Definition [2.1.1.5

Definition 2.2.1.1 (Bénabou). A 2-category C consists of the following data:

« A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X € C to indicate that X is an element of Ob(C).

o For every pair of objects X,Y € Ob(C), a category Hom.(X,Y). We refer to objects
f of the category Hom.(X,Y) as 1-morphisms from X toY and write f: X — Y
to indicate that f is a l-morphism from X to Y. Given a pair of 1-morphisms
fyg € Hom.(X,Y), we refer to morphisms from f to g in the category Hom,(X,Y)
as 2-morphisms from f to g. We will sometimes write v : f = g or f SN g to indicate
that ~ is a 2-morphism from f to g.

o For every triple of objects X,Y, Z € Ob(C), a composition functor
o: Homq(Y, Z) x Homq(X,Y) — Hom, (X, 7).
o For every object X € Ob(C), a 1-morphism idx € Hom.(X, X), which we call the
identity 1-morphism from X to itself.

« For every object X € Ob(C), an isomorphism vy : idy oidy = idx in the category
Homg (X, X). We refer to the 2-morphisms {vx } xeob(c) as the unit constraints of C.
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e For every quadruple of objects W, X, Y, Z € C, a natural isomorphism « from the

functor

Home(Y, Z) x Homg (X, Y) x Home (W, X) = Home(W, 2)  (hg, f) > ho(go f)
to the functor

Home (Y, Z) x Home (X, Y) x Home (W, X) — Home (W, Z) (R, g, f) = (hog)o f.

We denote the value of « on a triple (h, g, f) by apgf:ho(go f) = (hog)o f. We
refer to these isomorphisms as the associativity constraints of C.

These data are required to satisfy the following pair of conditions:
(C) For every pair of objects X,Y € Ob(C), the functors
Hom(X,Y) — Home(X,Y)  fr foidx
Hom,(X,Y) — Hom,(X,Y) f=idyof
are fully faithful.

(P) For every quadruple of composable 1-morphisms

vewlhxgyhy

in C, the diagram of isomorphisms

ho((go f)oe) —=LL s (ho(go f))oe

idh Oa’g,f,e Och’gnyide
~ ~

ho(go(foe))

((hog)
X /
(hog)o(foe)

commutes in the category Hom.(V, 7).

of)oe

Remark 2.2.1.2. An equivalent formulation of Definition |2.2.1.1| was given by Bénabou in 007R
[4]. Beware that Bénabou uses the term bicategory for what we call a 2-category.

Remark 2.2.1.3. In the situation of Definition [2.2.1.1} we will refer to axiom (P) as the 007S
pentagon identity.
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Example 2.2.1.4 (Strict 2-Categories). Let C be any strict 2-category (in the sense of
Definition [2.2.0.1)). Then C can be viewed as a 2-category (in the sense of Definition [2.2.1.1)
by taking the unit and associativity constraints vy and a4 ¢ to be identity 2-morphisms in

C.

Warning 2.2.1.5. Let C be a 2-category. If C is strict, then we can extract from C an
underlying ordinary category having the same objects and 1-morphisms (Remark .
However, this operation has no counterpart for a general 2-category C: in general, composition
of 1-morphisms in C is associative only up to isomorphism.

Remark 2.2.1.6. Let C be a 2-category. Then C can be obtained from an ordinary category
(via the construction of Example [2.2.0.6) if and only if every 2-morphism in C is an identity
2-morphism (note that a 2-category with this property is automatically strict, by virtue of

Example [2.2.1.4).

Remark 2.2.1.7 (Endomorphism Categories). Let C be a 2-category and let X be an
object of C. We will denote the category Hom.(X, X) by End.(X) and refer to it as the
endomorphism category of X. The category End.(X) has a monoidal structure, with tensor
product given by the composition law

o: Home(X, X) x Home (X, X) — Hom. (X, X),

unit object given by the identity 1-morphism idx, and the unit and associativity constraints
of End,-(X) given by vy and the associativity constraints of C, respectively.

Notation 2.2.1.8. Let C be a 2-category. We will generally follow the convention of denoting
objects of C by capital Roman letters, 1-morphisms of C by lowercase Roman letters, and
2-morphisms of C by lowercase Greek letters. However, we will often violate this convention
when discussing specific examples. For instance, when studying the (strict) 2-category Cat
of small categories (Example , we denote objects using calligraphic letters (such as C
and D) and 1-morphisms using uppercase Roman letters (such as F' and G).

Warning 2.2.1.9. Let C be a 2-category. Then there are two different notions of composition
for the 2-morphisms of C:

(V) Let X and Y be objects of C. Suppose we are given l-morphisms f,g,h: X — Y and
a pair of 2-morphisms

y:f=g9 d:9=h.

We can then apply the composition law in the ordinary category Hom.(X,Y’) to obtain
a 2-morphism f = h, which we refer to as the wvertical composition of v and 6.
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(H) Let X, Y, and Z be objects of C. Suppose we are given 2-morphisms v : f = ¢ in the
category Hom(X,Y) and v : f' = ¢’ in the category Hom,(Y, Z). Then the image
of (7/,7) under the composition law

o: Homy(Y, Z) x Homq(X,Y) — Hom, (X, Z),

is a 2-morphism from f’ o f to ¢’ o g, which will refer to as the horizontal composition
of v and «'.

The terminology is motivated by the following graphical representations of the data described
in (V) and (H):

!
f I
L8N T
h

To avoid confusion, we will generally denote the vertical composition of 2-morphisms + and
d by 0 and the horizontal composition of 2-morphisms « and 7' by 7/ 0.

Remark 2.2.1.10. Let C be a 2-category. For each object X € Ob(C), the identity 1- 00EV
morphism idx and the unit constraint vx are determined (up to unique isomorphism) by
the composition law and associativity constraints. More precisely, given any other choice
of identity morphism idy and unit constraint v’ : id’y oid’y = idy, there exists a unique

invertible 2-morphism ~ : idy = id’y for which the diagram
idx oidy ==—=idx

Yoy gl

o
idy oidy =—=2—=1id/y

commutes. This follows from Proposition applied to the monoidal category End.(X)
of Remark 2.2.1.7

It is possible to adopt a variant of Definition where we do not require the identity
morphisms {idx } xcob(c) (or unit constraints {vx } xcob(c)) to be explicitly specified. This
variant is equivalent to Definition for many purposes. However, it is not suitable for
our applications: in we associate to each 2-category C a simplicial set N],) (C) called the
Duskin nerve of C, whose degeneracy operators depend on the choice of identity morphisms
and unit constraints in C (though the face operators do not: see Warning .
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Axiom (C) of Definition [2.2.1.1| requires that, for every pair of objects X and Y of a
2-category C, the functors

Hom((X,Y) — Homq(X,Y) fr— foidx,idyof

are fully faithful. In fact, we can say more: they are canonically isomorphic to the identity
functor from Hom,(X,Y") to itself.

Construction 2.2.1.11 (Left and Right Unit Constraints). Let C be a 2-category. For
every l-morphism f: X — Y in C, we have canonical isomorphisms

Qidy i vy oid
idy o(idy of) =222y (idy oidy ) o f ——Ls idy of.

Since composition on the left with idy is fully faithful, it follows that there is a unique
isomorphism Ay : idy of = f for which the diagram

aldY 1dy f

idy O(idy Of) ldy (¢] ldy

~

idigy 0Af vyoidy
idy Of

commutes. We will refer to Ay as the left unit constraint. Similarly, there is a unique
isomorphism pys : f oidy => f for which the diagram

O‘fldX id x
o (idx oidx) (foidx)oidx
\ %
foidx

commutes; we refer to py as the right unit constraint.

Remark 2.2.1.12. Let C be a 2-category and let X be an object of C. For every 1-morphism
f X — X in C, the left and right unit constraints

)\f:idXof%f pf:foidxéf

of Construction [2.2.1.11] coincide with the left and right unit constraints of Construction
2.1.2.17] applied to the monoidal category End,(X) of Remark [2.2.1.7]
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Remark 2.2.1.13 (Naturality of Unit Constraints). Let C be a 2-category, let X and Y 00EY
be objects of C, and let v : f = g be a morphism in the category Hom,(X,Y). Then the
diagram of 2-morphisms

A
idy of =——L—=f

ldldY vy

A
idy og ——2——=¢

commutes. In other words, the construction f — A; determines a natural isomorphism from
the functor

Hom,(X,Y) — Hom/(X,Y) fr—idyof

to the identity functor. Similarly, the construction f +— p; determines a natural isomorphism
from the functor

Hom,(X,Y) — Hom.(X,Y) [ foidx

to the identity functor.
We have the following generalization of Proposition [2.1.2.19

Proposition 2.2.1.14 (The Triangle Identity). Let C be a 2-category containing a pair of |00EZ
1-morphisms f : X =Y and g:Y — Z. Then the diagram of 2-morphisms

Qg ‘dY f

o (idy of) (goidy)o

1s commutative.
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Proof. We have a diagram of isomorphisms

o) ((idy Oidy) 0] f) % (g o (idy Oidy)) o f
@/ go(idyof) = (goidy)o f \*
Af “ id ¢ Pg

o (idy o(idy of)) (goidy) f—>gof<7 o(idy of) ((goidy)oidy)o f

X

(g oidy) o (idy of).

Here the outer cycle commutes by the pentagon identity (P) of Definition the upper
rectangle by the functoriality of the associativity constraint, the upper side triangles by the
definition of the left and right unit constraints, the quadrilaterals on the lower sides by the
functoriality of the associativity constraints, and the lower region by the functoriality of

composition. It follows that the middle square is also commutative, which is equivalent to
the statement of Proposition [2.2.1.14] O

It follows from Proposition [2.2.1.14|that we can recover the unit constraints {vx } xcon(c)
of a 2-category C from the left and right unit constraints defined in Construction [2.2.1.11

0082 Corollary 2.2.1.15. Let C be a 2-category and let X be an object of C. Then the left and
right unit constraints

Aidx :idxoidxgidx Pidy :idx oidx %idx
are both equal to the unit constraint vy : idx oidxy = idx.

Proof. For any 1-morphism f :Y — X in C, the left unit constraint A; is characterized by
the commutativity of the diagram

1dX idx,f

idx o(idx of) (idx oidy) o

N/

ldX of
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Using Proposition [2.2.1.14] we deduce that vy oidy = piqy o idy as 2-morphisms from
(idx oidx) o f to idx of. In other words, the 2-morphisms vx, pid, : idx oidy = idyx have
the same image under the functor

Hom, (X, X) — Hom, (Y, X) gr—go f.

In the special case where Y = X and f = idy, this functor is fully faithful. It follows that
Ux = pidy- The equality vx = \iq, follows by a similar argument. O

We will also need some variants of Proposition [2.2.1.14] (generalizing Exercise [2.1.2.20)):

Proposition 2.2.1.16. Let C be a 2-category containing a pair of composable 1-morphisms
f:X—=>Yandg:Y — Z. Then:
(1) The associativity constraint csq, g : idzo(go f) = (idz og) o f is given by the (vertical)
composition
. Agof Agtoids .
idzo(go f) == gof=—= (idzog)o f.
(2) The associativity constraint oy siay : go(foidx) = (go f)oidx is given by the (vertical)

composition

id, o -
go(foidy) ==L go f 2L, (g0 f)oidy

Proof of Proposition[2.2.1.16, We will prove (2); the proof of (1) is similar. Set e = idyx,
and consider the diagram of isomorphisms

Qg,foe,e

go((foe)oe) (go(foe))oe
Qf e.e oy pPf
go(fo(eoe)2Sgo(foe)=2LS (go f)oe £l
Ae
ag,f,eoe gof,e,e
(gof)o(eoe).

Here the outer cycle of the diagram commutes by the pentagon identity for C, the triangles on
the upper left and lower right commute by virtue of Proposition [2.2.1.14] and the upper and
lower square diagrams commute by the functoriality of the associativity constraints. It follows
that the triangle on the upper right commutes: that is, the identity oy ria, = pg;lf (idg opy)
holds after applying the functor (e oidx) : Hom. (X, Z) — Hom.(X, Z). Since this functor
is fully faithful (in fact, it is isomorphic to the identity functor by means of the right unit
constraint p), we conclude that the identity oy fid, = pgolf(idg opys) holds in Hom, (X, Z)
itself. O

0080
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2.2.2 Examples of 2-Categories

0083 We now collect some examples of 2-categories which arise naturally.

0084 Example 2.2.2.1 (Cospans). Let C be a category containing a pair of objects X and Y. A

cospan from X to Y is an object B € C together with a pair of morphisms X LBEyin

C. The cospans from X to Y can be regarded as the objects of a category Bx y, where a

morphism from (B, f,g) to (B’, f',¢’) in Bxy is a morphism u : B — B’ in the category C

which satisfies f/ =wuo f and ¢’ = uo g, so that the diagram

B
f g
X u Y
I g’
B/

is commutative.

Assume now that the category C admits pushouts. We can then construct a 2-category

Cospan(C) as follows:

The objects of Cospan(C) are the objects of C.

For every pair of objects X,Y € C, we define Homcggpan(c) (X, Y) to be the category
Bx,y; in particular, 1-morphisms from X to Y in the 2-category Cospan(C) can be
identified with cospans from X to Y.

For every triple of objects X,Y, Z € C, the composition law
o: mCospan(C) (K Z) X HO7InCospan(C) (X7 Y) - HO7H1C0span(C) (X7 Z)
is given on objects by the construction (C, B) — C'Ily B.

For every object X € C, the identity 1-morphism from X to itself in C is given by
the cospan X dy, x Jdx x , and the unit constraint vy is given by the canonical

isomorphism X Iy X = X.

For every triple of composable 1-morphisms

whx By Sz
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in Cospan(C), the associativity constraint ac p 4 is the canonical isomorphism of
iterated pushouts
Clly (Blly A) = (Clly B) Ilx A.

We will refer to Cospan(C) as the 2-category of cospans in C.

Variant 2.2.2.2 (Spans). Let C be a category. If X and Y are objects of C, we define
a span from X to Y to be a diagram X < M — Y in the category C. If C admits fiber
products, then we can dualize Example to produce a 2-category Span(C) having the
same objects, where 1-morphisms from X to Y in Span(C) are given by spans from X to Y

in C. More precisely, we define Span(C) to be the conjugate of the 2-category Cospan(C°P).

Remark 2.2.2.3. Let C be a category which admits finite limits, and let 1 denote a final
object of C. Then the endomorphism category Endgp.nc)(1) can be identified with the
category C itself, equipped with the Cartesian monoidal structure of Example [2.1.3.2

Example 2.2.2.4 (Bimodules). We define a 2-category Bimod as follows:
e The objects of Bimod are associative rings.

 For every pair of associative rings A and B, we take Homp;,,,q(B, A) to be the category
whose objects are A-B bimodules: that is, abelian groups M = 4, M p equipped with
commuting actions of A on the left and B on the right.

e For every triple of associative rings A, B, and C, we take the composition law
Hompipoq (B, A) X Homp;neq(C; B) = Homp;neq (€ A)
to be the relative tensor product functor
(M,N)+— M®pN
o For every associative ring A, we take the identity object of Homp;oq(A4, A) to be the

ring A (regarded as a bimodule over itself) and the unit constraint v4: A ®4 A = A
is the map given by v4(z ® y) = zy.

e For every quadruple of associative rings A, B, C, and D equipped with bimodules
M = 4,Mp, N =gN¢, and P = o Pp, we define the associativity constraint

CVM,N,P:M®B (N@CP)Q(M(@BN)@CP

to be the isomorphism characterized by the identity ay np(z® (y®2)) = (z®y) ® 2.

Example 2.2.2.5 (Delooping a Monoidal Category). Let C be a monoidal category. We
define a 2-category BC as follows:

03J5

OOFO0

0085

OOF1
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e The 2-category BC has a single object, which we will denote by X.
o The category Homp (X, X) is the category C.

e The composition functor
o : Homype (X, X) x Hom (X, X) — Homp (X, X)
is the tensor product functor ® : C x C — C.
o The identity morphism idx € Homp¢(X, X) is the unit object 1 € C.

e The associativity and unit constraints of B C are the associativity and unit constraints
for the monoidal structure on C.

We will refer to the 2-category BC as the delooping of C. Note that BC is strict as a
2-category if and only if the monoidal structure on C is strict (in which case we recover the
delooping construction of Example[2.2.0.8]). The construction C — B C induces a bijection

{Monoidal Categories C} — {2-Categories £ with Ob(£) = {X}}
which can be viewed as an equivalence of categories (see Remark [2.2.5.8)).

Remark 2.2.2.6. Let M be a monoid, which we view as a (strict) monoidal category having
only identity morphisms. Then the 2-category BM of Example 2:2.2.5] can be identified
with the ordinary category BM appearing in Remark [I.3.2.4]

2.2.3 Opposite and Conjugate 2-Categories

Recall that every ordinary category C has an opposite category C°P, in which the objects
are the same but the order of composition is reversed. In the setting of 2-categories, this
operation generalizes in two essentially different ways: we can independently reverse the
order of either vertical or horizontal composition. To avoid confusion, we will use different
terminology when discussing these two operations.

Construction 2.2.3.1 (The Opposite of a 2-Category). Let C be a 2-category. We define a
new 2-category C° as follows:

e The objects of C°P are the objects of C. To avoid confusion, for each object X € C we
will write X°P for the corresponding object of C°P.

o For every pair of objects X,Y € C, we have Hompop (X°P, Y°P) = Hom,(Y, X). In
particular, every l-morphism f : Y — X in the 2-category C can be regarded as
a l-morphism from X°P to Y°P in the 2-category C°?, which we will denote by
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foP: X°P — Y°P. Similarly, if we are given a pair of 1-morphisms f,g:Y — X in the
2-category C having the same source and target, then every 2-morphism v : f = ¢
in C determines a 2-morphism from f°P to ¢°P? in C°P, which we will denote by
,.Yop . fop = gop_

e For every triple of objects X, Y, Z € C, the composition functor
o . HOmcop (YOp, ZOp> X Homcop ()(Op7 YOP) — Homcop (X0p7 ZOp)
for the 2-category C°P is given by the composition functor
o: Hom,(Y, X) x Hom.(Z,Y) — Hom,(Z, X).

on the 2-category C; in particular, it is given on objects by the formula f°P o g°P =

(go f)°P.

o For every object X € C, the identity 1-morphism idxor € Hompop (X P, X°P) is given
by id¥, where idx € Hom (X, X) is the identity 1-morphism associated to X in the
2-category C, and the unit constraint vxop is the isomorphism U;P s id yop 0id xop =

id xop.
e For every triple of composable 1-morphisms

whxsyhy

in the 2-category C, the associativity constraint
agop gov pov = [P 0 (¢°P 0 hP) = (fP 0 g°P) 0 AP
in the 2-category C°P is given by the inverse (a;f% f)_1 of the associativity constraint
Qngfiho(gof)=>(hog)o f in the 2-category C.
We will refer to C°P as the opposite of the 2-category C.

Example 2.2.3.2. Let C be a category which admits pushouts, and let Cospan(C) be the [008C
2-category of cospans in C (see Example [2.2.2.1)). Then the opposite 2-category Cospan(C)°P

can be identified with Cospan(C) itself (every cospan from X to Y in C can also be viewed

as a cospan from Y to X).

Example 2.2.3.3. Let C be a monoidal category, and let B C be the 2-category obtained 00F3
by delooping C (Example [2.2.2.5]). Then the opposite 2-category (B C)°P can be identified
with B(C™"), where C™" denotes the reverse of the monoidal category C (Example [2.1.3.5)).

Construction 2.2.3.4 (The Conjugate of a 2-Category). Let C be a 2-category. We define 008D
a new 2-category C¢ as follows:
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e The objects of C° are the objects of C. To avoid confusion, for each object X € C we
will write X¢ for the corresponding object of C€.

o For every pair of objects X,Y € C, we have Homee(X€, Y°) = Home(X,Y)P. In
particular, every l-morphism f : X — Y in the 2-category C can be regarded as a
1-morphism from X° to Y in the 2-category C¢, which we will denote by f¢: X¢ — Y°.
Similarly, if we are given a pair of 1-morphisms f,g : X — Y in the 2-category C
having the same source and target, then every 2-morphism ~ : f = ¢ in C determines
a 2-morphism from ¢¢ to f¢ in C°®, which we will denote by ~¢ : g° = f€.

e For every triple of objects X, Y, Z € C, the composition functor
o: Homee (Y€, Z¢) x Hompe (X, YC) — Homgop (X€, Z°)
for the 2-category C¢ is induced by the composition functor
o: Hom,(Y,Z) x Homy(X,Y) — Hom, (X, 7).

on C by passing to opposite categories. In particular, it is given on objects by the
formula g° o f¢ = (go f)°.

o For every object X € C, the identity 1-morphism id xc € Homec(X¢, X¢) is given by id$,
where idx € Hom,(X, X) is the identity 1-morphism associated to X in the 2-category
C, and the unit constraint vxe is the isomorphism (v$) ™! @ idye oidxe = idye.

e For every triple of composable 1-morphisms
whxLyltyz
in the 2-category C, the associativity constraint
Qpege et hSo (gf0 f€) = (h®0 g% o f°

in the 2-category C® is given by the inverse (o, . f)_1 of the associativity constraint
Qngfiho(gof)=>(hog)o f in the 2-category C.

We will refer to C¢ as the conjugate of the 2-category C.

00F4 Example 2.2.3.5. Let C be a monoidal category, and let B C be the 2-category obtained by
delooping C (Example [2.2.2.5)). Then the conjugate 2-category (B C)¢ can be identified with
B(C°P), where we endow the opposite category C°P with the monoidal structure of Example

2134
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Remark 2.2.3.6. Constructions |2.2.3.1| and |2.2.3.4| are analogous but not identical. At |008E
the level of 2-morphisms, passage from a 2-category C to its opposite C°P reverses the order

of horizontal composition, but preserves the order of vertical composition; passage from C
to its conjugate C¢ preserves the order of horizontal composition and reverses the order of
vertical composition. Following the notation of Warning [2.2.1.9] we have

IPYP = (67)P AP oy P = (4 0y)P

,YC(SC:((S,Y)C r}/CO,yC:(,y/O,y)C.

Example 2.2.3.7. Let C be an ordinary category, which we regard as a 2-category having only 008F
identity 2-morphisms (Example . Then the opposite 2-category C°P of Construction
coincides with the opposite of C as an ordinary category (which we can again regard as

a 2-category having only identity morphisms). The conjugate 2-category C° of Construction
2.2.3.4] can be identified with C itself.

2.2.4 Functors of 2-Categories

Let C and D be 2-categories. Roughly speaking, a functor F' : C — D should be 008G
an operation which carries objects, 1-morphisms, and 2-morphisms of C to objects, 1-
morphisms, and 2-morphisms of D, which is suitably compatible with (horizontal and
vertical) composition. Here it is useful to distinguish between different notions of functor,
which are differentiated by the degree of compatibility which is assumed.

Definition 2.2.4.1 (Strict Functors). Let C and D be 2-categories. A strict functor F' from [008H
C to D consists of the following data:

o For every object X € C, an object F(X) in D.
o For every pair of objects X,Y € C, a functor of ordinary categories
Fxy : Home(X,Y) — Homp (F(X), F(Y)).

We will generally abuse notation by writing F'(f) for the value of the functor Fxy on
an object f of the category Hom,(X,Y), and F(v) for the value of F' on a morphism
7 in the category Hom,(X,Y).

This data is required to satisfy the following compatibility conditions:

(1) For every object X € C, we have idp(x) = F(idx).
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(2) For every triple of objects X,Y, Z € C, the diagram of categories

Hom, (Y, Z) x Hom(X,Y) Z Hom,(X, Z)
Fy,szX’Y FX,Z

Homp (F(Y), F(Z)) x Homp(F(X), F(Y))

Homyp (F(X), F(Z))
is strictly commutative.

(3) For every object X € C, the functor Fx x carries the unit constraint vx : idx oidx =

idx to the unit constraint vp(x) : idp(x) oidpx) = idpx).

(4) For every composable triple of 1-morphisms W xSy Mz C, we have F'(ap g f) =
Qap(h),F(g),F(f)- n other words, F' carries the associativity constraints of C to the
associativity constraints of D.

Remark 2.2.4.2. In the situation of Definition [2.2.4.1| conditions (3) and (4) are automati-
cally satisfied if the 2-categories C and D are strict.

Example 2.2.4.3. Let C and D be strict 2-categories, which we regard as Cat-enriched
categories (Remark [2.2.0.2)). Then strict functors from C to D (in the sense of Definition
2.2.4.1]) can be identified with Cat-enriched functors from C to D (in the sense of Definition

2.1.7.10).

Exercise 2.2.4.4. Let C and D be 2-categories and let F' : C — D be a strict functor.
Show that, for each morphism f : X — Y in C, the functor Fxy : Hom/(X,Y) —
Homyp (F(X), F(Y)) carries the left and right unit constraints Ay : idy of = f and py :

foidxy = f to Ar(p) and pp(yy, respectively (see Construction [2.2.1.11]).

Note that axiom (2) of Definition [2.2.4.1| implies in particular that for every pair of

composable 1-morphisms X v % Zin the 2-category C, we have an equality F(g)o F(f) =
F(g o f) between objects of the category Homp(F(X), F/(Z)). In practice, this requirement
is often too strong: it is often better to allow a more liberal notion of functor, which is only
required to preserve composition up to isomorphism.

Definition 2.2.4.5 (Lax Functors). Let C and D be 2-categories. A laz functor F' from C
to D consists of the following data:

o For every object X € C, an object F(X) € D.
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e For every pair of objects X,Y € C, a functor of ordinary categories
Fxy : Home(X,Y) — Homp (F(X), F(Y)).

We will generally abuse notation by writing F'(f) for the value of the functor Fxy on
an object f of the category Hom(X,Y), an F'() for the value of F' on a morphism -
in the category Hom,(X,Y).

e For every object X € C, a 2-morphism ex : idp(x) = F(idy) in the 2-category D,
which we will refer to as the identity constraint.

e For every pair of composable 1-morphisms X i> Y 4 Z in the 2-category C, a
2-morphism

tgsr: F(g)o F(f) = F(gof),

which we will refer to as the composition constraint. We require that, if the objects X,
Y, and Z are fixed, then the construction (g, f) — pg ¢ is functorial: that is, we can
regard p as a natural transformation of functors as indicated in the diagram

Hom (Y, Z) x Hom¢(X,Y) > Hom, (X, Z)

Fy zxFxy / .
[¢]

Homp (F(Y), F(Z)) x Homp(F(X), F(Y)) Homp (F(X), F(Z))

This data is required to be compatible with the unit and associativity constraints of C
and D in the following sense:

(a) For every 1-morphism f : X — Y in C, the left unit constraint Ag(y) in D is given by

the vertical composition

F(idy) o F(f) 220 F(idy of) 222 p(f).

€indF(f>

idpyy oF(f)

(b) For every l-morphism f : X — Y in C, the right unit constraint pr(f) in D is given by
the vertical composition

F(f) 0 Fidy) 2255 P(f oidy) =22

ldF(f) Oc€ex

F(f)oidp(x) F(f).

(c) For every triple of composable 1-morphisms W i> XZY % Zin the 2-category C, we
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have a commutative diagram

QF(h),F(9),F(f)
_

E(h) o (F(g) o F(f)) (F(h) o F(g)) o F(f)

idp(n) otig, th,gOidp(f)
F(h)o F(gof) F(hog)oF(f)
Kh,gof HKhog, f
Fan,g,f)

F(ho(gof)) F((hog)of)

in the category Homq (F(W), F(Z)).

A functor from C to D is a lax functor F' : C — D with the property that the identity
and composition constraints

ex idp(x) = F(idx) pg.s: F(g)o F(f) = F(gof)
are isomorphisms.

008L| Warning 2.2.4.6. The terminology of Definition is not standard. In [4], Bénabou
uses the term morphism for what we call a lax functor of 2-categories, homomorphism for
what we call a functor of 2-categories, and strict homomorphism for what we call a strict
functor of 2-categories. Other authors refer to functors of 2-categories (in the sense of
Definition as weak functors or pseudofunctors (to avoid confusion with the notion of
strict functor).

00F6 Remark 2.2.4.7. Let C and D be 2-categories and let ' : C — D be a lax functor from C to
D. Then, for each object X € Ob(C), we can regard Fx x : Ende(X) — Endp(F(X)) as a
lax monoidal functor from End(X) (endowed with the monoidal structure of Remark
to Endp(F(X)): the tensor and unit constraints on Fx x are given by the composition and
identity constraints on F', respectively. If F'is a functor, then F'x x is a monoidal functor.

00F7 Remark 2.2.4.8. Let C and D be 2-categories and let ' : C — D be a lax functor from C to
D. Then the identity constraints {ex : idpx) = F(idx)} xcon(c) are uniquely determined
by the other data of Definition This follows from Proposition applied to the
lax monoidal functor F x : Ende(X) — Endp(F(X)) of Remark

00F8 Remark 2.2.4.9. Let C be a monoidal category, let BC be the 2-category obtained by
delooping C (Example [2.2.2.5)), and let X denote the unique object of BC. Let D be any
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2-category, and let Y be an object of D. Then the construction of Remark induces
bijections

{Lax Functors F': BC — D with F(X) =Y} ~ {Lax monoidal functors C — Endp(Y)}

{Functors F': BC — D with F'(X) =Y} ~ {Monoidal functors C — Endp(Y') }.

Applying this observation in the case where D = B’ for some other monoidal category C’,
we deduce that (lax) monoidal functors from C to C’ can be identified with (lax) functors of
2-categories from BC to BC'.

Example 2.2.4.10 (Algebras as Lax Functors). Let [0] denote the category having a single
object and a single morphism, which we regard as a (strict) 2-category, and let D be any
2-category. Combining Remark and Example we deduce that lax functors
[0] = D can be identified with pairs (Y, A), where Y € D is an object and A is an algebra
object of the monoidal category Endp(Y).

Example 2.2.4.11. Let C and D be 2-categories, and let F': C — D be a strict functor (in
the sense of Definition [2.2.4.1)). Then we can regard F' as a functor from C to D (in the
sense of Definition [2.2.4.5)) by taking the identity and composition constraints

ex :idp(x) = F(idx) tgf : F(g) o F(f) = F(go f)

to be the identity maps (note that in this case, conditions (a), (b), and (¢) of Definition
reduce to conditions (3) and (4) of Definition [2.2.4.1)). Conversely, if F: C — D is a
lax functor having the property that each of the identity and composition constraints ex
and g ¢ is an identity 2-morphism of D, then we can regard F' as a strict 2-functor from C
to D. We therefore have inclusions

{Strict functors F': C — D} C {Functors F' : C — D} C {Lax functors F : C — D}.

In general, neither of these inclusions is reversible.

Example 2.2.4.12 (Enriched Categories as Lax Functors). Let S be a set, and let £g
denote the indiscrete category with object set S: that is, the objects of £g are the elements
of S, and Homg (X, Y) is a singleton for every pair of elements X,Y € S. Regard £g as a
(strict) 2-category having only identity 2-morphisms (Example [2.2.0.6)). Let C be a monoidal
category, and let B C be its delooping (Example . Unwinding the definitions, we see
that lax functors F': £g¢ — BC (in the sense of Definition can be identified with
C-enriched categories having object set S (in the sense of Definition .

Warning 2.2.4.13. Let C and D be strict 2-categories, and let Cq and Dy denote their un-
derlying ordinary categories (obtained by ignoring the 2-morphisms of C and D, respectively).

O1NL
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Every strict functor F' : C — D induces a functor of ordinary categories Fy : Co — Dy.
However, if a functor F': C — D is not strict, then it need not give rise to a functor from
Co to Dy. If X i> Y % Z is a composable pair of 1-morphisms in C, then Definition
guarantees that the 1-morphisms F(g) o F'(f) and F(go f) are isomorphic (via the
composition constraint y, ¢), but not that they are identical.

Example 2.2.4.14. Let C be a 2-category and let D be an ordinary category, which we
regard as a 2-category having only identity 2-morphisms. If F' : C — D is lax functor of
2-categories, then its values on the 1-morphisms of C must satisfy the following conditions:

(1) fu,v: X — Y are 1-morphisms of C having the same source and target and v : u = v is
a 2-morphism of C, then F(u) = F(v) (since F(v) : F(u) = F(v) must be an identity
2-morphism of D).

(2) Ifu:X — Y and v : Y — Z are composable 1-morphisms of C, then F(vou) =
F(v) o F(u) (since the composition constraint i, : F'(v) o F(u) = F(vou) is an
identity 2-morphism of D).

(3) For every object X € C, F(idx) is the identity morphism idp(x) in D (since the identity
constraint ey : idp(x) = F(idy) is an identity 2-morphism of D).

Conversely, any specification of the values of F' on objects and 1-morphisms which satisfies
conditions (1), (2), and (3) extends uniquely to a strict functor F': C — D (the coherence
conditions appearing in Definition [2.2.4.5| are automatic, by virtue of the fact that every
2-morphism of D is an identity). In particular, every lax functor F : C — D is automatically
strict. Beware that the analogous statement is generally false if the roles of C and D are
reversed.

Notation 2.2.4.15. Let C and D be 2-categories. To supply a lax 2-functor F': C — D,
one must specify not only the values of F' on objects, 1-morphisms, and 2-morphisms of C,
but also the identity and composition constraints

ex tidpx) = Flidx)  pgr: F(g)o F(f) = F(go f).

In situations where we need to consider more than one lax functor at a time, we will denote
these 2-morphisms by e§ and ,ug s (to avoid ambiguity).

Exercise 2.2.4.16. In the situation of Definition [2.2.4.5, show that we can replace (a) and
(b) by the following alternative conditions:
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e For every object X € C, the diagram

id () 0 1d () = id )
exocx
F(idx) o F(idy) ex
id x id x

Flidx oidyx) —2) s p(idy)

commutes (in the endomorphism category Endq(X)).

e For every 1-morphism f : X — Y in C, the vertical compositions

eyoidp(s Hidy, f

iy oF (f) L F(idy) o F(f) =%5 F(idy of)

idp(y) cex Hfidy

F(f)oidpx) F(f)o F(idx) =—= F(f oidx)

are monomorphisms in the category Homp (F(X), F(Y)).
See Proposition [2.1.5.13

Let F: C — D be a (lax) functor between 2-categories. According to Example [2.2.4.11
F is strict if and only if the identity and composition constraints

ex tidpx) = Flidx)  pgz: F(g)o F(f) = F(go f)

are identity 2-morphisms in D. In it will be useful to consider a weaker version of this
condition, where we require strict compatibility with the formation of identity morphisms
but not with respect to composition in general.

Definition 2.2.4.17. Let C and D be 2-categories, and let F': C — D be a lax functor. We (008R
say that I is unitary if, for every object X € C, the identity constraint ex : idp(x) = F(idx)

is an invertible 2-morphism of D. We say that F' is strictly unitary if, for every object

X € C, we have an equality idp(x) = F(idx) and the identity constraint ex is the identity
2-morphism from idp(x to itself.

Remark 2.2.4.18. Let C and D be 2-categories. Every functor F' : C — D is unitary when 0083
viewed as a lax functor from C to D. Every strict functor F' : C — D is strictly unitary when
viewed as a lax functor from C to D.
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Remark 2.2.4.19. Let C and D be 2-categories and let F' : C — D be a unitary lax functor.
Then one can modify F' to produce a strictly unitary lax functor F’ : C — D by the following
explicit procedure:

o For every object X € C, we set F'(X) = F(X).

e For every l-morphism f : X — Y in C which is not an identity morphism, we set
F'(f) =F(f); if X =Y and f = idx we instead set F'(f) = idp(x). In either case,
we have an invertible 2-morphism ¢ : F'(f) = F(f), given by

ek if f=1idy
SD =
/ idp(yy  otherwise.

e Let X and Y be objects of C, and let v : f = g be a 2-morphism between 1-morphisms
f,g9: X =Y. We define F'(v) to be the vertical composition gp;lF(v)cpf.

e For every pair of composable 1-morphisms X Jo v % 7 in the 2-category D, we
define the composition constraint M;"f : F'(g) o F'(f) = F'(go f) to be the vertical
composition

Pgopf
>

Fl(g) o F'(f) 2225 F(g)o F(f) 225 F(go f) 2L F(go ).

Consequently, it is generally harmless to assume that a unitary lax functor of 2-categories
F : C — D is strictly unitary.

2.2.5 The Category of 2-Categories

We now show that 2-categories can be regarded as the objects of a category 2Cat, in
which the morphisms are functors between 2-categories (Definition [2.2.5.5)). There are several
variants of this construction, depending on what sort of functors we allow.

Construction 2.2.5.1 (Composition of Lax Functors). Let C, D, and £ be 2-categories,
and suppose we are given a pair of lax functors F': C — D and G : D — £. We define a lax
functor GF : C — & as follows:

« On objects, the lax functor GF is given by (GF)(X) = G(F(X)).

e For every pair of objects X,Y € C, the functor

(GF)xy : Home (X, Y) = Home ((GF)(X), (GF)(Y))
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is given by the composition of functors

Gr(x),F(Y)
T

Home (X, Y) Y Homp(F(X), F(Y)) Homg ((GF)(X), (GF)(Y)).

In other words, the lax functor GF' is given on 1-morphisms and 2-morphisms by the
formulae

(GF)(f) =G(E()  (GF)(y) = G(F M)

o For each object X € C, the identity constraint e§!" : idgr)(x) = (GF)(idx) is given
by the composition

. & _ G(eE) .
id(gr)(x) === G(idpx)) === (GF)(idx).

e For every pair of composable 1-morphisms X Jo v % 7 in the 2-category C, the
composition constraint ,ug? : (GF)(g) o (GF)(f) — (GF)(g o f) is given by the
composition

F

(GF)(g) o (CF)(f) S2250, G(r(g) o F(f)) 2y (GF)(g o f).

We will refer to GF' as the composition of F with G, and will sometimes denote it by G o F.

Exercise 2.2.5.2. Check that the composition of lax functors is well-defined. That is, if 008X
F:C—Dand G:D — & are lax functors between 2-categories, then the identity and
composition constraints eg’;F and ,uﬁ? of Construction are compatible with the unit
constraints and associativity constraints of C and &, as required by Definition [2.2.4.5]

Remark 2.2.5.3. Let F': C — D and G : D — & be lax functors of 2-categories, and let 008Y
GF : C — & be their composition. Then:

e If F" and G are unitary, then the composition GF' is unitary.

e If F and G are functors, then the composition GF' is a functor.

o If F and G are strictly unitary, then the composition GF' is strictly unitary.
e If F' and G are strict functors, then the composition GF is a strict functor.

Example 2.2.5.4. Let C be a 2-category. We let id¢ : C — C be the strict functor which 008z
carries every object, 1-morphism, and 2-morphism of C to itself. We will refer to id¢ as the
identity functor on C. Note that it is both a left and right unit for the composition of lax
functors given in Construction
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Definition 2.2.5.5. We let 2Catp.y denote the ordinary category whose objects are (small)
2-categories and whose morphisms are lax functors between 2-categories (Definition [2.2.4.5)),
with composition given by Construction [2.2.5.1] and identity morphisms given by Example

2.2.5.4. We define (non-full) subcategories

2Catgy C 2Cat C 2Catyax 2 2CatyurLax

- =

e The objects of 2Cat are 2-categories, and the morphisms of 2Cat are functors.

e The objects of 2Catgy, are strict 2-categories, and the morphisms of 2Catgq, are strict
functors.

e The objects of 2Catyr.x are 2-categories, and the morphisms of 2Catyyay are strictly
unitary lax functors.

We will refer to 2Cat as the category of 2-categories, and to 2Catst, as the category of strict
2-categories.

Remark 2.2.5.6. Let C and D be 2-categories. Then the collection Homycat(C, D) of
functors from C to D can be identified with the set of objects of a certain 2-category
Fun(C, D), called the 2-category of functors from C to D. We will return to this point in
more detail in §[7].

Example 2.2.5.7. Let C and D be ordinary categories, which we regard as 2-categories
having only identity 2-morphisms (see Example . Then every lax functor of 2-
categories from C to D is automatically strict (Example , and can be identified with
a functor from C to D in the usual sense. In other words, we can view Example as
supplying fully faithful embeddings (of ordinary categories)

Cat — 2Catgi, Cat — 2Cat Cat — 2Catrax Cat — 2Catyrax -

Remark 2.2.5.8. Let MonCat denote the ordinary category whose objects are monoidal
categories and whose morphisms are monoidal functors (that is, the underlying category
of the strict 2-category MonCat of Example . Then the construction C — BC
determines a fully faithful embedding from MonCat to the category 2Cat of Definition
which fits into a pullback diagram

MonCat CoBC

2Cat
C—0Db(C)

{#} ———— Set;
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here x = { X'} denotes a set containing a single fixed object X. Similarly, the ordinary category
of monoidal categories and lax monoidal functors can be regarded as a full subcategory of
2CatLaX.

Remark 2.2.5.9 (Functors on Opposite 2-Categories). Let C and D be 2-categories, and let
C°P and D°P denote their opposites (Construction [2.2.3.1). Then every lax functor F' : C — D
induces a lax functor F°P : C°P? — D given explicitly by the formulae

F(X) = F(X)®  F(f®) = F(/)™  FP(%) = F(7)”

)P .

€Exop — (EX Mgop7fop = (/"Lf,g

In this case, F' is a functor if and only if F°P is a functor, and a strict functor if and only if
F°P is a strict functor. This operation is compatible with composition, and therefore induces
equivalences of categories

2Catgt, ~ 2Catgi, 2Cat ~ 2Cat 2Catrax ~ 2Catrax 2Catyrax ~ 2CatyLax -

Remark 2.2.5.10 (Functors on Conjugate 2-Categories). Let C and D be 2-categories, and
let C¢ and D¢ denote their conjugates (Construction [2.2.3.4). Then every functor F': C — D
induces a functor F¢:C® — D, given explicitly by the formulae

FOXO) =F(X)" F(f)=F()°  FO)=F0)*

-1 -1
exe = (ex)° Hoe,ge = (1g £)°
In this case, the functor F' is strict if and only if F° is strict. This operation is compatible
with composition, and therefore induces equivalences of categories

2Catgir ~ 2Catgq, 2Cat ~ 2Cat

Warning 2.2.5.11. The construction of Remark requires that the identity and
composition constraints of F' are invertible, and therefore does not extend to lax functors
between 2-categories. In general, one cannot identify lax functors from C to D with lax
functors from C® to D°: the definition of lax functor is asymmetrical with respect to vertical
composition.

2.2.6 Isomorphisms of 2-Categories
We now study isomorphisms between 2-categories.

Definition 2.2.6.1. Let C and D be 2-categories. We will say that a functor F': C — D is
an isomorphism if it is an isomorphism in the category 2Cat of Definition That is,
F' is an isomorphism if there exists a functor G : D — C such that GF = id¢ and FG = ide.
We say that 2-categories C and D are isomorphic if there exists an isomorphism from C to D.
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Remark 2.2.6.2. Let F': C — D be an isomorphism of 2-categories, and let G : D — C be
the inverse isomorphism. Then:

e The functor F'is strictly unitary if and only if G is strictly unitary. In this case, we
say that F' is a strictly unitary isomorphism.

e The functor F is strict if and only if G is strict. In this case, we say that F' is a strict
isomorphism.

We say that 2-categories C and D are strictly isomorphic if there is a strict isomorphism
from C to D.

Warning 2.2.6.3. Let C and D be 2-categories which are strictly isomorphic. Then C is
strict if and only if D is strict. If we assume only that C and D are isomorphic (rather
than strictly isomorphic), then we cannot draw the same conclusion. In other words, the
condition that a 2-category C is strict is invariant under strict isomorphism, but not under
isomorphism.

Warning 2.2.6.4. The notions of isomorphism and strict isomorphism of 2-categories
are somewhat artificial. As in classical category theory, there is notion of equivalence of
2-categories (Definition [?]) which is more general than isomorphism and more appropriate
for describing what it means for 2-categories to be “the same.”

Remark 2.2.6.5. Let F': C — D be a functor of 2-categories. Then F' is an isomorphism
(in the sense of Definition [2.2.6.1)) if and only if it satisfies the following conditions:

e The functor F' induces a bijection from the set of objects of C to the set of objects of
D.

e For every pair of objects X,Y € C, the functor F' induces an isomorphism of categories
Hom,(X,Y) — Homp(F(X), F(Y)).

One might be tempted to consider a more liberal version of Definition [2.2.6.1] working
with lax functors rather than functors. However, the resulting notion of isomorphism turns
out to be the same.

Proposition 2.2.6.6. Let C and D be 2-categories, and let F' : C — D be a lax functor
which is an isomorphism in the category 2Catyax. Then F' is a functor.

Proof. We will show that, for every pair of composable 1-morphisms X i> Y % Z in the
2-category C, the composition constraint uf; IE F(g)o F(f) = F(go f) is an isomorphism
(in the ordinary category Homp(F(X), F(Z))); the analogous statement for the identity
constraints €% :id F(x) = F(idx) follows by a similar (but easier) argument.
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Let G : D — C be a lax functor which is an inverse of I’ in the category 2Catyx. For
any pair of composable 1-morphisms X' Sy vr 2y 7 in the 2-category D, the composition

constraint M§°ﬁ for the lax functor F' o G is given by the vertical composition

F(/»LgG/J/)

(FoG)(g) o (FoG)(f') 2 p(G(g') o G(F)) (FoG)(g o f).

Since F o G coincides with idp as a lax functor, this composition is the identity 2-morphism
from ¢’ o f’ to itself. In particular, we see that F' (,ug ) has a right inverse in the category
Homp (X', Z"). Tt follows that ug’f, = G(F(u§7f,)) has a right inverse in the category
Home (G(X'), G(Z")).

Applying the same argument with the roles of F' and G reversed, we see that the

composition constraint ,ugG?F = idgoy factors as a vertical composition

¢ G(#;f)

(G o F)(g) o (G o F)(f) 222 G(F(g) o F(f)) (GoF)(gof).

In particular, this shows that ,ug( o), F () has a left inverse (in the category Hom, (X, 7)).
Applying the preceding argument in the case ¢’ = F(g) and f' = F(f), we see that Mg(a% F(f)
also has a right inverse. It follows that ug( 9 F(f) is an isomorphism in the category
Hom, (X, Z). Since G(,uif) is a left inverse of ,ug(g)’F(f), it must also be an isomorphism. It
follows that F(G(,u;f)) = uf;f is an isomorphism in the category Homp(F(X), F(Z)), as
desired. O

We now construct some examples of non-strict isomorphisms of 2-categories.

Notation 2.2.6.7. Let C be a 2-category. A twisting cochain for C is a datum which assigns,

to every pair of composable 1-morphisms X Iy 8 4 , a l-morphism (g o’ f): X — Z and
an invertible 2-morphism 4, ¢ : go' f = go f. In this case, we will (slightly) abuse notation
by identifying the twisting cochain with the collection of 2-morphisms {p, f}.

Construction 2.2.6.8. Let C be a 2-category equipped with a twisting cochain

{1g.r} =gy :(go" f)=(go )}

We define a new 2-category C’ as follows:
e The objects of C' are the objects of C.

o For every pair of objects X, Y € C, we define Hom (X,Y) to be the category
Hom,(X,Y). In particular, we can identify 1-morphisms of C’ with 1-morphisms
of C, 2-morphisms of C' with 2-morphisms of C, and the vertical composition of
2-morphisms in C’ with the vertical composition of 2-morphisms in C.

O09E
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« For every object X € C, the identity 1-morphism from X to itself in the 2-category C’
is the same as the identity morphism from X to itself in the 2-category C.
e For every triple of objects X, Y, Z € C, the composition functor
Hom/ (Y, Z) x Homy (X,Y) — Home/ (X, Z)
is given on objects by (g, f) — ¢ o’ f and on morphisms by the construction

B:g=9v:f= 1) py'p (607

o For every object X € C, the unit constraint v : idx o’ idy = idx for the 2-category
C' is given by the composition

. . Hid - ,id . . v .
idy o' idy === idy oidy == idy .

e For every triple of composable 1-morphisms W fox %yt zoc , the associativity
constraint of C’ is given by the composition

ho'(go' f) 2L ho(gd f)
id;, o
==L ho(go f)

=L (hog)o f

—1 .

w, ~oid

Ll (ho'g)of
-1

Koy oy
ho'g, f (h O/ g) o’ f

We will refer to C" as the twist of C with respect to {pg r}-

Exercise 2.2.6.9. Let C be a 2-category equipped with a twisting cochain {4 ¢}. Show
that the 2-category C’ of Construction [2.2.6.8|is well-defined. Moreover, there is a strictly
unitary isomorphism of 2-categories C — C’ which carries each object, 1-morphism, and

2-morphism of C to itself, where the composition constraints are given by {ug 7}

Exercise 2.2.6.10. Let F' : C — D be a strictly unitary isomorphism of 2-categories. Show
that there is a unique twisting cochain {y, ¢} on the 2-category C such that F' factors
as a composition C LNV D, where G is the strictly unitary isomorphism of Exercise
and H is a strict isomorphism of 2-categories. In other words, the notion of twisting
cochain (in the sense of Notation measures the difference between strictly unitary
isomorphisms and strict isomorphisms in the setting of 2-categories.
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Remark 2.2.6.11. It is possible to consider a generalization of the twisting procedure of 009J
Construction in which one modifies not only the composition law for 1-morphisms of

C, but also the choice of identity 1-morphisms of C. Since we will not need this generalization,

we leave the details to the reader.

Example 2.2.6.12. Let G be a group with identity element 1 € G, let I' be an abelian 009L
group on which G acts by automorphisms, let @ : G x G x G — I" be a 3-cocycle, let C

be the monoidal category of Example and let BC be the 2-category obtained by
delooping C (Example . A twisting cochain for the 2-category BC (in the sense of
Notation can be identified with a map of sets

w:GxG—T (9, f) = g, f-

Let (BC)’ denote the twist of BC with respect to u. Unwinding the definitions, we see that
(BC)' is obtained by delooping the same category C with respect to a different monoidal
structure: namely, the monoidal structure supplied by the 3-cocycle o/ : G x G x G —» T
given by the formula

O‘%,%f = Qn,g,f + h(lg,f) — thg,t + Hhgf — Hhg-
We can summarize the situation as follows:

e To every 3-cocycle a : G x G x G — T', we can associate a 2-category B C in which the
1-morphisms are the elements of GG, the 2-morphisms are the elements of I'; and the
associativity constraint is given by a.

e If ,d/ : G x G x G — T are cohomologous 3-cocycles on G with values in I', then
the associated 2-categories C and C’ are isomorphic (though not necessarily strictly
isomorphic). More precisely, every choice of 2-cocycle p : G x G — T satisfying
o/ = a+ d(u) determines a strictly unitary isomorphism from C to C’. Here 0 denotes
the boundary operator from 2-cochains to 3-cocycles, given concretely by the formula

(O hg,f = htbg,f) — Hhg,f + Bhgf — Ihg-

Example 2.2.6.13. The 2-categories Bimod and Cospan(C) of Examples |2.2.2.4| and |2.2.2.1| 009N
both depend on certain auxiliary choices:

e Let A, B, and C be associative rings, and suppose we are given a pair of bimodules
M = sMp and N = gN¢. Then we can regard M and N as 1-morphisms in the
2-category Bimod, whose composition is defined to be the relative tensor product
M ®pN. This tensor product is well-defined up to (unique) isomorphism: it is universal
among abelian groups P which are equipped with a B-bilinear map M x N — P.
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However, it is possible to give many different constructions of an abelian group with
this universal property, each of which gives a (slightly) different composition law for
the 1-morphisms in the 2-category Bimod.

o Let C be a category which admits pushouts, and suppose we are given a pair of cospans
X+—B-=>Y Y+~ (C—Z

in C. Then B and C can be regarded as 1-morphisms in the 2-category Cospan(C),
whose composition is given by the pushout C IIy B (regarded as a cospan from X to
7). This pushout is well-defined up to (unique) isomorphism as an object of C, but
there is generally no preferred representative of its isomorphism class. Consequently,
different choices of pushout lead to (slightly) different definitions for the composition
of 1-morphisms in the 2-category Cospan(C).

By making a different choice of conventions in these examples, one can obtain 2-categories
Bimod’ and Cospan’(C) having the same objects, 1-morphisms, and 2-morphisms as the
2-categories Bimod and Cospan(C), but different composition laws for 1-morphisms. In this
case, the 2-categories Bimod’ and Cospan’(C) can be obtained from Bimod and Cospan(C)
(respectively) by the twisting procedure of Construction In particular, the resulting 2-
categories Bimod’ and Cospan’(C) are isomorphic (though not necessarily strictly isomorphic)
to the 2-categories Bimod and Cospan(C), respectively.

2.2.7 Strictly Unitary 2-Categories

We now introduce a special class of 2-categories.

Definition 2.2.7.1. Let C be a 2-category. We will say that C is strictly unitary if, for each
l-morphism f: X — Y in C, the left and right unit constraints

Afiidyof = f pr: foidy = f
are identity 2-morphisms of C.

Proposition 2.2.7.2. Let C be a 2-category. Then C is strictly unitary if and only if the
following conditions are satisfied:

(a) For each 1-morphism f: X —Y in C, we have idy of = f = foidx.

(b) For each object X of C, the unit constraint vy : idx oidx = idy s the identity
morphism from idx oidy = idx to itself.

(c) For every 1-morphism f : X — Y in C, the associativity constraints cidy id,,f and
Qfidy,idy are equal to the identity (as 2-morphisms from f to itself).
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Proof. 1f C is strictly unitary, then (a) is clear and (b) follows from Corollary [2.2.1.15
Assume that (a) and (b) are satisfied. For any 1-morphism f : X — Y in C, the left unit
constraint Ay is characterized by the commutativity of the diagram

1dY idy, f

idy O(idy Of) ldy (e} ldy

idiay

oAy vyoidy
idy Of,

and is therefore the identity 2-morphism if and only if ®iq, 4,7 is an identity 2-morphism
(from f to itself). Similarly, the right unit constraint p¢ is an identity 2-morphism if and
only if afiqy idx is an identity 2-morphism in C. ]

Remark 2.2.7.3. Let C be a strictly unitary 2-category. Then C satisfies the following
stronger versions of conditions (a) and (¢) of Proposition [2.2.7.2

(a') For every pair of objects X,Y € C, the functors
Hom,(X,Y) — Homo(X,Y)  fridyof
Hom(X,Y) — Home(X,Y)  f— foidx
are equal to the identity.

() For every pair of 1-morphisms X i> Y4 ZinC , the associativity constraints oy fid .,
Qgidy,f, and aiq, g ¢ are equal to the identity (as 2-morphisms from g o f to itself).

Here (a') follows from the naturality of the left and right unit constraints (Remark [2.2.1.13)),
and (') follows from Propositions [2.2.1.14] and [2.2.1.16}

Example 2.2.7.4. Let G be a group with identity element 1 € G, let I" be an abelian group
on which G acts by automorphisms, let o : G x G x G — I" be a 3-cocycle, let C be the
monoidal category of Example [2.1.3.3] and let BC be the 2-category obtained by delooping
C (Example [2.2.2.5). The following conditions are equivalent:

e The 3-cocycle a is normalized: that is, it satisfies the equations
Qzyl = Qzly = Azy =0

for every pair of elements z,y € G.

o The 2-category BC is strictly unitary, in the sense of Definition [2.2.7.1

OOFF
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Remark 2.2.7.5. Let C and D be strictly unitary 2-categories (Definition [2.2.7.1)). Then a
strictly unitary lax functor F': C — D is given by the following data:

 For each object X € C, an object F/(X) € D.
e For every pair of objects X,Y € C, a functor of ordinary categories

Fxy : Home(X,Y) — Homp (F(X), F(Y)).

e For every pair of composable 1-morphisms X i> Y % Z in C, a composition constraint
tg.r: F(g9) o F(f) = F(go f), depending functorially on f and g.

This data must be required to satisfy axiom (c¢) of Definition [2.2.4.5] together with the
identities F'(idx) = idp(x) for each object X € C and pia,,f = idp(s) = piyidy for each
1l-morphism f: X — Y of C.

Remark 2.2.7.6. Let C be a strictly unitary 2-category, let {14 s} be a twisting cochain for
C (see Notation [2.2.6.7)), and let C" denote the twist of C’ with respect to {4 s} (Construction
2.2.6.8). The following conditions are equivalent:

(1) The 2-category C’ is strictly unitary.

(2) For every l1-morphism f: X — Y in C, both pfiq, and piq, s are identity 2-morphisms
(from foidy = f =idy of to itself).

If these conditions are satisfied, we will say that the twisting cochain {u, s} is normalized.

It is generally harmless to assume that a 2-category C is strictly unitary, by virtue of the
following;:

Proposition 2.2.7.7. Let C be a 2-category. Then there exists a strictly unitary isomorphism
C ~ (', where C' is a strictly unitary 2-category.

Proof. Let u = {pq,r} be the twisting cochain on C given on composable 1-morphisms
xLhysy by the formula

Alif=gof if g =idy
Hof =Py :9=gof if f=idy
idgor:go f=gof otherwise.

Note that this prescription is consistent, since Ay = vy = p, in the special case where

[ =1idy = g (Corollary [2.2.1.15). Let C’ be the twist of C with respect to the cocycle {14 s}
(Construction [2.2.6.8). Then C’ is a strictly unitary 2-category (in the sense of Definition

2.2.7.1), and Exercise[2.2.6.9supplies a strictly unitary isomorphism of 2-categories C ~ C’ [J
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Remark 2.2.7.8. Let 2Cat{;,, denote the subcategory of 2Caty.y (and full subcategory of 0091
2Catyrax) Whose objects are strictly unitary 2-categories and whose morphisms are strictly
unitary lax functors. It follows from Proposition that the inclusion 2Catiy,, —
2Catyrax is an equivalence of categories.

Remark 2.2.7.9. Let GG be a group and let I be an abelian group with an action of G. |00FH
When applied to the 2-categories described in Example [2.2.7.4] Proposition [2.2.7.7] reduces

to the assertion that every 3-cocycle o : G X G x G — I' is cohomologous to a normalized
3-cocycle o/ : G x G x G —T.

2.2.8 The Homotopy Category of a 2-Category

Every ordinary category can be regarded as a 2-category having only identity 2-morphisms 02GD
(Remark . Conversely, to every 2-category C one can associate ordinary category
hPith(C) having the same objects, in which morphisms are given by isomorphism classes of
1-morphisms in C. We will refer to hPith(C) as the homotopy category of the 2-category C
(Construction . It will be convenient to view this construction as a composition of
two different operations:

o To every 2-category C, one can associate a subcategory Pith(C) C C by removing the
non-invertible 2-morphisms of C; we will refer to Pith(C) as the pith of C (Construction

E259).

e To every 2-category C, one can associate an ordinary category hC by “collapsing” all
2-morphisms of C to identity 2-morphisms (Construction [2.2.8.2). We will refer to hC
as the coarse homotopy category of the 2-category C.

We begin by formulating the latter construction more precisely.

Definition 2.2.8.1. Let C be a 2-category and let H be an ordinary category, viewed as a |02AR
2-category having only identity 2-morphisms. We say that a functor F': C — H exhibits H

as a coarse homotopy category of C if, for every ordinary category &£, precomposition with F’
induces a bijection

{Functors of ordinary categories from #H to £}

{Functors of 2-categories from C to £}.

It follows immediately from the definitions that if a 2-category C admits a coarse homotopy
category H, then H is uniquely determined up to isomorphism. We will prove existence by
an explicit construction.
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02AS| Construction 2.2.8.2 (The Coarse Homotopy Category of a 2-Category). Let C be a
2-category. We define a category hC as follows:

o The objects of hC are the objects of C.

o If X and Y are objects of C, then Homp¢(X,Y) is the set of connected components of
the simplicial set No(Hom,(X,Y)).

e For objects X, Y, and Z of C, the composition of morphisms in hC is given by the map

Homype(Y, Z) x Hompe(X,Y) = mo(Ne Home (Y, Z)) X mp(Ne Hom (X, Y))
~ 7o(Ne(Home (Y, Z) x Hom.(X,Y)))
% mo(NeHome (X, Z))

Homyc (X, Z).

We will refer to hC as the coarse homotopy category of C.

The terminology of Construction [2.2.8.2)is consistent with that of Definition by
virtue of the following:

02AT Proposition 2.2.8.3. Let C be a 2-category and let hC be the ordinary category of Con-

struction 8.9, regarded as a 2-category having only identity 2-morphisms. Then there is
a unique functor of 2-categories F' : C — hC with the following properties:

o The functor F' carries each object of C to itself (regarded as an object of hC).

e The functor ' carries each 1-morphism u : X =Y of C to the connected component
of u, regarded as a vertex of the nerve No(Hom,(X,Y)).

Moreover, the functor F exhibits hC as a coarse homotopy category of C, in the sense of

Definition [2.2.8.1].

Proof. The existence of F follows from Example Let £ be an ordinary category,
and suppose we are given a functor of 2-categories G : C — £. We wish to show that there is
a unique functor of ordinary categories G : hC — £ satisfying G = G o F. The uniqueness is
clear (since the functor F' is surjective on objects and on 1-morphisms). To prove existence,
we define G on objects by the formula G(X) = G(X) and on morphism by using the map of
simplicial sets

N.(Home (X, Y)) = Home (G(X), G(Y))

and passing to connected components. O
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Corollary 2.2.8.4. Let Cat denote the category of (small) categories and let 2Cat denote
the category of (small) 2-categories (Definition |2.2.5.5. Then the inclusion Cat — 2Cat
admits a left adjoint, given on objects by the construction C — hC.

In general, passage from a 2-category C to its coarse homotopy category hC is a very
destructive procedure: if u,v : X — Y are 1-morphisms of C having the same source and
target, then the existence of any 2-morphism v : © = v in C guarantees that v and v have
the same image in hC. For many purposes, it is more appropriate to work with a variant of

hC which identifies only isomorphic 1-morphisms of C (Construction [2.2.8.12)). First, let us
introduce some terminology.

Definition 2.2.8.5. A (2,1)-category is a 2-category C with the property that every 2-

morphism in C is invertible.

Remark 2.2.8.6. The terminology of Definition fits into a general paradigm. Given
0 <m <n < oo, let us informally use the term (n, m)-category to refer to an n-category
C having the property that every k-morphism of C is invertible for k > m. Following this
convention, the co-categories of Definition should really be called (o0, 1)-categories.

Example 2.2.8.7. Let C be an ordinary category, viewed as a 2-category having only
identity 2-morphisms (Remark [2.2.1.6). Then C is a (2, 1)-category.

Remark 2.2.8.8. Let C be a (2,1)-category. Then every lax functor of 2-categories
F . D — C is automatically a functor. Consequently, there is no need to distinguish between
functors and lax functors when working in the setting of (2, 1)-categories.

Construction 2.2.8.9 (The Pith of a 2-Category). Let C be a 2-category. We define a new
2-category Pith(C) as follows:

o The objects of Pith(C) are the objects of C.

o For every pair of objects X,Y € C, the category Hompyy(c)(X,Y) is the core
Home(X,Y)™ of the category Hom.(X,Y") (see Construction [1.3.5.4).

o The composition law, associativity constraints, and unit constraints of Pith(C) are
given by restricting the composition law, associativity constraints, and unit constraints
of C.

Then Pith(C) is a (2, 1)-category which we will refer to as the pith of C.

More informally: for any 2-category C, the (2, 1)-category Pith(C) is obtained by discard-
ing the non-invertible 2-morphisms of C.

Remark 2.2.8.10 (The Universal Property of the Pith). Let C be a 2-category. Then
Pith(C) is characterized (up to isomorphism) by the following properties:
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o The pith Pith(C) is a (2, 1)-category.

o For every (2,1)-category D, every functor F' : D — C factors (uniquely) through
Pith(C).

Warning 2.2.8.11. In the situation of Remark [2.2.8.10} it is not true that a laz functor
F : D — C factors through the pith Pith(C) (even when D is a (2,1)-category): any lax
functor which admits such a factorization is automatically a functor, by virtue of Remark
2.2.8.8

Construction 2.2.8.12 (The Homotopy Category of a 2-Category). Let C be a 2-category.
We define a category hPith(C) as follows:

o The objects of hPith(C) are the objects of C.

o If X and Y are objects of C, then Homy,pie,(c)(X,Y") is the set of isomorphism classes
of objects in the category Hom.(X,Y). If f: X — Y is a 1-morphism from X to Y,
we typically denote its isomorphism class by [f] € Homypip ey (X, Y).

o The composition law on hPith(C) is determined by the requirement that [g]o[f] = [go f]
for every pair of composable 1-morphisms f: X — Y and g : Y — Z (this composition
law is associative by virtue of the existence of the associativity contraints of the
2-category C).

o For every object Y € C, the identity morphism from Y to itself in hPith(C) is the
isomorphism class of the identity morphism idy in C. For 1-morphisms f: X — Y
and g : Y — Z, the identities

idy]o[f]=1f]  lg]efidy]=[g]
follow from the existence of left and right unit constraints (see Construction [2.2.1.11)).
We will refer to hPith(C) as the homotopy category of C.

Remark 2.2.8.13. Let C be a 2-category. For every pair of objects X, Y € C, the category
Homp;y(c) (X,Y) = Home(X,Y)~

is a groupoid, so that the nerve No(Hom,(X,Y)™) is a Kan complex. It follows that 1-
morphisms u,v : X — Y belong to the same connected component of No(Hom.(X,Y)~) if
and only if they are connected by an edge of No(Home(X,Y)™~) (Remark [1.4.6.13)): that is,
if and only if u and v are isomorphic as objects of the category Hom.(X,Y"). It follows that
the homotopy category hPith(C) of Construction can be identified with the coarse

homotopy category of the 2-category Pith(C) (as suggested by the notation).
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Warning 2.2.8.14. Let C be a 2-category and let hPith(C) be the homotopy category of
C, which we regard as a 2-category having only identity 2-morphisms. In general, there is
no functor which directly relates C to the homotopy category hPith(C). Instead, there is a
commutative diagram of 2-categories

Pith(C)—— C

hPith(C) — hC.

Here the functor hPith(C) — hC is bijective on objects and full: that is, for every pair of
objects X,Y € C, the induced map

Homypign(c) (X, Y) = mo(Ne Home (X, Y)™) — mo(Ne Home (X, Y)) = Homype (X, Y)
is surjective.

Example 2.2.8.15. Let C be a (2, 1)-category, so that Pith(C) = C. In particular, the
inclusion Pith(C) < C induces an isomorphism of categories hPith(C) ~ hC. In this situation,
we will generally abuse notation by identifying hC with hPith(C) and referring to it as the
homotopy category of C.

Remark 2.2.8.16 (Functoriality). Let U : C — D be a functor of 2-categories. Then
there is a unique functor of ordinary categories hPith(U) : hPith(C) — hPith(D) with the
following properties:

o For each object X € C, the functor hPith(U) carries X to the object U(X) € D.

o For each 1-morphism f: X — Y of C, the functor hPith(U) carries the isomorphism
class [f] to the isomorphism class of the 1-morphism U(f): U(X) — U(Y).

Beware that the analogous assertion does not hold if U is only assumed to be a lax functor
of 2-categories.

Definition 2.2.8.17. Let C be a 2-category. We say that a 1-morphism f: X — Y inCis an

isomorphism if the homotopy class [f] is an isomorphism in the homotopy category hPith(C).

Equivalently, f is an isomorphism if there exists another 1-morphism g : Y — X such that
go fand f o g are isomorphic to idx and idy as objects of the categories Hom, (X, X) and
Hom,(Y,Y), respectively. In this case, g is also an isomorphism in C, which we will refer to
as a homotopy inverse to f.
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Example 2.2.8.18. Let C be an ordinary category, regarded as a 2-category having only
identity 2-morphisms (Remark. Then a morphism f : X — Y in C is an isomorphism
in the sense of Definition if and only if it is an isomorphism in the usual sense: that
is, if and only if there exists a morphism ¢ : Y — X satisfying go f =idx and f o g =idy.

Warning 2.2.8.19. Let C be a strict 2-category. We can then consider two different notions
of isomorphism in C:

e We say that a morphism f : X — Y is a strict isomorphism if it is an isomorphism in
the underlying category of C: that is, if there exists a 1-morphism g : Y — X satisfying

go f=idx and fog=idy.

o We say that a morphism f: X — Y is an isomorphism if the homotopy class [f] is an
isomorphism in the homotopy category hPith(C): that is, if there exists a 1-morphism
g:Y — X such that go f and f o g are isomorphic to idy and idy as objects of the
categories Hom, (X, X) and Hom.(Y,Y), respectively.

Every strict isomorphism in C is an isomorphism. However, the converse is false in general

(see Example [2.2.8.20)).

Example 2.2.8.20. Let F': C — D be a functor between (small) categories. Then F' is an
equivalence of categories if and only if it is an isomorphism when regarded as a 1-morphism

in the 2-category Cat of Example [2.2.0.4]

Remark 2.2.8.21. Let F' : C — D be a functor between 2-categories. Then F' carries
isomorphisms in C to isomorphisms in D (see Remark [2.2.8.16)). Beware that the analogous
assertion need not hold if we assume only that F' is a lax functor of 2-categories.

Remark 2.2.8.22. Let C be a 2-category and let f : X — Y and g : Y — Z be 1-morphisms
of C. If any two of the 1I-morphisms f, g, and g o f is an isomorphism, then so is the third.
In particular, the collection of isomorphisms is closed under composition.

Remark 2.2.8.23. Let C be a 2-category and let f,g : X — Y be l-morphisms in C
having the same source and target. If f and g are isomorphic (as objects of the category
Hom,(X,Y)), then f is an isomorphism if and only if g is an isomorphism.

We close this section by discussing a strengthening of Definition [2.2.8.5

Definition 2.2.8.24. Let C be a 2-category. We say that C is a 2-groupoid if every
1-morphism in C is an isomorphism and every 2-morphism of C is an isomorphism.

Remark 2.2.8.25. A 2-category C is a 2-groupoid if and only if it is a (2, 1)-category and
the homotopy category hC is a groupoid.
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Example 2.2.8.26. Let C be an ordinary category. Then C is a groupoid if and only if it is
a 2-groupoid (when viewed as a 2-category having only identity 2-morphisms).

Construction 2.2.8.27 (The Core of a 2-Category). Let C be a 2-category. We define a
new 2-category C~ as follows:

o The objects of C~ are the objects of C.

o For every pair of objects X,Y € C, the category Home~(X,Y) is the full subcategory
of Hom,(X,Y)~ spanned by the isomorphisms f: X — Y.

o The composition law, associativity constraints, and unit constraints of C= are obtained

by restricting the composition law, associativity constraints, and unit constraints of C

(which is well-defined by virtue of Remark [2.2.8.22]).
We will refer to C= as the core of the 2-category C.

Example 2.2.8.28. Let C be a category. Then the core C= C C of Construction
coincides with the core C= C C of Construction where we regard C as a 2-category
having only identity 2-morphisms.

Remark 2.2.8.29. Let C be a 2-category. Then the inclusion functor C= < C is a functor of
2-categories, which induces an isomorphism of categories from h(C~) to the core hPith(C)™
of the homotopy category hPith(C).

Remark 2.2.8.30. Let C be a 2-category. Then the core C~ is a 2-groupoid. This follows
from Remark [2.2.8.25 it is immediate from the construction that C= is a (2, 1)-category, and

~

the homotopy category h(C™) is a groupoid by virtue of the isomorphism h(C~) ~ hPith(C)
of Remark [2.2.8.29

Remark 2.2.8.31 (The Universal Property of the Core). Let C be a 2-category. Then the
core C~ is characterized by the following properties:

o The 2-category C~ is a 2-groupoid (Remark [2.2.8.30)).

o For every 2-groupoid D, every functor F': D — C factors (uniquely) through C=.

2.3 The Duskin Nerve of a 2-Category

In we defined an oco-category to be a simplicial set X, which satisfies the weak
Kan extension condition. Beware that this terminology is potentially misleading. Roughly
speaking, an oo-category (in the sense of Definition should be viewed as a higher
category C with the property that every k-morphism in C is invertible for & > 2. The
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framework of weak Kan complexes does not capture the entirety of higher category theory,
or even the entirety of the theory of 2-categories (as described in . Nevertheless, we
will show in this section that the theory of co-categories can be viewed as a generalization
of the theory of (2,1)-categories. Recall that, to every category C, one can associate a
simplicial set N4 (C) called the nerve of C (Construction[1.3.1.1). We proved in Chapter [1] that
C — No(C) determines a fully faithful embedding from the category Cat of small categories
to the category Seta of simplicial sets (Proposition , and that every simplicial set
of the form N,(C) is an co-category (Example [1.4.0.4). The construction C — N4(C) has a
generalization to the setting of 2-categories. In §2.3.1] we associate to each 2-category C a
simplicial set ND(C) called the Duskin nerve of C (introduced by Duskin and Street; see [I7]
and [54]). This construction has the following features (both established by Duskin in [I7]):

o If C is a (2,1)-category, then the Duskin nerve NY(C) is an oo-category (Theorem
2.3.2.1)). We prove this in §2.3.2| as a consequence of a more general result which
applies to the Duskin nerve of any 2-category (Theorem [2.3.2.5)), whose proof we defer

to §2.3.3]

e Let C and D be 2-categories. In we show that passage to the Duskin nerve
induces a bijection

{Strictly unitary lax functors F' : C — D}

{Maps of simplicial sets ND(C) — ND(D)};

see Theorem In other words, the formation of Duskin nerves induces a fully
faithful embedding from the category 2Catyr.x of Definition [2.2.5.5 to the category of
simplicial sets.

By virtue of Theorem [2.3:4.1] it is mostly harmless to abuse terminology by identifying
a 2-category C with the simplicial set ND(C) (each can be recovered from the other, up to
canonical isomorphism). Theorem then asserts that, under this identification, every
(2,1)-category can be regarded as an oco-category (see Remark for a more precise
statement).

In we study the Duskin nerve N (C) in the case where C is a strict 2-category.
In this case, we show that n-simplices of NY(C) can be identified with strict functors
Path gy [n] — C (Corollary . Here Path,)[n] denotes a certain 2-categorical variant of
the path category introduced in which will play an important role in our discussion
of the homotopy coherent nerve of a simplicial category (see §2.4.3)).
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2.3.1 The Duskin Nerve

In we associated to each category C a simplicial set No(C), called the nerve of C.

This construction has a natural generalization to the setting of 2-categories.

Construction 2.3.1.1 (The Duskin Nerve). Let n be a nonnegative integer and let [n]
denote the linearly ordered set {0 < 1 <2 < --- < n}. We will regard [n] as a category,
hence also as a 2-category having only identity 2-morphisms (Example . For any
2-category C, we let NP (C) denote the set of all strictly unitary lax functors from [n] to C
(Definition . The construction [n] — NP(C) determines a simplicial set, given as a
functor by the composition

Homacatyy,,, (¢:C)

AP — Cat? — 2Cat%riax Set .

We will denote this simplicial set by ND(C) and refer to it as the Duskin nerve of the
2-category C.

Remark 2.3.1.2. In the setting of strict 2-categories, the Duskin nerve C — NP (C) was
introduced by Street in [54]. The generalization to arbitrary 2-categories was given by
Duskin in [I7].

Example 2.3.1.3. Let C be an ordinary category, viewed as a 2-category having only
identity 2-morphisms (Example [2.2.0.6). Then the Duskin nerve NP (C) can be identified
with the nerve No(C) of C as an ordinary category (Construction |1.3.1.1]).

Remark 2.3.1.4. Let C be a 2-category and let C°P denote the opposite 2-category (see
Construction [2.2.3.1)). Then we have a canonical isomorphism of simplicial sets ND (C°P) ~
ND(€)°P, where NP (C)°P denotes the opposite of the simplicial set ND(C) (see Notation

T2).

Warning 2.3.1.5. Let C be a 2-category and let C° be the conjugate of C, obtained by
reversing vertical composition (Construction|2.2.3.4). There is no simple relationship between
Duskin nerves of C and C¢ (since the operation C — C° is not functorial with respect to lax

functors; see Warning [2.2.5.11]).

Remark 2.3.1.6 (Functoriality). The construction C + NP (C) determines a functor from
the category 2Catyrax of small 2-categories (with morphisms given by strictly unitary
lax functors) to the category Seta of simplicial sets. This functor fits into the general
paradigm of Variant it arises from a cosimplicial object of the category 2Catypax,
given by the inclusion A — Cat — 2Catyr.x. Beware that, unlike the usual nerve functor
N, : Cat — Seta, the Duskin nerve N? : 2Catyrax — Seta does not admit a left adjoint:
Proposition does not apply, because the category 2Catyrax does not admit small
colimits (one can address this problem by restricting to strict 2-categories: we will return to

this point in §2.3.5)).
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Remark 2.3.1.7. Let C be a 2-category, let {y, ¢} be a twisting cochain for C (Notation
2.2.6.7), and let C’ be the twist of C with respect to {4 s} (Construction [2.2.6.8). Then the

twisting cochain {p, } defines a strictly unitary isomorphism of 2-categories C ~ C’, and
therefore induces an isomorphism of simplicial sets N2 (C) ~ ND(C’). In other words, the
Duskin nerve N2(C) cannot detect the difference between C and C’. This should be regarded
as a feature, rather than a bug. Defining the composition law for 1-morphisms in a 2-category
C often requires certain arbitrary (but ultimately inessential) choices (see Example .
In such cases, one can often give a more direct description of the simplicial set ND (C) which

avoids such choices. See Example and Corollary

Remark 2.3.1.8. Let us make Construction [2.3.1.1| more explicit. Fix a 2-category C.
Unwinding the definitions, we see that an element of NP (C) consists of the following data:

(0) A collection of objects {Xj;}o<i<n of the 2-category C.
(1) A collection of 1-morphisms { f;; : X; = X;}o<i<j<n in the 2-category C
(2) A collection of 2-morphisms {p ;i : fij© fji = frito<i<j<k<n in the 2-category C.
These data are required to satisfy the following conditions:
(a) For 0 < i <mn, the 1-morphism f;; : X; — X; is the identity 1-morphism idx;.
(b) For 0 < i < j < n, the 2-morphisms
Wigi* figo fii = Fii Mjiat fiio fii = fi

are the left unit constraints Ay, ; and the right unit constraints py, ,, respectively.

(¢) For 0 <i<j<k</{<n,wehave a commutative diagram

RLRLRRIE

for o (frjo fii) (fer © frj) o fii
idy, , otk j.i pek,goidy;
Jek o fri Jejo fii
ek,

in the category Home(X;, Xy).
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In the description of Remark [2.3.1.8] it is possible to be more efficient by eliminating
some of the “redundant” information.

Proposition 2.3.1.9. Let C be a 2-category and let n be a nonnegative integer. Suppose we 00A2
are given the following data:

(0) A collection of objects {X;}o<i<n of the 2-category C.
(1) A collection of 1-morphisms {fj; : Xi — X }o<i<j<n in the 2-category C
(2") A collection of 2-morphisms {pu ji = frj© fii = frito<icj<k<n in the 2-category C.

This data can be extended uniquely to an n-simplex of the Duskin nerve N2(C) (as described
in Remark if and only if the following condition is satisfied:

() For 0 <i<j<k<{<n, wehave a commutative diagram

Cfo ko Fr,j 5

fero (frjo fia) (fer © frj) o fi
iy, , ottkj,i ek oidy ;
for o fri fejo fii
Mo ki

in the category Home(X;, Xy).

Proof. We wish to show that there is a unique way to choose 1-morphisms f;; : X; — X;
for i = j and 2-morphisms jix j; : fr;© fji = frs fori = j < kand i < j = k so that
conditions (a), (b), and (c) of Remark are satisfied. The uniqueness is clear: to satisfy
condition (a), we must have f;; = idx, for 0 <14 <n, and to satisfy condition (b) we must

have g j; = py;, when i = j and py j; = Ay, . when j = k. To complete the proof, it will

o
suffice to verify the following;:

(I) The prescription above is consistent. That is, when i = j = k, we have py, . = A Frj (as
morphisms of the category Hom.(X;, X%)).
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(II) The prescription above satisfies condition (c¢) of Remark [2.3.1.8, That is, the diagram

LRI

for o (frjo fia) (fex o frj) o fi
idy, , ok i Hek oidy,
fer o fr Jejo fii
e ki

fei

commutes in the special cases 0 < i =<k </l<n,0<i<j=k<{<n,and
0<i<j<k=(<n.

Assertion (I) follows from Corollary [2.2.1.15] Assertion (I1) follows from the triangle identity
in C in the case j = k, and from Proposition [2.2.1.16|in the cases i = j and k = £. O

00A3| Corollary 2.3.1.10. Let C be a 2-category. Then the restriction map
Homgeq, (A™, ND(C)) — Homger, (9A™,ND(C))
is bijective for n > 4 and injective when n = 3.

00A4) Warning 2.3.1.11. Let C be a 2-category. By virtue of Proposition [2.3.1.9) we can identify
n-simplices of the Duskin nerve N2 (C) with triples

({Xi}o<i<n, {fjio<i<j<n, {lk.jito<i<j<k<n)

satisfying condition (¢/) of Proposition This gives a description of N2 (C) which
makes no reference to the identity 1-morphisms of C or the left and right unit constraints of
C. The resulting identification is functorial with respect to injective maps of linearly ordered
sets [m] — [n]. In other words, we can construct the Duskin nerve ND(C) as a semisimplicial
set (see Definition without knowing the left and right unit constraints of C. However,
the left and right unit constraints of C are needed to define the degeneracy operators on the
simplicial set ND(C).

00A5 Remark 2.3.1.12. Let C and D be 2-categories and let F': C — D be a lax functor. If F' is
strictly unitary, then composition with F induces a map of simplicial sets ND(C) — NY(D).
However, even without the assumption that F' is strictly unitary, one can use the description
of Proposition to obtain a collection of maps NP(C) — N2 (D) which are compatible
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with the face operators on the simplicial sets NP (C) and NP (D) (though not necessarily
with the degeneracy operators). In other words, if we regard the Duskin nerve ND (C) as a
semisimplicial set, then it is functorial with respect to all (lax) functors between 2-categories.

Example 2.3.1.13 (Vertices of the Duskin Nerve). Let C be a 2-category. Using Proposition

2.3.1.9, we can identify vertices of the Duskin nerve NY(C) with objects of the 2-category C.

Example 2.3.1.14 (Edges of the Duskin Nerve). Let C be a 2-category. Using Proposition
2.3.1.9, we can identify edges of the Duskin nerve NP (C) with 1-morphisms f : X — Y of
the 2-category C. Under this identification, the face and degeneracy operators

dy,d} : NP(C) = NG'(€)  s5: N§(€) = NP(€)
are given by dj(f : X - V) =Y, di(f: X - Y) =X, and s)(X) = idx.

Example 2.3.1.15 (2-Simplices of the Duskin Nerve). Let C be a 2-category. Using
Proposition [2.3.1.9, we see that a 2-simplex o of the Duskin nerve NP (C) can be identified
with the following data:

e A triple of objects X,Y, Z € C.

e A triple of 1-morphisms f: X - Y, ¢g:Y — Z, and h: X — Z in the 2-category C
(corresponding to the faces d3(c), d3(c), and d?(o), respectively).

e A 2-morphism pu : g o f = h, which we depict as a diagram

Y

f ﬂ“ g

X Z.

Example 2.3.1.16 (3-Simplices of the Duskin Nerve). Let C be a 2-category. Using
Proposition [2.3.1.9] we see that a map of simplicial sets 9A3 — NP (C) can be identified
with the following data:

o A collection of objects {X;}o<i<3 of the 2-category C.
« A collection of 1-morphisms {fj; : X; = X, }o<i<j<3.
e A quadruple of 2-morphisms
p210: f210 f10= fo0  H321:fz2ofa1= f31

13,10 : 3,10 fi0= f3o 13,20 : f320 fa0 = f30-

00A6
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This data can be conveniently visualized as a pair of diagrams

X3

X37

representing “front” and “back” perspectives of the boundary of a 3-simplex. A 3-simplex
of the Duskin nerve ND(C) can be identified with a map d A% — ND(C) as above which
satisfies an additional compatibility condition: namely, the commutativity of the diagram

*f3,2:f2,1,f1,0

fa20(f210 fi0) — (fa2o fa1)o fio

IV
o f2,0 o fi,
\ /

in the ordinary category Hom,(Xg, X3).

p3,2,10d g

0

00AA| Example 2.3.1.17 (The Duskin Nerve of Bimod). Let Bimod denote the 2-category of
Example Then an n-simplex of the Duskin nerve N2 (Bimod) can be identified with a
collection of abelian groups {4;;}o<i<j<n equipped with unit elements e; € A;; and bilinear
multiplication maps - : Ay ;j x A;; — Ay ; satisfying the identities ej-x = x = x-¢; for x € A;;
and z-(y-z) = (z-y)-zforz € Ay, y=Ap ,and z € Aj; (where0 <i < j<k<{<n). In
this case, the multiplication equips each A;; with the structure of an associative ring (which
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is an object of the 2-category Bimod), each A;; with the structure of an A; j-A;; bimodule
(which is a 1-morphism in the 2-category Bimod). For 0 < ¢ < j < k < n, the bilinear map
Ay x Aj; — Ag; can be identified with a map of bimodules jug j; : Ak j ®a,,; Aji — Ak,
which we can regard as a 2-morphism in the category Bimod.

Example 2.3.1.18 (The Classifying Simplicial Set of a Monoidal Category). Let C be 00FJ
a monoidal category (Definition and let BC denote the 2-category obtained by
delooping C (Example . We will denote the Duskin nerve of BC by B, C and refer

to it as the classifying simplicial set of C. By virtue of Proposition [2.3.1.9] we can identify
n-simplices of the simplicial set B, C with pairs

({Cji}o<i<j<ns {Hk,ji fo<i<j<k<n})

where each Cj; is an object of C and each py ;; is a morphism from Cj ; ® Cj; to Cy,
satisfying the following coherence condition:

e For 0 <i<j<k<¥l<n, the diagram

ek ChigoC

Cor ® (Crj ® Cj) = (Cep ® Crj) ® Cyi
idey 5, ®Hk,j,i pek,j®idc;
Cri @ Cli Crj ®Cji

ek i

Cyi
is commutative.

Remark 2.3.1.19. Let G be a monoid, regarded as a monoidal category having only O0OFK
identity morphisms. Then the classifying simplicial set BoG of Example [2.3.1.18| agrees (up
to canonical isomorphism) with the simplicial set BoG given by Construction [1.3.2.5

2.3.2 From 2-Categories to co-Categories

We now use Construction [2.3.1.1| to connect the theory of 2-categories (in the sense of 00AB
Definition [2.2.1.1)) to the theory of co-categories (in the sense of Definition [1.4.0.1)).

Theorem 2.3.2.1 (Duskin [I7]). Let C be a 2-category. Then C is a (2,1)-category if and 00AC
only if the Duskin nerve ND(C) is an co-category.
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Example 2.3.2.2. Let C be a monoidal category and suppose that every morphism in
C is an isomorphism. Then the classifying simplicial set Be C of Example [2.3.1.18] is an
oo-category.

We will deduce Theorem [2.3.2.1] from a more general statement (Theorem [2.3.2.5)), which
gives a filling criterion for inner horns in the Duskin nerve N (C) for an arbitrary 2-category
C. First, we need a bit of terminology.

Definition 2.3.2.3. Let X, be a simplicial set. We will say that a 2-simplex o of X, is
thin if it satisfies the following condition:

(%) Let n >3, let 0 < i < n, and let 7 denote the 2-simplex of A7 given by the map
[2] ~ {i—1,4,i+ 1} C [n].

Then any map of simplicial sets fy : A} — X, satisfying fo(7) = o can be extended to
an n-simplex of X,.

Example 2.3.2.4. Let X, be a simplicial set. If X, is an co-category (in the sense of
Definition , then every 2-simplex of X, is thin. Conversely, if every 2-simplex of X,
is thin, then X, is an co-category if and only if every map of simplicial sets fo: A? — X,
can be extended to a 2-simplex of X,.

We will deduce Theorem [2.3.2.1] from the following result, whose proof will be given in
§2.3.3

Theorem 2.3.2.5. Let C be a 2-category and let o be a 2-simplex of the Duskin nerve
ND(C), corresponding to a diagram

Y
/ ﬂ” 9
X Z
h
(see Example|2.53.1.15)). Then o is thin if and only if v : go f = h is an isomorphism in the
category Homq(X, Z).

Proof of Theorem from Theorem[2.3.2.5 Let C be a 2-category. If the Duskin nerve
ND(C) is an oo-category, then every 2-simplex of NP (C) is thin (Example , so that
every 2-morphism in C is invertible by virtue of Theorem Conversely, if C is a
(2,1)-category, then every 2-simplex of ND(C) is thin (Theorem . Consequently, to
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show that ND(C) is an co-category, it will suffice to show that every map of simplicial sets
ug : A7 — ND(C) can be extended to a 2-simplex of NP(C). Note that we can identify ug
with a composable pair of 1-morphisms X Ly % 7z C. To extend this to a 2-simplex of
ND(C), it suffices to choose a 1-morphism h : X — Z and a 2-morphism 7 : go f = h. This is
always possible: for example, we can take h = go f and ~ to be the identity 2-morphism. [J

Remark 2.3.2.6. Let C be a (2, 1)-category, so that the Duskin nerve NY(C) is an oo- 00AG

category. Then:
« Objects of the co-category NY(C) can be identified with objects of the 2-category C.

e If X and Y are objects of C, then morphisms from X to Y in the oco-category N,D(C)
can be identified with 1-morphisms from X to Y in the 2-category C.

e If f,g : X — Y are l-morphisms in C having the same domain and codomain,
then f and g are homotopic when regarded as morphisms of the co-category N2 (C)
(Definition if and only if they are isomorphic when viewed as objects of
the groupoid Hom,(X,Y). More precisely, vertical composition with the left unit
constraint Ay :idy of = f induces a bijection

{Isomorphisms from f to g in the groupoid Hom,(X,Y)}

{Homotopies from f to g in the co-category NY(C)}.

Let us now collect some other consequences of Theorem [2.3.2.5

Corollary 2.3.2.7. Let C be a 2-category. Then every degenerate 2-simplex of the Duskin
nerve NV (C) is thin.

Proof. Combine Theorem [2.3.2.5|with the observation that, for every 1-morphism f: X — Y
of C, the left and right unit constraints

Aptidyof = f pf: foidx = f
are isomorphisms (in the category Hom.(X,Y)). O

Corollary 2.3.2.8. Let C and D be 2-categories and let F': C — D be a strictly unitary lazx
functor. Then F is a functor if and only if the induced map of simplicial sets ND(C) = NP (D)
carries thin 2-simplices of ND(C) to thin 2-simplices of ND (D).

OOAH

00AJ
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Proof. Let o be a 2-simplex of ND(C), corresponding to a diagram

Y
/ﬂ”“]
X A
h

in C. Let ¢’ denote the image of ¢ in NP (D), corresponding to the diagram

F(Y)
% %W
F(X) ) F(Z)

where 4/ is given by the (vertical) composition

F(g) o F(f) 225 F(go f) 22 F(h).

Since o is thin, the 2-morphism ~ is an isomorphism (Theorem [2.3.2.5)). It follows that ¢’ is
thin if and only if u4 ; is an isomorphism. In particular, the strictly unitary lax functor F
preserves thin 2-simplices if and only if g, ; is an isomorphism for every pair of composable

1-morphisms X i> Y & Z of C: that is, if and only if F'is a functor. O

00AK| Warning 2.3.2.9. Let C be a 2-category. Let us say that a 2-simplex ¢ of the Duskin nerve
ND(C) is special if it corresponds to a diagram

Y

f ﬂ’y g

X ; Z,
where h = go f and v = idger. Arguing as in the proof of Corollary we see that a
strictly unitary lax functor F' : C — D is strict if and only if it carries special 2-simplices
of NP(C) to special 2-simplices of NP (D). Beware, however, that the special 2-simplices
of ND(€) and ND(D) do not have an intrinsic description in terms of the simplicial sets
ND(C) and NP (D) themselves. In particular, it is possible to have an isomorphism of
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simplicial sets N2 (C) ~ ND(C) which does not preserve special 2-simplices (corresponding to
an isomorphism of 2-categories which is strictly unitary but not strict).

In general, passage from a 2-category C to its Duskin nerve NY(C) involves a slight loss
of information. From the simplicial set NP (C), we can recover the objects of C (these can
be identified with vertices of NP (C)) and the collection of 1-morphisms f : X — Y from an
object X to an object Y (these can be identified with edges of ND(C) having source X and
target Y'). However, the composition go f of a pair of composable 1-morphisms X i> Yy 4z
cannot be recovered from the structure of ND(C) as an abstract simplicial set. The best we
can do is to ask for a thin 2-simplex o of ND(C) satisfying d?(c) = g and d3(c) = f. Such a
simplex can be viewed as “witnessing” the presence of an isomorphism of the edge h = d3(o)
with the composition g o f. Put another way, the abstract simplicial set N.D(C) contains
enough information to reconstruct the composition g o f up to (unique) isomorphism, but
not enough information to select a canonical representative of its isomorphism class. This
can be viewed as a feature, rather than a bug: the Duskin nerve ND(C) often admits a more
invariant description than the 2-category C itself (since the information lost by passing from
C to NP (C) depends on choices that one would prefer not make in the first place; see Remark

E31).

If C is a 2-category which contains non-invertible 2-morphisms, then the Duskin nerve
ND (C) is not an co-category. However, we can extract an oco-category by applying the Duskin
nerve to the pith Pith(C) introduced in Construction [2.2.8.9

Remark 2.3.2.10. Let C be a 2-category. Then the Duskin nerve NP (Pith(C)) is an
oo-category (Theorem . Unwinding the definitions, we see that NP (Pith(C)) can
be identified with the largest simplicial subset X, of NP (C) having the property that each
2-simplex of X, is thin when regarded as a 2-simplex of ND(C) (so that an n-simplex
o € NP(C) belongs to NY (Pith(C)) if and only if, for every map A? — A™, the composition
A% — A" 5 ND(C) is thin).

2.3.3 Thin 2-Simplices of a Duskin Nerve

Let C be a 2-category and let ¢ be a 2-simplex of the Duskin nerve NP (C), corresponding

to a diagram

OOAP

00AQ
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Our goal is to prove Theorem [2.3.2.5 which asserts that o is thin (in the sense of Definition
2.3.2.3)) if and only if the 2-morphism ~ : g o f = h is invertible. This follows from

Propositions [2.3.3.1) and Proposition [2.3.3.2| below.

Proposition 2.3.3.1. Let C be a 2-category, let n > 3, and let u : A} — NP(C) be a map
of simplicial sets for some 0 < £ < n. Let o denote the 2-simplex of NP(C) obtained by
composing u with the map A? — A} given by the map of linearly ordered sets

2] ~{¢—1,¢,0+1} C [n],

corresponding to a diagram

Xg,1 X€+1

in the 2-category C. If v is invertible, then u extends uniquely to an n-simplex of N,D(C).

Proof. Using Examples [2.3.1.13] and [2.3.1.14] we see that the restriction of u to the 1-
skeleton of A} is given by a collection of objects {X;}o<i<n of C, together with 1-morphisms
{fji + Xi = Xj}o<icj<n. For n > 5, the horn A} contains the 3-skeleton of A", so the
existence and uniqueness of the desired extension is automatic by virtue of Corollary [2.3.1.10]

(in particular, we do not need to assume that 0 < ¢ < n or that v is invertible). We now
treat the case n = 3. We will assume that ¢ = 1 (the case ¢ = 2 follows by symmetry), so
that we can use Example to identify u with a triple of 2-morphisms

H210 : fa1 0 fio = fao 310 : f310 fio = f3o w321 : f320 fo1r = f31.

Using the description of 3-simplices of NY(C) supplied by Example [2.3.1.16, we see an
extension of u to a 3-simplex of the Duskin nerve ND(C) can be identified with a 2-morphism
1320 : fa2 0 fog = f30 satisfying the equation

U320(idf32 opi210) = p310(H321 © idflo)af327f217f10'

Our assumption guarantees that v = po1¢ is an isomorphism; it follows that the preceding
equation has a unique solution, given by

. . -1
H320 = /1«310(/1«321 % ldflo)af327f217f10 (ldf32 0/1’210)'

We now treat the case n = 4. For simplicity, we will assume that £ = 2 (the cases £ =1
and ¢ = 3 follow by a similar argument). To simplify the notation in what follows, we will
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denote the composition of a pair of 1-morphisms of C by hg, rather than h o g. Note that the
horn A} contains the 2-skeleton of A", so the morphism u can be identified with a collection
of 2-morphisms jugji : frjfji = fri- Using Example we note that the extension of u
to a 4-simplex of ND(C) is automatically unique, and exists if and only if the outer cycle
commutes in the diagram

f13(f31f10) = (fa3f31) f10
e P
fa3((f32f21) f10) = (fa3(f32.f21)) f10
fa3(f32(f21f10)) ((f13f32) fo1) f10
H310 H210 3 z Ha32 431

fas(faafoo)  (fasfs2)(forfio)  (fazfa1)fio

%K

n n
7 (fasfs2) foo = oo = faa(for fr0)
1420
1430 H410
fa3f30 Jfoa far fro;

here the unlabeled 2-morphisms are induced by the associativity constraints of C. This
follows from a diagram chase, since pzo; = < is an isomorphism and each of the inner
cycles of the diagram commutes (the 4-cycles commute by functoriality, the central 5-cycle
commutes by the pentagon identity in C, and the remaining 5-cycles commute by virtue of
our assumption that u is defined on the Oth, 1st, 3rd, and 4th face of the simplex A%). O

Proposition 2.3.3.2. Let C be a 2-category and let o be a 2-simplex of the Duskin nerve 00AS
ND(C), corresponding to a diagram

X Z.

in the 2-category C. Assume that the following condition is satisfied:

(¥) Let n € {3,4} and let u: A} — ND(C) be a map of simplicial sets such that u|p2 = o;
here we identify A? with a simplicial subset of A7 C A™ via the inclusion map [2] < [n].
Then u extends to an n-simplex of NP (C).
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Then ~ s invertible.

Proof. Without loss of generality, we may assume that C is strictly unitary (Proposition
2.2.7.7). Applying () in the case n = 3, we can extend o to a 3-simplex of ND(C) which is
represented by the pair of diagrams

X

It follows that v admits a left inverse, given by the vertical composition § : h = go f. To
show that this composition is also a right inverse, we apply (*) in the case n = 4 to construct
a 4-simplex 7 of NY(C) whose two-dimensional faces correspond to the 2-morphisms

H2,1,0 = H4,1,0 = 7Y (31,0 = idgos H320 =0 420 =idy

4,30 =Y H3,2,1 = pa2,1 = pa31 = idg pa,32 = idiq,, -

The 3-simplex dj(7) then witnesses the identity
pa2.0(pa32 0idy) = pa30(idia, ops2.0),
which shows that § is also a right inverse to ~. O
2.3.4 Recovering a 2-Category from its Duskin Nerve
In we proved that the nerve functor
N, : Cat — Seta

is fully faithful. This result generalizes to the setting of 2-categories:
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Theorem 2.3.4.1 (Duskin [I7]). Let C and D be 2-categories. Then passage to the Duskin
nerve induces a bijection

{Strictly unitary lax functors C — D} — {Morphisms of simplicial sets ND(C) — ND(D)}.

In other words, the Duskin nerve functor NP : 2Catyrax — Seta is fully faithful.

Remark 2.3.4.2. Combining Theorem [2.3.4.1, Theorem [2.3.2.1] and Remark |2.2.8.8 we see

that the construction C — NP (C) determines a fully faithful embedding from the ordinary
category of (2,1)-categories (where morphisms are strictly unitary functors in the sense of
Definition [2.2.4.17)) to the ordinary category of oo-categories (where morphisms are functors

in the sense of Definition [1.5.0.1)).

Remark 2.3.4.3. In [I7], Duskin proves a stronger version of Theorem [2.3.4.1} which also
identifies the essential image of the functor NP : 2Catyrax — Seta.

Example 2.3.4.4. Let C and D be monoidal categories. We say that a lax monoidal functor
F : C — D is strictly unitary if the unit € : 1p — F(1¢) is an identity morphism of D. It
follows from Theorem [2.3.4.1 and Remark [2.2.4.9] that the formation of classifying simplicial
sets induces a bijection

{Strictly unitary lax monoidal functors F' : C — D}

{Maps of simplicial sets B, C — Be D}.

Corollary 2.3.4.5. Let C and D be 2-categories. Then passage to the Duskin nerve induces
a bijection
{Strictly unitary functors C — D}

{Maps ND(C) — ND(D) preserving thin 2-simplices}.
Proof. Combine Theorem [2.3.4.1] with Corollary [2.3.2.§ O

Corollary 2.3.4.6. Let C be a 2-category, let hC be its coarse homotopy category, and let
F :C — hC be the functor of Proposition |2.2.8.5. Then the induced map of simplicial sets

ND(F) :ND(C) = NP (hC) — N, (hC)

exhibits hC as the homotopy category of the simplicial set NP (C), in the sense of Definition
[L.3.6.1l

00AU

00AV

O0AW

OOFM

00AX

02BG
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Proof. Let D be a category, which we regard as a 2-category having only identity morphisms.
We wish to show that every morphism of simplicial sets N (C) — No(D) factors uniquely
through the morphism NP (F). By virtue of Theorem this is equivalent to the
assertion that every strictly unitary lax functor G : C — D factors uniquely through F,
which follows from Proposition [2.2.8.3] O

Proof of Theorem[2.3.7.1. By virtue of Proposition 2.2.7.7] we may assume without loss of
generality that the 2-categories C and D are strictly unitary (this assumption will simplify

some of the notation in what follows). Let U : ND(C) — ND(D) be a map of simplicial sets.
Then:

« Bach object X of C can be identified with a vertex of the Duskin nerve ND(C) (Example
2.3.1.13), whose image under U is a vertex of the Duskin nerve ND (D). This vertex
can be identified with an object of D, which we denote by Uy(X).

e Each 1-morphism f : X — Y of C can be identified with an edge of the Duskin
nerve ND(C) (Example , whose image under U is an edge of the Duskin nerve
ND (D). This edge can be identified with a 1-morphism of D, which we will denote by
Ui(f) : Up(X) = Up(Y).

e let f: X Y, g:Y — Z and h : X — Z be l-morphisms of C, and let
v :go f = h bea 2-morphism of C. The 2-morphism ~ determines a 2-simplex of
the Duskin nerve NY(C) (Example . The image of this 2-simplex under U
is a 2-simplex of the Duskin nerve N2 (D), which we can identify with a 2-morphism
Ua(y) : Ui(g) o U1(f) = Ui(h) in D. Beware that this notation is slightly abusive: the
2-morphism Us(7) is a priori dependent not only on -+, but also on the factorization of
the source of v as a composition g o f.

Let F': C — D be a strictly unitary lax functor. Unwinding the definitions, we see that
the induced map of simplicial sets NY(F) : ND(C) — N2 (D) coincides with U if and only if
the following conditions are satisfied:

(0) For every object X € C, we have F(X) = Up(X) (as objects of D).

(1) For every l-morphism f: X — Y in C, we have F(f) = Ui(f) (as 1-morphisms from
F(X)=Up(X) to F(Y) =Uy(Y) in D).

(2) For every triple of 1-morphisms f: X - Y, ¢g:Y — Z, and h: X — Z in C and every
2-morphism 7 : go f = h, the 2-morphism Us(7) : U1(g) o Ui(f) = U1(h) of D is given
by the (vertical) composition

Ur(g) o Ui(f) = F(g) o F(f) 225 F(go £) 22 F(h) = Ui (h),
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Let us note two special cases of condition (2). Taking h =go f and v: go f = h to be the
identity 2-morphism, we obtain the following:

(20) For every pair of composable 1-morphisms X i> Y 4 ZofC , the composition constraint
Lg.f: F(g) o F(f) = F(go f) coincides with the 2-morphism Us(idgo¢).

Taking g to be the identity morphism idy : Y — Y and invoking our assumption that C and
D are strictly unitary, we also obtain:

(21) For every pair of 1-morphisms f,h: X — Y in C and every 2-morphism v : f = h, we
have

Ua(7) = F(Miay 5 = F(7)

(here the second identity follows from Remark [2.2.7.5] since the 2-categories C and D
are strictly unitary).

We wish to show that there is a unique strictly unitary lax functor F': C — D satisfying
conditions (0), (1), and (2). The uniqueness is clear: by virtue of the analysis above, the
functor F' must be given on objects, 1-morphisms, and 2-morphisms of C by the formulae

FX)=U(X) F()=Uif) F(y)=0)

(where, in the third formula, we identify the domain of each 2-morphism v : f = h in
Hom,(X,Y) with the composition idy of), and the composition constraint pg, ¢ : F(g) o
F(f) = F(go f) must be given by py 5 = Ua(idgos). To complete the proof, it will suffice to
show that these formulae supply a well-defined lax functor F' : C = D, and that F satisfies
condition (2) above (note that F' satisfies conditions (0) and (1) by construction).

We first show that F satisfies condition (2). Suppose we are given a triple of 1-morphisms
f:X—=>Y, g:Y—Z and h: X — Z, together with a 2-morphism v : go f = h in the
2-category C. Consider the map A3 — NP (C) represented by the pair of diagrams




2.3. THE DUSKIN NERVE OF A 2-CATEGORY 243

(see Example [2.3.1.16). Using the identity oiq,q r = idgor (Remark , we see that
these diagrams satisfy the compatibility condition of Example and can therefore be
regarded as a 3-simplex of N (C). Applying the map of simplicial sets U, we deduce that
the diagrams

F(Y)

F(f) \
Ua(7)

determine a 3-simplex of ND(D): that is, we have a commutative diagram

F(X)

aidp(z)yF(g%F(f)
>

idp(z)o(F(g) o F(f)) (idp(z) oF(g)) o F(f)

i, \
f) F(g)
K %
F(h).

By virtue of Remark we see that this is equivalent to the identity Us(y) = F(v)uq,f
asserted by (2).

Note that from condition (2), we can deduce that F' satisfies the dual of condition (2;):
that is, for every 2-morphism v : g = h in Hom¢(X,Y), we have F(y) = Ua(7), where the

idzoF(go

o F(f)

right hand side is computed by regarding v as a 2-morphism with domain g oidx. It follows
that the construction of F' from U is invariant under the operation of replacing C and D by
the opposite 2-categories C°? and DP (this will be useful in what follows, since it reduces
the number of identities that we need to check).

We now show that, for every pair of objects X,Y € C, the construction of F' on 1-
morphisms and 2-morphisms determines a functor Hom,(X,Y) — Homp(F(X), F(Y)). For
this, we must establish the following:
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e For each 1-morphism f: X — Y in C, we have F(idy) = idp(s) (as 2-morphisms from

F(f) to itself in D). By definition, this is equivalent to the identity Us(idy) = idp(y),
which follows from the compatibility of the map U : NP(C) — NP(D) with the
degeneracy operators

s1 :NP(C)=N5(C)  s1:NP(D) = NP (D).
For every triple of 1-morphisms f,g,h: X = Y in C and every pair of 2-morphisms

v:f=g,0:9= h, we have F(d7) = F(0)F (). To prove this, consider the map
OA® — ND(C) represented by the pair of diagrams

X Y

(see Example [2.3.1.16)). It follows from Remark [2.2.7.3| that the associativity constraint
Qidy idy,f is the identity, so that the diagrams above satisfy the compatibility condition

of Example [2.3.1.16{ and therefore determine a 3-simplex of NP (C). Applying the map
of simplicial sets U, we deduce that there exists a 3-simplex of the Duskin nerve N?

whose boundary is given by the diagrams

B

Y)
F(y
F(f) X dp(y)
F(G) F(9)
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Using the criterion of Example [2.3.1.16] we see that this is equivalent to the identity
F(0y) = F(0)F (7).

We now show that, for every triple of objects X, Y, Z € C, the composition constraints
Lg.f = F(g)oF(f) = F(go f) depends functorially on f € Hom-(X,Y') and g € Hom,(Y, Z).
We will argue that for fixed f, the construction g — g ¢ is functorial; functoriality in g will
then follow by symmetry. Suppose we are given a 2-morphism v : g = h in C; we wish to
show that the diagram 7 :

>

F(g)o F(f) F(h) o F(f)
Mg, f Mh, f
Fgo f) —22+ p(no f)

commutes in the category Homp(F(X), F(Z)). To prove this, we consider the map 9 A3 —
ND(C) represented by the pair of diagrams

Y

A
Nidzwf
idy
gof ~yoidy
X hof A
Y g 4
f /y idz
idhof h
X el Z.

Using the identity cuq,,g s = idgos supplied by Remark [2.2.7.3] we see that this diagram
defines a 3-simplex of ND(C). Applying the map of simplicial sets U, we deduce that there

is a 3-simplex of NP (D) whose boundary is represented by the pair of diagrams
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F(Y) o) F(Z)
F(f) / F idp(z)
tn g F(R)
F(X) Fhel) F(2).

This translates to the commutativity of the diagram

aidF(Z),F(g),F(f)

idp(z)o(F(9) o F(f)) === (idp(z) oF (9)) © F()
Hg,f ()

) F(h)
K /
F(ho f),

which (again by virtue of Remark [2.2.7.3) is equivalent to the commutativity of the diagram
T.

idp(z) oF(go o F(f)

To complete the proof, it will suffice to show that F' and p satisfy conditions (a), (b),
and (c) of Definition [2.2.4.5] Condition (a) is immediate from the construction, and (b)
follows by symmetry. To verify (c¢), suppose we are given a triple of composable 1-morphisms

w i> X% v % Zin the 2-category C. Consider the 3-simplex of N (C) represented by
the pair of diagrams

g

X A
idgo
; \ / \
gof Qh,g,f
W (hog)of 7
Y
hog

X
! %
id(hog)o\ hog
hog)o
W (hog)of
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Applying U, we obtain a 3-simplex of ND (D) represented by the pair of diagrams

F(X) o) F(Z)
Ky, f
X //V F(h)
F(gof) Ua(an,g, 1)
PO F((hog)of) F(2)
F(X) ) F(Y)
F(f)
/‘Lhog,f
F(W) F((hog)of) F(Z),

which is equivalent to the commutativity of the pentagon appearing in the diagram

AF(h),F(9),F(f)

F(h) o (F(g) o F(f)) (F'(h) o F(g)) o F(f)

idp(n) otg, s Hh,g0ld ()
F(h)o F(go f) F(hog)oF(f)
Bh,gof Lona.s) Hhog, f
F(an,g,r)

F(ho(gof)) F((hog)of)

in the category Homp (F (W), F(Z)). Since the triangle on the lower left commutes by virtue
of (2), it follows that the outer cycle of the diagram commutes, as desired. O

2.3.5 The Duskin Nerve of a Strict 2-Category

00B9 Let C be a strict 2-category (Definition . Then we can regard C as a 2-category
(in which the associativity and unit constraints are identity morphisms), and form the
Duskin nerve NP (C) by applying Construction However, the Duskin nerve of a strict
2-category admits a more direct description, which can be formulated entirely in terms of
strict 2-categories (and strict functors between them). The proof is based on a construction
which will play an important role in
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Construction 2.3.5.1 (The Path 2-Category of a Partially Ordered Set). Let (Q, <) be a
partially ordered set. We define a strict 2-category Path s [Q] as follows:

o The objects of Path(y)[Q] are the elements of Q.

o Given elements z,y € @), we let Homp,,¢) ® (z,y) denote the partially ordered set of
all finite linearly ordered subsets

S={z=zy<m1< <z =y}CQ

having least element x and greatest element y, ordered by reverse inclusion. We regard
the partially ordered set Homp,y[q @ (x,y) as a category, having a unique morphism
S = T when T is contained in S.

« For every element z € @, the identity 1-morphism id, € Homp,yg)(z,z) is given by
the singleton {z} (regarded as a linearly ordered subset of @), having greatest and least
element x).

e For every triple of objects z,y, z € @, the composition functor

o : Hompyn , 1) (¥, 2) X Hompan , ) (4, y) = Hompagy, , )(, 2)
is given on objects by the construction (S,7) — SUT.
* We will refer to Path o)[Q] as the path 2-category of Q.

Remark 2.3.5.2 (Comparison with the Path Category). Let (Q, <) be a partially ordered
set. We let Path[Q] denote the underlying category of the strict 2-category Path(,)[Q]. The
category Path[@Q] can be described concretely as follows:

o The objects of Path[Q)] are the elements of Q).

o If z and y are elements of @), then a morphism from z to y in Path[Q] is given by a
finite linearly ordered subset

S={rz=zxg<z1<32< <20 =9y} CQ
having least element x and largest element y.

Note that Path[Q)] can also be realized as the path category of a directed graph Gr(Q) (as
defined in Construction [1.3.7.1]). Here Gr(@) denotes the underlying directed graph of the
category (), given concretely by

Vert(Gr(Q)) =@  Edge(Gr(Q)) = {(z,y) € Q : 2z <y}

where we regard each ordered pair (x,y) € Edge(Gr(Q)) as an edge with source s(z,y) = x
and target t(x,y) = v.

OOBA
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Remark 2.3.5.3. Let (@, <) be a partially ordered set, which we regard as a category
(having a unique morphism from x to y when x < y). Note that, for every pair of elements
x,y € Q, the category mpath[Q](g) (z,y) is empty unless 2 < y. It follows that there is a
unique (strict) functor Path[Q]2) — @ which is the identity on objects.

Construction 2.3.5.4. Let (Q, <) be a partially ordered set, which we regard as a category
having a unique morphism e, , for every pair of elements =,y € @ with x <y. We define a
strictly unitary lax functor Ty : Q — Path(y)[Q] as follows:

o On objects, the lax functor T is given by T (z) = «.

« On 1-morphisms, the lax functor Ty is given by T (ey.») = {y,x} € Homp,h, (q] (z,y)
whenever x < y in Q.

e For every triple of elements x,y, z € @Q satisfying x < y < z, the composition constraint
Poyo: To(ezy) o To(ey,z) = Tg(es ) is the 2-morphism of Pathy) [Q] corresponding
to the inclusion of linearly ordered sets

TQ(eZ,I) = {z,x} - {Z7y>'r} = {Zvy} U {yvx} = TQ(ez,y) © TQ(ey,ﬂ?)'

Remark 2.3.5.5. Let (Q, <) be a partially ordered set, let T : @ — Path(,)[Q] be the
lax functor of Construction [2.3.5.4) and let F' : Path(,)[Q] — @ be the functor of Remark
2.3.5.3| (so that F'is the identity on objects). Then the composition

T F
Q —% Path(»)[Q] = Q
is the identity functor from @ to itself. Beware that the composition
F T
Path)[Q] — Q —% Pathy)[Q)]

is not the identity (as a lax functor from Path 9)[@] to itself). This composition carries each
object of Path(y)[Q] to itself, but is given on 1-morphism by the construction {z¢ < 71 <
s < xp ) {zo < R}

The 2-category Path(y) [@Q] of Construction [2.3.5.1] is characterized by the following
universal property:

Theorem 2.3.5.6. Let () be a 