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Chapter 1

The Language of ∞-Categories

0001A principal goal of algebraic topology is to understand topological spaces by means of
algebraic and combinatorial invariants. Let us consider some elementary examples.

• To any topological space X, one can associate the set π0(X) of path components of X.
This is the quotient of X by an equivalence relation ≃, where x ≃ y if there exists a
continuous path p : [0, 1]→ X satisfying p(0) = x and p(1) = y.

• To any topological space X equipped with a base point x ∈ X, one can associate the
fundamental group π1(X,x). This is a group whose elements are homotopy classes of
continuous paths p : [0, 1]→ X satisfying p(0) = x = p(1).

For many purposes, it is useful to combine the set π0(X) and the fundamental groups
{π1(X,x)}x∈X into a single mathematical object. To any topological space X, one can
associate an invariant π≤1(X) called the fundamental groupoid of X. The fundamental
groupoid π≤1(X) is a category whose objects are the points of X, where a morphism from a
point x ∈ X to a point y ∈ X is given by a homotopy class of continuous paths p : [0, 1]→ X

satisfying p(0) = x and p(1) = y. The set of path components π0(X) can then be recovered
as the set of isomorphism classes of objects of the category π≤1(X), and each fundamental
group π1(X,x) can be identified with the automorphism group of the point x as an object of
the category π≤1(X). The formalism of category theory allows us to assemble information
about path components and fundamental groups into a single convenient package.

The fundamental groupoid π≤1(X) is a very important invariant of a topological space X,
but is far from being a complete invariant. In particular, it does not contain any information
about the higher homotopy groups {πn(X,x)}n≥2. We therefore ask the following:

Question 1.0.0.1. 0002Let X be a topological space. Can one devise a “category-theoretic”
invariant of X, in the spirit of the fundamental groupoid π≤1(X), which contains information
about all the homotopy groups of X?
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5

We begin to address Question 1.0.0.1 in §1.1 by introducing the theory of simplicial sets.
A simplicial set S = S• is a collection of sets {Sn}n≥0, which are related by face operators
{dni : Sn → Sn−1}0≤i≤n and degeneracy operators {sni : Sn → Sn+1}0≤i≤n satisfying suitable
identities (see Definition 1.1.0.6 and Proposition 1.1.2.14). Every topological space X

determines a simplicial set Sing•(X), called the singular simplicial set of X, with the
property that each Singn(X) is the collection of continuous maps from the topological
n-simplex into X (Construction 1.2.2.2). Moreover, the homotopy groups of X can be
reconstructed from the simplicial set Sing•(X) by a simple combinatorial procedure (see
§3.2). Kan observed that this procedure can be applied more generally to any simplicial set
S satisfying the following Kan extension condition:

(∗) For 0 ≤ i ≤ n, every map σ0 : Λni → S admits an extension σ : ∆n → S.

Here ∆n denotes a certain simplicial set called the standard n-simplex (Example 1.1.0.9),
and Λni denotes a certain simplicial subset of ∆n called the ith horn (Construction 1.2.4.1).
Simplicial sets satisfying condition (∗) are called Kan complexes. Every simplicial set of
the form Sing•(X) is a Kan complex (Proposition 1.2.5.8), and the converse is true up
to homotopy. More precisely, Milnor proved in [44] that the construction X 7→ Sing•(X)
induces an equivalence from the (geometrically defined) homotopy theory of CW complexes
to the (combinatorially defined) homotopy theory of Kan complexes; we will discuss this
point in Chapter 3 (see Theorem 3.6.0.1).

The singular simplicial set Sing•(X) is a natural candidate for the sort of invariant
requested in Question 1.0.0.1: it is a mathematical object of a purely combinatorial nature
which contains complete information about the homotopy groups of X and their interre-
lationship (from which we can even reconstruct X up to homotopy equivalence, provided
that X has the homotopy type of a CW complex). But in order to see that it qualifies as a
complete answer, we must address the following:

Question 1.0.0.2.0003 Let X be a topological space. To what extent does the simplicial set
Sing•(X) behave like a category? What is the relationship between Sing•(X) with the
fundamental groupoid of X?

Our answer to Question 1.0.0.2 begins with the observation that the theory of simplicial
sets is closely related to category theory. To every category C, one can associate a simplicial
set N•(C), called the nerve of C (we will review the construction of N•(C) in §1.3; see
Construction 1.3.1.1). The construction C 7→ N•(C) is fully faithful (Proposition 1.3.3.1):
in particular, a category C is determined (up to canonical isomorphism) by the simplicial
set N•(C). Throughout much of this book, we will abuse notation by not distinguishing
between a category C and its nerve N•(C): that is, we will view a category as a special kind
of simplicial set. These special simplicial sets admit a simple characterization: according to

https://kerodon.net/tag/0003
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Proposition 1.3.4.1, a simplicial set S has the form N•(C) (for some category C) if and only
if it satisfies the following variant of the Kan extension condition (Proposition 1.3.4.1):

(∗′) For 0 < i < n, every morphism σ0 : Λni → S admits a unique extension σ : ∆n → S.

The extension conditions (∗) and (∗′) are closely related, but differ in two important
respects. The Kan extension condition requires that every map of simplicial sets σ0 : Λni → S

admits an extension σ : ∆n → S. Condition (∗′) requires the existence of an extension only
in the case 0 < i < n, but demands that the extension is unique. Neither of these conditions
implies the other: a simplicial set of the form N•(C) satisfies condition (∗) if and only if the
category C is a groupoid (Proposition 1.3.5.2), and a simplicial set of the form Sing•(X)
satisfies condition (∗′) if and only if every continuous path [0, 1]→ X is constant. However,
conditions (∗) and (∗′) admit a common generalization. We will say that a simplicial set S
is an ∞-category if it satisfies the following variant of (∗) and (∗′), known as the weak Kan
extension condition:

(∗′′) For 0 < i < n, every map σ0 : Λni → S• admits an extension σ : ∆n → S•.

The theory of ∞-categories can be viewed as a simultaneous generalization of homotopy
theory and category theory. Every Kan complex is an ∞-category, and every category
C determines an ∞-category (given by the nerve N•(C)). In particular, the notion of ∞-
category answers the first part of Question 1.0.0.2: simplicial sets of the form Sing•(X)
are almost never (the nerves of) categories, but are always ∞-categories. At this point,
the reader might reasonably object that this is terminological legerdemain: to address the
spirit of Question 1.0.0.2, we must demonstrate that simplicial sets of the form Sing•(X)
(or, more generally, all simplicial sets satisfying condition (∗′′)) really behave like categories.
We begin in §1.4 by explaining how to extend various elementary category-theoretic ideas
to the setting of ∞-categories. For example we can associate to each ∞-category S = S• a
collection of objects (these are the elements of the set S0), a collection of morphisms (these
are the elements of the set S1), and a composition law on morphisms. In particular, we show
that any ∞-category S determines an ordinary category hS , called the homotopy category
of S (Proposition 1.4.5.2). The construction of the homotopy category allows us to answer
the second part of Question 1.0.0.2: for every topological space X, the singular simplicial
set Sing•(X) is an ∞-category, whose homotopy category hSing•(X) is the fundamental
groupoid π≤1(X) (see Example 1.4.5.5).

Roughly speaking, the difference between an ∞-category S and its homotopy category
hS is that the former can contain nontrivial homotopy-theoretic information (encoded by
simplices of dimension n ≥ 2, which can be loosely understood as “n-morphisms”) which is
lost upon passage to the homotopy category hS . We can summarize the situation informally
with the heuristic equation

{Categories}+ {Homotopy Theory} = {∞-Categories},
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or more precisely with the diagram

{Categories} N•
↪−→ {∞-Categories}

∩

{Kan Complexes}⊃

{Simplicial Sets} {Topological Spaces}

Sing•

OO

1.1 Simplicial Sets

0004 In this section we provide an introduction to the theory of simplicial sets, which will
play an essential role throughout this book. We begin with some preliminaries.

Notation 1.1.0.1.0009 For every nonnegative integer n, we let [n] denote the linearly ordered
set {0 < 1 < 2 < · · · < n− 1 < n}.

Definition 1.1.0.2 (The Simplex Category).000A We define a category ∆ as follows:

• The objects of ∆ are linearly ordered sets of the form [n] for n ≥ 0.

• A morphism from [m] to [n] in the category ∆ is a function α : [m] → [n] which is
nondecreasing: that is, for each 0 ≤ i ≤ j ≤ m, we have 0 ≤ α(i) ≤ α(j) ≤ n.

We will refer to ∆ as the simplex category.

Remark 1.1.0.3.000B The category ∆ is equivalent to the category of all nonempty finite linearly
ordered sets, with morphisms given by nondecreasing maps. In fact, we can say something
better: for every nonempty finite linearly ordered set I, there is a unique nondecreasing
bijection I ≃ [n], for some n ≥ 0.

Definition 1.1.0.4.000C Let C be a category. A simplicial object of C is a functor ∆op → C. A
cosimplicial object of C is a functor ∆→ C.

Notation 1.1.0.5.000D We will often use an expression like C• to denote a simplicial object of a
category C. In this case, we write Cn for the value of the functor C• on the object [n] ∈∆.
Similarly, we often use an expression like C• to indicate a cosimplicial object of C, and Cn

for its value on [n] ∈∆.

We will be primarily interested in the following special case of Definition 1.1.0.4:

Definition 1.1.0.6.000H Let Set denote the category of sets. A simplicial set is a simplicial
object of Set: that is, a functor ∆op → Set.

https://kerodon.net/tag/0004
https://kerodon.net/tag/0009
https://kerodon.net/tag/000A
https://kerodon.net/tag/000B
https://kerodon.net/tag/000C
https://kerodon.net/tag/000D
https://kerodon.net/tag/000H
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Notation 1.1.0.7. 04Z5We let Set∆ = Fun(∆op,Set) denote the category of functors from ∆op

to Set. We refer to Set∆ as the category of simplicial sets.

Remark 1.1.0.8. 000JSince the category of sets has all (small) limits and colimits, the category
of simplicial sets also has all (small) limits and colimits. Moreover, these limits and colimits
are computed levelwise: for any functor

S• : C → Set∆ (C ∈ C) 7→ S•(C),

and any nonnegative integer n, we have canonical bijections

(lim−→
C∈C

S(C))n ≃ lim−→
C∈C

(Sn(C)) (lim←−
C∈C

S(C))n ≃ lim←−
C∈C

(Sn(C)).

Example 1.1.0.9 (The Standard Simplex). 04Z6Let n ≥ 0 be an integer. We let ∆n denote the
functor

∆op → Set [m] 7→ Hom∆([m], [n]).

Then ∆n is a simplicial set, which we will refer to as the standard n-simplex. By convention,
we extend this construction to the case n = −1 by setting ∆−1 = ∅.

Example 1.1.0.10. 000MThe standard 0-simplex ∆0 is a final object of the category of simplicial
sets: that is, it carries each [n] ∈∆op to a set having a single element.

Definition 1.1.0.11. 04Z7Let S• be a simplicial set and let n be a nonnegative integer. An
n-simplex of S• is an element of the set Sn. We will also refer to elements of S0 as vertices
of S•, and to elements of S1 as edges of S•. We often write v ∈ S• to indicate that v is a
vertex of S•.

Proposition 1.1.0.12. 04Z8Let n be a nonnegative integer and regard the identity map id[n] :
[n]→ [n] as an n-simplex of ∆n. For every simplicial set S•, evaluation on id[n] induces a
bijection

HomSet∆(∆n, S•)→ Sn f 7→ f(id[n]).

Proof. This is a special case of Yoneda’s lemma.

Notation 1.1.0.13. 04Z9Let S• be a simplicial set and let σ ∈ Sn be an n-simplex of C. By
virtue of Proposition 1.1.0.12, there is a unique morphism fσ : ∆n → S• in the category
of simplicial sets which satisfies fσ(id[n]) = σ. In practice, we will often abuse notation by
identifying the n-simplex σ with the morphism fσ.

Remark 1.1.0.14 (Simplicial Subsets). 000PLet S• be a simplicial set. Suppose that:

• For every integer n ≥ 0, we are given a subset Tn ⊆ Sn,

https://kerodon.net/tag/04Z5
https://kerodon.net/tag/000J
https://kerodon.net/tag/04Z6
https://kerodon.net/tag/000M
https://kerodon.net/tag/04Z7
https://kerodon.net/tag/04Z8
https://kerodon.net/tag/04Z9
https://kerodon.net/tag/000P
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• For every morphism α : [m] → [n] in the simplex category ∆, the associated map
Sn → Sm carries Tn into Tm.

Then we the construction [n] 7→ Tn determines another simplicial set T•. In this case, we
will say that T• is a simplicial subset of S• and write T• ⊆ S•.

Example 1.1.0.15.000Q Let S• be a simplicial set and let v be a vertex of S•. Then v can be
identified with a map of simplicial sets ∆0 → S•. This map is automatically a monomorphism
(note that ∆0 has only a single n-simplex for every n ≥ 0), whose image is a simplicial subset
of S•. It will often be convenient to denote this simplicial subset by {v}. For example, we
can identify vertices of the standard n-simplex ∆n with integers i satisfying 0 ≤ i ≤ n; every
such integer i determines a simplicial subset {i} ⊆ ∆n (whose k-simplices are the constant
maps [k]→ [n] taking the value i).

Our first goal in this section is to make Definition 1.1.0.6 more concrete. To a first degree
of approximation, a simplicial set S• can be viewed as a collection of sets {Sn}n≥0. However,
this collection is endowed with additional structure, arising from morphisms in the simplex
category ∆. For example, let n be a positive integer. For each 0 ≤ i ≤ n, there is a unique
order-preserving bijection [n− 1] ≃ [n] \ {i} ⊂ [n]. This induces a function dni : Sn → Sn−1
which we will refer to as a face operator for the simplicial set S• (Construction 1.1.1.4). For
n ≥ 2 and 0 ≤ i < j ≤ n, it is not difficult to show that these face operators satisfy the
identity

04ZA dn−1
i (dnj (σ)) = dn−1

j−1 (dni (σ)) (1.1)

(see Remark 1.1.1.7). In §1.1.1, we prove a partial converse: a collection of sets {Sn} and
face operators {dni : Sn → Sn−1} which satisfy (1.1), we can uniquely reconstruct the data
of a semisimplicial set: that is, a (contravariant) set-valued functor on the subcategory
∆inj ⊂∆ whose morphisms are strictly increasing functions (see Proposition 1.1.1.9).

To fully recover the structure of a simplicial set S•, it is not enough to remember
the face operators alone: one also needs to encode the data supplied by non-injective
maps in the simplex category ∆. For every pair of integers 0 ≤ i ≤ n, there is a unique
nondecreasing surjection [n+1] ↠ [n] which is constant on the subset {i, i+1}. This induces
a function sni : Sn → Sn+1, which we refer to as the ith degeneracy operator (Construction
1.1.2.1). In §1.1.2, we show that a simplicial set S• can be reconstructed from its face and
degeneracy operators, which are required only to satisfy a handful of compatibility conditions
(Proposition 1.1.2.14).

Let S• be a simplicial set. We say that an n-simplex σ ∈ Sn is degenerate if it belongs to
the image of some degeneracy operator sn−1

i : Sn−1 → Sn (Definition 1.1.2.3). We say that
S• has dimension ≤ k if every n-simplex of S• is degenerate for n > k (Definition 1.1.3.1).
Simplicial sets of low dimension are easy to describe:

https://kerodon.net/tag/000Q
https://kerodon.net/tag/04ZA


10 CHAPTER 1. THE LANGUAGE OF ∞-CATEGORIES

• A simplicial set of dimension ≤ 0 is essentially just an ordinary set. More precisely, in
§1.1.5 we show that a simplicial set S• has dimension ≤ 0 if and only if it is isomorphic
to a constant functor ∆op → Set (Proposition 1.1.5.14); in this case, we will say that
S• is discrete (Definition 1.1.5.10).

• A simplicial set of dimension ≤ 1 is essentially a directed graph. More precisely, in
§1.1.6 we construct a functor from the category of simplicial sets to the category of
directed graphs, and show that it is an equivalence when restricted to simplicial sets
of dimension ≤ 1 (Proposition 1.1.6.9).

Let S be an arbitrary simplicial set. For every integer k, there is a largest simplicial
subset of S which has dimension ≤ k. We will denote this simplicial subset by skk(S) and
refer to it as the k-skeleton of S (Construction 1.1.4.1). Allowing k to vary, we can realize S
as the union of an increasing sequence

∅ = sk−1(S) ⊆ sk0(S) ⊆ sk1(S) ⊆ sk2(S) ⊆ · · ·

which we refer to as the skeletal filtration. In §1.1.4, we analyze the transition maps which
appear in the skeletal filtration. Our main result is that each of the inclusions skk−1(S) ↪→
skk(S) is a pushout of coproducts of the inclusion map ∂∆k ↪→ ∆k (Proposition 1.1.4.12).
Here ∂∆k = skk−1(∆k) denotes the boundary of the standard simplex ∆k (Construction
1.1.4.10). Stated more informally, the k-skeleton skk(S) can be obtained from the (k − 1)-
skeleton skk−1(S) by attaching cells of dimension k.

1.1.1 Face Operators

04ZBFor some applications, it is useful to work with variant of Definition 1.1.0.4.

Notation 1.1.1.1. 04ZCLet ∆inj denote the category whose objects are linearly ordered sets of
the form [n] = {0 < 1 < · · · < n} (where n is a nonnegative integer) and whose morphisms
are strictly increasing functions α : [m] ↪→ [n].

Definition 1.1.1.2. 04ZDLet C be a category. A semisimplicial object of C is a functor ∆op
inj → C.

We typically use the notation C• to indicate a semisimplicial object of C, whose value on an
object [n] ∈ ∆op

inj we denote by Cn. A semisimplicial set is a semisimplicial object of the
category of sets.

Remark 1.1.1.3. 00BJThe category ∆inj of Notation 1.1.1.1 can be regarded as a (non-full)
subcategory of the simplex category ∆ of Definition 1.1.0.2. Consequently, any simplicial
object C• of a category C has an underlying semisimplicial object, given by the composition

∆op
inj ↪→∆op C•−→ C .

https://kerodon.net/tag/04ZB
https://kerodon.net/tag/04ZC
https://kerodon.net/tag/04ZD
https://kerodon.net/tag/00BJ
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We will often abuse notation by identifying a simplicial object of C with its underlying
semisimplicial object.

The goal of this section is to make Definition 1.1.1.2 more concrete.

Construction 1.1.1.4 (Face Operators).04ZE Let n be a positive integer. For 0 ≤ i ≤ n, we
let δin : [n− 1]→ [n] denote the unique strictly increasing function whose image does not
contain the element i, given concretely by the formula

δin(j) =

j if j < i

j + 1 if j ≥ i.

If C• is a (semi)simplicial object of a category C, then we can evaluate C• on the
morphism δin to obtain a morphism from Cn to Cn−1. We will denote this morphism by
dni : Cn → Cn−1 and refer to it as the ith face operator.

Example 1.1.1.5.04ZF Let n be a positive integer and let S• be a simplicial set. For 0 ≤ i ≤ n,
the face operator dni of Construction 1.1.1.4 carries each n-simplex σ of S• to an (n− 1)-
simplex dni (σ), which we will refer to as the ith face of σ.

Example 1.1.1.6.04ZG Let S• be a simplicial set and let e ∈ S• be an edge of S•. Then s = d1
1(e)

is a vertex of S• which we refer to as the source of e, and t = d1
0(e) is a vertex of S• which

we refer to as the target of e. We will sometimes write e : x → y to indicate that e is an
edge of S• having source vertex x and target vertex y.

Remark 1.1.1.7 (Relations Among Face Operators).04FP Let n ≥ 2 be an integer. For every
pair of integers 0 ≤ i < j ≤ n, the diagram of linearly ordered sets

[n− 2]
δi

n−1 //

δj−1
n−1

��

[n− 1]

δj
n

��
[n− 1] δi

n // [n]

is commutative: both the clockwise and counterclockwise compositions can be identified
with the unique order-preserving bijection [n− 2] ≃ [n] \ {i < j}. It follows that, if C• is
a semisimplicial object of a category C, then the face operators of C• satisfy the following
condition:

(∗) For 0 ≤ i < j ≤ n, we have dn−1
i ◦ dnj = dn−1

j−1 ◦ dni (as morphisms from Cn to Cn−2).

https://kerodon.net/tag/04ZE
https://kerodon.net/tag/04ZF
https://kerodon.net/tag/04ZG
https://kerodon.net/tag/04FP
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Example 1.1.1.8. 04ZHLet S• be a simplicial set and let σ be a 2-simplex of S•. Then σ has
three faces: the edges f = d2

2(σ), g = d2
0(σ), and h = d2

1(σ). In this case, Remark 1.1.1.7
asserts the following:

• The edges f and h have the same source vertex x ∈ S•.

• The edges g and h have the same target vertex z ∈ S•.

• The target of f and the source of g are the same vertex y ∈ S•.

These relationships can be encoded visually in the diagram

y

g

��
x

f

??

h // z.

Remark 1.1.1.7 admits the following converse:

Proposition 1.1.1.9. 04FQLet C be a category and let {Cn}n≥0 be a sequence of objects of C.
Then a system of morphisms {dni : Cn → Cn−1}0≤i≤n,n>0 arise as the face operators of a
semisimplicial object C• of C if and only if they satisfy condition (∗) of Remark 1.1.1.7.
Moreover, if this condition is satisfied, then C• is uniquely determined.

Proof. Let ∆̃inj denote the category which is freely generated by a collection of objects
{[n]}n≥0 and a collection of morphisms {δ̃in : [n− 1]→ [n]}n>0,0≤i≤n. Let ∆inj denote the
quotient of ∆̃inj obtained by imposing the relation

04FRδ̃jn ◦ δ̃in−1 = δ̃in ◦ δ̃
j−1
n−1 (1.2)

for every integer n ≥ 2 and every pair 0 ≤ i < j ≤ n. Using Remark 1.1.1.7, we see that
there is a unique functor Finj : ∆inj →∆inj which carries each object [n] ∈∆inj to itself, and
each generating morphism δ̃in to the monomorphism δin : [n−1] ↪→ [n] of Construction 1.1.1.4.
To prove Proposition 1.1.1.9, it will suffice to show that the functor Finj is an isomorphism
of categories.

Fix integers 0 ≤ m ≤ n, and set b = n−m− 1. In the category ∆̃inj, every morphism
β : [m]→ [n] admits a unique factorization β = δ̃i0n ◦ δ̃

i1
n−1 ◦ · · · ◦ δ̃

ib
n−b, where the superscripts

are nonnegative integers satisfying 0 ≤ ia ≤ n − a for 0 ≤ a ≤ b. Let us say that β is in
standard form if, in addition, the integers ia satisfy the inequalities i0 > i1 > i2 > · · · > ib.
Note that, by repeatedly applying the relation (1.2), we can convert any morphism of ∆̃inj
to a morphism which is in standard form. More precisely, every morphism β : [m]→ [n] in
∆inj can be lifted to a morphism β : [m]→ [n] which is in standard form.

https://kerodon.net/tag/04ZH
https://kerodon.net/tag/04FQ
https://kerodon.net/tag/04FR
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By construction, the functor Finj is bijective on objects. To complete the proof, it
will suffice to show that for every morphism α : [m] ↪→ [n], there is a unique morphism
β : [m]→ [n] in ∆inj satisfying Finj(β) = α. By virtue of the preceding discussion, it will
suffice to show that α can be lifted uniquely to a morphism β : [m]→ [n] in the category ∆̃inj
which is in standard form. We now observe that β = δ̃i0n ◦ δ̃

i1
n−1 ◦ · · · ◦ δ̃

ib
n−b is characterized by

the requirement that {ib < ib−1 < · · · < i0} ⊆ [n] is the complement of the image of α.

1.1.2 Degeneracy Operators

04ZJ Let S• be a simplicial set. By virtue of Proposition 1.1.1.9, the underlying semisimplicial
set is determined by the sequence of sets {Sn}n≥0 together with the face operators {dni :
Sn → Sn−1}0≤i≤n. To recover S• as a simplicial set, we need more information.

Construction 1.1.2.1 (Degeneracy Operators).04ZK For every pair of integers 0 ≤ i ≤ n we let
σin : [n+ 1] ↠ [n] denote the nondecreasing function given by the formula

σin(j) =

j if j ≤ i
j − 1 if j > i.

If C• is a simplicial object of a category C, then we can evaluate C• on the morphism σin to
obtain a morphism from Cn to Cn+1. We will denote this map by sni : Cn → Cn+1 and refer
to it as the ith degeneracy operator.

Notation 1.1.2.2.04ZL Let S• be a simplicial set. Then the degeneracy operator s0
0 : S0 → S1

carries each vertex x to an edge of S• which we will denote by idx. Note that the vertex x is
both the source and target of the edge idx (see Exercise 1.1.2.7).

Definition 1.1.2.3.0012 Let S• be a simplicial set. We say that an n-simplex σ of S• is
degenerate if it belongs to the image of the degeneracy operator sn−1

i : Sn−1 → Sn for some
integer 0 ≤ i < n. We say that σ is nondegenerate if it is not degenerate. In particular,
every 0-simplex of S• is nondegenerate.

Example 1.1.2.4 (Degenerate Edges).04ZM Let S• be a simplicial set and let e be an edge of
S•. Then e is degenerate if and only if it has the form idx, for some vertex x ∈ S•. If this
condition is satisfied, then the vertex x is uniquely determined (since it is both the source
and target of the edge e).

Remark 1.1.2.5.0013 Let f : S• → T• be a map of simplicial sets. If σ is a degenerate n-simplex
of S•, then f(σ) is a degenerate n-simplex of T•. The converse holds if f is a monomorphism
of simplicial sets (for example, if S• is a simplicial subset of T•).

https://kerodon.net/tag/04ZJ
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Remark 1.1.2.6. 04ZNLet f : S• → T• be a morphism of simplicial sets. If every nondegenerate
simplex of T• belongs to the image of f , then f is an epimorphism: that is, it induces a
surjection Sn ↠ Tn for each n ≥ 0.

Exercise 1.1.2.7 (Relations Between Face and Degeneracy Operators). 04FVLet C• be a
simplicial object of a category C. Show that the face and degeneracy operators of C satisfy
the following relations:

(∗′) For 0 ≤ i, j ≤ n, we have an equality

dn+1
i ◦ snj =


sn−1
j−1 ◦ dni if i < j

idCn if i = j or i = j + 1
sn−1
j ◦ dni−1 if i > j + 1

(as morphisms from Cn to Cn).

Example 1.1.2.8 (Degenerate 2-Simplices). 04ZPLet S• be a simplicial set and let σ be a
2-simplex of C. We say that σ is left-degenerate if it has the form s1

0(e), for some edge
e : x→ y of C. In this case, the faces of σ are depicted in the diagram

x
e

  
x

idx

??

e // y.

We will say that σ is right-degenerate if it has the form s1
1(e), for some edge e : x→ y of S•;

in this case, the faces of σ are depicted in the diagram

y
e

��
x

idx

??

e // y.

Note that σ is degenerate if and only if it is either left-degenerate or right-degenerate.

Exercise 1.1.2.9. 04ZQLet S• be a simplicial set and let σ be a 2-simplex of S•. Show that σ is
both left-degenerate and right-degenerate if and only if it is constant: that is, it factors as a
composition ∆2 ↠ ∆0 ↪→ S• (for a more general statement, see Proposition 1.1.3.8).

Proposition 1.1.2.10. 0011Let S• be a simplicial set and let τ ∈ Sn be an n-simplex of S• for
some n > 0, which we will identify with a map of simplicial sets τ : ∆n → S•. The following
conditions are equivalent:

(1) The simplex τ belongs to the image of the degeneracy operator sn−1
i : Sn−1 → Sn for

some 0 ≤ i < n (see Construction 1.1.2.1).

https://kerodon.net/tag/04ZN
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(2) The map τ factors as a composition ∆n f−→ ∆n−1 → S•, where f corresponds to a
surjective map of linearly ordered sets [n] ↠ [n− 1].

(3) The map τ factors as a composition ∆n f−→ ∆m → S•, where m < n and f corresponds
to a surjective map of linearly ordered sets [n] ↠ [m].

(4) The map τ factors as a composition ∆n → ∆m → S•, where m < n.

(5) The map τ factors as a composition ∆n τ ′−→ ∆m → S•, where τ ′ is not injective on
vertices.

Proof. The implications (1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate. We will complete
the proof by showing that (5) implies (1). Assume that τ factors as a composition ∆n τ ′−→
∆m σ′−→ S•, where τ ′ is not injective on vertices. Then there exists some integer 0 ≤ i < n

satisfying τ ′(i) = τ ′(i+ 1). It follows that τ ′ factors through the map σin−1 : ∆n → ∆n−1 of
Construction 1.1.2.1, so that τ belongs to the image of the degeneracy operator sn−1

i .

Remark 1.1.2.11 (Relations Among Degeneracy Operators).04FS For every triple of integers
0 ≤ i ≤ j ≤ n, the diagram of linearly ordered sets

[n+ 2]
σi

n+1 //

σj+1
n+1

��

[n+ 1]

σj
n

��
[n+ 1] σi

n // [n]

is commutative. It follows that, if C• is a simplicial object of a category C, then the
degeneracy operators of C• satisfy the following condition:

(∗′′) For 0 ≤ i ≤ j ≤ n, we have an equality sn+1
i ◦ snj = sn+1

j+1 ◦ sni (as morphisms from Cn
to Cn+2).

We close this section by showing that a simplicial object C• of a category C can be
recovered from the sequence of objects {Cn}n≥0, together with the face and degeneracy
operators given by Constructions 1.1.1.4 and 1.1.2.1 (Proposition 1.1.2.14). We begin by
proving a simpler result, which involves only the degeneracy operators.

Notation 1.1.2.12.04ZR Let ∆surj denote the category whose objects are the linearly ordered
sets [n] = {0 < 1 < · · · < n} for n ≥ 0, and whose morphisms are nondecreasing surjective
functions [m] ↠ [n].

https://kerodon.net/tag/04FS
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Proposition 1.1.2.13. 04FTLet C be a category and let {Cn}n≥0 be a sequence of objects of
C. Then a system of morphisms {sni : Cn → Cn+1}0≤i≤n can be obtained from a functor
C• : ∆op

surj → C if and only if they satisfy condition (∗′′) of Remark 1.1.2.11. In this case,
the functor C• is uniquely determined.

Proof. We proceed as in the proof of Proposition 1.1.1.9. Let ∆̃surj denote the category
which is freely generated by a collection of objects {[n]}n≥0 and a collection of morphisms
{σ̃in : [n+ 1]→ [n]}0≤i≤n. Let ∆surj denote the quotient of ∆̃surj obtained by imposing the
relation

04FUσ̃jn ◦ σ̃in+1 = σ̃in ◦ σ̃
j+1
n+1 (1.3)

for every triple of integers 0 ≤ i ≤ j ≤ n. Using Remark 1.1.2.11, we see that there is a
unique functor Fsurj : ∆surj →∆surj which carries each object [n] ∈∆surj to itself, and each
generating morphism σ̃in to the epimorphism σin : [n+ 1] ↠ [n] of Construction 1.1.2.1. To
prove Proposition 1.1.2.13, it will suffice to show that the functor Fsurj is an isomorphism of
categories.

Fix integers 0 ≤ m ≤ n, and set b = n−m+ 1. In the category ∆̃surj, every morphism
β : [n]→ [m] admits a unique factorization β = σ̃i0m◦ σ̃

i1
m+1◦· · ·◦ σ̃

ib
m+b, where the superscripts

are nonnegative integers satisfying 0 ≤ ia ≤ m + a for 0 ≤ a ≤ b. Let us say that β is in
standard form if, in addition, the integers ia satisfy the inequalities i0 < i1 < i2 < · · · < ib.
Note that, by repeatedly applying the relation (1.3), we can convert any morphism of ∆̃surj
to a morphism which is in standard form. More precisely, every morphism β : [n]→ [m] in
∆surj can be lifted to a morphism β : [m]→ [n] which is in standard form.

By construction, the functor Fsurj is bijective on objects. To complete the proof, it will
suffice to show that for every morphism α : [n] ↠ [m] in ∆surj, there is a unique morphism
β : [n] → [m] in ∆surj satisfying Fsurj(β) = α. By virtue of the preceding discussion, it
will suffice to show that α can be lifted uniquely to a morphism β : [n] → [m] in the
category ∆̃surj which is in standard form. We now observe that β = σ̃i0m ◦ σ̃

i1
m+1 ◦ · · · ◦ σ̃

ib
m+b

is characterized by the requirement that {i0 < i1 < · · · < ib} is the collection of integers
0 ≤ j < n satisfying α(j) = α(j + 1).

Proposition 1.1.2.14. 04FWLet C be a category containing a sequence of objects {Cn}n≥0. Then
morphisms

{dni : Cn → Cn−1}0≤i≤n,n>0 {sni : Cn → Cn+1}0≤i≤n
are the face and degeneracy operators for a simplicial object C• of C if and only if they
satisfy condition (∗) of Remark 1.1.1.7, condition (∗′) of Exercise 1.1.2.7, and condition (∗′′)
of Remark 1.1.2.11, and

Proof. We proceed as in the proofs of Propositions 1.1.1.9 and 1.1.2.13. Let ∆̃ denote
the category which is freely generated by a collection of objects {[n]}n≥0 together with

https://kerodon.net/tag/04FT
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morphisms {δ̃in : [n− 1]→ [n]}n>0,0≤i≤n and {σ̃in : [n+ 1]→ [n]}0≤i≤n. Let ∆ denote the
quotient of ∆̃ obtained by imposing the relations (1.2) and (1.3), together with the following:

04FX σ̃jn ◦ δ̃in+1 =


δ̃in ◦ σ̃

j−1
n−1 if i < j

id[n] if i = j or i = j + 1
δ̃i−1
n ◦ σ̃jn−1 if i > j + 1.

(1.4)

for every triple of integers 0 ≤ i, j ≤ n. There is a unique functor F : ∆→∆ which carries
each object [n] ∈∆ to itself and satisfies F (δ̃in) = δin and F (σ̃in) = σin. To prove Proposition
1.1.2.14, it will suffice to show that the functor F is an isomorphism of categories.

Let ∆̃inj and ∆̃surj be the categories appearing in the proofs of Proposition 1.1.1.9 and
Proposition 1.1.2.13, respectively. Let us identify ∆̃inj and ∆̃surj with (non-full) subcategories
of ∆̃. We will say that a morphism β : [m] → [n] of ∆̃ is weakly standard if it factors as
a composition [m] βsurj−−−→ [k] βinj−−→ [n], where βinj belongs to ∆̃inj and βsurj belongs to ∆̃surj.
In this case, the morphisms βinj and βsurj are uniquely determined. We will say that β is
in standard form if it is weakly standard and, in addition, the morphisms βinj and βsurj
are in standard form (as in the proofs of Propositions 1.1.1.9 and 1.1.2.13). Note that, by
repeatedly applying the relation (1.4), we can convert any morphism of ∆̃ into a morphism
β which is weakly standard. Using the relations (1.2) and (1.3), we can further arrange that
β is in standard form. It follows that every morphism β : [m]→ [n] in ∆ can be lifted to a
morphism β : [m]→ [n] of ∆̃ which is in standard form.

By construction, the functor F is bijective on objects. To complete the proof, it will
suffice to show that for every morphism α : [m] → [n] in ∆, there is a unique morphism
β : [m]→ [n] in ∆ satisfying F (β) = α. Let F̃ denote the composite functor ∆̃ ↠ ∆ F−→∆.
By virtue of the preceding discussion, it will suffice to show that there is a unique morphism
β : [m]→ [n] in ∆̃ which is in standard form and satisfies F̃ (β) = α. In the simplex category
∆, the morphism α factors uniquely as a composition [m] αsurj−−−→ [k] αinj−−→ [n], where αinj is
an injection and αsurj is a surjection. If β : [m]→ [n] is a weakly standard morphism of ∆̃,
then the identity F̃ (β) = α holds if and only if F̃ (βinj) = αinj and F̃ (βsurj) = αsurj. We are
therefore reduced to proving that αinj and αsurj can be lifted uniquely to morphisms of ∆̃inj
and ∆̃surj which are in standard form, which was established in the proofs of Proposition
1.1.1.9 and Proposition 1.1.2.13.

1.1.3 Dimensions of Simplicial Sets

04ZS We now introduce an important complexity measure for simplicial sets.

Definition 1.1.3.1.0019 Let S be a simplicial set and let k be an integer. We will say that S
has dimension ≤ k if every n-simplex of S is degenerate for n > k. If k ≥ 0, we say that S

https://kerodon.net/tag/04FX
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has dimension k if it has dimension ≤ k but does not have dimension ≤ k − 1. We say that
S is finite-dimensional if it has dimension ≤ k for some k ≫ 0.

Example 1.1.3.2. 04ZTFor each n ≥ 0, the standard simplex ∆n has dimension n.

Remark 1.1.3.3. 04ZULet S be the coproduct of a collection of simplicial sets {S(a)}a∈A. Then
S has dimension ≤ k if and only if each S(a) has dimension ≤ k.

Remark 1.1.3.4. 04ZVLet f : S ↠ T be an epimorphism of simplicial sets. If S has dimension
≤ n, then T has dimension ≤ n.

Remark 1.1.3.5. 04ZWLet k be an integer. If a simplicial set S has dimension ≤ k, then every
simplicial subset of S has dimension ≤ k (see Remark 1.1.2.5).

Proposition 1.1.3.6. 012RLet S− and S+ be simplicial sets having dimensions ≤ k− and ≤ k+,
respectively. Then the product S− × S+ has dimension ≤ k− + k+.

Proof. Let σ = (σ−, σ+) be a nondegenerate n-simplex of the product S− × S+. Using
Proposition 1.1.3.8, we see that σ− and σ+ admit factorizations

∆n α−−−→ ∆n− τ−−→ S− ∆n α+−−→ ∆n+ τ+−→ S+,

where τ− and τ+ are nondegenerate, so that n− ≤ k− and n+ ≤ k+. It follows that σ factors
as a composition

∆n (α−,α+)−−−−−→ ∆n− ×∆n+ τ−×τ+−−−−→ S− × S+.

The nondegeneracy of σ guarantees that the map of partially ordered sets [n] (α−,α+)−−−−−→
[n−]× [n+] is a monomorphism, so that n ≤ n− + n+ ≤ k− + k+.

Exercise 1.1.3.7. 012SShow that the inequality of Proposition 1.1.3.6 is sharp. That is, if
S− and S+ are nonempty simplicial sets of dimensions k− and k+, respectively, then the
product S− × S+ has dimension k− + k+.

We next show that, if S is a simplicial set of dimension ≤ k, then it can be recovered from
its n-simplices for n ≤ k (Proposition 1.1.3.11). Our proof will make use of the following:

Proposition 1.1.3.8. 0014Let σ : ∆n → S be a morphism of simplicial sets. Then σ can be
factored as a composition

∆n α−→ ∆m τ−→ S,

where α corresponds to a surjective map of linearly ordered sets [n] ↠ [m] and τ is a
nondegenerate m-simplex of S. Moreover, this factorization is unique.

https://kerodon.net/tag/04ZT
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Proof. Let m be the smallest nonnegative integer for which σ can be factored as a composition
∆n α−→ ∆m τ−→ S. It follows from the minimality of m that α must induce a surjection of
linearly ordered sets [n] ↠ [m] (otherwise, we could replace [m] by the image of α) and that
the m-simplex τ is nondegenerate. This proves the existence of the desired factorization.

We now establish uniqueness. Suppose we are given another factorization of σ as a
composition ∆n α′−→ ∆m′ τ ′−→ S, and assume that α′ induces a surjection [n] ↠ [m′]. We
first claim that, for any pair of integers 0 ≤ i < j ≤ n satisfying α′(i) = α′(j), we also have
α(i) = α(j). Assume otherwise. Then α admits a section β : ∆m ↪→ ∆n whose images
include i and j. We then have

τ = τ ◦ α ◦ β = σ ◦ β = τ ′ ◦ α′ ◦ β.

Our assumption that α′(i) = α′(j) guarantees that the map (α′ ◦ β) : ∆m → ∆m′ is not
injective on vertices, contradicting our assumption that τ is nondegenerate.

It follows from the preceding argument that α factors uniquely as a composition ∆n α′−→
∆m′ α′′−→ ∆m, for some morphism α′′ : ∆m′ → ∆m (which is also surjective on vertices). Let
β′ be a section of α′, and note that we have

τ ′ = τ ′ ◦ α′ ◦ β′ = σ ◦ β′ = τ ◦ α ◦ β′ = τ ◦ α′′ ◦ α′ ◦ β′ = τ ◦ α′′.

Consequently, if the simplex τ ′ is nondegenerate, then α′′ must also be injective on vertices.
It follows that m′ = m and α′′ is the identity map, so that α = α′ and τ = τ ′.

Construction 1.1.3.9 (The Category of Simplices).00X4 Let SS• be a simplicial set. We define
a category ∆S as follows:

• The objects of ∆S are pairs ([n], σ), where [n] is an object of ∆ and σ is an n-simplex
of S.

• A morphism from ([n], σ) to ([n′], σ′) in the category ∆S is a nondecreasing function
f : [n]→ [n′] with the property that the induced map Sn′ → Sn carries σ′ to σ.

We will refer to ∆S as the category of simplices of S. If k is an integer, we let ∆S,≤k denote
the full subcategory of ∆S spanned by those objects ([n], σ) satisfying n ≤ k.

Remark 1.1.3.10.00X5 Passage from a simplicial set S to the category of simplices ∆S is a
special case of the category of elements construction (see Variant 5.2.6.2), which we will
return to in §5.2.6.

Proposition 1.1.3.11.04ZX Let k be an integer and let S be a simplicial set. The following
conditions are equivalent:

(1) The simplicial set S has dimension ≤ k.
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(2) The simplicial set S can be realized as the colimit of a diagram lim−→J∈J S(J), where each
S(J) has dimension ≤ k.

(3) The simplicial set S can be realized as the colimit of a diagram lim−→J∈J S(J), where each
S(J) is a standard simplex of dimension ≤ k.

(4) The tautological map
lim−→

([n],σ)∈∆S,≤k

∆n → S

is an isomorphism of simplicial sets.

Proof. The implication (4)⇒ (3) is trivial, the implication (3)⇒ (2) follows from Example
1.1.3.2, and the implication (2) ⇒ (1) follows from Remarks 1.1.3.3 and 1.1.3.4. It will
therefore suffice to show that (1) implies (4). Assume that S has dimension ≤ k, and let T
denote the colimit lim−→([n],σ)∈∆S,≤k

∆n; we wish to show that the tautological map f : T → S

is an isomorphism of simplicial sets. Since S has dimension ≤ k, it follows immediately from
the construction that the image of f contains every nondegenerate simplex of S. Applying
Remark 1.1.2.6, we deduce that f is an epimorphism of simplicial sets. We will complete the
proof by showing that f is injective. Let τ and τ ′ be ℓ-simplices of T satisfying f(τ) = f(τ ′);
we wish to show that τ = τ ′. Choose an object ([n], σ) ∈∆S,≤k and a lift of τ to an ℓ-simplex
τ̃ of ∆n, which we can identify with a nondecreasing function from [ℓ] to [n]. Note that τ̃
factors uniquely as a composition [ℓ] α−→ [m] β−→ [n], where α is surjective and β is injective.
Replacing n by ℓ and σ by the associated ℓ-simplex of S, we can reduce to the case where
τ̃ : [ℓ] ↠ [n] is a surjection. Using Proposition 1.1.3.8, we can factor σ as a composition

∆n γ−→ ∆p ρ−→ S,

where γ is surjective and ρ is a nondegerate p-simplex of S•. Replacing ([n], σ) by ([p], ρ)
and τ̃ by the composition γ ◦ τ̃ , we can further assume that σ is a nondegenerate n-simplex
of S•. Similarly, we may assume that τ ′ lifts to an m-simplex τ̃ ′ of ∆n′ , for some object
([n′], σ′) of ∆S,≤k where σ′ is nondegenerate and τ̃ ′ : [m] ↠ [n′] is surjective. We then have
an equality

σ ◦ τ̃ = f(τ) = f(τ ′) = σ′ ◦ τ̃ ′.

The uniqueness assertion of Proposition 1.1.3.8 then implies that ([n], σ) = ([n′], σ′) and
τ̃ = τ̃ ′, so that τ and τ ′ are the same m-simplex of T .

Remark 1.1.3.12. 04ZYProposition 1.1.3.11 can be reformulated using the language of Kan
extensions (see Definition 7.3.0.1): it asserts that a simplicial set S : ∆op → Set has
dimension ≤ k if and only if it is left Kan extended from the full subcategory of ∆op spanned
by the objects {[n]}n≤k.

https://kerodon.net/tag/04ZY
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Remark 1.1.3.13.002D It follows from the proof of Proposition 1.1.3.11 that every simplicial set
S can be recovered as the colimit lim−→([n],σ)∈∆S

∆n. In fact, this is general feature of presheaf
categories: see Theorem 8.4.2.1 for an ∞-categorical counterpart.

Corollary 1.1.3.14.04ZZ Let k be an integer and let f• : S• → T• be a morphism between
simplicial sets having dimension ≤ k. Suppose that, for every nonnegative integer n ≤ k, the
map of sets fn : Sn → Tn is a bijection. Then f is an isomorphism of simplicial sets.

1.1.4 The Skeletal Filtration

0010 Roughly speaking, one can think of the simplicial sets ∆n of Example 1.1.0.9 as elementary
building blocks out of which more complicated simplicial sets can be constructed. In this
section, we make this idea more precise by introducing the skeletal filtration of a simplicial
set. This filtration allows us to write every simplicial set S as the union of an increasing
sequence of simplicial subsets

sk0(S) ⊆ sk1(S) ⊆ sk2(S) ⊆ sk3(S) ⊆ · · · ,

where each skn(S) is obtained from skn−1(S) by attaching copies of ∆n (see Proposition
1.1.4.12 below for a precise statement).

Construction 1.1.4.1.0015 Let S = S• be a simplicial set and let k be an integer. For every
integer n, we let skk(S)n denote the subset of Sn consisting of those n-simplices σ : ∆n → S

which satisfy the following condition:

(∗) In the category of simplicial sets, σ admits a factorizaton

∆n → ∆m τ−→ S

where m ≤ k.

It follows immediately from the definitions that the collection of subsets {skk(S)n ⊆ Sn}n≥0
is stable under the face and degeneracy operators for the simplicial set S•, and therefore
defines a simplicial subset skk(S) ⊆ S. We will refer to skk(S) as the k-skeleton of S.

Example 1.1.4.2.0018 For every simplicial set S, the k-skeleton skk(S) is empty for k < 0.

Remark 1.1.4.3.0500 Let m and n be integers with m ≤ n. Then, for every simplicial set S,
the m-skeleton skm(S) is contained in the n-skeleton skn(S).

Remark 1.1.4.4.0016 Let S be a simplicial set and let k be an integer. If n ≤ k, then skk(S)
contains every n-simplex of S. In particular, the union ⋃

k skk(S) is equal to S.

Remark 1.1.4.5.0017 Let S be a simplicial set and let σ be a nondegenerate n-simplex of S.
Then σ is contained in the k-skeleton skk(S) if and only if n ≤ k (see Proposition 1.1.2.10).
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Proposition 1.1.4.6. 001ALet S be a simplicial set and let k be an integer. Then:

(a) The simplicial set skk(S) has dimension ≤ k.

(b) For every simplicial set T of dimension ≤ k, composition with the inclusion map
skk(S) ↪→ S induces a bijection

HomSet∆(T, skk(S))→ HomSet∆(T, S).

In other words, the image of any map T → S is contained in skk(S).

Proof. Assertion (a) follows from Remark 1.1.4.5. To prove (b), suppose that f : T → S is a
map of simplicial sets, where T has dimension ≤ k. We wish to show that f carries every
n-simplex σ of T to an n-simplex of skk(S). Using Proposition 1.1.3.8, we can reduce to the
case where σ is a nondegenerate n-simplex of T . In this case, our assumption that T has
dimension ≤ k guarantees that n ≤ k, so that f(σ) belongs to skk(S) by virtue of Remark
1.1.4.4.

Corollary 1.1.4.7. 0501Let S be a simplicial set. For every integer k, the k-skeleton skk(S) is
the largest simplicial subset of S of dimension ≤ k.

Corollary 1.1.4.8. 0502Let k be an integer, let S be a simplicial set, and let ∆S,≤k denote
the category of simplices of S having dimension ≤ k (see Construction 1.1.3.9). Then the
tautological map

lim−→
([n],σ)∈∆S,≤k

→ S

is a monomorphism, whose image is the k-skeleton skk(S) ⊆ S.

Proof. By virtue of Remark 1.1.4.4, replacing S by the k-skeleton skk(S) does not change the
category ∆S,≤k. We may therefore assume without loss of generality that S has dimension
≤ k, in which case the desired result follows from Proposition 1.1.3.11.

Corollary 1.1.4.9. 0503For every integer k, the skeleton functor skk : Set∆ → Set∆ preserves
small colimits.

Proof. Let S : J → Set∆ be a diagram of simplicial sets; we wish to show that the comparison
map

θ : lim−→
J∈J

skk(S(J))→ skk( lim−→
J∈J

S(J))

is an isomorphism of simplicial sets. Using Propositions 1.1.4.6 and 1.1.3.11, we see that
the source and target of θ are simplicial sets of dimension ≤ k. It will therefore suffice to
show that θ induces a bijection on n-simplices for n ≤ k (Corollary 1.1.3.14), which follows
immediately from Remark 1.1.4.4 (and Remark 1.1.0.8).
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Construction 1.1.4.10 (The Boundary of ∆n).000R Let n ≥ 0 be an integer and let ∆n

denote the standard n-simplex (Example 1.1.0.9). We let ∂∆n denote the (n− 1)-skeleton
of ∆n. We will refer to ∂∆n as the boundary of ∆n. More explicitly, the simplicial set
(∂∆n) : ∆op → Set is defined by the formula

(∂∆n)([m]) = {α ∈ Hom∆([m], [n]) : α is not surjective}.

Example 1.1.4.11.000S The simplicial set ∂∆0 is empty.

Let S be a simplicial set. For each k ≥ 0, we let Snd
k denote the collection of all

nondegenerate k-simplices of S. Every element σ ∈ Snd
k determines a map of simplicial sets

∆k → skk(S). Since the boundary ∂∆k ⊆ ∆k has dimension ≤ k − 1, this map carries ∂∆k

into the (k − 1)-skeleton skk−1(S) (Proposition 1.1.4.6).

Proposition 1.1.4.12.001B Let S be a simplicial set and let k ≥ 0. Then the construction
outlined above determines a pushout square

∐
σ∈Snd

k

∂∆k //

��

∐
σ∈Snd

k

∆k

��
skk−1(S) // skk(S)

in the category Set∆ of simplicial sets.

Proof. Unwinding the definitions, we must prove the following:

(∗) Let τ be an n-simplex of skk(S) which is not contained in skk−1(S). Then τ factors
uniquely as a composition

∆n α−→ ∆k σ−→ S,

where σ is a nondegenerate simplex of S and α does not factor through the boundary
∂∆k (in other words, α is surjective on vertices).

Proposition 1.1.3.8 implies that any n-simplex of S admits a unique factorization ∆n α−→
∆m σ−→ S, where α is surjective on vertices and σ is nondegenerate. Our assumption that τ
belongs to the skk(S) guarantees that m ≤ k, and our assumption that τ does not belong to
skk−1(S) guarantees that m ≥ k.

We close this section by analyzing the simplicial sets ∂∆n of Construction 1.1.4.10 in a bit
more detail. Note that, for every pair of integers 0 ≤ k ≤ n, the morphism δkn : ∆n−1 → ∆n

of Construction 1.1.1.4 factors through the boundary ∂∆n.
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Proposition 1.1.4.13. 0504Let n be a positive integer. For every simplicial set S•, the map

HomSet∆(∂∆n, S•)→ (Sn−1)n+1 f 7→ {f ◦ δkn}0≤k≤n

is an injection, whose image consists of those tuples of (σ0, σ1, · · · , σn) of (n− 1)-simplices
of S which satisfy the identity dn−1

i (σj) = dn−1
j−1 (σi) for 0 ≤ i < j ≤ n.

Example 1.1.4.14. 0505When n = 1, Proposition 1.1.4.13 asserts that we can identify maps
∂∆1 → S with ordered pairs (s, t) of vertices of S. Equivalently, the boundary ∂∆1 can be
identified with the coproduct of {0} and {1} (which we regard as simplicial subsets of ∆1 as
in Example 1.1.0.15).

Example 1.1.4.15. 0506When n = 2, Proposition 1.1.4.13 asserts that morphisms of simplicial
sets ∂∆2 → S can be identified with ordered triples (g, h, f) of edges of S having the property
that f and h have the same source vertex x ∈ S, g and h have the same target vertex z ∈ S,
and the target y of f coincides with the source of g; these relationships are summarized
visually in the diagram

y
g

  
x

f
??

h // z.

Proof of Proposition 1.1.4.13. Let w : ∐
0≤k≤n ∆n−1 → ∂∆n be the map given on the kth

summand by δkn. To prove the first assertion of Proposition 1.1.4.13, we must show that w
is an epimorphism of simplicial sets: that is, it is surjective on m-simplices for each m ≥ 0.
In fact, we can be a bit more precise. Let α be an m-simplex of ∆n, which we identify with
a nondecreasing function from [m] to [n]. Then α belongs to the boundary ∂∆n if and only
if it is not surjective: that is, if and only if there exists some integer 0 ≤ i ≤ n such that α
factors through [n] \ {i}. In this case, there is a unique m-simplex βi which belongs to the
ith summand of ∐

0≤k≤n ∆n−1 and satisfies w(βi) = α.
For every integer 0 ≤ k ≤ n, let uk : ∐

0≤i<k ∆n−2 → ∆n−1 be the map given on the
ith summand by δin−1, and let vk : ∐

k<j≤n ∆n−2 → ∆n−1 by the map given on the jth
summand by δj−1

n−1. Passing to the coproduct over k and reindexing, we obtain a pair of maps

(u, v) :
∐

0≤i<j≤n
∆n−2 ⇒

∐
0≤k≤n

∆n−1.

Let Coeq(u, v)• denote the coequalizer of u and v in the category of simplicial sets. The
morphism w satisfies w ◦ u = w ◦ v (see Remark 1.1.1.7), and therefore factors uniquely
through a map w : Coeq(u, v)• → ∂∆n. Proposition 1.1.4.13 asserts that w is an isomorphism
of simplicial sets: that is, for every integer m ≥ 0, it induces a bijection from Coeq(u, v)m to
the set of m-simplices of ∂∆n. The surjectivity of this map was established above. To prove
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injectivity, it will suffice to observe that if α : [m]→ [n] is as above and we are given two
elements i, j ∈ [n] which do not belong to the image of α, then βi and βj have the same image
in Coeq(u, v)•. If i = j, this is automatic; we may therefore assume without loss of generality
that i < j. In this case, the desired result follows from the observation that we can write
βj = u(γ) and βi = v(γ), where γ is the m-simplex of the (i, j)th summand of ∐

0≤i<j≤n ∆n−2

corresponding to the nondecreasing function [m] α−→ [n] \ {i < j} ≃ [n− 2].

1.1.5 Discrete Simplicial Sets

00FQ Simplicial sets of dimension ≤ 0 admit a simple classification:

Proposition 1.1.5.1.00FR The evaluation functor

ev0 : Set∆ → Set X• 7→ X0

restricts to an equivalence of categories

{Simplicial sets of dimension ≤ 0} ≃ Set .

We will give a proof of Proposition 1.1.5.1 at the end of this section. First, we make
some general remarks which apply to simplicial objects of any category C.

Construction 1.1.5.2.00FS Let C be a category. For each object C ∈ C, we let C denote the
constant functor ∆op → {C} ↪→ C taking the value C. We regard C as a simplicial object
of C, which we will refer to as the constant simplicial object with value C.

Remark 1.1.5.3.00FT Let C be an object of the category C. The constant simplicial object C
can be described concretely as follows:

• For each n ≥ 0, we have Cn = C.

• The face and degeneracy operators

dni : Cn → Cn−1 sni : Cn → Cn+1

are the identity maps from C to itself.

Example 1.1.5.4.00FU Let S = {s} be a set containing a single element. Then S is a final
object of the category of simplicial sets: that is, it is isomorphic to the standard simplex ∆0.

The constant simplicial object C of Construction 1.1.5.2 can be characterized by a
universal mapping property:

Proposition 1.1.5.5.00FV Let C be a category and let C be an object of C. For any simplicial
object X• of C, evaluation at the object [0] ∈∆op induces a bijection

HomFun(∆op,C)(C,X•)→ HomC(C,X0).
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Proof. Let f : C → X0 be a morphism in C; we wish to show that f can be promoted
uniquely to a map of simplicial objects f• : C → X•. The uniqueness of f• is clear. For
existence, we define f• to be the natural transformation whose value on an object [n] ∈∆op

is given by the composite map

Cn = C
f−→ X0

Xα(n)−−−−→ Xn,

where α(n) denotes the unique morphism in ∆ from [n] to [0]. To prove the naturality of f•,
we observe that for any nondecreasing map β : [m]→ [n] we have a commutative diagram

Cn

Cβ

��

C
f // X0

Xα(n) // Xn

Xβ

��
Cm C

f // X0
Xα(m) // Xm,

where the commutativity of the square on the right follows from the observation that α(m)
is equal to the composition [m] β−→ [n] α(n)−−−→ [0].

Example 1.1.5.6. 0507Let X• be a simplicial set and let S = X0 be the set of vertices of
X•. It follows from Proposition 1.1.5.5 that there is a unique morphism of simplicial sets
f : S → X• which is the identity map on 0-simplices. Using Proposition 1.1.4.12, we see
that this map is an isomorphism from S to the 0-skeleton sk0(X•). In particular, f is a
monomorphism, which is an isomorphism if and only if X• has dimension ≤ 0.

Remark 1.1.5.7. 00FWLet C be a category. Proposition 1.1.5.5 can be rephrased as follows:

• For any simplicial object X• of C, the limit lim←−[n]∈∆op Xn exists in the category C.

• The canonical map lim←−[n]∈∆op Xn → X0 is an isomorphism.

These assertions follow formally from the observation that [0] is a final object of the category
∆ (and therefore an initial object of the category ∆op).

Corollary 1.1.5.8. 00FXLet C be a category. Then the evaluation functor

ev0 : Fun(∆op, C)→ C X• 7→ X0

admits a left adjoint, given on objects by the formation of constant simplicial objects C 7→ C

described in Construction 1.1.5.2.

Corollary 1.1.5.9. 00FYLet C be a category. Then the construction C 7→ C determines a fully
faithful embedding from C to the category Fun(∆op, C) of simplicial objects of C.
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Proof. Let C and D be objects of C; we wish to show that the canonical map

θ : HomC(C,D)→ HomFun(∆op,C)(C,D)

is a bijection. This is clear, since θ is right inverse to the evaluation map

HomFun(∆op,C)(C,D)→ HomC(C,D)

which is bijective by virtue of Proposition 1.1.5.5.

We now specialize to the case where C = Set is the category of sets.

Definition 1.1.5.10.00FZ Let X• be a simplicial set. We will say that X• is discrete if there
exists a set S and an isomorphism of simplicial sets X• ≃ S; here S denotes the constant
simplicial set of Construction 1.1.5.2.

Specializing Corollary 1.1.5.9 to the case C = Set, we obtain the following:

Corollary 1.1.5.11.00G0 The construction S 7→ S determines a fully faithful embedding Set ↪→
Set∆. The essential image of this embedding is the full subcategory of Set∆ spanned by the
discrete simplicial sets.

Notation 1.1.5.12.00G1 Let S be a set. We will often abuse notation by identifying S with the
constant simplicial set S of Construction 1.1.5.2. (by virtue of Corollary 1.1.5.11, this is
mostly harmless).

Remark 1.1.5.13.00G2 The fully faithful embedding

Set ↪→ Set∆ S 7→ S

preserves (small) limits and colimits (since limits and colimits of simplicial sets are computed
levelwise; see Remark 1.1.0.8). It follows that the collection of discrete simplicial sets is
closed under the formation of (small) limits and colimits in Set∆.

Proposition 1.1.5.14.00G3 Let X• be a simplicial set. The following conditions are equivalent:

(1) The simplicial set X• is discrete (Definition 1.1.5.10). That is, X• is isomorphic to a
constant simplicial set S.

(2) For every morphism α : [m]→ [n] in the category ∆, the induced map Xn → Xm is a
bijection.

(3) For every positive integer n, the 0th face operator dn0 : Xn → Xn−1 is a bijection.

(4) The simplicial set X• has dimension ≤ 0, in the sense of Definition 1.1.3.1. That is, X•
does not contain any nondegenerate n-simplices for n > 0.
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Proof. The implication (1)⇒ (2) follows from Remark 1.1.5.3, and the implication (2)⇒ (3)
is immediate. To prove that (3)⇒ (4), we observe that if the face operator dn0 : Xn → Xn−1
is bijective, then the degeneracy operator sn−1

0 : Xn−1 → Xn is also bijective (since it is a
right inverse of dn0 ). In particular, sn−1

0 is surjective, so every n-simplex of X• is degenerate.
The implication (4)⇒ (1) follows from Example 1.1.5.6.

Proof of Proposition 1.1.5.1. By virtue of Proposition 1.1.5.14, it will suffice to show that
the construction X• 7→ X0 induces an equivalence of categories

{Discrete simplicial sets} → Set .

This follows immediately from Corollary 1.1.5.11.

1.1.6 Directed Graphs as Simplicial Sets

001DWe now generalize Proposition 1.1.5.14 to obtain a concrete description of simplicial sets
of dimension ≤ 1 (Proposition 1.1.6.9).

Definition 1.1.6.1. 001EA directed graph G consists of the following data:

• A set Vert(G), whose elements we refer to as vertices of G.

• A set Edge(G), whose elements we refer to as edges of G.

• A pair of functions s, t : Edge(G)→ Vert(G) which assign to each edge e ∈ Edge(G)
a pair of vertices s(e), t(e) ∈ Vert(G) that we refer to as the source and target of e,
respectively.

Warning 1.1.6.2. 001FThe terminology of Definition 1.1.6.1 is not standard. Note that a
directed graph G can have distinct edges e ̸= e′ having the same source s(e) = s(e′) and
target t(e) = t(e′) (for this reason, directed graphs in the sense of Definition 1.1.6.1 are
sometimes called multigraphs). Definition 1.1.6.1 also allows graphs which contain loops:
that is, edges e satisfying s(e) = t(e).

Remark 1.1.6.3. 001GIt will sometimes be convenient to represent a directed graph G by a
diagram, having a node for each vertex v of G and an arrow for each edge e of G, directed
from the source of e to the target of e. For example, the diagram

•

����
• ''

??

•oo

represents a directed graph with three vertices and five edges.
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Example 1.1.6.4.001H To every simplicial set X, we can associate a directed graph Gr(X) as
follows:

• The vertex set Vert(Gr(X)) is the set of 0-simplices of the simplicial set X.

• The edge set Edge(Gr(X)) is the set of nondegenerate 1-simplices of the simplicial set
X.

• For every edge e ∈ Edge(Gr(X)), the source s(e) is the vertex d1
1(e), and the target

t(e) is the vertex d1
0(e) (here d1

0 and d1
1 denote the face operators of Construction

1.1.1.4).

It will be convenient to construe Example 1.1.6.4 as providing a functor from the category
of simplicial sets to the category of directed graphs. First, we need an appropriate definition
for the latter category.

Definition 1.1.6.5.001J Let G and G′ be directed graphs (in the sense of Definition 1.1.6.1). A
morphism from G to G′ is a function f : Vert(G)⨿ Edge(G)→ Vert(G′)⨿ Edge(G′) which
satisfies the following conditions:

(a) For each vertex v ∈ Vert(G), the image f(v) belongs to Vert(G′).

(b) Let e ∈ Edge(G) be an edge of G with source v = s(e) and target w = t(e). Then
exactly one of the following conditions holds:

• The image f(e) is an edge of G′ having source s(f(e)) = f(v) and target t(f(e)) =
f(w).

• The image f(e) is a vertex of G′ satisfying f(v) = f(e) = f(w).

We let Graph denote the category whose objects are directed graphs and whose morphisms
are morphisms of directed graphs (with composition defined in the evident way).

Warning 1.1.6.6.001K Note that part (b) of Definition 1.1.6.5 allows the possibility that a
morphism of directed graphs G → G′ can “collapse” edges of G to vertices of G′. Many
other notions of morphism between (directed) graphs appear in the literature; we single
out Definition 1.1.6.5 because of its close connection with the theory of simplicial sets (see
Proposition 1.1.6.7 below).

Let X = X• be a simplicial set and let Gr(X) be the directed graph of Example 1.1.6.4.
Then the disjoint union Vert(Gr(X)) ⨿ Edge(Gr(X)) can be identified with the set X1 of
all 1-simplices of X (by identifying each vertex x ∈ X with the degenerate edge idx).
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Proposition 1.1.6.7. 001LLet X = X• and Y = Y• be simplicial sets, and let f : X → Y be a
morphism of simplicial sets. Then the induced map

Vert(Gr(X))⨿ Edge(Gr(X)) ≃ X1
f−→ Y1 ≃ Vert(Gr(Y ))⨿ Edge(Gr(Y ))

is a morphism of directed graphs from Gr(X) to Gr(Y ), in the sense of Definition 1.1.6.5.

Proof. Since f commutes with the degeneracy operator s0
0, it carries degenerate 1-simplices

of X to degenerate 1-simplices of Y , and therefore satisfies requirement (a) of Definition
1.1.6.5. Requirement (b) follows from the fact that f commutes with the face operators d1

0
and d1

1.

It follows from Proposition 1.1.6.7 that we can regard the construction X 7→ Gr(X) as a
functor from the category Set∆ of simplicial sets to the category Graph of directed graphs.

Proposition 1.1.6.8. 001MLet X and Y be simplicial sets. If X has dimension ≤ 1, then the
canonical map

HomSet∆(X,Y )→ HomGraph(Gr(X),Gr(Y ))

is bijective.

Proof. Set G = Gr(X). If X has dimension ≤ 1, then Proposition 1.1.4.12 supplies a pushout
diagram ∐

e∈Edge(G)
∂∆1 //

��

∐
e∈Edge(G)

∆1

��
Vert(G) // X.

It follows that, for any simplicial set Y = Y•, we can identify HomSet∆(X,Y ) with the fiber
product

(
∏

e∈Edge(G)
Y1) ×∏

e∈Edge(G)(Y0×Y0)
(

∏
v∈Vert(G))

Y0),

which parametrizes morphisms of directed graphs from Gr(X) to Gr(Y ).

It follows from Proposition 1.1.6.8 that the theory of simplicial sets of dimension ≤ 1 is
essentially equivalent to the theory of directed graphs.

Proposition 1.1.6.9. 001NLet Set∆ denote the category of simplicial sets and let Set≤1
∆ ⊆ Set∆

denote the full subcategory spanned by the simplicial sets of dimension ≤ 1. Then the
construction X 7→ Gr(X) induces an equivalence of categories Set≤1

∆ → Graph.
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Proof. It follows from Proposition 1.1.6.8 that the functor X 7→ Gr(X) is fully faithful when
restricted to simplicial sets of dimension ≤ 1. It will therefore suffice to show that it is
essentially surjective. Let G be any directed graph, and form a pushout diagram of simplicial
sets ∐

e∈Edge(G)
∂∆1 //

(s,t)

��

∐
e∈Edge(G)

∆1

��∐
v∈Vert(G)

∆0 // X.

Then X is a simplicial set of dimension ≤ 1 (Proposition 1.1.3.11), and the directed graph
Gr(X) is isomorphic to G.

Remark 1.1.6.10.001P The proof of Proposition 1.1.6.9 gives an explicit description of the
inverse equivalence Graph ≃ C ↪→ Set∆: it carries a directed graph G to the 1-dimensional
simplicial set G• given by the colimit of the diagram

(
∐

v∈Vert(G)
∆0)← (

∐
e∈Edge(G)

∂∆1)→ (
∐

e∈Edge(G)
∆1).

Example 1.1.6.11.00G4 Let G be a directed graph and let G• denote the associated simplicial
set of dimension ≤ 1 (Remark 1.1.6.10). Then G• has dimension ≤ 0 if and only if the edge
set Edge(G) is empty. In this case, G• can be identified with the constant simplicial set
Vert(G).

1.2 From Topological Spaces to Simplicial Sets

0508 Simplicial sets are connected to algebraic topology by two closely related constructions:

• To every topological space X, one can associate a simplicial set Sing•(X), whose
n-simplices are given by continuous functions from the topological n-simplex

|∆n| = {(t0, t1, . . . , tn) ∈ [0, 1]n+1 : t0 + t1 + · · ·+ tn = 1}

to X. We will refer to Sing•(X) as the singular simplicial set of X (Construction
1.2.2.2). These simplicial sets tend to be quite large: in any nontrivial example, the
sets Singn(X) will be uncountable for every nonnegative integer n.

• Any simplicial set S• can be regarded as a “blueprint” for constructing a topological
space |S•| called the geometric realization of S•, which can be obtained as a quotient
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of the disjoint union ∐
n≥0 Sn× |∆n| by an equivalence relation determined by the face

and degeneracy operators of S•. Many topological spaces of interest (for example, any
space which admits a finite triangulation) can be realized as a geometric realization of
a simplicial set S• having only finitely many nondegenerate simplices.

These constructions determine adjoint functors

Set∆
| | //Top

Sing•
oo

relating the category Set∆ of simplicial sets to the category Top of topological spaces. We
review the constructions of these functors in §1.2.2 and §1.2.3, viewing them as instances of
a general paradigm (Variant 1.2.2.8 and Proposition 1.2.3.15) which will appear repeatedly
in Chapter 2.

Under mild assumptions, the entire homotopy type of X can be recovered from the
simplicial set Sing•(X). More precisely, there is a canonical map |Sing•(X)| → X (given
by the counit of the preceding adjunction), and Giever showed that it is always a weak
homotopy equivalence (hence a homotopy equivalence when X has the homotopy type of a
CW complex; see Proposition 3.6.3.8). Consequently, for the purpose of studying homotopy
theory, nothing is lost by replacing X by Sing•(X) and working in the setting of simplicial
sets, rather than topological spaces. In fact, it is possible to develop the theory of algebraic
topology in entirely combinatorial terms, using simplicial sets as surrogates for topological
spaces. In §1.2.1, we consider a simple example of this idea. We say that a simplicial set
is connected if it is nonempty and cannot be decomposed as a disjoint union of nonempty
simplicial subsets (Definition 1.2.1.6). Every simplicial set S decomposes uniquely as disjoint
union of connected simplicial subsets (Proposition 1.2.1.13), indexed by a set which we
denote by π0(S). In the special case where S = Sing•(X) is the singular simplicial set of
a topological space X, this construction recovers the set π0(X) of path components of X
(Remark 1.2.2.5).

The discussion of connectedness in §1.2.1 illustrates a general phenomenon: many useful
concepts from topology have combinatorial counterparts in the setting of simplicial sets.
However, one must take some care when applying those concepts to simplicial sets which
are not of the form Sing•(X).

Warning 1.2.0.1. 0509Let f0, f1 : S → T be morphisms of simplicial sets. We define a homotopy
from f0 to f1 to be a morphism of simplicial sets h : ∆1 × S → T satisfying h|{0}×S = f0
and h|{1}×S = f1 (Definition 3.1.5.2). In the special case where T = Sing•(X) is the singular
simplicial set of a topological space X, this recovers the usual definition of homotopy between
the associated continuous functions F0, F1 : |S| → X (Example 3.1.5.5). Beware that, if T is
a general simplicial set, then the definition of homotopy is not symmetric: the existence of
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a homotopy from f0 to f1 does not imply the existence of a homotopy from f1 to f0 (for
example, take T = ∆1 to be the standard simplex, and fi : {i} ↪→ ∆1 to be the inclusion
maps).

In §1.2.5, we introduce a class of simplicial sets called Kan complexes, for which the
bad behavior described in Warning 1.2.0.1 cannot occur: if T is a Kan complex and S is
any simplicial set, then homotopy determines an equivalence relation on the collection of
morphisms f : S → T (see Proposition 3.1.5.4). By definition, T is a Kan complex if it
satisfies an extension condition with respect to certain maps of simplicial sets Λn

i ↪→ ∆n

called horn inclusions, which we introduce in §1.2.4. For every topological space X, the
singular simplicial set Sing•(X) is a Kan complex (Proposition 1.2.5.8). Moreover, a classical
theorem of Milnor ([44]) guarantees that the functor X 7→ Sing•(X) induces an equivalence
from the homotopy category of CW complexes to the homotopy category of Kan complexes.
In particular, every Kan complex T is homotopy equivalent to a Kan complex of the form
Sing•(X), where X is a topological space (in fact, we can take X to be the geometric
realization |T |; see Theorem 3.6.4.1). Heuristically, one can think that Kan complexes are
simplicial sets which “behave like” the singular simplicial sets of topological spaces. However,
there are many other examples having a more combinatorial flavor: for example, any
simplicial set which admits a group structure is automatically a Kan complex (Proposition
1.2.5.9).

1.2.1 Connected Components of Simplicial Sets

00G5 In this section, we introduce the notion of a connected simplicial set (Definition 1.2.1.6
and show that every simplicial set S decomposes uniquely as a disjoint union of connected
subsets (Proposition 1.2.1.13), indexed by a set π0(S) which we call the set of connected
components of S. Moreover, we characterize the construction S 7→ π0(S) as a left adjoint to
the functor I 7→ I of Construction 1.1.5.2 (Corollary 1.2.1.21).

Definition 1.2.1.1.00G6 Let S be a simplicial set and let S′ ⊆ S be a simplicial subset of S
(Remark 1.1.0.14). We will say that S′ is a summand of S if the simplicial set S decomposes
as a coproduct S′∐S′′, for some other simplicial subset S′′ ⊆ S.

Remark 1.2.1.2.00G7 In the situation of Definition 1.2.1.1, if S′• ⊆ S• is a summand, then
the complementary summand S′′• is uniquely determined: for each n ≥ 0, we must have
S′′n = Sn \ S′n. Consequently, the condition that S′• is a summand of S• is equivalent to the
condition that the construction

([n] ∈∆op) 7→ Sn \ S′n

is functorial: that is, that the face and degeneracy operators for the simplicial set S• preserve
the subsets Sn \ S′n.
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Remark 1.2.1.3. 00G8Let S be a simplicial set. Then the collection of all summands of S is
closed under the formation of unions and intersections (this follows immediately from the
criterion of Remark 1.2.1.2).

Remark 1.2.1.4 (Transitivity). 00G9Let S be a simplicial set. If S′ ⊆ S is a summand of S and
S′′ ⊆ S′ is a summand of S′, then S′′ is a summand of S.

Remark 1.2.1.5. 00GALet f : S → T be a map of simplicial sets and let T ′ ⊆ T be a summand.
Then the inverse image f−1(T ′) ≃ S ×T T ′ is a summand of S.

Definition 1.2.1.6. 00GBLet S be a simplicial set. We will say that S is connected if it is
nonempty and every summand S′ ⊆ S is either empty or coincides with S.

Example 1.2.1.7. 00GCFor each n ≥ 0, the standard n-simplex ∆n is connected.

Definition 1.2.1.8 (Connected Components). 00GDLet S be a simplicial set. We will say that a
simplicial subset S′ ⊆ S is a connected component of S if S′ is a summand of S (Definition
1.2.1.1) and S′ is connected (Definition 1.2.1.6). We let π0(S) denote the set of all connected
components of S.

Warning 1.2.1.9. 00GELet S be a simplicial set. As we will soon see, the set π0(S) admits many
different descriptions:

• We can identify π0(S) with the set of connected components of S (Definition 1.2.1.8).

• We can identify π0(S) with a colimit of the diagram ∆op → Set given by the simplicial
set S (Remark 1.2.1.20).

• We can identify π0(S) with the quotient of the set of vertices of S by an equivalence
relation ∼ generated by the set of edges of S (Remark 1.2.1.23).

• We can identify π0(S) with the set of connected components of the directed graph
Gr(S) introduced in §1.1.6 (Variant 1.2.1.24).

• If S is a Kan complex, we can identify π0(S) as the set of isomorphism classes of
objects in the fundamental groupoid π≤1(S) (Remark 1.4.6.13).

Because of this abundance of perspectives, it often will be convenient to view I = π0(S) as
an abstract index set which is equipped with a bijection

I ≃ {Connected components of S} (i ∈ I) 7→ (S′i ⊆ S),

rather than as the set of connected components itself.
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Example 1.2.1.10.00GF Let I be a set and let I be the constant simplicial set associated to
I (Construction 1.1.5.2). Then the connected components of I are exactly the simplicial
subsets of the form {i} for i ∈ I. In particular, we have a canonical bijection I ≃ π0(I ).

Proposition 1.2.1.11.00GG Let f : S → T be a map of simplicial sets, and suppose that S is
connected. Then there is a unique connected component T ′ ⊆ T such that f(S) ⊆ T ′.

Proof. Let T ′ be the smallest summand of T which contains the image of f (the existence of
T ′ follows from Remark 1.2.1.3: we can take T ′ to be the intersection of all those summands
of T which contain the image of f). We will complete the proof by showing that T ′ is
connected. Since S is nonempty, T ′ must be nonempty. Let T ′′ ⊆ T ′ be a summand; we
wish to show that T ′′ = T ′ or T ′′ = ∅. Note that f−1(T ′′) is a summand of S (Remark
1.2.1.5). Since S is connected, we must have f−1(T ′′) = S or f−1(T ′′) = ∅. Replacing T ′′ by
its complement if necessary, we may assume that f−1(T ′′) = S, so that f factors through
T ′′. Since T ′′ is a summand of T (Remark 1.2.1.4), the minimality of T ′ guarantees that
T ′′ = T ′, as desired.

Corollary 1.2.1.12.00GH Let S be a simplicial set. The following conditions are equivalent:

(a) The simplicial set S is connected.

(b) For every set I, the canonical map

I ≃ HomSet∆(∆0, I )→ HomSet∆(S, I )

is bijective.

Proof. The implication (a)⇒ (b) follows from Proposition 1.2.1.11 and Example 1.2.1.10.
Conversely, suppose that (b) is satisfied. Applying (b) in the case I = ∅, we conclude that
there are no maps from S to the empty simplicial set, so that S is nonempty. If S is a
disjoint union of simplicial subsets S′, S′′ ⊆ S, then we obtain a map of simplicial sets

S ≃ S′
∐

S′′ → ∆0 ∐
∆0

and assumption (b) guarantees that this map factors through one of the summands on the
right hand side; it follows that either S′ or S′′ is empty.

Proposition 1.2.1.13.00GJ Let S be a simplicial set. Then S is the disjoint union of its
connected components.

Proof. Let σ be an n-simplex of S; we wish to show that there is a unique connected
component of S which contains σ. This follows from Proposition 1.2.1.11, applied to the
map ∆n → S classified by σ (since the standard n-simplex ∆n is connected; see Example
1.2.1.7).
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Corollary 1.2.1.14. 00GKLet S be a simplicial set. Then S is empty if and only if π0(S) is
empty.

Corollary 1.2.1.15. 00GLLet S be a simplicial set. Then S is connected if and only if π0(S)
has exactly one element.

Exercise 1.2.1.16 (Classification of Summands). 00GMLet S be a simplicial set. Show that a
simplicial subset S′ ⊆ S is a summand if and only if it can be written as a union of connected
components of S. Consequently, we have a canonical bijection

{Subsets of π0(S)} ≃ {Summands of S}.

Remark 1.2.1.17 (Functoriality of π0). 00GNLet f : S → T be a map of simplicial sets. It
follows from Proposition 1.2.1.11 that for each connected component S′ ⊆ S, there is a
unique connected component T ′ ⊆ T such that f(S′) ⊆ T ′. The construction S′ 7→ T ′

then determines a map of sets π0(f) : π0(S) → π0(T). This construction is compatible
with composition, and therefore allows us to view the construction S 7→ π0(S) as a functor
π0 : Set∆ → Set from the category of simplicial sets to the category of sets.

We now show that the connected component functor π0 : Set∆ → Set can be characterized
by a universal property.

Construction 1.2.1.18 (The Component Map). 00GPLet S be a simplicial set. For every
n-simplex σ of S, Proposition 1.2.1.13 implies that there is a unique connected component
S′ ⊆ S which contains σ. The construction σ 7→ S′ then determines a map of simplicial sets

u : S → π0(S),

where π0(S) denotes the constant simplicial set associated to π0(S) (Construction 1.1.5.2).
We will refer to u as the component map.

Proposition 1.2.1.19. 00GQLet S be a simplicial set and let u : S → π0(S) be the component
map of Construction 1.2.1.18. For every set J , composition with u induces a bijection

HomSet(π0(S), J)→ HomSet∆(S, J ).

Proof. Decomposing S as the union of its connected components, we can reduce to the
case where S is connected, in which case the desired result is a reformulation of Corollary
1.2.1.12.

Remark 1.2.1.20 (π0 as a Colimit). 00GRLet S be a simplicial set. It follows from Proposition
1.2.1.19 that the component map u : S → π0(S) exhibits π0(S) as the colimit of the diagram
∆op → Set determined by S.
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Corollary 1.2.1.21.00GS The connected component functor

π0 : Set∆ → Set S 7→ π0(S)

of Remark 1.2.1.17 is left adjoint to the constant simplicial set functor

Set→ Set∆ I 7→ I

of Construction 1.1.5.2. More precisely, the construction S 7→ (u : S → π0(S)) is the unit of
an adjunction.

We now make Remark 1.2.1.20 more concrete.

Proposition 1.2.1.22.00GT Let S• be a simplicial set, and let u0 : S0 → π0(S•) be the map of
sets given by the component map of Construction 1.2.1.18. Then u0 exhibits π0(S•) as the
coequalizer of the face operators d1

0, d
1
1 : S1 ⇒ S0.

Remark 1.2.1.23.00GU Let S• be a simplicial set. Proposition 1.2.1.22 supplies a coequalizer
diagram of sets

S1
d1

0 //
d1

1

// S0 // π0(S•).

In other words, it allows us to identify π0(S•) with the quotient of S0/ ∼, where ∼ is the
equivalence relation generated by the set of edges of S• (that is, the smallest equivalence
relation with the property that d1

0(e) ∼ d1
1(e), for every edge e ∈ S1). In particular, the set

π0(S•) depends only on the 1-skeleton of S•.

Variant 1.2.1.24.00GV Let S• be a simplicial set. Then the set of connected components π0(S•)
can also be described as the coequalizer of the pair of maps d1

0, d
1
1 : Snd

1 ⇒ S0, where
Snd

1 ⊆ S1 denotes the set of nondegenerate edges of S• (since every degenerate edge e ∈ S1
automatically satisfies d1

0(e) = d1
1(e)). We therefore have a coequalizer diagram of sets

Edge(G) s //
t

// Vert(G) // π0(S•),

where G = Gr(S•) is the directed graph of Example 1.1.6.4. In other words, we can identify
π0(S•) with the set of connected components of G, in the usual graph-theoretic sense.

Corollary 1.2.1.25.050A For n ≥ 2, the simplicial set ∂∆n is connected.

Proof. Example 1.2.1.7 guarantees that the standard simplex ∆n is connected. The desired
result now follows from Proposition 1.2.1.22, since the inclusion map ∂∆n ↪→ ∆n is bijective
on simplices of dimension ≤ 1.
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Proof of Proposition 1.2.1.22. Let I be a set and let f : S0 → I be a function satisfying
f ◦ d1

0 = f ◦ d1
1 (as functions from S1 to I). We wish to show that f factors uniquely as a

composition
S0

u0−→ π0(S•)→ I.

By virtue of Proposition 1.2.1.19, this is equivalent to the assertion that there is a unique
map of simplicial sets F : S• → I which coincides with f on simplices of degree zero. Let σ
be an n-simplex of S•, which we identify with a map of simplicial sets σ : ∆n → S•. For
0 ≤ i ≤ n, we regard σ(i) as a vertex of S•. Note that if 0 ≤ i ≤ j ≤ n, then we have
f(σ(i)) = f(σ(j)): to prove this, we can assume without loss of generality that i = 0 and
j = n = 1, in which case it follows from our hypothesis that f ◦ d1

0 = f ◦ d1
1. It follows

that there is a unique element F (σ) ∈ I such that F (σ) = f(σ(i)) for each 0 ≤ i ≤ n.
The construction σ 7→ F (σ) defines a map of simplicial sets F : S• → I with the desired
properties.

Proposition 1.2.1.26. 00GWThe collection of connected simplicial sets is closed under finite
products.

Proof. Since the final object ∆0 ∈ Set∆ is connected (Example 1.2.1.7), it will suffice to show
that the collection of connected simplicial sets is closed under pairwise products. Let S•
and T• be connected simplicial sets; we wish to show that S × T is connected. Equivalently,
we wish to show that π0(S•× T•) consists of a single element (Corollary 1.2.1.15). By virtue
of Proposition 1.2.1.22, the component map supplies a surjection

u0 : S0 × T0 ↠ π0(S• × T•).

It will therefore suffice to show that every pair of vertices (s, t), (s′, t′) ∈ S0 × T0 belong to
the same connected component of S• × T•. Let K• ⊆ S• × T• be the connected component
which contains the vertex (s′, t). Since S• is connected, the map

S• ≃ S• × {t} ↪→ S• × T•

factors through a unique connected component of S• × T•, which must be equal to K•. It
follows that K• contains the vertex (s, t). A similar argument (with the roles of S• and T•
reversed) shows that K• contains (s′, t′).

Corollary 1.2.1.27. 00GXThe functor π0 : Set∆ → Set preserves finite products.

Proof. Since π0(∆0) is a singleton (Example 1.2.1.7), it will suffice to show that for every
pair of simplicial sets S• and T•, the canonical map

π0(S• × T•)→ π0(S•)× π0(T•)
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is bijective. Writing S• and T• as a disjoint union of connected components (Proposition
1.2.1.13), we can reduce to the case where S• and T• are connected, in which case the desired
result follows from Proposition 1.2.1.26.

Warning 1.2.1.28.00GY The collection of connected simplicial sets is not closed under infinite
products (so the functor π0 : Set∆ → Set does not commute with infinite products). For
example, let G be the directed graph with vertex set Vert(G) = Z≥0 = Edge(G), with source
and target maps

s, t : Edge(G)→ Vert(G) s(n) = n t(n) = n+ 1.

More informally, G is the directed graph depicted in the diagram

0 // 1 // 2 // 3 // 4 // · · ·

The associated 1-dimensional simplicial set G• is connected. However, the infinite product
S• = ∏

n∈Z≥0
G• is not connected. By definition, the vertices of S• can be identified with

functions f : Z≥0 → Z≥0. It is not difficult to see that two such functions f, g : Z≥0 → Z≥0
belong to the same connected component of S• if and only if the function n 7→ |f(n)− g(n)|
is bounded. In particular, the identity function n 7→ n and the zero function n 7→ 0 do not
belong to the same connected component of S•.

1.2.2 The Singular Simplicial Set of a Topological Space

001Q Topology provides an abundant supply of examples of simplicial sets.

Notation 1.2.2.1 (The n-Simplex).050B For each integer n ≥ 0, we let |∆n| denote the set
of (n + 1)-tuples of nonnegative real numbers (t0, t1, · · · , tn) which satisfy the equation
t0 + t1 + · · ·+ tn = 1. We regard |∆n| as a topological space (with the topology inherited
from standard topology on Euclidean space Rn+1). If X is a topological space, we will refer
to a continuous function σ : |∆n| → X as a singular n-simplex in X.

Construction 1.2.2.2.001R Let X be a topological space. We define a simplicial set Sing•(X)
as follows:

• To each object [n] ∈ ∆, we assign the set Singn(X) = HomTop(|∆n|, X) of singular
n-simplices in X.

• To each non-decreasing map α : [m]→ [n], we assign the map Singn(X)→ Singm(X)
given by precomposition with the continuous map

|∆m| → |∆n|

(t0, t1, . . . , tm) 7→ (
∑

α(i)=0
ti,

∑
α(i)=1

ti, . . . ,
∑

α(i)=n
ti).
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We will refer to Sing•(X) as the singular simplicial set of X. We view the construction
X 7→ Sing•(X) as a functor from the category of topological spaces to the category of
simplicial sets, which we will denote by Sing• : Top→ Set∆.

Example 1.2.2.3. 001SLet X be a topological space and let Sing•(X) be its singular simplicial
set. Then:

• Vertices of Sing•(X) can be identified with points of X.

• Edges of Sing•(X) can be identified with continuous paths p : [0, 1] → X. Here the
source of p is the point x = p(0), and the target of p is the point y = p(1).

Remark 1.2.2.4. 0217The functor X 7→ Sing•(X) carries limits in the category of topological
spaces to limits in the category of simplicial sets (in fact, the functor Sing• admits a left
adjoint; see Corollary 1.2.3.5). It does not preserve colimits in general. However, it does
carry coproducts of topological spaces to coproducts of simplicial sets: this follows from the
observation that the topological n-simplex |∆n| is connected for every n ≥ 0.

Remark 1.2.2.5 (Connected Components of Sing•(X)). 00GZLet X be a topological space.
We let π0(X) denote the set of path components of X: that is, the quotient of X by the
equivalence relation

(x ∼ y)⇔ (∃p : [0, 1]→ X)[p(0) = x and p(1) = y].

It follows from Remark 1.2.1.23 that we have a canonical bijection π0(Sing•(X)) ≃ π0(X).
That is, we can identify connected components of the simplicial set Sing•(X) (in the sense
of Definition 1.2.1.8) with path components of the topological space X.

Remark 1.2.2.6 (Connectedness of Sing•(X)). 00H0Let X be a topological space. Then the
simplicial set Sing•(X) is connected if and only if X is path connected (this follows from
Remark 1.2.2.5).

Warning 1.2.2.7. 00H1Let X be a topological space. If the simplicial set Sing•(X) is connected,
then the topological space X is path connected and therefore connected. Beware that the
converse is not necessarily true: there exist topological spaces X which are connected but
not path connected, in which case the singular simplicial set Sing•(X) will not be connected.

It will be convenient to consider a generalization of Construction 1.2.2.2.

Variant 1.2.2.8. 001TLet C be a category and let Q be a cosimplicial object of C, which we view
as a functor ∆ to C. For every object X ∈ C, the construction ([n] ∈∆) 7→ HomC(Q([n]), X)
determines a functor from ∆op to the category of sets, which we can view as a simplicial
set. We will denote this simplicial set by SingQ• (X), so that we have canonical bijections
SingQn (X) ≃ HomC(Qn, X). We view the construction X 7→ SingQ• (X) as a functor from C
to the category of simplicial sets, which we denote by SingQ• : C → Set∆.

https://kerodon.net/tag/001S
https://kerodon.net/tag/0217
https://kerodon.net/tag/00GZ
https://kerodon.net/tag/00H0
https://kerodon.net/tag/00H1
https://kerodon.net/tag/001T


1.2. FROM TOPOLOGICAL SPACES TO SIMPLICIAL SETS 41

Example 1.2.2.9.001U The construction [n] 7→ |∆n| determines a functor from the simplex
category ∆ to the category Top of topological spaces, which assigns to each morphism
α : [m]→ [n] the continuous map

|∆m| → |∆n| (t0, . . . , tm) 7→ (
∑

α(i)=0
ti, . . . ,

∑
α(i)=n

ti).

We regard this functor as a cosimplicial topological space, which we denote by |∆•|. Applying
Variant 1.2.2.8 to this cosimplicial space yields a functor Sing|∆|• : Top → Set∆, which
coincides with the singular simplicial set functor Sing• of Construction 1.2.2.2.

Example 1.2.2.10.001V The construction [n] 7→ ∆n determines a functor from the simplex
category ∆ to the category Set∆ = Fun(∆op,Set) of simplicial sets (this is the Yoneda
embedding for the simplex category ∆). We regard this functor as a cosimplicial object of
Set∆, which we denote by ∆•. Applying Variant 1.2.2.8 to this cosimplicial object, we obtain
a functor from the category of simplicial sets to itself, which is canonically isomorphic to
the identity functor idSet∆ : Set∆ → Set∆ (see Proposition 1.1.0.12).

Remark 1.2.2.11.001W The cosimplicial space |∆•| of Example 1.2.2.9 can be described more
informally as follows:

• To each nonempty finite linearly ordered set I, it assigns a topological simplex |∆I |
whose vertices are the elements of I: that is, the convex hull of the set I inside the
real vector space R[I] generated by I.

• To every nondecreasing map α : I → J , the induced map |∆I | → |∆J | is given by the
restriction of the R-linear map R[I]→ R[J ] determined by α. Equivalently, it is the
unique affine map which coincides with α on the vertices of the simplex |∆I |.

1.2.3 The Geometric Realization of a Simplicial Set

001X Let X be a topological space. By definition, n-simplices of the simplicial set Sing•(X)
are continuous functions |∆n| → X. Using Proposition 1.1.0.12, we obtain a bijection

HomTop(|∆n|, X) ≃ HomSet∆(∆n, Sing•(X)).

We now consider a generalization of this observation, where we replace ∆n by an arbitrary
simplicial set.

Definition 1.2.3.1.001Y Let S be a simplicial set and let Y be a topological space. We will say
that a map of simplicial sets u : S → Sing•(Y ) exhibits Y as a geometric realization of S if,
for every topological space X, the composite map

HomTop(Y,X)→ HomSet∆(Sing•(Y ), Sing•(X)) ◦u−→ HomSet∆(S, Sing•(X))

is a bijection.
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Example 1.2.3.2. 001ZFor each n ≥ 0, the identity map id : |∆n| ≃ |∆n| determines an
n-simplex of the simplicial set Sing•(|∆n|), which we can identify with a morphism of
simplicial sets u : ∆n → Sing•(|∆n|). It follows from Proposition 1.1.0.12 that u exhibits
the topological space |∆n| as a geometric realization of the simplicial set ∆n.

Notation 1.2.3.3. 0020Let S be a simplicial set. It follows immediately from the definitions
that if there exists a map u : S → Sing•(Y ) which exhibits Y as a geometric realization of S,
then the topological space Y is determined up to homeomorphism and depends functorially
on S. We will emphasize this dependence by writing |S| to denote a geometric realization of
S. By virtue of Example 1.2.3.2, this is compatible with the convention of Notation 1.2.2.1
in the special case where S = ∆n is a standard simplex.

Every simplicial set admits a geometric realization:

Proposition 1.2.3.4. 0021For every simplicial set S, there exists a topological space Y and a
map u : S → Sing•(Y ) which exhibits Y as a geometric realization of S.

Corollary 1.2.3.5. 0022The singular simplicial set functor Sing• : Top→ Set∆ admits a left
adjoint, given by the geometric realization construction S 7→ |S|.

Our proof of Proposition 1.2.3.4 will make use of the following formal observation:

Lemma 1.2.3.6. 0023Let J be a small category equipped with a functor S : J → Set∆. Suppose
that, for each J ∈ J , the simplicial set S(J) admits a geometric realization |S(J)|. Then
the colimit T = lim−→J∈J S(J) also admits a geometric realization, given by the colimit
Y = lim−→J∈J |S(J)| in the category of topological spaces.

Proof. For each J ∈ J , choose a topological space |S(J)| and a map uJ : S(J) →
Sing•(|S(J)|) which exhibits |S(J)| as a geometric realization of S(J). We can then amalga-
mate the composite maps

S(J) uJ−→ Sing•(|S(J)|)→ Sing•(Y )

to a single map of simplicial sets u : T → Sing•(Y ). We claim that u exhibits Y as a
geometric realization of the simplicial set T . Let X be any topological space; we wish to
show that the composite map

HomTop(Y,X)→ HomSet∆(Sing•(Y ), Sing•(X)) ◦u−→ HomSet∆(T, Sing•(X))

is a bijection. This is clear, since this composite map can be written as an inverse limit
of the bijections HomTop(|S(J)|, X) ∼−→ HomSet∆(S(J),Sing•(X)) determined by the maps
uJ .
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It is possible to prove Proposition 1.2.3.4 in a completely formal way from Lemma 1.2.3.6,
since every simplicial set can be presented as a colimit of simplices (see Proposition 1.2.3.15
below). However, we will instead give a less formal argument which yields some additional
information about the structure of the geometric realization |S|. We begin by studying
simplicial subsets of the standard simplex ∆n.

Notation 1.2.3.7.0024 Let n ≥ 0 be an integer and let U be a collection of nonempty subsets
of [n] = {0, 1, . . . , n}. We will say that U is downward closed if ∅ ̸= I ⊆ J ∈ U implies that
I ∈ U . If this condition is satisfied, we let ∆n

U denote the simplicial subset of ∆n whose
m-simplices are nondecreasing maps α : [m]→ [n] for which the image of α is an element of
U . Similarly, we set

|∆n|U = {(t0, . . . , tn) ∈ |∆n| : {i ∈ [n] : ti ̸= 0} ∈ U}.

Example 1.2.3.8.0025 For each n ≥ 0, the boundary ∂∆n of Construction 1.1.4.10 is given by
∆n
U , where U is the collection of all nonempty proper subsets of [n].

Exercise 1.2.3.9.0027 Show that every simplicial subset of the standard n-simplex ∆n has the
form ∆n

U , where U is some (uniquely determined) downward closed collection of nonempty
subsets of [n].

Proposition 1.2.3.10.0028 Let n be a nonnegative integer and let U be a downward closed
collection of nonempty subsets of [n]. Then the canonical map ∆n → Sing•(|∆n|) restricts to
a map of simplicial sets fU : ∆n

U → Sing•(|∆n|U ), which exhibits the topological space |∆n|U
as a geometric realization of ∆n

U .

Proof. We proceed by induction on the cardinality of U . If U is empty, then the simplicial
set ∆n

U and the topological space |∆n|U are both empty, in which case there is nothing to
prove. We may therefore assume that U is nonempty. Choose some S ∈ U whose cardinality
is as large as possible. Set

U0 = U \{S} U1 = {T ⊆ S : T ̸= ∅} U01 = U0 ∩U1 .

Our inductive hypothesis implies that the maps fU0 and fU01 exhibit |∆n|U0 and |∆n|U01

as geometric realizations of ∆n
U0

and ∆n
U01

, respectively. Moreover, if S = {i0 < i1 < · · · <
im} ⊆ [n], then we can identify fU1 with the tautological map ∆m → Sing•(|∆m|), so that
fU1 exhibits |∆n|U1 as a geometric realization of ∆n

U1
by virtue of Example 1.2.3.2. It follows

immediately from the definitions that the diagram of simplicial sets

∆n
U01

//

��

∆n
U0

��
∆n
U1

// ∆n
U
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is a pushout square. By virtue of Lemma 1.2.3.6, we are reduced to proving that the diagram
of topological spaces

|∆n|U01
//

��

|∆n|U0

��
|∆n|U1

// |∆n|U

is also a pushout square. This is clear, since |∆n|U0 and |∆n|U1 are closed subsets of |∆n|
whose union is |∆n|U and whose intersection is |∆n|U01 .

Example 1.2.3.11. 0029Let n be a nonnegative integer. Combining Example 1.2.3.8 with
Proposition 1.2.3.10, we see that the inclusion map ∂∆n ↪→ ∆n induces a homeomorphism
from | ∂∆n | to the boundary of the topological n-simplex |∆n|, given by

{(t0, . . . , tn) ∈ |∆n| : tj = 0 for some j}.

Proof of Proposition 1.2.3.4. Let S = S• be a simplicial set; we wish to show that S admits
a geometric realization |S|. We first show that for each n ≥ −1, the n-skeleton skn(S) admits
a geometric realization. The proof proceeds by induction on n, the case n = −1 being trivial
(since sk−1(S) is empty). Let C denote the collection of nondegenerate n-simplices of C. we
note that Proposition 1.1.4.12 provides a pushout diagram

∐
σ∈C

∂∆n //

��

∐
σ∈C

∆n

��
skn−1(S) // skn(S).

Combining our inductive hypothesis, Example 1.2.3.2, Example 1.2.3.11, and Lemma 1.2.3.6,
we deduce that skn(S) admits a geometric realization | skn(S)| which fits into a pushout
diagram of topological spaces

∐
σ∈C
| ∂∆n | //

��

∐
σ∈C
|∆n|

��
| skn−1(S)| // | skn(S)|.
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Combining the equality S = ⋃
n skn(S) of Remark 1.1.4.4 with Lemma 1.2.3.6, we deduce

that the simplicial set S also admits a geometric realization, given by the direct limit
lim−→n

| skn(S)|.

Remark 1.2.3.12.002B The proof of Proposition 1.2.3.4 shows that the geometric realization
|S| of a simplicial set S has a canonical realization as a CW complex, having one cell of
dimension n for each nondegenerate n-simplex σ of S; this cell can be described explicitly
as the image of the map

|∆n| \ | ∂∆n | ↪→ |∆n| σ−→ |S|.

The proof of Proposition 1.2.3.4 also yields the following fact, which we will use often
throughout this book:

Lemma 1.2.3.13.00H2 Let U be a full subcategory of the category Set∆ of simplicial sets. Suppose
that U satisfies the following three conditions:

(1) Suppose we are given a pushout diagram of simplicial sets

X
f //

��

Y

��
X ′ // Y ′,

where f is a monomorphism. If X, Y , and X ′ belong to U , then Y ′ belongs to U .

(2) Suppose we are given a sequence of monomorphisms of simplicial sets

X(0) ↪→ X(1) ↪→ X(2) ↪→ X(3) ↪→ · · ·

If each X(m) belongs to U , then the sequentual colimit lim−→m
X(m) belongs to U .

(3) For each n ≥ 0 and every set I, the coproduct
∐
i∈I ∆n belongs to U .

Then every simplicial set belongs to U .

Proof. Let S be a simplicial set; we wish to show that S belongs to U . By virtue of Remark
1.1.4.4, we can identify S with the colimit lim−→n

skn(S). By virtue of (2), it will suffice to
show that each skeleton skn(S) belongs to U . We may therefore assume without loss of
generality that S has dimension ≤ n, for some integer n. We proceed by induction on n. In
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the case n = −1, the simplicial set S is empty and the desired result is a special case of (3).
To carry out the inductive step, we invoke Proposition 1.1.4.12 to choose a pushout diagram∐

σ∈C
∂∆n //

��

∐
σ∈C

∆n

��
skn−1(S) // S,

where C is the collection of nondegenerate n-simplices of S. By virtue of assumption (1), it
will suffice to show that the simplicial sets skn−1(S), ∐

σ∈C
∂∆n, and ∐

σ∈C
∆n belong to U . In

the first two cases, this follows from our inductive hypothesis. In the third, it follows from
assumption (3).

Remark 1.2.3.14. 00H3In the statement of Lemma 1.2.3.13, we can replace (3) by the following
pair of conditions:

(3′) For each n ≥ 0, the standard n-simplex ∆n belongs to U .

(3′′) The subcategory U ⊆ Set∆ is closed under the formation of coproducts.

In Chapter 2, we will encounter a number of variants of the geometric realization
construction S 7→ |S|, which can be obtained from the following generalization of Corollary
1.2.3.5:

Proposition 1.2.3.15. 002FLet C be a category, let Q• be a cosimplicial object of C, and let
SingQ• : C → Set∆ be the functor of Variant 1.2.2.8. If the category C admits small colimits,
then the functor SingQ• admits a left adjoint Set∆ → C, which we will denote by S 7→ |S|Q.

Proof. Let S be a simplicial set; we wish to show that the functor

λ : C → Set C 7→ HomSet∆(S, SingQ• (C))

is corepresentable by an object |S|Q ∈ C. Since C admits small colimits, the collection of
corepresentable functors from C to Set is closed under the formation of small limits. Using
Remark 1.1.3.13 (or Lemma 1.2.3.13), we can reduce to the case where S = ∆n is a standard
simplex. In this case, the functor λ is corepresented by the object Qn ∈ C (see Proposition
1.1.0.12).

Remark 1.2.3.16. 050CFrom the proof of Proposition 1.2.3.15, we can extract an explicit
description of the realization |S|Q: it can be realized as the colimit of the composite functor

∆S →∆ Q−→ C,

where ∆S denotes the category of simplices of S (Construction 1.1.3.9).
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Remark 1.2.3.17.00H4 The functor π0 : Set∆ → Set of Corollary 1.2.1.21 can be regarded as
special case of Proposition 1.2.3.15: it agrees with the functor | • |Q, where Q• : ∆→ Set is
a constant functor whose value is a singleton set ∗ ∈ Set∆ (see Proposition 1.2.1.19).

Proposition 1.2.3.18.00H5 Let S be a simplicial set. The following conditions are equivalent:

(1) The geometric realization |S| is a path-connected topological space.

(2) The geometric realization |S| is a connected topological space.

(3) The simplicial set S is connected, in the sense of Definition 1.2.1.6.

Proof. The implication (1)⇒ (2) holds for any topological space. To prove that (2)⇒ (3),
we observe that any decomposition S ≃ S′

∐
S′′ into disjoint nonempty simplicial subsets

determines a homeomorphism |S| ≃ |S′|∐ |S′′|. We will complete the proof by showing that
(3)⇒ (1). Let ∆S denote the category of simplices of S (Construction 1.1.3.9). We then
have a commutative diagram of sets

lim−→([n],σ)∈∆S
|∆n| ∼ //

��

|S|

��
lim−→([n],σ)∈∆S

π0(|∆n|) // π0(|S|),

where the upper horizontal map is bijective (Remark 1.2.3.16) and the right vertical map
is surjective. It follows that the lower horizontal map is also surjective. Since each of the
topological spaces |∆n| is path connected, the colimit in the lower left can be identified with
the set π0(S) (Remark 1.2.3.17). If S is connected, the set π0(S) consists of a single element,
so that π0(|S|) is also a singleton.

Corollary 1.2.3.19.00H6 For every simplicial set S, we have a canonical bijection

π0(S) ≃ π0(|S|).

Proof. Writing S as a disjoint union of connected components (Proposition 1.2.1.11, we
can reduce to the case where S is connected, in which case both sets have a single element
(Proposition 1.2.3.18).

1.2.4 Horns

000K We now consider some elementary examples of simplicial sets which will play an important
role throughout this book.

https://kerodon.net/tag/00H4
https://kerodon.net/tag/00H5
https://kerodon.net/tag/00H6
https://kerodon.net/tag/000K


48 CHAPTER 1. THE LANGUAGE OF ∞-CATEGORIES

Construction 1.2.4.1 (The Horn Λni ). 000USuppose we are given a pair of integers 0 ≤ i ≤ n
with n > 0. We define a simplicial set Λni : ∆op → Set by the formula

(Λni )([m]) = {α ∈ Hom∆([m], [n]) : [n] ⊈ α([m]) ∪ {i}}.

We regard Λni as a simplicial subset of the boundary ∂∆n ⊆ ∆n. We will refer to Λni as the
ith horn in ∆n. We will say that Λni is an inner horn if 0 < i < n, and an outer horn if i = 0
or i = n.

Remark 1.2.4.2. 000VRoughly speaking, one can think of the horn Λn
i as obtained from the

n-simplex ∆n by removing its interior together with the face opposite its ith vertex (see
Remark 1.2.4.6).

Example 1.2.4.3. 000XThe horn Λ1
0 ⊂ ∆1 is the vertex {1}, and the horn Λ1

1 ⊂ ∆1 is the
vertex {0} (see Example 1.1.0.15). In particular, Λ1

0 and Λ1
1 are abstractly isomorphic to the

standard 0-simplex ∆0. Moreover, the boundary ∂∆1 is the disjoint union of Λ1
0 and Λ1

1.

Example 1.2.4.4. 000WThe horns contained in ∆2 are depicted in the following diagram:

{1}

��

{1}

��

{1}

��

Λ2
0 Λ2

1 Λ2
2

{0}

FF

// {2} {0}

FF

// {2} {0}

FF

// {2}.

Here the dotted arrows indicate edges of ∆2 which are not contained in the corresponding
horn.

Remark 1.2.4.5. 050DLet 0 ≤ i ≤ n be integers with n > 0. Then the horn Λni is connected. If
n = 1 or n = 2, this follows by inspection (see Examples 1.2.4.3 and 1.2.4.4). For n ≥ 3,
the inclusion map Λni ↪→ ∆n is bijective on simplices of dimension ≤ 1, so the desired result
follows from Proposition 1.2.1.22 (together with the connectedness of the standard simplex
∆n; see Example 1.2.1.7).

Remark 1.2.4.6. 050ELet 0 ≤ i ≤ n be integers with n > 0. It follows from Proposition 1.2.3.10
that the inclusion map Λni ↪→ ∆n induces a homeomorphism from the geometric realization
|Λni | to the closed subset of |∆n| given by

{(t0, . . . , tn) ∈ |∆n| : tj = 0 for some j ̸= i}.

Let n be a positive integer. For every pair of distinct integers i, j ∈ [n], the inclusion
map δjn of Construction 1.1.1.4 can be regarded as a morphism of simplicial sets from ∆n−1

to the horn Λni . We have the following counterpart of Proposition 1.1.4.13:
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Proposition 1.2.4.7.050F Let 0 ≤ i ≤ n be integers with n > 0. For any simplicial set S•, the
map

HomSet∆(Λni , S•)→ (Sn−1)n f 7→ {f ◦ δjn}0≤j≤n,j ̸=i

is an injection, whose image is the collection of “incomplete” sequences

(σ0, . . . , σi−1, •, σi+1, . . . , σn)

which satisfy the identity dn−1
j (σk) = dn−1

k−1(σj) for j, k ∈ [n] \ {i} with j < k.

Proof. We proceed as in the proof of Proposition 1.1.4.13, with minor modifications. Set
Q = [n] \ {i} and let w : ∐

ℓ∈Q ∆n−1 → Λni be the map given on the ℓth summand by δℓn. To
prove the first assertion of Proposition 1.2.4.7, we must show that w is an epimorphism of
simplicial sets: that is, it is surjective on m-simplices for each m ≥ 0. In fact, we can be
a bit more precise. Let α be an m-simplex of ∆n, which we identify with a nondecreasing
function from [m] to [n]. Then α belongs to the boundary Λni if and only its image does not
contain Q: that is, if and only if there exists some integer j ∈ Q such that α factors through
[n] \ {j}. In this case, there is a unique m-simplex βj which belongs to the jth summand of∐
ℓ∈Q ∆n−1 and satisfies w(βj) = α.

For every integer ℓ ∈ Q, let uℓ : ∐
j∈Q,j<ℓ ∆n−2 → ∆n−1 be the map given on the

jth summand by δjn−1, and let vℓ : ∐
k∈Q,k>ℓ ∆n−2 → ∆n−1 be the map given on the kth

summand by δk−1
n−1. Passing to the coproduct over ℓ and reindexing, we obtain a pair of maps

(u, v) :
∐

j,k∈Q,j<k
∆n−2 ⇒

∐
ℓ∈Q

∆n−1.

Let Coeq(u, v)• denote the coequalizer of u and v in the category of simplicial sets. The
morphism w satisfies w ◦ u = w ◦ v (see Remark 1.1.1.7), and therefore factors uniquely
through a map w : Coeq(u, v)→ Λni . Proposition 1.2.4.7 asserts that w is an isomorphism
of simplicial sets: that is, for every integer m ≥ 0, it induces a bijection from Coeq(u, v)m
to the set of m-simplices of Λn

i . The surjectivity of this map was established above. To
prove injectivity, it will suffice to observe that if α : [m] → [n] is as above and we are
given two elements j, k ∈ Q which do not belong to the image of α, then βj and βk have
the same image in Coeq(u, v)•. If j = k, this is automatic; we may therefore assume
without loss of generality that j < k. In this case, the desired result follows from the
observation that we can write βk = u(γ) and βj = v(γ), where γ is the m-simplex of
the (j, k)th summand of ∐

j,k∈Q,j<k ∆n−2 corresponding to the nondecreasing function
[m] α−→ [n] \ {j < k} ≃ [n− 2].

1.2.5 Kan Complexes

002G We now articulate an important property enjoyed by simplicial sets of the form Sing•(X).
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Definition 1.2.5.1. 002HLet S be a simplicial set. We will say that S is a Kan complex if it
satisfies the following condition:

(∗) For every pair of integers 0 ≤ i ≤ n with n > 0, every morphism of simplicial sets
σ0 : Λn

i → S can be extended to a map σ : ∆n → S. Here Λn
i ⊆ ∆n denotes the ith

horn (see Construction 1.2.4.1).

Exercise 1.2.5.2. 002JShow that for n > 0, the standard simplex ∆n is not a Kan complex (for
a more general statement, see Proposition 1.3.5.2).

Example 1.2.5.3 (Products of Kan Complexes). 00H8Let {Sα}α∈A be a collection of simplicial
sets parametrized by a set A, and let S = ∏

α∈A Sα be their product. If each Sα is a Kan
complex, then S is a Kan complex. The converse holds provided that each Sα is nonempty.

Example 1.2.5.4 (Coproducts of Kan Complexes). 00H9Let {Sα}α∈A be a collection of simplicial
sets parametrized by a set A, and let S = ∐

α∈A Sα be their coproduct. For every pair of
integers 0 ≤ i ≤ n with n > 0, the restriction map

θ : HomSet∆(∆n, S)→ HomSet∆(Λni , S)

can be identified with the coproduct (formed in the arrow category Fun([1],Set)) of restriction
maps θα : HomSet∆(∆n, Sα)→ HomSet∆(Λni , Sα); this follows from the connectedness of the
simplicial sets ∆n and Λn

i (see Example 1.2.1.7 and Remark 1.2.4.5). It follows that θ is
surjective if and only if each θα is surjective. Allowing n and i to vary, we conclude that S
is a Kan complex if and only if each summand Sα is a Kan complex.

Remark 1.2.5.5. 00HALet S be a simplicial set. Combining Example 1.2.5.4 with Proposition
1.2.1.13, we deduce that S• is a Kan complex if and only if each connected component of S
is a Kan complex.

Example 1.2.5.6. 00HBLet S be a discrete simplicial set (Definition 1.1.5.10). Then every
connected component of S is isomorphic to the standard simplex ∆0, which is a Kan complex.
Applying Remark 1.2.5.5, we see that S is a Kan complex.

Example 1.2.5.7. 00H7Let S be a simplicial set of dimension exactly 1 (that is, a simplicial set
S which arises from a directed graph with at least one edge). Then S is not a Kan complex.

Proposition 1.2.5.8. 002KLet X be a topological space. Then the singular simplicial set Sing•(X)
is a Kan complex.

Proof. Let σ0 : Λni → Sing•(X) be a map of simplicial sets for n > 0; we wish to show that
σ0 can be extended to an n-simplex of X. Using the geometric realization functor, we can
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identify σ0 with a continuous map of topological spaces f0 : |Λni | → X; we wish to show that
f0 factors as a composition

|Λni | → |∆n| f−→ X.

Using Remark 1.2.4.6, we can identify |Λni | with the subset

{(t0, . . . , tn) ∈ |∆n| : tj = 0 for some j ̸= i} ⊆ |∆n|.

In this case, we can take f to be the composition f0 ◦ r, where r is any continuous retraction
of |∆n| onto the subset |Λni |. For example, we can take r to be the map given by the formula

r(t0, . . . , tn) = (t0 − c, . . . , ti−1 − c, ti + nc, ti+1 − c, . . . , tn − c)

c = min{t0, . . . , ti−1, ti+1, . . . , tn}.

Algebra furnishes another rich supply of examples of Kan complexes:

Proposition 1.2.5.9.00MG Let G• be a simplicial group (that is, a simplicial object of the category
of groups). Then (the underlying simplicial set of) G• is a Kan complex.

Proof. Let n be a positive integer and σ⃗ : Λn
i → G• be a map of simplicial sets for

some 0 ≤ i ≤ n, which we will identify with a tuple (σ0, σ1, . . . , σi−1, •, σi+1, . . . , σn) of
elements of the group Gn−1 (Proposition 1.2.4.7). We wish to prove that there exists
an element τ ∈ Gn satisfying dnj τ = σj for j ̸= i. Let e denote the identity element of
Gn−1. We first treat the special case where σi+1 = · · · = σn = e. If, in addition, we
have σ0 = σ1 = · · · = σi−1 = e, then we can take τ to be the identity element of Gn.
Otherwise, there exists some smallest integer j < i such that σj ̸= e. We proceed by
descending induction on j. Set τ ′′ = sn−1

j σj ∈ Gn, and consider the map σ⃗′ : Λn
i → G•

given by the tuple (σ′0, σ′1, . . . , σ′i−1, •, σ′i+1, . . . , σ
′
n) with σ′k = σk(dnkτ ′′)−1. We then have

σ′0 = σ′1 = · · · = σ′j = e and σ′i+1 = · · · = σ′n = e. Invoking our inductive hypothesis we
conclude that there exists an element τ ′ ∈ Gn satisfying dnkτ ′ = σ′k for k ̸= i. We can then
complete the proof by taking τ to be the product τ ′τ ′′.

If not all of the equalities σi+1 = · · · = σn = e hold, then there exists some largest integer
j > i such that σj ̸= e. We now proceed by ascending induction on j. Set τ ′′ = sn−1

j−1σj
and let σ⃗′ : Λn

i → G• be the map given by the tuple (σ′0, σ′1, . . . , σ′i−1, •, σ′i+1, . . . , σ
′
n) with

σ′k = σk(dnkτ ′′)−1, as above. We then have σ′j = σ′j+1 = · · · = σ′n = e, so the inductive
hypothesis guarantees the existence of an element τ ′ ∈ Gn satisfying dnkτ ′ = σ′k for k ̸= i.
As before, we complete the proof by setting τ = τ ′τ ′′.
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Let S = S• be a simplicial set. According to Remark 1.2.1.23, we can identify the
set of connected components π0(S) with the quotient S0/ ∼, where ∼ is the equivalence
relation generated by the image of the map (d1

0, d
1
1) : S1 → S0 × S0. In the special case

where S = Sing•(X) is the singular simplicial set of a topological space X, this description
simplifies: the image of the map (d1

0, d
1
1) : Sing1(X) → Sing0(X) × Sing0(X) = X ×X is

already an equivalence relation, and π0(S•) can be identified with the set of path components
π0(X) (Remark 1.2.2.5). A similar phenomenon occurs for any Kan complex:

Proposition 1.2.5.10. 00HCLet S be a Kan complex and let x and y be vertices of S. Then x

and y belong to the same connected component of S if and only if there exists an edge e of S
having source x and target y.

Proof. Let S0 denote the set of vertices of S. Let R be the collection of pairs (x, y) ∈ S0 for
which there exists an edge e of S having source x and target y. Using Remark 1.2.1.23, we
can identify π0(S) with the quotient of S0 by the equivalence relation generated by R. It
will therefore suffice to show that R is already an equivalence relation on S0. To prove this,
we must verify three things:

• The relation R is reflexive. This follows from the observation that for every vertex
x ∈ S0, the degenerate edge idx has source x and target x.

• The relation R is symmetric. Suppose that (x, y) ∈ R: that is, there exists an edge
e of S having source x and target y. Then the tuple (•, idx, e) determines a map of
simplicial sets σ0 : Λ2

0 → S (see Proposition 1.2.4.7), which we depict as a diagram

y

��
x

e

??

idx // x.

Since S is a Kan complex, we can complete this diagram to a 2-simplex σ : ∆2 → S.
Then e′ = d2

0(σ) is an edge of S having source y and target x, so the pair (y, x) also
belongs to R.

• The relation R is transitive. Suppose that we are given vertices x, y, z ∈ S0 with
(x, y) ∈ R and (y, z) ∈ R; we wish to show that (x, z) ∈ R. Let e be an edge of S
having source x and target y, and let e′ be an edge of S having source y and target
z. Then the tuple (e′, •, e) determines a map of simplicial sets τ0 : Λ2

1 → S (see
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Proposition 1.2.4.7), which we depict as a diagram

y

e′

��
x

e

??

// z.

Our assumption that S is a Kan complex guarantees that we can extend τ0 to a
2-simplex τ : ∆2 → S. Then e′′ = d2

1(τ) is an edge of S having source x and target z,
so that (x, z) belongs to R.

Corollary 1.2.5.11.00HD Let {Sα}α∈A be a collection of Kan complexes parametrized by a set
A, and let S = ∏

α∈A Sα• denote their product. Then the canonical map

π0(S)→
∏
α∈A

π0(Sα)

is bijective. In particular, S is connected if and only if each factor Sα is connected.

1.3 From Categories to Simplicial Sets

002L In §1.1, we introduced the theory of simplicial sets and discussed its relationship to the
theory of topological spaces. Every topological space X determines a simplicial set Sing•(X)
(Construction 1.2.2.2), and simplicial sets of the form Sing•(X) have a special property:
they are Kan complexes (Proposition 1.2.5.8). In this section, we will study a different class
of simplicial sets, which arise instead from the theory of categories. In §1.3.1, we associate
to every category C a simplicial set N•(C), called the nerve of C. We show in §1.3.3 that
the construction C 7→ N•(C) is fully faithful (Proposition 1.3.3.1). In §1.3.4, we show that
a simplicial set S belongs to the essential image of the functor C 7→ N•(C) if and only if it
satisfies a certain lifting condition (Proposition 1.3.4.1). This lifting condition is similar to
the Kan extension condition (Definition 1.2.5.1), but not identical to it: in §1.3.5, we show
that a simplicial set of the form N•(C) is a Kan complex if and only if every morphism in C
is invertible (Proposition 1.3.5.2).

In §1.3.6, we show that the construction C 7→ N•(C) has a left adjoint, which associates
to each simplicial set S a category hS which we call the homotopy category of S (Definition
1.3.6.1). This category admits a particularly simple description in the case where the
simplicial set S has dimension ≤ 1: in §1.3.7, we show that it can be identified with the path
category of the directed graph G corresponding to S (under the equivalence of Proposition
1.1.6.9).
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1.3.1 The Nerve of a Category

002MWe begin with a few definitions.

Construction 1.3.1.1. 002NFor every integer n ≥ 0, let us view the linearly ordered set
[n] = {0 < 1 < · · · < n− 1 < n} as a category (where there is a unique morphism from i to
j when i ≤ j). For any category C, we let Nn(C) denote the set of all functors from [n] to
C. Note that for any nondecreasing map α : [m]→ [n], precomposition with α determines
a map of sets Nn(C)→ Nm(C). We can therefore view the construction [n] 7→ Nn(C) as a
simplicial set. We will denote this simplicial set by N•(C) and refer to it as the nerve of C.

Remark 1.3.1.2 (The Classifying Space of a Category). 002PLet C be a category. Then the
topological space |N•(C)| is called the classifying space of the category C.

Remark 1.3.1.3. 002QLet C be a category and let n ≥ 1. Elements of Nn(C) can be identified
with diagrams

C0
f1−→ C1

f2−→ C2 → · · ·
fn−→ Cn

in the category C (see Remark 1.5.7.8). In other words, we can identify elements of Nn(C)
with n-tuples (f1, . . . , fn) of morphisms of C having the property that, for 0 < i < n, the
source of fi+1 coincides with the target of fi.

Example 1.3.1.4. 002RLet C be a category. Then:

• Vertices of the simplicial set N•(C) can be identified with objects of the category C.

• Edges of the simplicial set N•(C) can be identified with morphisms in the category C.

• Let f : X → Y be a morphism in C, regarded as an edge of the simplicial set N•(C).
Then the faces of f are given by the target d1

0(f) = Y and the source d1
1(f) = X,

respectively.

• Let X be an object of C, which we regard as a vertex of the simplicial set N•(C). Then
the degenerate edge s0

0(X) is the identity morphism idX : X → X.

Exercise 1.3.1.5. 050GLet C be a category. Show that the restriction map

HomSet∆(∆n,N•(C))→ HomSet∆(∂∆n,N•(C))

is an injection for n = 2 and a bijection for n > 2.

Variant 1.3.1.6. 03X2Let C be a category. For every integer n ≥ 0, we let N≤n(C) denote the
n-skeleton of the simplicial set N•(C). In the special case n = 0, this recovers the discrete
simplicial set associated to the set of objects Ob(C) (Example 1.3.1.4).
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Remark 1.3.1.7 (Face Operators on N•(C)).002S Let C be a category and suppose we are given
an n-simplex σ of the simplicial set N•(C) for some n > 0, which we identify with a diagram

C0
f1−→ C1

f2−→ C2 → · · ·
fn−→ Cn.

Then:

• The 0th face dn0 (σ) ∈ Nn−1(C) can be identified with the diagram

C1
f2−→ C2

f3−→ C3 → · · ·
fn−→ Cn

obtained from σ by “deleting” the object C0 (and the morphism f1 with source C0).

• The nth face dnn(σ) ∈ Nn−1(C) can be identified with the diagram

C0
f1−→ C1 → · · · → Cn−2

fn−1−−−→ Cn−1

obtained from σ by “deleting” the object Cn (and the morphism fn with target Cn).

• For 0 < i < n, the ith face dni (σ) ∈ Nn−1(C) can be identified with the diagram

C0
f1−→ C1 → · · · → Ci−1

fi+1◦fi−−−−→ Ci+1 → · · ·
fn−→ Cn

obtained by “deleting” the object Ci (and composing the morphisms fi and fi+1).

Remark 1.3.1.8 (Degeneracy Operators on N•(C)).002T Let C be a category and suppose we
are given an n-simplex σ of the simplicial set N•(C) which we identify with a diagram

C0
f1−→ C1

f2−→ C2 → · · ·
fn−→ Cn.

Then, for 0 ≤ i ≤ n, we can identify the degenerate simplex sni (σ) ∈ Nn+1(C) with the
diagram

C0
f1−→ · · · fi−1−−−→ Ci−1

fi−→ Ci
idCi−−→ Ci

fi+1−−−→ Ci+1 → · · ·
fn−→ Cn

obtained from σ by “inserting” the identity morphism idCi .

Remark 1.3.1.9.002U Let C be a category and let σ be an n-simplex of N•(C), corresponding
to a diagram

C0
f1−→ C1

f2−→ C2 → · · ·
fn−→ Cn.

Then σ is degenerate (Definition 1.1.2.3) if and only if some fi is an identity morphism of C
(in which case we must have Ci−1 = Ci).
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Remark 1.3.1.10. 002VLet I be a set equipped with a partial ordering ≤I . Then we can regard
I as a category whose objects are the elements of I, with morphisms given by

HomI(i, j) =

∗ if i ≤I j
∅ otherwise.

We will denote the nerve of this category by N•(I), and refer to it as the nerve of the partially
ordered set I. For each n ≥ 0, we can identify n-simplices of N•(I) with monotone functions
[n]→ I: that is, with nondecreasing sequences (i0 ≤I i1 ≤I · · · ≤I in) of elements of I.

Example 1.3.1.11. 002WFor each n ≥ 0, the nerve N•([n]) can be identified with the standard
n-simplex ∆n of Example 1.1.0.9.

Remark 1.3.1.12. 002XThe construction C 7→ N•(C) determines a functor N• : Cat → Set∆
from the category Cat of (small) categories to the category Set∆ of simplicial sets. This
is a special case of the construction described in Variant 1.2.2.8. More precisely, we can
identify N• with the functor SingQ• , where Q : ∆→ Cat is the functor which carries each
object [n] ∈ ∆ to itself, regarded as a category. It follows from Proposition 1.2.3.15 that
this functor admits a left adjoint, which we will study in §1.3.6.

1.3.2 Example: Monoids as Simplicial Sets

04FYWe now specialize Construction 1.3.1.1 to categories having a single object.

Definition 1.3.2.1. 04FZA monoid is a set M equipped with a multiplication map

m : M ×M →M (x, y) 7→ xy

which satisfies the following conditions:

(a) The multiplication m is associative. That is, we have x(yz) = (xy)z for each triple of
elements x, y, z ∈M .

(b) There exists an element e ∈M such that ex = x = xe for each x ∈M (in this case, the
element e is uniquely determined; we refer to it as the unit element of M).

Monoids are ubiquitous in mathematics:

Example 1.3.2.2. 00BMLet C be a category and let X be an object of C. An endomorphism of
X is a morphism from X to itself in the category C. We let EndC(X) = HomC(X,X) denote
the set of all endomorphisms of X. The composition law on C determines a map

EndC(X)× EndC(X)→ EndC(X) (f, g) 7→ f ◦ g,

which exhibits EndC(X) as a monoid; the unit element of EndC(X) is the identity morphism
idX : X → X. We refer to EndC(X) as the endomorphism monoid of X.
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The collection of monoids can be organized into a category:

Definition 1.3.2.3.00BR Let M and M ′ be monoids having unit elements e and e′, respectively.
A function f : M →M ′ is a monoid homomorphism if it satisfies the identities

f(e) = e′ f(xy) = f(x)f(y)

for every pair of elements x, y ∈ M . We let Mon denote the category whose objects are
monoids and whose morphisms are monoid homomorphisms.

Remark 1.3.2.4.00BS The construction C 7→ EndC(X) of Example 1.3.2.2 induces an equivalence

{Categories C with Ob(C) = {X}} ∼−→ {Monoids}.

More precisely, there is a pullback diagram of categories

Mon M 7→BM //

��

Cat

Ob
��

{∗} // Set,

where ∗ = {X} is the set having a single element X. Here the upper horizontal functor
assigns to each monoid M the category BM of Construction 1.3.2.5, given concretely by

Ob(BM) = {X} HomBM (X,X) = M.

Construction 1.3.2.5.04G0 Let M be a monoid. We let B•M denote the nerve of the category
BM described in Remark 1.3.2.4. We will refer to B•M as the classifying simplicial set of
the monoid M .

Remark 1.3.2.6.04G1 Let M be a monoid with unit element e and let B•M denote its classifying
simplicial set. By definition, n-simplices of the simplicial set B•M are functors from the
linearly ordered set [n] = {0 < 1 < · · · < n} to the category BM . Such a functor can be
identified with a collection of elements {αj,i ∈M}0≤i≤j≤n (where αj,i denotes the image in
BM of the unique element of Hom[n](i, j)) which are required to satisfy the identities

αi,i = e αk,i = αk,jαj,i for 0 ≤ i ≤ j ≤ k ≤ n.

For each n ≥ 0, the construction

{αj,i}0≤i≤j≤n 7→ (αn,n−1, αn−1,n−2, · · · , α1,0)
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induces a bijection BnM ≃Mn. Under the resulting identification, the face and degeneracy
operators of B•M are given concretely by the formulae

dni (xn, xn−1, . . . , x1) =


(xn, xn−1, . . . , x2) if i = 0
(xn, . . . , xi+2, xi+1xi, xi−1, . . . , x1) if 0 < i < n

(xn−1, xn−2, . . . , x1) if i = n

sni (xn, xn−1, . . . , x1) = (xn, . . . , xi+1, e, xi, . . . , x1)

(see Remarks 1.3.1.7 and 1.3.1.8).

Proposition 1.3.2.7. 04G2The construction M 7→ B•M determines a fully faithful embedding
Mon ↪→ Set∆. The essential image of this functor consists of those simplicial sets S• which
satisfy the following condition for each n ≥ 0:

(∗n) For 1 ≤ i ≤ n, let ρi : Sn → S1 denote the map associated to the inclusion of linearly
ordered sets [1] ≃ {i − 1, i} ↪→ [n]. Then the maps {ρi}1≤i≤n determine a bijection
Sn →

∏
1≤i≤n S1.

We will give the proof of Proposition 1.3.2.7 at the end of this section. As a first step,
we establish a simpler result in the setting of semisimplicial sets.

Variant 1.3.2.8. 04G3A nonunital monoid is a set M equipped with a map

m : M ×M →M (x, y) 7→ xy

which satisfies the associative law x(yz) = (xy)z for x, y, z ∈M . If M and M ′ are nonunital
monoids, a function f : M → M ′ is a nonunital monoid homomorphism if it satisfies the
equation f(xy) = f(x)f(y) for every pair of elements x, y ∈M . We let Monnu denote the
category whose objects are nonunital monoids and whose morphisms are nonunital monoid
homomorphisms.

Warning 1.3.2.9. 00BQThe terminology of Variant 1.3.2.8 is not standard. Many authors use
the term semigroup for what we call a nonunital monoid.

Remark 1.3.2.10. 04G4The category Mon of monoids (Definition 1.3.2.1) can be regarded as
a subcategory of the category Monnu of nonunital monoids (Variant 1.3.2.8). Beware that
this subcategory is not full. If M and M ′ are monoids containing unit elements e and e′,
respectively, then a nonunital monoid homomorphism f : M → M ′ need not satisfy the
identity f(e) = e′.

Remark 1.3.2.11. 04G5Let M be a nonunital monoid, and let M+ = M∪{e} be the enlargement
of M obtained by formally adjoining a new element e. Then the multiplication on M extends
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uniquely to a monoid structure on M+ having unit element e. Moreover, if M ′ is any other
monoid, then the restriction map f 7→ f |M induces a bijection

{Monoid homomorphisms f : M+ →M ′}

��
{Nonunital monoid homomorphisms f0 : M →M ′}.

Consequently, the inclusion functor Mon ↪→ Monnu has a left adjoint, given on objects by
the construction M 7→M+.

Variant 1.3.2.12.04G6 Let M be a nonunital monoid. We let B•M denote the semisimplicial
set which assigns to each object [n] ∈∆op

inj the collection of tuples {αj,i ∈M}0≤i<j≤n which
satisfy the identity αk,i = αk,jαj,i for 0 ≤ i < j < k ≤ n. As in Remark 1.3.2.6, the
construction

{αj,i}0≤i<j≤n 7→ (αn,n−1, αn−1,n−2, · · · , α1,0)

induces an identification BnM ≃Mn. Under this identification, the face operators of B•M
are given by the formula

dni (xn, xn−1, . . . , x1) =


(xn, xn−1, . . . , x2) if i = 0
(xn, . . . , xi+2, xi+1xi, xi−1, . . . , x1) if 0 < i < n

(xn−1, xn−2, . . . , x1) if i = n.

Remark 1.3.2.13.04G7 Construction 1.3.2.5 and Variant 1.3.2.12 are compatible: if M is a
monoid and B•M is the classifying simplicial set of Construction 1.3.2.5, then the underlying
semisimplicial set of B•M is given by Variant 1.3.2.12.

Proposition 1.3.2.7 has the following nonunital counterpart:

Proposition 1.3.2.14.04G8 The construction M 7→ B•M determines a fully faithful functor
from the category Monnu of nonunital monoids to the category of semisimplicial sets. The
essential image of this functor consists of those semisimplicial sets which satisfy condition
(∗n) of Proposition 1.3.2.7, for each n ≥ 0.

Proof. We first show that the functor M 7→ B•M is fully faithful. Fix a pair of nonunital
monoids M and M ′, and let f• : B•M → B•M

′ be a morphism of semisimplicial sets. We
wish to show that there is a unique nonunital monoid homomorphism g : M →M ′ such that
f• can be recovered by applying the functor B• to g. Let us abuse notation by identifying
M and M ′ with the sets B1M and B1M

′, respectively, so that f• determines a function
f1 : M →M ′. The uniqueness of g is now clear: if f• = B•g, then g must coincide with f1
(as a function). To prove existence, we must establish the following:
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(1) The function f1 : M →M ′ is a nonunital monoid homomorphism.

(2) The morphism of semisimplicial sets f• is obtained by applying the functor B• to the
homomorphism f1.

We first prove (1). Fix a pair of elements x, y ∈M and regard the pair (x, y) as a 2-simplex
σ of the semisimplicial set B•M . Since f• is a morphism of semisimplicial sets, we have

f1(xy) = f1(d2
1(σ)) = d2

1(f2(σ)) = f1(x)f1(y).

Assertion (1) now follows by allowing x and y to vary. To prove (2), let f ′• : B•M → B•M
′

be the morphism of semisimplicial sets determined by the homomorphism f1, and let τ be
an n-simplex of B•M ; we wish to show that fn(τ) = f ′n(τ). Since τ is determined by its
1-dimensional faces, we can assume without loss of generality that n = 1, in which case the
result is clear. This completes the proof that the functor M 7→ B•M is fully faithful.

Now suppose that S• is a semisimplicial set which satisfies condition (∗n) of Propo-
sition 1.3.2.7 for every integer n ≥ 0, and set M = S1. For every n-tuple of elements
(xn, xn−1, · · · , x1) of M , condition (∗n) guarantees that there is a unique n-simplex σxn,··· ,x1

of S• satisfying ρi(σ) = xi, where ρi : Sn → S1 = M is the function induced by the inclusion
map [1] ≃ {i− 1 < i} ↪→ [n]. We can then define a multiplication m : M ×M →M by the
formula m(x, y) = d2

1(σx,y). This multiplication is associative: for every triple of elements
x, y, z ∈M , we compute

m(m(x, y), z) = m(d2
1(σx,y), z)

= d2
1(σd2

1(σx,y),z)
= d2

1(d3
2(σx,y,z))

= d2
1(d3

1(σx,y,z))
= d2

1(σx,d2
1(σy,z))

= m(x, d2
1(σy,z))

= m(x,m(y, z)).

It follows that we can regard M as a nonunital commutative monoid. Moreover, for
every integer n ≥ 0, the construction (xn, · · · , x1) 7→ σxn,··· ,x1 determines a bijection
fn : BnM → Sn. We will complete the proof by showing that the collection {fn}n≥0 is an
isomorphism of semisimplicial sets: that is, that it commutes with the face operators. Fix
an integer n > 0 and an n-simplex τ of B•M ; we wish to show that dni (fn(τ)) = fn−1(dni (τ))
for 0 ≤ i ≤ n. Let us identify τ with a tuple of elements (xn, xn, · · · , x1) of M ; we wish to
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verify the identity

dni (σxn,xn−1,··· ,x1) =


σxn,xn−1,··· ,x2 if i = 0
σxn,··· ,xi+2,m(xi+1,xi),xi−1,··· ,x1 if 0 < i < n

σxn−1,··· ,x1 if i = n.

For 1 ≤ j ≤ n − 1, let ρj : Sn−1 → S1 = M be defined as above; we can then rewrite the
preceding identity as

ρj(dni (σxn,xn−1,··· ,x1)) =


xj if j < i

m(xj+1, xj) if j = i

xj+1 if j > i.

This follows immediately from the definition of the simplex σxn,xn−1,··· ,x1 in the case j ̸= i,
and from the construction of the multiplication m in the case j = i.

Proof of Proposition 1.3.2.7. We first show that Construction 1.3.2.5 is fully faithful. Fix
monoids M and M ′ and let f• : B•M → B•M

′ be a morphism of simplicial sets. Applying
Proposition 1.3.2.14 (together with Remark 1.3.2.13), we deduce that there is a unique
nonunital monoid homomorphism g : M → M ′ such that f• coincides with B•g (as a
morphism of semisimplicial sets). Since f• is a morphism of simplicial sets, it carries the
(unique) degenerate edge of B•M to the (unique) degenerate edge of B•M ′. It follows
that g carries the unit element of M to the unit element of M ′: that is, it is a monoid
homomorphism.

Now suppose that S• is a simplicial set satisfying condition (∗n) for each n ≥ 0. Applying
Proposition 1.3.2.14, we deduce that there is a nonunital monoid M and an isomorphism
of semisimplicial sets f• : B•M → S•, which carries each n-tuple (xn, · · · , x1) ∈M to the
n-simplex σxn,··· ,x1 of S• appearing in the proof of Proposition 1.3.2.14. Let e ∈ M be
the element corresponding to the unique degenerate 1-simplex of S•. For 0 ≤ i ≤ n, the
degeneracy operator sni : Sn → Sn+1 satisfies the identity

04G9 sni (σxn,··· ,x1) = σxn,··· ,xi+1,e,xi,··· ,x1 . (1.5)

Specializing to the case i = n = 1 and applying the face operator d1
1, we obtain an equality

σx = d2
1(s1

1(σx))
= d2

1(σe,x)
= σex;

that is, e is a left unit with respect to the multiplication on M . A similar argument shows
that e is a right unit with respect to the multiplication on M : that is, M is a monoid with
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unit element e. To complete the proof, it will suffice to show that f• : B•M → S• is an
isomorphism of simplicial sets: that is, it commutes with degeneracy operators as well as
face operators. This is a restatement of the identity (1.5).

1.3.3 Recovering a Category from its Nerve

002YPassage from a category C to the nerve N•(C) does not lose any information:

Proposition 1.3.3.1. 002ZThe nerve functor N• : Cat→ Set∆ is fully faithful.

Throughout this book, we will often abuse terminology by identifying a category C with
its nerve N•(C). By virtue of Proposition 1.3.3.1, this is essentially harmless: the nerve
construction allows us to identify categories with certain kinds of simplicial sets.

Remark 1.3.3.2. 04GAIf we restrict our attention to categories having a single object, Proposition
1.3.3.1 follows from Proposition 1.3.2.7 (see Remark 1.3.2.4).

Proof of Proposition 1.3.3.1. Let C and C′ be categories. We wish to show that the nerve
functor N• induces a bijection

θ : HomCat(C, C′)→ HomSet∆(N•(C),N•(C′)).

Here the source of θ is the set of all functors from C to C′. We first note that θ is injective:
a functor F : C → C′ is determined by its behavior on the objects and morphisms of C, and
therefore by the behavior of θ(F ) on the vertices and edges of the simplicial set N•(C) (see
Example 1.3.1.4). Let us prove the surjectivity of θ. Let f : N•(C)→ N•(C′) be a morphism
of simplicial sets; we wish to show that there exists a functor F : C → C′ such that f = θ(F ).
For each n ≥ 0, the morphism f determines a map of sets Nn(C)→ Nn(C′), which we will
also denote by f . In the case n = 0, this map carries each object C ∈ C to an object of C′,
which we will denote by F (C). For every pair of objects C,D ∈ C, the map f carries each
morphism u : C → D to a morphism f(u) in the category C′. Since f commutes with face
operators, the morphism f(u) has source F (C) and target F (D) (see Example 1.3.1.4), and
can therefore be regarded as an element of HomC′(F (C), F (D)); we denote this element by
F (u). We will complete the proof by verifying the following:

(a) The preceding construction determines a functor F : C → C′.

(b) We have an equality f = θ(F ) of maps from N•(C) to N•(C′).

To prove (a), we first note that the compatibility of f with degeneracy operators implies
that we have F (idC) = idF (C) for each C ∈ C (see Example 1.3.1.4). It will therefore suffice
to show that for every pair of composable morphisms u : C → D and v : D → E in the
category C, we have F (v) ◦ F (u) = F (v ◦ u) as elements of the set HomC′(F (C), F (E)). For
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this, we observe that the diagram C
u−→ D

v−→ E can be identified with a 2-simplex σ of
N•(C). Using the equality d2

i (f(σ)) = f(d2
i (σ)) for i = 0, 2, we see that f(σ) corresponds to

the diagram F (C) F (u)−−−→ F (D) F (v)−−−→ F (E) in C′. We now compute

F (v) ◦ F (u) = d2
1(f(σ)) = f(d2

1(σ)) = F (v ◦ u).

This completes the proof of (a). To prove (b), we must show that f(τ) = θ(F )(τ) for
each n-simplex τ of N•(C). This follows by construction in the case n ≤ 1, and follows in
general since an n-simplex of N•(C′) is determined by its 1-dimensional faces (see Remark
1.3.1.3).

1.3.4 Characterization of Nerves

0030 We now describe the essential image of the functor N• : Cat→ Set∆.

Proposition 1.3.4.1.0031 Let S be a simplicial set. Then S is isomorphic to the nerve of a
category if and only if it satisfies the following condition:

(∗′) For every pair of integers 0 < i < n and every map of simplicial sets σ0 : Λni → S, there
exists a unique map σ : ∆n → S such that σ0 = σ|Λn

i
.

The proof of Proposition 1.3.4.1 will require some preliminaries. We begin by establishing
the necessity of condition (∗′).

Lemma 1.3.4.2.0032 Let C be a category. Then the simplicial set N•(C) satisfies condition (∗′)
of Proposition 1.3.4.1.

Proof. Choose integers 0 < i < n together with a map of simplicial sets σ0 : Λn
i → N•(C);

we wish to show that σ0 can be extended uniquely to a n-simplex of N•(C). For 0 ≤ j ≤ n,
let Cj ∈ C denote the image under σ0 of the jth vertex of ∆n (which belongs to the horn
Λni ). We first consider the case where n ≥ 3. In this case, Λni contains every edge of ∆n. For
0 ≤ j ≤ k ≤ n, let fk,j : Cj → Ck denote the 1-simplex of N•(C) obtained by evaluating σ0
on the edge of ∆n corresponding to the pair (j, k). We claim that the construction

j 7→ Cj (j ≤ k) 7→ fk,j

determines a functor [n]→ C, which we can then identify with an n-simplex of N•(C) having
the desired properties. It is easy to see that fj,j = idCj for each 0 ≤ j ≤ n, so it will
suffice to show that fℓ,k ◦ fk,j = fℓ,j for every triple 0 ≤ j ≤ k ≤ ℓ ≤ n. The triple (j, k, ℓ)
determines a 2-simplex τ of ∆n. If τ is contained in Λn

i , then τ ′ = σ0(τ) is a 2-simplex of
N•(C) satisfying d2

0(τ ′) = fℓ,k, d2
1(τ ′) = fℓ,j , and d2

2(τ ′) = fk,j , so that τ ′ “witnesses” the
identity fℓ,k ◦ fk,j = fℓ,j . It will therefore suffice to treat the case where the simplex τ does
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not belong to the Λni . In this case, our assumption that n ≥ 3 guarantees that we must have
{j, k, ℓ} = [n] \ {i}. It follows that n = 3, so that either i = 1 or i = 2. We will treat the
case i = 1 (the case i = 2 follows by a similar argument). Note that Λ3

1 contains all of the
nondegenerate 2-simplices of ∆3 other than τ ; applying the map σ0, we obtain 2-simplices
of N•(C) which witness the identities

f3,0 = f3,1 ◦ f1,0 f3,1 = f3,2 ◦ f2,1 f2,0 = f2,1 ◦ f1,0.

We now compute

f3,0 = f3,1 ◦ f1,0 = (f3,2 ◦ f2,1) ◦ f1,0 = f3,2 ◦ (f2,1 ◦ f1,0) = f3,2 ◦ f2,0

so that fℓ,j = fℓ,k ◦ fk,j , as desired.
It remains to treat the case n = 2. In this case, the inequality 0 < i < n guarantees that

i = 1. The morphism σ0 : Λn
i → N•(C) can then be identified with a pair of composable

morphisms f1,0 : C0 → C1 and f2,1 : C1 → C2 in the category C. This data extends uniquely
to a 2-simplex σ of C satisfying d2

1(σ) = f2,1 ◦ f1,0 (see Remark 1.3.1.3).

Lemma 1.3.4.3. 0033Let f : S → T be a morphism of simplicial sets which is bijective on both
vertices and edges. If both S and T satisfy condition (∗′) of Proposition 1.3.4.1, then f is
an isomorphism.

Proof. We claim that, for every simplicial set K, composition with f induces a bijection

θK : HomSet∆(K,S)→ HomSet∆(K,T ).

Writing K as a union of its skeleta skn(K), we can reduce to the case where K has dimension
≤ n, for some integer n ≥ −1 (see Definition 1.1.3.1). We now proceed by induction on
n. The case n = −1 is trivial (since a simplicial set of dimension ≤ −1 is empty). Let us
therefore assume that n ≥ 0, so that Proposition 1.1.4.12 supplies a pushout diagram of
simplicial sets ∐

∂∆n //

��

∐ ∆n

��
skn−1(K) // K.

It follows from our inductive hypothesis that the maps θ∂∆n and θskn−1(K) are bijective.
Consequently, to show that θK is bijective, it will suffice to show that θ∆n is bijective: that
is, that f induces a bijection on n-simplices. For n ≤ 1, this follows from our hypothesis. To
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handle the case n ≥ 2, we observe that there is a commutative diagram

HomSet∆(∆n, S)

θ∆n

��

// HomSet∆(Λn1 , S)

θΛn
1

��
HomSet∆(∆n, T ) // HomSet∆(Λn1 , T ).

Here the right vertical map is bijective by virtue of our inductive hypothesis, and the
horizontal maps are bijective by virtue of our assumption that both S and T satisfy
condition (∗′). It follows that the left vertical map is also bijective, as desired.

Proof of Proposition 1.3.4.1. Let S be a simplicial set satisfying condition (∗′) of Proposition
1.3.4.1; we will show that there is a category C and an isomorphism of simplicial sets
u : S → N•(C) (the converse follows from Lemma 1.3.4.2). It follows from Proposition 1.3.3.1
that the category C is uniquely determined (up to isomorphism), and from the proof of
Proposition 1.3.3.1 we can extract an explicit construction of C:

• The objects of C are the vertices of S.

• Given a pair of objects C,D ∈ C, we let HomC(C,D) denote the collection of edges e
of S having source C and target D.

• For each object C ∈ C, we define the identity morphism idC ∈ HomC(C,C) to be the
degenerate edge s0

0(C).

• Given a triple of objects C,D,E ∈ C and a pair of morphisms f ∈ HomC(C,D) and
g ∈ HomC(D,E), we can apply hypothesis (∗′) (in the special case n = 2 and i = 1) to
conclude that there is a unique 2-simplex σ of S• satisfying d2

2(σ) = f and d2
0(σ) = g.

We define the composition g ◦ f ∈ HomC(C,E) to be the edge d2
1(σ).

We claim that C is a category. For this, we must check the following:

• The composition law on C is unital: for every morphism f : C → D in C, we have
equalities

idD ◦f = f = f ◦ idC .

Let us verify the identity on the left; the proof in the other case is similar. For this,
we must construct a 2-simplex σ of S such that d2

0(σ) = idD and d2
1(σ) = d2

2(σ) = f .
The degenerate 2-simplex s1

1(f) has these properties.
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• The composition law on C is associative. That is, for every triple of composable
morphisms

f : W → X g : X → Y h : Y → Z

in C, we have an identity h◦(g◦f) = (h◦g)◦f in C. Applying condition (∗′) repeatedly,
we deduce the following:

– There is a unique 2-simplex σ0 of S satisfying d2
0(σ0) = h and d2

2(σ0) = g (it
follows that d2

1(σ0) = h ◦ g).

– There is a unique 2-simplex σ3 of S satisfying d2
0(σ3) = g and d2

2(σ3) = f (it
follows that d2

1(σ3) = g ◦ f).

– There is a unique 2-simplex σ2 of S satisfying d2
0(σ2) = h ◦ g and d2

2(σ2) = f (it
follows that d2

1(σ2) = (h ◦ g) ◦ f).

– There is a unique 3-simplex τ of S satisfying d3
0(τ) = σ0, d3

2(τ) = σ2, and
d3

3(τ) = σ3 (this follows by applying (∗′) to the horn inclusion Λ3
1 ↪→ ∆3).

The 3-simplex τ can be depicted in the following diagram

X
g //

h◦g

''

Y

h

��
W

f

>>

g◦f

77

(h◦g)◦f // Z.

Set σ1 = d3
1(τ). Then σ1 is a 2-simplex of S satisfying d2

0(σ1) = h, d2
1(σ1) = (h ◦ g) ◦ f ,

and d2
2(σ1) = g ◦ f . It follows that σ1 “witnesses” the identity h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Note that every n-simplex σ : ∆n → S determines a functor [n]→ C, given on objects by
the values of σ on the vertices of ∆n and on morphisms by the values of σ on the edges of
∆n. This construction determines a map of simplicial sets u : S → N•(C) which is bijective
on simplices of dimension ≤ 1. Since the simplicial sets S and N•(C) both satisfy condition
(∗′) (Lemma 1.3.4.2), it follows from Lemma 1.3.4.3 that u is an isomorphism.

Remark 1.3.4.4. 0034The characterization of Proposition 1.3.4.1 has many variants. For
example, one can replace condition (∗′) by the following a priori weaker condition:

(∗′0) For every n ≥ 2 and every morphism of simplicial sets σ0 : Λn1 → S, there is a unique
n-simplex σ : ∆n → S• satisfying σ0 = σ|Λn

1
.
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1.3.5 The Nerve of a Groupoid

0035 According to Proposition 1.3.3.1, every category C can be recovered, up to canonical
isomorphism, from the nerve N•(C). In particular, any isomorphism-invariant condition on a
category C can be reformulated as a condition on the simplicial set N•(C). We now illustrate
this principle with a simple example.

Definition 1.3.5.1.0036 Let C be a category. Recall that a morphism f : C → D in C is an
isomorphism if there exists a morphism g : D → C satisfying the identities

f ◦ g = idD g ◦ f = idC .

In this case, the morphism g is uniquely determined and we write g = f−1. We say that C is
a groupoid if every morphism in C is an isomorphism.

Proposition 1.3.5.2.0037 Let C be a category. Then C is a groupoid (Definition 1.3.5.1) if and
only if the simplicial set N•(C) is a Kan complex (Definition 1.2.5.1).

Example 1.3.5.3.0038 Let G be a group. Then the category BG of Remark 1.3.2.4 is a groupoid.
It follows from Proposition 1.3.5.2 that the simplicial set B•G of Construction 1.3.2.5 is a
Kan complex. The geometric realization |B•G| is a topological space called the classifying
space of G. It can be characterized (up to homotopy equivalence) by the fact that it is a
CW complex with either of the following properties:

• The space |B•G| is connected, and its homotopy groups (with respect to any choice of
base point) are given by the formula

π∗(|B•G|) ≃

G if ∗ = 1
0 if ∗ > 1.

• For any paracompact topological space X, there is a canonical bijection

{Continuous maps f : X → |B•G|}/homotopy ≃ {G-torsors P → X}/isomorphism.

We refer the reader to [43] for a more detailed discussion (including an extension to the
setting of topological groups).

Proof of Proposition 1.3.5.2. Suppose first that N•(C) is a Kan complex; we wish to show
that C is a groupoid. Let f : C → D be a morphism in C. Using the surjectivity of
the map HomSet∆(∆2,N•(C))→ HomSet∆(Λ2

2,N•(C)), we see that there exists a 2-simplex
σ of N•(C) satisfying d2

0(σ) = f and d2
1(σ) = idD. Setting g = d2

2(σ), we conclude that
f ◦ g = idD: that is, g is a left inverse to f . Similarly, the surjectivity of the map
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HomSet∆(∆2,N•(C)) → HomSet∆(Λ2
0,N•(C)) allows us to construct a map h : D → C

satisfying h ◦ f = idC . The calculation

g = idC ◦g = (h ◦ f) ◦ g = h ◦ (f ◦ g) = h ◦ idD = h

then shows that g = h is an inverse of f , so that f is invertible as desired.
Now suppose that C is a groupoid. We wish to show that, for 0 ≤ i ≤ n, every map

σ0 : Λn
i → N•(C) can be extended to an n-simplex σ : ∆n → N•(C). For 0 < i < n, this

follows from Lemma 1.3.4.2 (and does not require the assumption that C is a groupoid). We
will treat the case where i = 0; the case i = n follows by similar reasoning. We consider
several cases:

• In the case n = 1, the map σ0 : Λn
0 → N•(C) can be identified with an object C ∈ C.

In this case, we can take σ to be an edge of N•(C) corresponding to any morphism
with target C (for example, we can take σ to be the identity morphism idC).

• In the case n = 2, we can identify σ0 with a pair of morphisms in C having the same
source, which we can depict as a diagram

D

  
C

f

??

g // E.

Our assumption that C is a groupoid guarantees that we can extend this diagram to a
2-simplex of C, whose 0th face is given by the morphism g ◦ f−1 : D → E.

• In the case n ≥ 3, the map σ0 determines a collection of objects {Ci}0≤i≤n and
morphisms fj,i : Ci → Cj for i ≤ j (as in the proof of Lemma 1.3.4.2). We wish to
show that these morphisms determine a functor [n]→ C (which we can then identify
with an n-simplex σ of N•(C) satisfying σ|Λn

0
= σ0). For this, we must verify the

identity fk,j ◦ fj,i = fk,i for 0 ≤ i ≤ j ≤ k ≤ n. Note that this identity is satisfied
whenever the triple (i ≤ j ≤ k) determines a 2-simplex of ∆n belonging to the horn
Λn0 . This is automatic unless n = 3 and (i, j, k) = (1, 2, 3). To handle this exceptional
case, we compute

(f3,2 ◦ f2,1) ◦ f1,0 = f3,2 ◦ (f2,1 ◦ f1,0)
= f3,2 ◦ f2,0

= f3,0

= f3,1 ◦ f1,0.
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Since C is a groupoid, composing with f−1
1,0 on the right yields the desired identity

f3,2 ◦ f2,1 = f3,1.

We close this section by introducing some notation which will be useful later.

Construction 1.3.5.4.007G Let C be a category. We define a subcategory C≃ ⊆ C as follows:

• Every object of C belongs to C≃.

• A morphism f : X → Y of C belongs to C≃ if and only if f is an isomorphism.

We will refer to C≃ as the core of C.

Remark 1.3.5.5.007H Let C be a category. The core C≃ is determined (up to isomorphism) by
the following properties:

• The category C≃ is a groupoid.

• If D is a groupoid, then every functor F : D → C factors (uniquely) through C≃.

1.3.6 The Homotopy Category of a Simplicial Set

00HE We now show that the functor C 7→ N•(C) of Construction 1.3.1.1 admits a left adjoint
(Corollary 1.3.6.5).

Definition 1.3.6.1.004J Let C be a category. We will say that a map of simplicial sets
u : S → N•(C) exhibits C as the homotopy category of S if, for every category D, the
composite map

HomCat(C,D)→ HomSet∆(N•(C),N•(D)) ◦u−→ HomSet∆(S,N•(D))

is bijective (note that the map on the left is always bijective, by virtue of Proposition
1.3.3.1).

Exercise 1.3.6.2.00HF Let X be a topological space and let π≤1(X) denote its fundamental
groupoid. Show that there is a unique map of simplicial sets u : Sing•(X)→ N•(π≤1(X))
with the following properties:

• On 0-simplices, u carries each point x ∈ X (regarded as a vertex of Sing•(X)) to itself
(regarded as an object of π≤1(X)).

• On 1-simplices, u carries each path p : [0, 1]→ X (regarded as an edge of Sing•(X))
to its homotopy class [p] (regarded as a morphism of the category π≤1(X)).
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Moreover, u exhibits the fundamental groupoid π≤1(X) as a homotopy category of the
singular simplicial set Sing•(X). For a generalization, see Proposition 1.4.5.7.

Notation 1.3.6.3. 004KLet S be a simplicial set. It follows immediately from the definition that
if there exists a category C and a morphism u : S → N•(C) which exhibits C as a homotopy
category of S, then the category C is unique up to isomorphism and depends functorially
on S. To emphasize this dependence, we will refer to C as the homotopy category of S and
denote it by hS .

Proposition 1.3.6.4. 004MLet S = S• be a simplicial set. Then there exists a category C and a
map of simplicial sets u : S → N•(C) which exhibits C as a homotopy category of S.

Proof. Let Q• denote the cosimplicial object of Cat given by the inclusion ∆ ↪→ Cat.
Unwinding the definitions, we see that a homotopy category of S can be identified with a
realization |S|Q, whose existence is a special case of Proposition 1.2.3.15. Alternatively, we
can give a direct construction of the homotopy category hS :

• The objects of hS are the vertices of S.

• Every edge e of S determines a morphism [e] in hS , whose source is the vertex d1
1(e)

and whose target is the vertex d1
0(e).

• The collection of morphisms in hS is generated under composition by morphisms of
the form [e], subject only to the relations

[s0
0(x)] = idx for x ∈ S0 [d2

1(σ)] = [d2
0(σ)] ◦ [d2

2(σ)] for σ ∈ S2.

Corollary 1.3.6.5. 004NThe nerve functor N• : Cat → Set∆ admits a left adjoint, given on
objects by the construction S 7→ hS.

Remark 1.3.6.6. 00HGLet C be a category. Then the counit of the adjunction described in
Corollary 1.3.6.5 induces an isomorphism of categories hN•(C) ∼−→ C (this is a restatement of
Proposition 1.3.3.1). In other words, every category C can be recovered as the homotopy
category of its nerve N•(C).

Warning 1.3.6.7. 00HHLet S be a simplicial set. The proof of Proposition 1.3.6.4 gives a
construction of the homotopy category hS by generators and relations. The result of this
construction is not always easy to describe. If x and y are vertices of S, then every morphism
from x to y in hS can be represented by a composition

[en] ◦ [en−1] ◦ · · · ◦ [e1],
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where {ei}0≤i≤n is a sequence of edges satisfying

d1
1(e1) = x d1

0(ei) = d1
1(ei+1) d1

0(en) = y.

In general, it can be difficult to determine whether or not two such compositions represent
the same morphism of hS (even for finite simplicial sets, this question is algorithmically
undecidable). However, there are two situations in which the homotopy category hS admits
a simpler description:

• Let S be a simplicial set of dimension ≤ 1, which we can identify with a directed graph
G (Proposition 1.1.6.9). In this case, the homotopy category hS is generated freely
by the vertices and edges of the graph G: that is, it can be identified with the path
category of G (Proposition 1.3.7.5) which we study in §1.3.7.

• Let S be an ∞-category. In this case, every morphism in the homotopy category
C = hS can be represented by a single edge of S, rather than a composition of edges
(in other words, the canonical map u : S → N•(C) is surjective on edges), and two
edges of S represent the same morphism in hS if and only if they are homotopic
(Definition 1.4.3.1). This leads to a more explicit description of the homotopy category
C (generalizing Exercise 1.3.6.2) which we will discuss in §1.4.5 (see Proposition 1.4.5.7).

1.3.7 Example: The Path Category of a Directed Graph

00HJ Let S be a simplicial set of dimension ≤ 1. In this section, we will show that the
homotopy category hS of Notation 1.3.6.3 admits a concrete description, which can be
conveniently described using the language of directed graphs.

Construction 1.3.7.1 (The Path Category).00HK Let G be a directed graph (Definition 1.1.6.1).
For each edge e ∈ Edge(G), we let s(e), t(e) ∈ Vert(G) denote the source and target of e,
respectively. If x and y are vertices of Vert(G), then a path from x to y is a sequence of
edges (en, en−1, . . . , e1) satisfying

s(e1) = x t(ei) = s(ei+1) t(em) = y,

By convention, we regard the empty sequence of edges as a path from each vertex x ∈ Vert(G)
to itself.

We define a category Path[G] as follows:

• The objects of Path[G] are the vertices of G.

• For every pair of vertices x, y ∈ Vert(G), we let HomPath[G](x, y) denote the set of all
paths (em, . . . , e1) from x to y.
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• For every vertex x ∈ Vert(G), the identity morphism idx in the category Path[G] is
the empty path from x to itself.

• Let x, y, z ∈ Vert(G). Then the composition law

◦ : HomPath[G](y, z)×HomPath[G](x, y)→ HomPath[G](x, z)

is described by the formula

(en, · · · , e1) ◦ (e′m, . . . , e′1) = (en, · · · , e1, e
′
m, . . . , e

′
1).

In other words, composition in Path[G] is given by concatentation of paths.

We will refer to Path[G] as the path category of the directed graph G.

Example 1.3.7.2. 00HLFix an integer n ≥ 0. Let G be the directed graph with vertex set
Vert(G) = {v0, v1, . . . , vn}, and edge set Edge(G) = {e1, . . . , en}, where each edge ei has
source s(ei) = vi−1 and target t(ei) = vi; we can represent G graphically by the diagram

v0
e1 // v1

e2 // · · ·
en−1 // vn−1

en // vn.

Let vi and vj be a pair of vertices of G. Then:

• If i ≤ j, there is a unique path from vi to vj , given by the sequence of edges
(ej , ej−1, . . . , ei+1).

• If i > j, then there are no paths from vi to vj .

It follows that the path category Path[G] is isomorphic to the linearly ordered set [n] =
{0 < 1 < 2 < · · · < n} (regarded as a category).

Example 1.3.7.3. 00HMLet G be a directed graph having a single vertex Vert(G) = {x}. Then
the path category Path[G] has a single object x, and can therefore be identified with
the category BM associated to the monoid M = EndPath[G](x) = HomPath[G](x, x) (see
Construction 1.3.2.5). Note that the elements of M can be identified with (possibly empty)
sequences of elements of the set Edge(G), and that the multiplication on M is given by
concatenation of sequences. In other words, M can be identified with the free monoid
generated by the set Edge(M) (this identification is not completely tautological: it can be
regarded as a special case of Proposition 1.3.7.5 below).

Example 1.3.7.4. 00HNLet G be a directed graph having a single vertex Vert(G) = {x} and a
single edge Edge(G) = {e} (necessarily satisfying s(e) = x = t(e)). Then the path category
Path[G] has a single object x whose endomorphism monoid EndPath[G](x) = HomPath[G](x, x)
can be identified with the set Z≥0 of nonnegative integers (with monoid structure given by
addition).
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Let G be a directed graph, and let G• denote the associated 1-dimensional simplicial
set (see Proposition 1.1.6.9). Then there is an evident map of simplicial sets u : G• →
N•(Path[G]), which carries each vertex v ∈ Vert(G) to itself and each edge e ∈ Edge(G) to
the path consisting of the single edge e.

Proposition 1.3.7.5.00HP Let G be a directed graph. Then the map of simplicial sets u : G• →
N•(Path[G]) exhibits Path[G] as the homotopy category of the simplicial set G•, in the sense
of Definition 1.3.6.1. In other words, for every category C, the composite map

HomCat(Path[G], C)→ HomSet∆(N•(Path[G]),N•(C)) ◦u−→ HomSet∆(G•,N•(C))

is a bijection.

Proof. Let f : G• → N•(C) be a morphism of simplicial sets. We wish to show that there is
a unique functor F : Path[G]→ C for which the composite map

G•
u−→ N•(Path[G]) N•(F )−−−−→ N•(C)

coincides with f . Unwinding the definitions, we see that this agreement imposes the following
requirements on F :

(a) For each vertex v ∈ Vert(G), we have F (x) = f(x) (as objects of C).

(b) For each edge e ∈ Edge(G) having x = s(e) and target y = t(e), the functor F carries
the path (e) to the morphism f(e) : f(x)→ f(y) in C.

The existence and uniqueness of the functor F is now clear: it is determined on objects by
property (a), and on morphisms by the formula

F (en, en−1, · · · , e1) = f(en) ◦ f(en−1) ◦ · · · ◦ f(e1).

Remark 1.3.7.6.00HQ In the proof of Proposition 1.3.7.5, we have implicitly invoked the fact
that every category C satisfies the generalized associative law: every sequence of composable
morphisms

X0
f1−→ X1

f2−→ X2 → · · ·
fn−→ Xn

has a well-defined composition fn ◦ fn−1 ◦ · · · ◦ f1, which can be computed in terms of the
binary composition law by inserting parentheses arbitrarily. One might object that this logic
is circular: the generalized associative law is essentially equivalent to Proposition 1.3.7.5
(applied to the directed graph G described in Example 1.3.7.2). In §1.5.7, we will establish
an ∞-categorical generalization of Proposition 1.3.7.5 (Theorem 1.5.7.1), whose proof will
avoid this sort of circular reasoning (see Remark 1.5.7.4).
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Definition 1.3.7.7. 00HRA category C is free if it is isomorphic to Path[G], for some directed
graph G.

We close this section with a characterization of those categories which are free in the
sense of Definition 1.3.7.7.

Definition 1.3.7.8. 00HSLet C be a category. We will say that a morphism f : X → Y in C is
indecomposable if f is not an identity morphism, and for every factorization f = g ◦ h have
either g = idY (so h = f) or h = idX (so g = f).

Example 1.3.7.9. 00HTLet G be a directed graph and let e⃗ be a morphism in the path category
Path[G], given by a sequence of edges (en, en−1, . . . , e1) satisfying t(ei) = s(ei+1). Then e⃗ is
indecomposable if and only if n = 1.

Warning 1.3.7.10. 00HUDefinitions 1.3.7.7 and 1.3.7.8 are not invariant under equivalence of
categories. If F : C → D is an equivalence of categories and C is free, then D need not be
free; if f is an indecomposable morphism in C, then F (f) need not be an indecomposable
morphism of D.

Let C be any category. We define a directed graph Gr0(C) as follows:

• The vertices of Gr0(C) are the objects of C.

• The edges of Gr0(C) are the indecomposable morphisms of C (where an indecomposable
morphism f : X → Y is regarded as an edge with source s(f) = X and target
t(f) = Y ).

By construction, the graph Gr0(C) comes equipped with a canonical map Gr0(C)• → N•(C),
which we can identify (by means of Proposition 1.3.7.5) with a functor F : Path[Gr0(C)]→ C.

Proposition 1.3.7.11. 00HVLet C be a category. The following conditions on C are equivalent:

(a) The category C is free. That is, there exists a directed graph G and an isomorphism of
categories C ≃ Path[G].

(b) The functor F : Path[Gr0(C)]→ C is an isomorphism of categories.

(c) The functor F : Path[Gr0(C)]→ C is an equivalence of categories.

(d) The functor F : Path[Gr0(C)]→ C is fully faithful.

(e) Every morphism f in C admits a unique factorization f = fn ◦ fn−1 ◦ · · · ◦ f1, where
each fi is an indecomposable morphism of C.

Proof. The functor F is bijective on objects, which shows that (b) ⇔ (c) ⇔ (d). The
equivalence of (d) and (e) follows from the definition of morphisms in the path category
Path[Gr0(C)]. The implication (b) ⇒ (a) is immediate, and the converse follows from
Example 1.3.7.9.
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1.4 ∞-Categories

0039 In §1.1 and §1.3, we considered two closely related conditions on a simplicial set S:

(∗) For n > 0 and 0 ≤ i ≤ n, every morphism of simplicial sets σ0 : Λni → S can be extended
to an n-simplex σ : ∆n → S.

(∗′) For 0 < i < n, every morphism of simplicial sets σ0 : Λni → S• can be extended uniquely
to an n-simplex σ : ∆n → S•.

Simplicial sets satisfying (∗) are called Kan complexes and form the basis for a combina-
torial approach to homotopy theory, while simplicial sets satisfying (∗′) can be identified with
categories (Propositions 1.3.3.1 and 1.3.4.1). These notions admit a common generalization:

Definition 1.4.0.1.003A An ∞-category is a simplicial set S which satisfies the following
condition:

(∗′′) For 0 < i < n, every morphism of simplicial sets σ0 : Λn
i → S can be extended to an

n-simplex σ : ∆n → S•.

Remark 1.4.0.2.003B Condition (∗′′) is commonly known as the weak Kan extension condition.
It was introduced by Boardman and Vogt in [5], who refer to ∞-categories as weak Kan
complexes. The theory was developed further by Joyal ([32] and [31]), who refers to ∞-
categories as quasicategories.

Example 1.4.0.3.003C Every Kan complex is an ∞-category. In particular, if X is a topological
space, then the singular simplicial set Sing•(X) is an ∞-category.

Example 1.4.0.4.003D For every category C, the nerve N•(C) is an ∞-category.

Remark 1.4.0.5.003E We will often abuse terminology by identifying a category C with its
nerve N•(C) (this abuse is essentially harmless by virtue of Proposition 1.3.3.1). Adopting
this convention, we can state Example 1.4.0.4 more simply: every category is an ∞-category.
To minimize the possibility of confusion, we will sometimes refer to categories as ordinary
categories.

Example 1.4.0.6 (Products of ∞-Categories).00HW Let {Sα}α∈A be a collection of simplicial
sets parametrized by a set A, and let S = ∏

α∈A Sα denote their product. If each Sα is an
∞-category, then S is an ∞-category. The converse holds provided that each factor Sα is
nonempty.

Example 1.4.0.7 (Coproducts of ∞-Categories).00HX Let {Sα}α∈A be a collection of simplicial
sets parametrized by a set A, and let S = ∐

α∈A Sα denote their coproduct. For each
0 < i < n, the restriction map

θ : HomSet∆(∆n, S)→ HomSet∆(Λni , S)

https://kerodon.net/tag/0039
https://kerodon.net/tag/003A
https://kerodon.net/tag/003B
https://kerodon.net/tag/003C
https://kerodon.net/tag/003D
https://kerodon.net/tag/003E
https://kerodon.net/tag/00HW
https://kerodon.net/tag/00HX


76 CHAPTER 1. THE LANGUAGE OF ∞-CATEGORIES

can be identified with the coproduct (formed in the arrow category Fun([1],Set)) of restriction
maps θα : HomSet∆(∆n, Sα)→ HomSet∆(Λni , Sα); this follows from the connectedness of the
simplicial sets ∆n and Λni (see Example 1.2.1.7 and Remark 1.2.4.5). It follows that θ is a
surjection if and only if each θα is a surjection. Allowing n and i to vary, we conclude that
S is an ∞-category if and only if each summand Sα is an ∞-category.

Remark 1.4.0.8. 00HYLet S be a simplicial set. Combining Example 1.4.0.7 with Proposition
1.2.1.13, we deduce that S is an ∞-category if and only if each connected component of S is
an ∞-category.

Remark 1.4.0.9. 01G8Suppose we are given a filtered diagram of simplicial sets {S(α)} having
colimit S = lim−→S(α). If each S(α) is an ∞-category, then S is an ∞-category.

Throughout this book, we will generally use calligraphic letters (like C, D, and E) to
denote ∞-categories, and we will generally describe them using terminology borrowed from
category theory. For example, if C = S is an ∞-category, then we will refer to vertices of
the simplicial set S as objects of the ∞-category C, and to edges of the simplicial set S as
morphisms of the ∞-category C (see §1.4.1). One of the central themes of this book is that
∞-categories behave much like ordinary categories. In particular, for any ∞-category C,
there is a notion of composition for morphisms of C, which we study in §1.4.4. Given a pair
of morphisms f : X → Y and g : Y → Z in C (corresponding to edges f, g ∈ S1 satisfying
d1

0(f) = d1
1(g)), the pair (f, g) defines a map of simplicial sets σ0 : Λ2

1 → C. Applying
condition (∗′′), we can extend σ0 to a 2-simplex σ of C, which we can think of heuristically
as a commutative diagram

Y

g

  
X

f

??

h // Z.

In this case, we will refer to the morphism h = d2
1(σ) as a composition of f and g. However,

this comes with a caveat: the extension σ is usually not unique, so the morphism h is not
completely determined by f and g. However, we will show that it is unique up to a certain
notion of homotopy which we study in §1.4.3. We apply this observation in §1.4.5 to give a
concrete description of the homotopy category hC (in the sense of Definition 1.3.6.1) when C
is an ∞-category (see Definition 1.4.5.3 and Proposition 1.4.5.7).

1.4.1 Objects and Morphisms

003FWe begin by introducing some terminology.
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Definition 1.4.1.1.003G Let C = S• be an∞-category. An object of C is a vertex of the simplicial
set S• (that is, an element of the set S0). A morphism of C is an edge of the simplicial set
S• (that is, an element of S1). If f ∈ S1 is a morphism of C, we will refer to the object
X = d1

1(f) as the source of f and to the object Y = d1
0(f) as the target of f . In this case,

we will say that f is a morphism from X to Y . For any object X of C, we can regard the
degenerate edge s0

0(X) as a morphism from X to itself; we will denote this morphism by
idX and refer to it as the identity morphism of X.

Notation 1.4.1.2.003H Let C be an ∞-category. We will often write X ∈ C to indicate that X
is an object of C. We use the phrase “f : X → Y is a morphism of C” to indicate that f is a
morphism of C having source X and target Y .

Example 1.4.1.3.003J Let C be an ordinary category, and regard the simplicial set N•(C) as an
∞-category. Then:

• The objects of the ∞-category N•(C) are the objects of C.

• The morphisms of the∞-category N•(C) are the morphisms of C. Moreover, the source
and target of a morphism of C coincide with the source and target of the corresponding
morphism in N•(C).

• For every object X ∈ C, the identity morphism idX does not depend on whether we
view X as an object of the category C or the ∞-category N•(C).

Example 1.4.1.4.003K Let X be a topological space, and regard the simplicial set Sing•(X) as
an ∞-category. Then:

• The objects of Sing•(X) are the points of X.

• The morphisms of Sing•(X) are continuous paths f : [0, 1] → X. The source of a
morphism f is the point f(0), and the target is the point f(1).

• For every point x ∈ X, the identity morphism idx is the constant path [0, 1] → X

taking the value x.

Definition 1.4.1.5 (Endomorphisms).03X3 Let C be an ∞-category. An endomorphism in C is
a morphism f : X → X of C for which the source and target of f are the same. In this case,
we will say that f is an endomorphism of X.

1.4.2 The Opposite of an ∞-Category

003L Let C be an ordinary category. Then we can construct a new category Cop, called the
opposite category of C, as follows:
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• The objects of the opposite category Cop are the objects of C.

• For every pair of objects C,D ∈ C, we have HomCop(C,D) = HomC(D,C).

• Composition of morphisms in Cop is given by the composition of morphisms in C, with
the order reversed.

The construction C 7→ Cop admits a straightforward generalization to the setting of
∞-categories. In fact, it can be extended to arbitrary simplicial sets.

Notation 1.4.2.1. 003MLet Lin denote the category whose objects are finite linearly ordered sets
and whose morphisms are nondecreasing functions. Let I be an object of Lin, regarded as a
set with a linear ordering ≤I . We let Iop denote the same set with the opposite ordering, so
that

(i ≤Iop j)⇔ (j ≤I i).

The construction I 7→ Iop determines an equivalence from the category Lin to itself.
Recall that the simplex category ∆ of Definition 1.1.0.2 is the full subcategory of Lin

spanned by objects of the form [n] = {0 < 1 < · · · < n}, and is equivalent to the full
subcategory of Lin spanned by those linearly ordered sets which are finite and nonempty
(Remark 1.1.0.3). There is a unique functor Op : ∆→∆ for which the diagram

∆ //

Op

��

Lin

I 7→Iop

��
∆ // Lin

commutes up to isomorphism, where the horizontal maps are given by the inclusion. The
functor Op can be described more concretely as follows:

• For each object [n] ∈∆, we have Op([n]) = [n] (note that the construction i 7→ n− i
determines an isomorphism of [n] with the opposite linear ordering [n]op).

• For each morphism α : [m]→ [n] in ∆, the morphism Op(α) : [m]→ [n] is given by
the formula Op(α)(i) = n− α(m− i).

Construction 1.4.2.2. 003NLet S be a simplicial set, which we regard as a functor ∆op → Set.
We let Sop denote the simplicial set given by the composition

∆op Op−−→∆op S−→ Set,

where Op is the functor described in Notation 1.4.2.1. We will refer to Sop as the opposite
of the simplicial set S.
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Remark 1.4.2.3.003P Let S• be a simplicial set. Then the opposite simplicial set Sop
• can be

described more concretely as follows:
• For each n ≥ 0, we have Sop

n = Sn.

• The face and degeneracy operators of Sop
• are given by

(dni : Sop
n → Sop

n−1) = (dnn−i : Sn → Sn−1)

(sni : Sop
n → Sop

n+1) = (snn−i : Sn → Sn+1).

Example 1.4.2.4.003Q Let C be a category. For each n ≥ 0, we can identify n-simplices σ of
N•(C) with diagrams

C0
f1−→ C1

f2−→ · · · fn−1−−−→ Cn−1
fn−→ Cn

in the category C. Then σ determines an n-simplex σ′ of N•(Cop), given by the diagram

Cn
fn−→ Cn−1

fn−1−−−→ · · · f2−→ C1
f1−→ C0

in the opposite category Cop. The construction σ 7→ σ′ determines an isomorphism of
simplicial sets N•(C)op ≃ N•(Cop).
Example 1.4.2.5.003R Let X be a topological space. Then there is a canonical isomorphism of
simplicial sets Sing•(X) ≃ Sing•(X)op, which carries each singular n-simplex σ : |∆n| → X

to the composite map
|∆n| r−→ |∆n| σ−→ X

where r is denotes the homeomorphism of |∆n| with itself given by r(t0, t1, . . . , tn−1, tn) =
(tn, tn−1, . . . , t1, t0).
Proposition 1.4.2.6.003S Let C be an ∞-category. Then the opposite simplicial set Cop is also
an ∞-category.

Proof. Let σ0 : Λni → Cop be a map of simplicial sets for 0 < i < n; we wish to show that σ0
can be extended to an n-simplex of Cop. Passing to opposite simplicial sets, we are reduced
to showing that the map σop

0 : (Λn
i )op → C can be extended to a map (∆n)op → C. This

follows from our assumption that C is an ∞-category, since there is a unique isomorphism
(∆n)op ≃ ∆n which carries the simplicial subset (Λni )op to Λnn−i.

Remark 1.4.2.7.003T Let C be an∞-category. We will refer to the∞-category Cop of Proposition
1.4.2.6 as the opposite of the ∞-category C. Note that:

• The objects of Cop are the objects of C.

• Given a pair of objects X,Y ∈ C, the datum of a morphism from X to Y in Cop is
equivalent to the datum of a morphism from Y to X in C.

Variant 1.4.2.8.050H If X is a Kan complex, then the opposite simplicial set Xop is also a Kan
complex.
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1.4.3 Homotopies of Morphisms

003UFor any topological space X, we can view the singular simplicial set Sing•(X) as an
∞-category, where a morphism from a point x ∈ X to a point y ∈ X is given by a continuous
path f : [0, 1]→ X satisfying f(0) = x and f(1) = y. For many purposes (for example, in
the study of the fundamental group π1(X,x)), it is useful to work not with paths but with
homotopy classes of paths (having fixed endpoints). This notion can be generalized to an
arbitrary ∞-category:

Definition 1.4.3.1. 003VLet C be an ∞-category and let f, g : C → D be a pair of morphisms
in C having the same source and target. A homotopy from f to g is a 2-simplex σ of C
satisfying d2

0(σ) = idD, d2
1(σ) = g, and d2

2(σ) = f , as depicted in the diagram

D

idD

  
C

f

??

g // D.

We will say that f and g are homotopic if there exists a homotopy from f to g.

Example 1.4.3.2. 003WLet C be an ordinary category. Then a pair of morphisms f, g : C → D

in C (having the same source and target) are homotopic as morphisms of the ∞-category
N•(C) if and only if f = g.

Example 1.4.3.3. 003XLet X be a topological space. Suppose we are given points x, y ∈ X and
a pair of continuous paths f, g : [0, 1]→ X satisfying f(0) = x = g(0) and f(1) = y = g(1).
Then f and g are homotopic as morphisms of the ∞-category Sing•(X) (in the sense of
Definition 1.4.3.1) if and only if the paths f and g are homotopic relative to their endpoints:
that is, if and only if there exists a continuous function H : [0, 1]× [0, 1]→ X satisfying

H(s, 0) = f(s) H(s, 1) = g(s) H(0, t) = x H(1, t) = y

(see Exercise 1.4.3.4 for a more precise statement).

Exercise 1.4.3.4. 003YLet π : [0, 1] × [0, 1] → |∆2| denote the continuous function given by
the formula π(s, t) = (1 − s, (1 − t)s, ts). For any topological space X, the construction
σ 7→ σ ◦ π determines a map from the set Sing2(X) of singular 2-simplices of X to the set of
all continuous functions H : [0, 1]× [0, 1]→ X. Show that, if f, g : [0, 1]→ X are continuous
paths satisfying f(0) = g(0) and f(1) = g(1), then the construction σ 7→ σ ◦ π induces a
bijection from the set of homotopies from f to g (in the sense of Definition 1.4.3.1) to the
set of continuous functions H satisfying the requirements of Example 1.4.3.3.
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Proposition 1.4.3.5.003Z Let C be an ∞-category containing objects X,Y ∈ C, and let E denote
the collection of all morphisms from X to Y in C. Then homotopy is an equivalence relation
on E.

Proof. We first observe that for any morphism f : X → Y in C, the degenerate 2-simplex
s1

1(f) is a homotopy from f to itself. It follows that homotopy is a reflexive relation on E.
We will complete the proof by establishing the following:

(∗) Let f, g, h : X → Y be three morphisms from X to Y . If f is homotopic to g and f is
homotopic to h, then g is homotopic to h.

Let us first observe that assertion (∗) implies Proposition 1.4.3.5. Note that in the special
case f = h, (∗) asserts that if f is homotopic to g, then g is homotopic to f (since f is always
homotopic to itself). That is, the relation of homotopy is symmetric. We can therefore
replace the hypothesis that f is homotopic to g in assertion (∗) by the hypothesis that g is
homotopic to f , so that (∗) is equivalent to the transitivity of the relation of homotopy.

It remains to prove (∗). Let σ2 and σ3 be 2-simplices of C which are homotopies from
f to h and f to g, respectively, and let σ0 be the 2-simplex given by the constant map
∆2 → ∆0 Y−→ C. Then the tuple (σ0, •, σ2, σ3) determines a map of simplicial sets τ0 : Λ3

1 → C
(see Proposition 1.2.4.7), depicted informally by the diagram

Y
idY //

idY

''

Y

idY

��
X

f

??

g

77

h // Y ;

here the dotted arrows represent the boundary of the “missing” face of the horn Λ3
1. Our

hypothesis that C is an ∞-category guarantees that τ0 can be extended to a 3-simplex τ of
C. We can then regard the face d2

1(τ) as a homotopy from g to h.

Note that there is a potential asymmetry in Definition 1.4.3.1: if f, g : X → Y are two
morphisms in an∞-category C, then the datum of a homotopy from f to g in the∞-category
C is not identical to the datum of a homotopy from f to g in the opposite ∞-category Cop.
Nevertheless, we have the following:

Proposition 1.4.3.6.0040 Let C be an ∞-category, and let f, g : X → Y be morphisms of C
having the same source and target. Then f and g are homotopic if and only if they are
homotopic when regarded as morphisms of the opposite ∞-category Cop. In other words, the
following conditions are equivalent:
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(1) There exists a 2-simplex σ of C satisfying d2
0(σ) = idY , d2

1(σ) = g, and d2
2(σ) = f , as

depicted in the diagram

Y

idY

��
X

f

??

g // Y.

(2) There exists a 2-simplex τ of C satisfying d2
0(τ) = f , d2

1(τ) = g, and d2
2(τ) = idX , as

depicted in the diagram

X

f

  
X

idX

>>

g // Y.

Proof. We will show that (1) implies (2); the proof of the reverse implication is similar.
Assume that f is homotopic to g. Since the relation of homotopy is symmetric (Proposition
1.4.3.5), it follows that g is also homotopic to f . Let σ be a homotopy from g to f . Then we
can regard the tuple of 2-simplices (σ, s1

1(g), •, s1
0(g)) as a map of simplicial sets ρ0 : Λ3

2 → C
(see Proposition 1.2.4.7), depicted informally in the diagram

X
g //

f

''

Y

idY

��
X

idX

??

g

77

g // Y,

where the dotted arrows indicate the boundary of the “missing” face of the horn Λ3
2. Using

our assumption that C is an ∞-category, we can extend ρ0 to a 3-simplex ρ of C. Then the
face τ = d3

2(ρ) has the properties required by (2).

Using Proposition 1.4.3.6, we can formulate the notion of homotopy in a more symmetric
form:

Corollary 1.4.3.7. 00V0Let C be an ∞-category, and let f, g : X → Y be morphisms of C having
the same source and target. Then f and g are homotopic (in the sense of Definition 1.4.3.1)
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if and only if there exists a map of simplicial sets H : ∆1×∆1 → C satisfying H|{0}×∆1 = f ,
H|{1}×∆1 = g, H|∆1×{0} = idX , and H|∆1×{1} = idY , as indicated in the diagram

X
f //

idX

��

h

��

Y

idY

��

σ

τ

X
g // Y.

Proof. The “only if” direction is clear: if σ is a homotopy from f to g (in the sense of
Definition 1.4.3.1), then we can extend σ to a map H : ∆1 ×∆1 → C by taking τ to be the
degenerate simplex s1

0(g). Conversely, suppose that there exists a map ∆1 ×∆1 → C, as
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indicated in the diagram

X
f //

idX

��

h

��

Y

idY

��

σ

τ

X
g // Y.

Then the 2-simplex σ is a homotopy from f to h, and the 2-simplex τ guarantees that g is
homotopic to h (by virtue of Proposition 1.4.3.6). Since homotopy is an equivalence relation
(Proposition 1.4.3.5), it follows that f is homotopic to g.

1.4.4 Composition of Morphisms

0041We now introduce a notion of composition for morphisms in an ∞-category.

Definition 1.4.4.1. 0042Let C be an ∞-category. Suppose we are given objects X,Y, Z ∈ C and
morphisms f : X → Y , g : Y → Z, and h : X → Z. We will say that h is a composition of
f and g if there exists a 2-simplex σ of C satisfying d2

0(σ) = g, d2
1(σ) = h, and d2

2(σ) = f . In
this case, we will also say that the 2-simplex σ witnesses h as a composition of f and g.

Beware that, in the situation of Definition 1.4.4.1, the morphism h is not determined by
f and g. However, it is determined up to homotopy:

Proposition 1.4.4.2. 0043Let C be an ∞-category containing morphisms f : X → Y and
g : Y → Z. Then:

(1) There exists a morphism h : X → Z which is a composition of f and g.
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(2) Let h : X → Z be a composition of f and g, and let h′ : X → Z be another morphism in
C having the same source and target. Then h′ is a composition of f and g if and only
if h′ is homotopic to h.

Proof. The tuple (g, •, f) determines a map of simplicial sets σ0 : Λ2
1 → C (Proposition

1.2.4.7). Since C is an∞-category, we can extend σ0 to a 2-simplex σ of C. Then σ witnesses
the morphism h = d2

1(σ) as a composition of f and g. This proves (1). To prove (2), let us
first suppose that h′ : X → Z is some other morphism in C which is a composition of f and
g. We will show that h is homotopic to h′. Choose a 2-simplex σ′ which witnesses h′ as a
composition of f and g. Then the tuple (s1

1(g), •, σ′, σ) determines a morphism of simplicial
sets τ0 : Λ3

1 → C (Proposition 1.2.4.7), which we depict informally as a diagram

Y
g //

g

''

Z

idZ

��
X

f

??

h

77

h′ // Z

where the dotted arrows indicate the boundary of the “missing” face of the horn Λ3
1. Using

our assumption that C is an ∞-category, we can extend τ0 to a 3-simplex τ of C. Then the
face d2

1(τ) is a homotopy from h to h′.
We now prove the converse. Let σ be a 2-simplex of C which witnesses h as a composition

of f and g, and let h′ : X → Z be a morphism of C which is homotopic to h. Let σ′′ be a
2-simplex of C which is a homotopy from h to h′. Then the tuple (s1

1(g), σ′′, •, σ) determines
a map of simplicial sets ρ0 : Λ3

2 → C (Proposition 1.2.4.7), which we depict informally as a
diagram

Y
g //

g

''

Z

idZ

��
X

f

??

h

77

h′ // Z.

Our assumption that C is an ∞-category guarantees that we can extend ρ0 to a 3-simplex ρ
of C. Then the face d2

2(ρ) witnesses h′ as a composition of f and g.

Notation 1.4.4.3.0044 Let C be an ∞-category and let f : X → Y and g : Y → Z be a pair of
morphisms in C. We will write h = g ◦ f to indicate that h is a composition of f and g (in
the sense of Definition 1.4.4.1). In this case, it should be implicitly understood that we have
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chosen a 2-simplex that witnesses h as a composition of f and g. We will sometimes abuse
terminology by referring to h as the composition of f and g. However, the reader should
beware that only the homotopy class of h is well-defined (Proposition 1.4.4.2).

Example 1.4.4.4. 0045Let C be an ordinary category containing a pair of morphisms f : X → Y

and g : Y → Z. Then there is a unique morphism h : X → Z in the ∞-category N•(C)
which is a composition of f and g, given by the usual composition g ◦ f in the category C.

Example 1.4.4.5. 0046Let X be a topological space and suppose we are given continuous paths
f, g : [0, 1]→ X which are composable in the sense that f(1) = g(0), and let g⋆f : [0, 1]→ X

denote the path obtained by concatenating f and g, given concretely by the formula

(g ⋆ f)(t) =

f(2t) if 0 ≤ t ≤ 1/2
g(2t− 1) if 1/2 ≤ t ≤ 1.

Then g ⋆ f is a composition of f and g in the ∞-category Sing•(X). More precisely, the
continuous map

σ : |∆2| → X σ(t0, t1, t2) =

f(t1 + 2t2) if t0 ≥ t2
g(t2 − t0) if t0 ≤ t2.

can be regarded as a 2-simplex of Sing•(X) which witnesses g ⋆ f as a composition of f and
g.

Warning 1.4.4.6. 0047In the situation of Example 1.4.4.5, the concatenation g⋆f is not the only
path which is a composition of f and g in the ∞-category Sing•(X). Any path in X which
is homotopic to g ⋆ f (with endpoints fixed) has the same property, by virtue of Proposition
1.4.4.2 (and Example 1.4.3.3). For example, we can replace g ⋆ f by a reparametrization,
such as the path

(s ∈ [0, 1]) 7→

f(3s) if 0 ≤ s ≤ 1/3
g(3

2s−
1
2) if 1/3 ≤ s ≤ 1.

When viewing Sing•(X) as an ∞-category, all of these paths have an equal claim to be
regarded as “the” composition of f and g.

We now show that composition respects the relation of homotopy:

Proposition 1.4.4.7. 0048Let C be an ∞-category. Suppose we are given a pair of homotopic
morphisms f, f ′ : X → Y in C and a pair of homotopic morphisms g, g′ : Y → Z in C. Let h
be a composition of f and g, and let h′ be a composition of f ′ and g′. Then h is homotopic
to h′.
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Proof. Let h′′ be a composition of f and g′. Since homotopy is an equivalence relation
(Proposition 1.4.3.5), it will suffice to show that both h and h′ are homotopic to h′′. We will
show that h is homotopic to h′′; the proof that h′ is homotopic to h′′ is similar. Let σ3 be a
2-simplex of C which witnesses h as a composition of f and g, let σ2 be a 2-simplex of C
which witnesses h′′ as a composition of f and g′, and let σ0 be a 2-simplex of C which is a
homotopy from g to g′. Then the tuple (σ0, •, σ2, σ3) determines a map of simplicial sets
τ0 : Λ3

1 → C (Proposition 1.2.4.7), which we depict informally as a diagram

Y
g //

g′

''

Z

idZ

��
X

f

??

h

77

h′′ // Z

where the dotted arrows indicate the boundary of the “missing” face of the horn Λ3
1. Using

our assumption that C is an ∞-category, we can extend τ0 to a 3-simplex τ of C. Then the
face d2

1(τ) is a homotopy from h to h′′.

1.4.5 The Homotopy Category of an ∞-Category

0049 To any topological space X, one can associate a category π≤1(X), called the fundamental
groupoid of X. This category can be described informally as follows:

• The objects of π≤1(X) are the points of X.

• Given a pair of points x, y ∈ X, we can identify Homπ≤1(X)(x, y) with the set of
homotopy classes of continuous paths p : [0, 1]→ X satisfying p(0) = x and p(1) = y.

• Composition in π≤1(X) is given by concatenation of paths (see Example 1.4.4.5).

All of the concepts needed to define the fundamental groupoid π≤1(X) (such as points,
paths, homotopies, and concatenation) can be formulated in terms of singular n-simplices
of X (for n ≤ 2). Consequently, one can view the fundamental groupoid π≤1(X) as an
invariant of the simplicial set Sing•(X), rather than the topological space X. In this section,
we describe an extension of this invariant, where the simplicial set Sing•(X) is replaced by
an arbitrary ∞-category C. In this case, the fundamental groupoid π≤1(X) is replaced by a
category hC which we call the homotopy category of C (beware that the homotopy category
hC is generally not a groupoid: in fact, we will later see that it is a groupoid if and only if C
is a Kan complex (Proposition 4.4.2.1).

https://kerodon.net/tag/0049
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Construction 1.4.5.1. 004ALet C be an ∞-category. For every pair of objects X,Y ∈ C, we let
HomhC(X,Y ) denote the set of homotopy classes of morphisms from X to Y in C. For every
morphism f : X → Y , we let [f ] denote its equivalence class in HomhC(X,Y ).

It follows from Propositions 1.4.4.2 and 1.4.4.7 that, for every triple of objects X,Y, Z ∈ C,
there is a unique composition law

◦ : HomhC(Y,Z)×HomhC(X,Y )→ HomhC(X,Z)

satisfying the identity [g] ◦ [f ] = [h] whenever h : X → Z is a composition of f and g in the
∞-category C.

Proposition 1.4.5.2. 004BLet C be an ∞-category. Then:

(1) The composition law of Construction 1.4.5.1 is associative. That is, for every triple of
composable morphisms f : W → X, g : X → Y , and h : Y → Z in C, we have an
equality ([h] ◦ [g]) ◦ [f ] = [h] ◦ ([g] ◦ [f ]) in HomhC(W,Z).

(2) For every object X ∈ C, the homotopy class [idX ] ∈ HomhC(X,X) is a two-sided identity
with respect to the composition law of Construction 1.4.5.1. That is, for every morphism
f : W → X in C and every morphism g : X → Y in C, we have [idX ] ◦ [f ] = [f ] and
[g] ◦ [idX ] = [g].

Proof. We first prove (1). Let u : W → Y be a composition of f and g, let v : X → Z

be a composition of g and h, and let w : W → Z be a composition of f and v. Then
([h] ◦ [g]) ◦ [f ] = [w] and [h] ◦ ([g] ◦ [f ]) = [h] ◦ [u]. It will therefore suffice to show that w is a
composition of u and h. Choose a 2-simplex σ0 of C which witnesses v as a composition of g
and h, a 2-simplex σ2 of C which witnesses w as a composition of f and v, and a 2-simplex
σ3 of C which witnesses u as a composition of f and g. Then the sequence (σ0, •, σ2, σ3)
determines a map of simplicial sets τ0 : Λ3

1 → C (Proposition 1.2.4.7), which we depict
informally as a diagram

X
g //

v

''

Y

h

��
W

f

>>

u

77

w // Z.

Using our assumption that C is an∞-category, we can extend τ0 to a 3-simplex τ of C. Then
the 2-simplex d3

1(τ) witnesses w as a composition of u and h.
We now prove (2). Fix an object X ∈ C and a morphism g : X → Y in C; we will

show that [g] ◦ [idX ] = [g] (the analogous identity [idX ] ◦ [f ] = [f ] follows by a similar
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argument). For this, it suffices to observe that the degenerate 2-simplex s1
0(g) witnesses g as

a composition of idX and g.

Definition 1.4.5.3 (The Homotopy Category).004C Let C be an ∞-category. We define a
category hC as follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y ∈ C, we let HomhC(X,Y ) denote the collection of
homotopy classes of morphisms from X to Y in the ∞-category C (as in Construction
1.4.5.1).

• For every object X ∈ C, the identity morphism from X to itself in hC is given by the
homotopy class [idX ].

• Composition of morphisms is defined as in Construction 1.4.5.1.

We will refer to hC as the homotopy category of the ∞-category C.

Example 1.4.5.4.004D Let C be an ordinary category. Then the homotopy category of the
∞-category N•(C) can be identified with C. In particular, for each n ≥ 0, the homotopy
category h∆n can be identified with [n] = {0 < 1 < · · · < n}.

Example 1.4.5.5.004E Let X be a topological space, and regard the singular simplicial set
Sing•(X) as an ∞-category. Then the homotopy category hSing•(X) can be identified with
the fundamental groupoid π≤1(X). More precisely, we can regard the contents of §1.4,
when specialized to ∞-categories of the form Sing•(X), as providing a construction of the
fundamental groupoid of X. By virtue of Exercise 1.4.3.4 and Example 1.4.4.5, the resulting
category hSing•(X) matches the informal description of π≤1(X) given in the introduction
to §1.4.5.

Let C be an ∞-category. Beware that we have now introduced two different definitions
of the homotopy category hC:

• The homotopy category hC of Definition 1.4.5.3, defined by an explicit construction
using the assumption that C is an ∞-category.

• The homotopy category hC of Notation 1.3.6.3, defined for any simplicial set C by a
universal mapping property.

We conclude this section by showing that these definitions are equivalent (Proposition
1.4.5.7).
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Construction 1.4.5.6. 004GLet C be an ∞-category and let σ : ∆n → C be an n-simplex of
C. For 0 ≤ i ≤ n, let Ci denote the object of C given by the image of the ith vertex of ∆n.
For 0 ≤ i ≤ j ≤ n, let fij : Ci → Cj denote the image under σ of the edge of ∆n joining the
ith vertex to the jth vertex, and let [fij ] ∈ HomhC(Ci, Cj) denote the homotopy class of fij .
Then we can regard ({Ci}0≤i≤n, {[fij ]}0≤i≤j≤n) as a functor from the linearly ordered set
[n] to the homotopy category hC. Let u(σ) denote the corresponding n-simplex of N•(hC).
Then the construction σ 7→ u(σ) determines a map of simplicial sets

u : C → N•(hC).

The comparison map of Construction 1.4.5.6 has the following universal property:

Proposition 1.4.5.7. 004HLet C be an ∞-category and let u : C → N•(hC) be as in Construction
1.4.5.6. Then u exhibits hC as a homotopy category of the simplicial set C, in the sense of
Definition 1.3.6.1. In other words, for every category D, the composite map

HomCat(hC,D)→ HomSet∆(N•(hC),N•(D)) ◦u−→ HomSet∆(C,N•(D))

is a bijection.

Proof. Let F : C → N•(D) be a morphism of simplicial sets. Then F induces a functor of
homotopy categories G : hC → hN•(D) ≃ D (where the second identification comes from
Example 1.4.5.4). By construction, the morphism of simplicial sets

C u−→ N•(hC)
N•(G)−−−−→ N•(D)

coincides with F on the vertices and edges of C, and therefore coincides with F (since a
simplex of N•(D) is determined by its 1-dimensional facets; see Remark 1.3.1.3). We leave it
to the reader to verify that G is the unique functor with this property.

1.4.6 Isomorphisms

004QRecall that a morphism f : X → Y in a category C is an isomorphism if there exists
a morphism g : Y → X satisfying f ◦ g = idY and g ◦ f = idX . This notion has an
∞-categorical analogue:

Definition 1.4.6.1. 004RLet C be an ∞-category and let f : X → Y be a morphism of C.
We will say that f is an isomorphism if the homotopy class [f ] is an isomorphism in the
homotopy category hC. We will say that two objects X,Y ∈ C are isomorphic if there exists
an isomorphism from X to Y (that is, if X and Y are isomorphic as objects of the homotopy
category hC).
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Example 1.4.6.2.004S Let C be an ordinary category. Then a morphism f : X → Y of C is
an isomorphism if and only if it is an isomorphism when regarded as a morphism of the
∞-category N•(C).

Remark 1.4.6.3 (Two-out-of-three).004U Let f : X → Y and g : Y → Z be morphisms in an
∞-category C and let h be a composition of f and g. If any two of the morphisms f , g, and
h is an isomorphism, then so is the third.

Definition 1.4.6.4.004V Let C be an ∞-category and suppose we are given a pair of morphisms
f : X → Y and g : Y → X in C. We say that g is a left homotopy inverse of f if the identity
morphism idX is a composition of f and g: that is, if we have an equality [idX ] = [g] ◦ [f ] in
the homotopy category hC. We say that g is a right homotopy inverse of f if the identity
morphism idY is a composition of g and f : that is, if we have an equality [idY ] = [f ] ◦ [g] in
the homotopy category hC. We will say that g is a homotopy inverse of f if it is both a left
and a right homotopy inverse of f .

Remark 1.4.6.5.004W Let f : X → Y and g : Y → X be morphisms in an ∞-category C. Then
the condition that g is a left homotopy inverse (right homotopy inverse, homotopy inverse)
to f depends only on the homotopy classes [f ] and [g].

Remark 1.4.6.6.004X Let f : X → Y and g : Y → X be morphisms in an ∞-category C. Then
g is left homotopy inverse to f if and only if f is right homotopy inverse to g. Both of
these conditions are equivalent to the existence of a 2-simplex σ of C satisfying d2

0(σ) = g,
d2

1(σ) = idX , and d2
2(σ) = f , as depicted in the diagram

Y

g

  
X

f

??

idX // X.

Remark 1.4.6.7.004Y Let f : X → Y be a morphism in an ∞-category C. Suppose that
f admits a left homotopy inverse g and a right homotopy inverse h. Then g and h are
homotopic: this follows from the calculation

[g] = [g] ◦ [idY ] = [g] ◦ ([f ] ◦ [h]) = ([g] ◦ [f ]) ◦ [h] = [idY ] ◦ [h] = [h].

It follows that both g and h are homotopy inverse to f .

Remark 1.4.6.8.004Z Let f : X → Y be a morphism in the ∞-category C. It follows from
Remark 1.4.6.7 that the following conditions are equivalent:

(1) The morphism f is an isomorphism.
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(2) The morphism f admits a homotopy inverse g.

(3) The morphism f admits both left and right homotopy inverses.

In this case, the morphism g is uniquely determined up to homotopy; moreover, any left or
right homotopy inverse of f is homotopic to g. We will sometimes abuse notation by writing
f−1 to denote a homotopy inverse to f .

Warning 1.4.6.9. 0050Let f : X → Y be a morphism in an ∞-category C, and suppose that
g, h : Y → X are left homotopy inverses to f . If f does not admit a right homotopy inverse,
then g and h need not be homotopic.

Proposition 1.4.6.10. 0052Let C be a Kan complex. Then every morphism in C is an isomor-
phism.

Remark 1.4.6.11. 0053We will see later that the converse to Proposition 1.4.6.10 is also true:
if C is an ∞-category in which every morphism is an isomorphism, then C is a Kan complex
(Proposition 4.4.2.1).

Proof of Proposition 1.4.6.10. Let f : X → Y be a morphism in C. Then the tuple (•, idX , f)
determines a map of simplicial sets σ0 : Λ2

0 → C (Proposition 1.2.4.7), which we depict as

Y

  
X

f

??

idX // X.

If C is a Kan complex, then we can extend σ0 to a 2-simplex σ of C. Then σ exhibits the
morphism g = d2

0(σ) as a left homotopy inverse to f . A similar argument shows that f admits
a right homotopy inverse, so that f is an isomorphism by virtue of Remark 1.4.6.8.

Definition 1.4.6.12 (The Fundamental Groupoid of a Kan Complex). 00HZLet X be a Kan
complex. It follows from Proposition 1.4.6.10 that the homotopy category hX of Definition
1.4.5.3 is a groupoid. We will denote this groupoid by π≤1(X) and refer to it as the
fundamental groupoid of X.

Remark 1.4.6.13. 00J0LetX be a Kan complex. By construction, the objects of the fundamental
groupoid π≤1(X) are the vertices of X, and a pair of vertices x, y ∈ X are isomorphic in
π≤1(X) if and only if there exists an edge e : x→ y in X. Applying Proposition 1.2.5.10,
we deduce that x, y ∈ X are isomorphic if and only if they belong to the same connected
component of X. In other words, we have a canonical bijection

π0(X) ≃ {Objects of π≤1(X)}/Isomorphism.
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Example 1.4.6.14.0054 Let X be a topological space. Then the singular simplicial set Sing•(X)
is a Kan complex (Proposition 1.2.5.8), and its fundamental groupoid π≤1(Sing•(X)) can be
identified with the usual fundamental groupoid π≤1(X) of the topological space X (where
objects are the points of X and morphisms are given by homotopy classes of paths in X).

1.5 Functors of ∞-Categories

0055 Let C and D be categories, and let N•(C) and N•(D) denote the corresponding ∞-
categories. According to Proposition 1.3.3.1, the nerve functor N• induces a bijection

{Functors F : C → D} ≃ {Morphisms of simplicial sets N•(C)→ N•(D)}.

Consequently, the notion of functor admits an obvious generalization to the setting of
∞-categories:

Definition 1.5.0.1.0056 Let C and D be ∞-categories. A functor from C to D is a morphism of
simplicial sets F : C → D.

This section is devoted to the study of functors between ∞-categories, in the sense
of Definition 1.5.0.1. We begin in §1.5.1 with some simple examples, which illustrate the
meaning of Definition 1.5.0.1 in the case of∞-categories which arise from ordinary categories
(via the construction E 7→ N•(E)) or topological spaces (via the construction X 7→ Sing•(X)).

In ordinary category theory, one can think of a functor F : C → D as a kind of
commutative diagram in D, having vertices indexed by the objects of C and arrows indexed
by the morphisms of C. This perspective is quite useful: if the category C is sufficiently
small, one can communicate the datum of a functor by drawing a graphical representation of
the corresponding diagram. In §1.5.2, we discuss the notion of commutative diagram in an
∞-category (Convention 1.5.2.12) and describe some dangers associated with diagrammatic
reasoning in the higher-categorical setting (Remark 1.5.2.13).

If C and D are ordinary categories, then the collection of all functors from C to D can
itself be organized into a category, which we denote by Fun(C,D). In §1.5.3, we describe a
counterpart of this construction in the setting of ∞-categories. For every pair of simplicial
sets S and T , one can form a new simplicial set Fun(S, T ) whose vertices are maps from S to
T (Construction 1.5.3.1). The main result of this section asserts that if T is an ∞-category,
then Fun(S, T ) is also an∞-category (Theorem 1.5.3.7). Moreover, our notation is consistent:
in the case where S and T are isomorphic to the nerves of categories C and D, the∞-category
Fun(S, T ) is isomorphic to the nerve of the functor category Fun(C,D) (Proposition 1.5.3.3).

In order to prove Theorem 1.5.3.7, we will need to introduce some auxiliary ideas. Recall
that if f : X → Y and g : Y → Z are composable morphisms in an ∞-category C, then we
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can form a composition of f and g by choosing a 2-simplex σ of C which satisfies d2
0(σ) = g

and d2
2(σ) = f , as indicated in the diagram

Y

g

  
X

f

??

g◦f // Z.

We proved in §1.4.4 that the resulting morphism g ◦ f is well-defined up to homotopy
(Proposition 1.4.4.2). In §1.5.6, we prove a variant of this assertion which asserts that the 2-
simplex σ is “unique up to a contractible space of choices” (see Corollary 1.5.6.2 for a precise
statement, and §1.5.7 for an extension to more general path categories). Moreover, we show
that a strong version of this uniqueness result is equivalent to the assumption that C is an
∞-category (Theorem 1.5.6.1), and deduce the existence of functor ∞-categories Fun(C,D)
as a consequence (Theorem 1.5.3.7). The precise formulation and proof of Theorem 1.5.6.1
will require some general ideas about categorical lifting properties and the homotopy theory
of simplicial sets, which we develop in §1.5.4 and §1.5.5, respectively.

1.5.1 Examples of Functors

0057Let us begin by illustrating Definition 1.5.0.1 in some special cases.

Example 1.5.1.1. 0058Let C and D be ordinary categories. It follows from Proposition 1.3.3.1
that the formation of nerves induces a bijection

{Functors of ordinary categories from C to D}

∼

��
{Functors of ∞-categories from N•(C) to N•(D)}.

In other words, Definition 1.5.0.1 can be regarded as a generalization of the usual notion of
functor to the setting of ∞-categories.

Example 1.5.1.2. 0059Let C be an ∞-category and let D be an ordinary category. Using
Proposition 1.4.5.7, we obtain a bijection

{Functors of ∞-categories from C to N•(D)}

∼

��
{Functors of ordinary categories from hC to D}.
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Remark 1.5.1.3.005A Let F : C → D be a functor of ∞-categories. Then:

(a) To each object X ∈ C the functor F assigns an object of D, which we will denote by
F (X) (or sometimes more simply by FX).

(b) To each morphism f : X → Y in the ∞-category C, the functor F assigns a morphism
F (f) : F (X)→ F (Y ) in the ∞-category D.

(c) For every object X ∈ C, the functor F carries the identity morphism idX : X → X in C
to the identity morphism idF (X) : F (X)→ F (X) in D.

(d) If f : X → Y and g : Y → Z are morphisms in C and h is a composition of f and
g (in the sense of Definition 1.4.4.1), then the morphism F (h) : F (X) → F (Z) is a
composition of F (f) and F (g).

Warning 1.5.1.4.005B To define a functor F from an ordinary category C to an ordinary
category D, it suffices to specify the values of F on objects and morphisms (as described
in (a) and (b) of Remark 1.5.1.3) and to verify that F is compatible with the formation of
composition and identity morphisms (as described in (c) and (d) of Remark 1.5.1.3). In
the ∞-categorical setting, this is not enough: to give a functor of ∞-categories F : C → D,
one must specify its values on simplices of all dimensions. Roughly speaking, these values
encode the requirement that F is compatible with composition “up to coherent homotopy.”
For example, suppose that we are given objects X,Y, Z ∈ C and morphisms f : X → Y ,
g : Y → Z, and h : X → Z. Part (d) of Remark 1.5.1.3 asserts that if h is a composition of
f and g, then F (h) is a composition of F (f) and F (g). However, we can say more: if σ is a
2-simplex of C which witnesses h as a composition of f and g, then F (σ) is a 2-simplex of D
which witnesses F (h) as a composition of F (f) and F (g).

Remark 1.5.1.5.005C Let F : C → D be a functor between ∞-categories. If f, g : X → Y are
homotopic morphisms of C, then F (f), F (g) : F (X)→ F (Y ) are homotopic morphisms of
D. More precisely, the functor F carries homotopies from f to g (viewed as 2-simplices of C)
to homotopies from F (f) to F (g) (viewed as 2-simplices of D).

Remark 1.5.1.6.005D Let F : C → D be a functor of ∞-categories. If f : X → Y is a morphism
in C and g : Y → X is a homotopy inverse to f , then F (g) is a homotopy inverse to F (f).
In particular, if f is an isomorphism in C, then F (f) is also an isomorphism in D.

Example 1.5.1.7.005E Let X be a topological space and let C be an ordinary category. To
specify a functor of ∞-categories F : Sing•(X)→ N•(C), one must give a rule which assigns
to each continuous map σ : |∆n| → X (viewed as an n-simplex of Sing•(X)) a diagram
F (σ) = (C0

f1−→ C1
f2−→ C2 → · · ·

fn−→ Cn). In particular:

(a) To each point x ∈ X, the functor F assigns an object F (x) ∈ C.
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(b) To each continuous path f : [0, 1]→ X starting at the point x = f(0) and ending at the
point y = f(1), the functor F assigns a morphism F (f) : F (x)→ F (y) in the category
C. The morphism F (f) is automatically an isomorphism (by virtue of Proposition
1.4.6.10 and Remark 1.5.1.6).

(c) For each continuous map σ : |∆2| → X with boundary behavior as depicted in the
diagram

y

g

��
x

f

??

h // z,

we have an identity F (h) = F (g) ◦ F (f) in HomC(F (x), F (z)).
The data of a collection of objects {F (x)}x∈X and isomorphisms {F (f)}f :[0,1]→X satisfying
(c) is called a C-valued local system on X. The preceding discussion determines a bijection

{Functors of ∞-categories from Sing•(X) to N•(C)}

∼

��
{ C-valued local systems on X}.

By virtue of Example 1.5.1.2, we can also identify local systems with functors from the
fundamental groupoid π≤1(X) into C.
Remark 1.5.1.8. 005FLet X be a topological space and let C be an arbitrary ∞-category.
Motivated by Example 1.5.1.7, one can define a C-valued local system on X to be a functor
of ∞-categories Sing•(X)→ C. Beware that this notion generally cannot be reformulated in
terms of the fundamental groupoid π≤1(X).
Example 1.5.1.9. 005GLet C be an ∞-category and let X be a topological space. Then we have
a canonical bijection

{Functors of ∞-categories from C to Sing•(X)}

∼

��
{Continuous functions from | C | to X}.

Here | C | denotes the geometric realization of the simplicial set C (see Definition 1.2.3.1).
Beware that neither side has an obvious interpretation in terms of functors between ordinary
categories (even in the special case where C is the nerve of a category).
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1.5.2 Commutative Diagrams

005H We now consider a variant of the terminology introduced in §1.5.1.

Definition 1.5.2.1.005J Let C be an ∞-category. A diagram in C is a map of simplicial sets
f : K → C. We will also refer to a map f : K → C as a diagram in C indexed by K, or a
K-indexed diagram in C.

If C is an ordinary category, then a (K-indexed) diagram in C is a (K-indexed) diagram
in the ∞-category N•(C).

In the special case where K is the nerve N•(I) of a partially ordered set I (Remark
1.3.1.10), we will refer to a map f : K → C as a diagram in C indexed by I, or an I-indexed
diagram in C.

Remark 1.5.2.2.005K In the case where K is an ∞-category, Definition 1.5.2.1 is superfluous:
a K-indexed diagram in C (in the sense of Definition 1.5.2.1) is just a functor from K to C
(in the sense of Definition 1.5.0.1). However, the redundant terminology will be useful to
signal a shift in emphasis. We will generally refer to a map f : C → D as a functor when we
wish to regard the ∞-categories C and D on an equal footing. By contrast, we will refer to a
morphism f : K → C as a diagram if we are primarily interested in the ∞-category C (in
many cases, K will be a very simple simplicial set).

Remark 1.5.2.3 (Diagrams of Dimension ≤ 1).005L Let C be an ∞-category and let K be a
simplicial set of dimension ≤ 1, corresponding to a directed graph G (Proposition 1.1.6.9).
In this case, a diagram K → C can be identified with a pair ({Cv}v∈Vert(G), {fe}e∈Edge(G)),
where each Cv is an object of the ∞-category C and each fe : Cs(e) → Ct(e) is a morphism of
C (here s(e) and t(e) denote the source and target of the edge e). It is often convenient to
specify diagrams K → C by drawing a graphical representation of G (as in Remark 1.1.6.3),
where each node is labelled by an object of C and each arrow is labelled by a morphism in C
(having the indicated source and target).

Example 1.5.2.4 (Non-Commuting Squares).005M Let K denote the boundary of the product
∆1 × ∆1: that is, the simplicial subset of ∆1 × ∆1 given by the union of the simplicial
subsets ∂∆1×∆1 and ∆1 × ∂∆1. Then K• is a 1-dimensional simplicial set, corresponding
to a directed graph which we can depict as

• //

��

•

��
• // •.
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We can then display a K-indexed diagram in an ∞-category C pictorially

C00
f //

g

��

C01

g′

��
C10

f ′ // C11,

where each Cij is an object of C, f is a morphism in C from C00 to C01, g is a morphism in
C from C00 to C10, f ′ is a morphism in C from C10 to C11, and g′ is a morphism in C from
C01 to C11.

In classical category theory, it is useful to extend the notational conventions of Remark
1.5.2.3 to more general situations by introducing the notion of a commutative diagram.

Definition 1.5.2.5. 005NLet K be a simplicial set of dimension ≤ 1, which we will identify
with a directed graph G (see Proposition 1.1.6.9). Assume that G satisfies the following
additional conditions:

(a) For every pair of vertices v, w ∈ Vert(G), there is at most one edge of G with source v
and target w. We will denote this edge (if it exists) by (v, w) ∈ Edge(G).

(b) The graph G has no directed cycles. That is, if there exists a sequence of vertices
v0, v1, . . . , vn ∈ Vert(G) with the property that the edges (vi−1, vi) exist for 1 ≤ i ≤ n,
then either n = 0 or v0 ̸= vn.

Let C be an ordinary category and suppose we are given a diagram σ : K → N•(C), which
we identify with a pair ({Cv}v∈Vert(G), {fw,v : Cv → Cw}(v,w)∈Edge(G)). We will say that
the diagram σ commutes (or that σ is a commutative diagram) if the following additional
condition is satisfied:

(c) Let v and w be vertices of G which are joined by directed paths (v = v0, v1, . . . , vm = w)
and (v = v′0, v

′
1, . . . , v

′
n = w) (so that the edges (vi−1, vi), (v′j−1, v

′
j) ∈ Edge(G) exist

for 1 ≤ i ≤ m and 1 ≤ j ≤ n). Then we have an identity

fvm,vm−1 ◦ fvm−1,vm−2 ◦ · · · ◦ fv1,v0 = fv′n,v′n−1
◦ fv′n−1,v

′
n−2
◦ · · · ◦ fv′1,v′0

in the set HomC(Cv, Cw).

Proposition 1.5.2.6. 005PLet K be a simplicial set of dimension ≤ 1, corresponding to a
directed graph G which satisfies conditions (a) and (b) of Definition 1.5.2.5. Let C be an
ordinary category, and let σ : K → N•(C) be a diagram. Then:

https://kerodon.net/tag/005N
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(1) There is a partial ordering ≤ on the vertex set Vert(G), where we have v ≤ w if and
only if there exists a sequence of vertices (v = v0, v1, . . . , vn = w) with the property
that the edges (vi−1, vi) ∈ Edge(G) exist for 1 ≤ i ≤ n.

(2) There is a unique monomorphism of simplicial sets K ↪→ N•(Vert(G)) which carries
each vertex to itself.

(3) The diagram σ extends to a map σ : N•(Vert(G)) → N•(C) (that is, to a functor
Vert(G) → C) if and only if it is commutative, in the sense of Definition 1.5.2.5.
Moreover, if the extension σ exists, then it is unique.

Proof. It follows immediately from the definitions that the relation ≤ defined in (1) is
reflexive and transitive. Antisymmetry follows from our assumption that the graph G has
no directed loops (condition (b) of Definition 1.5.2.5). By construction, we have v ≤ w

whenever v and w are connected by an edge (v, w) ∈ Edge(G). From the description of the
simplicial set K given in Remark 1.1.6.10, we immediately see that there is a unique map
of simplicial sets i : K → N•(Vert(G)) which is the identity on vertices. It follows from
assumption (a) of Definition 1.5.2.5 that the map i is a monomorphism. Let us henceforth
identify K with a simplicial subset of N•(Vert(G)) given by the image of i. Let us identify
σ with a pair ({Cv}v∈Vert(G), {fw,v : Cv → Cw}(v,w)∈Edge(G)). Suppose that the diagram σ

extends to a functor σ : N•(Vert(G))→ C. If v and w are a pair of vertices of G with v ≤ w,
then we can choose a directed path (v = v0, v1, . . . , vn = w) from v to w. The compatibility
of σ with composition then guarantees that σ must carry the edge (v, w) of N•(Vert(G))
to the iterated composition fvn,vn−1 ◦ fvn−1,vn−2 ◦ · · · ◦ fv1,v0 ∈ HomC(Cv, Cw). Since the
morphism σ(v, w) is independent of the choice of directed path, it follows that the diagram σ

is commutative. Conversely, if σ is commutative, then we can define σ on morphisms by the
formula σ(v, w) = fvn,vn−1 ◦ fvn−1,vn−2 ◦ · · · ◦ fv1,v0 to obtain the desired extension of σ.

Remark 1.5.2.7.00J1 In the situation of Proposition 1.5.2.6, an arbitrary morphism of simplicial
sets σ : K → N•(C) can be identified with a functor F : Path[G] → C, where Path[G]
denotes the path category of the graph G (Proposition 1.3.7.5). The commutativity of the
diagram σ is equivalent to the requirement that F factors through the quotient functor
Path[G] ↠ Vert(G): that is, the value of F on a path p depends only the endpoints of p.

Example 1.5.2.8 (Commutative Squares in a Category).005Q Let K = ∂(∆1 ×∆1) be as in
Example 1.5.2.4. For any ordinary category C, we can display a diagram σ : K → N•(C)
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pictorially as

C00
f //

g

��

C01

g′

��
C10

f ′ // C11.

The diagram σ is commutative if and only if we have g′◦f = f ′◦g in HomC(C00, C11). In this
case, Proposition 1.5.2.6 ensures that σ extends uniquely to a diagram σ : ∆1×∆1 → N•(C),
or equivalently to a functor of ordinary categories [1]× [1]→ C.

In the setting of ∞-categories, assertion (3) of Proposition 1.5.2.6 is false in general.

Example 1.5.2.9 (Square Diagrams in an ∞-Category). 005RLet I denote the partially ordered
set [1]× [1]. The simplicial set N•(I) ≃ ∆1 ×∆1 has four vertices (given by the elements of
I), five nondegenerate edges, and two nondegenerate 2-simplices. Unwinding the definitions,
we see that an I-indexed diagram in an ∞-category C is equivalent to the following data:

• A collection of objects {Cij}0≤i,j≤1 in C.

• A collection of morphisms f : C00 → C01, g : C00 → C10, f ′ : C10 → C11, g′ : C01 →
C11, and h : C00 → C11.

• A 2-simplex σ of C which witnesses h as a composition of f with g′, and a 2-simplex τ
of C which witnesses h as a composition of g with f ′.

https://kerodon.net/tag/005R
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This data can be depicted graphically as follows:

C00
f //

g

��

h

  

C01

g′

��

σ

τ

C10
f ′ // C11.

Beware that such a diagram is usually not determined by its restriction to the simplicial
subset K ⊆ N•(I) of Example 1.5.2.8.

Exercise 1.5.2.10.005S Let C be an ∞-category and let K ⊆ ∆1 ×∆1 be the simplicial subset
appearing in Example 1.5.2.8. Suppose we are given a diagram σ : K → C, which we depict
graphically as

C00
f //

g

��

C01

g′

��
C10

f ′ // C11.

Composing with the unit map C → N•(hC), we obtain a diagram σ′ in the homotopy category
hC, which we can depict as

C00
[f ] //

[g]

��

C01

[g′]

��
C10

[f ′] // C11.

https://kerodon.net/tag/005S
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Show that the diagram σ′ is commutative if and only if σ can be extended to a map
σ : ∆1 ×∆1 → C. Beware that this extension is generally not unique.

Warning 1.5.2.11. 005TLet I be a partially ordered set and let C be an ∞-category. In the case
I = [1]× [1], Exercise 1.5.2.10 implies that every functor of ordinary categories I → hC can
be lifted to a functor of ∞-categories N•(I)→ C. Beware that this conclusion is generally
false for more complicated partially ordered sets. For example, it fails for the partially
ordered set I = [1]× [1]× [1].

Example 1.5.2.9 illustrates that the notion of “commutative diagram” becomes con-
siderably more subtle in the setting of ∞-categories. To specify an I-indexed diagram
F : N•(I)→ C of an ∞-category C, one generally needs to specify the values of F on all the
simplices of the simplicial set N•(I). In general, it is not feasible to graphically encode all
of this data in a comprehensible way. On the other hand, the formalism of commutative
diagrams is too useful to completely abandon. We will therefore sacrifice some degree of
mathematical precision in favor of clarity of exposition.

Convention 1.5.2.12. 005ULet C be an ∞-category and let G be a directed graph satisfying
conditions (a) and (b) of Definition 1.5.2.5, so that the vertex set Vert(G) inherits a partial
ordering (Proposition 1.5.2.6). We will sometimes refer to the notion of a commutative
diagram σ in C, which we indicate graphically by a collection of objects {Cv}v∈Vert(G) of
C, connected by arrows which are labelled by morphisms {fe}e∈Edge(G). In this case, it
should be understood that σ is a diagram N•(Vert(G)) → C, which carries each vertex v

of N•(Vert(G)) to the object Cv ∈ C and each edge e = (v, w) of G to the morphism fe
in C. Beware that in this case, the map σ need not be completely determined by the pair
({Cv}v∈Vert(G), {fe}e∈Edge(G)) (this pair can instead be identified with the restriction σ|K ,
where K is the 1-dimensional simplicial subset of N•(Vert(G)) corresponding to G).

Remark 1.5.2.13. 005VIn the situation of Convention 1.5.2.12, suppose that C = N•(C0), where
C0 is an ordinary category. Then giving a commutative diagram in the ∞-category C (in the
sense of Convention 1.5.2.12) is equivalent to giving a commutative diagram in the ordinary
category C0 (in the sense of Definition 1.5.2.5). In this case, commutativity is a property
that the underlying diagram (indexed by a 1-dimensional simplicial set) does or does not
possess. For a general ∞-category C, commutativity of a diagram in C is not a property but
a structure; to promote a diagram to a commutative diagram, one must specify additional
data to witness the requisite commutativity.
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Example 1.5.2.14.005W Let C be an ∞-category. If we refer to a commutative diagram σ :

Y

g

��
X

f

??

h // Z,

then we mean that σ is a 2-simplex of C satisfying d2
0(σ) = g, d2

1(σ) = h, and d2
2(σ) = f . In

other words, we mean that σ is a 2-simplex which witnesses h as a composition of f and g,
in the sense of Definition 1.4.4.1.

Example 1.5.2.15.005X Let C be an ∞-category. If we refer to a commutative diagram σ :

C00
f //

g

��

C01

g′

��
C10

f ′ // C11,

we implicitly assume that σ is a map from the entire simplicial set ∆1 ×∆1 to C. In other
words, we assume that we have specified another morphism h : C00 → C11, which is not
indicated in the picture, together with a 2-simplex σ witnessing h as the composition of f
and g′ and a 2-simplex τ witnessing h as the composition of g and f ′.

Warning 1.5.2.16.005Y In ordinary category theory, it is sometimes useful to refer to the
commutativity of diagrams in situations which do not fit the paradigm of Definition 1.5.2.5.
For example, the commutativity of a diagram

X
f // Y

u //
v

// Z

is often understood as the requirement that u◦f = v◦f . Beware that this usage is potentially
ambiguous (from the shape of the diagram alone, it is not clear that commutativity should
enforce the identity u ◦ f = v ◦ f , but not the identity u = v), so we will take special care
when applying similar terminology in the ∞-categorical setting.

1.5.3 The ∞-Category of Functors

005Z Let C and D be categories. Then we can form a new category Fun(C,D), whose objects
are functors from C to D and whose morphisms are natural transformations. In this section,
we describe an analogous construction in the setting of ∞-categories.
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Construction 1.5.3.1. 0060Let S and T be simplicial sets. Then the construction

([n] ∈∆op) 7→ HomSet∆(∆n × S, T )

determines a functor from the category ∆op to the category of sets. We regard this functor
as a simplicial set which we will denote by Fun(S, T ).

Note that, given an n-simplex f of Fun(S, T ) and an n-simplex σ of S, we can construct
an n-simplex ev(f, σ) of T , given by the composition

∆n δ−→ ∆n ×∆n id×σ−−−→ ∆n × S f−→ T.

This construction determines a map of simplicial sets ev : Fun(S, T )× S → T , which we will
refer to as the evaluation map.

Proposition 1.5.3.2. 0061Let S, T , and U be simplicial sets. Then the composite map

θ : HomSet∆(U,Fun(S, T )) → HomSet∆(U × S,Fun(S, T )× S)
ev ◦−−→ HomSet∆(U × S, T )

is bijective.

Proof. Let f : U × S → T be a map of simplicial sets. For each n-simplex σ of U , the
composite map

∆n × S σ×id−−−→ U × S f−→ T

can be regarded as an n-simplex of Fun(S, T ), which we will denote by g(σ). The construction
σ 7→ g(σ) determines a map of simplicial sets g : U → Fun(S, T ). We leave as an exercise
for the reader to verify that g is the unique map satisfying θ(g) = f .

Beware that the notation of Construction 1.5.3.1 is potentially confusing, because it
conflicts with our use of Fun(C,D) to denote the category of functors from a category C to a
category D. However, these usages are compatible:

Proposition 1.5.3.3. 0062Let C and D be categories and let e : Fun(C,D)× C → D denote the
evaluation functor, given on objects by the formula e(F,C) = F (C). Then the composite
map

N•(Fun(C,D))×N•(C) ≃ N•(Fun(C,D)× C) N•(e)−−−→ N•(D)

corresponds, under the bijection of Proposition 1.5.3.2, to an isomorphism of simplicial sets
ρ : N•(Fun(C,D))→ Fun(N•(C),N•(D)).
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Proof. For each n ≥ 0, the map ρ is given on n-simplices by the composition

HomSet∆(∆n,N•(Fun(C,D))) ≃ HomCat([n],Fun(C,D))
≃ HomCat([n]× C,D)
v−→ HomSet∆(N•([n]× C),N•(D))
≃ HomSet∆(N•([n])×N•(C),N•(D))
≃ HomSet∆(∆n ×N•(C),N•(D))
≃ HomSet∆(∆n,Fun(N•(C),N•(D))).

It will therefore suffice to show that v is bijective, which is a special case of Proposition
1.3.3.1.

Passing to homotopy categories, we obtain the following weaker result:

Corollary 1.5.3.4.0063 Let C and D be categories. Then there is a canonical isomorphism of
categories

Fun(C,D) ∼−→ hFun(N•(C),N•(D)).

We can also generalize Proposition 1.5.3.3 as follows:

Corollary 1.5.3.5.0064 Let S be a simplicial set having homotopy category hS. Then, for any
category D, the composite map

N•(Fun(hS ,D))× S → N•(Fun(hS ,D))×N•(hS) ≃ N•(Fun(hS ,D)× hS)→ N•(D)

induces an isomorphism of simplicial sets ρS : N•(Fun(hS D)) ≃ Fun(S,N•(D)).

Proof. The construction S 7→ ρS carries colimits (in the category Set∆ of simplicial sets) to
limits (in the category Fun([1],Set∆) of morphisms between simplicial sets). Since every
simplicial set can be realized as a colimit of standard simplices (Remark 1.1.3.13), it will
suffice to prove Corollary 1.5.3.5 in the special case where S = ∆n for some n ≥ 0. In this
case, the desired result follows from Proposition 1.5.3.3, since S is isomorphic to the nerve
of the category C = [n].

Corollary 1.5.3.6.0065 The formation of homotopy categories determines a functor Set∆ → Cat
which commutes with finite products.

Proof. Since the construction S 7→ hS preserves final objects, it will suffice to show that
for any pair of simplicial sets S and T , the canonical map u : h(S × T ) → hS × hT . s
an isomorphism of categories. In other words, we wish to show that for any category C,
composition with u induces a bijection

HomCat(hS × hT , C)→ HomCat(h(S × T ), C).
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Unwinding the definitions, we see that this map is given by the composition

HomCat(hS × hT , C) ≃ HomCat(hS ,Fun(hT , C))
≃ HomSet∆(S,N•(Fun(hT , C)))
ρT ◦−−→ HomSet∆(S,Fun(T,N•(C)))
≃ HomSet∆(S × T,N•(C))
≃ HomCat(h(S × T ), C),

where ρT is the isomorphism appearing in the statement of Corollary 1.5.3.5.

We will be primarily interested in the special case of Construction 1.5.3.1 where the
target simplicial set T is an ∞-category. In this case, we have the following result:

Theorem 1.5.3.7. 0066Let S be a simplicial set and let D be an ∞-category. Then the simplicial
set Fun(S,D) is an ∞-category.

The proof of Theorem 1.5.3.7 will require some combinatorial preliminaries; we defer the
proof to §1.5.6.

Definition 1.5.3.8. 0067Let C and D be ∞-categories. It follows from Theorem 1.5.3.7 that the
simplicial set Fun(C,D) is also an ∞-category. We will refer to Fun(C,D) as the ∞-category
of functors from C to D.

Remark 1.5.3.9. 0068Let C and D be∞-categories. By definition, the objects of the∞-category
Fun(C,D) can be identified with functors from C to D, in the sense of Definition 1.5.0.1
(that is, with maps of simplicial sets from C to D).

Remark 1.5.3.10. 0069Let C and D be∞-categories, and suppose we are given a pair of functors
F,G : C → D. We define a natural transformation from F to G to be a map of simplicial
sets u : ∆1 × C → D satisfying u|{0}×C = F and u|{1}×C = G. In other words, a natural
transformation from F to G is a morphism from F to G in the ∞-category Fun(C,D).

Remark 1.5.3.11. 006ALet us abuse notation by identifying each ordinary category E with the
∞-category N•(E). In this case, Corollary 1.5.3.5 implies that when C is an ∞-category and
D is an ordinary category, then we have a canonical isomorphism Fun(C,D) ≃ Fun(hC,D).
In particular, the functor ∞-category Fun(C,D) is also an ordinary category.

1.5.4 Digression: Lifting Properties

006BWe now review some categorical terminology which will be useful in the proof of Theorem
1.5.3.7, and in several other parts of this book.
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Definition 1.5.4.1.006C Let C be a category. A lifting problem in C is a commutative diagram
σ :

A

f

��

u // X

g

��
B

v // Y

in C. A solution to the lifting problem σ is a morphism h : B → X in C satisfying g ◦ h = v

and h ◦ f = u, as indicated in the diagram

A

f

��

u // X

g

��
B

v //

h

>>

Y.

Remark 1.5.4.2.006D In the situation of Definition 1.5.4.1, we will often indicate a lifting
problem by a commutative diagram

A

f

��

u // X

g

��
B

v //

h

??

Y,

which includes a dotted arrow representing a hypothetical solution.

Definition 1.5.4.3.006E Let C be a category and suppose we are given a morphism f : A→ B

and g : X → Y in C. We will say that f is weakly left orthogonal to g if, for every pair of
morphisms u : A→ X and v : B → Y satisfying g ◦ u = v ◦ f , the associated lifting problem

A

f

��

u // X

g

��
B

v //

>>

Y

admits a solution (that is, there exists a map h : B → X satisfying g ◦ h = v and h ◦ f = u).
In this case, we will also say that g is weakly right orthogonal to f .

If S and T are collections of morphisms of C, we say that S is weakly left orthogonal to
T if every morphism f ∈ S is weakly left orthogonal to every morphism g ∈ T . In this case,
we also say that T is weakly right orthogonal to S. In the special case where S = {f} is a
singleton, we abbreviate this condition by saying that f is weakly left orthogonal to T , or T
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is weakly right orthogonal to f . In the special case T = {g} is a singleton, we abbreviate
this condition by saying that g is weakly right orthogonal to S, or S is weakly left orthogonal
to g.

Let T be a collection of morphisms in a category C. We now summarize some closure
properties enjoyed by the collection of morphisms which are weakly left orthogonal to T .

Definition 1.5.4.4. 006FLet C be a category which admits pushouts and let S be a collection of
morphisms of C. We will say that S is closed under pushouts if, for every pushout diagram

A

f

��

// A′

f ′

��
B // B′

in the category C where the morphism f belongs to S, the morphism f ′ also belongs to S.

Proposition 1.5.4.5. 006GLet C be a category which admits pushouts, let T be a collection of
morphisms of C, and let S be the collection of all morphisms of C which are weakly left
orthogonal to T . Then S is closed under pushouts.

Proof. Suppose we are given a pushout diagram σ :

A

f

��

s // A′

f ′

��
B

t // B′

where f belongs to S. We wish to show that f ′ also belongs to S. For this, we must show
that every lifting problem

A′

f ′

��

u // X

g

��
B′

v //

>>

Y

admits a solution, provided that the morphism g belongs to T . Using our assumption that
σ is a pushout square, we are reduced to solving the associated lifting problem

A

f

��

u◦s // X

g

��
B

v◦t //

??

Y,

which is possible by virtue of our assumption that f is weakly left orthogonal to g.

https://kerodon.net/tag/006F
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Definition 1.5.4.6.006H Let C be a category containing a pair of objects C and C ′. We will say
that C is a retract of C ′ if there exist maps i : C → C ′ and r : C ′ → C such that r ◦ i = idC .

Variant 1.5.4.7.006J Let C be a category. We will say that a morphism f : C → D of C is a
retract of another morphism f ′ : C ′ → D′ if it is a retract of f ′ when viewed as an object
of the functor category Fun([1], C). In other words, we say that f is a retract of f ′ if there
exists a commutative diagram

C
i //

f

��

C ′

f ′

��

r // C

f

��
D

i // D′
r // D

in the category C, where r ◦ i = idC and r ◦ i = idD.
We say that a collection of morphisms T of C is closed under retracts if, for every pair of

morphisms f, f ′ in C, if f is a retract of f ′ and f ′ belongs to T , then f also belongs to T .

Exercise 1.5.4.8.006K Let C be a category and let S be the collection of all monomorphisms in
C. Show that S is closed under retracts.

Proposition 1.5.4.9.006L Let C be a category, let T be a collection of morphisms of C, and let
S be the collection of all morphisms of C which are weakly left orthogonal to S. Then S is
closed under retracts.

Proof. Let f ′ be a morphism of C which belongs to S and let f be a retract of f ′, so that
there exists a commutative diagram

C
i //

f

��

C ′

f ′

��

r // C

f

��
D

i // D′
r // D

with r ◦ i = idC and r ◦ i = idD. We wish to show that f also belongs to S. Consider a
lifting problem σ :

C

f

��

u // X

g

��
D

v //

h

??

Y,
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where g belongs to T . Our assumption f ′ ∈ S ensures that the associated lifting problem

C ′

f ′

��

u◦r // X

g

��
D′

v◦r //

>>

Y

admits a solution: that is, we can choose a morphism h′ : D′ → X satisfying g ◦ h′ = v ◦ r
and h′ ◦ f ′ = u ◦ r. Then the morphism h = h′ ◦ i is a solution to the lifting problem σ, by
virtue of the calculations

g ◦ h = g ◦ h′ ◦ i = v ◦ r ◦ i = v

h ◦ f = h′ ◦ i ◦ f = h′ ◦ f ′ ◦ i = u ◦ r ◦ i = u.

In what follows, we assume that the reader is familiar with the theory of ordinals (see
§4.7.1 for a quick review).

Definition 1.5.4.10. 006MFor every ordinal α, let Ord≤α = {β : β ≤ α} denote the collection of
all ordinal numbers which are less than or equal to α, regarded as a linearly ordered set.

Let C be a category and let S be a collection of morphisms of C. We will say that a
morphism f of C is a transfinite composition of morphisms of S if there exists an ordinal
α and a functor F : Ord≤α → C, given by a collection of objects {Cβ}β≤α and morphisms
{fγ,β : Cβ → Cγ}β≤γ with the following properties:

(a) For every nonzero limit ordinal λ ≤ α, the functor F exhibits Cλ as a colimit of the
diagram ({Cβ}β<λ, {fγ,β}β≤γ<λ).

(b) For every ordinal β < α, the morphism fβ+1,β belongs to S.

(c) The morphism f is equal to fα,0 : C0 → Cα.

We will say that S is closed under transfinite composition if, for every morphism f which is
a transfinite composition of morphisms of S, we have f ∈ S.

Proposition 1.5.4.11. 006RLet C be a category, let T be a collection of morphisms in C, and
let S be the collection of all morphisms of C which are weakly left orthogonal to T . Then S

is closed under transfinite composition.

Proof. Let α be an ordinal and suppose we are given a functor Ord≤α → C, given by a pair

({Cβ}β≤α, {fγ,β}β≤γ≤α)

https://kerodon.net/tag/006M
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which satisfies condition (a) of Definition 1.5.4.10. Assume that each of the morphisms
fβ+1,β belongs to S. We wish to show that the morphism fα,0 also belongs to S. For this,
we must show that every lifting problem σ :

C0

fα,0

��

u // X

g

��
Cα

>>

v // Y

admits a solution, provided that g belongs to T . We construct a collection of morphisms
{uβ : Cβ → X}β≤α, satisfying the requirements g ◦ uβ = v ◦ fα,β and uβ = uγ ◦ fγ,β for
β ≤ γ, using transfinite recursion. Fix an ordinal γ ≤ α, and assume that the morphisms
{uβ}β<γ have been constructed. We consider three cases:

• If γ = 0, we set uγ = u.

• If γ is a nonzero limit ordinal, then our hypothesis that Cγ is the colimit of the
diagram {Cβ}β<γ guarantees that there is a unique morphism uγ : Cγ → X satisfying
uβ = uγ ◦ fγ,β for β < γ. Moreover, our assumption that the equality g ◦ uβ = v ◦ fα,β
holds for β < γ guarantees that it also holds for β = γ.

• Suppose that γ = β + 1 is a successor ordinal. In this case, we take uγ to be any
solution to the lifting problem

Cβ

fβ+1,β

��

uβ // X

g

��
Cβ+1

>>

v◦fα,β+1 // Y,

which exists by virtue of our assumption that fβ+1,β belongs to S.

We now complete the proof by observing that uα is a solution to the lifting problem σ.

Motivated by the preceding discussion, we introduce the following:

Definition 1.5.4.12.006S Let C be a category which admits small colimits and let S be
a collection of morphisms of C. We will say that S is weakly saturated if it is closed
under pushouts (Definition 1.5.4.4), retracts (Variant 1.5.4.7), and transfinite composition
(Definition 1.5.4.10).

https://kerodon.net/tag/006S
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Proposition 1.5.4.13. 006TLet C be a category which admits small colimits, let T be a collection
of morphisms of C, and let S be the collection of all morphisms of C which are weakly left
orthogonal to T . Then S is weakly saturated.

Proof. Combine Propositions 1.5.4.5, 1.5.4.9, and 1.5.4.11.

Remark 1.5.4.14. 006ULet C be a category and let S0 be a collection of morphisms of C. Then
there exists a smallest collection of morphisms S of C such that S0 ⊆ S and S is weakly
saturated (for example, we can take S to be the intersection of all the weakly saturated
collections of morphisms containing S0). We will refer to S as the weakly saturated collection
of morphisms generated by S0. It follows from Proposition 1.5.4.13 that if S0 is weakly left
orthogonal to some collection of morphisms T , then S has the same property.

1.5.5 Trivial Kan Fibrations

006VWe now specialize the ideas of §1.5.4 to the category of simplicial sets.

Definition 1.5.5.1. 006WLet q : X → Y be a morphism of simplicial sets. We say that p is a
trivial Kan fibration if, for each n ≥ 0, every lifting problem

∂∆n

i

��

// X

q

��
∆n

==

// Y

admits a solution; here i : ∂∆n ↪→ ∆n denotes the inclusion map.

Remark 1.5.5.2. 006XSuppose we are given a pullback diagram of simplicial sets

X ′

q′

��

// X

q

��
Y ′ // Y.

If q is a trivial Kan fibration, then so is q′ (this follows from Proposition 1.5.4.5, applied to
the opposite of the category Set∆).

Remark 1.5.5.3. 02L0The collection of trivial Kan fibrations is closed under filtered colimits
(when regarded as a full subcategory of the arrow category Fun([1],Set∆)).

Proposition 1.5.5.4. 006YLet p : X → Y be a map of simplicial sets. The following conditions
are equivalent:
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(1) The map p is a trivial Kan fibration (in the sense of Definition 1.5.5.1).

(2) The map p is weakly right orthogonal to every monomorphism of simplicial sets i : A ↪→ B.
In other words, every lifting problem

A

i

��

// X

p

��
B

>>

// Y

admits a solution, provided that i is a monomorphism.

We will give the proof of Proposition 1.5.5.4 at the end of this section.

Corollary 1.5.5.5.006Z Let p : X → Y be a trivial Kan fibration of simplicial sets. Then:

(a) The map p admits a section: that is, there is a map of simplicial sets s : Y → X such
that the composition p ◦ s is the identity map idY : Y → Y .

(b) Let s be any section of p. Then the composition s ◦ p : X → X is fiberwise homotopic to
the identity. That is, there exists a map of simplicial sets h : ∆1 ×X → X, compatible
with the projection to Y , such that h|{0}×X = s ◦ p and h|{1}×X = idX .

Proof. To prove (a), we observe that a section of p can be described as a solution to the
lifting problem

∅

��

// X

p

��
Y

id //

s

??

Y,

which exists by virtue of Proposition 1.5.5.4. Given any section s, a fiberwise homotopy
from s ◦ p to the identity can be identified with a solution to the lifting problem

∂∆1×X

��

(s◦p,id) // X

p

��
∆1 ×X //

h

<<

Y,

which again exists by virtue of Proposition 1.5.5.4.

https://kerodon.net/tag/006Z
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Corollary 1.5.5.6. 0070Let p : X → Y be a trivial Kan fibration of simplicial sets and let
i : A→ B be a monomorphism of simplicial sets. Then the canonical map

θ : Fun(B,X)→ Fun(B, Y )×Fun(A,Y ) Fun(A,X)

is also a trivial Kan fibration.

Proof. Fix an integer n ≥ 0; we wish to show that every lifting problem

∂∆n //

��

Fun(B,X)

θ

��
∆n

88

// Fun(B, Y )×Fun(A,Y ) Fun(A,X)

admits a solution. Unwinding the definitions, we see that this is equivalent to solving an
associated lifting problem

(∂∆n×B) ∐
∂∆n×A

(∆n ×A) //

i

��

X

p

��
∆n ×B

99

// Y.

This is possible by virtue of Proposition 1.5.5.4, since p is a trivial Kan fibration and i is a
monomorphism.

Corollary 1.5.5.7. 0071Let p : X → Y be a trivial Kan fibration of simplicial sets. Then, for
every simplicial set B, the induced map Fun(B,X)→ Fun(B, Y ) is a trivial Kan fibration.

Proof. Apply Corollary 1.5.5.6 in the special case A = ∅.

Definition 1.5.5.8. 0072Let X be a simplicial set. We say that X is a contractible Kan complex
if the projection map X → ∆0 is a trivial Kan fibration (Definition 1.5.5.1). In other
words, X is a contractible Kan complex if every map σ0 : ∂∆n → X can be extended to an
n-simplex of X.

Example 1.5.5.9. 0073Let X be a topological space. Then the singular simplicial set Sing•(X)
is a contractible Kan complex if and only if the space X is weakly contractible: that is, if and
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only if every continuous map σ0 : Sn−1 → X is nullhomotopic (here Sn−1 ≃ | ∂∆n | denotes
the sphere of dimension n − 1, so that σ0 is nullhomotopic if and only if it extends to a
continuous map defined on the disk Dn ≃ |∆n|). In particular, if the topological space X is
contractible, then the simplicial set Sing•(X) is a contractible Kan complex.

Remark 1.5.5.10.0074 Let p : X → Y be a trivial Kan fibration. Then, for every vertex y of Y ,
the fiber X ×Y {y} is a contractible Kan complex (this is a special case of Remark 1.5.5.2).
For a partial converse, see Proposition 3.3.7.6.

Proposition 1.5.5.11.050J Let p : X → Y be a trivial Kan fibration of simplicial sets. Then:

(1) If X is a Kan complex, then Y is a Kan complex.

(2) If X is a contractible Kan complex, then Y is a contractible Kan complex.

(3) If X is an ∞-category, then Y is an ∞-category.

Proof. We will prove (1); the proofs of (2) and (3) are similar. Suppose we are given a pair
of integers 0 ≤ i ≤ n with n > 0; we wish to show that every morphism of simplicial sets
σ0 : Λn

i → Y can be extended to an n-simplex of Y . Since p is a trivial Kan fibration, we
can write σ0 = p ◦ τ0 for some morphism τ0 : Λni → X (Proposition 1.5.5.4). If X is a Kan
complex, we can extend τ0 to an n-simplex τ of X. Then σ = p ◦ τ is an n-simplex of Y
satisfying σ0 = σ|Λn

i
.

Applying Proposition 1.5.5.4 in the case Y = ∆0, we obtain the following:

Corollary 1.5.5.12.0075 Let X be a simplicial set. The following conditions are equivalent:

(1) The simplicial set X is a contractible Kan complex.

(2) For every monomorphism of simplicial sets i : A ↪→ B and every map of simplicial sets
f0 : A→ X, there exists a map f : B → X such that f0 = f ◦ i.

Corollary 1.5.5.13.0076 Let X be a contractible Kan complex. Then X is a Kan complex. In
particular, X is an ∞-category.

We will deduce Proposition 1.5.5.4 from the following:

Proposition 1.5.5.14.0077 Let T be the collection of all monomorphisms in the category Set∆
of simplicial sets. Then:

(a) The collection T is weakly saturated, in the sense of Definition 1.5.4.12.

(b) As a weakly saturated collection of morphisms, T is generated by the collection of inclusion
maps {∂∆n ↪→ ∆n}n≥0 (see Remark 1.5.4.14).
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Proof. To prove (a), we must establish the following:

• The collection T is closed under pushouts. That is, if we are given a pushout diagram
of simplicial sets

A

f

��

// A′

f ′

��
B // B′

where f is a monomorphism, then f ′ is also a monomorphism. This is clear, since we
have a pushout diagram

An

��

// A′n

��
Bn // B′n

in the category of sets for each n ≥ 0 (where the left vertical map is injective, so the
right vertical map is injective as well).

• The collection T is closed under retracts. This is a special case of Exercise 1.5.4.8.

• The collection T is closed under transfinite composition. Suppose we are given an
ordinal α and a functor S : Ord≤α → Set∆, given by a collection of simplicial sets
{S(β)}β≤α and transition maps fγ,β : S(β) → S(γ). Assume that the maps fβ+1,β
are monomorphisms for β < α and that, for every nonzero limit ordinal λ ≤ α, the
induced map lim−→β<λ

S(β) → S(λ) is an isomorphism. We must show that the map
fα,0 : S(0) → S(α) is a monomorphism of simplicial sets. In fact, we claim that for
each γ ≤ α, the map fγ,0 : S(0)→ S(γ) is a monomorphism. The proof proceeds by
transfinite induction on γ. In the case γ = 0, the map fγ,0 = idS(0) is an isomorphism.
If γ is a nonzero limit ordinal, then the desired result follows from our inductive
hypothesis, since the collection of monomorphisms in Set∆ is closed under filtered
colimits. If γ = β + 1 is a successor ordinal, then we can identify fγ,0 with the
composition

S(0) fβ,0−−→ S(β) fγ,β−−→ S(γ),

where fγ,β is a monomorphism by assumption and fβ,0 is a monomorphism by virtue
of our inductive hypothesis.

We now prove (b). Let T ′ be a collection of morphisms in Set∆ which is weakly saturated
and contains each of the inclusions ∂∆n ↪→ ∆n; we wish to show that every monomorphism
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i : A→ B belongs to T ′. For each k ≥ −1, let B(k) ⊆ B denote the simplicial subset given
by the union of the skeleton skk(B) (Construction 1.1.4.1) with the image of i. Then the
inclusion i can be written as a transfinite composition

A ≃ B(−1) ↪→ B(0) ↪→ B(1) ↪→ B(2) ↪→ · · ·

Since T ′ is closed under transfinite composition, it will suffice to show that each of the
inclusion maps B(k − 1) ↪→ B(k) belongs to T ′. Applying Proposition 1.1.4.12 to both A

and B, we obtain a pushout diagram

∐
σ∈Q

∂∆k //

��

∐
σ∈Q

∆k

��
B(k − 1) // B(k)

where Q denotes the collection of all nondegenerate k-simplices of B which do not belong
to the image of i. Since T ′ is closed under pushouts, we are reduced to showing that the
inclusion map

j :
∐
σ∈Q

∂∆k ↪→
∐
σ∈Q

∆k

belongs to T ′. By virtue of Theorem 4.7.1.34, the set Q admits a well-ordering. Then j can
be written as a transfinite composition of morphisms

jσ : (
∐
τ≥σ

∂∆k)⨿ (
∐
τ<σ

∆k) ↪→ (
∐
τ>σ

∂∆k)⨿ (
∐
τ≤σ

∆k),

each of which is a pushout of the inclusion ∂∆k ↪→ ∆k.

Proof of Proposition 1.5.5.4. Let p : X → Y be a trivial Kan fibration of simplicial sets
and let S be the collection of all morphisms in Set∆ which are weakly left orthogonal to
p. Then S contains each of the inclusions ∂∆n ↪→ ∆n (by virtue of our assumption that p
is a trivial Kan fibration) and is weakly saturated (Proposition 1.5.4.13). It follows from
Proposition 1.5.5.14 that every monomorphism of simplicial sets i : A ↪→ B belongs to S
(and is therefore weakly left orthogonal to p).

1.5.6 Uniqueness of Composition

0078
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Let C be an ∞-category. Given a composable pair of morphisms f : X → Y and
g : Y → Z in C, one can form a composition g ◦ f by choosing a 2-simplex σ with d2

0(σ) = g

and d2
2(σ) = f , as indicated in the diagram

Y

g

  
X

f

??

g◦f // Z.

In general, neither the 2-simplex σ nor the resulting morphism g ◦ f = d2
1(σ) is uniquely

determined. However, we saw in §1.4.4 that the composition g ◦ f is unique up to homotopy
(Proposition 1.4.4.2). We now prove a stronger result, which asserts that the 2-simplex σ
(hence also the composite morphism g ◦ f = d2

1(σ)) is unique up to a contractible space of
choices.

Theorem 1.5.6.1 (Joyal). 0079Let S be a simplicial set. The following conditions are equivalent:

(1) The simplicial set S is an ∞-category.

(2) The inclusion of simplicial sets Λ2
1 ↪→ ∆2 induces a trivial Kan fibration

Fun(∆2, S)→ Fun(Λ2
1, S).

Corollary 1.5.6.2. 007ALet f : X → Y and g : Y → Z be a composable pair of morphisms in
an ∞-category C, so that the tuple (g, •, f) determines a map of simplicial sets Λ2

1 → C (see
Proposition 1.2.4.7). Then the fiber product

Fun(∆2, C)×Fun(Λ2
1,C) {(g, •, f)}

is a contractible Kan complex.

Proof. Combine Theorem 1.5.6.1 with Remark 1.5.5.10.

Remark 1.5.6.3. 007BIn the situation of Corollary 1.5.6.2, one can think of the simplicial set

Z = Fun(∆2, C) ×
Fun(Λ2

1,C)
{(g, •, f)}

as a “parameter space” for all choices of 2-simplex σ satisfying d2
0(σ) = g and d2

2(σ) = f

(note that such 2-simplices can be identified with the vertices of Z).

We will give the proof of Theorem 1.5.6.1 at the end of this section. First, let us note
one of its consequences.
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Proof of Theorem 1.5.3.7. Let S be a simplicial set and let D be an ∞-category. We wish
to show that the simplicial set Fun(S,D) is an ∞-category. By virtue of Theorem 1.5.6.1, it
will suffice to show that the restriction map

r : Fun(∆2,Fun(S,D))→ Fun(Λ2
1,Fun(S,D))

is a trivial Kan fibration. Note that we can identify r with the canonical map

Fun(S,Fun(∆2,D))→ Fun(S,Fun(Λ2
1,D)),

which is a trivial Kan fibration by virtue of Corollary 1.5.5.7 and Theorem 1.5.6.1.

We now introduce some terminology which will be useful for the proof of Theorem 1.5.6.1.

Definition 1.5.6.4.007C Let f : A→ B be a morphism of simplicial sets. We will say that f is
inner anodyne if it belongs to the weakly saturated class of morphisms generated by the
collection of all inner horn inclusions Λni ↪→ ∆n (so that 0 < i < n).

Remark 1.5.6.5.007D Let f : A→ B be an inner anodyne map of simplicial sets. Then f is a
monomorphism. This follows from the observation that the collection of monomorphisms
is weakly saturated (Proposition 1.5.5.14), since every inner horn inclusion Λn

i ↪→ ∆n is a
monomorphism.

Exercise 1.5.6.6.01C3 Let f : A ↪→ B be an inner anodyne morphism of simplicial sets. Show
that the underlying map on vertices A0 → B0 is a bijection.

Proposition 1.5.6.7.007E Let S be a simplicial set. The following conditions are equivalent:

(1) The simplicial set S is an ∞-category.

(2) For every inner anodyne map of simplicial sets i : A ↪→ B and every map f0 : A→ S,
there exists a map f : B → S such that f0 = f ◦ i.

Proof. The implication (2)⇒ (1) is immediate (since every inner horn inclusion Λni ↪→ ∆n

is inner anodyne). Conversely, if (1) is satisfied, then every inner horn inclusion Λni ↪→ ∆n

is weakly left orthogonal to the projection map p : S → ∆0. It then follows from Remark
1.5.4.14 that every inner anodyne map is weakly left orthogonal to p.

Variant 1.5.6.8.00J2 Let S be a simplicial set. The following conditions are equivalent:

(1) The simplicial set S is isomorphic to the nerve of a category.

(2) For every inner anodyne map of simplicial sets i : A ↪→ B and every map f0 : A→ S,
there exists a unique map f : B → S such that f0 = f ◦ i.
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Proof. Let us regard the simplicial set S as fixed, and let T be the collection of all morphisms
of simplicial sets i : A→ B for which the induced map HomSet∆(B,S)→ HomSet∆(A,S) is
bijective. Then T is weakly saturated (in the sense of Definition 1.5.4.12). It follows that
(2) is equivalent to the following a priori weaker assertion:

(2′) For every pair of integers 0 < i < n, the map HomSet∆(∆n, S) → HomSet∆(Λn
i , S) is

bijective.

The equivalence of (1) and (2′) is the content of Proposition 1.3.4.1.

We will deduce Theorem 1.5.6.1 from the following technical result:

Lemma 1.5.6.9 (Joyal). 007F

(a) For every monomorphism of simplicial sets i : A ↪→ B, the induced map

(B × Λ2
1)

∐
A×Λ2

1

(A×∆2) ⊆ B ×∆2

is inner anodyne.

(b) The collection of inner anodyne morphisms is generated (as a weakly saturated class) by
the inclusion maps

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2

for m ≥ 0.

Proof. Let T be the weakly saturated class of morphisms generated by all inclusions of the
form

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2,

and let S be the collection of all morphisms of simplicial sets A→ B for which the map

(B × Λ2
1)

∐
A×Λ2

1

(A×∆2) ⊆ B ×∆2

belongs to T . By construction, S contains all inclusions of the form ∂∆m ↪→ ∆m. Moreover,
since T is weakly saturated, the class S is also weakly saturated. It follows that every
monomorphism of simplicial sets belongs to S (Proposition 1.5.5.14). Consequently, to prove
Lemma 1.5.6.9, it will suffice to show that T coincides with the class of inner anodyne
morphisms of Set∆. We first show that every inner anodyne morphism belongs to T . Since T

https://kerodon.net/tag/007F
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is weakly saturated, we are reduced to showing that every inner horn inclusion f : Λni ↪→ ∆n

belongs to T . Since f belongs to S, the monomorphism

f : (∆n × Λ2
1)

∐
Λn

i ×Λ2
1

(Λni ×∆2) ⊆ ∆n ×∆2.

belongs to T . We conclude by observing that the morphism f is a retract of f . More
precisely, we have a commutative diagram of simplicial sets

Λni //

f

��

(∆n × Λ2
1) ∐

Λn
i ×Λ2

1
(Λni ×∆2) //

f

��

Λni

f

��
∆n s // ∆n ×∆2 r // ∆n,

where the maps s and r are given on vertices by the formulae

s(j) =


(j, 0) if j < i

(j, 1) if j = i

(j, 2) if j > i

r(j, k) =


j if j < i, k = 0
j if j > i, k = 2
i otherwise.

We now show that every morphism of T is inner anodyne. Since the collection of inner
anodyne morphisms is weakly saturated, it will suffice to show that the inclusion map

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2

is inner anodyne for each m ≥ 0. For each 0 ≤ i ≤ j < m, we let σij denote the (m+ 1)-
simplex of ∆m ×∆2 given by the map of partially ordered sets

fij : [m+ 1]→ [m]× [2]

fij(k) =


(k, 0) if 0 ≤ k ≤ i
(k − 1, 1) if i+ 1 ≤ k ≤ j + 1
(k − 1, 2) if j + 2 ≤ k ≤ m+ 1.

For each 0 ≤ i ≤ j ≤ m, we let τij denote the (m + 2)-simplex of ∆m ×∆2 given by the
map of partially ordered sets

gij : [m+ 2]→ [m]× [2]
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gij(k) =


(k, 0) if 0 ≤ k ≤ i
(k − 1, 1) if i+ 1 ≤ k ≤ j + 1
(k − 2, 2) if j + 2 ≤ k ≤ m+ 2.

We will regard each σij and τij as a simplicial subset of ∆m ×∆2.
Set X(0) = (∆m × Λ2

1) ∐
∂∆m×Λ2

1
(∂∆m ×∆2). For 0 ≤ j < m, we let

X(j + 1) = X(j) ∪ σ0j ∪ · · · ∪ σjj .

We have a chain of inclusions

X(j) ⊆ X(j) ∪ σ0j ⊆ · · · ⊆ X(j) ∪ σ0j ∪ · · · ∪ σjj = X(j + 1).

Each of these inclusions fits into a pushout diagram

Λm+1
i+1

//

��

X(j) ∪ σ0j ∪ · · · ∪ σ(i−1)j

��
σij // X(j) ∪ σ0j ∪ · · · ∪ σij ,

and is therefore inner anodyne. Set Y (0) = X(m), so that the inclusion X(0) ⊆ Y (0) is
inner anodyne. We now set Y (j + 1) = Y (j) ∪ τ0j ∪ · · · ∪ τjj for 0 ≤ j ≤ m. As before, we
have a chain of inclusions

Y (j) ⊆ Y (j) ∪ τ0j ⊆ · · · ⊆ Y (j) ∪ τ0j ∪ · · · ∪ τjj = Y (j + 1),

each of which fits into a pushout diagram

Λm+2
i+1

//

��

Y (j) ∪ τ0j ∪ · · · ∪ τ(i−1)j

��
τij // Y (j) ∪ τ0j ∪ · · · ∪ τij ,

and is therefore inner anodyne. It follows that each inclusion Y (j) ⊆ Y (j + 1) is inner
anodyne. Since the collection of inner anodyne morphisms is closed under composition, we
conclude that the inclusion map X(0) ↪→ Y (0) ↪→ Y (1) ↪→ · · ·Y (m+ 1) = ∆m ×∆2 is inner
anodyne, as desired.
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Proof of Theorem 1.5.6.1. Let S be a simplicial set and let p : Fun(∆2, S) → Fun(Λ2
1, S)

denote the restriction map. Then p is a trivial Kan fibration if and only if every lifting
problem

∂∆m //

��

Fun(∆2, S)

p

��
∆m

::

// Fun(Λ2
1, S)

admits a solution. Unwinding the definitions, we see that this is equivalent to the requirement
that every lifting problem of the form

(∆m × Λ2
1) ∐
∂∆m×Λ2

1

(∂∆m ×∆2)

i

��

// S

��
∆m ×∆2 //

77

∆0

admits a solution. Let T be the collection of all morphisms of simplicial sets which are
weakly left orthogonal to the projection S → ∆0. Then p is a trivial Kan fibration if and
only if T contains each of the inclusion maps

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2.

Since T is weakly saturated (Proposition 1.5.4.13), this is equivalent to the requirement that
T contains all inner anodyne morphisms (Lemma 1.5.6.9), which is in turn equivalent to the
requirement that S is an ∞-category (Proposition 1.5.6.7).

1.5.7 Universality of Path Categories

00J3 Let G be a directed graph, let G• denote the associated 1-dimensional simplicial set (see
Proposition 1.1.6.9), and let Path[G] denote the path category of G (Construction 1.3.7.1).
There is an evident map of simplicial sets u : G• → N•(Path[G]). By virtue of Proposition
1.3.7.5, this map exhibits Path[G] as the homotopy category of the simplicial set G•. In
other words, the path category Path[G] is universal among categories C which are equipped
with a G•-indexed diagram (see Definition 1.5.2.1). Our goal in this section is to establish a
variant of this statement in the setting of ∞-categories:

Theorem 1.5.7.1.00J4 Let G be a directed graph and let C be an ∞-category. Then composition
with the map of simplicial sets u : G• → N•(Path[G]) induces a trivial Kan fibration of
simplicial sets Fun(N•(Path[G]), C)→ Fun(G•, C).

https://kerodon.net/tag/00J3
https://kerodon.net/tag/00J4


124 CHAPTER 1. THE LANGUAGE OF ∞-CATEGORIES

More informally, Theorem 1.5.7.1 asserts that any G-indexed diagram in an ∞-category
C admits an essentially unique extension to a functor of ∞-categories N•(Path[G])→ C.

Example 1.5.7.2. 00J5Let G be the directed graph depicted in the diagram

• // • // •.

Then the map u : G• → N•(Path[G]) can be identified with the inclusion of simplicial sets
Λ2

1 ↪→ ∆2. In this case, Theorem 1.5.7.1 reduces to the statement that the map

Fun(∆2, C)→ Fun(Λ2
1, C)

is a trivial Kan fibration, which is equivalent to the assumption that C is an ∞-category by
virtue of Theorem 1.5.6.1.

We will deduce Theorem 1.5.7.1 from the following more precise assertion.

Proposition 1.5.7.3. 00J6Let G be a directed graph. Then the map of simplicial sets u : G• ↪→
N•(Path[G]) is inner anodyne (Definition 1.5.6.4).

Remark 1.5.7.4. 00J7Let G be a directed graph and let C be an ordinary category. Combining
Proposition 1.5.7.3 with Variant 1.5.6.8, we deduce that the canonical map

HomSet∆(N•(Path[G]),N•(C))→ HomSet∆(G•,N•(C))

is bijective. Combining this observation with Proposition 1.3.3.1, we obtain a bijection

HomCat(Path[G], C)→ HomSet∆(G•,N•(C)).

Allowing C to vary, we recover the assertion that u : G• → N•(Path[G]) exhibits Path[G] as
the homotopy category of G• (Proposition 1.3.7.5).

Let us first show that Proposition 1.5.7.3 implies Theorem 1.5.7.1.

Lemma 1.5.7.5. 00J8Let f : X ↪→ Y and f ′ : X ′ ↪→ Y ′ be monomorphisms of simplicial sets.
If f is inner anodyne, then the induced map

uf,f ′ : (Y ×X ′)
∐

(X×X′)
(X × Y ′) ↪→ Y × Y ′

is inner anodyne.

Proof. Let us regard the morphism f ′ : X ′ ↪→ Y ′ as fixed. Let T be the collection of all
morphisms f : X → Y for which the map uf,f ′ is inner anodyne. Then T is weakly saturated.
To prove Lemma 1.5.7.5, we must show that T contains all inner anodyne morphisms of

https://kerodon.net/tag/00J5
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simplicial sets. By virtue of Lemma 1.5.6.9, it will suffice to show that T contains every
morphism of the form

ui,j : (B × Λ2
1)

∐
A×Λ2

1

(A×∆2) ⊆ B ×∆2,

where i : A ↪→ B is a monomorphism of simplicial sets and j : Λ2
1 ↪→ ∆2 is the inclusion.

Setting
A′ = (B ×X ′)

∐
(A×X′)

(A× Y ′) B′ = B × Y ′,

we are reduced to the problem of showing that the map

ui′,j : (B′ × Λ2
1)

∐
A′×Λ2

1

(A′ ×∆2) ⊆ B′ ×∆2,

is inner anodyne, which follows from Lemma 1.5.6.9.

Proposition 1.5.7.6.00J9 Let C be an ∞-category and let f : X ↪→ Y be an inner anodyne
morphism of simplicial sets. Then the induced map p : Fun(Y, C)→ Fun(X, C) is a trivial
Kan fibration.

Proof. To show that p is a trivial Kan fibration, it will suffice to show that it is weakly right
orthogonal to every monomorphism of simplicial sets f ′ : X ′ ↪→ Y ′. This is equivalent to the
assertion that every map of simplicial sets

g0 : (Y ×X ′)
∐

(X×X′)
(X × Y ′)→ C

can be extended to a map g : Y × Y ′ → C. This follows from Proposition 1.5.6.7, since C is
an ∞-category and the map

uf,f ′ : (Y ×X ′)
∐

(X×X′)
(X × Y ′) ↪→ Y × Y ′

is inner anodyne (Lemma 1.5.7.5).

Proof of Theorem 1.5.7.1. Let G be a graph and let C be an ∞-category; we wish to show
that the canonical map

Fun(N•(Path[G]), C)→ Fun(G•, C)

is a trivial Kan fibration. This follows from Proposition 1.5.7.6, since the inclusion G• ↪→
N•(Path[G]) is inner anodyne (Proposition 1.5.7.3).

Before giving the proof of Proposition 1.5.7.3, let us illustrate its contents with some
examples.

https://kerodon.net/tag/00J9
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Example 1.5.7.7 (The Spine of a Simplex). 00JALet n ≥ 0 and let ∆n be the standard n-simplex
(Example 1.1.0.9). We let Spine[n] denote the simplicial subset of ∆n whose k-simplices are
monotone maps σ : [k] → [n] satisfying σ(k) ≤ σ(0) + 1. We will refer to Spine[n] as the
spine of the simplex ∆n. More informally, it is comprised of all vertices of ∆n, together with
those edges which join adjacent vertices. The spine Spine[n] is a simplicial set of dimension
≤ 1, which we can identify with the directed graph G depicted in the diagram

0 // 1 // 2 // · · · // n.

Under this identification, the map u : G• → N•(Path[G]) corresponds to the inclusion
Spine[n] ↪→ ∆n (see Example 1.3.7.2). Invoking Proposition 1.5.7.3 and Theorem 1.5.7.1, we
obtain the following:

(a) The inclusion Spine[n] ↪→ ∆n is inner anodyne.

(b) For any ∞-category C, the restriction map Fun(∆n, C) → Fun(Spine[n], C) is a trivial
Kan fibration.

Remark 1.5.7.8 (The Generalized Associative Law). 00JBLet C be an ordinary category and let
n ≥ 0 be an integer. Applying Remark 1.5.7.4 to the inner anodyne inclusion Spine[n] ↪→ ∆n

of Example 1.5.7.7, we deduce that every diagram

X0
f1−→ X1

f2−→ X2 → · · ·
fn−→ Xn

can be extended uniquely to a functor [n] → C. In particular, it shows that C satisfies
the “generalized associative law”: the iterated composition fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 is well-
defined (that is, it does not depend on a choice of parenthesization). In essence, Proposition
1.5.7.3 can be regarded as an extension of this generalized associative law to the setting of
∞-categories.

Remark 1.5.7.9. 01C4Let C be an ∞-category and let hC denote its homotopy category
(Definition 1.4.5.3). Then the canonical map C → N•(hC) is an epimorphism of simplicial
sets: that is, it induces a surjection on n-simplices for each n ≥ 0. To prove this, we note
that there is a commutative diagram

HomSet∆(∆n, C) //

��

HomSet∆(∆n,N•(hC))

∼

��
HomSet∆(Spine[n], C) // HomSet∆(Spine[n],N•(hC)),

https://kerodon.net/tag/00JA
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where the left vertical map is surjective (Example 1.5.7.7) and the right vertical map is
bijective (Remark 1.5.7.8). It therefore suffices to show that the bottom horizontal map is
surjective: that is, every sequence of composable morphisms

X0
f1−→ X1

f2−→ X2
f3−→ X3 → · · ·

fn−→ Xn

in the homotopy category hC can be lifted to a sequence of composable morphisms in C,
which is immediate from the definition of hC.

Example 1.5.7.10 (The Simplicial Circle).00JC Let ∆1/ ∂∆1 denote the simplicial set obtained
from ∆1 by collapsing the boundary ∂∆1 to a point, so that we have a pushout diagram of
simplicial sets

∂∆1 //

��

∆1

��
∆0 // ∆1/ ∂∆1 .

We will refer to ∆1/ ∂∆1 as the simplicial circle; note that the geometric realization |∆1/ ∂∆1 |
is isomorphic to the standard circle S1 as a topological space. The simplicial set ∆1/ ∂∆1

has dimension ≤ 1, and can therefore be identified with the directed graph G depicted in
the diagram

•
��

Note that the path category Path[G] can be identified with the category B Z≥0 associated
to the monoid Z≥0 of nonnegative numbers under addition (Example 1.3.7.4) whose nerve is
the simplicial set B• Z≥0 of Construction 1.3.2.5. Invoking Proposition 1.5.7.3 and Theorem
1.5.7.1, we obtain the following:

(a) The inclusion of simplicial sets ∆1/ ∂∆1 ↪→ B• Z≥0 is inner anodyne.

(b) For any ∞-category C, the restriction map Fun(B• Z≥0, C) → Fun(∆1/ ∂∆1, C) is a
trivial Kan fibration.

If C is an ∞-category, then a morphism of simplicial sets ∆1/ ∂∆1 → C can be identified
with a pair (X, f), where X is an object of C and f : X → X is an endomorphism of X
(Definition 1.4.1.5). Theorem 1.5.7.1 then guarantees that the pair (X, f) can be extended
to a functor of ∞-categories B• Z≥0 → C.

Example 1.5.7.11 (Free Monoids).00JD Let M be the free monoid generated by a set E. Then
we can identify BM with the path category Path[G] of a directed graph G satisfying

Vert(G) = {x} Edge(G) = E;

https://kerodon.net/tag/00JC
https://kerodon.net/tag/00JD
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see Example 1.3.7.3. Invoking Proposition 1.5.7.3 and Theorem 1.5.7.1, we obtain the
following:

(a) The inclusion of simplicial sets G• ↪→ B•M is inner anodyne.

(b) For any ∞-category C, the restriction map Fun(B•M, C)→ Fun(G•, C) is a trivial Kan
fibration.

Note that if C is an ∞-category, then a map of simplicial sets σ0 : G• → C can be identified
with a choice of object X ∈ C together with a collection of morphisms {fe : X → X}e∈E
indexed by E. It follows from (b) that any such map admits an (essentially unique) extension
to a functor σ : B•M → C, which we can interpret as an action of the monoid M on the
object X ∈ C.

Proof of Proposition 1.5.7.3. Let G be a directed graph and let Path[G] denote its path
category. By definition, a morphism from x ∈ Vert(G) to y ∈ Vert(G) in the category
Path[G] is given by a sequence of edges e⃗ = (em, em−1, . . . , e1) satisfying

s(e1) = x t(ei) = s(ei+1) t(em) = y.

In this case, we will refer to m as the length of the morphism e⃗ and write m = ℓ(e⃗). If
σ : ∆n → N•(Path[G]) is an n-simplex given by a diagram

x0
e⃗1−→ x1

e⃗2−→ · · · e⃗n−→ xn

in Path[G], we define the length ℓ(σ) to be the sum ℓ(e⃗1) + · · · + ℓ(e⃗n) = ℓ(e⃗n ◦ · · · ◦ e⃗1).
For each positive integer k, let N≤k• (Path[G]) denote the simplicial subset of N•(Path[G])
consisting of those simplices having length ≤ k. We then have inclusions

N≤1
• (Path[G]) ⊆ N≤2

• (Path[G]) ⊆ N≤3
• (Path[G]) ⊆ N≤4

• (Path[G]) ⊆ · · · ,

where N≤1
• (Path[G]) = G• and N•(Path[G]) = ⋃ N≤k• (Path[G]). Consequently, to show that

the inclusion G• ↪→ N•(Path[G]) is inner anodyne, it will suffice to show that each of the
inclusion maps N≤k• (Path[G]) ↪→ N≤k+1

• (Path[G]) is inner anodyne.
We henceforth regard the integer k ≥ 1 as fixed. Let σ : ∆n → N•(Path[G]) be an

n-simplex of N•(Path[G]) having length k + 1, corresponding to a diagram

x0
e⃗1−→ x1

e⃗2−→ · · · e⃗n−→ xn

as above. Note that σ is nondegenerate if and only if each e⃗i has positive length. We will
say that σ is normalized if it is nondegenerate and ℓ(e⃗1) = 1. Let S(n) be the collection of
all normalized n-simplices of N≤k+1

• (Path[G]) having length k + 1. We make the following
observations:



1.5. FUNCTORS OF ∞-CATEGORIES 129

(i) If σ belongs to S(n), then the faces dn0 (σ) and dnn(σ) have length ≤ k, and are therefore
contained in N≤k• (Path[G]).

(ii) If σ belongs to S(n) and 1 < i < n, then the face dni (σ) is a normalized (n− 1)-simplex
of N≤k+1

• (Path[G]) of length k + 1, and therefore belongs to S(n− 1).

(iii) If σ belongs to S(n), then the face dn1 (σ) is not normalized. Moreover, the construction
σ 7→ dn1 (σ) induces a bijection from S(n) to the collection of (n − 1)-simplices of
N≤k+1
• (Path[G]) which are nondegenerate, of length k + 1, and not normalized.

For each n ≥ 1, let X(n) denote the simplicial subset of N≤k+1
• (Path[G]) given by the

union of the (n− 1)-skeleton skn−1(N≤k+1
• (Path[G])), the simplicial set N≤k• (Path[G]), and

the collection of normalized n-simplices of N≤k+1
• (Path[G]). We have inclusions

X(1) ⊆ X(2) ⊆ X(3) ⊆ X(4) ⊆ · · · ,

where N≤k• (Path[G]) = X(1) and N≤k+1
• (Path[G]) = ⋃

nX(n). It will therefore suffice to
show that the inclusion maps X(n−1) ↪→ X(n) are inner anodyne for n ≥ 2. We conclude by
observing that (i), (ii), and (iii) guarantee the existence of a pushout diagram of simplicial
sets ∐

σ∈S(n) Λn1 //

��

∐
σ∈S(n) ∆n

��
X(n− 1) // X(n).



Chapter 2

Examples of ∞-Categories

007JIn Chapter 1, we introduced the notion of an ∞-category: that is, a simplicial set which
satisfies the weak Kan extension condition (Definition 1.4.0.1). The theory of ∞-categories
can be understood as a synthesis of classical category theory and algebraic topology. This
perspective is supported by the two main examples of∞-categories that we have encountered
so far:

• Every ordinary category C can be regarded as an ∞-category, by identifying C with
the simplicial set N•(C) of Construction 1.3.1.1.

• Every Kan complex is an ∞-category. In particular, for every topological space X,
the singular simplicial set Sing•(X) is an ∞-category.

Beware that, individually, both of these examples are rather special. An ∞-category C
can be regarded as a mathematical structure which encodes information not only about
objects and morphisms (given by the vertices and edges of C, respectively), but also about
homotopies between morphisms (Definition 1.4.3.1). When C is (the nerve of) an ordinary
category, the notion of homotopy is trivial: two morphisms in C (having the same source
and target) are homotopic if and only if they are identical. On the other hand, if C is a
Kan complex, then every morphism in C is invertible up to homotopy (Proposition 1.4.6.10);
from a category-theoretic perspective, this is a very restrictive condition.

Our goal in this chapter is to supply a larger class of examples of ∞-categories, which
are more representative of the subject as a whole. To this end, we introduce three variants
of the nerve construction C 7→ N•(C) which can be used to produce ∞-categories out of
other (possibly more familiar) mathematical structures. To describe these constructions in
a uniform way, it will be convenient to employ the language of enriched category theory,
which we review in §2.1. Let A be a monoidal category: that is, a category equipped with a
tensor product operation ⊗ : A×A → A, which is unital and associative up to (specified)

130
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isomorphisms (see Definition 2.1.2.10). An A-enriched category is a mathematical structure
C consisting of the following data (see Definition 2.1.7.1):

• A collection Ob(C) whose elements we refer to as objects of C.

• For every pair of objects X,Y ∈ Ob(C), a mapping object HomC(X,Y ) ∈ A.

• For every triple of objects X,Y, Z ∈ Ob(C), a composition law

◦ : HomC(Y, Z)⊗HomC(X,Y )→ HomC(X,Z),

which we require to be unital and associative.

Taking our cues from Examples [?], [?], and [?], we consider three examples of this paradigm:

• Let A = Set∆ be the category of simplicial sets, equipped with the monoidal structure
given by cartesian product. In this case, we refer to an A-enriched category as a
simplicial category (Definition 2.4.1.1). In §2.4, we associate to each simplicial category
C a simplicial set Nhc

• (C), which we refer to as the homotopy coherent nerve of C
(Definition 2.4.3.5). Moreover, we show that if each of the simplicial sets HomC(X,Y )
is a Kan complex, then the homotopy coherent nerve Nhc

• (C) is an∞-category (Theorem
2.4.5.1).

• Let A = Ch(Z) be the category of chain complexes of abelian groups, equipped with
the monoidal structure given by tensor product of chain complexes. In this case, we
refer to an A-enriched category as a differential graded category (Definition 2.5.2.1).
In §2.5, we associate to each differential graded category C a simplicial set Ndg

• (C),
which we refer to as the differential graded nerve of C (Definition 2.5.3.7), and show
that Ndg

• (C) is always an ∞-category (Theorem 2.5.3.10).

• Let A = Cat be the category of (small) categories, equipped with the monoidal
structure given by the cartesian product. In this case, we refer to an A-enriched
category as a strict 2-category (Definition 2.2.0.1). This is a special case of the more
general notion of 2-category (or bicategory, in the terminology of Bénabou), which we
review in §2.2. In §2.3, we will associate to each 2-category C a simplicial set ND

• (C),
which we refer to as the Duskin nerve of C (Construction 2.3.1.1). Moreover, we show
that if each of the categories HomC(X,Y ) is a groupoid, then ND

• (C) is an ∞-category
(Theorem 2.3.2.1).

Simplicial categories, differential graded categories, and 2-categories are ubiquitous in
algebraic topology, homological algebra, and category theory, respectively. Consequently,
the constructions of this section furnish a rich supply of examples of ∞-categories.
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2.1 Monoidal Categories

00BLRecall that a monoid is a set M equipped with a multiplication map

M ×M →M (x, y) 7→ xy

which is unital and associative (Definition 1.3.2.1). In the setting of category theory, one
often encounters analogous structures which satisfy a more subtle form of associativity.

Example 2.1.0.1. 00BNLet k be a field and let U , V , and W be vector spaces over k. Recall
that a function b : U × V →W is said to be k-bilinear if it satisfies the identities

b(u+ u′, v) = b(u, v) + b(u′, v) b(u, v + v′) = b(u, v) + b(u, v′)

b(λu, v) = λb(u, v) = b(u, λv) for λ ∈ k.

We say that a k-bilinear map b : U × V → W is universal if, for any k-vector space W ′,
composition with b induces a bijection

{k-linear maps W →W ′} ≃ {k-bilinear maps U × V →W ′}.

If this condition is satisfied, then W is determined (up to unique isomorphism) by U and V ;
we refer to W as the tensor product of U and V and denote it by U ⊗k V . The construction
(U, V ) 7→ U ⊗k V then determines a functor

⊗k : Vectk×Vectk → Vectk,

which we will refer to as the tensor product functor. It is associative in the following sense:
for every triple of vector spaces U, V,W ∈ Vectk, there exists a canonical isomorphism

U ⊗k (V ⊗k W ) ∼−→ (U ⊗k V )⊗k W u⊗ (v ⊗ w) 7→ (u⊗ v)⊗ w.

Our goal in this section is to review the theory of monoidal categories, which axiomatizes
the essential features of Example 2.1.0.1. To simplify the discussion, we begin by developing
the nonunital version of this theory. In §2.1.1, we introduce the notion of a nonunital
monoidal structure on a category C (Definition 2.1.1.5). Roughly speaking, a nonunital
monoidal structure on C is a tensor product functor ⊗ : C ×C → C which is associative
up to isomorphism. More precisely, it consists of the functor ⊗ together with a choice of
isomorphism αX,Y,Z : X ⊗ (Y ⊗ Z) ∼−→ (X ⊗ Y )⊗ Z for every triple of objects X,Y, Z ∈ C
(these isomorphisms are called the associativity constraints of C). The isomorphisms αX,Y,Z
are required to depend functorially on X, Y , and Z, and to satisfy a further coherence
condition called the pentagon identity (this condition was introduced by MacLane in [40],
and is sometimes known as MacLane’s pentagon identity).
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By definition, a nonunital monoid M is a monoid if and only if there exists an element
e ∈M satisfying ex = x = xe for each x ∈M . If this condition is satisfied, then the element
e is uniquely determined. The categorical analogue of this statement is a bit more subtle.
Let X be an object of a nonunital monoidal category C, and let ℓX , rX : C → C denote the
functors given by ℓX(Y ) = X ⊗ Y and rX(Y ) = Y ⊗X. In §2.1.2, we define a unit in C to
be an object 1 with the property that the functors ℓ1 and r1 are fully faithful, together with
a choice of isomorphism υ : 1⊗ 1 ∼−→ 1. In this case, the pair (1, υ) is not unique; however,
it is unique up to (unique) isomorphism (Proposition 2.1.2.9). One can use υ to construct
natural isomorphisms

λY : 1⊗ Y ∼−→ Y ρY : Y ⊗ 1 ∼−→ Y,

so that 1 really behaves like a unit for the tensor product ⊗ (Construction 2.1.2.17). We
define a monoidal category to be a nonunital monoidal category C together with a choice of
unit (1, υ) (Definition 2.1.2.10). A basic prototype is the category Vectk of vector spaces over
a field k (equipped with the tensor product and associativity constraints given in Example
2.1.0.1, and the unit given by the object k ∈ Vectk). We give a more detailed description of
this and other examples in §2.1.3.

Most of the rest of this section is devoted to studying functors between monoidal
categories. We start in §2.1.4 with the nonunital case. If C and C′ are nonunital monoidal
categories, we define a nonunital monoidal functor from C to C′ to be a functor F : C → C′
together with a collection of isomorphisms

µX,Y : F (X)⊗ F (Y ) ∼−→ F (X ⊗ Y ),

which depend functorially on X,Y ∈ C and are compatible with the associativity constraints
on C and C′ (Definition 2.1.4.4). We also introduce the more general notion of nonunital
lax monoidal functor, where we do not require the morphisms µX,Y to be isomorphisms
(Definition 2.1.4.3). Both of these definitions have unital analogues, which we study in §2.1.6
and §2.1.5, respectively.

We conclude this section in §2.1.7 with a brief review of enriched category theory. If A is
a monoidal category, then an A-enriched category C consists of a collection Ob(C) of objects
of C, a collection of mapping objects HomC(X,Y ) ∈ A for each pair of objects X,Y ∈ Ob(C),
and a composition law

HomC(Y,Z)⊗HomC(X,Y )→ HomC(X,Z)

which is required to be unital and associative (see Definition 2.1.7.1). Enriched category
theory will play an important role throughout this chapter: we will be particularly interested
in the special case where A = Cat is the category of small categories (in which case we
recover the notion of strict 2-category, which we study in §2.2), where A = Set∆ is the
category of simplicial sets (in which case we recover the notion of simplicial category, which
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we study in §2.4), and where A = Ch(Z)(Ab) is the category of chain complexes of abelian
groups (In which case we recover the notion of differential graded category, which we study
in §2.5.

2.1.1 Nonunital Monoidal Categories

00BTLet Cat denote the category whose objects are (small) categories and whose morphisms
are functors. Then Cat admits finite products. One can therefore consider (nonunital)
monoids in Cat: that is, small categories C equipped with a strictly associative multiplication
⊗ : C ×C → C. For the convenience of the reader, we spell out this definition in detail (and
abandon the smallness assumption on C):

Definition 2.1.1.1. 00BULet C be a category. A nonunital strict monoidal structure on C is a
functor

⊗ : C ×C → C (X,Y ) 7→ X ⊗ Y

which is strictly associative in the following sense:

• For every triple of objects X,Y, Z ∈ C, we have an equality X⊗ (Y ⊗Z) = (X⊗Y )⊗Z
(as objects of C).

• For every triple of morphisms f : X → X ′, g : Y → Y ′, h : Z → Z ′, we have an
equality

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

of morphisms in C from the object X ⊗ (Y ⊗ Z) = (X ⊗ Y ) ⊗ Z to the object
X ′ ⊗ (Y ′ ⊗ Z ′) = (X ′ ⊗ Y ′)⊗ Z ′.

A nonunital strict monoidal category is a pair (C,⊗), where C is a category and ⊗ : C ×C → C
is a nonunital strict monoidal structure on C.

Remark 2.1.1.2. 00BVWe will often abuse terminology by identifying a nonunital strict monoidal
category (C,⊗) with the underlying category C. If we refer to a category C as a nonunital
strict monoidal category, we implicitly assume that C has been endowed with a tensor
product functor ⊗ : C ×C → C which is strictly associative in the sense of Definition 2.1.1.1.

Example 2.1.1.3. 00BWLet M be a set, which we regard as a category having only identity
morphisms. Then nonunital strict monoidal structures on M (in the sense of Definition
2.1.1.1) can be identified with nonunital monoid structures on M (in the sense of Variant
1.3.2.8). In particular, any nonunital monoid can be regarded as a nonunital strict monoidal
category (having only identity morphisms).
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Example 2.1.1.4 (Endomorphism Categories).00BX Let C be a category, and let End(C) =
Fun(C, C) denote the category of functors from C to itself. Then the composition functor

◦ : Fun(C, C)× Fun(C, C)→ Fun(C, C) (F,G) 7→ F ◦G;

is a nonunital strict monoidal structure on End(C).

For many purposes, Definition 2.1.1.1 is too restrictive. Note that if k is a field, then the
tensor product functor ⊗k : Vectk×Vectk → Vectk of Example 2.1.0.1 does not quite fit the
framework described in Definition 2.1.1.1. Given vector spaces X, Y , and Z over k, there
is no reason to expect the iterated tensor products X ⊗k (Y ⊗k Z) and (X ⊗k Y )⊗k Z to
be identical. In fact, this is impossible to determine based from the definition sketched in
Example 2.1.0.1. To construct the functor ⊗k explicitly, we need to make certain choices:
namely, a choice of universal bilinear map b : U ×V → U ⊗k V for every pair of vector spaces
U, V ∈ Vectk. Without an explicit convention for how these choices are to be made, we
cannot answer the question of whether the vector spaces X ⊗k (Y ⊗k Z) and (X ⊗k Y )⊗k Z
are equal. However, this is arguably the wrong question to consider: in the setting of vector
spaces, the appropriate notion of “sameness” is not equality, but isomorphism. The iterated
tensor products X ⊗k (Y ⊗k Z) and (X ⊗k Y ) ⊗k Z are isomorphic, because they can be
characterized by the same universal property: both are universal among vector spaces W
equipped with a k-trilinear map t : X × Y × Z → W . Even better, there is a canonical
isomorphism

αX,Y,Z : X ⊗k (Y ⊗k Z)→ (X ⊗k Y )⊗k Z,

which depends functorially on X, Y , and Z. Motivated by this example, we introduce the
following generalization of Definition 2.1.1.1:

Definition 2.1.1.5.00BY Let C be a category. A nonunital monoidal structure on C consists of
the following data:

• A functor ⊗ : C ×C → C, which we will refer to as the tensor product functor.

• A collection of isomorphisms αX,Y,Z : X⊗(Y ⊗Z) ≃ (X⊗Y )⊗Z, for X,Y, Z ∈ C, called
the associativity constraints of C. We demand that the associativity constraints αX,Y,Z
depend functorially on X,Y, Z in the following sense: for every triple of morphisms
f : X → X ′, g : Y → Y ′, and h : Z → Z ′, the diagram

X ⊗ (Y ⊗ Z)
αX,Y,Z

∼
//

f⊗(g⊗h)

��

(X ⊗ Y )⊗ Z

(f⊗g)⊗h

��
X ′ ⊗ (Y ′ ⊗ Z ′)

αX′,Y ′,Z′

∼
// (X ′ ⊗ Y ′)⊗ Z ′
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is commutative. In other words, we require that α = {αX,Y,Z}X,Y,Z∈C can be regarded
as a natural isomorphism from the functor

C ×C ×C (X,Y,Z)7→X⊗(Y⊗Z)−−−−−−−−−−−−−→ C

to the functor
C ×C ×C (X,Y,Z) 7→(X⊗Y )⊗Z−−−−−−−−−−−−−→ C .

The associativity constraints of C are required to satisfy the following additional condition:

(P ) For every quadruple of objects W,X, Y, Z ∈ C, the diagram of isomorphisms

W ⊗ ((X ⊗ Y )⊗ Z)
αW,X⊗Y,Z

∼
// (W ⊗ (X ⊗ Y ))⊗ Z

αW,X,Y ⊗idZ

∼
%%

W ⊗ (X ⊗ (Y ⊗ Z))

idW ⊗αX,Y,Z

∼

99

αW,X,Y⊗Z

∼

**

((W ⊗X)⊗ Y )⊗ Z

(W ⊗X)⊗ (Y ⊗ Z)

αW⊗X,Y,Z

∼
44

commutes.

A nonunital monoidal category is a triple (C,⊗, α), where C is a category and (⊗, α) is a
nonunital monoidal structure on C.

Remark 2.1.1.6. 00BZIn the setting of Definition 2.1.1.5, we will refer to (P ) as the pentagon
identity. It is a prototypical example of a coherence condition: the associativity constraints
αX,Y,Z : X ⊗ (Y ⊗ Z) ≃ (X ⊗ Y ) ⊗ Z “witness” the requirement that the tensor product
is associative up to isomorphism, and the pentagon identity is a sort of “higher order”
associative law required of the witnesses themselves.

Example 2.1.1.7. 00C0Let C be a category equipped with a nonunital strict monoidal structure
⊗ : C ×C → C (in the sense of Definition 2.1.1.1). Then ⊗ determines a nonunital monoidal
structure on C (in the sense of Definition 2.1.1.5) by taking the associativity constraints
αX,Y,Z : X ⊗ (Y ⊗Z) ≃ (X ⊗ Y )⊗Z to be identity morphisms. Conversely, if C is equipped
with a nonunital monoidal structure (⊗, α) where each of the associativity constraints αX,Y,Z
is an identity morphism, then ⊗ : C ×C → C is a nonunital strict monoidal structure on C.

Remark 2.1.1.8. 00C1Let C be a category equipped with a nonunital monoidal structure (⊗, α).
We will often abuse terminology by identifying the nonunital monoidal structure (⊗, α) with
the underlying tensor product functor ⊗ : C ×C → C. If we refer to a functor ⊗ : C ×C → C
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as a nonunital monoidal structure on C, we implicitly assume that C has been equipped with
associativity constraints αX,Y,Z : X⊗(Y ⊗Z) ≃ (X⊗Y )⊗Z satisfying the pentagon identity
of Definition 2.1.1.5. Beware that, in the non-strict case, the associativity constraints are an
essential part of the data: it is possible to have inequivalent nonunital monoidal categories
(C,⊗, α) and (C′,⊗′, α′) with C = C′ and ⊗ = ⊗′ (see Example 2.1.3.3).

Remark 2.1.1.9 (Full Subcategories of Nonunital Monoidal Categories).00MH Let C be a category
equipped with a nonunital monoidal structure (⊗, α), and let C0 ⊆ C be a full subcategory.
Suppose that, for every pair of objects X,Y ∈ C0, the tensor product X ⊗ Y also belongs to
C0. Then C0 inherits a nonunital monoidal structure, with tensor product functor given by
the composition

C0×C0 ⊆ C ×C
⊗−→ C

(which factors through C0 by hypothesis), and associativity constraints given by those of C.

Remark 2.1.1.10 (Nonunital Monoidal Structures on Functor Categories).00MJ Let C and D
be categories. Then every nonunital monoidal structure (⊗, α) on D determines a nonunital
monoidal structure on the functor category Fun(C,D), whose underlying tensor product is
given by the composition

Fun(C,D)× Fun(C,D) ≃ Fun(C,D×D) ⊗◦−−→ Fun(C,D)

and whose associativity constraint assigns to each triple of functors F,G,H : C → D the
natural isomorphism

F ⊗ (G⊗H) ∼−→ (F ⊗G)⊗H C 7→ αF (C),G(C),H(C).

2.1.2 Monoidal Categories

00C2 We now introduce unital versions of Definitions 2.1.1.1 and 2.1.1.5.

Definition 2.1.2.1.00C3 Let C be a category. A strict monoidal structure on C is a nonunital
strict monoidal structure ⊗ : C ×C → C for which there exists an object 1 ∈ C satisfying the
following condition:

(∗) For every object X ∈ C, we have X ⊗ 1 = X = 1⊗X (as objects of C). Moreover, for
every morphism f : X → X ′ in C, we have f ⊗ id1 = f = id1⊗f (as morphisms from
X to X ′).

A strict monoidal category is a pair (C,⊗), where C is a category and ⊗ : C ×C → C is a
strict monoidal structure on C.
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Remark 2.1.2.2. 00C4Let C be a nonunital strict monoidal category. We will say that an object
1 ∈ C is a strict unit if it satisfies condition (∗) of Definition 2.1.2.1. Note that if such an
object exists, then it is uniquely determined: it can be characterized as the unit element of
the monoid Ob(C).

It follows from Remark 2.1.2.2 that the notion of strict unit is not invariant under
isomorphism. To address this, it will be convenient to consider a more general notion of
unit object, which makes sense in the non-strict setting as well. We will use an efficient
formulation due to Saavedra ([49]); see also [38]. To motivate the definition, we begin with
a simple observation about units in a more elementary setting.

Proposition 2.1.2.3. 00C5Let M be a nonunital monoid, let e be an element of M , and let
ℓe : M →M denote the function given by the formula ℓe(x) = ex. The following conditions
are equivalent:

(a) The element e is a left unit of M : that is, ℓe is the identity function from M to itself.

(b) The element e is idempotent (that is, it satisfies ee = e) and the function ℓe : M →M

is a bijection.

(c) The element e is idempotent and the function ℓe : M →M is a monomorphism.

Proof. The implications (a) ⇒ (b) ⇒ (c) are immediate. To complete the proof, assume
that e satisfies condition (c) and let x be an element of M . Using the assumption that e
is idempotent (and the associativity of the multiplication on M), we obtain an identity
ℓe(x) = ex = (ee)x = e(ex) = ℓe(ex). Since ℓe is a monomorphism, it follows that x = ex.

Corollary 2.1.2.4. 00C6Let M be a nonunital monoid. Then an element e ∈M is a unit if and
only if the following conditions are satisfied:

(i) The element e is idempotent: that is, we have ee = e.

(ii) The element e is left cancellative: that is, the function x 7→ ex is a monomorphism from
M to itself.

(iii) The element e is right cancellative: that is, the function x 7→ xe is a monomorphism
from M to itself.

We now adapt the characterization of Corollary 2.1.2.4 to the setting of nonunital
monoidal categories.

Definition 2.1.2.5. 00C7Let C be a nonunital monoidal category. A unit of C is a pair (1, υ),
where 1 is an object of C and υ : 1⊗ 1 ∼−→ 1 is an isomorphism, which satisfies the following
additional condition:
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(∗) The functors
C → C C 7→ 1⊗ C

C → C C 7→ C ⊗ 1

are fully faithful.

Remark 2.1.2.6.00C8 Condition (∗) of Definition 2.1.2.5 depends only on the object 1 ∈ C, and
not on the choice of isomorphism υ : 1⊗ 1 ∼−→ 1.

Example 2.1.2.7.00C9 Let C be a strict monoidal category, and let 1 ∈ C be the strict unit
(Remark 2.1.2.2). Then (1, id1) is a unit of C.

Example 2.1.2.8.00CA Let M be a nonunital monoid, regarded as a (strict) nonunital monoidal
category having only identity morphisms (Example 2.1.1.3). Then the converse of Example
2.1.2.7 holds: a pair (1, υ) is a unit structure on M (in the sense of Definition 2.1.2.5) if and
only if 1 is a unit element of M and υ = id1. This is a restatement of Corollary 2.1.2.4.

If M is a nonunital monoid, then a unit element e ∈ M is unique if it exists. For
nonunital monoidal categories, the analogous statement is more subtle. If a nonunital
monoidal category C admits a unit (1, υ), then it has many others: we can replace 1 by any
object 1′ which is isomorphic to it, and υ by any choice of isomorphism υ′ : 1′ ⊗ 1′ ≃ 1′.
Nevertheless, we have the following strong uniqueness result:

Proposition 2.1.2.9 (Uniqueness of Units).00CB Let C be a nonunital monoidal category equipped
with units (1, υ) and (1′, υ′) (in the sense of Definition 2.1.2.5). Then there is a unique
isomorphism u : 1 ∼−→ 1′ for which the diagram

1⊗ 1

u⊗u

��

υ // 1

u

��
1′ ⊗ 1′ υ′ // 1′

commutes.

We will give the proof of Proposition 2.1.2.9 at the end of this section.

Definition 2.1.2.10.00CC Let C be a category. A monoidal structure on C is a nonunital
monoidal structure (⊗, α) on C (Definition 2.1.1.5) together with a choice of unit (1, υ)
(in the sense of Definition 2.1.2.5). A monoidal category is a category C together with a
monoidal structure (⊗, α,1, υ) on C. In this case, we refer to 1 as the unit object of C and
the isomorphism υ : 1⊗ 1 ∼−→ 1 as the unit constraint of C.
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Remark 2.1.2.11. 00CDIt is possible to adopt the following variant of Definition 2.1.2.10:

• A monoidal category is a nonunital monoidal category C which admits a unit, in the
sense of Definition 2.1.2.5.

This is essentially equivalent to Definition 2.1.2.10, since a unit (1, υ) of C is uniquely
determined up to unique isomorphism (Proposition 2.1.2.9). However, for our purposes it
will be more convenient to adopt the convention that a monoidal structure on a category C
includes a choice of unit object 1 ∈ C and unit constraint υ : 1⊗ 1 ≃ 1.

Remark 2.1.2.12. 00CELet C be a category. We will sometimes abuse terminology by identifying
a monoidal structure (⊗, α,1, υ) with the underlying nonunital monoidal structure (⊗, α)
on C (or with the underlying tensor product functor ⊗ : C ×C → C). This is essentially
harmless, by virtue of Remark 2.1.2.11. We will also abuse terminology (in a less harmless
way) by identifying a monoidal category (C,⊗, α,1, υ) with the underlying category C.

Notation 2.1.2.13. 00CFLet C be a monoidal category. We will generally use the symbol 1 to
denote the unit object of C. In situations where this notation is potentially confusing (for
example, if we are comparing C with another monoidal category), we will often disambiguate
by instead writing 1C for the unit object of C.

Example 2.1.2.14. 00CGLet C be a category. Then every strict monoidal structure ⊗ : C ×C → C
(in the sense of Definition 2.1.2.1) can be promoted to a monoidal structure (⊗, α,1, υ) on
C, by taking 1 to be the strict unit of C and the associativity and unit constraints to be
identity morphisms of C. Conversely, if C is equipped with a monoidal structure (⊗, α,1, υ)
for which the associativity and unit constraints are identity morphisms, then ⊗ : C ×C → C
is a strict monoidal structure on C and 1 is the strict unit.

Example 2.1.2.15. 00MKLet C be a monoidal category and let C0 ⊆ C be a full subcategory.
Assume that C0 contains the unit object 1 and is closed under the formation of tensor
products in C. Then C0 inherits the structure of a monoidal category: the underlying
nonunital monoidal structure on C0 is given by the construction of Remark 2.1.1.9, and the
unit (1, υ) of C0 coincides with the unit of C.

Example 2.1.2.16. 00MLLet C and D be categories. Then every monoidal structure on D
determines a monoidal structure on the functor category Fun(C,D), whose underlying
nonunital monoidal structure is given by the construction of Remark 2.1.1.10 and whose
unit object is the constant functor C → {1} ↪→ D (and whose unit constraint υ : 1⊗ 1 ≃ 1
is the constant natural transformation induced by the unit constraint of D).

Let C be a monoidal category. In general, the unit object 1 of C need not be strict, in
the sense that the functors

C → C X 7→ 1⊗X
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C → C X 7→ X ⊗ 1

need not be equal to the identity functor idC. However, they are always (canonically)
isomorphic to idC .

Construction 2.1.2.17 (Left and Right Unit Constraints).00CH Let C = (C,⊗, α,1, υ) be a
monoidal category. For each object X ∈ C, we have canonical isomorphisms

1⊗ (1⊗X) α1,1,X−−−−→ (1⊗ 1)⊗X υ⊗idX−−−−→ 1⊗X.

Since the functor Y 7→ 1⊗ Y is fully faithful, it follows that there is a unique isomorphism
λX : 1⊗X ∼−→ X for which the diagram

1⊗ (1⊗X)
α1,1,X

∼
//

id1⊗λX

∼

$$

(1⊗ 1)⊗X

υ⊗idX

∼

zz
1⊗X

commutes. We will refer to λX as the left unit constraint. Similarly, there is a unique
isomorphism ρX : X ⊗ 1 ≃ X for which the diagram

X ⊗ (1⊗ 1)
αX,1,1

∼
//

idX ⊗υ
∼

$$

(X ⊗ 1)⊗ 1

ρX⊗id1

∼

zz
X ⊗ 1

commutes; we refer to ρX as the right unit constraint.

Remark 2.1.2.18.00CJ Let C be a monoidal category. Then the left and right unit constraints
λX : 1⊗X ∼−→ X and ρX : X ⊗ 1 ∼−→ X depend functorially on X. In other words, for every
morphism f : X → Y , the diagram

1⊗X

id1⊗f

��

λX

∼
// X

f

��

X ⊗ 1ρX

∼
oo

f⊗id1

��
1⊗ Y λY

∼
// Y Y ⊗ 1ρY

∼
oo

is commutative.

https://kerodon.net/tag/00CH
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Proposition 2.1.2.19 (The Triangle Identity). 00CKLet C be a monoidal category with unit
object 1. Let X and Y be objects of C, and let ρX : X ⊗ 1 ≃ X and λY : 1⊗ Y → Y be the
right and left unit constraints of Construction 2.1.2.17. Then the diagram of isomorphisms

X ⊗ (1⊗ Y )
αX,1,Y

∼
//

idX ⊗λY

∼

%%

(X ⊗ 1)⊗ Y

ρX⊗idY

∼

yy
X ⊗ Y

is commutative.

Proof. We have a diagram of isomorphisms

X ⊗ ((1⊗ 1)⊗ Y ) α //

υY

��

(X ⊗ (1⊗ 1))⊗ Y

υY

��
α

��

X ⊗ (1⊗ Y ) α //

α

��

(X ⊗ 1)⊗ Y

id

vv
X ⊗ (1⊗ (1⊗ Y ))

α

FF

λY

<<

α

((

(X ⊗ 1)⊗ Y ρX // X ⊗ Y X ⊗ (1⊗ Y )λYoo

α

OO

((X ⊗ 1)⊗ 1)⊗ Y

ρX

bb

(X ⊗ 1)⊗ (1⊗ Y ).

λY

bb

ρX

<<

α

66

Here the outer cycle commutes by the pentagon identity (P ) of Definition 2.1.1.5, the upper
rectangle and outer quadrilaterals by the functoriality of the associativity constraint, the side
triangles by the definition of the left and right unit constraints, and the lower quadrilateral
by the functoriality of the tensor product ⊗. It follows that the middle square is also
commutative, which is equivalent to the statement of Proposition 2.1.2.19.

Exercise 2.1.2.20. 00CLLet C be a monoidal category with unit object 1. Show that, for every

https://kerodon.net/tag/00CK
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pair of objects X,Y ∈ C, the diagrams

X ⊗ (Y ⊗ 1)
αX,Y,1 //

idX ⊗ρY

%%

(X ⊗ Y )⊗ 1

ρX⊗Y

yy
X ⊗ Y

1⊗ (X ⊗ Y )

λX⊗Y

%%

α1,X,Y // (1⊗X)⊗ Y

λX⊗idY

yy
X ⊗ Y

are commutative (for a more general statement, see Proposition 2.2.1.16).

Corollary 2.1.2.21.00CM Let C be a monoidal category with unit object 1. Then the left and
right unit constraints λ1, ρ1 : 1⊗ 1 ∼−→ 1 are equal to the unit constraint υ : 1⊗ 1 ∼−→ 1.

Proof. Let X be any object of C. Then the left unit contraint λX is characterized by the
commutativity of the diagram

1⊗ (1⊗X)
α1,1,X

∼
//

id1⊗λX

∼

%%

(1⊗ 1)⊗X

υ⊗idX

∼

yy
1⊗X.

Using Proposition 2.1.2.19, we deduce that υ⊗ idX = ρ1⊗ idX as morphisms from (1⊗1)⊗X
to 1⊗X. In other words, the morphisms υ, ρ1 : 1⊗ 1→ 1 have the same image under the
functor

C → C Y 7→ Y ⊗X.

In the case X = 1, this functor is fully faithful; it follows that υ = ρ1. The equality υ = λ1
follows by a similar argument.

Proof of Proposition 2.1.2.9. Let C be a nonunital monoidal category equipped with units
(1, υ) and (1′, υ′). We can then regard C as a monoidal category with unit object 1 and unit
constraint υ. For each object X ∈ C, let λX : 1 ⊗X ∼−→ X be the left unit constraint of

https://kerodon.net/tag/00CM
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Construction 2.1.2.17. We wish to show that there is a unique isomorphism u : 1 ≃ 1′ for
which the outer rectangle in the diagram of isomorphisms

1⊗ 1 λ1 //

id1⊗u

��

1

u

��
1⊗ 1′

λ1′ //

u⊗id1′

��

1′

id1′

��
1′ ⊗ 1′ υ′ // 1′

is commutative. Since the upper square commutes (Remark 2.1.2.18), this is equivalent to
the commutativity of the lower square. The existence and uniqueness of u now follows from
the assumption that the functor X 7→ X ⊗ 1′ is fully faithful.

Remark 2.1.2.22. 00CNLet C be a nonunital monoidal category. Suppose we are given objects
1,1′ ∈ C together with isomorphisms

υ : 1⊗ 1 ≃ 1 υ′ : 1′ ⊗ 1′ ≃ 1′.

To carry out the proof of Proposition 2.1.2.9, it is sufficient to assume that the functors

C → C X 7→ 1⊗X

C → C X 7→ X ⊗ 1′

are fully faithful: the first assumption is sufficient to construct the left unit constraints of
Construction 2.1.2.17, and the second is used at the end of the proof. This can be regarded
as a categorical analogue of the observation that if a nonunital monoid admits a left unit e
and a right unit e′, then we must have e = e′.

2.1.3 Examples of Monoidal Categories

00CPWe now illustrate Definition 2.1.2.10 with some examples.

Example 2.1.3.1. 00CQLet k be a field and let Vectk denote the category of vector spaces over
k (where morphisms are k-linear maps). For every pair of vector spaces V,W ∈ Vectk, let
us choose a vector space V ⊗k W and a bilinear map

V ×W → V ⊗k W (v, w) 7→ v ⊗ w

https://kerodon.net/tag/00CN
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which exhibits V ⊗k W as a tensor product of V and W (see Example 2.1.0.1). The
construction (V,W ) 7→ V ⊗k W determines a functor

⊗k : Vectk×Vectk → Vectk,

whose value on a pair of k-linear maps φ : V → V ′, ψ : W → W ′ is characterized by the
identity

(φ⊗k ψ)(v ⊗ w) = φ(v)⊗ ψ(w).

For every triple of vector spaces U, V,W ∈ Vectk, there is a canonical isomorphism

αU,V,W : U ⊗k (V ⊗k W ) ∼−→ (U ⊗k V )⊗k W,

characterized by the identity αU,V,W (u⊗(v⊗w)) = (u⊗v)⊗w for u ∈ U , v ∈ V , and w ∈W .
The pair (⊗k, α) = (⊗k, {αU,V,W }U,V,W∈Vectk

) is then a nonunital monoidal structure on
the category Vectk, in the sense of Definition 2.1.1.5. We can upgrade this to a monoidal
structure by taking the unit object 1 to be the field k (regarded as a vector space over
itself), and the unit constraint υ : 1 ⊗k 1 ≃ 1 to be the linear map corresponding to the
multiplication on k (so that υ(a⊗ b) = ab).

Example 2.1.3.2 (Cartesian Products).00CR Let C be a category. Assume that every pair of
objects X,Y ∈ C admits a product in C. This product is not unique: it is only unique up to
(canonical) isomorphism. However, let us choose an object X × Y together with a pair of
morphisms

X
πX,Y←−−− X × Y

π′X,Y−−−→ Y

which exhibit X × Y as a product of X and Y in the category C. Then the construction
(X,Y ) 7→ X × Y determines a functor C ×C → C, given on morphisms by the construction

((f : X → X ′), (g : Y → Y ′)) 7→ ((f × g) : (X × Y )→ (X ′ × Y ′)),

where f × g is the unique morphism for which the diagram

X

f

��

X × Y
πX,Yoo

f×g

��

π′X,Y // Y

g

��
X ′ X ′ × Y ′

πX′,Y ′oo
π′

X′,Y ′ // Y ′

is commutative.

https://kerodon.net/tag/00CR
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For every triple of objects X,Y, Z ∈ C, there is a canonical isomorphism αX,Y,Z :
X × (Y × Z) ∼−→ (X × Y )× Z, which is characterized by the commutativity of the diagram

X × (Y × Z)
αX,Y,Z

∼
//

πX,Y×Z

��

**

(X × Y )× Z

tt π′X×Y,Z

��

X × Y

πX,Y

zz
π′X,Y

$$

Y × Z

πY,Z

zz
π′Y,Z

%%
X Y Z.

The category C admits a nonunital monoidal structure, with tensor product given by the
functor (X,Y ) 7→ X × Y , and associativity constraints given by (X,Y, Z) 7→ αX,Y,Z .

If we assume also that the category C has a final object 1 (so that C admits all finite
products), then we can upgrade the nonunital monoidal structure above to a monoidal
structure, where the unit object of C is 1 and the unit constraint υ is the unique morphism
from 1×1 to 1 in C. We refer to this monoidal structure as the cartesian monoidal structure
on C.

Example 2.1.3.3 (Group Cocycles). 00CSLet G be a group with identity element 1 ∈ G, and
let Γ be an abelian group on which G acts by automorphisms; we denote the action of an
element g ∈ G by (γ ∈ Γ) 7→ g(γ) ∈ Γ. A 3-cocycle on G with values in Γ is a map of sets

α : G×G×G→ Γ (x, y, z) 7→ αx,y,z.

which satisfies the equations

0087w(αx,y,z)− αwx,y,z + αw,xy,z − αw,x,yz + αw,x,y = 0 (2.1)

for every quadruple of elements w, x, y, z ∈ G.
Let C denote the category whose objects are the elements of G, and whose morphisms

are given by

HomC(g, h) =

Γ if g = h

∅ otherwise.

Using the action of G on Γ, we can construct a functor

⊗ : C ×C → C,

given on objects by (g, h) 7→ gh and on morphisms by

((γ : g → g), (δ : h→ h)) 7→ (γ + g(δ) : gh→ gh).

https://kerodon.net/tag/00CS
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Unwinding the definitions, one sees that upgrading the functor ⊗ to a nonunital monoidal
structure on the category (⊗, α) on C is equivalent to choosing a 3-cocycle α : G×G×G→ Γ.
More precisely, any map α : G×G×G→ Γ can be regarded as a natural transformation of
functors

• ⊗ (• ⊗ •)→ (• ⊗ •)⊗ •,

and pentagon identity (P ) of Definition 2.1.1.5 translates to the cocycle condition (2.1)
above.

For any choice of cocycle α : G×G×G→ Γ, we can upgrade the associated nonunital
monoidal structure (⊗, α) to a monoidal structure on the category C, by taking the unit
object of C to be the identity element 1 ∈ G and the unit constraint υ : 1⊗ 1 ≃ 1 to be the
element 0 ∈ Γ.

Example 2.1.3.4 (The Opposite of a Monoidal Category).00CT Let C be a category equipped
with a nonunital monoidal structure (⊗, {αX,Y,Z}X,Y,Z∈C). Then the opposite category Cop

inherits a nonunital monoidal structure, which can be described concretely as follows:

• The tensor product on Cop is obtained from the tensor product functor ⊗ : C ×C → C
by passing to opposite categories.

• Let X, Y , and Z be objects of C, and let us write Xop, Y op, and Zop for the
corresponding objects of Cop. Then the associativity constraint αXop,Y op,Zop for Cop is
the inverse of the associativity constraint αX,Y,Z for C.

If the nonunital monoidal category C is equipped with a unit structure (1, υ), then we can
regard (1op, υ−1) as a unit structure for the nonunital monoidal category Cop. In particular,
every monoidal structure on a category C determines a monoidal structure on the opposite
category Cop.

Example 2.1.3.5 (The Reverse of a Monoidal Structure).00CU Let C be a category equipped with
a nonunital monoidal structure (⊗, {αX,Y,Z}X,Y,Z∈C). Then we can equip C with another
nonunital monoidal structure (⊗rev, {αrev

X,Y,Z}X,Y,Z∈C), defined as follows:

• The tensor product functor ⊗rev : C ×C → C is given on objects by the formula
X ⊗rev Y = Y ⊗X (and similarly on morphisms).

• The associativity constraint on ⊗rev is given by the formula αrev
X,Y,Z = α−1

Z,Y,X .

We will refer to the nonunital monoidal structure (⊗rev, {αrev
X,Y,Z}X,Y,Z∈C) as the reverse of

the nonunital monoidal structure (⊗, {αX,Y,Z}X,Y,Z∈C). In this case, we will write Crev to
denote the nonunital monoidal category whose underlying category is C, equipped with the
nonunital monoidal structure (⊗rev, {αrev

X,Y,Z}X,Y,Z∈C).

https://kerodon.net/tag/00CT
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If the nonunital monoidal category C is equipped with a unit structure (1, υ), then we
can also regard (1, υ) as a unit structure for the nonunital monoidal category Crev. In other
words, if C is a monoidal category, then we can regard Crev as a monoidal category (having
the same underlying category and unit object, but “reversed” tensor product).

2.1.4 Nonunital Monoidal Functors

00CVWe now study functors between (nonunital) monoidal categories.

Definition 2.1.4.1 (Nonunital Strict Monoidal Functors). 00CWLet C and D be nonunital
monoidal categories (Definition 2.1.1.5). A nonunital strict monoidal functor from C to D is
a functor F : C → D with the following properties:

• The diagram of functors

C ×C ⊗ //

F×F

��

C

F

��
D×D ⊗ // D

is strictly commutative. In particular, for every pair of objects X,Y ∈ C, we have an
equality F (X)⊗ F (Y ) = F (X ⊗ Y ) of objects of D.

• For every triple of objects X,Y, Z ∈ C, the functor F carries the associativity constraint
αX,Y,Z : X⊗(Y ⊗Z) ≃ (X⊗Y )⊗Z (for the monoidal structure on C) to the associativity
constraint αF (X),F (Y ),F (Z) : F (X)⊗ (F (Y )⊗F (Z)) ≃ (F (X)⊗F (Y ))⊗F (Z) (for the
monoidal structure on D).

Example 2.1.4.2. 00CXLet C be a nonunital monoidal category. Then the identity functor idC
is a nonunital strict monoidal functor from C to itself.

For many applications, Definition 2.1.4.1 is too restrictive. In practice, the definition of
a (nonunital) monoidal structure ⊗ : C ×C → C on a category C often involves constructions
which are only well-defined up to isomorphism (see Examples 2.1.3.1 and 2.1.3.2). In
such cases, it is unreasonable to require that a functor F : C → D has the property that
F (X) ⊗ F (Y ) and F (X ⊗ Y ) are the same object of D. Instead, we should ask for any
isomorphism µX,Y : F (X)⊗ F (Y ) ∼−→ F (X ⊗ Y ). To get a well-behaved theory, we should
further demand that the isomorphisms µX,Y depend functorially on X and Y , and are
suitably compatible with the associativity constraints on C and D. We begin by considering
a slightly more general situation, where the morphisms µX,Y are not required to be invertible.

https://kerodon.net/tag/00CV
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Definition 2.1.4.3 (Nonunital Lax Monoidal Functors).00CY Let C and D be nonunital monoidal
categories, and let F : C → D be a functor from C to D. A nonunital lax monoidal structure
on F is a collection of morphisms µ = {µX,Y : F (X) ⊗ F (Y ) → F (X ⊗ Y )}X,Y ∈C which
satisfy the following pair of conditions:

(a) The morphisms µX,Y depend functorially on X and Y : that is, for every pair of
morphisms f : X → X ′, g : Y → Y ′ in C, the diagram

F (X)⊗ F (Y )
µX,Y //

F (f)⊗F (g)

��

F (X ⊗ Y )

F (f⊗g)

��
F (X ′)⊗ F (Y ′)

µX′,Y ′ // F (X ′ ⊗ Y ′)

commutes (in the category D). In other words, we can regard µ as a natural transfor-
mation of functors as indicated in the diagram

C ×C ⊗ //

F×F

��

C

F

��
D×D ⊗ //

µ

7?

D .

(b) The morphisms µX,Y are compatible with the associativity constraints on C and D in
the following sense: for every triple of objects X,Y, Z ∈ C, the diagram

F (X)⊗ (F (Y )⊗ F (Z))
αF (X),F (Y ),F (Z) //

idF (X)⊗µY,Z

��

(F (X)⊗ F (Y ))⊗ F (Z)

µX,Y ⊗idF (Z)

��
F (X)⊗ F (Y ⊗ Z)

µX,Y⊗Z

��

F (X ⊗ Y )⊗ F (Z)

µX⊗Y,Z

��
F (X ⊗ (Y ⊗ Z))

F (αX,Y,Z)
// F ((X ⊗ Y )⊗ Z)

commutes (in the category D).
A nonunital lax monoidal functor from C to D is a pair (F, µ), where F : C → D is a

functor and µ = {µX,Y }X,Y ∈C is a nonunital lax monoidal structure on F . In this case, we
will refer to the morphisms {µX,Y }X,Y ∈C as the tensor constraints of F .

https://kerodon.net/tag/00CY
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Definition 2.1.4.4. 00CZLet C and D be nonunital monoidal categories, and let F : C → D be
a functor from C to D. A nonunital monoidal structure on F is a lax nonunital monoidal
structure µ = {µX,Y }X,Y ∈C on F with the property that each of the tensor constraints
µX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y ) is an isomorphism.

A nonunital monoidal functor from C to D is a pair (F, µ), where F : C → D is a functor
and µ is a nonunital monoidal structure on F .

Example 2.1.4.5. 00D0Let k be a field and let Vectk denote the category of vector spaces
over k, endowed with the monoidal structure of Example 2.1.3.1. The construction of this
monoidal structure involved certain choices: for every pair of vector spaces U, V ∈ Vectk,
we selected a universal k-bilinear map bU,V : U × V → U ⊗k V . The collection of functions
b = {bU,V }U,V ∈Vectk

is then a nonunital lax monoidal structure on the forgetful functor
Vectk → Set (where we equip Set with the monoidal structure given by cartesian products;
see Example 2.1.3.2). Note that the tensor product functor ⊗k : Vectk×Vectk → Vectk is
characterized by the requirement that it is given on objects by (U, V ) 7→ U ⊗k V and satisfies
condition (a) of Definition 2.1.4.3, and the associativity constraint on Vectk is characterized
by the requirement that it satisfies condition (b) of Definition 2.1.4.3. Note that b is not a
nonunital monoidal structure: the bilinear maps bU,V : U × V → U ⊗k V are never bijective,
except in the trivial case where U ≃ 0 ≃ V .

Example 2.1.4.6. 00D1Let C and D be nonunital monoidal categories, and let F : C → D
be a nonunital strict monoidal functor. Then F admits a nonunital monoidal structure
{µX,Y }X,Y ∈C , where we take each µX,Y to be the identity morphism from F (X)⊗ F (Y ) =
F (X ⊗ Y ) to itself.

Conversely, if (F, µ) is a nonunital monoidal functor from C to D with the property
that the tensor constraints µX,Y is an identity morphism in D, then F is a nonunital strict
monoidal functor.

Example 2.1.4.7. 00D2Let M and M ′ be nonunital monoids, regarded as nonunital monoidal
categories having only identity morphisms (Example 2.1.1.3). Then nonunital lax monoidal
functors from M to M ′ (in the sense of Definition 2.1.4.3) can be identified with nonunital
monoid homomorphisms from M to M ′ (in the sense of Variant 1.3.2.8). Moreover, every
nonunital lax monoidal functor from M to M ′ is automatically strict.

Example 2.1.4.8 (The Left Regular Representation). 00D3Let C be a nonunital monoidal
category and let End(C) = Fun(C, C) be the category of functors from C to itself, endowed
with the strict monoidal structure of Example 2.1.1.4. For each object X ∈ C, let ℓX : C → C
denote the functor given on objects by the formula ℓX(Y ) = X ⊗ Y . The construction
X 7→ ℓX then determines a functor ℓ : C → Fun(C, C). For every pair of objects X,Y ∈ C,
there is a natural isomorphism µX,Y : ℓX ◦ ℓY ∼−→ ℓX⊗Y , whose value on an object Z ∈ C is
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given by the associativity constraint

(ℓX ◦ ℓY )(Z) = X ⊗ (Y ⊗ Z) αX,Y,Z−−−−→ (X ⊗ Y )⊗ Z = ℓX⊗Y (Z).

Then µ = {µX,Y }X,Y is a nonunital monoidal structure on the functor X 7→ ℓX : property
(a) of Definition 2.1.4.3 follows from the naturality of the associativity constraint on C, and
property (b) is a reformulation of the pentagon identity.

Warning 2.1.4.9.00D4 Let C and D be nonunital monoidal categories. A nonunital strict
monoidal functor from C to D is a functor F : C → D possessing certain properties. However,
a nonunital (lax) monoidal functor from C to D is a functor F : C → D together with
additional structure, given by the tensor constraints µX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y ). We
will often abuse terminology by identifying a nonunital (lax) monoidal functor (F, µ) with
the underlying functor F ; in this case, we implicitly assume that the tensor constraints µX,Y
have been specified.

Definition 2.1.4.10.00D5 Let C and D be nonunital monoidal categories. Let F, F ′ : C → D be
functors equipped with nonunital lax monoidal structures µ and µ′, respectively. We say
that a natural transformation of functors γ : F → F ′ is nonunital monoidal if, for every pair
of objects X,Y ∈ C, the diagram

F (X)⊗ F (Y )
µX,Y //

γ(X)⊗γ(Y )

��

F (X ⊗ Y )

γ(X⊗Y )

��
F ′(X)⊗ F ′(Y )

µ′X,Y // F ′(X ⊗ Y )

is commutative.
We let Funlax

nu (C,D) denote the category whose objects are nonunital lax monoidal functors
(F, µ) from C to D, and whose morphisms are nonunital monoidal natural transformations,
and we let Fun⊗nu(C,D) denote the full subcategory of Funlax

nu (C,D) spanned by the nonunital
monoidal functors (F, µ) from C to D.

Example 2.1.4.11 (Nonunital Algebras).00D6 Let C be a nonunital monoidal category and let
A be an object of C. A nonunital algebra structure on A is a map m : A⊗A→ A for which

https://kerodon.net/tag/00D4
https://kerodon.net/tag/00D5
https://kerodon.net/tag/00D6


152 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

the diagram

A⊗ (A⊗A) αA,A,A

//

id⊗m

yy

(A⊗A)⊗A

m⊗id

%%
A⊗A

m

**

A⊗A

m

ttA

is commutative. A nonunital algebra object of C is a pair (A,m), where A is an object of C
and m is a nonunital algebra structure on A. If (A,m) and (A′,m′) are nonunital algebra
objects of C, then we say that a morphism f : A→ A′ is a nonunital algebra homomorphism
if the diagram

A⊗A m //

f⊗f

��

A

f

��
A′ ⊗A′ m′ // A′

is commutative. We let Algnu(C) denote the category whose objects are nonunital algebra
objects of C and whose morphisms are nonunital algebra homomorphisms.

Let {e} denote the trivial monoid, regarded as a (strict) monoidal category having only
identity morphisms (Example 2.1.1.3). Then we can identify objects A ∈ C with functors
F : {e} → C (by means of the formula A = F (e)). Unwinding the definitions, we see that
nonunital lax monoidal structures on the functor F (in the sense of Definition 2.1.4.3) can be
identified with nonunital algebra structures on the object A = F (e). Under this identification,
nonunital monoidal natural transformations correspond to homomorphisms of nonunital
algebras. We therefore have an isomorphism of categories Funlax

nu ({e}, C) ≃ Algnu(C).

Example 2.1.4.12. 00D7Let Set denote the category of sets, endowed with the monoidal
structure given by cartesian product of sets (Example 2.1.3.2). For each set S, we can
identify nonunital algebra structures on S (in the sense of Example 2.1.4.11) with nonunital
monoid structures on S (in the sense of Variant 1.3.2.8). This observation supplies an
isomorphism of categories Algnu(Set) ≃ Monnu, where Monnu is the category of nounital
monoids.

Example 2.1.4.13. 00D8Let C and D be nonunital monoidal categories, and let Crev and Drev

denote the same categories with the reversed nonunital monoidal structure (Example 2.1.3.5).

https://kerodon.net/tag/00D7
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Then every functor F : C → D can be also regarded as a functor from Crev to Drev, which
we will denote by F rev. There is a canonical bijection

{Nonunital lax monoidal structures on F}

∼

��
{Nonunital lax monoidal structures on F rev},

which carries a nonunital lax monoidal structure µ to the nonunital lax monoidal structure
µrev given by the formula µrev

X,Y = µY,X . Using these bijections, we obtain a canonical iso-
morphism of categories Funlax

nu (C,D) ≃ Funlax
nu (Crev,Drev), which restricts to an isomorphism

Fun⊗nu(C,D) ≃ Fun⊗nu(Crev,Drev).

Example 2.1.4.14.00D9 Let C and D be nonunital monoidal categories, and regard the opposite
categories Cop and Dop as equipped with the nonunital monoidal structures of Example
2.1.3.4. Then every functor F : C → D determines a functor F op : Cop → Dop. There is a
canonical bijection

{Nonunital monoidal structures on F} ≃ {Nonunital monoidal structures on F op},

which carries a nonunital monoidal structure µ on F to a nonunital monoidal structure µ′
on F op, given concretely by µ′X,Y = µ−1

X,Y . Using these bijections, we obtain a canonical
isomorphism of categories Fun⊗nu(C,D)op ≃ Fun⊗nu(Cop,Dop).

Warning 2.1.4.15.00DA The analogue of Example 2.1.4.14 for nonunital lax monoidal functors
is false. The notion of nonunital lax monoidal functor is not self-opposite: in general, there
is no simple relationship between the categories Funlax

nu (C,D) and Funlax
nu (Cop,Dop).

Motivated by Warning 2.1.4.15, we introduce the following:

Variant 2.1.4.16.00MM Let C and D be nonunital monoidal categories, and let F : C → D be a
functor. A nonunital colax monoidal structure on F is a nonunital lax monoidal structure on
the opposite functor F op : Cop → Dop (Definition 2.1.4.3). In other words, a colax monoidal
structure on F is a collection of morphisms µ = {µX,Y : F (X ⊗ Y )→ F (X)⊗ F (Y )}X,Y ∈C
which satisfy the following pair of conditions:

(a) The morphisms µX,Y depend functorially on X and Y : that is, for every pair of

https://kerodon.net/tag/00D9
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morphisms f : X → X ′, g : Y → Y ′ in C, the diagram

F (X ⊗ Y )
µX,Y //

F (f⊗g)

��

F (X)⊗ F (Y )

F (f)⊗F (g)

��
F (X ′ ⊗ Y ′)

µX′,Y ′ // F (X ′)⊗ F (Y ′)

commutes (in the category D).

(b) For every triple of objects X,Y, Z ∈ C, the diagram

F (X ⊗ (Y ⊗ Z))
F (αX,Y,Z)

//

µX,Y⊗Z

��

F ((X ⊗ Y )⊗ Z)

µX⊗Y,Z

��
F (X)⊗ F (Y ⊗ Z)

id⊗µY,Z

��

F (X ⊗ Y )⊗ F (Z)

µX,Y ⊗id

��
F (X)⊗ (F (Y )⊗ F (Z))

αF (X),F (Y ),F (Z) // (F (X)⊗ F (Y ))⊗ F (Z)

commutes.

Construction 2.1.4.17 (Composition of Nonunital Monoidal Functors). 00DBLet C, D, and E
be nonunital monoidal categories, and suppose we are given a pair of functors F : C → D
and G : D → E . If µ = {µX,Y }X,Y ∈C is a nonunital lax monoidal structure on the functor
F and ν = {νU,V }U,V ∈D is a nonunital lax monoidal structure on G, then the composite
functor G ◦ F inherits a nonunital lax monoidal structure, which associates to each pair of
objects X,Y ∈ C the composite map

(G ◦ F )(X)⊗ (G ◦ F )(Y )
νF (X),F (Y )−−−−−−−→ G(F (X)⊗ F (Y )) G(µX,Y )

−−−−−→ (G ◦ F )(X ⊗ Y ).

This construction determines a composition law

◦ : Funlax
nu (D, E)× Funlax

nu (C,D)→ Funlax
nu (C, E).

Remark 2.1.4.18. 00DCIn the situation of Construction 2.1.4.17, suppose that µ and ν are
nonunital monoidal structures on F and G, respectively: that is, assume that all of the
tensor constraints

µX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y ) νU,V : G(U)⊗G(V )→ G(U ⊗ V )

https://kerodon.net/tag/00DB
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are isomorphisms. Then Construction 2.1.4.17 supplies a nonunital monoidal structure on
the composite functor G ◦ F . We therefore obtain a composition law

◦ : Fun⊗nu(D, E)× Fun⊗nu(C,D)→ Fun⊗nu(C, E).

We close this section by describing an alternative perspective on nonunital lax monoidal
functors. First, we need to review a bit of terminology.

Notation 2.1.4.19 (Oriented Fiber Products).00MN Let C, D, and E be categories, and suppose
we are given a pair of functors F : C → E and G : D → E . We let C ×̃E D denote the iterated
pullback C ×Fun({0},E) Fun([1], E)×Fun({1},E) D. We will refer to C ×̃E D as the oriented fiber
product of C with D over E . More concretely:

• An object of the oriented fiber product C ×̃E D is a triple (C,D, η) where C is an
object of the category C, D is an object of the category D, and η : F (C)→ G(D) is a
morphism in the category E .

• If (C,D, η) and (C ′, D′, η′) are objects of the oriented fiber product C ×̃E D, then a
morphism from (C,D, η) to (C ′, D′, η′) is a pair (u, v), where u : C → C ′ is a morphism
in the category C, v : D → D′ is a morphism in the category D, and the diagram

F (C) η //

F (u)

��

G(D)

G(v)

��
F (C ′) η′ // G(D′)

commutes in the category E .

Remark 2.1.4.20.02AP Let F : C → E and G : D → E be functors. The oriented fiber product
C ×̃E D is often referred to in the literature as the comma construction on the functors F
and G, and is commonly denoted by F ↓ G.

Proposition 2.1.4.21.00MP Let C and D be nonunital monoidal categories, let G : D → C be a
functor, and let C ×̃C D denote the oriented fiber product of Notation 2.1.4.19. Then:

• Let µ = {µD,D′}D,D′∈D be a nonunital lax monoidal structure on the functor G. Then
there is a unique nonunital monoidal structure ⊗µ on the oriented fiber product C ×̃C D
with the following properties:

(1) The forgetful functor

U : C ×̃C D → C ×D (C,D, η) 7→ (C,D)

is a strict nonunital monoidal functor.

https://kerodon.net/tag/00MN
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(2) On objects, the tensor product ⊗µ is given by the formula

(C,D, η)⊗µ (C ′, D′, η′) = (C ⊗ C ′, D ⊗D′, t(η, η′)),

where t(η, η′) is the composition C ⊗ C ′ η⊗η
′

−−−→ G(D)⊗G(D′)
µD,D′−−−−→ G(D ⊗D′).

• The construction µ 7→ ⊗µ induces a bijection

{Nonunital lax monoidal structures on G}

��
{Nonunital monoidal structures on C ×̃C D satisfying (1)}.

Remark 2.1.4.22. 00MQLet C and D be nonunital monoidal categories. We can summarize
Proposition 2.1.4.21 more informally as follows: for any functor G : D → C, choosing
a nonunital lax monoidal structure on G is equivalent to choosing a nonunital monoidal
structure on the oriented fiber product C ×̃C D which is compatible with the existing nonunital
monoidal structures on C and D, respectively.

Proof of Proposition 2.1.4.21. Unwinding the definitions, we see that to describe nonunital
monoidal structure on the category C ×̃C D satisfying condition (1), one must give the
following data:

• For every pair of objects (C,D, η) and (C ′, D′, η′) of the oriented fiber product C ×̃C D,
we must supply a tensor product (C,D, η)⊗ (C ′, D′, η′). By virtue of the assumption
that U is nonunital strict monoidal, this tensor product must be given as a triple
(C ⊗ C ′, D ⊗ D′, t(η, η′)), for some morphism t(η, η′) : C ⊗ C ′ → G(D ⊗ D′) in the
category D.

• For every pair of morphisms (u, v) : (C,D, η)→ (C,D, η) and (u′, v′) : (C ′, D′, η′)→
(C ′, D′, η′) in the oriented fiber product C ×̃C D, we must supply a tensor product
morphism (C ⊗ C ′, D ⊗ D′, t(η, η′)) → (C ⊗ C

′
, D ⊗ D

′
, t(η, η′)). Note that this

morphism is uniquely determined: for U to be a nonunital strict monoidal functor, it
must be the pair (u⊗ u′, v ⊗ v′). However, the existence of this morphism imposes the
following condition:

https://kerodon.net/tag/00MQ
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(i) If the diagrams

C
η //

u

��

G(D)

G(v)

��

C ′
η′ //

u′

��

G(D′)

G(v′)

��

C
η // G(D) C

′ η′ // G(D′)

commute (in the category C), then the diagram

C ⊗ C ′
t(η,η′) //

u⊗u′

��

G(D ⊗D′)

G(v⊗v′)

��

C ⊗ C ′
t(η,η′) // G(D ⊗D′)

also commutes.

• For every triple of objects (C,D, η), (C ′, D′, η′), and (C ′′, D′′, η′′) of the oriented fiber
product C ×̃C D, we must supply an associativity constraint

(C,D, η)⊗ ((C ′, D′, η′)⊗ (C ′′, D′′, η′′)) ≃ ((C,D, η)⊗ (C ′, D′, η′))⊗ (C ′′, D′′, η′′)

in C ×̃C D. By virtue of our assumption that U is nonunital strict monoidal, this
associativity constraint is uniquely determined: it must be the pair (αC,C′,C′′ , αD,D′,D′′)
given by the associativity constraints for the nonunital monoidal structures on C and D,
respectively. However, the existence of this morphism imposes the following condition:

(ii) For every triple of morphisms η : C → G(D), η′ : C ′ → G(D′), and η′′ : C ′′ →
G(D′′), the diagram

C ⊗ (C ′ ⊗ C ′′)
αC,C′,C′′ //

t(η,t(η′,η′′))

��

(C ⊗ C ′)⊗ C ′′

t(t(η,η′),η′′)

��
G(D ⊗ (D′ ⊗D′′))

G(αD,D′,D′′ ) // G((D ⊗D′)⊗D′′)

commutes (in the category C).
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If this condition is satisfied, then the associativity constraints are automatically
functorial and satisfy the pentagon identity (since the analogous conditions hold in
the categories C and D, respectively).

Given a collection of morphisms t(η, η′) satisfying these conditions, we define µ =
{µD,D′}D,D′∈D by the formula µD,D′ = t(idG(D), idG(D′)). Note that, if (C,D, η) and
(C ′, D′, η′) are arbitrary objects of the oriented fiber product C ×̃C D, then we have canonical
maps

(η, idD) : (C,D, η)→ (G(D), D, idG(D)) (η′, idD′) : (C ′, D′, η′)→ (G(D′), D′, idG(D′)).

Applying condition (i), we see that the morphism t(η, η′) can then be recovered as the
composition

C ⊗ C ′ η⊗η
′

−−−→ G(D)⊗G(D′)
µD,D′−−−−→ G(D ⊗D′).

To complete the proof, it will suffice to show that if we are given any system of morphisms
µ = {µD,D′ : G(D)⊗G(D′)→ G(D ⊗D′)}D,D′∈D and we define t(η, η′) as above, then µ is
a nonunital lax monoidal structure on G if and only if conditions (i) and (ii) are satisfied.

Using the formula for t(η, η′) in terms of µ, we can rewrite condition (i) as follows:

(i′) If the diagrams

C
η //

u

��

G(D)

G(v)

��

C ′
η′ //

u′

��

G(D′)

G(v′)

��

C
η // G(D) C

′ η′ // G(D′)

commute (in the category C), then the outer rectangle in the diagram

C ⊗ C ′ η⊗η′ //

u⊗u′

��

G(D)⊗G(D′)
µD,D′ //

G(v)⊗G(v′)

��

G(D ⊗D′)

G(v⊗v′)

��

C ⊗ C ′ η⊗η′ // G(D)⊗G(D′)
µ

D,D
′
// G(D ⊗D′)

commutes.

Note that the left square appearing in this diagram is automatically commutative. Assertion
(i′) is therefore a consequence of the following:
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(a) For every pair of morphisms v : D → D and v′ : D′ → D
′ in the category D, the diagram

G(D)⊗G(D′)
µD,D′ //

G(v)⊗G(v′)

��

G(D ⊗D′)

G(v⊗v′)

��

G(D)⊗G(D′)
µ

D,D
′
// G(D ⊗D′)

commutes (in the category C).

Conversely, if (i′) is satisfied, then (a) can be deduced by specializing to the case η = idG(D),
η′ = idG(D′), η = idG(D), and η′ = id

G(D′). It follows that (i) is satisfied if and only if (a) is
satisfied: that is, if and only if µ = {µD,D′}D,D′∈D is a natural transformation.

We can reformulate condition (ii) as follows:

(ii′) For every triple of morphisms η : C → G(D), η′ : C ′ → G(D′), and η′′ : C ′′ → G(D′′),
the outer rectangle in the diagram

C ⊗ (C ′ ⊗ C ′′)
αC,C′,C′′ //

η⊗(η′⊗η′′)

��

(C ⊗ C ′)⊗ C ′′

(η⊗η′)⊗η′′

��
G(D)⊗ (G(D′)⊗G(D′′))

αG(D),G(D′),G(D′′) //

idG(D)⊗µD,D′

��

(G(D)⊗G(D′))⊗G(D′′)

µD,D′⊗idG(D′′)

��
G(D)⊗G(D′ ⊗D′′)

µD,D′⊗D′′

��

(G(D)⊗G(D′))⊗G(D′′)

µD⊗D′,D′′

��
G(D ⊗ (D′ ⊗D′′))

G(αD,D′,D′′ ) // G((D ⊗D′)⊗D′′)

commutes (in the category C).

Since the upper square in this diagram automatically commutes (by the naturality of the
associativity constraints on C), assertion (ii′) is a consequence of the following simpler
assertion:



160 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

(b) For every triple of objects D,D′, D′′ ∈ D, the diagram

G(D)⊗ (G(D′)⊗G(D′′))
αG(D),G(D′),G(D′′) //

idG(D)⊗µD,D′

��

(G(D)⊗G(D′))⊗G(D′′)
µD,D′⊗idG(D′′)
��

G(D)⊗G(D′ ⊗D′′)
µD,D′⊗D′′

��

(G(D)⊗G(D′))⊗G(D′′)
µD⊗D′,D′′

��
G(D ⊗ (D′ ⊗D′′))

G(αD,D′,D′′ ) // G((D ⊗D′)⊗D′′)

commutes (in the category C).

Conversely, if (ii′) is satisfied, then (b) can be deduced by specializing to the case η = idG(D),
η′ = idG(D′), and η′′ = idG(D′′). We conclude by observing that conditions (a) and (b) assert
precisely that µ is a nonunital lax monoidal structure (Definition 2.1.4.3).

Remark 2.1.4.23 (Adjoint Functors). 00MRLet C and D be nonunital monoidal categories and

suppose we are given a pair of adjoint functors C F //D
G
oo , so that we have an isomorphism

of oriented fiber products C ×̃C D ≃ C ×̃D D (see Notation 2.1.4.19). Applying Proposition
2.1.4.21 (and the dual characterization of nonunital colax monoidal functors), we see that
the following are equivalent:

• The datum of a nonunital lax monoidal structure on the functor G : D → C.

• The datum of a nonunital colax monoidal structure on the functor F : C → D.

• The datum of a nonunital monoidal structure on the oriented fiber product C ×̃C D ≃
C ×̃D D which is compatible with the nonunital monoidal structures on C and D
(meaning that the projection map C ×̃C D → C ×D is a nonunital strict monoidal
functor).

2.1.5 Lax Monoidal Functors

00DDWe now introduce a unital version of Definition 2.1.4.3. To motivate the discussion, we
begin with a special case.

Definition 2.1.5.1. 00DELet C be a monoidal category with unit object 1, and let A be a
nonunital algebra object of C (Example 2.1.4.11) with multiplication m : A⊗A→ A. We
say that a morphism ϵ : 1→ A is a left unit for A if the composite map

A
λ−1

A−−→ 1⊗A ϵ⊗idA−−−−→ A⊗A m−→ A

https://kerodon.net/tag/00MR
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is the identity map from A to itself; here λA : 1⊗A ∼−→ A denotes the left unit constraint of
Construction 2.1.2.17. We say that ϵ is a right unit of A if the composite map

A
ρ−1

A−−→ A⊗ 1 idA⊗ϵ−−−−→ A⊗A m−→ A

is equal to the identity. We say that ϵ is a unit of A if it is both a left and a right unit of A.

By virtue of Example 2.1.4.11, we can view the theory of nonunital algebras as a special
case of the theory of nonunital lax monoidal functors F : C → D, where we take C to be
the trivial monoid {e} (regarded as a category having only identity morphisms). Definition
2.1.5.1 has an analogue for nonunital lax monoidal functors in general.

Definition 2.1.5.2.00DG Let C and D be monoidal categories with unit objects 1C and 1D,
respectively. Let F : C → D be a nonunital lax monoidal functor with tensor constraints
µ = {µX,Y }X,Y ∈C . Let ϵ : 1D → F (1C) be a morphism in D. We say that ϵ is a left unit for
F if, for every object X ∈ C, the left unit constraint λF (X) : 1D ⊗ F (X) ∼−→ F (X) in the
category D is equal to the composition

1D ⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1C)⊗ F (X)

µ1C ,X−−−−→ F (1C ⊗X) F (λX)−−−−→ F (X),

where λX : 1C ⊗ X
∼−→ X is the left unit constraint in the monoidal category C. We

say that ϵ is a right unit for F if, for every object X ∈ C, the right unit constraint
ρF (X) : F (X)⊗ 1D

∼−→ F (X) is equal to the composition

F (X)⊗ 1D
idF (X)⊗ϵ−−−−−−→ F (X)⊗ F (1C)

µX,1C−−−−→ F (X ⊗ 1C)
F (ρX)−−−−→ F (X).

We say that ϵ is a unit for F if it is both a left and a right unit for F .

Example 2.1.5.3.00DH Let C be a monoidal category and let A be a nonunital algebra object
of C, which we identify with a nonunital lax monoidal functor F : {e} → C as in Example
2.1.4.11. Then a map ϵ : 1→ A = F (e) is a unit (left unit, right unit) for A (in the sense
of Definition 2.1.5.1) if and only if it is a unit (left unit, right unit) for F (in the sense of
Definition 2.1.5.2).

We now show that if a nonunital lax monoidal functor F admits a unit ϵ, then ϵ is
uniquely determined. This is a consequence of the following:

Proposition 2.1.5.4.00DJ Let C and D be monoidal categories with unit objects 1C and 1D,
respectively, and let F : C → D be a nonunital lax monoidal functor. Suppose that F admits
a left unit ϵL : 1D → F (1C) and a right unit ϵR : 1D → F (1C). Then ϵL = ϵR.
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Proof. We first observe that there is a commutative diagram

1D ⊗ 1D
id⊗ϵR //

λ1D

��

1D ⊗ F (1C)

λF (1C)

$$

ϵL⊗id // F (1C)⊗ F (1C)
µ1C ,1C
��

F (1C ⊗ 1C)
F (λ1C )
��

1D
ϵR // F (1C);

the left square commutes by the naturality of the left unit constraints for C (Remark 2.1.2.18),
and the right square commutes by virtue of our assumption that ϵL is a left unit for C. Using
Corollary 2.1.2.21, we see that the unit constraints

υC : 1C ⊗ 1C
∼−→ 1C υD : 1D ⊗ 1D

∼−→ 1D

are equal to the left unit constraints λ1C and λ1D , respectively. It follows that the composition
ϵR ◦ υD coincides with the composition

1D ⊗ 1D
ϵL⊗ϵR−−−−→ F (1C)⊗ F (1C)

µ1C ,1C−−−−→ F (1C ⊗ 1C)
F (υC)−−−−→ F (1C).

A similar argument shows that this composition coincides with ϵL ◦ υD. Since υD is an
isomorphism, it follows that ϵR = ϵL.

Corollary 2.1.5.5. 00DKLet C and D be monoidal categories and let F : C → D be a nonunital
lax monoidal functor. Then F admits a unit ϵ : 1D → F (1C) if and only if it has both a left
unit and a right unit. In this case, the unit ϵ is unique.

Proposition 2.1.5.6. 00MSLet C and D be monoidal categories with unit objects 1C and 1D,
respectively. Let G : D → C be a functor equipped with a nonunital lax monoidal structure,
which we will identify with the corresponding nonunital monoidal structure on the oriented
fiber product C ×̃C D (see Proposition 2.1.4.21). Let ϵ : 1C → G(1D) be a morphism in C,
and regard the triple 1 = (1C ,1D, ϵ) as an object of C ×̃C D. Then:

(1) The morphism ϵ is a left unit for G if and only if, for every object (C,D, η) of the oriented
fiber product C ×̃C D, the left unit constraints λC : 1C ⊗ C ≃ C and λD : 1D ⊗D ≃ D
determine an isomorphism (λC , λD) : 1⊗ (C,D, η) ≃ (C,D, η) in the category C ×̃C D.

(2) The morphism ϵ is a right unit for G if and only if, for every object (C,D, η) of
the oriented fiber product C ×̃C D, the right unit constraints ρC : C ⊗ 1C ≃ C and
ρD : D ⊗ 1D ≃ D determine an isomorphism (ρC , ρD) : (C,D, η) ⊗ 1 ≃ (C,D, η) in
the category C ×̃C D.

https://kerodon.net/tag/00DK
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Proof. We will prove (1); the proof of (2) is similar. Fix an object (C,D, η) of the oriented
fiber product C ⊗C D. Unwinding the definitions, we see that the pair (λC , λD) determines a
morphism from 1⊗ (C,D, η) to (C,D, η) in C ×̃C D if and only if the outer rectangle of the
diagram

1C ⊗ C
λC //

id⊗η

��

C

η

��
1C ⊗G(D)

λG(D) //

ϵ⊗id

��

// G(D)

id

��

G(1D)⊗G(D)

µ

��
G(1D ⊗D) G(λD) // G(D)

is commutative. Here the upper square commutes by the functoriality of the left unit
constraints in C (Remark 2.1.2.18), and the commutativity of the lower rectangle follows
from the assumption that ϵ is a left unit. This proves the “only if” direction of (1). The
converse follows by specializing to the case where C = G(D) and η is the identity map.

Corollary 2.1.5.7.00MT Let C and D be monoidal categories with units (1C , υC) and (1D, υD),
respectively. Let G : D → C be a nonunital lax monoidal functor. Let ϵ : 1C → G(1D) be a
morphism in C and regard the triple 1 = (1C ,1D, ϵ) as an object of the oriented fiber product
C ×̃C D. The following conditions are equivalent:

(1) The morphism ϵ is a unit for G (in the sense of Definition 2.1.5.2).

(2) The pair υ = (υC , υD) is a morphism from 1⊗1 to 1 in the oriented fiber product C ×̃C D,
and the pair (1, υ) is a unit with respect to the tensor product ⊗µ of Proposition
2.1.4.21.

Proof. Assume first that (1) is satisfied. Then Proposition 2.1.5.6 implies that the functors

C ×̃C D → C ×̃C D X 7→ 1⊗X,X 7→ X ⊗ 1

are naturally isomorphic to the identity, and are therefore fully faithful. To complete the
proof of (2), it will suffice to show that the pair (υC , υD) is a morphism from 1⊗ 1 to 1 in

https://kerodon.net/tag/00MT
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C ×̃C D. This also follows from Proposition 2.1.5.6, by virtue of the identities υC = λ1C and
υD = λ1D (Corollary 2.1.2.21).

Now suppose that (2) is satisfied, so that we can regard C ×̃C D as a monoidal category
with unit (1, υ). It follows that the forgetful functor C ×̃C D → C ×D carries the left and
right unit constraints of C ×̃C D to the left and right unit constraints of C and D. Applying
Proposition 2.1.5.6, we conclude that ϵ is both a left and right unit for the nonunital lax
monoidal functor G.

Definition 2.1.5.8. 00DLLet C and D be monoidal categories and let F : C → D be a functor.
A lax monoidal structure on F is a nonunital lax monoidal structure µ = {µX,Y }X,Y ∈C
(Definition 2.1.4.3) for which there exists a unit ϵ : 1D → F (1C).

A lax monoidal functor from C to D is a pair (F, µ), where F : C → D is functor and µ

is a lax monoidal structure on F . In this case, we will refer to the morphism ϵ : 1D → F (1C)
as the unit of F .

Remark 2.1.5.9. 00DMLet C and D be monoidal categories and let F : C → D be a nonunital
lax monoidal functor. The condition that F is a lax monoidal functor depends only on the
underlying nonunital monoidal structures on C and D, and not on the particular choice of
units (1C , υC) and (1D, υD) for C and D, respectively (see Remark 2.1.2.11).

Combining Proposition 2.1.4.21 with Corollary 2.1.5.7, we obtain the following:

Corollary 2.1.5.10. 00MULet C and D be monoidal categories, let G : D → C be a functor, let
C ×̃C D be the oriented fiber product of Notation 2.1.4.19, and let U : C ×̃C D → C ×D denote
the forgetful functor (C,D, η) 7→ (C,D). Then the construction µ 7→ ⊗µ of Proposition
2.1.4.21 restricts to a bijection

{Lax monoidal structures on G}

��{
Monoidal structures on C ×̃C D

with U strict monoidal

}

(see Example 2.1.6.5).

Variant 2.1.5.11. 00MVLet C and D be monoidal categories and let F : C → D be a functor.
A colax monoidal structure on F is a lax monoidal structure on the opposite functor
F op : Cop → Dop: that is, a collection of maps µ = {µX,Y : F (X⊗Y )→ F (X)⊗F (Y )}X,Y ∈C
satisfying the requirements of Variant 2.1.4.16, together with the additional condition that
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there exists a counit ϵ : F (1C)→ 1D having the property that, for every object X ∈ C, the
left and right unit constraints of F (X) the inverses of the composite maps

F (X) F (λX)−−−−→ F (1C ⊗X)
µ1C ,X−−−−→ F (1C)⊗ F (X) ϵ⊗id−−−→ 1D ⊗ F (X)

F (X) F (ρX)−−−−→ F (X ⊗ 1C)
µX,1C−−−−→ F (X)⊗ F (1C) id⊗ϵ−−−→ F (X)⊗ 1C .

Remark 2.1.5.12 (Adjoint Functors).00MW Let C and D be monoidal categories and suppose

we are given a pair of adjoint functors C F //D
G
oo , given by an isomorphism of oriented fiber

products C ×̃C D ≃ C ×̃D D (see Notation 2.1.4.19). Applying Corollary 2.1.5.10 (and the
dual characterization of colax monoidal functors), we see that the following are equivalent:

• The datum of a lax monoidal structure on the functor G : D → C.

• The datum of a colax monoidal structure on the functor F : C → D.

• The datum of a monoidal structure on the oriented fiber product C ×̃C D ≃ C ×̃D D
which is compatible with the monoidal structures on C and D.

The compatibility conditions appearing in Definition 2.1.5.2 can be formulated more
directly in terms of the unit constraints of C and D (without referring the left and right unit
constraints of Construction 2.1.2.17).

Proposition 2.1.5.13.00DN Let C and D be monoidal categories with unit objects 1C and 1D,
respectively, let F : C → D be a nonunital lax monoidal functor, and let ϵ : 1D → F (1C) be a
morphism in C. Then ϵ is a left unit for F if and only if it satisfies the following pair of
conditions:

(1) The diagram
1D ⊗ 1D

ϵ⊗ϵ //

υD

��

F (1C)⊗ F (1C)

µ1C ,1C

��
F (1C ⊗ 1C)

F (υC)

��
1D ϵ // F (1C)

commutes (in the category D). Here υC and υD denote the unit constraints of C and
D, respectively.
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(2) For every object X ∈ C, the composite map

1D ⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1C)⊗ F (X)

µ1C ,X−−−−→ F (1C ⊗X)

is a monomorphism in the category C.

Moreover, if these conditions are satisfied, then the map

1D ⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1C)⊗ F (X)

µ1C ,X−−−−→ F (1C ⊗X)

is an isomorphism for each X ∈ C.

Example 2.1.5.14. 00DPIn the special case where C = {e}, we can identify a nonunital lax
monoidal functor F : C → D with a nonunital algebra object A of D. In this case, Proposition
2.1.5.13 asserts that a morphism ϵ : 1D → A is a left unit (in the sense of Definition 2.1.5.1)
if and only if the diagram

1D ⊗ 1D
ϵ⊗ϵ //

υ

��

A⊗A

m

��
1D ϵ // A

is commutative (that is, ϵ is idempotent) and the map

1D ⊗A
ϵ⊗idA−−−−→ A⊗A m−→ A

is a monomorphism in D (that is, ϵ is left cancellative). When D is the category of sets
(equipped with the cartesian monoidal structure of Example 2.1.3.2), this reduces to the
statement of Proposition 2.1.2.3.

Proof of Proposition 2.1.5.13. To simplify the notation, let us use the symbol 1 to denote
the unit objects of both C and D, υ : 1⊗ 1 ∼−→ 1 for the unit constraints of both C and D,
and λ for the unit constraints of both C and D. Let F : C → D be a functor equipped with
a nonunital lax monoidal structure µ = {µX,Y }X,Y ∈C . Suppose first that ϵ : 1→ F (1) is a
left unit for F . Then the diagram

1⊗ 1

λ1

��

id1⊗ϵ // 1⊗ F (1)
ϵ⊗idF (1) //

λF (1)

##

F (1)⊗ F (1)
µ1,1

��
F (1⊗ 1)

F (λ1)
��

1 ϵ // F (1)

https://kerodon.net/tag/00DP
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commutes: the region on the left commutes by the naturality of the left unit constraints for
D (Remark 2.1.2.18), and the region on the right commutes by virtue of our assumption
that ϵ is a left unit. The commutativity of the outer square shows that ϵ satisfies condition
(1) of Proposition 2.1.5.13 (by virtue of the fact that the unit constraints of C and D are
given by υ = λ1; see Corollary 2.1.2.21). For every object X ∈ C, the composition

1⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1)⊗ F (X) µ1,X−−−→ F (1⊗X) F (λX)−−−−→ F (X)

is the left unit constraint λF (X), which is an isomorphism. Since F (λX) is also an isomorphism,
it follows that the composition µ1,X ◦ (ϵ⊗ idF (X)) is an isomorphism.

Now suppose that ϵ satisfies conditions (1) and (2); we wish to show that it is a left unit
for F . Fix an object X ∈ C, and let f : 1⊗ F (X)→ F (X) denote the composition

1⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1)⊗ F (X) µ1,X−−−→ F (1⊗X) F (λX)−−−−→ F (X).

We wish to show that f is equal to the left unit constraint λF (X) for the monoidal category
D. Unwinding the definitions, this is equivalent to the assertion that id1⊗f is equal to the
composition

1⊗ (1⊗ F (X)) α1,1,X−−−−→ (1⊗ 1)⊗ F (X)
υ⊗idF (X)−−−−−−→ 1⊗ F (X).

By virtue of assumption (2), it will suffice to prove that these morphisms agree after
postcomposition with the monomorphism

1⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1)⊗ F (X) µ1,X−−−→ F (1⊗X).



168 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

This is equivalent to the commutativity of the outer rectangle in the diagram

1⊗ (1⊗ F (X)) ϵ //

ϵ⊗ϵ

&&
α

��

1⊗ (F (1)⊗ F (X))

ϵ

��

µ // 1⊗ F (1⊗X)

ϵ

��

F (λX) // 1⊗ F (X)

ϵ

��
F (1)⊗ (F (1)⊗ F (X)) µ //

α

��

F (1)⊗ F (1⊗X) F (λX)//

µ

��

F (1)⊗ F (X)

µ

��
(1⊗ 1)⊗ F (X) ϵ⊗ϵ //

υ

��

(F (1)⊗ F (1))⊗ F (X)

µ

��

F (1⊗ (1⊗X))

F (α)

��

F (id⊗λX)// F (1⊗X)

id

��

F (1⊗ 1)⊗ F (X) µ //

F (υ)

��

F ((1⊗ 1)⊗X)

F (υ⊗id)

%%
1⊗ F (X) ϵ // F (1)⊗ F (X) µ // F (1⊗X).

In fact, the whole diagram commutes: the rectangle on the lower left commutes by virtue
of our assumption that ϵ satisfies (1), the rectangle in the middle commutes by virtue of
the compatibility of the µ with the associativity constraints of C and D, the square on the
lower right commutes by the construction of the left unit constraint λX , and the remaining
regions commute by naturality.

Example 2.1.5.15. 00DQLet k be a field, let Vectk denote the category of vector spaces over k,
and let F : Vectk → Set be the forgetful functor, endowed with the nonunital lax monoidal
structure described in Example 2.1.4.5. Then F is a lax monoidal functor: the function

ϵ : {∗} → F (k) ϵ(∗) = 1 ∈ k

is a left and right unit for F .

Example 2.1.5.15 illustrates a special case of a general phenomenon:

Example 2.1.5.16. 00DRLet C be a monoidal category, and let F : C → Set denote the functor
corepresented by the unit object 1 ∈ C, given concretely by the formula F (X) = HomC(1, X).
For every pair of objects X,Y ∈ C, we have a canonical map

µX,Y : F (X)× F (Y )→ F (X ⊗ Y ),
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which carries a pair of elements x ∈ F (X), y ∈ F (Y ) to the composite map

1 υ−1
−−→ 1⊗ 1 x⊗y−−→ X ⊗ Y.

The collection of maps {µX,Y }X,Y ∈C determines a lax monoidal structure on the functor F ,
with unit given by the map

ϵ : {∗} → F (1) = HomC(1,1) ϵ(∗) = id1 .

Example 2.1.5.17.00DS Let C and D be categories which admit finite products, and regard
C and D as endowed with the cartesian monoidal structures described in Example 2.1.3.2.
Let F : C → D be any functor, and let F op : Cop → Dop be the induced functor of opposite
categories. Then the functor F op admits a lax monoidal structure, which associates to
each pair of objects X,Y ∈ C the canonical map µX,Y : F (X × Y )→ F (X)× F (Y ) in the
category D (which we can view as a morphism from F op(X)⊗ F op(Y )→ F op(X ⊗ Y ) in
the category Dop). The unit for F is given by the unique morphism ϵ : F (1C)→ 1D in the
category D (where 1C and 1D are final objects of C and D, respectively).

Definition 2.1.5.18.00DT Let C and D be monoidal categories and let F, F ′ : C → D be lax
monoidal functors from C to D. We will say that a natural transformation γ : F → F ′ is
monoidal if it satisfies the following pair of conditions:

• The natural transformation γ is nonunital monoidal, in the sense of Definition 2.1.4.10.
That is, for every pair of objects X,Y ∈ C, the diagram

F (X)⊗ F (Y )
µX,Y //

γ(X)⊗γ(Y )

��

F (X ⊗ Y )

γ(X⊗Y )

��
F ′(X)⊗ F ′(Y )

µ′X,Y // F ′(X ⊗ Y )

commutes, where µ and µ′ are the tensor constraints of F and F ′, respectively.

• The unit of F ′ is equal to the composition 1D
ϵ−→ F (1C)

γ(1C)−−−→ F ′(1C), where ϵ is the
unit of F .

We let Funlax(C,D) denote the category whose objects are lax monoidal functors from
C to D and whose morphisms are monoidal natural transformations, which we regard as a
(non-full) subcategory of the category Funlax

nu (C,D) introduced in Definition 2.1.4.10.

Remark 2.1.5.19 (Compatibility with Reversal).00DU Let C and D be monoidal categories, let
F : C → D be a nonunital lax monoidal functor, and let F rev : Crev → Drev be as in Example
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2.1.4.13. Then F is a lax monoidal functor if and only if F rev is a lax monoidal functor.
This observation (and its counterpart for monoidal natural transformations) supplies an
isomorphism of categories Funlax(C,D) ≃ Funlax(Crev,Drev).

Remark 2.1.5.20 (Closure under Composition). 00DVLet C, D, and E be monoidal categories
and let F : C → D and G : D → E be functors equipped with nonunital lax monoidal
structures µ and ν, respectively, so that the composite functor G ◦ F inherits a nonunital
lax monoidal structure (Construction 2.1.4.17). If F and G admit units

δ : 1D → F (1C) ϵ : 1E → G(1D),

then the composite map
1E

ϵ−→ G(1D) G(δ)−−−→ (G ◦ F )(1C)

is a unit for the composite functor G ◦F . This observation (and its counterpart for monoidal
natural transformations) imply that the composition law of Construction 2.1.4.17 restricts
to a functor

◦ : Funlax(D, E)× Funlax(C,D)→ Funlax(C, E).

Example 2.1.5.21 (Algebra Objects). 00DWLet C be a monoidal category. An algebra object
of C is a pair (A,m), where A is an object of C and m : A⊗A→ A is a nonunital algebra
structure on A (Example 2.1.4.11) for which there exists a unit ϵ : 1→ A (in the sense of
Definition 2.1.5.1). If (A,m) and (A′,m′) are algebra objects of C with units ϵ : 1→ A and
ϵ′ : 1→ A′, then we say that a morphism f : A→ A′ is an algebra homomorphism if it is
a nonunital algebra homomorphism (Example 2.1.4.11) which satisfies ϵ′ = f ◦ ϵ. We let
Alg(C) denote the category whose objects are algebra objects of C and whose morphisms
are algebra homomorphisms. We regard Alg(C) as a (non-full) subcategory of the category
Algnu(C) of nonunital algebra objects of C defined in Example 2.1.4.11.

Let {e} denote the trivial monoid, regarded as a (strict) monoidal category having only
identity morphisms (Example 2.1.1.3). Then algebra objects of C can be identified with lax
monoidal functors {e} → C. More precisely, the isomorphism Funlax

nu ({e}, C) ≃ Algnu(C) of
Example 2.1.4.11 specializes to an isomorphism of (non-full) subcategories Funlax({e}, C) ≃
Alg(C).

Example 2.1.5.22. 00DFLet Set denote the category of sets, equipped with the cartesian
monoidal structure of Example 2.1.3.2. Then we can identify algebra objects of Set with
monoids. More precisely, there is a canonical isomorphism of categories Alg(Set) ≃ Mon,
where Mon denotes the category of monoids (Definition 1.3.2.3).

For later use, we record the following elementary fact about algebra objects of a monoidal
category C:
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Proposition 2.1.5.23.02AQ Let C be a monoidal category and let (A,m) be an algebra object of
C. The following conditions are equivalent:

(1) The unit map ϵ : 1→ A is an isomorphism in C.

(2) The object A is invertible: that is, there exists an object B ∈ C for which the tensor
products A⊗B and B ⊗A are isomorphic to 1.

(3) The construction X 7→ A⊗X determines a fully faithful functor from C to itself.

Proof. The implications (1)⇒ (2)⇒ (3) are immediate. We will prove that (3) implies (1).
It follows from assumption that (3) that there is a unique morphism f : A→ 1 for which
the lower right triangle in the diagram

A⊗ 1 idA⊗ϵ //

ρA

��

A⊗A

idA⊗f

��

m

{{
A

ρ−1
A // A⊗ 1

commutes. The upper left triangle also commutes, since ϵ is a right unit with respect to the
multiplication m. It follows that the square commutes: that is, the composition

A⊗ 1 idA⊗ϵ−−−−→ A⊗A idA⊗f−−−−→ A⊗ 1

is equal to the identity. Invoking assumption (3), we conclude that f is a left inverse to ϵ:
that is, the composition f ◦ ϵ is equal to the identity on the unit object 1.

We now show that f is also a right inverse to ϵ: that is, the composition ϵ ◦ f is equal to
the identity morphism idA. Consider the diagram

A
λ−1

A //

f

��

1⊗A ϵ⊗idA //

id1⊗f

��

A⊗A

idA⊗f

��
1⊗ 1 ϵ⊗id1 //

υ

}}

A⊗ 1

ρA

��
1 ϵ // A.

The defining property of f guarantees that the vertical composition on the right coincides
with the multiplication map m : A ⊗ A → A. The assumption that ϵ is a left unit with

https://kerodon.net/tag/02AQ
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respect to the multiplication m shows that clockwise composition around the diagram gives
the identity map idA : A→ A. To complete the proof, it will suffice to show that the diagram
commutes. The commutativity of the upper right square follows from the functoriality of
the tensor product, the commutativity of the trapezoidal region on the left follows from the
functoriality of the left unit constraints of C, and the commutativity of the trapezoidal region
on the bottom from the functoriality of the right unit constraints of C (here we invoke the
fact that the map υ : 1⊗ 1 ∼−→ 1 coincides with both λ1 and ρ1; see Corollary 2.1.2.21).

2.1.6 Monoidal Functors

00DXWe now introduce the unital analogue of Definition 2.1.4.4.

Definition 2.1.6.1. 00DYLet C and D be monoidal categories, and let F : C → D be a functor. A
monoidal structure on F is a nonunital lax monoidal structure µ = {µX,Y }X,Y ∈C (Definition
2.1.4.3) which satisfies the following additional conditions:

• For every pair of objects X,Y ∈ C, the tensor constraint µX,Y : F (X) ⊗ F (Y ) →
F (X ⊗ Y ) is an isomorphism in D (that is, µ is a nonunital monoidal structure on F ).

• There exists an isomorphism ϵ : 1D
∼−→ F (1C) which is a unit for F (in the sense of

Definition 2.1.5.2).

A monoidal functor from C to D is a pair (F, µ), where F is a functor from C to D and µ is
a monoidal structure on F .

Remark 2.1.6.2. 00DZLet C and D be monoidal categories. We will generally abuse terminology
by identifying a monoidal functor (F, µ) from C to D with the underlying functor F : C → D.
If we refer to F as a monoidal functor, we implicitly assume that it has been equipped with
a monoidal structure µ = {µX,Y }X,Y ∈C .

Warning 2.1.6.3. 00E0Let C and D be monoidal categories, and let F : C → D be a nonunital lax
monoidal functor. If F is a monoidal functor from C to D, then it is both a nonunital monoidal
functor (that is, the tensor constraints µX,Y : F (X)⊗F (Y )→ F (X ⊗ Y ) are isomorphisms)
and a lax monoidal functor (that is, it admits a unit ϵ : 1D → F (1C)). However, the converse
is false: to qualify as a monoidal functor, F must satisfy the additional condition that ϵ is
an isomorphism.

Remark 2.1.6.4. 00E1Let C and D be monoidal categories and let F : C → D be a nonunital
monoidal functor. Let ϵ : 1D → F (1C) be an isomorphism in the category C. Then ϵ

automatically satisfies condition (2) of Proposition 2.1.5.13: for each X ∈ C, both of the
maps

1D ⊗ F (X)
ϵ⊗idF (X)−−−−−−→ F (1C)⊗ F (X)

µ1C ,X−−−−→ F (1C ⊗X)
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are isomorphisms. It follows that ϵ is a unit for F if and only if it satisfies condition (1) of
Proposition 2.1.5.13: that is, if and only if the diagram

1D ⊗ 1D
ϵ⊗ϵ //

υD

��

F (1C)⊗ F (1C)

µ1C ,1C

��
F (1C ⊗ 1C)

F (υC)

��
1D ϵ // F (1C)

is commutative. By virtue of Proposition 2.1.2.9, there exists an isomorphism ϵ satisfying
this condition if and only if the pair (F (1C), F (υC) ◦ µ1C ,1C) is a unit of C (in the sense of
Definition 2.1.2.5).

In other words, a nonunital monoidal functor F : C → D is monoidal if and only if the
functors

D → D X 7→ F (1C)⊗X

D → D X 7→ X ⊗ F (1C)

are fully faithful (in which case they are both canonically isomorphic to the identity functor
idD : D ≃ D).

Example 2.1.6.5 (Strict Monoidal Functors).00E2 Let C and D be strict monoidal categories
(Definition 2.1.2.1). We say that a functor F : C → D is strict monoidal if it is a nonunital
strict monoidal functor (Definition 2.1.4.1) which carries the strict unit object 1C to the
strict unit object 1D.

Every strict monoidal functor F : C → D can be regarded as a monoidal functor
from C to D, by taking each tensor constraint µX,Y to be the identity morphisms from
F (X)⊗ F (Y ) = F (X ⊗ Y ) to itself. Conversely, if (F, µ) is a monoidal functor for which
the tensor constraints µX,Y and the unit morphism ϵ : 1D → F (1C) are identity morphisms
in D, then F is a strict monoidal functor from C to D.

Example 2.1.6.6.00E3 Let M and M ′ be monoids, regarded as monoidal categories having only
identity morphisms (Example 2.1.2.8). Then lax monoidal functors from M to M ′ (in the
sense of Definition 2.1.5.8) can be identified with monoid homomorphisms from M to M ′
(in the sense of Definition 1.3.2.3). Moreover, every lax monoidal functor from M to M ′ is
automatically strict monoidal (and therefore monoidal).
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Example 2.1.6.7. 00E4Let C be a monoidal category, and let ℓ : C → Fun(C, C) be the nonunital
monoidal functor of Example 2.1.4.8 (carrying each object X ∈ C to the functor ℓX : C → C
given by ℓX(Y ) = X ⊗ Y ). Then ℓ is a monoidal functor: it admits a unit ϵ : idC → ℓ1 given
by the inverse of the left unit constraint of Construction 2.1.2.17. To prove this, it suffices
to verify that ϵ satisfies property (1) of Proposition 2.1.5.13 (Remark 2.1.6.4). Unwinding
the definitions, this is equivalent to the assertion that for every object X ∈ C, the outer
cycle of the diagram

X

idX

��

1⊗XλXoo

id1⊗X

""

1⊗ (1⊗X)id1⊗λXoo

α1,1,X

��
(1⊗ 1)⊗X

υ⊗idX

��
X 1⊗XλXoo

is commutative. In fact, the whole diagram commutes: for the inner cycle on the left this is
immediate, and for the inner cycle on the right it follows from the definition of the left unit
constraing λX (Construction 2.2.1.11).

Example 2.1.6.8 (2-Cochains as Monoidal Structures). 00E5Let G be a group and let Γ be an
abelian group equipped with an action of G. Let C be the category introduced in Example
2.1.3.3, whose objects are the elements of G and morphisms are given by

HomC(g, h) =

Γ if g = h

∅ otherwise.

Then every 3-cocycle α : G×G×G→ Γ can be regarded as the associativity constraint for
a monoidal structure (⊗, α) on C. Let us write C(α) to indicate the category C, endowed
with the monoidal structure (⊗, α).

Suppose that we are given a pair of cocycles α, α′ : G × G × G → Γ. Unwinding the
definitions, we see that monoidal structures on the identity functor idC : C(α)→ C(α′) are
given by functions

µ : G×G→ Γ (x, y) 7→ µx,y

which satisfy the identity

αx,y,z + µx,yz + x(µy,z) = µxy,z + µx,y + α′x,y,z

for x, y, z ∈ G. We can rewrite this identity more compactly as an equation α + dµ = α′,
where

d : {2-Cochains G×G→ Γ} → {3-Cochains G×G×G→ Γ}
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is defined by the formula (dµ)x,y,z = x(µy,z)− µxy,z + µx,yz − µx,y.
In particular, the identity functor idC can be promoted to a monoidal functor from C(α)

to C(α′) if and only if the cocycles α and α′ are cohomologous: that is, they represent the
same element of the cohomology group H3(G; Γ).

Notation 2.1.6.9.00E6 Let C and D be monoidal categories, and let F, F ′ : C → D be monoidal
functors. We say that a natural transformation γ : F → F ′ is monoidal if it is monoidal
when viewed as a natural transformation of lax monoidal functors (Definition 2.1.5.18). We
let Fun⊗(C,D) denote the category whose objects are monoidal functors from C to D and
whose morphisms are monoidal natural transformations. We regard Fun⊗(C,D) as a full
subcategory of the category Funlax(C,D) of Definition 2.1.5.18 (or as a non-full subcategory
of the category Fun⊗nu(C,D) of nonunital monoidal functors from C to D).

Warning 2.1.6.10.00E7 We will not be consistent in our usage of Notation 2.1.6.9. For example, if
C and D are symmetric monoidal categories ([?]), then we will sometimes write Fun⊗(C,D) to
denote the category of symmetric monoidal functors from C to D (which is a full subcategory
of the category of monoidal functors from C to D defined in Notation 2.1.6.9).

Remark 2.1.6.11 (Compatibility with Reversal).00E8 Let C and D be monoidal categories,
let F : C → D be a nonunital lax monoidal functor, and let F rev : Crev → Drev be as in
Example 2.1.4.13. Then F is a monoidal functor if and only if F rev is a monoidal functor.
This observation (and its counterpart for monoidal natural transformations) supplies an
isomorphism of categories Fun⊗(C,D) ≃ Fun⊗(Crev,Drev).

Remark 2.1.6.12 (Opposite Functors).00E9 Let C and D be monoidal categories, let F : C → D
be a nonunital monoidal functor, and let F op : Cop → Dop be the induced nonunital monoidal
functor on opposite categories (Example 2.1.4.14). Then F is a monoidal functor if and only
if F op is a monoidal functor. This observation (and its counterpart for monoidal natural
transformations) supplies an isomorphism of categories Fun⊗(C,D)op ≃ Fun⊗(Cop,Dop).

Remark 2.1.6.13 (Composition of Monoidal Functors).00EA Let C, D, and E be monoidal
categories and let F : C → D and G : D → E be functors equipped with nonunital lax
monoidal structures µ and ν, respectively, so that the composite functor G ◦ F inherits a
nonunital lax monoidal structure (Construction 2.1.4.17). If µ and ν are monoidal structures
on F and G, then G ◦F inherits a monoidal structure. This observation (and its counterpart
for monoidal natural transformations) imply that the composition law of Construction
2.1.4.17 restricts to a functor

◦ : Fun⊗(D, E)× Fun⊗(C,D)→ Fun⊗(C, E).

Example 2.1.6.14.00EB Let C and D be categories which admit finite products, endowed with
the cartesian monoidal structure described in Example 2.1.3.2. For any functor F : C → D,

https://kerodon.net/tag/00E6
https://kerodon.net/tag/00E7
https://kerodon.net/tag/00E8
https://kerodon.net/tag/00E9
https://kerodon.net/tag/00EA
https://kerodon.net/tag/00EB


176 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

we can regard the opposite functor F op : Cop → Dop as endowed with the lax monoidal
structure described in Example 2.1.5.17. This lax monoidal structure is a monoidal structure
if and only if the functor F preserves finite products. If this condition is satisfied, then the
original functor F inherits a monoidal structure (Remark 2.1.6.12).

Example 2.1.6.15 (1-Cochains as Natural Transformations). 00ECLet G be a group, let Γ be
an abelian group equipped with an action of G, and choose a pair of 3-cocycles

α, α′ : G×G×G→ Γ,

which we can regard as associativity constraints for monoidal categories C(α) and C(α′)
having the same underlying category C (Example 2.1.6.8). Suppose we are given a pair
of monoidal structures µ and µ′ on the identity functor idC, which we can identify with
2-cochains µ, µ′ : G×G→ Γ satisfying

α+ dµ = α′ α+ dµ′ = α′.

Then the difference ν = µ− µ′ is a 2-cocycle: that is, it satisfies the identity

xνy,z − νxy,z + νx,yz − νx,y = 0

for every triple of elements x, y, z ∈ G.
Note that a natural transformation from the identity functor idC to itself can be identified

with a function
γ : G→ Γ x 7→ γx;

that is, with a 1-cochain on G taking values in the group Γ. Unwinding the definitions, we
see that the natural transformation γ is monoidal (with respect to the monoidal structures
supplied by µ and µ′, respectively) if and only if it satisfies the identity

µ′x,y + xγy + γx = µx,y + γxy

for every pair of elements x, y ∈ G. We can rewrite this identity more conceptually as
µ′ + dγ = µ, where

d : {1-Cochains G→ Γ} → {2-Cochains G×G→ Γ}

is defined by the formula (dγ)x,y = x(γy)− γxy + γx. In particular, the monoidal functors
(idC , µ) to (idC , µ′) are isomorphic if and only if the 2-cocycle ν = µ− µ′ is a coboundary:
that is, it has vanishing image in the cohomology group H2(G; Γ).

https://kerodon.net/tag/00EC


2.1. MONOIDAL CATEGORIES 177

2.1.7 Enriched Category Theory

00ED Let C be a category. For every pair of objects X,Y ∈ C, we let HomC(X,Y ) denote the
set of morphisms from X to Y in C. In many cases of interest, the sets HomC(X,Y ) can be
endowed with additional structure, which are respected by the composition law on C. To
give a systematic discussion of this phenomenon, it is convenient to use the formalism of
enriched category theory.

Definition 2.1.7.1.00EE Let A be a monoidal category with unit object 1. An A-enriched
category C consists of the following data:

(1) A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X ∈ C to indicate that X is an element of Ob(C).

(2) For every pair of objects X,Y ∈ Ob(C), an object HomC(X,Y ) of the monoidal category
A.

(3) For every triple of objects X,Y, Z ∈ Ob(C), a morphism

cZ,Y,X : HomC(Y, Z)⊗HomC(X,Y )→ HomC(X,Z)

in the category A, which we will refer to as the composition law.

(4) For every object X ∈ Ob(C), a morphism eX : 1 → HomC(X,X) in the category A,
which we refer to as the identity of X.

These data are required to satisfy the following conditions:
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(A) For every quadruple of objects W,X, Y, Z ∈ Ob(C), the diagram

HomC(Y, Z)⊗HomC(W,Y )

cZ,Y,W

��

HomC(Y,Z)⊗ (HomC(X,Y )⊗HomC(W,X))

α

��

id⊗cY,X,W

44

HomC(W,Z)

(HomC(Y, Z)⊗HomC(X,Y ))⊗HomC(W,X)

cZ,Y,X⊗id

**
HomC(X,Z)⊗HomC(W,X)

cZ,X,W

OO

commutes. Here α denotes the associativity constraint on the monoidal category A.

(U) For every pair of objects X,Y ∈ Ob(C), the diagrams

1⊗HomC(X,Y ) eY ⊗id //

λ **

HomC(Y, Y )⊗HomC(X,Y )

cY,Y,Xss
HomC(X,Y )

HomC(X,Y )⊗ 1 id⊗eX //

ρ
**

HomC(X,Y )⊗HomC(X,X)

cY,X,Xss
HomC(X,Y )

commute, where λ and ρ denote the left and right unit constraints on A (see Construc-
tion 2.1.2.17).

Example 2.1.7.2 (Categories Enriched Over Sets). 00EFLet A = Set be the category of sets,
endowed with the monoidal structure given by the cartesian product (see Example 2.1.3.2).
Then an A-enriched category (in the sense of Definition 2.1.7.1) can be identified with a
category in the usual sense.
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Example 2.1.7.3.00EG Let A be a monoidal category. If C is a category enriched over A and X
is an object of C, then the composition law

cX,X,X : HomC(X,X)⊗HomC(X,X)→ HomC(X,X)

exhibits HomC(X,X) as an algebra object of A, in the sense of Example 2.1.5.21. Moreover,
this construction induces a bijection

{A-Enriched Categories C with Ob(C) = {X}} ≃ {Algebra objects of A}.

Consequently, the theory of enriched categories can be regarded as a generalization of the
theory of associative algebras (See Example 2.1.7.14 for a more precise statement).

Remark 2.1.7.4 (Functoriality).00EH Let A and A′ be monoidal categories, and let F : A → A′
be a lax monoidal functor (with tensor constraints µA,B : F (A)⊗F (B)→ F (A⊗B) and unit
ϵ : 1A′ → F (1A)). Then every A-enriched category C determines an A′-enriched category C′,
which can be described concretely as follows:

• The objects of C′ are the objects of C: that is, we have Ob(C′) = Ob(C).

• For every pair of objects X,Y ∈ Ob(C′), we set HomC′(X,Y ) = F (HomC(X,Y )).

• For every triple of objects X,Y, Z ∈ Ob(C′), the composition law c′Z,Y,X for C′ is given
by the composition

HomC′(Y,Z)⊗HomC′(X,Y ) = F (HomC(Y,Z))⊗ F (HomC(X,Y ))
µ−→ F (HomC(Y,Z)⊗HomC(X,Y ))

F (cZ,Y,X)
−−−−−−→ F (HomC(X,Z))

= HomC′(X,Z).

• For every object X ∈ Ob(C′), the identity morphism e′X for X in C′ is given by the
composition

1A′
ϵ−→ F (1A) F (eX)−−−−→ F (HomC(X,X)) = HomC′(X,X).

Example 2.1.7.5 (The Underlying Category of an Enriched Category).00EJ Let A be a monoidal
category and let F : A → Set be the functor given by F (A) = HomA(1, A), endowed with
the lax monoidal structure of Example 2.1.5.16. If C is a category enriched over A, then
we can apply the construction of Remark 2.1.7.4 to obtain a Set-enriched category, which
we can identify with an ordinary category (Example 2.1.7.2). We will refer to this category
as the underlying category of the A-enriched category C, and we will generally abuse
notation by denoting it also by C. Concretely, this underlying category has the same
objects as the enriched category C, with morphism sets given by the formula HomC(X,Y ) =
HomA(1,HomC(X,Y )).
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Remark 2.1.7.6. 00MXLet A be a monoidal category and let C be an ordinary category. We
define an A-enrichment of C to be an A-enriched category C̃ together with an identification
of C with the underlying category of C̃, in the sense of Example 2.1.7.5.

Example 2.1.7.7 (Enrichment in Vector Spaces). 00EKLet k be a field and let Vectk denote
the category of vector spaces over k, endowed with the monoidal structure given by tensor
product over k (Example 2.1.3.1). Then choosing an Vectk-enrichment of C is equivalent to
endowing each of the sets HomC(X,Y ) with the structure of a k-vector space, for which the
composition maps

HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z)

are k-bilinear.

Example 2.1.7.8 (Topologically Enriched Categories). 00ELLet Top denote the category of
topological spaces, endowed with the monoidal structure given by the cartesian product
(Example 2.1.3.2). We will refer to a Top-enriched category as a topologically enriched
category. Note that the functor F of Example 2.1.7.5 is (canonically isomorphic to) the
forgetful functor Top→ Set. Consequently, if C is a topologically enriched category, then
the underlying ordinary category C0 can be described concretely as follows:

• The objects of the ordinary category C0 are the objects of the Top-enriched category C.

• Given a pair of objects X,Y ∈ C0, a morphism f from X to Y (in the ordinary category
C0) is a point of the topological space HomC(X,Y ).

• Given a pair of morphisms f : X → Y and g : Y → Z in C0, the composition g ◦ f is
given by the image of (g, f) under the continuous map

cZ,Y,X : HomC(Y, Z)⊗HomC(X,Y )→ HomC(X,Z).

It follows that, for any ordinary category C0, promoting C0 to a topologically enriched
category C is equivalent to endowing each of the morphism sets HomC0(X,Y ) with a
topology for which the composition maps ◦ : HomC0(Y,Z)×HomC0(X,Y )→ HomC0(X,Z)
are continuous.

Exercise 2.1.7.9 (Uniqueness of Identities). 00EMLet A be a monoidal category. A nonunital
A-enriched category C consists of a collection Ob(C) of objects of C, together with objects
{HomC(X,Y )}X,Y ∈Ob(C) of the category A and composition laws

cZ,Y,X : HomC(Y,Z)⊗HomC(X,Y )→ HomC(X,Z)

which satisfy the associative law (A) appearing in Definition 2.1.7.1. Show that, if a nonunital
A-enriched category C can be promoted to an A-enriched category C, then C is unique: that
is, the identity maps eX : 1 → HomC(X,X) are determined by axiom (U) of Definition
2.1.7.1.
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Definition 2.1.7.10.00JE Let A be a monoidal category, and let C and D be A-enriched
categories. An A-enriched functor F : C → D consists of the following data:

(1) For every object X ∈ Ob(C), and object F (X) ∈ Ob(D).

(2) For every pair of objects X,Y ∈ Ob(C), a morphism

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

in the category A.

These data are required to satisfy the following conditions:

• For every object X ∈ Ob(C), the morphism eF (X) : 1→ HomD(F (X), F (X)) factors
as a composition

1 eX−−→ HomC(X,X) FX,X−−−→ HomD(F (X), F (X)).

• For every triple of objects X,Y, Z ∈ Ob(C), the diagram

HomC(Y,Z)⊗HomC(X,Y ) //

FY,Z⊗FX,Y

��

HomC(X,Z)

FX,Z

��
HomD(F (Y ), F (Z))⊗HomD(F (X), F (Y )) // HomD(F (X), F (Z))

commutes (in the category A); here the horizontal maps are given by the composition
laws on C and D.

Notation 2.1.7.11 (The Category of Enriched Categories).00JF Let A be a monoidal category.
We say that an A-enriched category C is small if the collection of objects Ob(C) is small.
The collection of small A-enriched categories can itself be organized into a category Cat(A),
whose morphisms are given by A-enriched functors (in the sense of Definition 2.1.7.10).

Example 2.1.7.12.00JG Let C and D be small categories, which we regard as Set-enriched
categories by means of Example 2.1.7.2. Then Set-enriched functors from C to D (in the
sense of Definition 2.1.7.10) can be identified with functors from C to D in the usual sense.
This identification determines an isomorphism of categories Cat ≃ Cat(Set).

Remark 2.1.7.13.00JH Let F : A → A′ be a lax monoidal functor between monoidal categories.
Then the construction of Remark 2.1.7.4 determines a functor Cat(A)→ Cat(A′). In the
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special case where A′ = Set and F is the functor A 7→ HomA(1,A) corepresented by the
unit object 1 ∈ A, we obtain a forgetful functor

Cat(A)→ Cat(Set) ≃ Cat,

which assigns to each (small) A-enriched category C its underlying ordinary category
(Example 2.1.7.5).

Example 2.1.7.14. 00JJLet A be a monoidal category, let A be an algebra object of A, which
we can identify with an A-enriched category CA having a single object X (Example 2.1.7.3).
For any A-enriched category D containing an object Y , we have a canonical bijection

{A-Enriched Functors F : CA → D with F (X) = Y }

∼

��
{Algebra homomorphisms A→ HomD(Y, Y )}.

In particular, if D = CB for some other algebra object B ∈ Alg(A), we obtain a bijection

HomCat(A)(CA, CB) ≃ HomAlg(A)(A,B).

In other words, the construction A 7→ CA induces a fully faithful embedding Alg(A) →
Cat(A), whose essential image is spanned by those A-enriched categories having a single
object.

2.2 The Theory of 2-Categories

007KThe collection of (small) categories can itself be organized into a (large) category Cat,
whose objects are small categories and whose morphisms are functors. However, the structure
of Cat as an abstract category fails to capture many of the essential features of category
theory:

(i) Given a pair of functors F,G : C → D with the same source and target, we are usually
not interested in the question of whether or not F and G are equal. Instead, we should
regard F and G as interchangeable if there exists a natural isomorphism α : F ≃ G.
This sort of information is not encoded in the structure of the category Cat.

(ii) Given a pair of categories C and D, we are usually not interested in the question
of whether or not C and D are isomorphic. Instead, we should regard C and D as
interchangeable if there exists an equivalence of categories from F : C → D. In this
case, the functor F need not be invertible when regarded as a morphism in Cat.
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To remedy the situation, it is useful to contemplate a more elaborate mathematical
structure.

Definition 2.2.0.1.007L A strict 2-category C consists of the following data:

• A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X ∈ C to indicate that X is an element of Ob(C).

• For every pair of objects X,Y ∈ C, a category HomC(X,Y ). We refer to objects f of the
category HomC(X,Y ) as 1-morphisms from X to Y and write f : X → Y to indicate
that f is a 1-morphism from X to Y . Given a pair of 1-morphisms f, g ∈ HomC(X,Y ),
we refer to morphisms from f to g in the category HomC(X,Y ) as 2-morphisms from
f to g.

• For every triple of objects X,Y, Z ∈ C, a composition functor

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z).

• For every object X ∈ C, an identity 1-morphism idX ∈ HomC(X,X).

These data are required to satisfy the following conditions:

(1) For each object X ∈ C, the identity 1-morphism idX is a unit for both right and left
composition. That is, for every object Y ∈ C, the functors

HomC(X,Y )→ HomC(X,Y ) f 7→ f ◦ idX

HomC(Y,X)→ HomC(Y,X) g 7→ idX ◦g

are both equal to the identity.

(2) The composition law of C is strictly associative. That is, for every quadruple of objects
W,X, Y, Z ∈ C, the diagram of categories

HomC(Y,Z)×HomC(X,Y )×HomC(W,X) id×◦ //

◦×id

��

HomC(Y,Z)×HomC(W,Y )

◦

��
HomC(X,Z)×HomC(W,X) ◦ // HomC(W,Z)

commutes (in the ordinary category Cat).
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Remark 2.2.0.2 (Strict 2-Categories as Enriched Categories). 00ENLet Cat denote the category
whose objects are (small) categories and whose morphisms are functors. Then Cat admits
finite products, and therefore admits a monoidal structure given by the formation of cartesian
products (Example 2.1.3.2). Neglecting set-theoretic technicalities, a strict 2-category (in
the sense of Definition 2.2.0.1) can be identified with a Cat-enriched category (in the sense
of Definition 2.1.7.1).

Remark 2.2.0.3. 00EPTo every strict 2-category C, we can associate an ordinary category C0,
whose objects and morphisms are given by

Ob(C0) = Ob(C) HomC0(X,Y ) = Ob(HomC(X,Y )).

We will refer to C0 as the underlying ordinary category of C (note that C0 can be obtained
from C by the general procedure of Example 2.1.7.5). More informally, the underlying
category C0 is obtained from C by “forgetting” its 2-morphisms.

Example 2.2.0.4. 007MWe define a strict 2-category Cat as follows:

• The objects of Cat are (small) categories.

• For every pair of small categories C,D ∈ Cat, we take HomCat(C,D) to be the category
Fun(C,D) of functors from C to D.

• The composition law on Cat is given by the usual composition of functors.

We will refer to Cat as the strict 2-category of (small) categories. Note that the underlying
ordinary category of Cat is the category Cat (whose objects are small categories and
morphisms are functors).

We can obtain many more examples by studying categories equipped with additional
structure.

Example 2.2.0.5. 00EQWe define a strict 2-category MonCat as follows:

• The objects of MonCat are (small) monoidal categories.

• For every pair of small monoidal categories C and D, we take HomMonCat(C,D) to be
the category Fun⊗(C,D) of monoidal functors from C to D (Notation 2.1.6.9).

• The composition law on MonCat is given by the composition of monoidal functors
described in Remark 2.1.6.13.

There are several obvious variants on this construction: for example, we can work with
nonunital monoidal categories in place of monoidal categories, or lax monoidal functors in
place of monoidal functors.
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Example 2.2.0.6 (Ordinary Categories).007W Every ordinary category can be regarded as a
strict 2-category. More precisely, to each category C we can associate a strict 2-category C′
as follows:

• The objects of C′ are the objects of C.

• For every pair of objects X,Y ∈ C, objects of the category HomC′(X,Y ) are elements
of the set HomC(X,Y ), and every morphism in HomC′(X,Y ) is an identity morphism.

• For every triple of objects X,Y, Z ∈ C, the composition functor

◦ : HomC′(Y, Z)×HomC′(X,Y )→ HomC′(X,Z)

is given on objects by the composition map HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z).

• For every object X ∈ C, the identity object idX ∈ HomC′(X,X) coincides with the
identity morphism idX ∈ HomC(X,X).

In this situation, we will generally abuse terminology by identifying the strict 2-category C′
with the ordinary category C (see Example 2.2.5.7).

Remark 2.2.0.7 (Endomorphism Categories).00ER Let C be a strict 2-category and let X be an
object of C. We will write EndC(X) for the category HomC(X,X). Then the composition
law

◦ : HomC(X,X)×HomC(X,X)→ HomC(X,X)

determines a strict monoidal structure on the category EndC(X).
Note that, if C is an ordinary category (regarded as a strict 2-category by means of

Example 2.2.0.6), then the endomorphism category EndC(X) can be identified with the
endomorphism monoid EndC(X) of Example 1.3.2.2, regarded as a (strict) monoidal category
via Example 2.1.2.8.

Example 2.2.0.8 (Delooping).00ES Let M be a category equipped with a strict monoidal
structure ⊗ : M×M → M (Definition 2.1.2.1). We define a strict 2-category BM as
follows:

• The set of objects Ob(BM) is the singleton set {X}.

• The category HomBM(X,X) is equal to M.

• The composition functor ◦ : HomBM(X,X) × HomBM(X,X) → HomBM(X,X) is
equal to the tensor product ⊗ :M×M→M.

• The identity morphism idX is the strict unit object of M.
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We will refer to BM as the delooping of M.
Note that the constructions

M 7→ BM C 7→ EndC(X)

induce mutually inverse bijections

{Strict Monoidal Categories M} ≃ {Strict 2-Categories C with Ob(C) = {X}},

generalizing the identification of Remark 1.3.2.4.

The reader might at this point object that the definition of strict 2-category violates a
fundamental principle of category theory: axioms (1) and (2) of Definition 2.2.0.1 require
that certain functors are equal. In practice, one often encounters mathematical structures C
which do not quite fit in the framework of Definition 2.2.0.1, because the associative law
for composition of 1-morphisms in C holds only up to isomorphism. To address this point,
Bénabou introduced a more general type of structure which he called a bicategory, which we
will refer to here as a 2-category.

Our goal in this section is to give a brief introduction to the theory of 2-categories. We
begin in §2.2.1 by reviewing the definition of a 2-category (Definition 2.2.1.1) and establishing
some notational and terminological conventions. Every strict 2-category can be regarded as
a 2-category (Example 2.2.1.4), but many of the 2-categories which arise “in nature” fail to
be strict: we discuss several examples of this phenomenon in §2.2.2.

To articulate the relationship between 2-categories and strict 2-categories more precisely,
it is convenient to view each as the objects of a suitable (ordinary) category. In §2.2.4, we
introduce the notion of a functor between 2-categories (Definition 2.2.4.5). Roughly speaking,
a functor F : C → D is an operation which carries objects, 1-morphisms, and 2-morphisms of
C to objects, 1-morphisms, and 2-morphisms of D, which is compatible with the composition
laws on C and D. Here again there are several possible definitions, depending on whether
one demands that the compatibility holds strictly (in which case we say that F is a strict
functor), up to isomorphism (in which case we say that F is a functor), or up to possible
non-invertible 2-morphism (in which case we say that F is a lax functor). We use this notion
in §2.2.5 to introduce an (ordinary) category 2Cat, whose objects are 2-categories and whose
morphisms are functors between 2-categories (and consider several other variations on this
theme).

The notion of 2-category is more general than the notion of strict 2-category defined above:
in general, a 2-category C need not be strict or even isomorphic (as an object of 2Cat) to a
strict 2-category C′. However, we will prove in §2.2.7 that every 2-category C is isomorphic
to a strictly unitary 2-category C′: that is, a 2-category C′ in which the composition law is
strictly unital, but not necessarily strictly associative (Proposition 2.2.7.7). The proof will
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make use of a certain twisting procedure in the setting of 2-categories (Construction 2.2.6.8),
which we will describe in 2.2.6.

Remark 2.2.0.9.007N Let C be a 2-category. It is generally not possible to find a strict 2-category
C′ which is isomorphic to C (as an object of the category 2Cat we will introduce in §2.2.5).
However, it is always possibly to find a strict 2-category C′ which is equivalent to C; we will
return to this point in §[?].

2.2.1 2-Categories

007P Let C be a strict 2-category (Definition 2.2.0.1). Then the composition of 1-morphisms
in C is strictly associative: that is, given a triple of composable 1-morphisms

f : W → X g : X → Y h : Y → Z

of C, we have an equality h ◦ (g ◦ f) = (h ◦ g) ◦ f . Our goal in this section is to introduce the
more general notion of (non-strict) 2-category, where we weaken the associativity requirement:
rather than demand that the 1-morphisms h ◦ (g ◦ f) and (h ◦ g) ◦ f are identical, we instead
ask for a specified isomorphism αh,g,f : h ◦ (g ◦ f) ∼=⇒ (h ◦ g) ◦ f in the category HomC(W,Z).
In order to obtain a sensible theory, we must require that these isomorphisms satisfy an
analogue of the pentagon identity which appears in Definition 2.1.1.5.

Definition 2.2.1.1 (Bénabou).007Q A 2-category C consists of the following data:

• A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X ∈ C to indicate that X is an element of Ob(C).

• For every pair of objects X,Y ∈ Ob(C), a category HomC(X,Y ). We refer to objects
f of the category HomC(X,Y ) as 1-morphisms from X to Y and write f : X → Y

to indicate that f is a 1-morphism from X to Y . Given a pair of 1-morphisms
f, g ∈ HomC(X,Y ), we refer to morphisms from f to g in the category HomC(X,Y )
as 2-morphisms from f to g. We will sometimes write γ : f ⇒ g or f γ=⇒ g to indicate
that γ is a 2-morphism from f to g.

• For every triple of objects X,Y, Z ∈ Ob(C), a composition functor

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z).

• For every object X ∈ Ob(C), a 1-morphism idX ∈ HomC(X,X), which we call the
identity 1-morphism from X to itself.

• For every object X ∈ Ob(C), an isomorphism υX : idX ◦ idX
∼=⇒ idX in the category

HomC(X,X). We refer to the 2-morphisms {υX}X∈Ob(C) as the unit constraints of C.
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• For every quadruple of objects W,X, Y, Z ∈ C, a natural isomorphism α from the
functor

HomC(Y,Z)×HomC(X,Y )×HomC(W,X)→ HomC(W,Z) (h, g, f) 7→ h ◦ (g ◦ f)

to the functor

HomC(Y, Z)×HomC(X,Y )×HomC(W,X)→ HomC(W,Z) (h, g, f) 7→ (h ◦ g) ◦ f.

We denote the value of α on a triple (h, g, f) by αh,g,f : h ◦ (g ◦ f) ∼=⇒ (h ◦ g) ◦ f . We
refer to these isomorphisms as the associativity constraints of C.

These data are required to satisfy the following pair of conditions:

(C) For every pair of objects X,Y ∈ Ob(C), the functors

HomC(X,Y )→ HomC(X,Y ) f 7→ f ◦ idX

HomC(X,Y )→ HomC(X,Y ) f 7→ idY ◦f

are fully faithful.

(P ) For every quadruple of composable 1-morphisms

V
e−→W

f−→ X
g−→ Y

h−→ Z

in C, the diagram of isomorphisms

h ◦ ((g ◦ f) ◦ e)
αh,g◦f,e

∼
+3 (h ◦ (g ◦ f)) ◦ e

αh,g,f◦ide

∼
 (

h ◦ (g ◦ (f ◦ e))

idh ◦αg,f,e

∼

6>

αh,g,f◦e

∼

%-

((h ◦ g) ◦ f) ◦ e

(h ◦ g) ◦ (f ◦ e)

αh◦g,f,e

∼
19

commutes in the category HomC(V,Z).

Remark 2.2.1.2. 007RAn equivalent formulation of Definition 2.2.1.1 was given by Bénabou in
[4]. Beware that Bénabou uses the term bicategory for what we call a 2-category.

Remark 2.2.1.3. 007SIn the situation of Definition 2.2.1.1, we will refer to axiom (P ) as the
pentagon identity.
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Example 2.2.1.4 (Strict 2-Categories).007T Let C be any strict 2-category (in the sense of
Definition 2.2.0.1). Then C can be viewed as a 2-category (in the sense of Definition 2.2.1.1)
by taking the unit and associativity constraints υX and αh,g,f to be identity 2-morphisms in
C.

Warning 2.2.1.5.00EU Let C be a 2-category. If C is strict, then we can extract from C an
underlying ordinary category having the same objects and 1-morphisms (Remark 2.2.0.3).
However, this operation has no counterpart for a general 2-category C: in general, composition
of 1-morphisms in C is associative only up to isomorphism.

Remark 2.2.1.6.007X Let C be a 2-category. Then C can be obtained from an ordinary category
(via the construction of Example 2.2.0.6) if and only if every 2-morphism in C is an identity
2-morphism (note that a 2-category with this property is automatically strict, by virtue of
Example 2.2.1.4).

Remark 2.2.1.7 (Endomorphism Categories).00ET Let C be a 2-category and let X be an
object of C. We will denote the category HomC(X,X) by EndC(X) and refer to it as the
endomorphism category of X. The category EndC(X) has a monoidal structure, with tensor
product given by the composition law

◦ : HomC(X,X)×HomC(X,X)→ HomC(X,X),

unit object given by the identity 1-morphism idX , and the unit and associativity constraints
of EndC(X) given by υX and the associativity constraints of C, respectively.

Notation 2.2.1.8.007Y Let C be a 2-category. We will generally follow the convention of denoting
objects of C by capital Roman letters, 1-morphisms of C by lowercase Roman letters, and
2-morphisms of C by lowercase Greek letters. However, we will often violate this convention
when discussing specific examples. For instance, when studying the (strict) 2-category Cat
of small categories (Example 2.2.0.4), we denote objects using calligraphic letters (such as C
and D) and 1-morphisms using uppercase Roman letters (such as F and G).

Warning 2.2.1.9.007Z Let C be a 2-category. Then there are two different notions of composition
for the 2-morphisms of C:

(V ) Let X and Y be objects of C. Suppose we are given 1-morphisms f, g, h : X → Y and
a pair of 2-morphisms

γ : f ⇒ g δ : g ⇒ h.

We can then apply the composition law in the ordinary category HomC(X,Y ) to obtain
a 2-morphism f ⇒ h, which we refer to as the vertical composition of γ and δ.
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(H) Let X, Y , and Z be objects of C. Suppose we are given 2-morphisms γ : f ⇒ g in the
category HomC(X,Y ) and γ′ : f ′ ⇒ g′ in the category HomC(Y,Z). Then the image
of (γ′, γ) under the composition law

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z),

is a 2-morphism from f ′ ◦ f to g′ ◦ g, which will refer to as the horizontal composition
of γ and γ′.

The terminology is motivated by the following graphical representations of the data described
in (V ) and (H):

X

f

��g //

h

EE

γ��

δ��

Y X

f

$$

g

;;γ
��

Y

f ′

$$

g′

;;γ′

��
Z.

To avoid confusion, we will generally denote the vertical composition of 2-morphisms γ and
δ by δγ and the horizontal composition of 2-morphisms γ and γ′ by γ′ ◦ γ.

Remark 2.2.1.10. 00EVLet C be a 2-category. For each object X ∈ Ob(C), the identity 1-
morphism idX and the unit constraint υX are determined (up to unique isomorphism) by
the composition law and associativity constraints. More precisely, given any other choice
of identity morphism id′X and unit constraint υ′X : id′X ◦ id′X

∼=⇒ id′X , there exists a unique
invertible 2-morphism γ : idX

∼=⇒ id′X for which the diagram

idX ◦ idX
υX +3

γ◦γ

��

idX

γ

��
id′X ◦ id′X

υ′X +3 id′X

commutes. This follows from Proposition 2.1.2.9, applied to the monoidal category EndC(X)
of Remark 2.2.1.7.

It is possible to adopt a variant of Definition 2.2.1.1 where we do not require the identity
morphisms {idX}X∈Ob(C) (or unit constraints {υX}X∈Ob(C)) to be explicitly specified. This
variant is equivalent to Definition 2.2.1.1 for many purposes. However, it is not suitable for
our applications: in §2.3, we associate to each 2-category C a simplicial set ND

• (C) called the
Duskin nerve of C, whose degeneracy operators depend on the choice of identity morphisms
and unit constraints in C (though the face operators do not: see Warning 2.3.1.11).
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Axiom (C) of Definition 2.2.1.1 requires that, for every pair of objects X and Y of a
2-category C, the functors

HomC(X,Y )→ HomC(X,Y ) f 7→ f ◦ idX , idY ◦f

are fully faithful. In fact, we can say more: they are canonically isomorphic to the identity
functor from HomC(X,Y ) to itself.

Construction 2.2.1.11 (Left and Right Unit Constraints).00EW Let C be a 2-category. For
every 1-morphism f : X → Y in C, we have canonical isomorphisms

idY ◦(idY ◦f)
αidY ,idY ,f=======⇒ (idY ◦ idY ) ◦ f

υY ◦idf=====⇒ idY ◦f.

Since composition on the left with idY is fully faithful, it follows that there is a unique
isomorphism λf : idY ◦f

∼=⇒ f for which the diagram

idY ◦(idY ◦f)
αidY ,idY ,f

∼
+3

ididY
◦λf

∼

!)

(idY ◦ idY ) ◦ f

υY ◦idf

∼

u}
idY ◦f

commutes. We will refer to λf as the left unit constraint. Similarly, there is a unique
isomorphism ρf : f ◦ idX

∼=⇒ f for which the diagram

f ◦ (idX ◦ idX)
αf,idX ,idX

∼
+3

idf ◦υX

∼

!)

(f ◦ idX) ◦ idX

ρf◦ididX

∼

u}
f ◦ idX

commutes; we refer to ρf as the right unit constraint.

Remark 2.2.1.12.00EX Let C be a 2-category and let X be an object of C. For every 1-morphism
f : X → X in C, the left and right unit constraints

λf : idX ◦f
∼=⇒ f ρf : f ◦ idX

∼=⇒ f

of Construction 2.2.1.11 coincide with the left and right unit constraints of Construction
2.1.2.17, applied to the monoidal category EndC(X) of Remark 2.2.1.7.
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Remark 2.2.1.13 (Naturality of Unit Constraints). 00EYLet C be a 2-category, let X and Y

be objects of C, and let γ : f ⇒ g be a morphism in the category HomC(X,Y ). Then the
diagram of 2-morphisms

idY ◦f
λf +3

ididY
◦γ

��

f

γ

��idY ◦g
λg +3 g

commutes. In other words, the construction f 7→ λf determines a natural isomorphism from
the functor

HomC(X,Y )→ HomC(X,Y ) f 7→ idY ◦f

to the identity functor. Similarly, the construction f 7→ ρf determines a natural isomorphism
from the functor

HomC(X,Y )→ HomC(X,Y ) f 7→ f ◦ idX

to the identity functor.

We have the following generalization of Proposition 2.1.2.19:

Proposition 2.2.1.14 (The Triangle Identity). 00EZLet C be a 2-category containing a pair of
1-morphisms f : X → Y and g : Y → Z. Then the diagram of 2-morphisms

g ◦ (idY ◦f)
αg,idY ,f

∼
+3

idg ◦λf

∼

 (

(g ◦ idY ) ◦ f

ρg◦idf

∼

v~
g ◦ f

is commutative.
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Proof. We have a diagram of isomorphisms

g ◦ ((idY ◦ idY ) ◦ f) α //

υY

��

(g ◦ (idY ◦ idY )) ◦ f

υY

��
α

��

g ◦ (idY ◦f) α //

α

��

(g ◦ idY ) ◦ f

id

vv
g ◦ (idY ◦(idY ◦f))

α

FF

λf

==

α

((

(g ◦ idY ) ◦ f
ρg // g ◦ f g ◦ (idY ◦f)

λfoo

α

OO

((g ◦ idY ) ◦ idY ) ◦ f

ρg

bb

(g ◦ idY ) ◦ (idY ◦f).

λf

bb

ρg

<<

α

66

Here the outer cycle commutes by the pentagon identity (P ) of Definition 2.2.1.1, the upper
rectangle by the functoriality of the associativity constraint, the upper side triangles by the
definition of the left and right unit constraints, the quadrilaterals on the lower sides by the
functoriality of the associativity constraints, and the lower region by the functoriality of
composition. It follows that the middle square is also commutative, which is equivalent to
the statement of Proposition 2.2.1.14.

It follows from Proposition 2.2.1.14 that we can recover the unit constraints {υX}X∈Ob(C)
of a 2-category C from the left and right unit constraints defined in Construction 2.2.1.11.

Corollary 2.2.1.15.0082 Let C be a 2-category and let X be an object of C. Then the left and
right unit constraints

λidX
: idX ◦ idX

∼=⇒ idX ρidX
: idX ◦ idX

∼=⇒ idX

are both equal to the unit constraint υX : idX ◦ idX
∼=⇒ idX .

Proof. For any 1-morphism f : Y → X in C, the left unit constraint λf is characterized by
the commutativity of the diagram

idX ◦(idX ◦f)
αidX ,idX ,f

∼
+3

ididX
◦λf

∼

!)

(idX ◦ idX) ◦ f

υX◦idf

∼

u}
idX ◦f.
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Using Proposition 2.2.1.14, we deduce that υX ◦ idf = ρidX
◦ idf as 2-morphisms from

(idX ◦ idX) ◦ f to idX ◦f . In other words, the 2-morphisms υX , ρidX
: idX ◦ idX ⇒ idX have

the same image under the functor

HomC(X,X)→ HomC(Y,X) g 7→ g ◦ f.

In the special case where Y = X and f = idX , this functor is fully faithful. It follows that
υX = ρidX

. The equality υX = λidX
follows by a similar argument.

We will also need some variants of Proposition 2.2.1.14 (generalizing Exercise 2.1.2.20):

Proposition 2.2.1.16. 0080Let C be a 2-category containing a pair of composable 1-morphisms
f : X → Y and g : Y → Z. Then:

(1) The associativity constraint αidZ ,g,f : idZ ◦(g ◦ f)⇒ (idZ ◦g) ◦ f is given by the (vertical)
composition

idZ ◦(g ◦ f)
λg◦f===⇒ g ◦ f

λ−1
g ◦idf=====⇒ (idZ ◦g) ◦ f.

(2) The associativity constraint αg,f,idX
: g ◦ (f ◦ idX)⇒ (g ◦f)◦ idX is given by the (vertical)

composition

g ◦ (f ◦ idX)
idg ◦ρf====⇒ g ◦ f

ρ−1
g◦f===⇒ (g ◦ f) ◦ idX

Proof of Proposition 2.2.1.16. We will prove (2); the proof of (1) is similar. Set e = idX ,
and consider the diagram of isomorphisms

g ◦ ((f ◦ e) ◦ e)
αg,f◦e,e +3

ρf

��

(g ◦ (f ◦ e)) ◦ e

αg,f,e

�'

ρf

w�
g ◦ (f ◦ (e ◦ e))

αf,e,e

7?

αg,f,e◦e

%-

λe +3 g ◦ (f ◦ e)
αg,f,e +3 (g ◦ f) ◦ e ((g ◦ f) ◦ e) ◦ e

ρg◦fks

(g ◦ f) ◦ (e ◦ e).

αg◦f,e,e

19

λe

KS

Here the outer cycle of the diagram commutes by the pentagon identity for C, the triangles on
the upper left and lower right commute by virtue of Proposition 2.2.1.14, and the upper and
lower square diagrams commute by the functoriality of the associativity constraints. It follows
that the triangle on the upper right commutes: that is, the identity αg,f,idX

= ρ−1
g◦f (idg ◦ρf )

holds after applying the functor (• ◦ idX) : HomC(X,Z)→ HomC(X,Z). Since this functor
is fully faithful (in fact, it is isomorphic to the identity functor by means of the right unit
constraint ρ), we conclude that the identity αg,f,idX

= ρ−1
g◦f (idg ◦ρf ) holds in HomC(X,Z)

itself.
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2.2.2 Examples of 2-Categories

0083 We now collect some examples of 2-categories which arise naturally.

Example 2.2.2.1 (Cospans).0084 Let C be a category containing a pair of objects X and Y . A
cospan from X to Y is an object B ∈ C together with a pair of morphisms X f−→ B

g←− Y in
C. The cospans from X to Y can be regarded as the objects of a category BX,Y , where a
morphism from (B, f, g) to (B′, f ′, g′) in BX,Y is a morphism u : B → B′ in the category C
which satisfies f ′ = u ◦ f and g′ = u ◦ g, so that the diagram

B

u

��

X

f

>>

f ′

  

Y

g

``

g′

~~
B′

is commutative.
Assume now that the category C admits pushouts. We can then construct a 2-category

Cospan(C) as follows:

• The objects of Cospan(C) are the objects of C.

• For every pair of objects X,Y ∈ C, we define HomCospan(C)(X,Y ) to be the category
BX,Y ; in particular, 1-morphisms from X to Y in the 2-category Cospan(C) can be
identified with cospans from X to Y .

• For every triple of objects X,Y, Z ∈ C, the composition law

◦ : HomCospan(C)(Y, Z)×HomCospan(C)(X,Y )→ HomCospan(C)(X,Z)

is given on objects by the construction (C,B) 7→ C ⨿Y B.

• For every object X ∈ C, the identity 1-morphism from X to itself in C is given by
the cospan X

idX−−→ X
idX←−− X, and the unit constraint υX is given by the canonical

isomorphism X ⨿X X
∼−→ X.

• For every triple of composable 1-morphisms

W
A−→ X

B−→ Y
C−→ Z
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in Cospan(C), the associativity constraint αC,B,A is the canonical isomorphism of
iterated pushouts

C ⨿Y (B ⨿X A) ∼−→ (C ⨿Y B)⨿X A.

We will refer to Cospan(C) as the 2-category of cospans in C.

Variant 2.2.2.2 (Spans). 03J5Let C be a category. If X and Y are objects of C, we define
a span from X to Y to be a diagram X ← M → Y in the category C. If C admits fiber
products, then we can dualize Example 2.2.2.1 to produce a 2-category Span(C) having the
same objects, where 1-morphisms from X to Y in Span(C) are given by spans from X to Y
in C. More precisely, we define Span(C) to be the conjugate of the 2-category Cospan(Cop).

Remark 2.2.2.3. 00F0Let C be a category which admits finite limits, and let 1 denote a final
object of C. Then the endomorphism category EndSpan(C)(1) can be identified with the
category C itself, equipped with the Cartesian monoidal structure of Example 2.1.3.2.

Example 2.2.2.4 (Bimodules). 0085We define a 2-category Bimod as follows:

• The objects of Bimod are associative rings.

• For every pair of associative rings A and B, we take HomBimod(B,A) to be the category
whose objects are A-B bimodules: that is, abelian groups M = AMB equipped with
commuting actions of A on the left and B on the right.

• For every triple of associative rings A, B, and C, we take the composition law

HomBimod(B,A)×HomBimod(C,B)→ HomBimod(C,A)

to be the relative tensor product functor

(M,N) 7→M⊗BN

• For every associative ring A, we take the identity object of HomBimod(A,A) to be the
ring A (regarded as a bimodule over itself) and the unit constraint υA : A⊗A A ∼−→ A

is the map given by υA(x⊗ y) = xy.

• For every quadruple of associative rings A, B, C, and D equipped with bimodules
M = AMB, N = BNC , and P = CPD, we define the associativity constraint

αM,N,P : M ⊗B (N ⊗C P ) ∼=⇒ (M ⊗B N)⊗C P

to be the isomorphism characterized by the identity αM,N,P (x⊗ (y⊗ z)) = (x⊗ y)⊗ z.

Example 2.2.2.5 (Delooping a Monoidal Category). 00F1Let C be a monoidal category. We
define a 2-category B C as follows:
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• The 2-category B C has a single object, which we will denote by X.

• The category HomB C(X,X) is the category C.

• The composition functor

◦ : HomB C(X,X)×HomB C(X,X)→ HomB C(X,X)

is the tensor product functor ⊗ : C ×C → C.

• The identity morphism idX ∈ HomB C(X,X) is the unit object 1 ∈ C.

• The associativity and unit constraints of B C are the associativity and unit constraints
for the monoidal structure on C.

We will refer to the 2-category B C as the delooping of C. Note that B C is strict as a
2-category if and only if the monoidal structure on C is strict (in which case we recover the
delooping construction of Example 2.2.0.8). The construction C 7→ B C induces a bijection

{Monoidal Categories C} ∼−→ {2-Categories E with Ob(E) = {X}}

which can be viewed as an equivalence of categories (see Remark 2.2.5.8).

Remark 2.2.2.6.00F2 Let M be a monoid, which we view as a (strict) monoidal category having
only identity morphisms. Then the 2-category BM of Example 2.2.2.5 can be identified
with the ordinary category BM appearing in Remark 1.3.2.4.

2.2.3 Opposite and Conjugate 2-Categories

008A Recall that every ordinary category C has an opposite category Cop, in which the objects
are the same but the order of composition is reversed. In the setting of 2-categories, this
operation generalizes in two essentially different ways: we can independently reverse the
order of either vertical or horizontal composition. To avoid confusion, we will use different
terminology when discussing these two operations.

Construction 2.2.3.1 (The Opposite of a 2-Category).008B Let C be a 2-category. We define a
new 2-category Cop as follows:

• The objects of Cop are the objects of C. To avoid confusion, for each object X ∈ C we
will write Xop for the corresponding object of Cop.

• For every pair of objects X,Y ∈ C, we have HomCop(Xop, Y op) = HomC(Y,X). In
particular, every 1-morphism f : Y → X in the 2-category C can be regarded as
a 1-morphism from Xop to Y op in the 2-category Cop, which we will denote by
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fop : Xop → Y op. Similarly, if we are given a pair of 1-morphisms f, g : Y → X in the
2-category C having the same source and target, then every 2-morphism γ : f ⇒ g

in C determines a 2-morphism from fop to gop in Cop, which we will denote by
γop : fop ⇒ gop.

• For every triple of objects X,Y, Z ∈ C, the composition functor

◦ : HomCop(Y op, Zop)×HomCop(Xop, Y op)→ HomCop(Xop, Zop)

for the 2-category Cop is given by the composition functor

◦ : HomC(Y,X)×HomC(Z, Y )→ HomC(Z,X).

on the 2-category C; in particular, it is given on objects by the formula fop ◦ gop =
(g ◦ f)op.

• For every object X ∈ C, the identity 1-morphism idXop ∈ HomCop(Xop, Xop) is given
by idop

X , where idX ∈ HomC(X,X) is the identity 1-morphism associated to X in the
2-category C, and the unit constraint υXop is the isomorphism υop

X : idXop ◦ idXop
∼=⇒

idXop .

• For every triple of composable 1-morphisms

W
f−→ X

g−→ Y
h−→ Z

in the 2-category C, the associativity constraint

αfop,gop,hop : fop ◦ (gop ◦ hop) ∼=⇒ (fop ◦ gop) ◦ hop

in the 2-category Cop is given by the inverse (αop
h,g,f )−1 of the associativity constraint

αh,g,f : h ◦ (g ◦ f) ∼=⇒ (h ◦ g) ◦ f in the 2-category C.

We will refer to Cop as the opposite of the 2-category C.

Example 2.2.3.2. 008CLet C be a category which admits pushouts, and let Cospan(C) be the
2-category of cospans in C (see Example 2.2.2.1). Then the opposite 2-category Cospan(C)op

can be identified with Cospan(C) itself (every cospan from X to Y in C can also be viewed
as a cospan from Y to X).

Example 2.2.3.3. 00F3Let C be a monoidal category, and let B C be the 2-category obtained
by delooping C (Example 2.2.2.5). Then the opposite 2-category (B C)op can be identified
with B(Crev), where Crev denotes the reverse of the monoidal category C (Example 2.1.3.5).

Construction 2.2.3.4 (The Conjugate of a 2-Category). 008DLet C be a 2-category. We define
a new 2-category Cc as follows:
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• The objects of Cc are the objects of C. To avoid confusion, for each object X ∈ C we
will write Xc for the corresponding object of Cc.

• For every pair of objects X,Y ∈ C, we have HomCc(Xc, Y c) = HomC(X,Y )op. In
particular, every 1-morphism f : X → Y in the 2-category C can be regarded as a
1-morphism from Xc to Y c in the 2-category Cc, which we will denote by f c : Xc → Y c.
Similarly, if we are given a pair of 1-morphisms f, g : X → Y in the 2-category C
having the same source and target, then every 2-morphism γ : f ⇒ g in C determines
a 2-morphism from gc to f c in Cc, which we will denote by γc : gc ⇒ f c.

• For every triple of objects X,Y, Z ∈ C, the composition functor

◦ : HomCc(Y c, Zc)×HomCc(Xc, Y c)→ HomCop(Xc, Zc)

for the 2-category Cc is induced by the composition functor

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z).

on C by passing to opposite categories. In particular, it is given on objects by the
formula gc ◦ f c = (g ◦ f)c.

• For every object X ∈ C, the identity 1-morphism idXc ∈ HomCc(Xc, Xc) is given by idc
X ,

where idX ∈ HomC(X,X) is the identity 1-morphism associated to X in the 2-category
C, and the unit constraint υXc is the isomorphism (υc

X)−1 : idXc ◦ idXc
∼=⇒ idXc .

• For every triple of composable 1-morphisms

W
f−→ X

g−→ Y
h−→ Z

in the 2-category C, the associativity constraint

αhc,gc,fc : hc ◦ (gc ◦ f c) ∼=⇒ (hc ◦ gc) ◦ f c

in the 2-category Cc is given by the inverse (αc
h,g,f )−1 of the associativity constraint

αh,g,f : h ◦ (g ◦ f) ∼=⇒ (h ◦ g) ◦ f in the 2-category C.

We will refer to Cc as the conjugate of the 2-category C.

Example 2.2.3.5.00F4 Let C be a monoidal category, and let B C be the 2-category obtained by
delooping C (Example 2.2.2.5). Then the conjugate 2-category (B C)c can be identified with
B(Cop), where we endow the opposite category Cop with the monoidal structure of Example
2.1.3.4.
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Remark 2.2.3.6. 008EConstructions 2.2.3.1 and 2.2.3.4 are analogous but not identical. At
the level of 2-morphisms, passage from a 2-category C to its opposite Cop reverses the order
of horizontal composition, but preserves the order of vertical composition; passage from C
to its conjugate Cc preserves the order of horizontal composition and reverses the order of
vertical composition. Following the notation of Warning 2.2.1.9, we have

δopγop = (δγ)op γop ◦ γ′ op = (γ′ ◦ γ)op

γcδc = (δγ)c γ′ c ◦ γc = (γ′ ◦ γ)c.

Example 2.2.3.7. 008FLet C be an ordinary category, which we regard as a 2-category having only
identity 2-morphisms (Example 2.2.0.6). Then the opposite 2-category Cop of Construction
2.2.3.1 coincides with the opposite of C as an ordinary category (which we can again regard as
a 2-category having only identity morphisms). The conjugate 2-category Cc of Construction
2.2.3.4 can be identified with C itself.

2.2.4 Functors of 2-Categories

008GLet C and D be 2-categories. Roughly speaking, a functor F : C → D should be
an operation which carries objects, 1-morphisms, and 2-morphisms of C to objects, 1-
morphisms, and 2-morphisms of D, which is suitably compatible with (horizontal and
vertical) composition. Here it is useful to distinguish between different notions of functor,
which are differentiated by the degree of compatibility which is assumed.

Definition 2.2.4.1 (Strict Functors). 008HLet C and D be 2-categories. A strict functor F from
C to D consists of the following data:

• For every object X ∈ C, an object F (X) in D.

• For every pair of objects X,Y ∈ C, a functor of ordinary categories

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )).

We will generally abuse notation by writing F (f) for the value of the functor FX,Y on
an object f of the category HomC(X,Y ), and F (γ) for the value of F on a morphism
γ in the category HomC(X,Y ).

This data is required to satisfy the following compatibility conditions:

(1) For every object X ∈ C, we have idF (X) = F (idX).
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(2) For every triple of objects X,Y, Z ∈ C, the diagram of categories

HomC(Y,Z)×HomC(X,Y ) ◦ //

FY,Z×FX,Y

��

HomC(X,Z)

FX,Z

��
HomD(F (Y ), F (Z))×HomD(F (X), F (Y )) ◦ // HomD(F (X), F (Z))

is strictly commutative.

(3) For every object X ∈ C, the functor FX,X carries the unit constraint υX : idX ◦ idX
∼=⇒

idX to the unit constraint υF (X) : idF (X) ◦ idF (X)
∼=⇒ idF (X).

(4) For every composable triple of 1-morphisms W f−→ X
g−→ Y

h−→ Z in C, we have F (αh,g,f ) =
αF (h),F (g),F (f). In other words, F carries the associativity constraints of C to the
associativity constraints of D.

Remark 2.2.4.2.008J In the situation of Definition 2.2.4.1, conditions (3) and (4) are automati-
cally satisfied if the 2-categories C and D are strict.

Example 2.2.4.3.00JK Let C and D be strict 2-categories, which we regard as Cat-enriched
categories (Remark 2.2.0.2). Then strict functors from C to D (in the sense of Definition
2.2.4.1) can be identified with Cat-enriched functors from C to D (in the sense of Definition
2.1.7.10).

Exercise 2.2.4.4.00F5 Let C and D be 2-categories and let F : C → D be a strict functor.
Show that, for each morphism f : X → Y in C, the functor FX,Y : HomC(X,Y ) →
HomD(F (X), F (Y )) carries the left and right unit constraints λf : idY ◦f

∼=⇒ f and ρf :
f ◦ idX

∼=⇒ f to λF (f) and ρF (f), respectively (see Construction 2.2.1.11).

Note that axiom (2) of Definition 2.2.4.1 implies in particular that for every pair of
composable 1-morphisms X f−→ Y

g−→ Z in the 2-category C, we have an equality F (g)◦F (f) =
F (g ◦ f) between objects of the category HomD(F (X), F (Z)). In practice, this requirement
is often too strong: it is often better to allow a more liberal notion of functor, which is only
required to preserve composition up to isomorphism.

Definition 2.2.4.5 (Lax Functors).008K Let C and D be 2-categories. A lax functor F from C
to D consists of the following data:

• For every object X ∈ C, an object F (X) ∈ D.
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• For every pair of objects X,Y ∈ C, a functor of ordinary categories

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )).

We will generally abuse notation by writing F (f) for the value of the functor FX,Y on
an object f of the category HomC(X,Y ), an F (γ) for the value of F on a morphism γ

in the category HomC(X,Y ).

• For every object X ∈ C, a 2-morphism ϵX : idF (X) ⇒ F (idX) in the 2-category D,
which we will refer to as the identity constraint.

• For every pair of composable 1-morphisms X f−→ Y
g−→ Z in the 2-category C, a

2-morphism
µg,f : F (g) ◦ F (f)⇒ F (g ◦ f),

which we will refer to as the composition constraint. We require that, if the objects X,
Y , and Z are fixed, then the construction (g, f) 7→ µg,f is functorial: that is, we can
regard µ as a natural transformation of functors as indicated in the diagram

HomC(Y,Z)×HomC(X,Y ) ◦ //

FY,Z×FX,Y

��

HomC(X,Z)

FX,Z

��
HomD(F (Y ), F (Z))×HomD(F (X), F (Y )) ◦ //

µ

/7

HomD(F (X), F (Z))

This data is required to be compatible with the unit and associativity constraints of C
and D in the following sense:

(a) For every 1-morphism f : X → Y in C, the left unit constraint λF (f) in D is given by
the vertical composition

idF (Y ) ◦F (f)
ϵY ◦idF (f)======⇒ F (idY ) ◦ F (f)

µidY ,f====⇒ F (idY ◦f)
F (λf )
====⇒ F (f).

(b) For every 1-morphism f : X → Y in C, the right unit constraint ρF (f) in D is given by
the vertical composition

F (f) ◦ idF (X)
idF (f) ◦ϵX=======⇒ F (f) ◦ F (idX)

µf,idX====⇒ F (f ◦ idX)
F (ρf )
====⇒ F (f).

(c) For every triple of composable 1-morphisms W f−→ X
g−→ Y

h−→ Z in the 2-category C, we
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have a commutative diagram

F (h) ◦ (F (g) ◦ F (f))

idF (h) ◦µg,f

��

αF (h),F (g),F (f) +3 (F (h) ◦ F (g)) ◦ F (f)

µh,g◦idF (f)

��
F (h) ◦ F (g ◦ f)

µh,g◦f

��

F (h ◦ g) ◦ F (f)

µh◦g,f

��
F (h ◦ (g ◦ f))

F (αh,g,f )
+3 F ((h ◦ g) ◦ f)

in the category HomD(F (W ), F (Z)).

A functor from C to D is a lax functor F : C → D with the property that the identity
and composition constraints

ϵX : idF (X) ⇒ F (idX) µg,f : F (g) ◦ F (f)⇒ F (g ◦ f)

are isomorphisms.

Warning 2.2.4.6.008L The terminology of Definition 2.2.4.5 is not standard. In [4], Bénabou
uses the term morphism for what we call a lax functor of 2-categories, homomorphism for
what we call a functor of 2-categories, and strict homomorphism for what we call a strict
functor of 2-categories. Other authors refer to functors of 2-categories (in the sense of
Definition 2.2.4.5) as weak functors or pseudofunctors (to avoid confusion with the notion of
strict functor).

Remark 2.2.4.7.00F6 Let C and D be 2-categories and let F : C → D be a lax functor from C to
D. Then, for each object X ∈ Ob(C), we can regard FX,X : EndC(X)→ EndD(F (X)) as a
lax monoidal functor from EndC(X) (endowed with the monoidal structure of Remark 2.2.1.7)
to EndD(F (X)): the tensor and unit constraints on FX,X are given by the composition and
identity constraints on F , respectively. If F is a functor, then FX,X is a monoidal functor.

Remark 2.2.4.8.00F7 Let C and D be 2-categories and let F : C → D be a lax functor from C to
D. Then the identity constraints {ϵX : idF (X) ⇒ F (idX)}X∈Ob(C) are uniquely determined
by the other data of Definition 2.2.4.5. This follows from Proposition 2.1.5.4, applied to the
lax monoidal functor FX,X : EndC(X)→ EndD(F (X)) of Remark 2.2.4.7.

Remark 2.2.4.9.00F8 Let C be a monoidal category, let B C be the 2-category obtained by
delooping C (Example 2.2.2.5), and let X denote the unique object of B C. Let D be any
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2-category, and let Y be an object of D. Then the construction of Remark 2.2.4.7 induces
bijections

{Lax Functors F : B C → D with F (X) = Y } ≃ {Lax monoidal functors C → EndD(Y )}

{Functors F : B C → D with F (X) = Y } ≃ {Monoidal functors C → EndD(Y ) }.

Applying this observation in the case where D = B C′ for some other monoidal category C′,
we deduce that (lax) monoidal functors from C to C′ can be identified with (lax) functors of
2-categories from B C to B C′.

Example 2.2.4.10 (Algebras as Lax Functors). 01NLLet [0] denote the category having a single
object and a single morphism, which we regard as a (strict) 2-category, and let D be any
2-category. Combining Remark 2.2.4.9 and Example 2.1.5.21, we deduce that lax functors
[0]→ D can be identified with pairs (Y,A), where Y ∈ D is an object and A is an algebra
object of the monoidal category EndD(Y ).

Example 2.2.4.11. 008MLet C and D be 2-categories, and let F : C → D be a strict functor (in
the sense of Definition 2.2.4.1). Then we can regard F as a functor from C to D (in the
sense of Definition 2.2.4.5) by taking the identity and composition constraints

ϵX : idF (X) ⇒ F (idX) µg,f : F (g) ◦ F (f)⇒ F (g ◦ f)

to be the identity maps (note that in this case, conditions (a), (b), and (c) of Definition
2.2.4.5 reduce to conditions (3) and (4) of Definition 2.2.4.1). Conversely, if F : C → D is a
lax functor having the property that each of the identity and composition constraints ϵX
and µg,f is an identity 2-morphism of D, then we can regard F as a strict 2-functor from C
to D. We therefore have inclusions

{Strict functors F : C → D} ⊆ {Functors F : C → D} ⊆ {Lax functors F : C → D}.

In general, neither of these inclusions is reversible.

Example 2.2.4.12 (Enriched Categories as Lax Functors). 00F9Let S be a set, and let ES
denote the indiscrete category with object set S: that is, the objects of ES are the elements
of S, and HomES

(X,Y ) is a singleton for every pair of elements X,Y ∈ S. Regard ES as a
(strict) 2-category having only identity 2-morphisms (Example 2.2.0.6). Let C be a monoidal
category, and let B C be its delooping (Example 2.2.2.5). Unwinding the definitions, we see
that lax functors F : ES → B C (in the sense of Definition 2.2.4.5) can be identified with
C-enriched categories having object set S (in the sense of Definition 2.1.7.1).

Warning 2.2.4.13. 008NLet C and D be strict 2-categories, and let C0 and D0 denote their un-
derlying ordinary categories (obtained by ignoring the 2-morphisms of C and D, respectively).
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Every strict functor F : C → D induces a functor of ordinary categories F0 : C0 → D0.
However, if a functor F : C → D is not strict, then it need not give rise to a functor from
C0 to D0. If X f−→ Y

g−→ Z is a composable pair of 1-morphisms in C, then Definition
2.2.4.5 guarantees that the 1-morphisms F (g) ◦ F (f) and F (g ◦ f) are isomorphic (via the
composition constraint µg,f ), but not that they are identical.

Example 2.2.4.14.008P Let C be a 2-category and let D be an ordinary category, which we
regard as a 2-category having only identity 2-morphisms. If F : C → D is lax functor of
2-categories, then its values on the 1-morphisms of C must satisfy the following conditions:

(1) If u, v : X → Y are 1-morphisms of C having the same source and target and γ : u⇒ v is
a 2-morphism of C, then F (u) = F (v) (since F (γ) : F (u)⇒ F (v) must be an identity
2-morphism of D).

(2) If u : X → Y and v : Y → Z are composable 1-morphisms of C, then F (v ◦ u) =
F (v) ◦ F (u) (since the composition constraint µv,u : F (v) ◦ F (u) ⇒ F (v ◦ u) is an
identity 2-morphism of D).

(3) For every object X ∈ C, F (idX) is the identity morphism idF (X) in D (since the identity
constraint ϵX : idF (X) ⇒ F (idX) is an identity 2-morphism of D).

Conversely, any specification of the values of F on objects and 1-morphisms which satisfies
conditions (1), (2), and (3) extends uniquely to a strict functor F : C → D (the coherence
conditions appearing in Definition 2.2.4.5 are automatic, by virtue of the fact that every
2-morphism of D is an identity). In particular, every lax functor F : C → D is automatically
strict. Beware that the analogous statement is generally false if the roles of C and D are
reversed.

Notation 2.2.4.15.008Q Let C and D be 2-categories. To supply a lax 2-functor F : C → D,
one must specify not only the values of F on objects, 1-morphisms, and 2-morphisms of C,
but also the identity and composition constraints

ϵX : idF (X) ⇒ F (idX) µg,f : F (g) ◦ F (f)⇒ F (g ◦ f).

In situations where we need to consider more than one lax functor at a time, we will denote
these 2-morphisms by ϵFX and µFg,f (to avoid ambiguity).

Exercise 2.2.4.16.00FA In the situation of Definition 2.2.4.5, show that we can replace (a) and
(b) by the following alternative conditions:

https://kerodon.net/tag/008P
https://kerodon.net/tag/008Q
https://kerodon.net/tag/00FA


206 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

• For every object X ∈ C, the diagram

idF (X) ◦ idF (X)
υF (X) +3

ϵX◦ϵX

��

idF (X)

ϵX

��

F (idX) ◦ F (idX)

µidX ,idX

��
F (idX ◦ idX) F (υX) +3 F (idX)

commutes (in the endomorphism category EndC(X)).

• For every 1-morphism f : X → Y in C, the vertical compositions

idF (Y ) ◦F (f)
ϵY ◦idF (f)======⇒ F (idY ) ◦ F (f)

µidY ,f====⇒ F (idY ◦f)

F (f) ◦ idF (X)
idF (f) ◦ϵX=======⇒ F (f) ◦ F (idX)

µf,idX====⇒ F (f ◦ idX)

are monomorphisms in the category HomD(F (X), F (Y )).

See Proposition 2.1.5.13.

Let F : C → D be a (lax) functor between 2-categories. According to Example 2.2.4.11,
F is strict if and only if the identity and composition constraints

ϵX : idF (X) ⇒ F (idX) µg,f : F (g) ◦ F (f)⇒ F (g ◦ f)

are identity 2-morphisms in D. In §2.3.1, it will be useful to consider a weaker version of this
condition, where we require strict compatibility with the formation of identity morphisms
but not with respect to composition in general.

Definition 2.2.4.17. 008RLet C and D be 2-categories, and let F : C → D be a lax functor. We
say that F is unitary if, for every object X ∈ C, the identity constraint ϵX : idF (X) ⇒ F (idX)
is an invertible 2-morphism of D. We say that F is strictly unitary if, for every object
X ∈ C, we have an equality idF (X) = F (idX) and the identity constraint ϵX is the identity
2-morphism from idF (X) to itself.

Remark 2.2.4.18. 008SLet C and D be 2-categories. Every functor F : C → D is unitary when
viewed as a lax functor from C to D. Every strict functor F : C → D is strictly unitary when
viewed as a lax functor from C to D.
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Remark 2.2.4.19.008U Let C and D be 2-categories and let F : C → D be a unitary lax functor.
Then one can modify F to produce a strictly unitary lax functor F ′ : C → D by the following
explicit procedure:

• For every object X ∈ C, we set F ′(X) = F (X).

• For every 1-morphism f : X → Y in C which is not an identity morphism, we set
F ′(f) = F (f); if X = Y and f = idX we instead set F ′(f) = idF (X). In either case,
we have an invertible 2-morphism φf : F ′(f) ∼=⇒ F (f), given by

φf =

ϵFX if f = idX
idF (f) otherwise.

• Let X and Y be objects of C, and let γ : f ⇒ g be a 2-morphism between 1-morphisms
f, g : X → Y . We define F ′(γ) to be the vertical composition φ−1

g F (γ)φf .

• For every pair of composable 1-morphisms X f−→ Y
g−→ Z in the 2-category D, we

define the composition constraint µF ′g,f : F ′(g) ◦ F ′(f)⇒ F ′(g ◦ f) to be the vertical
composition

F ′(g) ◦ F ′(f)
φg◦φf====⇒ F (g) ◦ F (f)

µF
g,f===⇒ F (g ◦ f)

φ−1
g◦f===⇒ F ′(g ◦ f).

Consequently, it is generally harmless to assume that a unitary lax functor of 2-categories
F : C → D is strictly unitary.

2.2.5 The Category of 2-Categories

008V We now show that 2-categories can be regarded as the objects of a category 2Cat, in
which the morphisms are functors between 2-categories (Definition 2.2.5.5). There are several
variants of this construction, depending on what sort of functors we allow.

Construction 2.2.5.1 (Composition of Lax Functors).008W Let C, D, and E be 2-categories,
and suppose we are given a pair of lax functors F : C → D and G : D → E . We define a lax
functor GF : C → E as follows:

• On objects, the lax functor GF is given by (GF )(X) = G(F (X)).

• For every pair of objects X,Y ∈ C, the functor

(GF )X,Y : HomC(X,Y )→ HomE((GF )(X), (GF )(Y ))
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is given by the composition of functors

HomC(X,Y ) FX,Y−−−→ HomD(F (X), F (Y ))
GF (X),F (Y )−−−−−−−→ HomE((GF )(X), (GF )(Y )).

In other words, the lax functor GF is given on 1-morphisms and 2-morphisms by the
formulae

(GF )(f) = G(F (f)) (GF )(γ) = G(F (γ)).

• For each object X ∈ C, the identity constraint ϵGFX : id(GF )(X) ⇒ (GF )(idX) is given
by the composition

id(GF )(X)
ϵG

F (X)====⇒ G(idF (X))
G(ϵFX)
====⇒ (GF )(idX).

• For every pair of composable 1-morphisms X f−→ Y
g−→ Z in the 2-category C, the

composition constraint µGFg,f : (GF )(g) ◦ (GF )(f) → (GF )(g ◦ f) is given by the
composition

(GF )(g) ◦ (GF )(f)
µG

F (g),F (f)======⇒ G(F (g) ◦ F (f))
G(µF

g,f )
=====⇒ (GF )(g ◦ f).

We will refer to GF as the composition of F with G, and will sometimes denote it by G ◦ F .

Exercise 2.2.5.2. 008XCheck that the composition of lax functors is well-defined. That is, if
F : C → D and G : D → E are lax functors between 2-categories, then the identity and
composition constraints ϵGFX and µGFg,f of Construction 2.2.5.1 are compatible with the unit
constraints and associativity constraints of C and E , as required by Definition 2.2.4.5.

Remark 2.2.5.3. 008YLet F : C → D and G : D → E be lax functors of 2-categories, and let
GF : C → E be their composition. Then:

• If F and G are unitary, then the composition GF is unitary.

• If F and G are functors, then the composition GF is a functor.

• If F and G are strictly unitary, then the composition GF is strictly unitary.

• If F and G are strict functors, then the composition GF is a strict functor.

Example 2.2.5.4. 008ZLet C be a 2-category. We let idC : C → C be the strict functor which
carries every object, 1-morphism, and 2-morphism of C to itself. We will refer to idC as the
identity functor on C. Note that it is both a left and right unit for the composition of lax
functors given in Construction 2.2.5.1.
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Definition 2.2.5.5.0090 We let 2CatLax denote the ordinary category whose objects are (small)
2-categories and whose morphisms are lax functors between 2-categories (Definition 2.2.4.5),
with composition given by Construction 2.2.5.1 and identity morphisms given by Example
2.2.5.4. We define (non-full) subcategories

2CatStr ⊊ 2Cat ⊊ 2CatLax ⊋ 2CatULax

• The objects of 2Cat are 2-categories, and the morphisms of 2Cat are functors.

• The objects of 2CatStr are strict 2-categories, and the morphisms of 2CatStr are strict
functors.

• The objects of 2CatULax are 2-categories, and the morphisms of 2CatULax are strictly
unitary lax functors.

We will refer to 2Cat as the category of 2-categories, and to 2CatStr as the category of strict
2-categories.

Remark 2.2.5.6.0092 Let C and D be 2-categories. Then the collection Hom2Cat(C,D) of
functors from C to D can be identified with the set of objects of a certain 2-category
Fun(C,D), called the 2-category of functors from C to D. We will return to this point in
more detail in §[?].

Example 2.2.5.7.0093 Let C and D be ordinary categories, which we regard as 2-categories
having only identity 2-morphisms (see Example 2.2.0.6). Then every lax functor of 2-
categories from C to D is automatically strict (Example 2.2.4.14), and can be identified with
a functor from C to D in the usual sense. In other words, we can view Example 2.2.0.6 as
supplying fully faithful embeddings (of ordinary categories)

Cat ↪→ 2CatStr Cat ↪→ 2Cat Cat ↪→ 2CatLax Cat ↪→ 2CatULax .

Remark 2.2.5.8.00FB Let MonCat denote the ordinary category whose objects are monoidal
categories and whose morphisms are monoidal functors (that is, the underlying category
of the strict 2-category MonCat of Example 2.2.0.5). Then the construction C 7→ B C
determines a fully faithful embedding from MonCat to the category 2Cat of Definition
2.2.5.5, which fits into a pullback diagram

MonCat C7→B C //

��

2Cat

C7→Ob(C)

��
{∗} // Set;
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here ∗ = {X} denotes a set containing a single fixed objectX. Similarly, the ordinary category
of monoidal categories and lax monoidal functors can be regarded as a full subcategory of
2CatLax.

Remark 2.2.5.9 (Functors on Opposite 2-Categories). 0094Let C and D be 2-categories, and let
Cop and Dop denote their opposites (Construction 2.2.3.1). Then every lax functor F : C → D
induces a lax functor F op : Cop → Dop, given explicitly by the formulae

F op(Xop) = F (X)op F op(fop) = F (f)op F op(γop) = F (γ)op

ϵXop = (ϵX)op µgop,fop = (µf,g)op.

In this case, F is a functor if and only if F op is a functor, and a strict functor if and only if
F op is a strict functor. This operation is compatible with composition, and therefore induces
equivalences of categories

2CatStr ≃ 2CatStr 2Cat ≃ 2Cat 2CatLax ≃ 2CatLax 2CatULax ≃ 2CatULax .

Remark 2.2.5.10 (Functors on Conjugate 2-Categories). 0095Let C and D be 2-categories, and
let Cc and Dc denote their conjugates (Construction 2.2.3.4). Then every functor F : C → D
induces a functor F c : Cc → Dc, given explicitly by the formulae

F c(Xc) = F (X)c F c(f c) = F (f)c F c(γc) = F (γ)c

ϵXc = (ϵ−1
X )c µgc,fc = (µ−1

g,f )c.

In this case, the functor F is strict if and only if F c is strict. This operation is compatible
with composition, and therefore induces equivalences of categories

2CatStr ≃ 2CatStr 2Cat ≃ 2Cat

Warning 2.2.5.11. 0096The construction of Remark 2.2.5.10 requires that the identity and
composition constraints of F are invertible, and therefore does not extend to lax functors
between 2-categories. In general, one cannot identify lax functors from C to D with lax
functors from Cc to Dc: the definition of lax functor is asymmetrical with respect to vertical
composition.

2.2.6 Isomorphisms of 2-Categories

0097We now study isomorphisms between 2-categories.

Definition 2.2.6.1. 0098Let C and D be 2-categories. We will say that a functor F : C → D is
an isomorphism if it is an isomorphism in the category 2Cat of Definition 2.2.5.5. That is,
F is an isomorphism if there exists a functor G : D → C such that GF = idC and FG = idC .
We say that 2-categories C and D are isomorphic if there exists an isomorphism from C to D.
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Remark 2.2.6.2.0099 Let F : C → D be an isomorphism of 2-categories, and let G : D → C be
the inverse isomorphism. Then:

• The functor F is strictly unitary if and only if G is strictly unitary. In this case, we
say that F is a strictly unitary isomorphism.

• The functor F is strict if and only if G is strict. In this case, we say that F is a strict
isomorphism.

We say that 2-categories C and D are strictly isomorphic if there is a strict isomorphism
from C to D.

Warning 2.2.6.3.009A Let C and D be 2-categories which are strictly isomorphic. Then C is
strict if and only if D is strict. If we assume only that C and D are isomorphic (rather
than strictly isomorphic), then we cannot draw the same conclusion. In other words, the
condition that a 2-category C is strict is invariant under strict isomorphism, but not under
isomorphism.

Warning 2.2.6.4.009B The notions of isomorphism and strict isomorphism of 2-categories
are somewhat artificial. As in classical category theory, there is notion of equivalence of
2-categories (Definition [?]) which is more general than isomorphism and more appropriate
for describing what it means for 2-categories to be “the same.”

Remark 2.2.6.5.009C Let F : C → D be a functor of 2-categories. Then F is an isomorphism
(in the sense of Definition 2.2.6.1) if and only if it satisfies the following conditions:

• The functor F induces a bijection from the set of objects of C to the set of objects of
D.

• For every pair of objects X,Y ∈ C, the functor F induces an isomorphism of categories
HomC(X,Y )→ HomD(F (X), F (Y )).

One might be tempted to consider a more liberal version of Definition 2.2.6.1 working
with lax functors rather than functors. However, the resulting notion of isomorphism turns
out to be the same.

Proposition 2.2.6.6.009D Let C and D be 2-categories, and let F : C → D be a lax functor
which is an isomorphism in the category 2CatLax. Then F is a functor.

Proof. We will show that, for every pair of composable 1-morphisms X f−→ Y
g−→ Z in the

2-category C, the composition constraint µFg,f : F (g) ◦ F (f)⇒ F (g ◦ f) is an isomorphism
(in the ordinary category HomD(F (X), F (Z))); the analogous statement for the identity
constraints ϵFX : idF (X) ⇒ F (idX) follows by a similar (but easier) argument.
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Let G : D → C be a lax functor which is an inverse of F in the category 2CatLax. For
any pair of composable 1-morphisms X ′ f

′
−→ Y ′

g′−→ Z ′ in the 2-category D, the composition
constraint µF◦Gg′,f ′ for the lax functor F ◦G is given by the vertical composition

(F ◦G)(g′) ◦ (F ◦G)(f ′)
µF

G(g′),G(f ′)=======⇒ F (G(g′) ◦G(f ′))
F (µG

g′,f ′ )======⇒ (F ◦G)(g′ ◦ f ′).

Since F ◦G coincides with idD as a lax functor, this composition is the identity 2-morphism
from g′ ◦ f ′ to itself. In particular, we see that F (µGg′,f ′) has a right inverse in the category
HomD(X ′, Z ′). It follows that µGg′,f ′ = G(F (µGg′,f ′)) has a right inverse in the category
HomC(G(X ′), G(Z ′)).

Applying the same argument with the roles of F and G reversed, we see that the
composition constraint µG◦Fg,f = idg◦f factors as a vertical composition

(G ◦ F )(g) ◦ (G ◦ F )(f)
µG

F (g),F (f)======⇒ G(F (g) ◦ F (f))
G(µF

g,f )
=====⇒ (G ◦ F )(g ◦ f).

In particular, this shows that µGF (g),F (f) has a left inverse (in the category HomC(X,Z)).
Applying the preceding argument in the case g′ = F (g) and f ′ = F (f), we see that µGF (g),F (f)
also has a right inverse. It follows that µGF (g),F (f) is an isomorphism in the category
HomC(X,Z). Since G(µFg,f ) is a left inverse of µGF (g),F (f), it must also be an isomorphism. It
follows that F (G(µFg,f )) = µFg,f is an isomorphism in the category HomD(F (X), F (Z)), as
desired.

We now construct some examples of non-strict isomorphisms of 2-categories.

Notation 2.2.6.7. 009ELet C be a 2-category. A twisting cochain for C is a datum which assigns,
to every pair of composable 1-morphisms X f−→ Y

g−→ Z, a 1-morphism (g ◦′ f) : X → Z and
an invertible 2-morphism µg,f : g ◦′ f ∼=⇒ g ◦ f . In this case, we will (slightly) abuse notation
by identifying the twisting cochain with the collection of 2-morphisms {µg,f}.

Construction 2.2.6.8. 009FLet C be a 2-category equipped with a twisting cochain

{µg,f} = {µg,f : (g ◦′ f)⇒ (g ◦ f)}.

We define a new 2-category C′ as follows:

• The objects of C′ are the objects of C.

• For every pair of objects X,Y ∈ C, we define HomC′(X,Y ) to be the category
HomC(X,Y ). In particular, we can identify 1-morphisms of C′ with 1-morphisms
of C, 2-morphisms of C′ with 2-morphisms of C, and the vertical composition of
2-morphisms in C′ with the vertical composition of 2-morphisms in C.
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• For every object X ∈ C, the identity 1-morphism from X to itself in the 2-category C′
is the same as the identity morphism from X to itself in the 2-category C.

• For every triple of objects X,Y, Z ∈ C, the composition functor

HomC′(Y,Z)×HomC′(X,Y )→ HomC′(X,Z)

is given on objects by (g, f) 7→ g ◦′ f and on morphisms by the construction

(δ : g ⇒ g′, γ : f ⇒ f ′) 7→ µ−1
g′,f ′(δ ◦ γ)µg,f .

• For every object X ∈ C, the unit constraint υ′X : idX ◦′ idX
∼=⇒ idX for the 2-category

C′ is given by the composition

idX ◦′ idX
µidX ,idX======⇒ idX ◦ idX

υX==⇒ idX .

• For every triple of composable 1-morphisms W f−→ X
g−→ Y

h−→ Z of C, the associativity
constraint of C′ is given by the composition

h ◦′ (g ◦′ f)
µh,g◦′f=====⇒ h ◦ (g ◦′ f)

idh ◦µg,f======⇒ h ◦ (g ◦ f)
αh,g,f====⇒ (h ◦ g) ◦ f

µ−1
h,g
◦idf

=====⇒ (h ◦′ g) ◦ f

µ−1
h◦′g,f=====⇒ (h ◦′ g) ◦′ f.

We will refer to C′ as the twist of C with respect to {µg,f}.

Exercise 2.2.6.9.009G Let C be a 2-category equipped with a twisting cochain {µg,f}. Show
that the 2-category C′ of Construction 2.2.6.8 is well-defined. Moreover, there is a strictly
unitary isomorphism of 2-categories C → C′ which carries each object, 1-morphism, and
2-morphism of C to itself, where the composition constraints are given by {µg,f}.

Exercise 2.2.6.10.009H Let F : C → D be a strictly unitary isomorphism of 2-categories. Show
that there is a unique twisting cochain {µg,f} on the 2-category C such that F factors
as a composition C G−→ C′ H−→ D, where G is the strictly unitary isomorphism of Exercise
2.2.6.9 and H is a strict isomorphism of 2-categories. In other words, the notion of twisting
cochain (in the sense of Notation 2.2.6.7) measures the difference between strictly unitary
isomorphisms and strict isomorphisms in the setting of 2-categories.
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Remark 2.2.6.11. 009JIt is possible to consider a generalization of the twisting procedure of
Construction 2.2.6.8 in which one modifies not only the composition law for 1-morphisms of
C, but also the choice of identity 1-morphisms of C. Since we will not need this generalization,
we leave the details to the reader.

Example 2.2.6.12. 009LLet G be a group with identity element 1 ∈ G, let Γ be an abelian
group on which G acts by automorphisms, let α : G × G × G → Γ be a 3-cocycle, let C
be the monoidal category of Example 2.1.3.3, and let B C be the 2-category obtained by
delooping C (Example 2.2.2.5). A twisting cochain for the 2-category B C (in the sense of
Notation 2.2.6.7) can be identified with a map of sets

µ : G×G→ Γ (g, f) 7→ µg,f .

Let (B C)′ denote the twist of B C with respect to µ. Unwinding the definitions, we see that
(B C)′ is obtained by delooping the same category C with respect to a different monoidal
structure: namely, the monoidal structure supplied by the 3-cocycle α′ : G ×G ×G → Γ
given by the formula

α′h,g,f = αh,g,f + h(µg,f )− µhg,f + µh,gf − µh,g.

We can summarize the situation as follows:

• To every 3-cocycle α : G×G×G→ Γ, we can associate a 2-category B C in which the
1-morphisms are the elements of G, the 2-morphisms are the elements of Γ, and the
associativity constraint is given by α.

• If α, α′ : G × G × G → Γ are cohomologous 3-cocycles on G with values in Γ, then
the associated 2-categories C and C′ are isomorphic (though not necessarily strictly
isomorphic). More precisely, every choice of 2-cocycle µ : G × G → Γ satisfying
α′ = α+ ∂(µ) determines a strictly unitary isomorphism from C to C′. Here ∂ denotes
the boundary operator from 2-cochains to 3-cocycles, given concretely by the formula

(∂µ)h,g,f = h(µg,f )− µhg,f + µh,gf − µh,g.

Example 2.2.6.13. 009NThe 2-categories Bimod and Cospan(C) of Examples 2.2.2.4 and 2.2.2.1
both depend on certain auxiliary choices:

• Let A, B, and C be associative rings, and suppose we are given a pair of bimodules
M = AMB and N = BNC . Then we can regard M and N as 1-morphisms in the
2-category Bimod, whose composition is defined to be the relative tensor product
M⊗BN . This tensor product is well-defined up to (unique) isomorphism: it is universal
among abelian groups P which are equipped with a B-bilinear map M × N → P .
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However, it is possible to give many different constructions of an abelian group with
this universal property, each of which gives a (slightly) different composition law for
the 1-morphisms in the 2-category Bimod.

• Let C be a category which admits pushouts, and suppose we are given a pair of cospans

X ← B → Y Y ← C → Z

in C. Then B and C can be regarded as 1-morphisms in the 2-category Cospan(C),
whose composition is given by the pushout C ⨿Y B (regarded as a cospan from X to
Z). This pushout is well-defined up to (unique) isomorphism as an object of C, but
there is generally no preferred representative of its isomorphism class. Consequently,
different choices of pushout lead to (slightly) different definitions for the composition
of 1-morphisms in the 2-category Cospan(C).

By making a different choice of conventions in these examples, one can obtain 2-categories
Bimod′ and Cospan′(C) having the same objects, 1-morphisms, and 2-morphisms as the
2-categories Bimod and Cospan(C), but different composition laws for 1-morphisms. In this
case, the 2-categories Bimod′ and Cospan′(C) can be obtained from Bimod and Cospan(C)
(respectively) by the twisting procedure of Construction 2.2.6.8. In particular, the resulting 2-
categories Bimod′ and Cospan′(C) are isomorphic (though not necessarily strictly isomorphic)
to the 2-categories Bimod and Cospan(C), respectively.

2.2.7 Strictly Unitary 2-Categories

00FC We now introduce a special class of 2-categories.

Definition 2.2.7.1.00FD Let C be a 2-category. We will say that C is strictly unitary if, for each
1-morphism f : X → Y in C, the left and right unit constraints

λf : idY ◦f
∼=⇒ f ρf : f ◦ idX

∼=⇒ f

are identity 2-morphisms of C.

Proposition 2.2.7.2.00FE Let C be a 2-category. Then C is strictly unitary if and only if the
following conditions are satisfied:

(a) For each 1-morphism f : X → Y in C, we have idY ◦f = f = f ◦ idX .

(b) For each object X of C, the unit constraint υX : idX ◦ idX
∼=⇒ idX is the identity

morphism from idX ◦ idX = idX to itself.

(c) For every 1-morphism f : X → Y in C, the associativity constraints αidY ,idY ,f and
αf,idX ,idX

are equal to the identity (as 2-morphisms from f to itself).
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Proof. If C is strictly unitary, then (a) is clear and (b) follows from Corollary 2.2.1.15.
Assume that (a) and (b) are satisfied. For any 1-morphism f : X → Y in C, the left unit
constraint λf is characterized by the commutativity of the diagram

idY ◦(idY ◦f)
αidY ,idY ,f +3

ididY
◦λf

!)

(idY ◦ idY ) ◦ f

υY ◦idf

u}
idY ◦f,

and is therefore the identity 2-morphism if and only if αidY ,idY ,f is an identity 2-morphism
(from f to itself). Similarly, the right unit constraint ρf is an identity 2-morphism if and
only if αf,idX ,idX

is an identity 2-morphism in C.

Remark 2.2.7.3. 00FFLet C be a strictly unitary 2-category. Then C satisfies the following
stronger versions of conditions (a) and (c) of Proposition 2.2.7.2:

(a′) For every pair of objects X,Y ∈ C, the functors

HomC(X,Y )→ HomC(X,Y ) f 7→ idY ◦f

HomC(X,Y )→ HomC(X,Y ) f 7→ f ◦ idX

are equal to the identity.

(c′) For every pair of 1-morphisms X f−→ Y
g−→ Z in C, the associativity constraints αg,f,idX

,
αg,idY ,f , and αidZ ,g,f are equal to the identity (as 2-morphisms from g ◦ f to itself).

Here (a′) follows from the naturality of the left and right unit constraints (Remark 2.2.1.13),
and (c′) follows from Propositions 2.2.1.14 and 2.2.1.16.

Example 2.2.7.4. 0089Let G be a group with identity element 1 ∈ G, let Γ be an abelian group
on which G acts by automorphisms, let α : G × G × G → Γ be a 3-cocycle, let C be the
monoidal category of Example 2.1.3.3, and let B C be the 2-category obtained by delooping
C (Example 2.2.2.5). The following conditions are equivalent:

• The 3-cocycle α is normalized: that is, it satisfies the equations

αx,y,1 = αx,1,y = α1,x,y = 0

for every pair of elements x, y ∈ G.

• The 2-category B C is strictly unitary, in the sense of Definition 2.2.7.1.
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Remark 2.2.7.5.008T Let C and D be strictly unitary 2-categories (Definition 2.2.7.1). Then a
strictly unitary lax functor F : C → D is given by the following data:

• For each object X ∈ C, an object F (X) ∈ D.

• For every pair of objects X,Y ∈ C, a functor of ordinary categories

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )).

• For every pair of composable 1-morphisms X f−→ Y
g−→ Z in C, a composition constraint

µg,f : F (g) ◦ F (f)⇒ F (g ◦ f), depending functorially on f and g.

This data must be required to satisfy axiom (c) of Definition 2.2.4.5, together with the
identities F (idX) = idF (X) for each object X ∈ C and µidY ,f = idF (f) = µf,idX

for each
1-morphism f : X → Y of C.

Remark 2.2.7.6.009K Let C be a strictly unitary 2-category, let {µg,f} be a twisting cochain for
C (see Notation 2.2.6.7), and let C′ denote the twist of C′ with respect to {µg,f} (Construction
2.2.6.8). The following conditions are equivalent:

(1) The 2-category C′ is strictly unitary.

(2) For every 1-morphism f : X → Y in C, both µf,idX
and µidY ,f are identity 2-morphisms

(from f ◦ idX = f = idY ◦f to itself).

If these conditions are satisfied, we will say that the twisting cochain {µg,f} is normalized.

It is generally harmless to assume that a 2-category C is strictly unitary, by virtue of the
following:

Proposition 2.2.7.7.00FG Let C be a 2-category. Then there exists a strictly unitary isomorphism
C ≃ C′, where C′ is a strictly unitary 2-category.

Proof. Let µ = {µg,f} be the twisting cochain on C given on composable 1-morphisms
X

f−→ Y
g−→ Z by the formula

µg,f =


λ−1
f : f ⇒ g ◦ f if g = idY
ρ−1
g : g ⇒ g ◦ f if f = idY

idg◦f : g ◦ f ⇒ g ◦ f otherwise.

Note that this prescription is consistent, since λf = υY = ρg in the special case where
f = idY = g (Corollary 2.2.1.15). Let C′ be the twist of C with respect to the cocycle {µg,f}
(Construction 2.2.6.8). Then C′ is a strictly unitary 2-category (in the sense of Definition
2.2.7.1), and Exercise 2.2.6.9 supplies a strictly unitary isomorphism of 2-categories C ≃ C′
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Remark 2.2.7.8. 0091Let 2Cat′ULax denote the subcategory of 2CatLax (and full subcategory of
2CatULax) whose objects are strictly unitary 2-categories and whose morphisms are strictly
unitary lax functors. It follows from Proposition 2.2.7.7 that the inclusion 2Cat′ULax ↪→
2CatULax is an equivalence of categories.

Remark 2.2.7.9. 00FHLet G be a group and let Γ be an abelian group with an action of G.
When applied to the 2-categories described in Example 2.2.7.4, Proposition 2.2.7.7 reduces
to the assertion that every 3-cocycle α : G×G×G→ Γ is cohomologous to a normalized
3-cocycle α′ : G×G×G→ Γ.

2.2.8 The Homotopy Category of a 2-Category

02GDEvery ordinary category can be regarded as a 2-category having only identity 2-morphisms
(Remark 2.2.1.6). Conversely, to every 2-category C one can associate ordinary category
hPith(C) having the same objects, in which morphisms are given by isomorphism classes of
1-morphisms in C. We will refer to hPith(C) as the homotopy category of the 2-category C
(Construction 2.2.8.12). It will be convenient to view this construction as a composition of
two different operations:

• To every 2-category C, one can associate a subcategory Pith(C) ⊆ C by removing the
non-invertible 2-morphisms of C; we will refer to Pith(C) as the pith of C (Construction
2.2.8.9).

• To every 2-category C, one can associate an ordinary category hC by “collapsing” all
2-morphisms of C to identity 2-morphisms (Construction 2.2.8.2). We will refer to hC
as the coarse homotopy category of the 2-category C.

We begin by formulating the latter construction more precisely.

Definition 2.2.8.1. 02ARLet C be a 2-category and let H be an ordinary category, viewed as a
2-category having only identity 2-morphisms. We say that a functor F : C → H exhibits H
as a coarse homotopy category of C if, for every ordinary category E , precomposition with F
induces a bijection

{Functors of ordinary categories from H to E}

��
{Functors of 2-categories from C to E}.

It follows immediately from the definitions that if a 2-category C admits a coarse homotopy
category H, then H is uniquely determined up to isomorphism. We will prove existence by
an explicit construction.
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Construction 2.2.8.2 (The Coarse Homotopy Category of a 2-Category).02AS Let C be a
2-category. We define a category hC as follows:

• The objects of hC are the objects of C.

• If X and Y are objects of C, then HomhC(X,Y ) is the set of connected components of
the simplicial set N•(HomC(X,Y )).

• For objects X, Y , and Z of C, the composition of morphisms in hC is given by the map

HomhC(Y, Z)×HomhC(X,Y ) = π0(N•HomC(Y, Z))× π0(N•HomC(X,Y ))
≃ π0(N•(HomC(Y,Z)×HomC(X,Y )))
◦−→ π0(N•HomC(X,Z))
= HomhC(X,Z).

We will refer to hC as the coarse homotopy category of C.

The terminology of Construction 2.2.8.2 is consistent with that of Definition 2.2.8.1, by
virtue of the following:

Proposition 2.2.8.3.02AT Let C be a 2-category and let hC be the ordinary category of Con-
struction 2.2.8.2, regarded as a 2-category having only identity 2-morphisms. Then there is
a unique functor of 2-categories F : C → hC with the following properties:

• The functor F carries each object of C to itself (regarded as an object of hC).

• The functor F carries each 1-morphism u : X → Y of C to the connected component
of u, regarded as a vertex of the nerve N•(HomC(X,Y )).

Moreover, the functor F exhibits hC as a coarse homotopy category of C, in the sense of
Definition 2.2.8.1.

Proof. The existence of F follows from Example 2.2.4.14. Let E be an ordinary category,
and suppose we are given a functor of 2-categories G : C → E . We wish to show that there is
a unique functor of ordinary categories G : hC → E satisfying G = G ◦ F . The uniqueness is
clear (since the functor F is surjective on objects and on 1-morphisms). To prove existence,
we define G on objects by the formula G(X) = G(X) and on morphism by using the map of
simplicial sets

N•(HomC(X,Y ))→ HomE(G(X), G(Y ))

and passing to connected components.
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Corollary 2.2.8.4. 02AULet Cat denote the category of (small) categories and let 2Cat denote
the category of (small) 2-categories (Definition 2.2.5.5. Then the inclusion Cat ↪→ 2Cat
admits a left adjoint, given on objects by the construction C 7→ hC.

In general, passage from a 2-category C to its coarse homotopy category hC is a very
destructive procedure: if u, v : X → Y are 1-morphisms of C having the same source and
target, then the existence of any 2-morphism γ : u⇒ v in C guarantees that u and v have
the same image in hC. For many purposes, it is more appropriate to work with a variant of
hC which identifies only isomorphic 1-morphisms of C (Construction 2.2.8.12). First, let us
introduce some terminology.

Definition 2.2.8.5. 009QA (2, 1)-category is a 2-category C with the property that every 2-
morphism in C is invertible.

Remark 2.2.8.6. 009RThe terminology of Definition 2.2.8.5 fits into a general paradigm. Given
0 ≤ m ≤ n ≤ ∞, let us informally use the term (n,m)-category to refer to an n-category
C having the property that every k-morphism of C is invertible for k > m. Following this
convention, the ∞-categories of Definition 1.4.0.1 should really be called (∞, 1)-categories.

Example 2.2.8.7. 02AVLet C be an ordinary category, viewed as a 2-category having only
identity 2-morphisms (Remark 2.2.1.6). Then C is a (2, 1)-category.

Remark 2.2.8.8. 009SLet C be a (2, 1)-category. Then every lax functor of 2-categories
F : D → C is automatically a functor. Consequently, there is no need to distinguish between
functors and lax functors when working in the setting of (2, 1)-categories.

Construction 2.2.8.9 (The Pith of a 2-Category). 00ALLet C be a 2-category. We define a new
2-category Pith(C) as follows:

• The objects of Pith(C) are the objects of C.

• For every pair of objects X,Y ∈ C, the category HomPith(C)(X,Y ) is the core
HomC(X,Y )≃ of the category HomC(X,Y ) (see Construction 1.3.5.4).

• The composition law, associativity constraints, and unit constraints of Pith(C) are
given by restricting the composition law, associativity constraints, and unit constraints
of C.

Then Pith(C) is a (2, 1)-category which we will refer to as the pith of C.

More informally: for any 2-category C, the (2, 1)-category Pith(C) is obtained by discard-
ing the non-invertible 2-morphisms of C.

Remark 2.2.8.10 (The Universal Property of the Pith). 00AMLet C be a 2-category. Then
Pith(C) is characterized (up to isomorphism) by the following properties:
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• The pith Pith(C) is a (2, 1)-category.

• For every (2, 1)-category D, every functor F : D → C factors (uniquely) through
Pith(C).

Warning 2.2.8.11.00AN In the situation of Remark 2.2.8.10, it is not true that a lax functor
F : D → C factors through the pith Pith(C) (even when D is a (2, 1)-category): any lax
functor which admits such a factorization is automatically a functor, by virtue of Remark
2.2.8.8.

Construction 2.2.8.12 (The Homotopy Category of a 2-Category).02AW Let C be a 2-category.
We define a category hPith(C) as follows:

• The objects of hPith(C) are the objects of C.

• If X and Y are objects of C, then HomhPith(C)(X,Y ) is the set of isomorphism classes
of objects in the category HomC(X,Y ). If f : X → Y is a 1-morphism from X to Y ,
we typically denote its isomorphism class by [f ] ∈ HomhPith(C)(X,Y ).

• The composition law on hPith(C) is determined by the requirement that [g]◦[f ] = [g◦f ]
for every pair of composable 1-morphisms f : X → Y and g : Y → Z (this composition
law is associative by virtue of the existence of the associativity contraints of the
2-category C).

• For every object Y ∈ C, the identity morphism from Y to itself in hPith(C) is the
isomorphism class of the identity morphism idY in C. For 1-morphisms f : X → Y

and g : Y → Z, the identities

[idY ] ◦ [f ] = [f ] [g] ◦ [idY ] = [g]

follow from the existence of left and right unit constraints (see Construction 2.2.1.11).

We will refer to hPith(C) as the homotopy category of C.

Remark 2.2.8.13.02AX Let C be a 2-category. For every pair of objects X,Y ∈ C, the category

HomPith(C)(X,Y ) = HomC(X,Y )≃

is a groupoid, so that the nerve N•(HomC(X,Y )≃) is a Kan complex. It follows that 1-
morphisms u, v : X → Y belong to the same connected component of N•(HomC(X,Y )≃) if
and only if they are connected by an edge of N•(HomC(X,Y )≃) (Remark 1.4.6.13): that is,
if and only if u and v are isomorphic as objects of the category HomC(X,Y ). It follows that
the homotopy category hPith(C) of Construction 2.2.8.12 can be identified with the coarse
homotopy category of the 2-category Pith(C) (as suggested by the notation).

https://kerodon.net/tag/00AN
https://kerodon.net/tag/02AW
https://kerodon.net/tag/02AX


222 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

Warning 2.2.8.14. 02AYLet C be a 2-category and let hPith(C) be the homotopy category of
C, which we regard as a 2-category having only identity 2-morphisms. In general, there is
no functor which directly relates C to the homotopy category hPith(C). Instead, there is a
commutative diagram of 2-categories

Pith(C) � � //

��

C

��
hPith(C) // hC.

Here the functor hPith(C)→ hC is bijective on objects and full: that is, for every pair of
objects X,Y ∈ C, the induced map

HomhPith(C)(X,Y ) = π0(N•HomC(X,Y )≃)→ π0(N•HomC(X,Y )) = HomhC(X,Y )

is surjective.

Example 2.2.8.15. 02AZLet C be a (2, 1)-category, so that Pith(C) = C. In particular, the
inclusion Pith(C) ↪→ C induces an isomorphism of categories hPith(C) ≃ hC. In this situation,
we will generally abuse notation by identifying hC with hPith(C) and referring to it as the
homotopy category of C.

Remark 2.2.8.16 (Functoriality). 02B0Let U : C → D be a functor of 2-categories. Then
there is a unique functor of ordinary categories hPith(U) : hPith(C)→ hPith(D) with the
following properties:

• For each object X ∈ C, the functor hPith(U) carries X to the object U(X) ∈ D.

• For each 1-morphism f : X → Y of C, the functor hPith(U) carries the isomorphism
class [f ] to the isomorphism class of the 1-morphism U(f) : U(X)→ U(Y ).

Beware that the analogous assertion does not hold if U is only assumed to be a lax functor
of 2-categories.

Definition 2.2.8.17. 02B1Let C be a 2-category. We say that a 1-morphism f : X → Y in C is an
isomorphism if the homotopy class [f ] is an isomorphism in the homotopy category hPith(C).
Equivalently, f is an isomorphism if there exists another 1-morphism g : Y → X such that
g ◦ f and f ◦ g are isomorphic to idX and idY as objects of the categories HomC(X,X) and
HomC(Y, Y ), respectively. In this case, g is also an isomorphism in C, which we will refer to
as a homotopy inverse to f .
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Example 2.2.8.18.02B2 Let C be an ordinary category, regarded as a 2-category having only
identity 2-morphisms (Remark 2.2.1.6). Then a morphism f : X → Y in C is an isomorphism
in the sense of Definition 2.2.8.17 if and only if it is an isomorphism in the usual sense: that
is, if and only if there exists a morphism g : Y → X satisfying g ◦ f = idX and f ◦ g = idY .

Warning 2.2.8.19.02B3 Let C be a strict 2-category. We can then consider two different notions
of isomorphism in C:

• We say that a morphism f : X → Y is a strict isomorphism if it is an isomorphism in
the underlying category of C: that is, if there exists a 1-morphism g : Y → X satisfying
g ◦ f = idX and f ◦ g = idY .

• We say that a morphism f : X → Y is an isomorphism if the homotopy class [f ] is an
isomorphism in the homotopy category hPith(C): that is, if there exists a 1-morphism
g : Y → X such that g ◦ f and f ◦ g are isomorphic to idX and idY as objects of the
categories HomC(X,X) and HomC(Y, Y ), respectively.

Every strict isomorphism in C is an isomorphism. However, the converse is false in general
(see Example 2.2.8.20).

Example 2.2.8.20.02B4 Let F : C → D be a functor between (small) categories. Then F is an
equivalence of categories if and only if it is an isomorphism when regarded as a 1-morphism
in the 2-category Cat of Example 2.2.0.4.

Remark 2.2.8.21.02B5 Let F : C → D be a functor between 2-categories. Then F carries
isomorphisms in C to isomorphisms in D (see Remark 2.2.8.16). Beware that the analogous
assertion need not hold if we assume only that F is a lax functor of 2-categories.

Remark 2.2.8.22.02B6 Let C be a 2-category and let f : X → Y and g : Y → Z be 1-morphisms
of C. If any two of the 1-morphisms f , g, and g ◦ f is an isomorphism, then so is the third.
In particular, the collection of isomorphisms is closed under composition.

Remark 2.2.8.23.02B7 Let C be a 2-category and let f, g : X → Y be 1-morphisms in C
having the same source and target. If f and g are isomorphic (as objects of the category
HomC(X,Y )), then f is an isomorphism if and only if g is an isomorphism.

We close this section by discussing a strengthening of Definition 2.2.8.5.

Definition 2.2.8.24.02B8 Let C be a 2-category. We say that C is a 2-groupoid if every
1-morphism in C is an isomorphism and every 2-morphism of C is an isomorphism.

Remark 2.2.8.25.02B9 A 2-category C is a 2-groupoid if and only if it is a (2, 1)-category and
the homotopy category hC is a groupoid.
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Example 2.2.8.26. 02BALet C be an ordinary category. Then C is a groupoid if and only if it is
a 2-groupoid (when viewed as a 2-category having only identity 2-morphisms).

Construction 2.2.8.27 (The Core of a 2-Category). 02BBLet C be a 2-category. We define a
new 2-category C≃ as follows:

• The objects of C≃ are the objects of C.

• For every pair of objects X,Y ∈ C, the category HomC≃(X,Y ) is the full subcategory
of HomC(X,Y )≃ spanned by the isomorphisms f : X → Y .

• The composition law, associativity constraints, and unit constraints of C≃ are obtained
by restricting the composition law, associativity constraints, and unit constraints of C
(which is well-defined by virtue of Remark 2.2.8.22).

We will refer to C≃ as the core of the 2-category C.

Example 2.2.8.28. 02BCLet C be a category. Then the core C≃ ⊆ C of Construction 1.3.5.4
coincides with the core C≃ ⊆ C of Construction 2.2.8.27, where we regard C as a 2-category
having only identity 2-morphisms.

Remark 2.2.8.29. 02BDLet C be a 2-category. Then the inclusion functor C≃ ↪→ C is a functor of
2-categories, which induces an isomorphism of categories from h(C≃) to the core hPith(C)≃
of the homotopy category hPith(C).

Remark 2.2.8.30. 02BELet C be a 2-category. Then the core C≃ is a 2-groupoid. This follows
from Remark 2.2.8.25: it is immediate from the construction that C≃ is a (2, 1)-category, and
the homotopy category h(C≃) is a groupoid by virtue of the isomorphism h(C≃) ≃ hPith(C)≃
of Remark 2.2.8.29.

Remark 2.2.8.31 (The Universal Property of the Core). 02BFLet C be a 2-category. Then the
core C≃ is characterized by the following properties:

• The 2-category C≃ is a 2-groupoid (Remark 2.2.8.30).

• For every 2-groupoid D, every functor F : D → C factors (uniquely) through C≃.

2.3 The Duskin Nerve of a 2-Category

009PIn §1.4, we defined an ∞-category to be a simplicial set X• which satisfies the weak
Kan extension condition. Beware that this terminology is potentially misleading. Roughly
speaking, an ∞-category (in the sense of Definition 1.4.0.1) should be viewed as a higher
category C with the property that every k-morphism in C is invertible for k ≥ 2. The
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framework of weak Kan complexes does not capture the entirety of higher category theory,
or even the entirety of the theory of 2-categories (as described in §2.2). Nevertheless, we
will show in this section that the theory of ∞-categories can be viewed as a generalization
of the theory of (2, 1)-categories. Recall that, to every category C, one can associate a
simplicial set N•(C) called the nerve of C (Construction 1.3.1.1). We proved in Chapter 1 that
C 7→ N•(C) determines a fully faithful embedding from the category Cat of small categories
to the category Set∆ of simplicial sets (Proposition 1.3.3.1), and that every simplicial set
of the form N•(C) is an ∞-category (Example 1.4.0.4). The construction C 7→ N•(C) has a
generalization to the setting of 2-categories. In §2.3.1, we associate to each 2-category C a
simplicial set ND

• (C) called the Duskin nerve of C (introduced by Duskin and Street; see [17]
and [54]). This construction has the following features (both established by Duskin in [17]):

• If C is a (2, 1)-category, then the Duskin nerve ND
• (C) is an ∞-category (Theorem

2.3.2.1). We prove this in §2.3.2 as a consequence of a more general result which
applies to the Duskin nerve of any 2-category (Theorem 2.3.2.5), whose proof we defer
to §2.3.3.

• Let C and D be 2-categories. In §2.3.4, we show that passage to the Duskin nerve
induces a bijection

{Strictly unitary lax functors F : C → D}

∼

��
{Maps of simplicial sets ND

• (C)→ ND
• (D)};

see Theorem 2.3.4.1. In other words, the formation of Duskin nerves induces a fully
faithful embedding from the category 2CatULax of Definition 2.2.5.5 to the category of
simplicial sets.

By virtue of Theorem 2.3.4.1, it is mostly harmless to abuse terminology by identifying
a 2-category C with the simplicial set ND

• (C) (each can be recovered from the other, up to
canonical isomorphism). Theorem 2.3.2.1 then asserts that, under this identification, every
(2, 1)-category can be regarded as an ∞-category (see Remark 2.3.4.2 for a more precise
statement).

In §2.3.5, we study the Duskin nerve ND
• (C) in the case where C is a strict 2-category.

In this case, we show that n-simplices of ND
• (C) can be identified with strict functors

Path(2)[n]→ C (Corollary 2.3.5.7). Here Path(2)[n] denotes a certain 2-categorical variant of
the path category introduced in §1.3.7, which will play an important role in our discussion
of the homotopy coherent nerve of a simplicial category (see §2.4.3).
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2.3.1 The Duskin Nerve

009TIn §1.3, we associated to each category C a simplicial set N•(C), called the nerve of C.
This construction has a natural generalization to the setting of 2-categories.

Construction 2.3.1.1 (The Duskin Nerve). 009ULet n be a nonnegative integer and let [n]
denote the linearly ordered set {0 < 1 < 2 < · · · < n}. We will regard [n] as a category,
hence also as a 2-category having only identity 2-morphisms (Example 2.2.0.6). For any
2-category C, we let ND

n (C) denote the set of all strictly unitary lax functors from [n] to C
(Definition 2.2.4.17). The construction [n] 7→ ND

n (C) determines a simplicial set, given as a
functor by the composition

∆op ↪→ Catop ↪→ 2Catop
ULax

Hom2CatULax (•,C)
−−−−−−−−−−−→ Set .

We will denote this simplicial set by ND
• (C) and refer to it as the Duskin nerve of the

2-category C.

Remark 2.3.1.2. 009VIn the setting of strict 2-categories, the Duskin nerve C 7→ ND
• (C) was

introduced by Street in [54]. The generalization to arbitrary 2-categories was given by
Duskin in [17].

Example 2.3.1.3. 009WLet C be an ordinary category, viewed as a 2-category having only
identity 2-morphisms (Example 2.2.0.6). Then the Duskin nerve ND

• (C) can be identified
with the nerve N•(C) of C as an ordinary category (Construction 1.3.1.1).

Remark 2.3.1.4. 009XLet C be a 2-category and let Cop denote the opposite 2-category (see
Construction 2.2.3.1). Then we have a canonical isomorphism of simplicial sets ND

• (Cop) ≃
ND
• (C)op, where ND

• (C)op denotes the opposite of the simplicial set ND
• (C) (see Notation

1.4.2.1).

Warning 2.3.1.5. 009YLet C be a 2-category and let Cc be the conjugate of C, obtained by
reversing vertical composition (Construction 2.2.3.4). There is no simple relationship between
Duskin nerves of C and Cc (since the operation C 7→ Cc is not functorial with respect to lax
functors; see Warning 2.2.5.11).

Remark 2.3.1.6 (Functoriality). 009ZThe construction C 7→ ND
• (C) determines a functor from

the category 2CatULax of small 2-categories (with morphisms given by strictly unitary
lax functors) to the category Set∆ of simplicial sets. This functor fits into the general
paradigm of Variant 1.2.2.8: it arises from a cosimplicial object of the category 2CatULax,
given by the inclusion ∆ ↪→ Cat ↪→ 2CatULax. Beware that, unlike the usual nerve functor
N• : Cat → Set∆, the Duskin nerve ND

• : 2CatULax → Set∆ does not admit a left adjoint:
Proposition 1.2.3.15 does not apply, because the category 2CatULax does not admit small
colimits (one can address this problem by restricting to strict 2-categories: we will return to
this point in §2.3.5).
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Remark 2.3.1.7.00A0 Let C be a 2-category, let {µg,f} be a twisting cochain for C (Notation
2.2.6.7), and let C′ be the twist of C with respect to {µg,f} (Construction 2.2.6.8). Then the
twisting cochain {µg,f} defines a strictly unitary isomorphism of 2-categories C ≃ C′, and
therefore induces an isomorphism of simplicial sets ND

• (C) ≃ ND
• (C′). In other words, the

Duskin nerve ND
• (C) cannot detect the difference between C and C′. This should be regarded

as a feature, rather than a bug. Defining the composition law for 1-morphisms in a 2-category
C often requires certain arbitrary (but ultimately inessential) choices (see Example 2.2.6.13).
In such cases, one can often give a more direct description of the simplicial set ND

• (C) which
avoids such choices. See Example 2.3.1.17 and Corollary 8.1.3.15.

Remark 2.3.1.8.00A1 Let us make Construction 2.3.1.1 more explicit. Fix a 2-category C.
Unwinding the definitions, we see that an element of ND

n (C) consists of the following data:

(0) A collection of objects {Xi}0≤i≤n of the 2-category C.

(1) A collection of 1-morphisms {fj,i : Xi → Xj}0≤i≤j≤n in the 2-category C

(2) A collection of 2-morphisms {µk,j,i : fk,j ◦ fj,i ⇒ fk,i}0≤i≤j≤k≤n in the 2-category C.

These data are required to satisfy the following conditions:

(a) For 0 ≤ i ≤ n, the 1-morphism fi,i : Xi → Xi is the identity 1-morphism idXi .

(b) For 0 ≤ i ≤ j ≤ n, the 2-morphisms

µj,j,i : fj,j ◦ fj,i ⇒ fj,i µj,i,i : fj,i ◦ fi,i ⇒ fj,i

are the left unit constraints λfj,i
and the right unit constraints ρfj,i

, respectively.

(c) For 0 ≤ i ≤ j ≤ k ≤ ℓ ≤ n, we have a commutative diagram

fℓ,k ◦ (fk,j ◦ fj,i)
αfℓ,k,fk,j ,fj,i +3

idfℓ,k
◦µk,j,i

��

(fℓ,k ◦ fk,j) ◦ fj,i

µℓ,k,j◦idfj,i

��
fℓ,k ◦ fk,i

µℓ,k,i

 (

fℓ,j ◦ fj,i

µℓ,j,i

v~
fℓ,i

in the category HomC(Xi, Xℓ).
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In the description of Remark 2.3.1.8, it is possible to be more efficient by eliminating
some of the “redundant” information.

Proposition 2.3.1.9. 00A2Let C be a 2-category and let n be a nonnegative integer. Suppose we
are given the following data:

(0) A collection of objects {Xi}0≤i≤n of the 2-category C.

(1′) A collection of 1-morphisms {fj,i : Xi → Xj}0≤i<j≤n in the 2-category C

(2′) A collection of 2-morphisms {µk,j,i : fk,j ◦ fj,i ⇒ fk,i}0≤i<j<k≤n in the 2-category C.

This data can be extended uniquely to an n-simplex of the Duskin nerve ND
• (C) (as described

in Remark 2.3.1.8) if and only if the following condition is satisfied:

(c′) For 0 ≤ i < j < k < ℓ ≤ n, we have a commutative diagram

fℓ,k ◦ (fk,j ◦ fj,i)
αfℓ,k,fk,j ,fj,i +3

idfℓ,k
◦µk,j,i

��

(fℓ,k ◦ fk,j) ◦ fj,i

µℓ,k,j◦idfj,i

��
fℓ,k ◦ fk,i

µℓ,k,i

 (

fℓ,j ◦ fj,i

µℓ,j,i

v~
fℓ,i

in the category HomC(Xi, Xℓ).

Proof. We wish to show that there is a unique way to choose 1-morphisms fj,i : Xi → Xj

for i = j and 2-morphisms µk,j,i : fk,j ◦ fj,i ⇒ fk,i for i = j ≤ k and i ≤ j = k so that
conditions (a), (b), and (c) of Remark 2.3.1.8 are satisfied. The uniqueness is clear: to satisfy
condition (a), we must have fi,i = idXi for 0 ≤ i ≤ n, and to satisfy condition (b) we must
have µk,j,i = ρfj,i

when i = j and µk,j,i = λfk,j
when j = k. To complete the proof, it will

suffice to verify the following:

(I) The prescription above is consistent. That is, when i = j = k, we have ρfj,i
= λfk,j

(as
morphisms of the category HomC(Xi, Xk)).

https://kerodon.net/tag/00A2
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(II) The prescription above satisfies condition (c) of Remark 2.3.1.8. That is, the diagram

fℓ,k ◦ (fk,j ◦ fj,i)
αfℓ,k,fk,j ,fj,i +3

idfℓ,k
◦µk,j,i

��

(fℓ,k ◦ fk,j) ◦ fj,i

µℓ,k,j◦idfj,i

��
fℓ,k ◦ fk,i

µℓ,k,i

 (

fℓ,j ◦ fj,i

µℓ,j,i

v~
fℓ,i

commutes in the special cases 0 ≤ i = j ≤ k ≤ ℓ ≤ n, 0 ≤ i ≤ j = k ≤ ℓ ≤ n, and
0 ≤ i ≤ j ≤ k = ℓ ≤ n.

Assertion (I) follows from Corollary 2.2.1.15. Assertion (II) follows from the triangle identity
in C in the case j = k, and from Proposition 2.2.1.16 in the cases i = j and k = ℓ.

Corollary 2.3.1.10.00A3 Let C be a 2-category. Then the restriction map

HomSet∆(∆n,ND
• (C))→ HomSet∆(∂∆n,ND

• (C))

is bijective for n ≥ 4 and injective when n = 3.

Warning 2.3.1.11.00A4 Let C be a 2-category. By virtue of Proposition 2.3.1.9, we can identify
n-simplices of the Duskin nerve ND

• (C) with triples

({Xi}0≤i≤n, {fj,i}0≤i<j≤n, {µk,j,i}0≤i<j<k≤n)

satisfying condition (c′) of Proposition 2.3.1.9. This gives a description of ND
n (C) which

makes no reference to the identity 1-morphisms of C or the left and right unit constraints of
C. The resulting identification is functorial with respect to injective maps of linearly ordered
sets [m]→ [n]. In other words, we can construct the Duskin nerve ND

• (C) as a semisimplicial
set (see Definition 1.1.1.2) without knowing the left and right unit constraints of C. However,
the left and right unit constraints of C are needed to define the degeneracy operators on the
simplicial set ND

• (C).

Remark 2.3.1.12.00A5 Let C and D be 2-categories and let F : C → D be a lax functor. If F is
strictly unitary, then composition with F induces a map of simplicial sets ND

• (C)→ ND
• (D).

However, even without the assumption that F is strictly unitary, one can use the description
of Proposition 2.3.1.9 to obtain a collection of maps ND

n (C)→ ND
n (D) which are compatible
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https://kerodon.net/tag/00A4
https://kerodon.net/tag/00A5


230 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

with the face operators on the simplicial sets ND
• (C) and ND

• (D) (though not necessarily
with the degeneracy operators). In other words, if we regard the Duskin nerve ND

• (C) as a
semisimplicial set, then it is functorial with respect to all (lax) functors between 2-categories.

Example 2.3.1.13 (Vertices of the Duskin Nerve). 00A6Let C be a 2-category. Using Proposition
2.3.1.9, we can identify vertices of the Duskin nerve ND

• (C) with objects of the 2-category C.

Example 2.3.1.14 (Edges of the Duskin Nerve). 00A7Let C be a 2-category. Using Proposition
2.3.1.9, we can identify edges of the Duskin nerve ND

• (C) with 1-morphisms f : X → Y of
the 2-category C. Under this identification, the face and degeneracy operators

d1
0, d

1
1 : ND

1 (C)→ ND
0 (C) s0

0 : ND
0 (C)→ ND

1 (C)

are given by d1
0(f : X → Y ) = Y , d1

1(f : X → Y ) = X, and s0
0(X) = idX .

Example 2.3.1.15 (2-Simplices of the Duskin Nerve). 00A8Let C be a 2-category. Using
Proposition 2.3.1.9, we see that a 2-simplex σ of the Duskin nerve ND

• (C) can be identified
with the following data:

• A triple of objects X,Y, Z ∈ C.

• A triple of 1-morphisms f : X → Y , g : Y → Z, and h : X → Z in the 2-category C
(corresponding to the faces d2

2(σ), d2
0(σ), and d2

1(σ), respectively).

• A 2-morphism µ : g ◦ f ⇒ h, which we depict as a diagram

Y

g

  

µ
��

X

f

??

h
// Z.

Example 2.3.1.16 (3-Simplices of the Duskin Nerve). 00A9Let C be a 2-category. Using
Proposition 2.3.1.9, we see that a map of simplicial sets ∂∆3 → ND

• (C) can be identified
with the following data:

• A collection of objects {Xi}0≤i≤3 of the 2-category C.

• A collection of 1-morphisms {fj,i : Xi → Xj}0≤i<j≤3.

• A quadruple of 2-morphisms

µ2,1,0 : f2,1 ◦ f1,0 ⇒ f2,0 µ3,2,1 : f3,2 ◦ f2,1 ⇒ f3,1

µ3,1,0 : f3,1 ◦ f1,0 ⇒ f3,0 µ3,2,0 : f3,2 ◦ f2,0 ⇒ f3,0.
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This data can be conveniently visualized as a pair of diagrams

X1
f2,1 //

µ2,1,0
��

X2

f3,2

&&

µ3,2,0{�

X0

f1,0

88

f2,0

33

f3,0 // X3

X1
f2,1 //

f3,1

++

µ3,1,0 �#

X2

f3,2

&&

µ3,2,1��

X0

f1,0

88

f3,0 // X3,

representing “front” and “back” perspectives of the boundary of a 3-simplex. A 3-simplex
of the Duskin nerve ND

• (C) can be identified with a map ∂∆3 → ND
• (C) as above which

satisfies an additional compatibility condition: namely, the commutativity of the diagram

f3,2 ◦ (f2,1 ◦ f1,0)

idf3,2 ◦µ2,1,0

u}

αf3,2,f2,1,f1,0 +3 (f3,2 ◦ f2,1) ◦ f1,0

µ3,2,1◦idf1,0

!)
f3,2 ◦ f2,0

µ3,2,0

%-

f3,1 ◦ f1,0

µ3,1,0

qy
f3,0

in the ordinary category HomC(X0, X3).

Example 2.3.1.17 (The Duskin Nerve of Bimod).00AA Let Bimod denote the 2-category of
Example 2.2.2.4. Then an n-simplex of the Duskin nerve ND

• (Bimod) can be identified with a
collection of abelian groups {Aj,i}0≤i≤j≤n equipped with unit elements ei ∈ Ai,i and bilinear
multiplication maps · : Ak,j×Aj,i → Ak,i satisfying the identities ej ·x = x = x·ei for x ∈ Aj,i
and x·(y ·z) = (x·y)·z for x ∈ Aℓ,k, y = Ak,j , and z ∈ Aj,i (where 0 ≤ i ≤ j ≤ k ≤ ℓ ≤ n). In
this case, the multiplication equips each Ai,i with the structure of an associative ring (which

https://kerodon.net/tag/00AA
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is an object of the 2-category Bimod), each Aj,i with the structure of an Aj,j-Ai,i bimodule
(which is a 1-morphism in the 2-category Bimod). For 0 ≤ i ≤ j ≤ k ≤ n, the bilinear map
Ak,j ×Aj,i → Ak,i can be identified with a map of bimodules µk,j,i : Ak,j ⊗Aj,j Aj,i → Ak,i,
which we can regard as a 2-morphism in the category Bimod.

Example 2.3.1.18 (The Classifying Simplicial Set of a Monoidal Category). 00FJLet C be
a monoidal category (Definition 2.1.2.10) and let B C denote the 2-category obtained by
delooping C (Example 2.2.2.5). We will denote the Duskin nerve of B C by B• C and refer
to it as the classifying simplicial set of C. By virtue of Proposition 2.3.1.9, we can identify
n-simplices of the simplicial set B• C with pairs

({Cj,i}0≤i<j≤n, {µk,j,i}0≤i<j<k≤n})

where each Cj,i is an object of C and each µk,j,i is a morphism from Ck,j ⊗ Cj,i to Ck,i,
satisfying the following coherence condition:

• For 0 ≤ i < j < k < ℓ ≤ n, the diagram

Cℓ,k ⊗ (Ck,j ⊗ Cj,i)
αCℓ,k,Ck,j ,Cj,i //

idCℓ,k
⊗µk,j,i

��

(Cℓ,k ⊗ Ck,j)⊗ Cj,i

µℓ,k,j⊗idCj,i

��
Cℓ,k ⊗ Ck,i

µℓ,k,i

%%

Cℓ,j ⊗ Cj,i

µℓ,j,i

yy
Cℓ,i

is commutative.

Remark 2.3.1.19. 00FKLet G be a monoid, regarded as a monoidal category having only
identity morphisms. Then the classifying simplicial set B•G of Example 2.3.1.18 agrees (up
to canonical isomorphism) with the simplicial set B•G given by Construction 1.3.2.5.

2.3.2 From 2-Categories to ∞-Categories

00ABWe now use Construction 2.3.1.1 to connect the theory of 2-categories (in the sense of
Definition 2.2.1.1) to the theory of ∞-categories (in the sense of Definition 1.4.0.1).

Theorem 2.3.2.1 (Duskin [17]). 00ACLet C be a 2-category. Then C is a (2, 1)-category if and
only if the Duskin nerve ND

• (C) is an ∞-category.
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Example 2.3.2.2.00FL Let C be a monoidal category and suppose that every morphism in
C is an isomorphism. Then the classifying simplicial set B• C of Example 2.3.1.18 is an
∞-category.

We will deduce Theorem 2.3.2.1 from a more general statement (Theorem 2.3.2.5), which
gives a filling criterion for inner horns in the Duskin nerve ND

• (C) for an arbitrary 2-category
C. First, we need a bit of terminology.

Definition 2.3.2.3.00AD Let X• be a simplicial set. We will say that a 2-simplex σ of X• is
thin if it satisfies the following condition:

(∗) Let n ≥ 3, let 0 < i < n, and let τ denote the 2-simplex of Λni given by the map

[2] ≃ {i− 1, i, i+ 1} ⊆ [n].

Then any map of simplicial sets f0 : Λni → X• satisfying f0(τ) = σ can be extended to
an n-simplex of X•.

Example 2.3.2.4.00AE Let X• be a simplicial set. If X• is an ∞-category (in the sense of
Definition 1.4.0.1), then every 2-simplex of X• is thin. Conversely, if every 2-simplex of X•
is thin, then X• is an ∞-category if and only if every map of simplicial sets f0 : Λ2

1 → X•
can be extended to a 2-simplex of X•.

We will deduce Theorem 2.3.2.1 from the following result, whose proof will be given in
§2.3.3:

Theorem 2.3.2.5.00AF Let C be a 2-category and let σ be a 2-simplex of the Duskin nerve
ND
• (C), corresponding to a diagram

Y

g

��

γ
��

X

f

??

h
// Z

(see Example 2.3.1.15). Then σ is thin if and only if γ : g ◦ f ⇒ h is an isomorphism in the
category HomC(X,Z).

Proof of Theorem 2.3.2.1 from Theorem 2.3.2.5. Let C be a 2-category. If the Duskin nerve
ND
• (C) is an ∞-category, then every 2-simplex of ND

• (C) is thin (Example 2.3.2.4), so that
every 2-morphism in C is invertible by virtue of Theorem 2.3.2.5. Conversely, if C is a
(2, 1)-category, then every 2-simplex of ND

• (C) is thin (Theorem 2.3.2.5). Consequently, to
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show that ND
• (C) is an ∞-category, it will suffice to show that every map of simplicial sets

u0 : Λ2
1 → ND

• (C) can be extended to a 2-simplex of ND
• (C). Note that we can identify u0

with a composable pair of 1-morphisms X f−→ Y
g−→ Z in C. To extend this to a 2-simplex of

ND
• (C), it suffices to choose a 1-morphism h : X → Z and a 2-morphism γ : g◦f ⇒ h. This is

always possible: for example, we can take h = g ◦f and γ to be the identity 2-morphism.

Remark 2.3.2.6. 00AGLet C be a (2, 1)-category, so that the Duskin nerve ND
• (C) is an ∞-

category. Then:

• Objects of the ∞-category ND
• (C) can be identified with objects of the 2-category C.

• If X and Y are objects of C, then morphisms from X to Y in the ∞-category ND
• (C)

can be identified with 1-morphisms from X to Y in the 2-category C.

• If f, g : X → Y are 1-morphisms in C having the same domain and codomain,
then f and g are homotopic when regarded as morphisms of the ∞-category ND

• (C)
(Definition 1.4.3.1) if and only if they are isomorphic when viewed as objects of
the groupoid HomC(X,Y ). More precisely, vertical composition with the left unit
constraint λf : idY ◦f

∼=⇒ f induces a bijection

{Isomorphisms from f to g in the groupoid HomC(X,Y )}

∼

��
{Homotopies from f to g in the ∞-category ND

• (C)}.

Let us now collect some other consequences of Theorem 2.3.2.5.

Corollary 2.3.2.7. 00AHLet C be a 2-category. Then every degenerate 2-simplex of the Duskin
nerve ND

• (C) is thin.

Proof. Combine Theorem 2.3.2.5 with the observation that, for every 1-morphism f : X → Y

of C, the left and right unit constraints

λf : idY ◦f ⇒ f ρf : f ◦ idX ⇒ f

are isomorphisms (in the category HomC(X,Y )).

Corollary 2.3.2.8. 00AJLet C and D be 2-categories and let F : C → D be a strictly unitary lax
functor. Then F is a functor if and only if the induced map of simplicial sets ND

• (C)⇒ ND
• (D)

carries thin 2-simplices of ND
• (C) to thin 2-simplices of ND

• (D).
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Proof. Let σ be a 2-simplex of ND
• (C), corresponding to a diagram

Y

g

��

γ
��

X

f

??

h
// Z

in C. Let σ′ denote the image of σ in ND
• (D), corresponding to the diagram

F (Y )

F (g)

""

γ′��

F (X)

F (f)

<<

F (h)
// F (Z)

where γ′ is given by the (vertical) composition

F (g) ◦ F (f)
µg,f===⇒ F (g ◦ f) F (γ)===⇒ F (h).

Since σ is thin, the 2-morphism γ is an isomorphism (Theorem 2.3.2.5). It follows that σ′ is
thin if and only if µg,f is an isomorphism. In particular, the strictly unitary lax functor F
preserves thin 2-simplices if and only if µg,f is an isomorphism for every pair of composable
1-morphisms X f−→ Y

g−→ Z of C: that is, if and only if F is a functor.

Warning 2.3.2.9.00AK Let C be a 2-category. Let us say that a 2-simplex σ of the Duskin nerve
ND
• (C) is special if it corresponds to a diagram

Y

g

��

γ
��

X

f

??

h
// Z,

where h = g ◦ f and γ = idg◦f . Arguing as in the proof of Corollary 2.3.2.8, we see that a
strictly unitary lax functor F : C → D is strict if and only if it carries special 2-simplices
of ND

• (C) to special 2-simplices of ND
• (D). Beware, however, that the special 2-simplices

of ND
• (C) and ND

• (D) do not have an intrinsic description in terms of the simplicial sets
ND
• (C) and ND

• (D) themselves. In particular, it is possible to have an isomorphism of

https://kerodon.net/tag/00AK
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simplicial sets ND
• (C) ≃ ND

• (C) which does not preserve special 2-simplices (corresponding to
an isomorphism of 2-categories which is strictly unitary but not strict).

In general, passage from a 2-category C to its Duskin nerve ND
• (C) involves a slight loss

of information. From the simplicial set ND
• (C), we can recover the objects of C (these can

be identified with vertices of ND
• (C)) and the collection of 1-morphisms f : X → Y from an

object X to an object Y (these can be identified with edges of ND
• (C) having source X and

target Y ). However, the composition g ◦f of a pair of composable 1-morphisms X f−→ Y
g−→ Z

cannot be recovered from the structure of ND
• (C) as an abstract simplicial set. The best we

can do is to ask for a thin 2-simplex σ of ND
• (C) satisfying d2

0(σ) = g and d2
2(σ) = f . Such a

simplex can be viewed as “witnessing” the presence of an isomorphism of the edge h = d2
1(σ)

with the composition g ◦ f . Put another way, the abstract simplicial set ND
• (C) contains

enough information to reconstruct the composition g ◦ f up to (unique) isomorphism, but
not enough information to select a canonical representative of its isomorphism class. This
can be viewed as a feature, rather than a bug: the Duskin nerve ND

• (C) often admits a more
invariant description than the 2-category C itself (since the information lost by passing from
C to ND

• (C) depends on choices that one would prefer not make in the first place; see Remark
2.3.1.7).

If C is a 2-category which contains non-invertible 2-morphisms, then the Duskin nerve
ND
• (C) is not an∞-category. However, we can extract an∞-category by applying the Duskin

nerve to the pith Pith(C) introduced in Construction 2.2.8.9.

Remark 2.3.2.10. 00APLet C be a 2-category. Then the Duskin nerve ND
• (Pith(C)) is an

∞-category (Theorem 2.3.2.1). Unwinding the definitions, we see that ND
• (Pith(C)) can

be identified with the largest simplicial subset X• of ND
• (C) having the property that each

2-simplex of X• is thin when regarded as a 2-simplex of ND
• (C) (so that an n-simplex

σ ∈ ND
n (C) belongs to ND

• (Pith(C)) if and only if, for every map ∆2 → ∆n, the composition
∆2 → ∆n σ−→ ND

• (C) is thin).

2.3.3 Thin 2-Simplices of a Duskin Nerve

00AQLet C be a 2-category and let σ be a 2-simplex of the Duskin nerve ND
• (C), corresponding

to a diagram
Y

g

  

γ
��

X

f

??

h
// Z.
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Our goal is to prove Theorem 2.3.2.5, which asserts that σ is thin (in the sense of Definition
2.3.2.3) if and only if the 2-morphism γ : g ◦ f ⇒ h is invertible. This follows from
Propositions 2.3.3.1 and Proposition 2.3.3.2 below.

Proposition 2.3.3.1.00AR Let C be a 2-category, let n ≥ 3, and let u : Λn
ℓ → ND

• (C) be a map
of simplicial sets for some 0 < ℓ < n. Let σ denote the 2-simplex of ND

• (C) obtained by
composing u with the map ∆2 → Λnℓ given by the map of linearly ordered sets

[2] ≃ {ℓ− 1, ℓ, ℓ+ 1} ⊆ [n],

corresponding to a diagram

Xℓ

!!

γ
��

Xℓ−1

==

// Xℓ+1

in the 2-category C. If γ is invertible, then u extends uniquely to an n-simplex of ND
• (C).

Proof. Using Examples 2.3.1.13 and 2.3.1.14, we see that the restriction of u to the 1-
skeleton of Λnℓ is given by a collection of objects {Xi}0≤i≤n of C, together with 1-morphisms
{fji : Xi → Xj}0≤i<j≤n. For n ≥ 5, the horn Λn

ℓ contains the 3-skeleton of ∆n, so the
existence and uniqueness of the desired extension is automatic by virtue of Corollary 2.3.1.10
(in particular, we do not need to assume that 0 < ℓ < n or that γ is invertible). We now
treat the case n = 3. We will assume that ℓ = 1 (the case ℓ = 2 follows by symmetry), so
that we can use Example 2.3.1.15 to identify u with a triple of 2-morphisms

µ210 : f21 ◦ f10 ⇒ f20 µ310 : f31 ◦ f10 ⇒ f30 µ321 : f32 ◦ f21 ⇒ f31.

Using the description of 3-simplices of ND
• (C) supplied by Example 2.3.1.16, we see an

extension of u to a 3-simplex of the Duskin nerve ND
• (C) can be identified with a 2-morphism

µ320 : f32 ◦ f20 ⇒ f30 satisfying the equation

µ320(idf32 ◦µ210) = µ310(µ321 ◦ idf10)αf32,f21,f10 .

Our assumption guarantees that γ = µ210 is an isomorphism; it follows that the preceding
equation has a unique solution, given by

µ320 = µ310(µ321 ◦ idf10)αf32,f21,f10(idf32 ◦µ
−1
210).

We now treat the case n = 4. For simplicity, we will assume that ℓ = 2 (the cases ℓ = 1
and ℓ = 3 follow by a similar argument). To simplify the notation in what follows, we will

https://kerodon.net/tag/00AR
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denote the composition of a pair of 1-morphisms of C by hg, rather than h ◦ g. Note that the
horn Λnℓ contains the 2-skeleton of ∆n, so the morphism u can be identified with a collection
of 2-morphisms µkji : fkjfji ⇒ fki. Using Example 2.3.1.16, we note that the extension of u
to a 4-simplex of ND

• (C) is automatically unique, and exists if and only if the outer cycle
commutes in the diagram

f43(f31f10) ∼ +3

µ310

��

(f43f31)f10

µ431

��

f43((f32f21)f10)

µ321
∼

bj

∼ +3 (f43(f32f21))f10

µ321
∼

4<

∼
��

f43(f32(f21f10))

∼
KS

∼

#+
µ210
��

((f43f32)f21)f10

µ432
��

f43(f32f20)
∼
��

µ320

}�

(f43f32)(f21f10)
µ210

s{

µ432

#+

∼
3;

(f42f21)f10

µ421

�!

∼
��

(f43f32)f20 µ432
+3 f42f20

µ420
��

f42(f21f10)µ210
ks

f43f30
µ430 +3 f04 f41f10;µ410ks

here the unlabeled 2-morphisms are induced by the associativity constraints of C. This
follows from a diagram chase, since µ321 = γ is an isomorphism and each of the inner
cycles of the diagram commutes (the 4-cycles commute by functoriality, the central 5-cycle
commutes by the pentagon identity in C, and the remaining 5-cycles commute by virtue of
our assumption that u is defined on the 0th, 1st, 3rd, and 4th face of the simplex ∆4).

Proposition 2.3.3.2. 00ASLet C be a 2-category and let σ be a 2-simplex of the Duskin nerve
ND
• (C), corresponding to a diagram

Y

g

  

γ
��

X

f

??

h
// Z.

in the 2-category C. Assume that the following condition is satisfied:

(∗) Let n ∈ {3, 4} and let u : Λn
1 → ND

• (C) be a map of simplicial sets such that u|∆2 = σ;
here we identify ∆2 with a simplicial subset of Λn1 ⊆ ∆n via the inclusion map [2] ↪→ [n].
Then u extends to an n-simplex of ND

• (C).

https://kerodon.net/tag/00AS
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Then γ is invertible.

Proof. Without loss of generality, we may assume that C is strictly unitary (Proposition
2.2.7.7). Applying (∗) in the case n = 3, we can extend σ to a 3-simplex of ND

• (C) which is
represented by the pair of diagrams

Y
g //

γ

��

Z

idZ

&&

δ{�

X

f

88

h

33

g◦f // Z

Y
g //

g

++

idg◦f �#

Z

idZ

&&

idg��

X

f

88

g◦f // Z.

It follows that γ admits a left inverse, given by the vertical composition δ : h⇒ g ◦ f . To
show that this composition is also a right inverse, we apply (∗) in the case n = 4 to construct
a 4-simplex τ of ND

• (C) whose two-dimensional faces correspond to the 2-morphisms

µ2,1,0 = µ4,1,0 = γ µ3,1,0 = idg◦f µ3,2,0 = δ µ4,2,0 = idh

µ4,3,0 = γ µ3,2,1 = µ4,2,1 = µ4,3,1 = idg µ4,3,2 = ididZ
.

The 3-simplex d4
1(τ) then witnesses the identity

µ4,2,0(µ4,3,2 ◦ idh) = µ4,3,0(ididZ
◦µ3,2,0),

which shows that δ is also a right inverse to γ.

2.3.4 Recovering a 2-Category from its Duskin Nerve

00AT In §1.3.3, we proved that the nerve functor

N• : Cat→ Set∆

is fully faithful. This result generalizes to the setting of 2-categories:

https://kerodon.net/tag/00AT
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Theorem 2.3.4.1 (Duskin [17]). 00AULet C and D be 2-categories. Then passage to the Duskin
nerve induces a bijection

{Strictly unitary lax functors C → D} → {Morphisms of simplicial sets ND
• (C)→ ND

• (D)}.

In other words, the Duskin nerve functor ND
• : 2CatULax → Set∆ is fully faithful.

Remark 2.3.4.2. 00AVCombining Theorem 2.3.4.1, Theorem 2.3.2.1, and Remark 2.2.8.8, we see
that the construction C 7→ ND

• (C) determines a fully faithful embedding from the ordinary
category of (2, 1)-categories (where morphisms are strictly unitary functors in the sense of
Definition 2.2.4.17) to the ordinary category of ∞-categories (where morphisms are functors
in the sense of Definition 1.5.0.1).

Remark 2.3.4.3. 00AWIn [17], Duskin proves a stronger version of Theorem 2.3.4.1, which also
identifies the essential image of the functor ND

• : 2CatULax → Set∆.

Example 2.3.4.4. 00FMLet C and D be monoidal categories. We say that a lax monoidal functor
F : C → D is strictly unitary if the unit ϵ : 1D → F (1C) is an identity morphism of D. It
follows from Theorem 2.3.4.1 and Remark 2.2.4.9 that the formation of classifying simplicial
sets induces a bijection

{Strictly unitary lax monoidal functors F : C → D}

∼

��
{Maps of simplicial sets B• C → B•D}.

Corollary 2.3.4.5. 00AXLet C and D be 2-categories. Then passage to the Duskin nerve induces
a bijection

{Strictly unitary functors C → D}

��
{Maps ND

• (C)→ ND
• (D) preserving thin 2-simplices}.

Proof. Combine Theorem 2.3.4.1 with Corollary 2.3.2.8.

Corollary 2.3.4.6. 02BGLet C be a 2-category, let hC be its coarse homotopy category, and let
F : C → hC be the functor of Proposition 2.2.8.3. Then the induced map of simplicial sets

ND
• (F ) : ND

• (C)→ ND
• (hC)→ N•(hC)

exhibits hC as the homotopy category of the simplicial set ND
• (C), in the sense of Definition

1.3.6.1.

https://kerodon.net/tag/00AU
https://kerodon.net/tag/00AV
https://kerodon.net/tag/00AW
https://kerodon.net/tag/00FM
https://kerodon.net/tag/00AX
https://kerodon.net/tag/02BG
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Proof. Let D be a category, which we regard as a 2-category having only identity morphisms.
We wish to show that every morphism of simplicial sets ND

• (C)→ N•(D) factors uniquely
through the morphism ND

• (F ). By virtue of Theorem 2.3.4.1, this is equivalent to the
assertion that every strictly unitary lax functor G : C → D factors uniquely through F ,
which follows from Proposition 2.2.8.3.

Proof of Theorem 2.3.4.1. By virtue of Proposition 2.2.7.7, we may assume without loss of
generality that the 2-categories C and D are strictly unitary (this assumption will simplify
some of the notation in what follows). Let U : ND

• (C)→ ND
• (D) be a map of simplicial sets.

Then:

• Each object X of C can be identified with a vertex of the Duskin nerve ND
• (C) (Example

2.3.1.13), whose image under U is a vertex of the Duskin nerve ND
• (D). This vertex

can be identified with an object of D, which we denote by U0(X).

• Each 1-morphism f : X → Y of C can be identified with an edge of the Duskin
nerve ND

• (C) (Example 2.3.1.14), whose image under U is an edge of the Duskin nerve
ND
• (D). This edge can be identified with a 1-morphism of D, which we will denote by

U1(f) : U0(X)→ U0(Y ).

• Let f : X → Y , g : Y → Z, and h : X → Z be 1-morphisms of C, and let
γ : g ◦ f ⇒ h be a 2-morphism of C. The 2-morphism γ determines a 2-simplex of
the Duskin nerve ND

• (C) (Example 2.3.1.15). The image of this 2-simplex under U
is a 2-simplex of the Duskin nerve ND

• (D), which we can identify with a 2-morphism
U2(γ) : U1(g) ◦ U1(f)⇒ U1(h) in D. Beware that this notation is slightly abusive: the
2-morphism U2(γ) is a priori dependent not only on γ, but also on the factorization of
the source of γ as a composition g ◦ f .

Let F : C → D be a strictly unitary lax functor. Unwinding the definitions, we see that
the induced map of simplicial sets ND

• (F ) : ND
• (C)→ ND

• (D) coincides with U if and only if
the following conditions are satisfied:

(0) For every object X ∈ C, we have F (X) = U0(X) (as objects of D).

(1) For every 1-morphism f : X → Y in C, we have F (f) = U1(f) (as 1-morphisms from
F (X) = U0(X) to F (Y ) = U0(Y ) in D).

(2) For every triple of 1-morphisms f : X → Y , g : Y → Z, and h : X → Z in C and every
2-morphism γ : g ◦ f ⇒ h, the 2-morphism U2(γ) : U1(g) ◦U1(f)⇒ U1(h) of D is given
by the (vertical) composition

U1(g) ◦ U1(f) = F (g) ◦ F (f)
µg,f===⇒ F (g ◦ f) F (γ)===⇒ F (h) = U1(h),
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Let us note two special cases of condition (2). Taking h = g ◦ f and γ : g ◦ f ⇒ h to be the
identity 2-morphism, we obtain the following:

(20) For every pair of composable 1-morphisms X f−→ Y
g−→ Z of C, the composition constraint

µg,f : F (g) ◦ F (f)⇒ F (g ◦ f) coincides with the 2-morphism U2(idg◦f ).

Taking g to be the identity morphism idY : Y → Y and invoking our assumption that C and
D are strictly unitary, we also obtain:

(21) For every pair of 1-morphisms f, h : X → Y in C and every 2-morphism γ : f ⇒ h, we
have

U2(γ) = F (γ)µidY ,f = F (γ)

(here the second identity follows from Remark 2.2.7.5, since the 2-categories C and D
are strictly unitary).

We wish to show that there is a unique strictly unitary lax functor F : C → D satisfying
conditions (0), (1), and (2). The uniqueness is clear: by virtue of the analysis above, the
functor F must be given on objects, 1-morphisms, and 2-morphisms of C by the formulae

F (X) = U0(X) F (f) = U1(f) F (γ) = U2(γ)

(where, in the third formula, we identify the domain of each 2-morphism γ : f ⇒ h in
HomC(X,Y ) with the composition idY ◦f), and the composition constraint µg,f : F (g) ◦
F (f)⇒ F (g ◦ f) must be given by µg,f = U2(idg◦f ). To complete the proof, it will suffice to
show that these formulae supply a well-defined lax functor F : C ⇒ D, and that F satisfies
condition (2) above (note that F satisfies conditions (0) and (1) by construction).

We first show that F satisfies condition (2). Suppose we are given a triple of 1-morphisms
f : X → Y , g : Y → Z, and h : X → Z, together with a 2-morphism γ : g ◦ f ⇒ h in the
2-category C. Consider the map ∂∆3 → ND

• (C) represented by the pair of diagrams

Y
g //

idg◦f
��

Z

idZ

&&

γ
{�

X

f

88

g◦f

33

h // Z

Y
g //

g

++

γ
�#

Z

idZ

&&

idg��

X

f

88

h // Z
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(see Example 2.3.1.16). Using the identity αidZ ,g,f = idg◦f (Remark 2.2.7.3), we see that
these diagrams satisfy the compatibility condition of Example 2.3.1.16, and can therefore be
regarded as a 3-simplex of ND

• (C). Applying the map of simplicial sets U , we deduce that
the diagrams

F (Y ) F (g) //

µg,f

��

F (Z)

idF (Z)

''

F (γ){�

F (X)

F (f)

77

F (g◦f)

33

F (h) // F (Z)

F (Y ) F (g) //

F (g)

++

U2(γ) �#

F (Z)

idF (Z)

''

idF (g)��

F (X)

F (f)

77

F (h) // F (Z)

determine a 3-simplex of ND
• (D): that is, we have a commutative diagram

idF (Z) ◦(F (g) ◦ F (f))
µg,f

rz

αidF (Z),F (g),F (f)
+3 (idF (Z) ◦F (g)) ◦ F (f)

id

$,
idZ ◦F (g ◦ f)

F (γ)

'/

F (g) ◦ F (f)
U2(γ)

ow
F (h).

By virtue of Remark 2.2.7.3, we see that this is equivalent to the identity U2(γ) = F (γ)µg,f
asserted by (2).

Note that from condition (2), we can deduce that F satisfies the dual of condition (21):
that is, for every 2-morphism γ : g ⇒ h in HomC(X,Y ), we have F (γ) = U2(γ), where the
right hand side is computed by regarding γ as a 2-morphism with domain g ◦ idX . It follows
that the construction of F from U is invariant under the operation of replacing C and D by
the opposite 2-categories Cop and Dop (this will be useful in what follows, since it reduces
the number of identities that we need to check).

We now show that, for every pair of objects X,Y ∈ C, the construction of F on 1-
morphisms and 2-morphisms determines a functor HomC(X,Y )→ HomD(F (X), F (Y )). For
this, we must establish the following:
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• For each 1-morphism f : X → Y in C, we have F (idf ) = idF (f) (as 2-morphisms from
F (f) to itself in D). By definition, this is equivalent to the identity U2(idf ) = idF (f),
which follows from the compatibility of the map U : ND

• (C) → ND
• (D) with the

degeneracy operators

s1
1 : ND

1 (C)⇒ ND
2 (C) s1

1 : ND
1 (D)⇒ ND

2 (D).

• For every triple of 1-morphisms f, g, h : X ⇒ Y in C and every pair of 2-morphisms
γ : f ⇒ g, δ : g ⇒ h, we have F (δγ) = F (δ)F (γ). To prove this, consider the map
∂∆3 → ND

• (C) represented by the pair of diagrams

Y
idY //

γ

��

Y

idY

&&

δ{�

X

f

88

g

33

h // Y

Y
idY //

idY

++

δγ �#

Y

idY

&&

ididY��

X

f

88

h // Y

(see Example 2.3.1.16). It follows from Remark 2.2.7.3 that the associativity constraint
αidY ,idY ,f is the identity, so that the diagrams above satisfy the compatibility condition
of Example 2.3.1.16 and therefore determine a 3-simplex of ND

• (C). Applying the map
of simplicial sets U , we deduce that there exists a 3-simplex of the Duskin nerve ND•
whose boundary is given by the diagrams

F (Y )
idF (Y ) //

F (γ)
��

F (Y )

idF (Y )

$$

F (δ){�

F (X)

F (f)

99

F (G)

44

F (h) // F (Y )

F (Y )
idF (Y ) //

idF (Y )

**

F (δγ) �#

F (Y )

idF (Y )

%%

ididF (Y )��

F (X)

F (f)

99

F (h) // F (Y ).
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Using the criterion of Example 2.3.1.16, we see that this is equivalent to the identity
F (δγ) = F (δ)F (γ).

We now show that, for every triple of objects X,Y, Z ∈ C, the composition constraints
µg,f : F (g) ◦F (f)⇒ F (g ◦ f) depends functorially on f ∈ HomC(X,Y ) and g ∈ HomC(Y,Z).
We will argue that for fixed f , the construction g 7→ µg,f is functorial; functoriality in g will
then follow by symmetry. Suppose we are given a 2-morphism γ : g ⇒ h in C; we wish to
show that the diagram τ :

F (g) ◦ F (f)
F (γ)◦idF (f) +3

µg,f

��

F (h) ◦ F (f)

µh,f

��
F (g ◦ f)

F (γ◦idf )
+3 F (h ◦ f)

commutes in the category HomD(F (X), F (Z)). To prove this, we consider the map ∂∆3 →
ND
• (C) represented by the pair of diagrams

Y
g //

idg◦f
��

Z

idZ

&&

γ◦idf{�

X

f

88

g◦f

33

h◦f // Z

Y
g //

h

++

idh◦f �#

Z

idZ

&&

γ��

X

f

88

h◦f // Z.

Using the identity αidZ ,g,f = idg◦f supplied by Remark 2.2.7.3, we see that this diagram
defines a 3-simplex of ND

• (C). Applying the map of simplicial sets U , we deduce that there
is a 3-simplex of ND

• (D) whose boundary is represented by the pair of diagrams

F (Y ) F (g) //

µg,f

��

F (Z)

idF (Z)

''

F (γ◦idf ){�

F (X)

F (f)

77

F (g◦f)

33

F (h◦f) // F (Z)
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F (Y ) F (g) //

F (h)

++

µh,f �#

F (Z)

idF (Z)

''

F (γ)��

F (X)

F (f)

77

F (h◦f) // F (Z).

This translates to the commutativity of the diagram

idF (Z) ◦(F (g) ◦ F (f))
µg,f

rz

αidF (Z),F (g),F (f)
+3 (idF (Z) ◦F (g)) ◦ F (f)

F (γ)

#+
idF (Z) ◦F (g ◦ f)

F (γ◦idf )

'/

F (h) ◦ F (f)
µh,f

ow
F (h ◦ f),

which (again by virtue of Remark 2.2.7.3) is equivalent to the commutativity of the diagram
τ .

To complete the proof, it will suffice to show that F and µ satisfy conditions (a), (b),
and (c) of Definition 2.2.4.5. Condition (a) is immediate from the construction, and (b)
follows by symmetry. To verify (c), suppose we are given a triple of composable 1-morphisms
W

f−→ X
g−→ Y

h−→ Z in the 2-category C. Consider the 3-simplex of ND
• (C) represented by

the pair of diagrams

X
g //

idg◦f
��

Z

h

&&

αh,g,f{�

W

f

88

g◦f

33

(h◦g)◦f // Z

X
g //

h◦g

++

id(h◦g)◦f �#

Y

h

&&

idh◦g��

W

f

88

(h◦g)◦f // Z.
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Applying U , we obtain a 3-simplex of ND
• (D) represented by the pair of diagrams

F (X) F (g) //

µg,f

��

F (Z)

F (h)

&&

U2(αh,g,f ){�

F (W )

F (f)

88

F (g◦f)

33

F ((h◦g)◦f) // F (Z)

F (X) F (g) //

F (h◦g)

++

µh◦g,f �#

F (Y )

F (h)

&&

µh,g��

F (W )

F (f)

88

F ((h◦g)◦f) // F (Z),

which is equivalent to the commutativity of the pentagon appearing in the diagram

F (h) ◦ (F (g) ◦ F (f))

idF (h) ◦µg,f

��

αF (h),F (g),F (f) +3 (F (h) ◦ F (g)) ◦ F (f)

µh,g◦idF (f)

��
F (h) ◦ F (g ◦ f)

µh,g◦f

��

U2(αh,g,f )

%-

F (h ◦ g) ◦ F (f)

µh◦g,f

��
F (h ◦ (g ◦ f))

F (αh,g,f )
+3 F ((h ◦ g) ◦ f)

in the category HomD(F (W ), F (Z)). Since the triangle on the lower left commutes by virtue
of (2), it follows that the outer cycle of the diagram commutes, as desired.

2.3.5 The Duskin Nerve of a Strict 2-Category

00B9 Let C be a strict 2-category (Definition 2.2.0.1). Then we can regard C as a 2-category
(in which the associativity and unit constraints are identity morphisms), and form the
Duskin nerve ND

• (C) by applying Construction 2.3.1.1. However, the Duskin nerve of a strict
2-category admits a more direct description, which can be formulated entirely in terms of
strict 2-categories (and strict functors between them). The proof is based on a construction
which will play an important role in §2.4.3.

https://kerodon.net/tag/00B9
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Construction 2.3.5.1 (The Path 2-Category of a Partially Ordered Set). 00BALet (Q,≤) be a
partially ordered set. We define a strict 2-category Path(2)[Q] as follows:

• The objects of Path(2)[Q] are the elements of Q.

• Given elements x, y ∈ Q, we let HomPath[Q](2)
(x, y) denote the partially ordered set of

all finite linearly ordered subsets

S = {x = x0 < x1 < · · · < xn = y} ⊆ Q

having least element x and greatest element y, ordered by reverse inclusion. We regard
the partially ordered set HomPath[Q](2)

(x, y) as a category, having a unique morphism
S ⇒ T when T is contained in S.

• For every element x ∈ Q, the identity 1-morphism idx ∈ HomPath[Q](x, x) is given by
the singleton {x} (regarded as a linearly ordered subset of Q, having greatest and least
element x).

• For every triple of objects x, y, z ∈ Q, the composition functor

◦ : HomPath(2)[Q](y, z)×HomPath(2)[Q](x, y)→ HomPath(2)[Q](x, z)

is given on objects by the construction (S, T ) 7→ S ∪ T .

‘ We will refer to Path(2)[Q] as the path 2-category of Q.

Remark 2.3.5.2 (Comparison with the Path Category). 00JLLet (Q,≤) be a partially ordered
set. We let Path[Q] denote the underlying category of the strict 2-category Path(2)[Q]. The
category Path[Q] can be described concretely as follows:

• The objects of Path[Q] are the elements of Q.

• If x and y are elements of Q, then a morphism from x to y in Path[Q] is given by a
finite linearly ordered subset

S = {x = x0 < x1 < x2 < · · · < xn = y} ⊆ Q

having least element x and largest element y.

Note that Path[Q] can also be realized as the path category of a directed graph Gr(Q) (as
defined in Construction 1.3.7.1). Here Gr(Q) denotes the underlying directed graph of the
category Q, given concretely by

Vert(Gr(Q)) = Q Edge(Gr(Q)) = {(x, y) ∈ Q : x < y}

where we regard each ordered pair (x, y) ∈ Edge(Gr(Q)) as an edge with source s(x, y) = x

and target t(x, y) = y.
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Remark 2.3.5.3.00BB Let (Q,≤) be a partially ordered set, which we regard as a category
(having a unique morphism from x to y when x ≤ y). Note that, for every pair of elements
x, y ∈ Q, the category HomPath[Q](2)

(x, y) is empty unless x ≤ y. It follows that there is a
unique (strict) functor Path[Q](2) → Q which is the identity on objects.

Construction 2.3.5.4.00BC Let (Q,≤) be a partially ordered set, which we regard as a category
having a unique morphism ey,x for every pair of elements x, y ∈ Q with x ≤ y. We define a
strictly unitary lax functor TQ : Q→ Path(2)[Q] as follows:

• On objects, the lax functor TQ is given by TQ(x) = x.

• On 1-morphisms, the lax functor TQ is given by TQ(ey,x) = {y, x} ∈ HomPath(2)[Q](x, y)
whenever x ≤ y in Q.

• For every triple of elements x, y, z ∈ Q satisfying x ≤ y ≤ z, the composition constraint
µz,y,x : TQ(ez,y) ◦ TQ(ey,z)⇒ TQ(ez,x) is the 2-morphism of Path(2)[Q] corresponding
to the inclusion of linearly ordered sets

TQ(ez,x) = {z, x} ⊆ {z, y, x} = {z, y} ∪ {y, x} = TQ(ez,y) ◦ TQ(ey,x).

Remark 2.3.5.5.00BD Let (Q,≤) be a partially ordered set, let TQ : Q → Path(2)[Q] be the
lax functor of Construction 2.3.5.4, and let F : Path(2)[Q]→ Q be the functor of Remark
2.3.5.3 (so that F is the identity on objects). Then the composition

Q
TQ−−→ Path(2)[Q] F−→ Q

is the identity functor from Q to itself. Beware that the composition

Path(2)[Q] F−→ Q
TQ−−→ Path(2)[Q]

is not the identity (as a lax functor from Path(2)[Q] to itself). This composition carries each
object of Path(2)[Q] to itself, but is given on 1-morphism by the construction {x0 < x1 <

· · · < xn} 7→ {x0 < xn}.

The 2-category Path(2)[Q] of Construction 2.3.5.1 is characterized by the following
universal property:

Theorem 2.3.5.6.00BE Let Q be a partially ordered set and let TQ : Q→ Path(2)[Q] be the lax
functor of Construction 2.3.5.4. For every strict 2-category C, composition with TQ induces
a bijection

{Strict functors F+ : Path(2)[Q]→ C} → {Strictly unitary lax functors F : Q→ C}.
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Before giving the proof of Theorem 2.3.5.6, let us note one of its consequences. The
construction [n] 7→ Path(2)[n] determines a functor from the simplex category ∆ of Definition
1.1.0.2 to the (ordinary) category 2CatStr of strict 2-categories (Definition 2.2.5.5). We will
view this functor as a cosimplicial object of 2CatStr which we denote by Path(2)[•]. Applying
the construction of Variant 1.2.2.8, we obtain a functor SingPath(2)[•]

• : 2CatStr → Set∆, which
carries each strict 2-category C to the simplicial set [n] 7→ Hom2CatStr(Path(2)[•], C). Using
Theorem 2.3.5.6, we can identify this construction with the Duskin nerve functor

2CatStr ↪→ 2CatULax
ND
•−−→ Set∆ .

In particular, we have the following:

Corollary 2.3.5.7. 00BFFor every strict 2-category C, there is a canonical isomorphism of
simplicial sets

SingPath(2)[•]
• (C) ≃ ND

• (C),

given on n-simplices by composition with the lax functor T[n] : [n]→ Path[n] of Construction
2.3.5.4. In other words, the Duskin nerve ND

• (C) is given by

ND
n (C) ≃ {Strict functors Path(2)[n]→ C}.

Remark 2.3.5.8. 00BGIt is not difficult to show that the category 2CatStr of strict 2-categories
admits small colimits (beware that this is not true for the larger category 2Cat). Combining
Corollary 2.3.5.7 with Proposition 1.2.3.15, we deduce that the Duskin nerve functor
ND
• : 2CatStr → Set∆ admits a left adjoint Set∆ → 2CatStr, which carries a simplicial set

S• to the generalized geometric realization |S•|Path(2)[•]. Composing this left adjoint with
the fully faithful embedding ND

• : 2CatULax → Set∆ (Theorem 2.3.4.1), we deduce that
the inclusion functor 2CatStr ↪→ 2CatULax has a left adjoint, given by the construction
C 7→ |ND

• (C)|Path(2)[•]. We can regard Theorem 2.3.5.6 as providing an explicit description
of this left adjoint in a special case: it carries each partially ordered set Q to the strict
2-category Path(2)[Q] given by Construction 2.3.5.1.

Proof of Theorem 2.3.5.6. Let C be a strict 2-category, let Q be a partially ordered set, and
let F : Q→ C be a strictly unitary lax functor. We wish to show that F factors uniquely as
a composition

Q
TQ−−→ Path(2)[Q] F+

−−→ C,

where TQ is the strictly unitary lax functor of Construction 2.3.5.4 and F+ is a strict functor
from Path(2)[Q] to C.

For every pair of elements x, y ∈ Q satisfying x ≤ y, we let ey,x : x → y denote the
unique morphism from x to y in the category Q, and for every triple x, y, z ∈ Q satisfying
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x ≤ y ≤ z, we let µz,y,x : F (ez,y) ◦ F (ey,x) ⇒ F (ez,x) denote the composition constraint
for the lax monoidal functor F . Unwinding the definitions, we see that a strict functor
F+ : Path(2)[Q] → C satisfies F+ ◦ TQ = F if and only if the following conditions are
satisfied:

(0) For every element x ∈ Q, we have F+(x) = F (x) (as objects of the 2-category C).

(1) For every pair of elements x, y ∈ Q satisfying x ≤ y, we have F+({y, x}) = F (ey,x) (as
1-morphisms from F (x) to F (y) in the strict 2-category C).

(2) For every triple of elements x, y, z ∈ Q satisfying x ≤ y ≤ z, the functor F+ carries
the inclusion {z, x} ⊆ {z, y, x} (regarded as a 2-morphism from {z, y} ◦ {y, x} to
{z, x} in the strict 2-category Path(2)[Q]) to µz,y,x (regarded as a 2-morphism from
F (ez,y) ◦ F (ey,x) to F (ez,x) in the strict 2-category C).

Note that, since we are requiring F+ to be a strict functor, we can replace (1) by the
following stronger condition:

(1′) For every nonempty finite linearly ordered subset S = {x0 < x1 < · · · < xn} ⊆ Q, the
functor F+ carries S (regarded as a 1-morphism from x0 to xn in the strict 2-category
Path(2)[Q]) to the composition F (exn,xn−1) ◦ · · · ◦F (ex1,x0) (regarded as a 1-morphism
from F (x0) to F (xn) in the strict 2-category C). In what follows, we will denote this
composition by F (S).

Let S = {x0 < x1 < · · · < xn} be a nonempty finite linearly ordered subset of Q. For each
0 ≤ i ≤ j ≤ n, set fj,i = F (exj ,xi), which we regard as a 1-morphism from F (xi) to F (xj) in
the 2-category C. Let xi be an element of S which is neither the largest nor the smallest (so
that 0 < i < n). In this case, we let γS,xi : F (S)⇒ F (S \ {xi}) denote the 2-morphism of C
given by the horizontal composition

γS,xi = idfn,n−1 ◦ · · · ◦ idfi+2,i+1 ◦µxi+1,xi,xi−1 ◦ idfi−1,i−2 ◦ · · · ◦ idf1,0 .

More generally, given a sequence of distinct elements s1, s2, · · · , sm ∈ S \ {x0, xn}, we let
γS,s1,...,sm : F (S)⇒ F (S \ {s1, . . . , sm}) denote the 2-morphism of C given by the vertical
composition

F (S)
γS,s1===⇒ F (S \ {s1})

γS\{s1},s2======⇒ F (S \ {s1, s2})⇒ · · · ⇒ F (S \ {s1, . . . , sm}).

Since the strict functor F+ is required to be compatible with vertical and horizontal
composition, we can replace (2) by the following stronger condition:

(2′) Let S = {x0 < x1 < · · · < xn} be a nonempty finite linearly ordered subset of Q.
Then, for every sequence of distinct elements s1, . . . , sm ∈ S \ {x0, xn}, the functor
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F+ carries the inclusion S \ {s1, . . . , sm} ⊆ S (regarded as a 2-morphism from S

to S \ {s1, . . . , sm} in the strict 2-category Path(2)[Q]) to the 2-morphism γS,s1,...,sm

(regarded as a 2-morphism from F (S) to F (S \ {s1, . . . , sm}) in the strict 2-category
C).

It is now clear that the functor F+ is unique if it exists: its values on objects, 1-morphisms,
and 2-morphisms of Path(2)[Q] are determined by conditions (0), (1′), and (2′), respectively.
To prove existence, it will suffice to show that this prescription is well-defined: namely,
that the 2-morphism γS,s1,...,sm defined above depends only on the sets S and T = S \
{s1, . . . , sm}, and not on the order of the sequence (s1, . . . , sm) (it then follows easily from
the construction that the definition of F+ on 2-morphisms is compatible with vertical and
horizontal composition). Since the group of all permutations of the set {s1, . . . , sm} is
generated by transpositions of adjacent elements, it will suffice to show that we have

γS,s1,··· ,si−1,si,si+1,si+2,··· ,sm = γS,s1,··· ,si−1,si+1,si,si+2,··· ,sm

for each 1 ≤ i < m. Replacing S by S \ {s1, . . . , si−1}, we are reduced to proving that
γS,s,t = γS,t,s whenever s < t are elements of S − {x0, xn}. We now distinguish two cases:

• Suppose that the elements s and t are non-consecutive elements of S: that is, we have
s = xi and t = xj where j > i+ 1. In this case, we can identify both γS,s,t and γS,t,s
with the horizontal composition

idfn,n−1 ◦ · · · ◦ µxj+1,xj ,xj−1 ◦ · · · ◦ µxi+1,xi,xi−1 ◦ · · · ◦ idf1,0 .

• Suppose that the elements s and t are consecutive: that is, we have

S = {x0 < · · · < r < s < t < u < · · · < xn}.

In this case, to verify the identity γS,s,t = γS,t,s, we can replace S by the subset
{r < s < t < u} and thereby reduce to checking the commutativity of the diagram

F (eu,t) ◦ F (et,s) ◦ F (es,r)
idF (eu,t) ◦µt,s,r

+3

µu,t,s◦idF (es,r)

��

F (eu,t) ◦ F (et,r)

µu,t,r

��
F (eu,s) ◦ F (es,r)

µu,s,r +3 F (eu,r)

in the category HomC(F (r), F (u)), which is the coherence condition required by the
composition contraints for the lax functor F (axiom (c) of Definition 2.2.4.5).
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2.4 Simplicial Categories

00JN Let Top denote the category of topological spaces. By definition, a morphism in the
category Top is a continuous function f : X → Y . In homotopy theory, one is fundamentally
concerned not only with continuous functions themselves, but also with homotopies between
them: that is, continuous functions h : [0, 1]×X → Y . More generally, for each n ≥ 0, one
can consider the set

HomTop(X,Y )n = {Continuous functions σ : |∆n| ×X → Y };

here |∆n| denotes the topological simplex of dimension n. The sets {HomTop(X,Y )n}n≥0
can be assembled into a simplicial set HomTop(X,Y )•, and the construction (X,Y ) 7→
HomTop(X,Y )• endows Top with the structure of a simplicial category: that is, a category
which is enriched over simplicial sets, in the sense of Definition 2.1.7.1. Much as the singular
simplicial set Sing•(X) = HomTop(∗, X)• can be regarded as a combinatorial encoding of
the homotopy type of an individual topological space X, the simplicial enrichment of Top
can be regarded as a combinatorial encoding of the homotopy theory of topological spaces.

Our goal in this section is to provide an introduction to the theory of simplicial categories.
We begin in §2.4.1 by defining the notion of simplicial category (Definition 2.4.1.1). The
collection of (small) simplicial categories can itself be organized into a category Cat∆, in
which the morphisms are given by simplicial functors (Definition 2.4.1.11). In §2.4.2 we
provide many examples of how simplicial categories arise in nature: in particular, we explain
that Cat∆ can be regarded as an enlargement of the usual category Cat of small categories
(Example 2.4.2.4), and also of the category 2CatStr of strict 2-categories (Example 2.4.2.8).

Recall that to every category C we can associate a simplicial set N•(C) called the nerve
of C (Construction 1.3.1.1). In §2.4.3, we describe a generalization of this construction (due
to Cordier) which associates to each simplicial category C• a simplicial set Nhc

• (C) called
the homotopy coherent nerve of C• (Definition 2.4.3.5). This construction specializes to the
ordinary nerve in the case where C• is an ordinary category (and to the Duskin nerve in
the case where C• arises from a strict 2-category: see Example 2.4.3.11). It is particularly
well-behaved in the special case where C• is locally Kan (meaning that simplicial Hom-sets
HomC(X,Y )• are Kan complexes): in this case, a theorem of Cordier and Porter asserts
that the homotopy coherent nerve Nhc

• (C) is an ∞-category (Theorem 2.4.5.1).
In §2.4.4, we show that the homotopy coherent nerve functor Nhc

• : Cat∆ → Set∆
admits a left adjoint (Corollary 2.4.4.4). This left adjoint carries each simplicial set S•
to a simplicial category Path[S]• which we will refer to as the (simplicial) path category
of S•. The construction S• 7→ Path[S]• is a generalization of the classical path category
studied in §1.3.7: when S• is the 1-dimensional simplicial set associated to a directed graph
G, the simplicial category Path[S]• can be identified with the ordinary category Path[G]
of Construction 1.3.7.1 (see Proposition 2.4.4.7). For a general simplicial set S•, the path

https://kerodon.net/tag/00JN
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category Path[S]• is a complicated object. However, in each fixed simplicial degree m it is
relatively simple: the ordinary category Path[S]m can be identified with the classical path
category of a certain directed graph Gm which can be described concretely in terms of the
combinatorics of S• (Theorem 2.4.4.10). We will exploit this description in §2.4.5 to carry
out the proof of Theorem 2.4.5.1, and again in §2.4.6 to compare the homotopy category of
a (locally Kan) simplicial category C• to the homotopy category of its associated ∞-category
Nhc
• (C) (Proposition 2.4.6.9).

Warning 2.4.0.1. 00JPThe ordinary nerve functor C 7→ N•(C) determines a fully faithful
embedding from the category Cat of small categories to the category Set∆ of simplicial sets
(Proposition 1.3.3.1). However, the homotopy coherent nerve Nhc

• : Cat∆ → Set∆ is not fully
faithful when regarded as a functor of ordinary categories. Phrased differently, the adjoint
functors

Set∆
Path[−]•//Cat∆

Nhc
•

oo

associate to each simplicial category C• a counit map v : Path[Nhc
• (C•)]• → C•, which is

almost never an isomorphism of simplicial categories. However, we will see later that v is
a weak equivalence of simplicial categories whenever C• is locally Kan ([?]). Moreover, the
construction C• 7→ Nhc

• (C) establishes an equivalence from the homotopy theory of (locally
Kan) simplicial categories C• with the homotopy theory of ∞-categories ([?]).

2.4.1 Simplicial Enrichment

00JQLet Set∆ denote the category of simplicial sets (Definition 1.1.0.6). Then Set∆ admits
cartesian products (Remark 1.1.0.8), and can therefore be endowed with the cartesian
monoidal structure described in Example 2.1.3.2. We will use the term simplicial category
to refer to a category which is enriched over Set∆, in the sense of Definition 2.1.7.1. For
the reader’s convenience, we spell this definition out in detail (and establish some notation
we will use when discussing simplicial categories, which differs somewhat from the general
conventions of §2.1.7).

Definition 2.4.1.1 (Simplicial Categories). 00JRA simplicial category C• consists of the following
data:

(1) A collection Ob(C•), whose elements we refer to as objects of C•. We will often abuse
notation by writing X ∈ C• to indicate that X is an element of Ob(C•).

(2) For every pair of objects X,Y ∈ Ob(C•), a simplicial set HomC(X,Y )•.

(3) For every triple of objects X,Y, Z ∈ Ob(C•), a morphism of simplicial sets

cZ,Y,X : HomC(Y,Z)• ×HomC(X,Y )• → HomC(X,Z)•,
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which we will refer to as the composition law.

(4) For every object X ∈ Ob(C), a vertex idX ∈ HomC(X,X)0, which we will refer to as the
identity morphism of X.

These data are required to satisfy the following conditions:

(A) For every quadruple of objects W,X, Y, Z ∈ Ob(C•), the diagram of simplicial sets

HomC(Y,Z)• ×HomC(X,Y )• ×HomC(W,X)•
id×cY,X,W

uu

cZ,Y,X×id

))
HomC(Y,Z)• ×HomC(W,Y )•

cZ,Y,W ))

HomC(X,Z)• ×HomC(W,X)•

cZ,X,Wuu
HomC(W,Z)•

commutes (in other words, the composition law of (3) is associative).

(U) For every pair of objects X,Y ∈ Ob(C•), the maps of simplicial sets

HomC(X,Y )• × {idX} ↪→ HomC(X,Y )• ×HomC(X,X)•
cY,X,X−−−−→ HomC(X,Y )•

{idY } ×HomC(X,Y )• ↪→ HomC(Y, Y )• ×HomC(X,Y )•
cY,Y,X−−−−→ HomC(X,Y )•

coincide with the projection maps onto the factor HomC(X,Y )•.

Warning 2.4.1.2.00JS The terminology of Definition 2.4.1.1 is not standard. Many authors
use the term simplicial category to mean a simplicial object of the category Cat, and the
term simplicially enriched category to mean a category enriched over simplicial sets. These
notions are closely related: see Remark 2.4.1.12.

Construction 2.4.1.3.00JT Let C• be a simplicial category. For every nonnegative integer
n ≥ 0, we define an ordinary category Cn as follows:

• The objects of Cn are the objects of C•.

• Let X,Y ∈ Ob(Cn) = Ob(C•) be objects of Cn. A morphism from X to Y in the
category Cn is an n-simplex of the simplicial set HomC(X,Y )•. In other words, we
have an equality of sets HomCn(X,Y ) = HomC(X,Y )n.

• For every pair of morphisms f : X → Y and g : Y → Z in Cn, the composition
g ◦ f : X → Z is given by the image of the n-simplex (g, f) under the map of simplicial
sets

cZ,Y,X : HomC(Y,Z)• ×HomC(X,Y )• → HomC(X,Z)•.
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• For every object X ∈ Ob(Cn) = Ob(C•), the identity morphism from X to itself in
the category Cn is the n-simplex of HomC(X,X)• which corresponds to the composite
map

∆n → ∆0 idX−−→ HomC(X,X)•

Example 2.4.1.4 (The Underlying Category of a Simplicial Category). 00JULet C• be a simplicial
category. We let C = C0 denote the ordinary category obtained by applying Construction
2.4.1.3 in the case n = 0. We will refer to C as the underlying category of the simplicial
category C•. Note that C can also be obtained from C• by applying the general procedure
described in Example 2.1.7.5.

We will sometimes abuse terminology by identifying a simplicial category C• with its
underlying category C. In particular, if X and Y are objects of C•, we will write HomC(X,Y )
to denote the set HomC0(X,Y ) = HomC(X,Y )0 of morphisms from X to Y in the category
C.

Example 2.4.1.5 (Topological Spaces). 00JVLet Top denote the category whose objects are
topological spaces and whose morphisms are continuous functions. Then Top can be
promoted to a simplicial category Top•: given a pair of topological spaces X and Y , we
define the simplicial set HomTop(X,Y )• informally by the formula

HomTop(X,Y )n = HomTop(|∆n| ×X,Y )

In particular, a vertex of HomTop(X,Y )• can be identified with a continuous function
f : X → Y . Moreover, for any topological space Y , we have a canonical isomorphism of
simplicial sets HomTop(∗, Y )• ≃ Sing•(Y ), where Sing•(Y ) is the singular simplicial set of
Construction 1.2.2.2.

Let C be a category. Roughly speaking, a simplicial enrichment C• of C can be viewed as
a datum which allows us to “do homotopy theory” in C. For example, it allows us to define
a notion of homotopy between morphisms of C:

Definition 2.4.1.6. 00JWLet C• be a simplicial category, and let f, g : X → Y be two morphisms
in the underlying category C = C0 having the same source and target. A homotopy from f

to g is an edge h ∈ HomC(X,Y )1 satisfying d1
1(h) = f and d1

0(h) = g.

Example 2.4.1.7. 00JXLet X and Y be topological spaces and let f, g : X → Y be continuous
functions, which we regard as morphisms in the simplicial category Top• of Example 2.4.1.5.
Then a homotopy from f to g in the sense of Definition 2.4.1.6 is a homotopy in the usual
sense: a continuous function h : [0, 1]×X = |∆1| ×X → Y satisfying h(0, x) = f(x) and
h(1, x) = g(x) for all x ∈ X.
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In a general simplicial category C, the notion of homotopy (in the sense of Definition
2.4.1.6) need not be well-behaved: for example, the existence of a homotopy from f to g
need not imply the existence of a homotopy from g to f . To remedy the situation, it is
convenient to restrict attention to a special class of simplicial categories:

Definition 2.4.1.8.00JY Let C• be a simplicial category. We will say that C• is locally Kan
if, for every pair of objects X,Y ∈ C•, the simplicial set HomC(X,Y )• is a Kan complex
(Definition 1.2.5.1).

Remark 2.4.1.9.00JZ Let C• be a locally Kan simplicial category, and let f, g : X → Y be a
pair of morphisms in the underlying category C = C0 having the same source and target.
Invoking Proposition 1.2.5.10, we see that the following conditions are equivalent:

(a) There exists a homotopy from f to g, in the sense of Definition 2.4.1.6.

(b) The morphisms f and g belong to the same connected component of the Kan complex
HomC(X,Y )•.

In particular, condition (a) defines an equivalence relation on the set HomC(X,Y ).

Exercise 2.4.1.10.00K0 Let Top• be the simplicial category of Example 2.4.1.5. Show that
Top• is locally Kan (hint: generalize the proof of Proposition 1.2.5.8).

Specializing Definition 2.1.7.10 to the setting of simplicial enrichments, we obtain the
following:

Definition 2.4.1.11 (Simplicial Functors).00K1 Let C• and D• be simplicial categories. A
simplicial functor F : C• → D• consists of the following data:

(1) For every object X ∈ Ob(C•), an object F (X) ∈ Ob(D•).

(2) For every pair of objects X,Y ∈ Ob(C•), a map of simplicial sets FX,Y : HomC(X,Y )• →
HomD(F (X), F (Y ))•.

These data are required to satisfy the following conditions:

• For every object X ∈ Ob(C•), the map of simplicial sets FX,X : HomC(X,X)• →
HomD(F (X), F (X))• carries the vertex idX to the vertex idF (X).

• For every triple of objects X,Y, Z ∈ Ob(C•), the diagram of simplicial sets

HomC(Y, Z)• ×HomC(X,Y )• //

FY,Z×FX,Y

��

HomC(X,Z)•

FX,Z

��
HomD(F (Y ), F (Z))• ×HomD(F (X), F (Y ))• // HomD(F (X), F (Z))•

is commutative.
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We let Cat∆ denote the category whose objects are (small) simplicial categories and whose
morphisms are simplicial functors.

Remark 2.4.1.12. 00K2Let C• be a (small) simplicial category. Then the construction [n] 7→ Cn
determines a functor from the simplex category ∆op (Definition 1.1.0.2) to the category
Cat of (small) categories. Allowing C• to vary, we obtain a functor Cat∆ → Fun(∆op,Cat),
which fits into a pullback diagram of categories

Cat∆
C• 7→([n] 7→Cn) //

Ob

��

Fun(∆op,Cat)

Ob

��
Set // Fun(∆op, Set),

where the lower horizontal map carries each set S to the constant functor ∆op → Set taking
the value S.

Phrased more informally: simplicial categories can be identified with simplicial objects
C• of Cat for which the underlying simplicial set of objects [n] 7→ Ob(Cn) is constant. In
particular, the functor Cat∆ → Fun(∆op,Cat) is a fully faithful embedding.

Proposition 2.4.1.13. 00K3The category Cat∆ admits small limits and colimits.

Proof. The category Cat admits small limits and colimits, which are preserved by the
forgetful functor Ob : Cat→ Set. It follows that the category Fun(∆op,Cat) of simplicial
objects in Cat also admits small limits and colimits, which are computed pointwise. Remark
2.4.1.12 supplies a fully faithful embedding Cat∆ ↪→ Fun(∆op,Cat) whose essential image
is closed under small limits and colimits, so that Cat∆ admits small limits and colimits as
well.

2.4.2 Examples of Simplicial Categories

00K4We now supply some examples of simplicial categories.

Example 2.4.2.1 (Simplicial Sets). 00K5Let Set∆ denote the category of simplicial sets. Then
Set∆ can be regarded as (the underlying ordinary category of) a simplicial category, which we
will also denote by Set∆: given a pair of simplicial sets X• and Y•, we define HomSet∆(X•, Y•)•
to be the simplicial set Fun(X•, Y•) parametrizing morphisms from X• to Y• (see Construction
1.5.3.1).

Example 2.4.2.2 (Functor Categories). 0323Let C be a category and let Y : C → Set∆ be a
functor. For every simplicial set K, we let Y K : C → Set∆ denote the functor given on

https://kerodon.net/tag/00K2
https://kerodon.net/tag/00K3
https://kerodon.net/tag/00K4
https://kerodon.net/tag/00K5
https://kerodon.net/tag/0323


2.4. SIMPLICIAL CATEGORIES 259

objects by the formula Y K(C) = Fun(K,Y (C)). If X : C → Set∆ is another functor, we let
HomFun(C,Set∆)(X,Y )• denote the simplicial set given by the functor

∆op → Set [n] 7→ HomFun(C,Set∆)(X,Y ∆n).

Together with the evident composition maps

◦ : HomFun(C,Set∆)(Y,Z)• ×HomFun(C,Set∆)(X,Y )• → HomFun(C,Set∆)(X,Z)•,

this construction endows Fun(C, Set∆) with the structure of a simplicial category.

Example 2.4.2.3 (Delooping).00MY Let M• be a simplicial monoid. We let BM• denote the
simplicial category having a single object X, with HomBM (X,X)• = M• and the composition
law is given by the monoid structure on M•. We will refer to BM• as the delooping of the
simplicial monoid M•. Note that the construction M• 7→ BM• induces an equivalence of
categories

{Simplicial Monoids} ≃ {Simplicial Categories C with Ob(C) = {X}}.

We can produce many more examples using the construction of Remark 2.1.7.4. If A
is a monoidal category equipped with a (lax) monoidal functor F : A → Set∆, then every
A-enriched category can also be regarded as a simplicial category. We now consider four
instances of this construction:

• We can take F : Set ↪→ Set∆ to be the functor which carries each set S to the associated
constant simplicial set (Construction 1.1.5.2).

• We can take F : Cat ↪→ Set∆ to be the functor which carries each category C to its
nerve N•(C) (Construction 1.3.1.1).

• We can take F : Set∆ → Set∆ to be the functor which carries each simplicial set S• to
the opposite simplicial set Sop

• .

• We can take F : Top→ Set∆ to be the functor which carries each topological space to
the singular simplicial set Sing•(C) (Construction 1.2.2.2).

Example 2.4.2.4 (Ordinary Categories as Simplicial Categories).00K6 Let C be an ordinary
category. We define a simplicial category C• as follows:

• The objects of C• are the objects of C.

• For every pair of objects X,Y ∈ Ob(C•) = Ob(C), HomC(X,Y )• is the constant
simplicial set associated to the set HomC(X,Y ) (see Construction 1.1.5.2).

https://kerodon.net/tag/00MY
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• For every triple of objects X,Y, Z ∈ Ob(C•) = Ob(C), the composition law

cZ,Y,X : HomC(Y,Z)• ×HomC(X,Y )• → HomC(X,Z)•

on C• is determined by the composition law HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z)
on C.

We will refer to C• as the constant simplicial category associated to C. Under the fully faithful
embedding Cat∆ ↪→ Fun(∆op,Cat) of Remark 2.4.1.12, it corresponds to the constant functor
∆op → {C} ↪→ Cat (see Construction 1.1.5.2). In particular, the underlying category of C•
(in the sense of Example 2.4.1.4) is the ordinary category C.

Remark 2.4.2.5. 00K7It follows from Corollary 1.1.5.9 and Remark 2.4.1.12 that the construction

Cat→ Cat∆ C 7→ C•

of Example 2.4.2.4 is fully faithful. Its essential image consists of those simplicial categories
E• having the property that, for every pair of objects X,Y ∈ Ob(E•), the simplicial set
HomE(X,Y )• is discrete (Definition 1.1.5.10). We will sometimes abuse notation by not
distinguishing between the ordinary category C and the constant simplicial category C•.

Remark 2.4.2.6. 00K8Let C be an ordinary category and let D• be a simplicial category.
Applying Proposition 1.1.5.5 (and Remark 2.4.1.12), we deduce that the restriction map

{Simplicial functors C• → D•} ≃ {Functors C → D0},

is bijective. In other words, the fully faithful embedding

Cat ↪→ Cat∆ C 7→ C•

of Remark 2.4.2.5 is left adjoint to the forgetful functor

Cat∆ → Cat D• 7→ D0 .

of Example 2.4.1.4.

Remark 2.4.2.7. 00K9Let C be an ordinary category. Then the simplicial category C• of Example
2.4.2.4 is locally Kan (since constant simplicial sets are Kan complexes; see Example 1.2.5.6).

Example 2.4.2.8 (Strict 2-Categories as Simplicial Categories). 00KALet C be strict 2-category
(Definition 2.2.0.1). Then we can associate to C a simplicial category C• as follows:

• The objects of C• are the objects of C.

• For every pair of objects X,Y ∈ Ob(C•) = Ob(C), the simplicial set HomC(X,Y )• is
the nerve of the category HomC(X,Y ).
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• For every triple of objects X,Y, Z ∈ Ob(C•) = Ob(C), the composition law

HomC(Y, Z)• ×HomC(X,Y )• → HomC(X,Z)•

of C• is given by the nerve of the composition functor HomC(Y, Z)×HomC(X,Y )→
HomC(X,Z).

Remark 2.4.2.9.00KB In the situation of Example 2.4.2.8, we will generally abuse notation by
identifying the strict 2-category C with the associated simplicial category C•. Note that the
underlying category of C• (in the sense of Example 2.4.1.4) agrees with the underlying category
of C (in the sense of Remark 2.2.0.3). Moreover, since the nerve functor N• : Cat→ Set∆
is fully faithful (Proposition 1.3.3.1), the construction of Example 2.4.2.8 supplies a fully
faithful embedding

2CatStr ↪→ Cat∆ C 7→ C•,

where 2CatStr denotes the category of strict 2-categories (see Definition 2.2.5.5).

Remark 2.4.2.10.00KC Let C be an ordinary category, regarded as a strict 2-category having
only identity 2-morphisms (Example 2.2.0.6). Then the simplicial category C• associated to
C by Example 2.4.2.8 agrees with the simplicial category associated to C by Example 2.4.2.4.

Remark 2.4.2.11.00KD Let C be a strict 2-category. Then the simplicial category C• of Example
2.4.2.8 is locally Kan if and only if every 2-morphism in C is invertible: that is, if and only
if C is a (2, 1)-category (in the sense of Definition 2.2.8.5). This follows from Proposition
1.3.5.2.

Example 2.4.2.12 (The Conjugate of a Simplicial Category).00KE Let C• be a simplicial category.
We define a new simplicial category Cc

• as follows:

• The objects of Cc
• are the objects of C•.

• For every pair of objects X,Y ∈ Ob(Cc
•) = Ob(C•), we have an equality of simplicial

sets
HomCc(X,Y )• = HomC(X,Y )op

• ;

here the right hand side denotes the opposite of the simplicial set HomC(X,Y )•
(Construction 1.4.2.2).

• For every triple of objects X,Y, Z ∈ Ob(Cc
•) = Ob(C•), the composition law

HomCc(Y,Z)• ×HomCc(X,Y )• → HomCc(X,Z)•

on Cc
• is obtained from the composition law on C• by passing to opposite simplicial

sets.
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We will refer to Cc
• as the conjugate of the simplicial category C•.

Remark 2.4.2.13. 00KFLet C• be a simplicial category and let Cc
• denote the conjugate simplicial

category (Example 2.4.2.12). Then, when regarded as a simplicial object of Cat, the conjugate
simplicial category Cc

• is given by the functor

∆op Op−−→∆op [n] 7→Cn−−−−→ Cat;

here Op denotes the involution of ∆ described in Notation 1.4.2.1. In particular, the
underlying ordinary categories of C• and Cc

• are the same.

Remark 2.4.2.14. 00KGLet C be a strict 2-category and let C• denote the associated simplicial
category (Example 2.4.2.8). Then the conjugate simplicial category (C•)c can be identified
with the simplicial category (Cc)• associated to the conjugate 2-category Cc of Construction
2.2.3.4. In particular, if C is an ordinary category, then we have a canonical isomorphism
Cc
• ≃ C•.

Remark 2.4.2.15. 00KHLet C• be a simplicial category. Then C• is locally Kan if and only if
the conjugate simplicial category Cc

• (Example 2.4.2.12) is locally Kan.

Example 2.4.2.16 (Topologically Enriched Categories). 00KJLet Top denote the category of
topological spaces. The formation of singular simplicial sets (Construction 1.2.2.2) determines
a functor

Sing• : Top→ Set∆ X 7→ Sing•(X)

which preserves finite products (in fact, it preserves all small limits), and can therefore be
regarded as a monoidal functor from Top to Set∆ (where we endow both Top and Set∆ with
the cartesian monoidal structure). Applying Remark 2.1.7.4, we see that every topologically
enriched category C can be regarded as a simplicial category C• having the same objects,
with morphism simplicial sets given by

HomC(X,Y )• = Sing•(HomC(X,Y ));

here HomC(X,Y ) denotes the set of morphisms from X to Y , endowed with the topology
determined by the topological enrichment of C (see Example 2.1.7.8).

Remark 2.4.2.17. 00KKLet C be a topologically enriched category, and let C• denote the
associated simplicial category (Example 2.4.2.16). Then C• is locally Kan (since the singular
simplicial set Sing•(X) of any topological space X is a Kan complex; see Proposition 1.2.5.8).

Warning 2.4.2.18. 00KLLet TopLCH denote the full subcategory of Top spanned by the locally
compact Hausdorff spaces. Then we can view TopLCH as a topologically enriched category,
where we endow each of the sets

HomTopLCH(X,Y ) = {Continuous functions f : X → Y }
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with the compact-open topology, generated by open sets of the form {f ∈ HomTop(X,Y ) :
f(K) ⊆ U} where K ⊆ X is compact and U ⊆ Y is open. On this subcategory, the simplicial
enrichment of Example 2.4.2.16 coincides with the simplicial enrichment of Example 2.4.1.5.
Beware that some technical issues arise if we allow spaces which are not locally compact:

• Given topological spaces X, Y , and Z, the composition map

HomTop(Y,Z)×HomTop(X,Y )→ HomTop(X,Z) (g, f) 7→ g ◦ f

need not be continuous (with respect to the compact-open topologies on HomTop(X,Y ),
HomTop(Y, Z), and HomTop(X,Z)) when Y /∈ TopLCH. Consequently, the construction
of compact-open topologies does not determine a topological enrichment of Top (in
the sense of Example 2.1.7.8).

• Given topological spaces X and Y , a function |∆n| → HomTop(X,Y ) which is con-
tinuous (for the compact-open topology on HomTop(X,Y )) need not correspond to a
continuous function |∆n| ×X → Y when X /∈ TopLCH.

One can remedy these difficulties by replacing Top by the subcategory of compactly generated
weak Hausdorff spaces introduced in [42].

2.4.3 The Homotopy Coherent Nerve

00KM Let Top denote the category of topological spaces and let N•(Top) denote its nerve
(Construction 1.3.1.1). Then N•(Top) is a simplicial set whose 2-simplices can be identified
with diagrams of topological spaces σ :

X1

f21

  
X0

f10

>>

f20
// X2

which commute in the sense that f21 ◦ f10 is equal to f20. In the study of algebraic topology,
one often encounters diagrams which commute in the weaker sense that the composition
f21 ◦ f10 homotopic to f20. By definition, this means that there exists a continuous function
h : [0, 1]×X0 → X2 which satisfies the boundary conditions

h|{0}×X0 = f21 ◦ f10 h|{1}×X0 = f20.

In this case, we say that the function h is a homotopy from f21 ◦ f10 to f20, and that h is a
witness to the homotopy commutativity of the diagram σ. In this section, we will introduce

https://kerodon.net/tag/00KM
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an enlargement Nhc
• (Top) of the simplicial set N•(Top), whose 2-simplices are given by pairs

(σ, h) where σ is a (possibly noncommutative) diagram as above, and h is a witness to the
homotopy commutativity of σ. This is a special case of a general construction (Definition
2.4.3.5) which can be applied to any simplicial category.

Notation 2.4.3.1 (Simplicial Path Categories). 00KNLet (Q,≤) be a partially ordered set, and
let Path(2)[Q] denote the path 2-category of Q (Construction 2.3.5.1). We let Path[Q]•
denote the simplicial category obtained from the strict 2-category Path(2)[Q] by applying the
construction of Example 2.4.2.8. More concretely, we can describe the simplicial category
Path[Q]• as follows:

• The objects of Path[Q]• are the elements of the partially ordered set Q.

• If x and y are elements of Q = Ob(Path[Q]•), then HomPath[Q](x, y)• is the nerve of
the partially ordered set of finite linearly ordered subsets {x = x0 < x1 < · · · < xm =
y} ⊆ Q with least element x and largest element y, ordered by reverse inclusion.

• For each element x ∈ Q = Ob(Path[Q]•), the identity morphism idx is the singleton
{x} ∈ HomPath[Q](x, x)0.

• For x, y, z ∈ Q = Ob(Path[Q]), the composition law

HomPath[Q](y, z)• ×HomPath[Q](x, y)• → HomPath[Q](x, z)•

is given on vertices by the construction (S, T ) 7→ S ∪ T .

In the special case where Q = [n] = {0 < 1 < · · · < n}, we denote the simplicial category
Path[Q]• by Path[n]•.

Remark 2.4.3.2. 00KPLet Q be a partially ordered set. The simplicial category Path[Q]• can
be regarded as a “thickened version” of Q. For every pair of elements x, y ∈ Q, the simplicial
set HomPath[Q](x, y)• is empty if x ≰ y, and weakly contractible (see Definition 3.2.4.16)
if x ≤ y (since it is the nerve of a partially ordered set with a largest element {x, y}). In
particular, there is a unique simplicial functor π : Path[Q]• → Q which is the identity on
objects (where we abuse notation by identifying Q with the associated constant simplicial
category of Example 2.4.2.4). The simplicial functor π is a prototypical example of a weak
equivalence in the setting of simplicial categories (see Definition 4.6.8.7).

Remark 2.4.3.3. 00KQA topologically enriched variant of Path[Q]• appears in the work of Leitch
([39]); see appendix B of [51] for a related construction.

Remark 2.4.3.4 (Relationship with Ordinary Path Categories). 00KRLet Q be a partially
ordered set and let Gr(Q) denote the associated directed graph, given concretely by

Vert(Gr(Q)) = Q Edge(Gr(Q)) = {(x, y) ∈ Q : x < y}.
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Then the path category Path[Gr(Q)] of Construction 1.3.7.1 is the underlying category of the
simplicial category Path[Q]• of Notation 2.4.3.1 (see Remark 2.3.5.2). In other words, we can
regard Path[Q]• as a simplicially enriched version of Path[Gr(Q)]. Beware that the simplicial
enrichment is nontrivial in general: that is, the simplicial mapping sets HomPath[Q](x, y)•
are usually not constant.

Definition 2.4.3.5 (The Homotopy Coherent Nerve).00KS Let C• be a simplicial category. We
let Nhc

• (C) denote the simplicial set given by the construction

([n] ∈∆op) 7→ HomCat∆(Path[n]•, C•) = {Simplicial functors Path[n]• → C•}.

We will refer to Nhc
• (C) as the homotopy coherent nerve of the simplicial category C•.

Remark 2.4.3.6.00KT The homotopy coherent nerve Nhc
• (C) was introduced by Cordier in [11]

(motivated by earlier work of Vogt on the theory of homotopy coherence; see [59]). Beware
that Cordier uses slightly different conventions: [11] defines the homotopy coherent nerve of
a simplicial category C to be the simplicial set Nhc

• (Cc), where Cc denotes the conjugate of
the simplicial category C (Example 2.4.2.12).

Remark 2.4.3.7.00KU The homotopy coherent nerve of Definition 2.4.3.5 determines a functor
Nhc
• (−) from the category Cat∆ of simplicial categories (Definition 2.4.1.11) to the category

Set∆ of simplicial sets (Definition 1.1.0.6). This is a special case of the general construction
described in Variant 1.2.2.8, associated to the cosimplicial object of Cat∆ given by

∆→ Cat∆ [n] 7→ Path[n]•.

Remark 2.4.3.8 (Comparison with the Nerve).00KV Let C• be a simplicial category and let C = C0
denote the underlying ordinary category. For every partially ordered set Q, composition
with the simplicial functor Path[Q]• → Q of Remark 2.4.3.2 induces a monomorphism

{Ordinary functors Q→ C} ↪→ {Simplicial functors Path[Q]• → C•}.

Restricting this construction to partially ordered sets of the form [n] = {0 < 1 < · · · < n},
we obtain a monomorphism of simplicial sets N•(C) ↪→ Nhc

• (C), where N•(C) is the nerve of
Construction 1.3.1.1 and Nhc

• (C) is the homotopy coherent nerve of Definition 2.4.3.5.

Example 2.4.3.9 (Vertices and Edges of the Homotopy Coherent Nerve).00KW In the cases
Q = [0] and Q = [1], the map π : Path[Q]• → Q is an equivalence of simplicial categories
(since a path in Q is uniquely determined by its endpoints). It follows that for every simplicial
category C•, the comparison map N•(C) ↪→ Nhc

• (C) of Remark 2.4.3.8 is bijective on vertices
and edges. In particular:

• Vertices of the homotopy coherent nerve Nhc
• (C) can be identified with objects X of

the underlying category C.
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• Edges of the homotopy coherent nerve Nhc
• (C) can be identified with morphisms

f : X → Y of the underlying category C.

• The face operators d1
0, d

1
1 : Nhc

1 (C)→ Nhc
0 (C) carry a morphism f : X → Y to its target

Y = d1
0(f) and source f = d1

1(f), respectively.

• The degeneracy operator s0
0 : Nhc

0 (C)→ Nhc
1 (C) carries an object X ∈ C to the identity

morphism idX : X → X.

Example 2.4.3.10 (2-Simplices of the Homotopy Coherent Nerve). 00KXLet Q = {x0 < x1 < x2}
be a linearly ordered set with three elements. Then the map π : Path[Q]• → Q is not an
equivalence of simplicial categories. In the underlying category Path[Q], the diagram

x1

{x1<x2}

  
x0

{x0<x1}

>>

{x0<x2}
// x2

does not commute: the composition of the diagonal maps is the path {x0 < x1 < x2}. How-
ever, it commutes in a weak sense: there is an edge of the simplicial set HomPath[Q](x0, x2)•
having source {x0 < x1 < x2} and target {x0 < x2}. It follows that for any simplicial
category C•, a choice of 2-simplex

σ ∈ Nhc
2 (C) = HomCat∆(Path[2]•, C•) ≃ HomCat∆(Path[Q]•, C•)

determines a (possibly non-commutative) diagram σ0:

X1

f21

  
X0

f10

>>

f20 // X2,

in C, together with a homotopy h from f21 ◦ f10 to f20 (in the sense of Definition 2.4.1.6).
Conversely, every choice of homotopy from f21 ◦ f10 to f20 determines a unique 2-simplex of
Nhc
• (C) (see Proposition 2.4.6.10).

Example 2.4.3.11 (Comparison with the Duskin Nerve). 00KYLet C be a strict 2-category and
let C• denote the associated simplicial category (Example 2.4.2.8). For any partially ordered
set Q, Remark 2.4.2.9 and Theorem 2.3.5.6 supply bijections

HomCat∆(Path[Q]•, C•) ≃ Hom2CatStr(Path(2)[Q], C)
≃ Hom2CatULax(Q, C).
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Restricting to partially ordered sets of the form [n] = {0 < 1 < · · · < n}, we obtain an
isomorphism of simplicial sets Nhc

• (C) ≃ ND
• (C), where Nhc

• (C) is the homotopy coherent
nerve of Definition 2.4.3.5 and ND

• (C) is the Duskin nerve of Construction 2.3.1.1.

Example 2.4.3.12 (The Case of an Ordinary Category).00KZ Let C be an ordinary category,
regarded as a constant simplicial category C• via the construction of Example 2.4.2.4.
Combining Examples 2.3.1.3 and Examples 2.4.3.11, we obtain isomorphisms

N•(C) ≃ ND
• (C) ≃ Nhc

• (C).

Unwinding the definitions, we see that the composite isomorphism N•(C) ≃ Nhc
• (C) is the

comparison map of Remark 2.4.3.8. In other words, when restricted to constant simplicial
categories, the homotopy coherent nerve of Definition 2.4.3.5 reduces to the classical nerve
of Construction 1.3.1.1.

2.4.4 The Path Category of a Simplicial Set

00L0 Let G be a directed graph, which we identify with a simplicial set G• of dimension ≤ 1
(Proposition 1.1.6.9). In §1.3.7, we introduced a category Path[G] called the path category
of G (Construction 1.3.7.1). The category Path[G] is characterized (up to isomorphism) by
a universal property: for any category C, Proposition 1.3.7.5 supplies a bijection

{Functors F : Path[G]→ C} ≃ HomSet∆(G•,N•(C)).

In this section, we introduce a generalization of the construction G 7→ Path[G], where we
replace directed graphs by arbitrary simplicial sets (not necessarily of dimension ≤ 1) and
categories by simplicial categories.

Definition 2.4.4.1.00L1 Let S• be a simplicial set and let C• be a simplicial category. We will
say that a morphism of simplicial sets u : S• → Nhc

• (C) exhibits C• as a path category of S•
if, for every simplicial category D•, composition with u induces a bijection

{Simplicial functors F : C• → D•} → HomSet∆(S•,Nhc
• (D)).

Notation 2.4.4.2 (The Path Category of a Simplicial Set).00L2 Let S• be a simplicial set.
It follows immediately from the definitions that if there exists a map of simplicial sets
u : S• → Nhc

• (C) which exhibits C• as the path category of S•, then the simplicial category C•
(and the morphism u) are uniquely determined up to isomorphism and depend functorially
on S•. We will emphasize this dependence by denoting C• by Path[S]• and referring to it as
the path category of the simplicial set S•.

Proposition 2.4.4.3.00L3 Let S• be a simplicial set. Then there exists a simplicial category C•
and a morphism of simplicial sets u : S• → Nhc

• (C) which exhibits C• as a path category of
S•.
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Proof. This is a special case of Proposition 1.2.3.15, since the category Cat∆ admits small
colimits (Proposition 2.4.1.13). Explicitly, the simplicial path category of a simplicial set S•
is given by the generalized geometric realization

|S•|Path[−]• = lim−→
∆n→S•

Path[n]•,

where Path[−]• denotes the cosimplicial object of Cat∆ defined in Notation 2.4.3.1.

Corollary 2.4.4.4. 00L4The homotopy coherent nerve functor Nhc
• : Cat∆ → Set∆ admits a left

adjoint
Path[−]• : Set∆ → Cat∆,

which associates to each simplicial set S• the path category Path[S]• of Notation 2.4.4.2.

Warning 2.4.4.5. 00L5We have now introduced several different notions of path category:

(a) To every directed graph G, Construction 1.3.7.1 associates an ordinary category Path[G].

(b) To every partially ordered set Q, Notation 2.4.3.1 associates a simplicial category
Path[Q]•.

(c) To every simplicial set S•, Proposition 2.4.4.3 associates a simplicial category Path[S]•.

We will show below that these constructions are closely related:

(1) If G is a directed graph and S• denotes the associated simplicial set of dimension ≤ 1
(Proposition 1.1.6.9), then the simplicial category Path[S]• of (c) is constant, associated
to the ordinary category Path[G] of (a) (Proposition 2.4.4.7).

(2) If Q is a partially ordered set, then the simplicial category Path[Q]• of (b) can be
identified with the simplicial category Path[N(Q)]• of (c), where N•(Q) denotes the
nerve of Q (Proposition 2.4.4.15).

(3) For any simplicial set S•, the simplicial category Path[S]• of (c) has an underlying
ordinary category Path[S]0, which can be described as the category Path[G] associated
by (a) to the underlying directed graph G = Gr(S•) of S• (Proposition 2.4.4.13).

Assertions (1) and (2) imply that the path category constructions of §1.3.7 and §2.4.3 can
be regarded as special cases of the construction S• 7→ Path[S]•. Assertion (3) is a partial
converse, which guarantees that the simplicial path category Path[S]• can be regarded as a
simplicially enriched version of the classical path category studied in §1.3.7.

In the special case where Q is a linearly ordered set of the form [n] = {0 < 1 < · · · < n},
assertion (2) of Warning 2.4.4.5 is immediate from the definitions:
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Example 2.4.4.6 (The Path Category of a Simplex).00L6 Let n ≥ 0 be a nonnegative integer
and let Path[n]• denote the simplicial category of Notation 2.4.3.1. For any simplicial
category C•, we have canonical bijections

HomCat∆(Path[n]•, C•) ≃ Nhc
n (C) ≃ HomSet∆(∆n,Nhc

• (C)).

It follows that Path[n]• is a path category for the standard simplex ∆n, in the sense of
Definition 2.4.4.1.

Proposition 2.4.4.7.00L7 Let G be a directed graph, let Path[G] denote the path category of
Construction 1.3.7.1, and let Path[G]• denote the associated constant simplicial category
(Example 2.4.2.4). Then the comparison map u : G• → N•(Path[G]) ≃ Nhc

• (Path[G]) exhibits
Path[G]• as a path category of the simplicial set G•.

Proof. Unwinding the definitions, we must show that for every simplicial category D•, the
composite map

HomCat∆(Path[G]•,D•) → HomCat(Path[G],D)
→ HomSet∆(G•,N•(D))
→ HomSet∆(G•,Nhc

• (D))

is a bijection. Here the first map is bijective because the simplicial category Path[G]• is
constant (Remark 2.4.2.6), the second by virtue of Proposition 1.3.7.5, and the third because
G• has dimension ≤ 1 and the comparison map N•(D) → Nhc

• (D) is an isomorphism on
simplices of dimension ≤ 1 (Example 2.4.3.9).

Warning 2.4.4.8.00L8 It follows from Proposition 2.4.4.7 that if S• is a simplicial set of
dimension ≤ 1, then the simplicial category Path[S]• is constant. Beware that this is never
true for simplicial sets of dimension > 1 (see Theorem 2.4.4.10 below).

The proof of Proposition 2.4.4.3 given above is somewhat unsatisfying: it constructs the
path category of a simplicial set S• abstractly, as the colimit of a certain diagram in Cat∆.
In general, colimits in Cat∆ (like colimits in Cat) can be difficult to describe. However,
the (simplicial) path category Path[S]• actually has a relatively simple structure. For each
nonnegative integer m, the category Path[S]m is free in the sense of Definition 1.3.7.7: that
is, it can be realized as the (ordinary) path category of a directed graph. To formulate a
more precise statement, we need a bit of (temporary) notation.

Notation 2.4.4.9.00L9 Let S• be a simplicial set. For each nonnegative integer m, we let
E(S,m) denote the collection of pairs (σ,−→I ), where σ : ∆n → S• is a nondegenerate simplex
of S• of dimension n > 0 and −→I = (I0 ⊇ I1 ⊇ · · · ⊇ Im−1 ⊇ Im) is a chain of subsets of [n]
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satisfying I0 = [n] and Im = {0, n}. Here we will view −→I as a m-simplex of the simplicial
set HomPath[n](0, n)•.

Let C• be a simplicial category and let u : S• → Nhc
• (C) be a morphism of simplicial sets.

For each element (σ,−→I ) ∈ E(S,m), the composite map

∆n σ−→ S•
u−→ Nhc

• (C)

can be identified with a simplicial functor u(σ) : Path[n]→ C. This functor carries −→I to a
morphism in the ordinary category Cm, which we will denote by u(σ,−→I ).

Theorem 2.4.4.10. 00LALet S• be a simplicial set and let u : S• → Nhc
• (Path[S]) be a morphism

of simplicial sets which exhibits Path[S]• as a path category of S•. Then:

(1) The map u induces a bijection from the set of vertices of S• to the set of objects of
Path[S]•.

(2) For each nonnegative integer m ≥ 0, the category Path[S]m is free (in the sense of
Definition 1.3.7.7).

(3) For each nonnegative integer m ≥ 0, the construction (σ,−→I ) 7→ u(σ,−→I ) of Notation
2.4.4.9 induces a bijection from E(S,m) to the set of indecomposable morphisms of
the category Path[S]m.

Remark 2.4.4.11. 00LBLet S• be a simplicial set. Then the path category Path[S]• is char-
acterized (up to isomorphism) by properties (1), (2), and (3) of Theorem 2.4.4.10. More
precisely, suppose that C• is a simplicial category and that we are given a comparison map
u′ : S• → Nhc

• (C) satisfying the following three conditions:

(1′) The map u′ induces a bijection from the set of vertices of S• to the set of objects of C•.

(2′) For each nonnegative integer m ≥ 0, the category Cm is free.

(3′) For each nonnegative integer m ≥ 0, the construction (σ,−→I ) 7→ u′(σ,−→I ) induces a
bijection from E(S,m) to the set of indecomposable morphisms of the category Cm.

Then u′ exhibits C• as a path category of S•, in the sense of Definition 2.4.4.1. To prove
this, we invoke the universal property of Path[S]• to deduce that there is a unique simplicial
functor F : Path[S]• → C• for which the composite map

S•
u−→ Nhc

• (Path[S]) Nhc
• (F )−−−−→ Nhc

• (C)

is equal to u′. Combining Theorem 2.4.4.10 with assumptions (1′), (2′), and (3′), we deduce
that for each m ≥ 0, the induced functor Path[S]m → Cm is a map between free categories
which is bijective on objects and indecomposable morphisms, and is therefore an isomorphism
of categories.
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Remark 2.4.4.12.01GD Let u : S• ↪→ S′• be a monomorphism of simplicial sets. Then, for each
m ≥ 0, u induces a monomorphism of sets E(S,m) ↪→ E(S′,m) (see Notation 2.4.4.9). It
follows from Theorem 2.4.4.10 that if x and y are vertices of S•, then the induced map of
simplicial sets HomPath[S](x, y)• → HomPath[S′](u(x), u(y))• is a monomorphism.

Before giving the proof of Theorem 2.4.4.10, let us use it to deduce assertions (2) and
(3) of Warning 2.4.4.5.

Proposition 2.4.4.13.00LC Let S• be a simplicial set and let G be its underlying directed graph
(Example 1.1.6.4), so that G• can be identified with the 1-skeleton of S•. Let u : S• →
Nhc
• (Path[S]) denote the unit map. Then:

• The restriction u|G• factors uniquely as a composition

G•
u0−→ N•(Path[S]0)→ Nhc

• (Path[S]).

• The map u0 induces an isomorphism of categories Path[G] ∼−→ Path[S]0.

Proof. The first assertion follows immediately from Example 2.4.3.9, since G• is a simplicial
set of dimension ≤ 1. To prove the second assertion, we note that Theorem 2.4.4.10
guarantees that Path[S]0 is a free category, whose objects can be identified with the vertices
of S• and whose indecomposable morphisms can be identified with elements of the set
E(S, 0) of Notation 2.4.4.9. By definition, E(S,m) consists of pairs (σ,−→I ), where σ is a
nondegenerate n-simplex of S• for n > 0 and −→I = (I0 ⊇ · · · ⊇ Im) is a chain of subsets of
[n] satisfying I0 = [n] and Im = {0, n}. In the case m = 0, the equality I0 = Im forces n = 1,
so that E(S, 0) can be identified (via the morphism u0) with the collection of nondegenerate
1-simplices of S•: that is, with the collection of edges of the graph G. The freeness of
Path[S]0 now guarantees that the induced map Path[G] ≃ Path[S]0 is an isomorphism of
categories (see Proposition 1.3.7.11).

Exercise 2.4.4.14.00LD Use Theorem 2.4.4.10 to give a different proof of Proposition 2.4.4.7
(show that if S• is a simplicial set of dimension ≤ 1, then the sets E(S,m) appearing in
Notation 2.4.4.9 do not depend on m).

Let Q be a partially ordered set. Note that every n-simplex σ ∈ N•(Q) can be
identified with a map of partially ordered sets [n] → Q, and therefore induces a sim-
plicial functor Path[n]• → Path[Q]• which we can view as an n-simplex of the homo-
topy coherent nerve Nhc

• (Path[Q]). This construction determines a map of simplicial sets
u : N•(Q)→ Nhc

• (Path[Q]).

Proposition 2.4.4.15.00LE Let Q be a partially ordered set. Then the comparison map u :
N•(Q)→ Nhc

• (Path[Q]) described above exhibits Path[Q]• as a path category for the simplicial
set N•(Q) (in the sense of Definition 2.4.4.1).
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Proposition 2.4.4.15 follows immediately from Remark 2.4.4.11 together with the follow-
ing:

Lemma 2.4.4.16. 00LFLet Q be a partially ordered set. Then the comparison map u : N•(Q)→
Nhc
• (Path[Q]) satisfies conditions (1′), (2′), and (3′) of Remark 2.4.4.11.

Proof. Assertion (1′) is immediate (the morphism u is bijective on vertices by construction).
For each m ≥ 0, the category Path[Q]m can be described concretely as follows:

• The objects of Path[Q]m are the elements of Q.

• If x and y are elements of Q, then a morphism from x to y in Path[Q]m is a chain
−→
J = (J0 ⊇ J1 ⊇ · · · ⊇ Jm)

of finite linearly ordered subsets of Q, where each Ji has least element x and greatest
element y.

Note that a morphism −→J from x to y is indecomposable (in the sense of Definition 1.3.7.8)
if and only if x < y and Jm = {x, y}. Moreover, an arbitrary morphism −→J from x to
y with Jm = {x = x0 < x1 < · · · < xk = y} decomposes uniquely as a composition of
indecomposable morphisms

x0

−−→
J(1)−−→ x1

−−→
J(2)−−→ x2 → · · ·

−−→
J(k)−−−→ xk

where J(a)b = {z ∈ Jb : xa−1 ≤ z ≤ xa}. Applying Proposition 1.3.7.11, we deduce that
the category Path[Q]m is free, which proves (2′). To prove (3′), we observe that every
indecomposable morphism −→J can be written uniquely in the form u(σ,−→I ), where (σ,−→I ) is
an element of the set E(S,m) of Notation 2.4.4.9. Writing J0 = {x = x0 < · · · < xn = y},
we see that σ must be the nondegenerate n-simplex of N•(Q) given by the map

[n]→ Q i 7→ xi,

and −→I must be the chain (σ−1(J0) ⊇ σ−1(J1) ⊇ · · · ⊇ σ−1(Jm)) of subsets of [n].

Proof of Theorem 2.4.4.10. Let m be a nonnegative integer, which we regard as fixed
throughout the proof. For each simplicial set S, let G(S) denote the directed graph
given by

Vert(G(S)) = {Vertices of S} Edge(G(S)) = E(S,m),

where we regard each element

(σ : ∆n → S•,
−→
I ∈ HomPath[n](0, n)m) ∈ Edge(G(S))

https://kerodon.net/tag/00LF
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as an edge of G(S) having source σ(0) ∈ Vert(G(S)) and target σ(n) ∈ Vert(G(S)). Let
uS : S → Nhc

• (Path[S]) exhibit the simplicial category Path•[S] as a path category of S.
Then uS induces a map of simplicial sets G(S)• → N•(Path[S]m), which we can identify
with a functor of ordinary categories FS : Path[G(S)] → Path[S]m. Let us say that the
simplicial set S is good if FS is an isomorphism of categories. Theorem 2.4.4.10 is equivalent
to the assertion that every simplicial set is good (for every choice of nonnegative integer
m). We will prove this by verifying that the collection of good simplicial sets satisfies the
hypotheses of Lemma 1.2.3.13:

• Suppose we are given a pushout diagram of simplicial sets σ :

S //

��

T

��
S′ // T ′,

where the horizontal maps are monomorphisms. Suppose that S, T , and S′ are good;
we wish to show that T ′• is good. Note that the horizonal maps induce monomorphisms
of directed graphs

G(S) ↪→ G(T ) G(S′) ↪→ G(T ′).

Define subgraphs G0(S) ⊆ G(S) and G0(T ) ⊆ G(T ) by the formulae

Vert(G0(S)) = Vert(G(S)) = S0 Vert(G0(T )) = Vert(G(T )) = T0

Edge(G0(S)) = ∅ Edge(G0(T )) = Edge(G(T )) \ Edge(G(S)).

We then have a commutative diagram of categories

Path[G0(S)] //

��

Path[G0(T )]

��
Path[G(S′)] //

FS′

��

Path[G(T ′)]

FT ′

��
Path[S′]m // Path[T ′]m.

We wish to show that the functor FT ′ is an isomorphism of categories, and the map
FS′ is an isomorphism by assumption. It will therefore suffice to show that the lower
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square in this diagram is a pushout. Note that the upper square is a pushout (since it
is obtained from a pushout diagram in the category of directed graphs by passing to
path categories). We are therefore reduced to showing that the outer rectangle is a
pushout. We can rewrite this as the outer rectangle in another commutative diagram
of categories

Path[G0(S)] //

��

Path[G0(T )]

��
Path[G(S)] //

FS

��

Path[G(T )]

FT

��
Path[S]m //

��

Path[T ]m

��
Path[S′]m // Path[T ′]m.

We now conclude by observing that the upper square in this diagram is a pushout
(because it is obtained from a pushout diagram of directed graphs by passing to
path categories), the middle square is a pushout (since FS and FT are isomorphisms),
and the lower square is a pushout (since the construction X• 7→ Path[X]m preserves
colimits).

• Suppose we are given a sequence of monomorphisms of simplicial sets

S(0) ↪→ S(1) ↪→ S(2) ↪→ · · ·

with colimit S. Then the functor FS : Path[G(S)] → Path[S]m can be written as a
filtered colimit of functors FS(i) : Path[G(S(i))]→ Path[S(i)]m. Consequently, if each
S(i) is good, then S is good.

• Let S be a simplicial set which can be written as a coproduct ∐
i∈I ∆n; we must show

that S is good. Without loss of generality, we may assume that I is a singleton, so that
S = ∆n. In this case, Example 2.4.4.6 supplies an equivalence of simplicial categories
Path[S]• ≃ Path[n]•. The desired result now follows from Lemma 2.4.4.16.
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Remark 2.4.4.17.00LG Let S• be a simplicial set. For each m ≥ 0, Theorem 2.4.4.10 guarantees
that Path[S]m can be realized as the path category of a directed graph Gm (Construction
1.3.7.1), which can be described explicitly as follows:

• The vertices of Gm are the vertices of the simplicial set S•.

• The edges of Gm are the elements of the set E(S,m) of Notation 2.4.4.9.

It follows that we can regard the construction [m] 7→ Path[Gm] as a simplicial object of Cat.
The face and degeneracy operators on this simplicial object can be described as follows:

• For 0 ≤ i ≤ m, the degeneracy operator smi : Path[Gm]→ Path[Gm+1] is induced by a
map of directed graphs from Gm to Gm+1, which is the identity on vertices and given
on edges by the construction

(σ, I0 ⊇ · · · ⊇ Im) 7→ (σ, I0 ⊇ · · · ⊇ Ii−1 ⊇ Ii ⊇ Ii ⊇ Ii+1 ⊇ · · · ⊇ Im).

• For 0 < i < m, the face operator dmi : Path[Gm]→ Path[Gm−1] is induced by a map
of directed graphs from Gm to Gm−1, which is the identity on vertices and given on
edges by the construction

(σ, I0 ⊇ · · · ⊇ Im) 7→ (σ, I0 ⊇ · · · ⊇ Ii−1 ⊇ Ii+1 ⊇ · · · ⊇ Im).

• Each of the face operators dm0 : Path[Gm] → Path[Gm−1] is induced by a morphism
directed graphs f : Gm → Gm−1 which is the identity on vertices. Let (σ,−→I ) be an
edge of Gm, given by a nondegenerate simplex σ : ∆n → S• and a chain of subsets −→I =
(I0 ⊇ · · · ⊇ Im) of [n]. Then the subset I1 ⊆ I0 = [n] is the image of a unique monotone
injection α : [n′] ↪→ [n], and the composite map ∆n′ α−→ ∆n σ−→ S• factors uniquely as a
composition ∆n′ ↠ ∆n′′ τ−→ S•, where the first map is surjective on vertices and τ is a
nondegenerate n′′-simplex of S•. For 0 ≤ i < m, let Ji ⊆ [n′′] denote the image of the
composite map Ii+1 ↪→ I1 ≃ [n′] ↠ [n′′], and set −→J = (J0 ⊇ J1 ⊇ · · · ⊇ Jm−1). In the
case n′′ = 0, the morphism f carries (σ,−→I ) to the vertex τ ∈ Vert(Gm−1). In the case
n′′ > 0 the morphism f carries (σ,−→I ) to the edge (τ,−→J ) ∈ Edge(Gm−1).

• The face operators dmm : Path[Gm]→ Path[Gm−1] are generally not induced by maps
of directed graphs Gm → Gm−1: that is, they do not carry indecomposable morphisms
of Path[Gm] to indecomposable morphisms of Path[Gm−1]. More precisely, if (σ,−→I ) is
an edge of Gn with Im−1 = {0 = i0 < i1 < · · · < ik = m}, then dm0 carries (σ,−→I ) to a
path of length k in the category Path[Gm−1].

Let us record a consequence of Remark 2.4.4.12 which will be useful later.

https://kerodon.net/tag/00LG
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Corollary 2.4.4.18. 0324Let Q be a partially ordered set, let q ∈ Q be an element, and set
Q− = {q− ∈ Q : q− ≤ q} and Q+ = {q+ ∈ Q : q ≤ q+}. Let C be the smallest simplicial
subcategory of Path[Q]• which contains Path[Q−]• and Path[Q+]•. Then the diagram

{q} //

��

Path[Q−]•

��
Path[Q+]• // C

is a pushout square of simplicial categories.

Proof. Using Proposition 2.4.4.15, we can identify the pushout Path[Q−]•
∐
{q} Path[Q+]•

with the simplicial path category of the simplicial set S = N•(Q−) ∐
{q}N•(Q+). The

tautological map S → N•(Q) is a monomorphism of simplicial sets, and therefore induces
an equivalence from Path[S]• to a simplicial subcategory C ⊆ Path[Q]• (Remark 2.4.4.12).
It is clear that this subcategory contains both Path[Q−]• and Path[Q+]•. To complete the
proof, it will suffice to show that if D is any other simplicial subcategory of Path[Q]• which
contains Path[Q−]• and Path[Q+]•, then D contains C. This is clear: the universal property
of C guarantees that there is a unique simplicial functor F : C → D which is the identity
on both Path[Q−]• and Path[Q+]•. Invoking the universal property of C again, we deduce
that the composite functor C F−→ D ↪→ Path[Q]• coincides with the inclusion map, so that
C ⊆ D.

Remark 2.4.4.19. 0325In the situation of Corollary 2.4.4.18, the simplicial subcategory C ⊆
Path[Q]• can be described more concretely:

• The objects of C are elements of the subset Q− ∪Q+ ⊆ Q.

• Let a and b be objects of C, and write HomPath[Q](a, b)• = N•(Pa,b), where Pa,b is the
collection finite linearly ordered J ⊆ Q having smallest element a and largest element
b, ordered by reverse inclusion. Then HomC(a, b)• can be identified with the nerve of
the partially ordered subset P ′a,b ⊆ Pa,b given by

P ′a,b =

{J ∈ Pa,b : q ∈ J} if a ≤ q ≤ b
Pa,b otherwise.

Stated more informally, C is a simplicial subcategory of Path[Q]• whose morphisms are
paths which, when possible, contain the element q.
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Corollary 2.4.4.20.0326 Let Q be a partially ordered set, let q ∈ Q be an element, and suppose
that Q = Q−∪Q+ for Q− = {q− ∈ Q : q− ≤ q} and Q+ = {q+ ∈ Q : q ≤ q+} (this condition
is automatically satisfied, for example, if Q is linearly ordered). Then the simplicial functor

Path[Q−]•
∐
{q}

Path[Q+]• → Path[Q]•

has a unique left inverse R : Path[Q]• → Path[Q−]•
∐
{q} Path[Q+]•.

Proof. By virtue of Corollary 2.4.4.18, we can identify the pushout Path[Q−]•
∐
{q} Path[Q+]•

with a simplicial subcategory C ⊆ Path[Q]•; we wish to show that there is a unique simplicial
functor R : Path[Q]• → C satisfying R|C = idC. Our assumption that Q = Q− ∪ Q+
guarantees that C contains every object of Path[Q]•. To prove existence, we take the
simplicial functor R to be the identity on objects and given on morphisms by the maps

HomPath[Q](a, b)• = N•(Pa,b)→ N•(P ′a,b) = HomC(a, b)•

(J ∈ Pa,b) 7→

J ∪ {q} if a ≤ q ≤ b
J otherwise,

where Pa,b and the subset P ′a,b ⊆ Pa,b are defined as in Remark 2.4.4.19.
To prove uniqueness, let R′ : Path[Q]• → C be another simplicial functor satisfying

R′|C = idC; we wish to show that R′ = R. It is clear that R and R′ agree at the level of
objects. For every pair of elements a, b ∈ Q, the simplicial functors R and R′ induce maps
θ, θ′ : HomPath[Q](a, b)• → HomC(a, b)•; we wish to show that θ = θ′. Since HomC(a, b)• can
be identified with the nerve of the partially ordered set P ′a,b, it will suffice to show that θ
and θ′ agree on vertices. For every finite linearly ordered subset J ⊆ Q having least element
a and greatest element b, let fJ : a → b denote the corresponding morphism in the path
category Path[Q]; we wish to show that θ(fJ) = θ′(fJ). Without loss of generality, we may
assume that the morphism fJ is indecomposable: that is, that we have a ̸= b and that
J = {a < b}. We may further assume that a < q < b (otherwise, fJ is a morphism in the
category C and we have θ(fJ) = fJ = θ′(fJ)). Set J+ = {a < q < b}, so that θ(fJ) = fJ+ .
Write θ′(fJ) = fK where K ⊆ Q is a finite linearly ordered subset having least element a
and greatest element b. Since fJ+ is a morphism of C, we have θ′(fJ+) = fJ+ . The inclusion
J ⊆ J+ then implies that K ⊆ J+. On the other hand, fK is also a morphism of C, so we
must have q ∈ K. It follows that K = J+, so that θ(fJ) = fJ+ = fK = θ′(fJ) as desired.

2.4.5 From Simplicial Categories to ∞-Categories

00LH Our goal in this section is to prove the following result (see [12]):

Theorem 2.4.5.1 (Cordier-Porter).00LJ Let C• be a simplicial category. If C• is locally Kan,
then the homotopy coherent nerve Nhc

• (C) is an ∞-category.
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The proof of Theorem 2.4.5.1 will require some preliminaries. We begin by analyzing
the relationship of the simplicial path category Path[∆n]• ≃ Path[n]• with the subcategory
Path[Λni ]•, where Λni ⊆ ∆n is an inner horn.

Notation 2.4.5.2 (Cubes as Simplicial Sets). 00LKLet I be a set. We let I denote the simplicial
set given by the product ∏

i∈I ∆1. We will refer to I as the I-cube. Equivalently, we can
describe I as the nerve of the power set P (I) = {I0 ⊆ I}, where we regard P (I) as partially
ordered with respect to inclusion.

In the special case where I is the set {1, 2, . . . , n} for some nonnegative integer n, we
will denote the simplicial set I by n and refer to it as the standard n-cube.

Remark 2.4.5.3. 00LLLet I be a finite set and let I be the I-cube of Notation 2.4.5.2. Then
the geometric realization | I | can be identified with the topological space ∏

i∈I [0, 1]. In
particular, the geometric realization | n | is homeomorphic to the standard cube

{(t1, t2, . . . , tn) ∈ Rn : 0 ≤ ti ≤ 1}.

This is a tautology in the case n = 1, and follows in general from the compatibility of
geometric realizations with products of finite simplicial sets (see Corollary 3.6.2.2).

Remark 2.4.5.4. 00LMLet n ≥ 0 be a nonnegative integer. For every pair of integers 0 ≤ i < j ≤
n, we can identify morphisms from i to j in the path category Path[n] with subsets S ⊆ [n]
having least element i and largest element j. The construction S 7→ ({i, i+1, . . . , j−1, j}\S)
then induces a bijection HomPath[n](i, j) ≃ P ({i+ 1, i+ 2, . . . , j − 2, j − 1}), which extends
to uniquely to an isomorphism of simplicial sets

HomPath[n](i, j)• ≃ N•(P ({i+ 1, i+ 2, . . . , j − 2, j − 1}))
≃ {i+1,i+2,...,j−2,j−1}

≃ j−i−1 .

In particular, we have a canonical isomorphism of simplicial sets HomPath[n](0, n)• ≃ n−1.
Under these isomorphisms, the composition law on Path[n]• is given for i < j < k by

the construction

HomPath[n](j, k)• ×HomPath[n](i, j)• ≃ {j+1,...,k−1}× {i+1,...,j−1}

≃ {j+1,...,k−1}×{0} × {i+1,...,j−1}

↪→ {j+1,...,k−1}×∆1 × {i+1,...,j−1}

≃ {i+1,...,k−1}

≃ HomPath[n](i, k)•.
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Notation 2.4.5.5 (Subsets of the I-Cube).00LN Let I be a finite set and let I denote the
I-cube of Notation 2.4.5.2. For each element i ∈ I, we can identify I with the product
∆1 × I\{i}. Using this identification, we obtain simplicial subsets

{0} × I\{i} ⊆ I ⊇ {1} × I\{i}

which we will refer to as faces of I . The (disjoint) union of these two faces is another
simplicial subset of I , which we can identify with the product ∂∆1 × I\{i}.

We let ∂ I denote the simplicial subset of I given by the union⋃
i∈I

(∂∆1 × I\{i})

of all its faces. We will refer to ∂ I as the boundary of the I-cube I .
For i ∈ I, we let ⊓I

i ⊆ I denote the simplicial subset of I given by the union of the
face ({0} × I\{i}) with ⋃

j∈I\{i}(∂∆1 × I\{j}). Similarly, we let ⊔I
i denote the simplicial

subset of I given by the union of the face ({1} × I\{i}) with ⋃
j∈I\{i}(∂∆1 × I\{j}). We

will refer to the simplicial subsets ⊓I
i ,⊔I

i ⊆ I as hollow I-cubes.
In the special case where I = {1, . . . , n} for some nonnegative integer n, we will denote

the simplicial sets ∂ I , ⊓I
i , and ⊔I

i by ∂ n, ⊓n
i , and ⊔n

i , respectively.

Remark 2.4.5.6.00LP Roughly speaking, one can think of the simplicial set ∂ n as obtained
from the n-cube n by removing its interior, while the subsets ⊓n

i ,⊔n
i are obtained from

n by removing the interior together with a single face.

Example 2.4.5.7.00LQ The standard 2-cube 2 ≃ ∆1 ×∆1 is depicted in the diagram

• //

��   

•

��
• // •.

It is a simplicial set of dimension 2, having exactly two nondegenerate 2-simplices (repre-
sented by the triangular regions in the preceding diagram) and five nondegenerate edges.
The boundary ∂ 2 is a 1-dimensional simplicial subset of 2, obtained by removing the
nondegenerate 2-simplices along with the “internal” edge to obtain the directed graph
depicted in the diagram

• //

��

•

��
• // •.
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Each of the hollow 2-cubes ⊓2
1,⊓2

2,⊔2
1,⊔2

2 can be obtained from ∂ 2 by further deletion of
a single edge, represented in the diagrams

• //

��

⊓2
1

• • //

��

⊓2
2

•

��
• // • • •

• //

⊔2
1

•

��

•

��

⊔2
2

•

��
• // • • // •.

Proposition 2.4.5.8. 00LRLet 0 < i < n be positive integers and let F : Path[Λni ]• → Path[∆n]•
be the simplicial functor induced by the horn inclusion Λni ↪→ ∆n. Then:

(a) The functor F is bijective on objects; in particular, we can identify the objects of
Path[Λni ]• with elements of the set [n] = {0 < 1 < · · · < n}.

(b) For (j, k) ̸= (0, n), the functor F induces an isomorphism of simplicial sets

HomPath[Λn
i ](j, k)• ≃ HomPath[∆n](j, k)•.

(c) The functor F induces a monomorphism of simplicial sets

HomPath[Λn
i ](0, n)• ↪→ HomPath[∆n](0, n)•,

whose image can be identified with the hollow cube

⊓n−1
i ⊆ n−1 ≃ HomPath[∆n](0, n)•

introduced in Notation 2.4.5.5.

Proof. Assertion (a) is immediate from Theorem 2.4.4.10. To prove (b) and (c), fix an
integer m ≥ 0. Using Lemma 2.4.4.16, we see that Path[∆n]m can be identified with the
path category Path[G] of a directed graph G which can be described concretely as follows:

• The vertices of G are the elements of the set [n] = {0 < 1 < · · · < n}.

https://kerodon.net/tag/00LR
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• For 0 ≤ j < k ≤ n, an edge of G with source j and target k is a chain of subsets

{j, j + 1, . . . , k − 1, k} ⊇ I0 ⊇ · · · ⊇ Im = {j, k}

Using Theorem 2.4.4.10, we see that Path[Λni ]m can be identified with the path category of
the directed subgraph G′ ⊆ G having the same vertices, where an edge −→I = (I0 ⊇ · · · ⊇ Im)
of G belongs to G′ if and only if the subset I0 ⊆ [n] corresponds to a simplex of ∆n which
belongs to the horn Λni : that is, if and only if [n] \ {i} ⊈ I0. In particular, we see that for
(j, k) ̸= (0, n), every edge of G with source j and target k is contained in G′. It follows that the
simplicial functor F induces a bijection HomPath[Λn

i ](j, k)m → HomPath[∆n](j, k)m for (j, k) ̸=
(0, n), which proves (b). Moreover, the map HomPath[Λn

i ](0, n)m → HomPath[∆n](0, n)m is a
monomorphism, whose image consists of those chains

−→
I = (I0 ⊇ I1 ⊇ · · · ⊇ Im)

where either Im ̸= {0, n} or ([n] \ {i}) ⊈ I0. Under the identification of HomPath[∆n](0, n)•
with the cube n−1 ≃ N•(P ({1, . . . , n− 1})) described in Remark 2.4.5.4, this corresponds
to collection of m-simplices of n−1 given by chains of subsets

J0 ⊆ J1 ⊆ · · · ⊆ Jm ⊆ {1, . . . , n− 1}

where either J0 ⊈ {i} or Jm ⊊ {1, . . . , n− 1}, which is exactly the set of m-simplices which
belong to the hollow cube ⊓n−1

i .

To apply Proposition 2.4.5.8, we record the following elementary observation about
simplicial categories:
Proposition 2.4.5.9.00LS Let E• be a simplicial category containing a pair of objects x, y ∈
Ob(E•). Assume that, for each object z ∈ Ob(E•), we have

HomE(z, x)• =

{idx} if z = x

∅ otherwise.
HomE(y, z)• =

{idy} if z = y

∅ otherwise.

Let D• ⊆ E• denote a simplicial subcategory having the same objects, which satisfies

HomD(a, b)• = HomE(a, b)•
unless (a, b) = (x, y). Let F : D• → C• be a functor of simplicial categories carrying x to an
object X = F (x) and y to an object Y ∈ F (y), so that F induces a map of simplicial sets
Fx,y : HomD(x, y)• → HomC(X,Y )•. Then the construction F 7→ F x,y induces a bijection

{Simplicial functors F : E• → C• extending F}

∼

��
{Maps λ : HomE(x, y)• → HomC(X,Y )• extending Fx,y}.

https://kerodon.net/tag/00LS
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Proof. Fix a map of simplicial sets λ : HomE(x, y)• → HomC(X,Y )• which extends Fx,y.
We wish to show that there is a unique simplicial functor F : E• → C• such that F = F |D•
and F x,y = λ. The uniqueness is clear: the simplicial functor F must coincide with F on
objects and satisfy F x′,y′ = Fx′,y′ for (x′, y′) ̸= (x, y). To prove existence, one must show
that this prescription defines a simplicial functor: that is, that for every triple of objects
a, b, c ∈ Ob(E•), the resulting diagram of simplicial sets

HomE(b, c)• ×HomE(a, b)• //

Fa,b⊗F b,c

��

HomE(a, c)•

Fa,c

��
HomC(F (b), F (c))• ×HomC(F (a), F (b))• // HomC(F (a), F (c))•

is commutative. We consider several cases:

• Suppose that (a, b) = (x, y). If c ̸= y, then the simplicial set HomE(b, c)• is empty and
the commutativity of the diagram is automatic. If c = y, then both compositions can
be identified with the map

{idy} ×HomE(x, y)• ≃ HomE(x, y)• λ−→ HomC(X,Y )•.

• Suppose that (b, c) = (x, y). If a ̸= x, then the simplicial set HomE(a, b)• is empty and
the commutativity of the diagram is automatic. If a = x, then both compositions can
be identified with the map

HomE(x, y)• × {idx} ≃ HomE(x, y)• λ−→ HomC(X,Y )•.

• If neither (a, b) = (x, y) or (b, c) = (x, y), then the desired result follows from the
commutativity of the diagram

HomD(b, c)• ×HomD(a, b)• //

Fa,b⊗Fb,c

��

HomD(a, c)•

Fa,c

��
HomC(F (b), F (c))• ×HomC(F (a), F (b))• // HomC(F (a), F (c))•

(since F is assumed to be a simplicial functor).
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It follows from Proposition 2.4.5.8 that for 0 < i < n, the hypotheses of Proposition
2.4.5.9 are satisfied by the inclusion D• = Path[Λn

i ]• ↪→ Path[∆n]• = E• and the objects
x = 0 and y = n. We therefore obtain the following:

Corollary 2.4.5.10.00LT Let C• be a simplicial category, let 0 < i < n, and let σ0 : Λni → Nhc
• (C)

be a map of simplicial sets, which we can identify with a simplicial functor F : Path[Λni ]• → C•
inducing a map of simplicial sets

λ0 : ⊓n−1
i ≃ HomPath[Λn

i ](0, n)• → HomC(F (0), F (n))•.

Then we have a canonical bijection

{Maps σ : ∆n → Nhc
• (C) with σ0 = σ|Λn

i
}

��
{Maps λ : n−1 → HomC(F (0), F (n))• with λ0 = λ|⊓n−1

i
}.

To deduce Theorem 2.4.5.1 from Corollary 2.4.5.10, we will need the following standard
characterization of Kan complexes (for a proof, see Proposition 4.4.2.1):

Theorem 2.4.5.11 (Homotopy Extension Lifting Property).00LU Let X• be a simplicial set.
The following conditions are equivalent:

(1) The simplicial set X• is a Kan complex.

(2) The inclusion of simplicial sets {0} ↪→ ∆1 induces a trivial Kan fibration Fun(∆1, X•)→
Fun({0}, X•) ≃ X•.

(3) The inclusion of simplicial sets {1} ↪→ ∆1 induces a trivial Kan fibration Fun(∆1, X•)→
Fun({1}, X•) ≃ X•.

Corollary 2.4.5.12.00LV Let X• be a Kan complex and let I be a finite set containing a
distinguished element i. Then:

(a) Every map of simplicial sets f : ⊔I
i → X• can be extended to a map f : I → X•.

(b) Every map of simplicial sets g : ⊓I
i → X• can be extended to a map g : I → X•.

Proof. Unwinding the definitions, we see that ⊔I
i can be identified with the pushout

({1} × I\{i})
∐

{1}×∂ I\{i}

(∆1 × ∂ I\{i}).
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Consequently, a map of simplicial sets f : ⊔I
i → X• can be identified with a commutative

diagram of solid arrows
∂ I\{i} //

��

Fun(∆1, X•)

��
I\{i} //

99

Fun({1}, X•),

and an extension f : I → X• of f can be identified with a solution to the associated lifting
problem. If X• is a Kan complex, then the right vertical arrow is a trivial Kan fibration
(Theorem 2.4.5.11), so the desired extension exists by virtue of Proposition 1.5.5.4. This
proves (a); the proof of (b) is similar.

Proof of Theorem 2.4.5.1. Let C• be a locally Kan simplicial category; we wish to show that
the homotopy coherent nerve Nhc

• (C) is an ∞-category. Fix positive integers 0 < i < n; we
wish to show that every map of simplicial sets σ0 : Λn

i → Nhc
• (C) can be extended to an

n-simplex σ : ∆n → Nhc
• (C). Let us identify σ0 with a simplicial functor F : Path[Λni ]• → C•

inducing a map of simplicial sets λ0 : ⊓n−1
i → HomC(F (0), F (n))•. By virtue of Corollary

2.4.5.10, it will suffice to show that λ0 can be extended to a map of simplicial sets λ :
n−1 → HomC(F (0), F (n))•. The existence of this extension follows from Corollary 2.4.5.12,

by virtue of our assumption that HomC(F (0), F (n))• is a Kan complex.

2.4.6 The Homotopy Category of a Simplicial Category

00LWFor every simplicial set S•, we let π0(S•) denote the set of connected components of
S• (Definition 1.2.1.8). Recall that the functor π0 : Set∆ → Set preserves finite products
(Corollary 1.2.1.27). Applying Remark 2.1.7.4, we obtain the following:

Construction 2.4.6.1 (The Homotopy Category of a Simplicial Category). 00LXLet C• be a
simplicial category. We define an ordinary category hC as follows:

• The objects of hC are the objects of the simplicial category C•.

• For every pair of objects X,Y ∈ Ob(hC) = Ob(C), we have

HomhC(X,Y ) = π0(HomC(X,Y )•).

• For every triple of objects X,Y, Z ∈ Ob(hC) = Ob(C), the composition map

◦ : HomhC(Y, Z)×HomhC(X,Y )→ HomhC(X,Z)

https://kerodon.net/tag/00LW
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is given by the composition

HomhC(Y, Z)×HomhC(X,Y ) = π0(HomC(Y,Z)•)× π0(HomC(X,Y )•)
∼←− π0(HomC(Y,Z)• ×HomC(X,Y )•)
→ π0(HomC(X,Z)•)
= HomhC(X,Z).

We will refer to hC as the homotopy category of C.

Remark 2.4.6.2 (The Component Functor).00LY Let C• be a simplicial category and let hC be
its homotopy category (Construction 2.4.6.1). For every pair of objects X,Y ∈ Ob(C•) =
Ob(hC), Construction 1.2.1.18 supplies a map of simplicial sets

uX,Y : HomC(X,Y )• → HomhC(X,Y )•.

Here HomhC(X,Y )• denotes the constant simplicial set associated to the set HomhC(X,Y ),
and uX,Y carries each n-simplex of HomC(X,Y )• to the connected component which contains
it. Allowing X and Y to vary, we obtain a simplicial functor u : C• → hC• which is the
identity on objects; we will refer to u as the component functor.

Remark 2.4.6.3.00LZ Let C• be a simplicial category with underlying category C = C0. Then
the simplicial functor u : C• → hC• induces a functor of ordinary categories u0 : C → hC,
which can be described as follows:

• On objects, the functor u0 is the identity map from Ob(C) = Ob(hC) to itself.

• For every pair of objects X,Y ∈ Ob(C) = Ob(hC), the induced map HomC(X,Y )→
HomhC(X,Y ) is a surjection, which we will denote by f 7→ [f ].

• Given a pair of morphisms f, g;X → Y in C having the same source and target, we
have [f ] = [g] if and only if f and g belong to the same connected component of the
simplicial set HomC(X,Y )•.

Remark 2.4.6.4.00M0 Let C• be a simplicial category with underlying category C = C0, and let
f, g : X → Y be a pair of morphisms of C having the same source and target. Using Remark
1.2.1.23, we see that the following conditions are equivalent:

(a) The morphisms f and g represent the same morphism in the homotopy category hC:
that is, we have [f ] = [g].

(b) There exists a sequence of morphisms f = f0, f1, f2, . . . , fn = g ∈ HomC(X,Y ) such
that, for 1 ≤ i ≤ n, either there exists a homotopy from fi−1 to fi or a homotopy from
fi to fi−1 (in the sense of Definition 2.4.1.6).
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If C• is locally Kan, then we can replace (b) by the following simpler condition:

(c) There exists a homotopy from f to g (in the sense of Definition 2.4.1.6).

See Remark 2.4.1.9.

Example 2.4.6.5. 02BHLet C be a strict 2-category (Definition 2.2.0.1) and let C• denote the
associated simplicial category (Example 2.4.2.8). Then the homotopy category hC• of the
simplicial category C• (in the sense of Construction 2.4.6.1) can be identified with the coarse
homotopy category hC of C (in the sense of Construction 2.2.8.2).

Example 2.4.6.6 (The Homotopy Category of Top). 00M1Let Top denote the category of
topological spaces and continuous functions, endowed with the simplicial enrichment Top•
described in Example 2.4.1.5. Then the homotopy category hTop is the homotopy category
of all topological spaces: the objects of hTop are topological spaces, and the morphisms of
hTop are homotopy classes of continuous maps.

The homotopy category of a simplicial category can be characterized by a universal
mapping property:

Proposition 2.4.6.7. 00M2Let C• be a simplicial category and let u : C• → hC• be the simplicial
functor described in Remark 2.4.6.2. Then, for any category D, composition with u induces
a bijection

{Ordinary Functors f : hC → D} → {Simplicial Functors F : C• → D•}.

Proof. Use Proposition 1.2.1.19.

Corollary 2.4.6.8. 00M3The fully faithful embedding

Cat ↪→ Cat∆ D 7→ D•

of Example 2.4.2.4 admits a left adjoint, given on objects by the formation of homotopy
categories C• 7→ hC.

We have now introduced two different notions of homotopy category:

• The homotopy category hC of a simplicial category C•, given by Construction 2.4.6.1.

• The homotopy category hS• of a simplicial set S•, defined in Definition 1.3.6.1 (and
described more explicitly in §1.4.5 when S• is an ∞-category).

These constructions are related. Let C• be a simplicial category. Applying the homotopy
coherent nerve to the component functor u of Remark 2.4.6.2, we obtain a map of simplicial
sets

Nhc
• (C) Nhc

• (u)−−−−→ Nhc
• (hC) ≃ N•(hC),

which we can identify with a functor of ordinary categories U : hNhc
• (C)→ hC.
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Proposition 2.4.6.9.00M4 Let C• be a locally Kan simplicial category. Then the construction
above induces an isomorphism of categories U : hNhc

• (C) ∼−→ hC.

To prove Proposition 2.4.6.9, we need to analyze the 2-simplices of the homotopy coherent
nerve Nhc

• (C). Recall that the vertices and edges of Nhc
• (C) can be identified with objects

and morphisms in the underlying category C = C0 (Example 2.4.3.9). In particular, a map
of simplicial sets σ0 : ∂∆2 → Nhc

• (C) can be identified with a (possibly noncommutative)
diagram

X1

f21

  
X0

f10

>>

f20
// X2

in the category C. We will need the following:

Proposition 2.4.6.10.00M5 Let C• be a simplicial category and let σ0 : ∂∆2 → Nhc
• (C) be a map

of simplicial sets, which we identify with a diagram

X1

f21

  
X0

f10

>>

f20
// X2

as above. Then the construction of Example 2.4.3.10 induces a bijection

{Maps σ : ∆2 → Nhc
• (C) with σ|∂∆2 = σ0}

∼

��
{Homotopies from f21 ◦ f10 to f20}.

It is not difficult to deduce Proposition 2.4.6.10 directly from the definition of the
homotopy coherent nerve. We will instead deduce it from a more general result (Corollary
2.4.6.13), which supplies an analogous description of the n-simplices of Nhc

• (C) for all n > 0.
First, let us note some consequences of Proposition 2.4.6.10.

Example 2.4.6.11.00M6 Let C• be a locally Kan simplicial category, so that the homotopy
coherent nerve Nhc

• (C) is an ∞-category (Theorem 2.4.5.1). Suppose we are given a pair of
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morphisms f, g : X → Y in the underlying category C = C0 having the same source and
target. Let σ0 : ∂∆2 → Nhc

• (C) be the map corresponding to the (possibly noncommutative)
diagram

Y

idY

��
X

f

??

g // Y.

Applying Proposition 2.4.6.10 we obtain a bijection from the set of homotopies from f to g
in the ∞-category Nhc

• (C) (in the sense of Definition 1.4.3.1) to the set of homotopies from
f to g in the simplicial category C• (in the sense of Definition 2.4.1.6). In particular, we see
that f and g are homotopic in Nhc

• (C) if and only if they are homotopic in C•.

Proof of Proposition 2.4.6.9. Let C• be a locally Kan simplicial category; we wish to show
that the comparison map U : hNhc

• (C) ∼−→ hC is an isomorphism of categories. By construction,
U is bijective on objects. It will therefore suffice to show that for every pair of objects
X,Y ∈ Ob(C), the induced map

UX,Y : HomhNhc
• (C)(X,Y )→ HomhC(X,Y )

is a bijection. This is precisely the content of Example 2.4.6.11.

We will deduce Proposition 2.4.6.10 from the following variant of Proposition 2.4.5.8:

Proposition 2.4.6.12. 00M7Let n be a positive integer and let F : Path[∂∆n]• → Path[∆n]• be
the simplicial functor induced by the boundary inclusion ∂∆n ↪→ ∆n. Then:

(a) The functor F is bijective on objects; in particular, we can identify objects of Path[∂∆n]•
with elements of the set [n] = {0 < 1 < · · · < n}.

(b) For (j, k) ̸= (0, n), the functor F induces an isomorphism of simplicial sets

HomPath[∂∆n](j, k)• ≃ HomPath[∆n](j, k)•.

(c) The functor F induces a monomorphism of simplicial sets HomPath[∂∆n](0, n)• ↪→
HomPath[∆n](0, n)•, whose image can be identified with the boundary ∂ n−1 ⊆ n−1 ≃
HomPath[∆n](0, n)• introduced in Notation 2.4.5.5.

Proof. Assertion (a) is immediate from Theorem 2.4.4.10. To prove (b) and (c), fix an
integer m ≥ 0 and let us identify Path[∆n]m with the path category Path[G] of the directed
graph G appearing in the proof of Proposition 2.4.5.8. Using Theorem 2.4.4.10, we see
that Path[∂∆n]m can be identified with the path category of the directed subgraph G′ ⊆ G
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having the same vertices, where an edge −→I = (I0 ⊇ · · · ⊇ Im) of G belongs to G′ unless
I0 = [n]. In particular, we see that for (j, k) ̸= (0, n), every edge of G with source j and
target k is contained in G′. It follows that the simplicial functor F induces a bijection

HomPath[∂∆n](j, k)m → HomPath[∆n](j, k)m

for (j, k) ̸= (0, n), which proves (b). Moreover, the map

HomPath[∂∆n](0, n)m → HomPath[∆n](0, n)m

is a monomorphism, whose image consists of those chains
−→
I = (I0 ⊇ I1 ⊇ · · · ⊇ Im)

where either I0 ≠ [n] or Im ̸= {0, n}. Under the identification of HomPath[∆n](0, n)• with
the cube n−1 ≃ N•(P ({1, . . . , n− 1})) described in Remark 2.4.5.4, this is exactly the set
of m-simplices which belong to the boundary ∂ n−1 ⊆ n−1.

Combining Propositions 2.4.6.12 and 2.4.5.9, we obtain the following:

Corollary 2.4.6.13.00M8 Let C• be a simplicial category, let n > 0, and let σ0 : ∂∆n → Nhc
• (C)

be a map of simplicial sets, which we identify with a simplicial functor F : Path[∂∆n]• → C•
inducing a map of simplicial sets

λ0 : ∂ n−1 ≃ HomPath[∂∆n](0, n)• → HomC(F (0), F (n))•.

Then we have a canonical bijection

{Maps σ : ∆n → Nhc
• (C) with σ0 = σ|∂∆n}

��
{Maps λ : n−1 → HomC(F (0), F (n))• with λ0 = λ|

∂
n−1 }

.

Example 2.4.6.14 (1-Simplices of the Homotopy Coherent Nerve).00M9 Let C• be a simplicial
category. By definition, giving a map of simplicial sets σ0 : ∂∆1 → Nhc

• (C) is equivalent
to giving a pair of objects X0 = σ0(0) and X1 = σ0(1) of the underlying category C = C0.
Applying Corollary 2.4.6.13, we deduce that extending σ0 to a 1-simplex of Nhc

• (C) is
equivalent to supplying a morphism f : X0 → X1 in the category C (see Example 2.4.3.9).

Proof of Proposition 2.4.6.10. Apply Corollary 2.4.6.13 in the case n = 2.

https://kerodon.net/tag/00M8
https://kerodon.net/tag/00M9


290 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

Example 2.4.6.15 (3-Simplices of the Homotopy Coherent Nerve). 00MALet C• be a simplicial
category. Using Proposition 2.4.6.10, we see that a map of simplicial sets σ0 : ∂∆3 → Nhc

• (C)
can be identified with the following data:

• A collection of four objects {Xi ∈ C}0≤i≤3.

• A collection of six morphisms {fji ∈ HomC(Xi, Xj)}0≤i<j≤3.

• A collection of four 1-simplices {hkji ∈ HomC(Xi, Xk)1}0≤i<j<k≤3, where each hkji is
a homotopy from fkj ◦ fji to fki.

From this data, we can assemble a map of simplicial sets λ0 : ∂ 2 → HomC(X0, X3)•, which
is represented by the diagram

f32 ◦ f21 ◦ f10
h321◦idf10 //

idf32 ◦h210

��

f31 ◦ f10

h310

��
f32 ◦ f20

h320 // f30.

Corollary 2.4.6.13 then asserts that extending σ0 to a 3-simplex of the homotopy coher-
ent nerve Nhc

• (C) is equivalent to extending λ0 to a map of simplicial sets λ : 2 →
HomC(X0, X3)•. Stated more informally, the map σ0 supplies two potentially different paths
from the composition f32 ◦ f21 ◦ f10 to f30 in the simplicial set HomC(X0, X3)•. To extend
σ0 to a 3-simplex of Nhc

• (C), one must supply additional data which “witnesses” that these
paths are homotopic.

We close this section with a refinement of Construction 2.4.6.1:

Construction 2.4.6.16 (The Homotopy 2-Category of a Simplicial Category). 02BJLet C• be a
simplicial category. We define a strict 2-category h2C as follows:

• The objects of h2C are the objects of the simplicial category C•.

• For every pair of objects X,Y ∈ Ob(h2C) = Ob(C), the category Homh2C(X,Y ) is the
homotopy category of the simplicial set HomC(X,Y )•.

• For every triple of objects X,Y, Z ∈ Ob(h2C) = Ob(C), the composition map

◦ : Homh2C(Y,Z)×Homh2C(X,Y )→ Homh2C(X,Z)
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is given by the composition

Homh2C(Y,Z)×Homh2C(X,Y ) = (hHomC(Y,Z)•)× (hHomC(X,Y )•)
∼←− h(HomC(Y ,Z )• ×HomC(X ,Y )•)
→ hHomC(X ,Z )•
= Homh2C(X,Z),

where the isomorphism is supplied by Corollary 1.5.3.6.

We will refer to h2C as the homotopy 2-category of C.

Remark 2.4.6.17.02BK Let C• be a simplicial category and let h2C denote the homotopy 2-
category of C. Then the underlying category C0 of C• (in the sense of Example 2.4.1.4)
coincides with the underlying category of the strict 2-category h2C (in the sense of Remark
2.2.0.3).

Remark 2.4.6.18.02BL Let C• be a simplicial category. Then the homotopy category of C•
can be identified with the coarse homotopy category of the homotopy 2-category h2C of
Construction 2.4.6.16, in the sense of Construction 2.2.8.2. That is, we have a canonical
isomorphism hC ≃ h(h2C).

Remark 2.4.6.19.02BM Let C• be a simplicial category, let h2C be the homotopy 2-category of C,
and let (h2C)• denote the simplicial category obtained from h2C by applying the construction
of Example 2.4.2.8. Then there is a simplicial functor U : C• → (h2C)•, given on objects by
the identity map and on morphism spaces by the tautological maps

HomC(X,Y )• → N•(hHomC(X ,Y )•).

Passing to the homotopy coherent nerve (and invoking Example 2.4.3.11), we obtain a map
of simplicial sets V : Nhc

• (C)→ ND
• (h2C), which restricts to the identity on the nerve N•(C)

(which we can regard as a simplicial subset of both Nhc
• (C) and ND

• (h2C)).

Remark 2.4.6.20.02BN Let C• be a simplicial category. The comparison map V : Nhc
• (C) →

ND
• (h2C) of Remark 2.4.6.19 is always bijective at the level of vertices (which can be identified

with the objects of the category C0 underlying C•) and edges (which can be identified with
morphisms of C0). Suppose that, for every pair of objects C,D ∈ C0, the simplicial set
HomC(C,D)• is an∞-category. In this case, the map V is also surjective (but not necessarily
injective) at the level of 2-simplices. By virtue of Example 2.3.1.15, we can identify 2-simplices
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σ of ND
• (h2C) with diagrams

Y

g

��

[µ]
��

X

f

??

h
// Z,

where f : X → Y , g : Y → Z, and h : X → Z are morphisms in C0, and [µ] : g ◦ f → h is a
morphism in the homotopy category of the∞-category HomC(X,Z)•. To lift σ to a 2-simplex
σ of the homotopy coherent nerve Nhc

• (C), one must choose a morphism µ : g ◦ f → h in the
∞-category HomC(X,Z)• which represents the homotopy class [µ] (see Example 2.4.3.10).
Such a representative always exists, but is not necessarily unique.

Using the universal property of the homotopy category, we immediately obtain the
following variant of Proposition 2.4.6.7:

Proposition 2.4.6.21. 02BPLet C• be a simplicial category and let U : C• → (h2C)• be the sim-
plicial functor described in Remark 2.4.6.19. Then, for any strict 2-category D, composition
with U induces a bijection

{Strict functors f : h2C → D} → {Simplicial Functors F : C• → D•};

here D• denote the simplicial category associated to D by Example 2.4.2.8.

2.4.7 Example: Braid Monoids

00MZIn general, the path category Path[S]• associated to a simplicial set S• is a fairly
complicated object. In this section, we describe one situation in which it admits a particularly
concrete description, which arises in the theory of Coxeter groups. Let us begin by reviewing
some terminology.

Definition 2.4.7.1. 00N0A Coxeter system is a pair (W,S), where W is a group and S ⊆W is
a subset with the following properties:

• Each element of S has order 2.

• For each s, t ∈ S, let ms,t ∈ Z>0 ∪{∞} denote the order of the product st in the group
W . Then the inclusion S ↪→W exhibits W as the quotient of the free group generated
by S by the relations (st)ms,t = 1 (indexed by those pairs (s, t) with ms,t <∞).

https://kerodon.net/tag/02BP
https://kerodon.net/tag/00MZ
https://kerodon.net/tag/00N0


2.4. SIMPLICIAL CATEGORIES 293

Remark 2.4.7.2.00N1 We will use the term Coxeter group to refer to a group W together with
a choice of subset S ⊆W for which the pair (W,S) is a Coxeter system. Beware that the
subset S is not determined by the structure of W as an abstract group: for example, if (W,S)
is a Coxeter system, then so is (W,wSw−1) for each w ∈ W . In other words, a Coxeter
group is not merely a group, but a group equipped with some additional structure (namely,
the structure of a Coxeter system (W,S)).

Notation 2.4.7.3 (Lengths).00N2 Let (W,S) be a Coxeter system. Then the group W is
generated by S: that is, every element of W can be written as a product of elements of S.
For each w ∈W , we let ℓ(w) denote the smallest nonnegative integer n for which w factors
as a product s1s2 · · · sn, where each si belongs to S. We will refer to ℓ(w) as the length of w.

Remark 2.4.7.4.00N3 Let (W,S) be a Coxeter system. Then the length function ℓ : W → Z≥0
has the following properties:

• An element w ∈W satisfies ℓ(w) = 0 if and only if w = 1 is the identity element of W .

• An element w ∈W satisfies ℓ(w) = 1 if and only if w belongs to S.

• For every pair of elements w,w′ ∈W , we have ℓ(ww′) ≤ ℓ(w) + ℓ(w′). Moreover, we
also have ℓ(ww′) ≡ ℓ(w) + ℓ(w′) (mod 2).

Construction 2.4.7.5 (The Braid Group).00N4 Let (W,S) be a Coxeter system. We let Br(W )
denote the quotient of the free group generated by S by the relations (st)ms,t = 1, where s
and t range over distinct elements of S satisfying ms,t <∞; here ms,t denotes the order of
the product st in the group W . We will refer to Br(W ) as the braid group of the Coxeter
system (W,S). By construction, the braid group Br(W ) is equipped with a surjective group
homomorphism Br(W ) ↠W , which exhibits W as the quotient of Br(W ) by the relations
s2 = 1 for s ∈ S.

Let Br+(W ) denote the submonoid of Br(W ) generated by the elements of S. We will
refer to Br+(W ) as the braid monoid of the Coxeter system (W,S).

In [13], Deligne gave a convenient simplicial presentation for the braid monoid Br+(W )
in the case where the Coxeter group W is finite. To formulate it, we need a bit more
terminology.

Notation 2.4.7.6.00N5 Let W be a Coxeter group with identity element 1. We let M0(W )
denote the free monoid generated by the set W \ {1}. We will identify the elements of
M0(W ) with finite sequences −→w = (w1, w2, . . . , wn), where each wi is an element of W \ {1}.
We will say that −→v is a refinement of −→w if there exists a strictly increasing sequence of
integers 0 = i0 < i1 < · · · < in = m having the property that

wj = vij−1+1vij−1+2 · · · vij
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ℓ(wj) = ℓ(vij−1+1) + ℓ(vij−1+2) + · · ·+ ℓ(vij )

for 1 ≤ j ≤ n. We write −→v ⪯ −→w to indicate that −→v is a refinement of −→w . Then ⪯ determines
a partial ordering on the set M0(W ). We denote the nerve of this partially ordered set by
M•(W ). Note that the multiplication on M0(W ) (given by concatenation) endows M•(W )
with the structure of a simplicial monoid.

Exercise 2.4.7.7. 00N6Let W be a Coxeter group, and let −→v = (v1, v2, . . . , vm) and −→w =
(w1, . . . , wn) be elements of M(W ). Show that, if −→v is a refinement of −→w , then there is a
unique sequence of integers 0 = j0 < j1 < · · · < jm = n satisfying the condition specified in
Notation 2.4.7.6.

Remark 2.4.7.8. 00N7Let (W,S) be a Coxeter system. Then an element −→w = (w1, w2, . . . , wn)
of M0(W ) is minimal (with respect to the refinement ordering ⪯) if and only if each wi
belongs to S. Moreover, every element −→w ∈M0(W ) admits a refinement −→s = (s1, s2, . . . , sm)
which is minimal in M0(W ) (given by choosing a decomposition of each wi as a product
of elements of S). In particular, every connected component of the simplicial set M•(W )
contains a vertex −→s = (s1, . . . , sm), where each si belongs to S.

Theorem 2.4.7.9 (Deligne). 00N8Let (W,S) be a Coxeter system for which the underlying
Coxeter group W is finite, and let Br+(W ) denote the braid monoid of Construction 2.4.7.5.
Then:

(a) There is an isomorphism of monoids f : π0(M•(W )) → Br+(W ) which is uniquely
determined by the following property: if −→s = (s1, s2, . . . , sm) ∈M0(W ) is a sequence of
elements of S, then f carries the connected component of −→s to the product s1s2 · · · sm ∈
Br+(W ).

(b) Each connected component of M•(W ) is weakly contractible (Definition 3.2.4.16).

In other words, the isomorphism f determines a weak homotopy equivalence of simplicial
monoids M•(W )→ Br+(W ).

Proof. This is a special case of Théorème 2.4 of [13].

We now reformulate the definition of the simplicial monoid M•(W ) using the theory of
simplicial path categories.

Notation 2.4.7.10. 00N9Let (W,S) be a Coxeter system and let B•W denote the classifying
simplicial set of the group W (Construction 1.3.2.5). For each nonnegative integer n, let us
identify BnW with the collection of all n-tuples (wn, wn−1, . . . , w1) of elements of W . Let
B◦nW denote the subset of BnW consisting of those sequences (wn, wn−1, . . . , w1) satisfying
the identity

ℓ(w1w2 · · ·wn) = ℓ(w1) + ℓ(w2) + · · ·+ ℓ(wn).
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It is easy to see that the collection of subsets B◦nW ⊆ BnW are stable under the face and
degeneracy operators of B•W , and therefore determine a simplicial subset B◦•W ⊆ B•W .

Construction 2.4.7.11.00NA Let (W,S) be a Coxeter system, let M•(W ) be the simplicial
monoid of Notation 2.4.7.6, and let BM•(W ) denote the simplicial category obtained by
delooping M•(W ) (Example 2.4.2.3), having a single object X with HomBM(W )(X,X)• =
M•(W ).

Let σ = (wn, . . . , w1) be a nondegenerate n-simplex of the simplicial set B◦•(W ) (Notation
2.4.7.10). Then σ determines a simplicial functor u(σ) : Path[n]• → BM•(W ), which
carries each object of Path[n]• to the unique object X of BM•(W ), and each morphism
I = {i0 < . . . < ik} ∈ HomPath[n](i0, ik) to the sequence

(v1, v2, . . . , vk) ∈M0(W ) vj = wij−1+1wij−1+2 · · ·wij .

Regarding u(σ) as an n-simplex of the homotopy coherent nerve Nhc
• (BM(W )), the con-

struction σ 7→ u(σ) extends to a map of simplicial sets u : B◦•(W )→ Nhc
• (BM(W )).

Proposition 2.4.7.12.00NB Let (W,S) be a Coxeter system. Then the map of simplicial sets
u : B◦•(W )→ Nhc

• (BM(W )) of Construction 2.4.7.11 exhibits BM•(W ) as a path category
of the simplicial set B◦•(W ), in the sense of Definition 2.4.4.1.

Proof. Fix an integer m ≥ 0. Then BMm(W ) is the delooping of the monoid Mm(W ) whose
elements are tuples

−→w 0 ⪯ −→w 1 ⪯ −→w 2 ⪯ · · · ⪯ −→wm,

where each −→w i ∈M0(W ) is a sequence (wi,1, wi,2, . . . , wi,ni) of elements of W \{1}. Moreover,
the monoid structure on Mm(W ) is given by concatenation. From this description, it is easy
to see that the monoid Mm(W ) is freely generated by its indecomposable elements, which
are precisely those sequences for which the sequence −→wm has length 1. In this case, the
relation −→w 0 ⪯ −→wm guarantees that −→w 0 is a nondegenerate n0-simplex of the simplicial set
B◦•(W ). It follows that the map u induces a bijection from the set E(B◦(W ),m) of Notation
2.4.4.9 to the set of indecomposable elements of the monoid Mm(W ). The desired result
now follows from the criterion of Remark 2.4.4.11.

Corollary 2.4.7.13.00NC Let W be a finite Coxeter group, and let B◦•(W ) ⊆ B•(W ) be the
simplicial subset of Notation 2.4.7.10. Then the simplicial path category Path[B◦(W )]• has
a single object X, whose endomorphism monoid HomPath[B◦(W )](X,X)• is weakly homotopy
equivalent to the braid monoid Br+(W ) of Construction 2.4.7.5.

Proof. Combine Proposition 2.4.7.12 with Theorem 2.4.7.9.
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2.5 Differential Graded Categories

00NDHomological algebra provides a plentiful supply of examples of ∞-categories. Let us
begin by reviewing some terminology.

Definition 2.5.0.1. 00NELet A be an additive category (Definition [?]). A chain complex with
values in A is a pair (C∗, ∂), where C∗ = {Cn}n∈Z is a collection of objects of A and
∂ = {∂n}n∈Z is a collection of morphisms ∂n : Cn → Cn−1 in A with the property that each
composition ∂n ◦ ∂n+1 is the zero morphism from Cn+1 to Cn−1.

Notation 2.5.0.2. 00NFLet A be an additive category. Then a chain complex (C∗, ∂) with
values in A can be graphically represented by a diagram

· · · → C2
∂2−→ C1

∂1−→ C0
∂0−→ C−1

∂−1−−→ C−2 → · · ·

in which each successive composition is equal to zero. We will generally abuse terminology by
identifying (C∗, ∂) with the underlying collection C∗ = {Cn}n∈Z, which we will refer to as a
graded object of A. We view ∂ = {∂n}n∈Z as an endomorphism of C∗ which is homogeneous
of degree −1, which we refer to as the differential or the boundary operator of the chain
complex C∗. We will generally abuse notation by omitting the subscript from the expression
∂n; that is, we denote each of the boundary operators Cn → Cn−1 by the same symbol ∂ (or
∂C , when we need to emphasize its association with the particular chain complex C∗).

Chain complexes with values in an additive category A can themselves be organized into
a category.

Definition 2.5.0.3. 00NGLet (C∗, ∂C) and (D∗, ∂D) be chain complexes with values in an additive
category A. A chain map from (C∗, ∂C) and (D∗, ∂D) is a collection f = {fn}n∈Z, where
each fn is a morphism from Cn to Dn in the category A, for which each of the diagrams

Cn
∂C //

fn

��

Cn−1

fn−1

��
Dn

∂D // Dn−1

is commutative.
If A is an additive category, we let Ch(A) denote the category whose objects are chain

complexes with values in A and whose morphisms are chain maps.

Notation 2.5.0.4. 00NHLet k be a commutative ring. We will write Ch(k) for the category
Ch(A), where A is the category of k-modules and k-module homomorphisms. In particular,
we will write Ch(Z) for the category of chain complexes of abelian groups.
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Definition 2.5.0.5 (Chain Homotopy).00NJ Let A be an additive category and let (C∗, ∂C)
and (D∗, ∂D) be chain complexes with values in A. Let f = {fn}n∈Z and f ′ = {f ′n}n∈Z
be chain maps from C∗ to D∗. A chain homotopy from f to f ′ is a collection of maps
h = {hn : Cn → Dn+1} which satisfy the identity

f ′n − fn = ∂D ◦ hn + hn−1 ◦ ∂C

for every integer n.
We say that f and f ′ are chain homotopic if there exists a chain homotopy from f to f ′.

We will say that f is a chain homotopy equivalence if there exists a chain map g : D∗ → C∗
such that g ◦ f and f ◦ g are chain homotopic to the identity morphisms idC∗ and idD∗ ,
respectively.

Example 2.5.0.6.04GB Let A be an additive category and suppose we are given a chain complex

· · · → C2
∂−→ C1

∂−→ C0
∂−→ C−1

∂−→ C−2 → · · ·

with values in A. A contracting homotopy for (C∗, ∂) is a chain homotopy from the
zero morphism 0 : C∗ → C∗ to the identity morphism id : C∗ → C∗ (in the sense of
Definition 2.5.0.5). More concretely, a contracting homotopy is a system of morphisms
{hn : Cn → Cn+1}n∈Z which satisfy the identity idCn = ∂ ◦ hn + hn−1 ◦ ∂ for every integer
n. We will say that the complex (C∗, ∂) is contractible if it admits a contracting homotopy.

Remark 2.5.0.7.00NK Let C∗ and D∗ be chain complexes with values in an additive category
A. Then chain homotopy determines an equivalence relation on the set of chain maps
f : C∗ → D∗. More precisely:

• Every chain map f : C∗ → D∗ is chain homotopic to itself, via the chain homotopy
given by the collection of zero maps {0 : Cn → Dn+1}.

• Let f, f ′ : C∗ → D∗ be chain maps. If f is chain homotopic to f ′, then f ′ is chain
homotopic to f . More precisely, if h is a chain homotopy from f to f ′, then −h is a
chain homotopy from f ′ to f .

• Let f, f ′, f ′′ : C∗ → D∗ be chain maps. If f is chain homotopic to f ′ and f ′ is chain
homotopic to f ′′, then f is chain homotopic to f ′′. More precisely, if h is a chain
homotopy from f to f ′ and h′ is a chain homotopy from f ′ to f ′′, then h + h′ is a
chain homotopy from f to f ′′.

Remark 2.5.0.8.00NL Let C∗ and D∗ be chain complexes with values in an additive category
A, and let f, f ′ : C∗ → D∗ be chain maps which are chain homotopic. Then:
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• For every chain map g : D∗ → E∗, the composite maps g ◦ f and g ◦ f ′ are chain
homotopic. More precisely, if h = {hn}n∈Z is a chain homotopy from f to f ′, then the
collection of composite maps {gn+1 ◦ hn} is a chain homotopy from g ◦ f to g ◦ f ′.

• For every chain map e : B∗ → C∗, the composite maps f ◦ e and f ′ ◦ e are chain
homotopic. More precisely, if h = {hn}n∈Z is a chain homotopy from f to f ′, then the
collection of composite maps {hn ◦ en} is a chain homotopy from f ◦ e to f ′ ◦ e.

Construction 2.5.0.9 (The Homotopy Category of Chain Complexes). 00NMLet A be an additive
category. We define a category hCh(A) as follows:

• The objects of hCh(A) are chain complexes with values in A.

• If C∗ and D∗ are chain complexes with values in A, then HomhCh(A)(C∗, D∗) is the
quotient of HomCh(A)(C∗, D∗) by the relation of chain homotopy equivalence. If f :
C∗ → D∗ is a chain map, we denote its equivalence class by [f ] ∈ HomhCh(A)(C∗, D∗).

• If C∗, D∗, and E∗ are chain complexes with values in A, then the composition law

◦ : HomhCh(A)(D∗, E∗)×HomhCh(A)(C∗, D∗)→ HomhCh(A)(C∗, E∗)

is uniquely determined by the requirement that [g] ◦ [f ] = [g ◦ f ] for every pair of
chain maps f : C∗ → D∗ and g : D∗ → E∗ (this operation is well-defined by virtue of
Remark 2.5.0.8).

We will refer to hCh(A) as the homotopy category of Ch(A).

The definition of the homotopy category hCh(A) of chain complexes is analogous to the
definition of the homotopy category hTop of topological spaces: the latter is obtained by
working with continuous functions up to homotopy, and the former by working with chain
maps up to chain homotopy. As with its topological counterpart, passage from Ch(A) to
hCh(A) is a destructive procedure. By enforcing the equality [f ] = [f ′] whenever there
exists a chain homotopy h from f to f ′, we sacrifice the ability to extract information
which depends on a particular choice of chain homotopy. The situation can be remedied by
contemplating a more elaborate structure.

Construction 2.5.0.10 (Mapping Complexes). 00NNLet (C∗, ∂C) and (D∗, ∂D) be chain com-
plexes with values in an additive category A. For each integer d, we let [C,D]d denote
the abelian group ∏

n∈Z HomA(Cn, Dn+d) consisting of maps from C∗ to D∗ which are
homogeneous of degree d. These abelian groups can be organized into a chain complex

· · · ∂−→ [C,D]2 ∂−→ [C,D]1 ∂−→ [C,D]0 ∂−→ [C,D]−1
∂−→ [C,D]−2

∂−→ · · · ,

whose boundary operator ∂ : [C,D]d → [C,D]d−1 is given by the formula ∂{fn : Cn →
Dn+d}n∈Z = {∂D ◦fn− (−1)dfn−1 ◦∂C}n∈Z. We will refer to [C,D]∗ as the mapping complex
associated to the chain complexes C∗ and D∗.
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Note that from the mapping complexes [C,D]∗, we can extract both the set of chain
maps HomCh(A)(C∗, D∗) and the set of homotopy equivalence classes HomhCh(A)(C∗, D∗):

• Chain maps from C∗ to D∗ can be identified with 0-cycles of the chain complex [C,D]∗:
that is, with elements f = {fn}n∈Z ∈ [C,D]0 satisfying ∂(f) = 0.

• Given a pair of chain maps f, f ′ : C∗ → D∗, a chain homotopy from f to f ′ is an
element h = {hn}n∈Z ∈ [C,D]1 satisfying ∂(h) = f ′ − f . In particular, f and f ′ are
chain homotopic if and only if they are homologous when viewed as 0-cycles of the
complex [C,D]∗, so HomhCh(A)(C∗, D∗) can be identified with the 0th homology group
of [C,D]∗.

Moreover, the mapping complexes of Construction 2.5.0.10 are equipped with maps

◦ : [D,E]m × [C,D]n → [C,E]m+n,

which refine the composition laws on the categories Ch(A) and hCh(A). In §2.5.2, we
axiomatize this structure by introducing the notion of a differential graded category (Definition
2.5.2.1). By definition, a differential graded category is a category which is enriched over
the category Ch(Z) of graded abelian groups (endowed with the monoidal structure given
by the tensor product of chain complexes, which we review in §2.5.1). The category of
chain complexes Ch(A) is a prototypical example of a differential graded category (Example
2.5.2.5), with the enrichment supplied by the mapping complexes of Construction 2.5.0.10.

Let C be a differential graded category. To every pair of objects X,Y ∈ C, the enrichment
of C supplies a chain complex HomC(X,Y )∗, whose 0-cycles are the morphisms from X to Y
in C. Heuristically, one can think of this data as endowing C with the structure of a higher
category, whose n-morphisms (for n ≥ 2) are given by the elements of HomC(X,Y )n−1 (for
varying X and Y ). In §2.5.3, we make this heuristic precise by constructing a simplicial set
Ndg
• (C) called the differential graded nerve of C (Definition 2.5.3.7), and proving that it is an
∞-category in the sense of Definition 1.4.0.1 (Theorem 2.5.3.10). In §2.5.4 we show that
the homotopy category of Ndg

• (C) can be obtained directly from C by identifying homotopic
morphisms (Proposition 2.5.4.10); in particular, the homotopy category of Ndg

• (Ch(A)) can
be identified with the homotopy category of chain complexes hCh(A) of Construction 2.5.0.9.

The remainder of this section is devoted to studying the relationship between the
differential graded nerve Ndg

• (C) and the homotopy coherent nerve of §2.4. This will require
a somewhat lengthy detour through the theory of simplicial abelian groups. In §2.5.5,
we will associate to each simplicial set S• its normalized chain complex N∗(S; Z), given
in each degree n by the free abelian group on the set of nondegenerate n-simplices of S•
(Construction 2.5.5.9). The construction S• 7→ N∗(S; Z) determines a functor from the
category of simplicial sets to the category Ch(Z) of chain complexes of abelian groups. In
§2.5.6, we show that this functor has a right adjoint K : Ch(Z) → Set∆, which we will
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refer to as the Eilenberg-MacLane functor (Construction 2.5.6.3). To each chain complex
of abelian groups M∗, this functor associates a simplicial abelian group K(M∗), which we
will refer to as the (generalized) Eilenberg-MacLane space of M∗. Moreover, the celebrated
Dold-Kan correspondence (Theorem 2.5.6.1) asserts that the Eilenberg-MacLane functor
restricts to an equivalence

Ch(Z)≥0
∼−→ {Simplicial Abelian Groups},

where Ch(Z)≥0 ⊂ Ch(Z) denotes the full subcategory spanned by those chain complexes
which are concentrated in nonnegative degrees (Definition 2.5.1.1).

Let S• and T• be simplicial sets. In §2.5.8, we review the classical Alexander-Whitney
construction, which supplies a chain map

AW : N∗(S × T ; Z)→ N∗(S; Z) ⊠ N∗(T ; Z);

here the right hand side denotes the tensor product of the normalized chain complexes
N∗(S; Z) and N∗(T ; Z). Allowing S• and T• to vary, these maps determine a lax monoidal
structure on the Eilenberg-MacLane functor K : Ch(Z) → Set∆. Using this structure,
we will associate to each differential graded category C a simplicial category C∆

• having
the same objects, with simplicial mapping sets given by HomC∆(X,Y ) = K(HomC(X,Y )∗)
(Construction 2.5.9.2). In §2.5.9, we construct a comparison map Z from the homotopy
coherent nerve Nhc

• (C∆) to the differential graded nerve Ndg
• (C) (Proposition 2.5.9.10), and

show that it is a trivial Kan fibration (Theorem 2.5.9.18). The proof of this result (and the
construction of the map Z) rely heavily on the shuffle product ▽ : N∗(S; Z)×N∗(T ; Z)→
N∗(S × T ; Z) introduced by Eilenberg and MacLane, which we review in §2.5.7.

Warning 2.5.0.11. 00NPThe differential graded nerve construction C 7→ Ndg
• (C) can be used

to produce many interesting examples of ∞-categories. However, not every ∞-category
can be obtained in this way (even up to equivalence). Put differently, ∞-categories of
the form Ndg

• (C) have some special features, which are not shared by general ∞-categories.
For example, if C is a pretriangulated differential graded category (Definition [?]), then the
differential graded nerve Ndg

• (C) is a stable ∞-category (see Proposition [?]).

2.5.1 Generalities on Chain Complexes

00NQIn this section, we provide a brief review of some of the homological algebra which will
be needed throughout §2.5.

Definition 2.5.1.1. 00NRLet A be an additive category, let C∗ be a chain complex with values
in A, and let n be an integer. We will say that C∗ is concentrated in degrees ≥ n if objects
Cm ∈ A are zero for m < n. Similarly, we say that C∗ is concentrated in degrees ≤ n if
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the objects Cm are zero for m > n. We let Ch(A)≥n denote the full subcategory of Ch(A)
spanned by those chain complexes which are concentrated in degrees ≥ n, and Ch(A)≤n the
full subcategory spanned by those chain complexes which are concentrated in degrees ≤ n.

Example 2.5.1.2.00NS Let A be an additive category, let C ∈ A be an object, and let n be an
integer. We will write C[n] for the chain complex given by

C[n]∗ =

C if ∗ = n

0 otherwise,

where each differential is the zero morphism. Note that a chain complex M∗ is isomorphic
to C[n] (for some object C ∈ A) if and only if it is concentrated both in degrees ≥ n and in
degrees ≤ n.

Notation 2.5.1.3 (Cycles and Boundaries).00NT Let A be an abelian category (Definition [?])
and let C∗ be a chain complex with values in A. For each integer n, we let Zn(C) denote
the kernel of the boundary operator ∂ : Cn → Cn−1, and Bn(C) the image of the boundary
operator ∂ : Cn+1 → Cn. We regard Zn(C) and Bn(C) as subobjects of Cn. Note that we
have Bn(C) ⊆ Zn(C) (this is a reformulation of the identity ∂2 = 0).

In the special case where A = Ab is the category of abelian groups, we will refer to the
elements of Cn as n-chains of C∗, to the elements of Zn(C) as n-cycles of C∗, and to the
elements of Bn(C) as n-boundaries of C∗.

Definition 2.5.1.4 (Homology).00NU Let A be an abelian category and let C∗ be a chain complex
with values in A. For every integer n, we let Hn(C) denote the quotient Zn(C)/Bn(C). We
will refer to Hn(C) as the nth homology of the chain complex C∗. We say that the chain
complex C∗ is acyclic if the homology objects Hn(C) vanish for every integer n.

If A = Ab is the category of abelian groups and if x ∈ Zn(C) is an n-cycle of C∗, we let
[x] denote its image in the homology group Hn(C): we refer to [x] as the homology class of
x. We say that a pair of n-cycles x, x′ ∈ Zn(C) are homologous if [x] = [x′]: that is, if there
exists an (n+ 1)-chain y satisfying x′ = x+ ∂(y).

Definition 2.5.1.5 (Quasi-Isomorphisms).00NV Let A be an abelian category, let C∗ and D∗
be chain complexes with values in A, and let f : C∗ → D∗ be a chain map. We say that
f is a quasi-isomorphism if, for every integer n, the induced map of homology objects
Hn(C)→ Hn(D) is an isomorphism.

Remark 2.5.1.6.00NW Let C∗ be a chain complex with values in an abelian category A. In
practice, the homology objects H∗(C) are often primary objects of interest, while the chain
complex C∗ itself plays an ancillary role. The terminology of Definition 2.5.1.5 emphasizes
this perspective: a chain map f : C∗ → D∗ which induces an isomorphism on homology
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should allow us to view the chain complexes C∗ and D∗ as “the same” for many purposes
(this idea is the starting point for Verdier’s theory of derived categories, which we will discuss
in §[?]).

Remark 2.5.1.7 (Two-out-of-Three). 00NXLet A be an abelian category and suppose we are
given a commutative diagram of chain complexes

0 // C ′∗

f ′

��

// C∗

f

��

// C ′′∗

f ′′

��

// 0

0 // D′∗ // D∗ // D′′∗ // 0

in which the rows are exact. If any two of the chain maps f , f ′, and f ′′ are quasi-isomorphisms,
then so is the third. This follows by comparing the long exact homology sequences associated
to the upper and lower rows (see Construction [?]).

Proposition 2.5.1.8. 00NYLet C∗ and D∗ be chain complexes with values in an abelian category
A, and let f, f ′ : C∗ → D∗ be a pair of chain maps. If f and f ′ are chain homotopic, then
they induce the same map from Hn(C) to Hn(D) for every integer n.

Proof. Let h = {hm}m∈Z be a chain homotopy from f to f ′, so that f ′n − fn = ∂D ◦ hn +
hn−1 ◦ ∂C . It follows that, when restricted to the subobject Zn(C) ⊆ Cn, the difference
f ′n − fn = ∂D ◦ hn factors through the subobject Bn(D) ⊆ Zn(D), so the induced maps
Hn(f),Hn(f ′) : Hn(C)→ Hn(D) are the same.

Corollary 2.5.1.9. 00NZLet f : C∗ → D∗ be a chain map between chain complexes with values in
an abelian category A. If f is a chain homotopy equivalence, then it is a quasi-isomorphism.

For later use, we record the following elementary fact:

Proposition 2.5.1.10. 00P0Let P∗ be a chain complex taking values in an abelian category A.
Assume that P∗ is acyclic, concentrated in degrees ≥ 0, and that each Pn is a projective
object of A. Then P∗ is a projective object of the category Ch(A). In other words, every
epimorphism of chain complexes f : M∗ ↠ P∗ admits a section.

Proof. Our assumption that P∗ is acyclic guarantees that for every integer n ≥ 0, we have a
short exact sequence

0→ Zn(P )→ Pn
∂−→ Zn−1(P )→ 0.

It follows by induction on n that each of these exact sequences splits and that each Zn(P )
is also a projective object of A. We can therefore choose a direct sum decomposition
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Pn ≃ Zn(P )⊕Qn, where the differential on P∗ restricts to isomorphisms ∂ : Qn ≃ Zn−1(P ).
Since each Qn is projective and f is an epimorphism in each degree, we can choose maps
un : Qn → Mn for which the composition fn ◦ un equal to the identity on Qn. The maps
un then extend uniquely to a map of chain complexes s = {sn}n∈Z, characterized by the
requirement that each composition

Qn+1 ⊕Qn
∂⊕id−−−→ Zn(P )⊕Qn = Pn

sn−→Mn

is the sum of the maps ∂un+1 and un.

We now specialize our attention to the category Ch(Z) of chain complexes of abelian
groups, which we will endow with a monoidal structure.

Notation 2.5.1.11.00P1 Let C∗ and D∗ be graded abelian groups. We define a new graded
abelian group (C ⊠D)∗ = C∗ ⊠D∗ by the formula

(C ⊠D)n =
⊕

n=n′+n′′
Cn′ ⊗Dn′′ .

Here the direct sum is taken over the set {(n′, n′′) ∈ Z×Z : n = n′+n′′} of all decompositions
of n as a sum of two integers n′ and n′′, and Cn′ ⊗Dn′′ denotes the tensor product of Cn′
with Dn′′ (formed in the category of abelian groups). For every pair of elements x ∈ Cm
and y ∈ Dn, we let x⊠ y denote the image of the pair (x, y) under the canonical map

Cm ×Dn → Cm ⊗Dn ↪→ (C ⊠D)m+n.

Proposition 2.5.1.12.00P2 Let (C∗, ∂) and (D∗, ∂) be chain complexes. Then there is a unique
homomorphism of graded abelian groups

∂ : (C ⊠D)∗ → (C ⊠D)∗−1

satisfying the identity

∂(x⊠ y) = (∂(x) ⊠ y) + (−1)m(x⊠ ∂(y))

for x ∈ Cm and y ∈ Dn. Moreover, this homomorphism satisfies ∂2 = 0, so we can regard
the pair ((C ⊠D)∗, ∂) as a chain complex.

Proof. For every pair of integers m,n ∈ Z, the construction

(x, y) 7→ (∂x⊠ y) + (−1)m(x⊠ ∂y)
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determines a bilinear map Cm ×Dn → (C ⊠D)m+n−1. Invoking the universal property of
tensor products and direct sums, we deduce that there is a unique map ∂ : (C ⊠D)∗ →
(C ⊠D)∗−1 with the desired properties. The identity ∂2 = 0 follows from the calculation

∂2(x⊠ y) = ∂((∂x⊠ y) + (−1)m(x⊠ ∂y))
= (∂2x⊠ y) + (−1)m−1(∂x⊠ ∂y) + (−1)m(∂x⊠ ∂y) + (−1)2m(x⊠ ∂2y)
= 0.

Notation 2.5.1.13. 00P3In the situation of Proposition 2.5.1.12, we will refer to ((C ⊠D)∗, ∂)
as the tensor product of the chain complexes (C∗, ∂) and (D∗, ∂).

Warning 2.5.1.14 (The Koszul Sign Rule). 00P4Let (C∗, ∂) and (D∗, ∂) be chain complexes.
There is a unique isomorphism of graded abelian groups τ : C∗ ⊠D∗ → D∗ ⊠ C∗ satisfying
τ(x⊠ y) = y⊠ x for all x ∈ Cm, y ∈ Cn. Beware that τ is usually not a chain map: we have

∂τ(x⊠ y) = ∂(y ⊠ x) = (∂y ⊠ x) + (−1)n(y ⊠ ∂x)

τ(∂(x⊠ y)) = τ((∂x⊠ y) + (−1)m(x⊠ ∂y)) = (−1)m(∂y ⊠ x) + (y ⊠ ∂x).

This can be remedied by modifying the isomorphism τ : there is another isomorphism of
graded abelian groups

σ : C∗ ⊠D∗ ≃ D∗ ⊠ C∗ σ(x⊠ y) = (−1)mn(y ⊠ x).

The isomorphism of σ is a chain map (hence an isomorphism of chain complexes) by virtue
of the calculation

∂σ(x⊠ y) = ∂((−1)mny ⊠ x)
= (−1)mn(∂y ⊠ x) + (−1)mn+n(y ⊠ ∂x)
= (−1)mσ(x⊠ ∂y) + σ(∂x⊠ y)
= σ(∂(x⊠ y)).

Exercise 2.5.1.15 (Universal Property of the Tensor Product). 00P5Let (C∗, ∂), (D∗, ∂), and
(E∗, ∂) be chain complexes. We will say that a collection of bilinear maps

{fm,n : Cm ×Dn → Em+n}m,n∈Z

satisfies the Leibniz rule if, for every pair of elements x ∈ Cm and y ∈ Dn, the identity

∂fm,n(x, y) = fm−1,n(∂x, y) + (−1)mfm,n−1(x, ∂y)
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holds in the abelian group Em+n−1. Show that there is a canonical bijection from the
collection of chain maps f : C∗ ⊠ D∗ → E∗ to the collection of systems of bilinear maps
{fm,n : Cm × Dn → Em+n}m,n∈Z satisfying the Leibniz rule, given by the construction
fm,n(x, y) = f(x⊠ y).

Remark 2.5.1.16 (Associativity Isomorphisms).00P6 Let (C∗, ∂), (D∗, ∂), and (E∗, ∂) be chain
complexes of abelian groups. Then there is a unique isomorphism of graded abelian groups

α : C∗ ⊠ (D∗ ⊠ E∗)→ (C∗ ⊠D∗) ⊠ E∗

satisfying the identity α(x⊠ (y ⊠ z)) = (x⊠ y) ⊠ z. Moreover, α is an isomorphism of chain
complexes: this follows from the observation that α(∂(x⊠ (y ⊠ z))) and ∂α(x⊠ (y ⊠ z)) are
both given by the sum

(∂x⊠ y) ⊠ z + (−1)m(x⊠ ∂y) ⊠ z + (−1)m+n((x⊠ y) ⊠ ∂z)

for x ∈ Cm, y ∈ Dn, z ∈ Ep.

Construction 2.5.1.17 (The Monoidal Structure on Chain Complexes).00P7 Let Ch(Z) denote
the category of chain complexes of abelian groups (Definition 2.5.0.3). We define a monoidal
structure on Ch(Z) as follows:

• The tensor product functor ⊠ : Ch(Z) × Ch(Z) → Ch(Z) carries each pair of chain
complexes (C∗, ∂) and (D∗, ∂) to the tensor product chain complex (C∗ ⊠D∗, ∂) of
Proposition 2.5.1.12, and carries a pair of chain maps f : C∗ → C ′∗, g : D∗ → D′∗ to
the tensor product map

(f ⊠ g) : C∗ ⊠D∗ → C ′∗ ⊠D′∗ (f ⊠ g)(x⊠ y) = f(x) ⊠ g(y).

• For every triple of chain complexes C = (C∗, ∂), D = (D∗, ∂), and E = (E∗, ∂), the
associativity constraint

αC,D,E : C∗ ⊠ (D∗ ⊠ E∗) ≃ (C∗ ⊠D∗) ⊠ E∗

is the isomorphism of Remark 2.5.1.16.

• The unit object of Ch(Z) is the chain complex Z[0] of Example 2.5.1.2, and the unit
constraint υ : Z[0] ⊠ Z[0] ≃ Z[0] is the isomorphism classified by the bilinear map

Z×Z→ Z (m,n) 7→ mn.

Remark 2.5.1.18.00P8 Let (C∗, ∂) and (D∗, ∂) be chain complexes. The tensor product chain
complex (C∗ ⊠D∗, ∂) of Proposition 2.5.1.12 is characterized up to (unique) isomorphism
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by the universal property of Exercise 2.5.1.15. However, the construction of this tensor
product complex (and, by extension, the monoidal structure on Ch(Z)) depends on auxiliary
choices. These choices are ultimately irrelevant in the sense that they do not change
the isomorphism class of the monoidal category Ch(Z) or, equivalently, of the classifying
simplicial set B•Ch(Z) of Example 2.3.1.18. This simplicial set can be described concretely
(without auxiliary choices): its n-simplices can be identified with systems of chain complexes
{C(j, i)∗}0≤i<j≤n together with bilinear maps

C(k, j)q × C(j, i)p → C(k, i)q+p (y, z) 7→ yz

for 0 ≤ i < j < k ≤ n which satisfy the Leibniz rule ∂(yz) = (∂y)z + (−1)qy(∂z) together
with the associative law x(yz) = (xy)z for x ∈ C(ℓ, k)r, y ∈ C(k, j)q, z ∈ C(j, i)p with
0 ≤ i < j < k < ℓ ≤ n.

2.5.2 Differential Graded Categories

00P9Let Ch(Z) denote the category of chain complexes of abelian groups, equipped with the
monoidal structure described in Construction 2.5.1.17. A differential graded category is a
category enriched over Ch(Z) (in the sense of Definition 2.1.7.1). For the convenience of the
reader, we spell out this definition in detail.

Definition 2.5.2.1 (Differential Graded Categories). 00PAA differential graded category C consists
of the following data:

(1) A collection Ob(C), whose elements we refer to as objects of C. We will often abuse
notation by writing X ∈ C to indicate that X is an element of Ob(C).

(2) For every pair of objects X,Y ∈ Ob(C), a chain complex (HomC(X,Y )∗, ∂). For each
integer n, we refer to the elements of HomC(X,Y )n as morphisms of degree n from X

to Y .

(3) For every triple of objects X,Y, Z ∈ Ob(C) and every pair of integers m,n ∈ Z, a
function

cZ,Y,X : HomC(Y, Z)n ×HomC(X,Y )m → HomC(X,Z)m+n,

which we will refer to as the composition law. Given a pair of morphisms f ∈
HomC(X,Y )m and g ∈ HomC(Y, Z)n, we will often denote the image cZ,Y,X(g, f) ∈
HomC(X,Z)m+n by g ◦ f or gf .

(4) For every object X ∈ Ob(C), a morphism idX ∈ HomC(X,X)0, which we will refer to as
the identity morphism.

These data are required to satisfy the following conditions:
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• The composition law on C is associative in the following sense: for every triple of
elements f ∈ HomC(W,X)ℓ, g ∈ HomC(X,Y )m, and h ∈ HomC(Y,Z)n, we have an
equality h ◦ (g ◦ f) = (h ◦ g) ◦ f (in the abelian group HomC(W,Z)ℓ+m+n).

• The composition law on C is unital on both sides: for every element f ∈ HomC(X,Y )n,
we have idY ◦f = f = f ◦ idX .

• For every triple of objects X,Y, Z ∈ Ob(C), the composition maps HomC(Y, Z)n ×
HomC(X,Y )m → HomC(X,Z)m+n are bilinear and satisfy the Leibniz rule of Exercise
2.5.1.15. In other words, we have

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) (g + g′) ◦ f = (g ◦ f) + (g′ ◦ f)

∂(g ◦ f) = (∂g) ◦ f + (−1)ng ◦ (∂f).

Remark 2.5.2.2.00PB Let C be a differential graded category. For each object X ∈ Ob(C), the
identity morphism idX is a 0-cycle of the chain complex HomC(X,X)∗: that is, it satisfies
∂(idX) = 0. This follows from the calculation

∂(idX) = ∂(idX ◦ idX) = ∂(idX) ◦ idX + idX ◦∂(idX) = ∂(idX) + ∂(idX).

Remark 2.5.2.3.00PC Let C be a differential graded category containing a pair of morphisms
f ∈ HomC(X,Y )m and g ∈ HomC(Y, Z)n. It follows from the Leibniz rule

∂(g ◦ f) = (∂g) ◦ f + (−1)ng ◦ (∂f)

that if f and g are cycles (that is, if they satisfy ∂f = 0 and ∂g = 0), then g ◦ f is also a
cycle. In particular, we have a bilinear composition map

Zn(HomC(Y, Z))× Zm(HomC(X,Y ))→ Zm+n(HomC(X,Z)).

Construction 2.5.2.4 (The Underlying Category of a Differential Graded Category).00PD To
every differential graded category C, we can associate an ordinary category C◦ as follows:

• The objects of C◦ are the objects of C.

• For every pair of objects X,Y ∈ Ob(C◦) = Ob(C), a morphism from X to Y in C◦ is a
0-cycle of the chain complex HomC(X,Y )∗.

• For each object X ∈ Ob(C◦) = Ob(C), the identity morphism from X to itself in C◦
is the identity morphism idX ∈ HomC(X,X)0 (which is a cycle by virtue of Remark
2.5.2.2).

• Composition of morphisms in C◦ is given by the composition law on C (which preserves
0-cycles by virtue of Remark 2.5.2.3).
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We will refer to C◦ as the underlying category of the differential graded category C (note that
C◦ can also be obtained by applying the general procedure described in Example 2.1.7.5).

Example 2.5.2.5 (Chain Complexes). 00PELetA be an additive category. We define a differential
graded category Ch(A) as follows:

• The objects of Ch(A) are chain complexes with values in A (Definition 2.5.0.1).

• If C∗ and D∗ are chain complexes with values in A, then HomCh(A)(C∗, D∗)∗ is the
chain complex of abelian groups [C,D]∗ defined in Construction 2.5.0.10.

• If C∗, D∗, and E∗ are chain complexes with values in A, then the composition law

◦ : [D,E]e × [C,D]d → [C,E]d+e

is given by the formula {gn}n∈Z ◦ {fn}n∈Z = {gn+d ◦ fn}n∈Z.

Note that if C∗ and D∗ are chain complexes with values in A, then a collection of maps
f = {fn : Cn → Dn}n∈Z is a 0-cycle of the chain complex [C,D]∗ if and only if it is a chain
map from C∗ to D∗. Consequently, applying Construction 2.5.2.4 to the differential graded
category Ch(A) yields the ordinary category of chain complexes and chain maps. In other
words, this construction supplies a Ch(Z)-enrichment of the category Ch(A) introduced in
Definition 2.5.0.3.

Example 2.5.2.6 (Differential Graded Algebras). 00PFA differential graded algebra is a (not
necessarily commutative) graded ring A∗ = {An}n∈Z equipped with a differential ∂ : A∗ →
A∗−1 satisfying ∂2 = 0 and the Leibniz rule ∂(x ·y) = (∂x) ·y+(−1)mx · (∂y) for x ∈ Am and
y ∈ An. If C is a differential graded category containing an object X, then the composition
law on C endows the chain complex EndC(X)∗ = HomC(X,X)∗ with the structure of a
differential graded algebra. Conversely, for every differential graded algebra (A∗, ∂), there is
a unique differential graded category C with Ob(C) = {X}. In other words, the construction
C 7→ EndC(X)∗ induces a bijective correspondence

{Differential graded categories C with Ob(C) = {X}}

∼

��
{Differential graded algebras}.

Example 2.5.2.7. 00PGLet B•Ch(Z) denote the classifying simplicial set of the monoidal
category of chain complexes. For each nonnegative integer n ≥ 0, we can use the analysis of
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Remark 2.5.1.18 to identify n-simplices of B•Ch(Z) with differential graded categories C
satisfying Ob(C) = {0, 1, · · · , n} and

HomC(i, j)∗ =

Z[0] if i = j

0 if i > j.

Definition 2.5.2.8 (Differential Graded Functors).00PH Let C and D be differential graded
categories. A differential graded functor F from C to D consists of the following data:

• For each object X ∈ Ob(C), an object F (X) ∈ Ob(D).

• For each pair of objects X,Y ∈ Ob(C), a chain map FX,Y : HomC(X,Y )∗ →
HomD(F (X), F (Y ))∗.

These data are required to satisfy the following conditions:

• For every object X ∈ Ob(C), the chain map

FX,X : HomC(X,X)∗ → HomD(F (X), F (X))∗

carries the identity morphism idX to the identity morphism idF (X).

• For every triple of objects X,Y, Z ∈ Ob(C) and pair of morphisms f ∈ HomC(X,Y )m,
g ∈ HomC(Y, Z)n, we have FX,Z(g ◦ f) = FY,Z(g) ◦ FX,Y (f).

We let Catdg denote the category whose objects are (small) differential graded categories
and whose morphisms are differential graded functors.

Remark 2.5.2.9.00PJ Let C and D be differential graded categories. Then differential graded
functors from C to D (in the sense of Definition 2.5.2.8) can be identified with Ch(Z)-enriched
functors from C to D (in the sense of Definition 2.1.7.10).

2.5.3 The Differential Graded Nerve

00PK We now explain how to associate to each differential graded category C an ∞-category
Ndg
• (C), which we will refer to as the differential graded nerve of C. We begin by describing

the simplices of Ndg
• (C).

Construction 2.5.3.1.00PL Let C be a differential graded category. For n ≥ 0, we let Ndg
n (C)

denote the collection of all ordered pairs ({Xi}0≤i≤n, {fI}), where:

• Each Xi is an object of the differential graded category C.

https://kerodon.net/tag/00PH
https://kerodon.net/tag/00PJ
https://kerodon.net/tag/00PK
https://kerodon.net/tag/00PL


310 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

• For every subset I = {i0 > i1 > · · · > ik} ⊆ [n] having at least two elements, fI is an
element of the abelian group HomC(Xik , Xi0)k−1 which satisfies the identity

∂fI =
k−1∑
a=1

(−1)a(f{i0>i1>···>ia} ◦ f{ia>···>ik} − fI\{ia})

Example 2.5.3.2 (Vertices of the Differential Graded Nerve). 00PMLet C be a differential graded
category. Then Ndg

0 (C) can be identified with the collection Ob(C) of objects of C.

Example 2.5.3.3 (Edges of the Differential Graded Nerve). 00PNLet C be a differential graded
category. Then Ndg

1 (C) can be identified with the collection of all triples (X0, X1, f) where
X0 and X1 are objects of C and f is a 0-cycle in the chain complex HomC(X0, X1)•. In
other words, Ndg

1 (C) is the collection of all morphisms in the underlying category C◦ of
Construction 2.5.2.4.

Example 2.5.3.4 (2-Simplices of the Differential Graded Nerve). 00PPLet C be a differential
graded category. Then an element of Ndg

2 (C) is given by the following data:

• A triple of objects X0, X1, X2 ∈ Ob(C).

• A triple of 0-cycles

f10 ∈ HomC(X0, X1)0 f20 ∈ HomC(X0, X2)0 f21 ∈ HomC(X1, X2)0.

• A 1-chain f210 ∈ HomC(X0, X2)1 satisfying the identity

∂(f210) = f20 − (f21 ◦ f10).

Here the 1-chain f210 can be regarded as a witness to the assertion that the 0-cycles f20 and
f21 ◦ f10 are homologous: that is, they represent the same element of the homology group
H0(HomC(X0, X2)). We can present this data graphically by the diagram

X1

f21

  

f210

��
X0

f10

>>

f20
// X2.

We now explain how to organize the collection {Ndg
n (C)}n≥0 into a simplicial set.
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Proposition 2.5.3.5.00PQ Let C be a differential graded category. Let m,n ≥ 0 be nonnegative
integers and let α : [n]→ [m] be a nondecreasing function. Then the construction

({Xi}0≤i≤m, {fI}) 7→ ({Xα(j)}0≤j≤n, {gJ}),

gJ =


fα(J) if α|J is injective
idXi if J = {j0 > j1} with α(j0) = i = α(j1)
0 otherwise.

determines a map of sets α∗ : Ndg
m (C)→ Ndg

n (C).

Proof. Let ({Xi}0≤i≤m, {fI}) be an element of Ndg
m (C). For each subset J ⊆ [n] with at least

two elements, define gJ as in the statement of Proposition 2.5.3.5. We wish to show that
({Xα(j)}0≤j≤n, {gJ}) is an element of Ndg

n (C). For this, we must show that for each subset

J = {j0 > j1 > · · · > jk−1 > jk} ⊆ [n]

having at least two elements, we have an equality

00PR ∂gJ =
∑

0<a<k
(−1)a(g{j0>j1>···>ja} ◦ g{ja>···>jk} − gJ\{ja}). (2.2)

We distinguish three cases:

• Suppose that the restriction α|J is injective. In this case, we can rewrite (2.2) as an
equality

∂fα(J) =
∑

0<a<k
(−1)a(f{α(j0)>···>α(ja)} ◦ f{α(ja)>···>α(jk)} − fα(J)\{α(ja)}),

which follows from our assumption that ({Xi}0≤i≤m, {fI}) is an element of Ndg
m (C).

• Suppose that J = {j0 > j1} is a two-element set satisfying α(j0) = i = α(j1) for some
0 ≤ i ≤ m. In this case, we can rewrite (2.2) as an equality ∂(idXi) = 0, which follows
from Remark 2.5.2.2.

• Suppose that J = {j0 > j1 > · · · > jk−1 > jk} has at least three elements and that
α|J is not injective, so that gJ = 0. We now distinguish three (possibly overlapping)
cases:

– The map α is not injective because α(j0) = i = α(j1) for some 0 ≤ i ≤ m. In
this case, the expressions gJ\{ja} and g{j0>···>ja} vanish for 1 < a < k. We can
therefore rewrite (2.2) as an an equality

gJ\{j1} = g{j0>j1} ◦ g{j1>···>jk},

which follows from the identities gJ\{j1} = g{j1>···>jk} and g{j0>j1} = idXi .
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– The map α is not injective because α(jk−1) = i = α(jk) for some 0 ≤ i ≤ m. In
this case, the expressions gJ\{ja} and g{ja>···>jk} vanish for 0 < a < k − 1. We
can therefore rewrite (2.2) as an an equality

gJ\{jk−1} = g{j0>···>jk−1} ◦ g{jk−1>jk},

which follows from the identities gJ\{jk−1} = g{j0>···>jk−1} and g{jk−1>jk} = idXi .
– The map α is not injective because we have α(jb) = α(jb+1) for some 0 < b < k−1.

In this case, the chains gJ\{ja} vanish for a /∈ {b, b + 1}, and the compositions
g{j0>···>ja} ◦ g{ja>···>jk} vanish for all 0 < a < k. We can therefore rewrite (2.2)
as an an equality gJ\{jb} = gJ\{jb+1}, which is clear.

Exercise 2.5.3.6. 00PSLet C be a differential graded category. Suppose we are given a pair of
nondecreasing functions α : [k]→ [m] and β : [m]→ [n]. Show that the function (β ◦ α)∗ of
Proposition 2.5.3.5 coincides with the composition α∗ ◦ β∗.

Definition 2.5.3.7. 00PTLet C be a differential graded category. We let Ndg
• (C) denote the

simplicial set whose value on an object [n] ∈∆op is the set Ndg
n (C) of Construction 2.5.3.1, and

whose value on a nondecreasing function α : [n]→ [m] is the function α∗ : Ndg
m (C)→ Ndg

n (C)
of Proposition 2.5.3.5. We will refer to Ndg

• (C) as the differential graded nerve of C.

Remark 2.5.3.8 (Comparison with the Nerve). 00PULet C be a differential graded category
and let C◦ denote its underlying ordinary category (Construction 2.5.2.4). Suppose that
σ is an n-simplex of the nerve N•(C◦), consisting of objects {Xi}0≤i≤n and 0-cycles {fji ∈
HomC(Xi, Xj)0} satisfying fii = idXi and fki = fkj ◦ fji for 0 ≤ i ≤ j ≤ k ≤ n. We can then
construct an n-simplex U(σ) of the differential graded nerve Ndg

• (C), given by

U(σ) = ({Xi}0≤i≤n, {fI}) fI =

fji if I = {j > i}
0 otherwise.

The construction σ 7→ U(σ) determines a map of simplicial sets U : N•(C◦)→ Ndg
• (C). This

map is a monomorphism, whose image is the simplicial subset of Ndg
• (C) spanned by those

n-simplices ({Xi}0≤i≤n, {fI}) with the property that fI = 0 for |I| > 2.

Remark 2.5.3.9. 00PVLet C be a differential graded category and let K• be a simplicial set. To
give a map of simplicial sets f : K• → Ndg

• (C), one must supply the following data:

• For each vertex x of K•, an object f(x) of the differential graded category C.

• For each k > 0 and each k-simplex σ : ∆k → K• with initial vertex x = σ(0) and final
vertex y = σ(k), a (k − 1)-chain f(σ) ∈ HomC(f(x), f(y))k−1.
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Moreover, this data must satisfy the following conditions:

• If e is a degenerate edge of K• connecting a vertex x to itself, then f(e) is the identity
morphism idf(x) ∈ HomC(f(x), f(x))0.

• If σ is a degenerate simplex of K• having dimension ≥ 2, then f(σ) = 0.

• Let k > 0 and let σ : ∆k → K• be an k-simplex of K•. For 0 < b < k, let
σ≤b : ∆b ↪→ K• denote the composition of σ with the inclusion map ∆b ↪→ ∆k (which
is the identity on vertices), and let σ≥b : ∆k−b ↪→ K• denote the composition of σ with
the map ∆k−b ↪→ ∆k given on vertices by i 7→ i+ b. Then we have

∂f(σ) =
k−1∑
b=1

(−1)k−b(f(σ≥b) ◦ f(σ≤b)− f(dkbσ))

Theorem 2.5.3.10.00PW Let C be a differential graded category. Then the simplicial set Ndg
• (C)

is an ∞-category.

Proof. Suppose we are given 0 < j < n and a map of simplicial sets σ0 : Λnj → Ndg
• (C). Using

Remark 2.5.3.9, we see that σ0 can be identified with the data of a pair ({Xi}0≤i≤n, {fI}),
where {Xi}0≤i≤n is a collection of objects of C and fI ∈ HomC(Xi0 , Xik)k−1 is defined for
every subset I = {i0 > i1 > · · · > ik} ⊆ [n] for which k > 0 and [n] ̸= I ≠ [n]\{j}, satisfying
the identity

00PX ∂fI =
k−1∑
a=1

(−1)a(f{i0>i1>···>ia} ◦ f{ia>···>ik} − fI\{ia}) (2.3)

We wish to show that σ0 can be extended to an n-simplex of Ndg
• (C). To give such an

extension, we must supply chains f[n] ∈ HomC(X0, Xn)n−1 and f[n]\{j} ∈ HomC(X0, Xn)n−2
which satisfy (2.3) in the cases I = [n] and I = [n] \ {j}. We claim that there is a unique
such extension which also satisfies f[n] = 0. Applying (2.3) in the case I = [n], we deduce
that f[n]\{j} is necessarily given by

f[n]\{j} =
∑

0<b<n
(−1)b−j(f{n>···>b} ◦ f{b>···>0})−

∑
0<b<n,b̸=j

(−1)b−jf[n]\{b}.

To complete the proof, it will suffice to verify that this prescription also satisfies (2.3) in
the case I = [n] \ {j}. In what follows, for 0 ≤ a < b ≤ n, let us write [ba] for the set
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{b > b− 1 > · · · > a}. We now compute

(−1)j∂f[n]\{j} =
∑

0<b<n
(−1)b∂(f[nb]f[b0])−

∑
0<b<n,b ̸=j

(−1)b∂f[n]\{b}

=
∑

0<b<n
(−1)b(∂f[nb])f[b] −

∑
0<b<n

(−1)nf[nb](∂f[b])

−
∑

0<b<n,b ̸=j
(−1)b∂f[n]\{b}

=
∑

0<b<c<n
(−1)n−c+bf[nc]f[cb]f[b0] −

∑
0<b<c<n

(−1)n−c+b(f[nb]\{c}f[b])−∑
0<a<b<n

(−1)n+b−af[nb]f[ba]f[a0] +
∑

0<a<b<n
(−1)n+b−af[nb]f[b0]\{a} −∑

0<b<c<n,b ̸=j
(−1)b+n−cf[nc]f[c0]\{b} +

∑
0<b<c<n,b ̸=j

(−1)b+n−cf[n0]\{b,c} +

∑
0<a<b<n,b ̸=j

(−1)b+n−af[na]\{b}f[a0] −
∑

0<a<b<n,b ̸=j
(−1)b+n−af[n0]\{a,b}.

Here the first and third terms cancel, the seventh term cancels with the second except
for those summands with c = j, the fifth term cancels with the fourth except for those
summands with a = j, and the sixth term cancels the eighth except for those terms with
c = j and a = j, respectively. Multiplying by (−1)j , we can rewrite this identity as

∂f[n]\{j} =
∑

0<b<j
(−1)n−1−b(f[nb]\{j} ◦ f[b0]) +

∑
j<b<n

(−1)n−b(f[nb] ◦ f[b0]\{j})

−
∑

0<b<j
(−1)n−1−bf[n]\{b,j} −

∑
j<b<n

(−1)n−bf[n]\{b,j},

which recovers equation (2.3) in the case I = [n] \ {j}.

Remark 2.5.3.11. 00PYThe theory of differential graded categories can be regarded as a special
case of the more general theory of A∞-categories (see [22]). Definition 2.5.3.7 and Theorem
2.5.3.10 have been extended to the setting of A∞-categories by Faonte; we refer the reader
to [20] for details.

2.5.4 The Homotopy Category of a Differential Graded Category

00SWLet C be a differential graded category, and let Ndg
• (C) denote its differential graded

nerve (Definition 2.5.3.7). Then Ndg
• (C) is an ∞-category (Theorem 2.5.3.10). Moreover:

• The objects of the ∞-category Ndg
• (C) are the objects of C (Example 2.5.3.2).

• If X and Y are objects of C, then a morphism from X to Y in the ∞-category
Ndg
• (C) can be identified with a 0-cycle in the chain complex HomC(X,Y )∗ (Example
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2.5.3.3), or equivalently with a morphism from X to Y in the underlying category C◦
of Construction 2.5.2.4.

We now explain how to describe the homotopy category of Ndg
• (C) directly in terms of the

differential graded category C (Proposition 2.5.4.10).

Definition 2.5.4.1.00PZ Let C be a differential graded category containing a pair of objects
X,Y ∈ Ob(C), and let f and f ′ be 0-cycles of the chain complex HomC(X,Y )∗. A homotopy
from f to f ′ is a 1-chain h ∈ HomC(X,Y )1 satisfying ∂(h) = f ′ − f . We will say that f and
f ′ are homotopic if there exists a homotopy from f to f ′: that is, if we have an equality
[f ] = [f ′] in the homology group H0(HomC(X,Y )).

Example 2.5.4.2.00Q0 Let A be an additive category, let C∗ and D∗ be chain complexes with
values in A, and let f, f ′ : C∗ → D∗ be chain maps, which we regard as 0-cycles in the
mapping complex HomCh(A)(C∗, D∗)∗ in the differential graded category Ch(A) of Example
2.5.2.5. Let h = {hn : Cn → Dn+1}n∈Z be a collection of morphisms, which we regard as a
1-chain of HomCh(A)(C∗, D∗)∗. Then h is a homotopy from f to f ′ (in the sense of Definition
2.5.4.1) if and only if it is a chain homotopy from f to f ′ (in the sense of Definition 2.5.0.5).
In particular, f and f ′ are homotopic morphisms of the differential graded category Ch(A)
(in the sense of Definition 2.5.4.1) if and only if they are chain homotopic (in the sense of
Definition 2.5.0.5).

Remark 2.5.4.3.00Q1 Let C be a differential graded category containing a pair of objects
X,Y ∈ Ob(C), and let f and g be 0-cycles of the chain complex HomC(X,Y )∗. Then giving
a homotopy from f to g in the sense of Definition 2.5.4.1 is equivalent to giving a homotopy
from f to g as morphisms in the ∞-category Ndg

• (C) (Definition 1.4.3.1): this follows from
Example 2.5.3.4. In particular, f and g are homotopic in the sense of Definition 2.5.4.1 if
and only if they are homotopic in the sense of Definition 1.4.3.1.

Remark 2.5.4.4.00Q2 Let C be a differential graded category containing objectsX, Y , and Z, and
suppose we are given 0-cycles f ∈ HomC(X,Y )0, g ∈ HomC(Y,Z)0, and h ∈ HomC(X,Z)0.
Then Example 2.5.3.4 supplies an equivalence between the following data:

• The datum of a homotopy from g ◦ f to h, in the sense of Definition 2.5.4.1.

• The datum of a 2-simplex of Ndg
• (C) witnessing h as a composition of f and g, in the

sense of Definition 1.4.4.1.

In particular, h is homotopic to the composition g ◦ f (in the differential graded category C)
if and only if it is a composition of g and f (in the ∞-category Ndg

• (C)).

Proposition 2.5.4.5.00Q3 Let C be a differential graded category containing a pair of objects
X,Y ∈ Ob(C). Let f and g be 0-cycles of the chain complex HomC(X,Y )∗ which are
homotopic. Then:
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(a) For any object W ∈ Ob(C) and any 0-cycle u ∈ HomC(W,X)0, the composite cycles
f ◦ u and g ◦ u are homotopic.

(b) For any object Z ∈ Ob(C) and any 0-cycle v ∈ HomC(Y, Z)0, the composite cycles v ◦ f
and v ◦ g are homotopic.

Proof. By virtue of Remarks 2.5.4.3 and 2.5.4.4, we can regard Proposition 2.5.4.5 as a
special case of Proposition 1.4.4.7. However, it is easy to prove directly. If h ∈ HomC(X,Y )1
is a homotopy from f to g and u is a 0-cycle in HomC(W,X)0, then the calculation

∂(h ◦ u) = ((∂h) ◦ u)− (h ◦ (∂u))
= (∂h) ◦ u
= (g − f) ◦ u
= (g ◦ u)− (f ◦ u)

shows that (h ◦ u) ∈ HomC(W,Y )1 is a homotopy from f ◦ u to g ◦ u. This proves (a), and
(b) follows from a similar argument.

Construction 2.5.4.6 (The Homotopy Category of a Differential Graded Category). 00Q4Let C
be a differential graded category. We define a category hC as follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y ∈ Ob(hC) = Ob(C), we define

HomhC(X,Y ) = H0(HomC(X,Y )).

If f is a 0-cycle of the chain complex HomC(X,Y )∗, let [f ] denote its image in the
homology group H0(HomC(X,Y )) = HomhC(X,Y ).

• For each object X ∈ Ob(hC) = Ob(C), the identity morphism from X to itself in the
category hC is given by [idX ], where idX is the identity morphism from X to itself in
C.

• For every triple of objects X,Y, Z ∈ Ob(hC) = Ob(C), the composition law

HomhC(Y,Z)×HomhC(X,Y )→ HomhC(X,Z)

is characterized by the formula [g] ◦ [f ] = [g ◦ f ] for f ∈ Z0(HomC(X,Y )) and
g ∈ Z0(HomC(Y, Z)) (this composition law is well-defined by virtue of Proposition
2.5.4.5).

We will refer to hC as the homotopy category of the differential graded category C.
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Remark 2.5.4.7.00Q5 Passage from a differential graded category C to its homotopy category
hC can be regarded as a special case of Remark 2.1.7.4, applied to the lax monoidal functor

Ch(Z)→ Set (C∗, d) 7→ H0(C)

with tensor constraints given by

µC,D : H0(C)×H0(D)→ H0(C ⊠D) ([x], [y]) 7→ [x⊠ y].

Remark 2.5.4.8.00Q6 Let C be a differential graded category, with underlying category C◦
(Construction 2.5.2.4) and homotopy category hC (Construction 2.5.4.6). There is an evident
functor C◦ → hC which is the identity on objects, given on morphisms by the construction

HomC◦(X,Y ) = Z0(HomC(X,Y )) ↠ H0(HomC(X,Y )) = HomhC(X,Y ) f 7→ [f ].

Example 2.5.4.9 (The Homotopy Category of Chain Complexes).00Q7 Let A be an additive
category, and let Ch(A) be the differential graded category of chain complexes with values
in A (Example 2.5.2.5). Then the homotopy category of Ch(A) in the sense of Construction
2.5.4.6 agrees with the homotopy category hCh(A) introduced in Construction 2.5.0.9.

Proposition 2.5.4.10.00Q8 Let C be a differential graded category and let Ndg
• (C) denote the

differential graded nerve of C. Then the homotopy category hNdg
• (C) (Definition 1.4.5.3) is

canonically isomorphic to the homotopy category hC (Construction 2.5.4.6).

Proof. Combine Remarks 2.5.4.3 and 2.5.4.4.

2.5.5 Digression: The Homology of Simplicial Sets

00Q9 Among the most useful invariants studied in algebraic topology are the singular homology
groups H∗(X; Z) of a topological space X. These are defined as the homology groups of the
singular chain complex

· · · ∂−→ C3(X; Z) ∂−→ C2(X; Z) ∂−→ C1(X; Z) ∂−→ C0(X; Z),

where Cn(X; Z) denotes the free abelian group generated by the set HomTop(|∆n|, X) of
singular n-simplices of X, and the boundary operator ∂ is given by the formula

∂ : Cn(X; Z)→ Cn−1(X; Z) ∂(σ) =
n∑
i=0

(−1)idni (σ).

We can therefore view the passage from the topological space X to its homology H∗(X; Z)
as proceeding in four stages:

• We first extract from the topological space X its singular simplicial set Sing•(X)
(Construction 1.2.2.2).
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• We then replace Sing•(X) by the simplicial abelian group Z[Sing•(X)], carrying each
object [n] ∈∆op to the free abelian group Z[Singn(X)] generated by the set Singn(X).

• We next regard the abelian groups {Z[Singn(X)]}n≥0 as the terms of a chain complex
(C∗(X; Z), ∂), where the differential ∂ is given by the alternating sum of the face
operators of the simplicial abelian group Z[Sing•(X)].

• For each integer n, we define Hn(X; Z) to be the nth homology group of the chain
complex (C∗(X; Z), ∂) (Definition 2.5.1.4).

In other words, the functor X 7→ Hn(X; Z) factors as a composition

Top Sing•−−−→ Set∆
Z[−]−−−→ Ab∆

C∗−−→ Ch(Z) Hn−−→ Ab,

where Ab∆ denotes the category of simplicial abelian groups and C∗ : Ab∆ → Ch(Z) is
given by the following:

Construction 2.5.5.1 (The Moore Complex). 00QALet A• be a semisimplicial abelian group
(Definition 1.1.1.2). For each n ≥ 1, we define a group homomorphism ∂ : An → An−1 by
the formula

∂(σ) =
n∑
i=0

(−1)idni (σ),

where dni : An → An−1 is the ith face operator (Construction 1.1.1.4). For n ≥ 2 and σ ∈ An,
we compute

∂2(σ) = ∂(
n∑
i=0

(−1)idni (σ))

=
n∑
i=0

n−1∑
j=0

(−1)i+j(dn−1
j dni )(σ)

= 0

where the final equality follows from the identity dn−1
i ◦ dnj = dn−1

j−1 ◦ dni for 0 ≤ i < j ≤ n

(see Remark 1.1.1.7). We let C∗(A) denote the chain complex of abelian groups given by

Cn(A) =

An if n ≥ 0
0 otherwise,

where the differential is given by ∂. We will refer to C∗(A) as the Moore complex of the
semisimplicial abelian group A•.

If A• is a simplicial abelian group, we let C∗(A) denote the Moore complex of the
semisimplicial abelian group underlying A• (Remark 1.1.1.3).
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Definition 2.5.5.2 (Homology of Simplicial Sets).00QB Let S• be a simplicial set and let Z[S•]
denote the simplicial abelian group freely generated by S•. We let C∗(S; Z) denote the
Moore complex of Z[S•]. We will refer to C∗(S; Z) as the chain complex of S•. For each
integer n, we denote the nth homology group of C∗(S; Z) by Hn(S; Z) and refer to it as the
nth homology group of S (with coefficients in Z).

Example 2.5.5.3.00QC Let X be a topological space. Then the singular chain complex C∗(X; Z)
is the chain complex of the singular simplicial set Sing•(X). In particular, the homology
groups of the simplicial set Sing•(X) are the usual singular homology groups of the topological
space X.

Example 2.5.5.4.00QD Let S• = ∆0 be the standard 0-simplex. Then S• is a simplicial set
having a single simplex of each dimension. Consequently, the chain complex C∗(S; Z) is given
by Z in each nonnegative degree. For n > 0, the differential Z ≃ Cn(S; Z) ∂−→ Cn−1(S; Z) ≃ Z
is given by multiplication by the integer

n∑
i=0

(−1)i =

0 if n is odd
1 if n is even,

as indicated in the diagram

· · · → Z 0−→ Z 1−→ Z 0−→ Z 1−→ Z 0−→ Z 1−→ Z 0−→ Z .

It follows that the homology groups of S• are given by

Hn(S; Z) =

Z if n = 0
0 otherwise.

Note that although the homology of the simplicial set S• = ∆0 is concentrated in degree
zero, the chain complex C∗(S; Z) is not. Essentially, this is because S• has degenerate
simplices in each dimension n > 0 which do not contribute to its homology. This is a special
case of a more general phenomenon.

Notation 2.5.5.5.00QE Let A• be a simplicial abelian group. For each n ≥ 0, let Dn(A)
denote the subgroup of Cn(A) = An generated by the images of the degeneracy operators
{sn−1
i : An−1 → An}0≤i≤n−1. By convention, we set Dn(A) = 0 for n < 0.

Proposition 2.5.5.6.00QF Let A• be a simplicial abelian group. For every positive integer n,
the boundary operator ∂ : Cn(A) → Cn−1(A) carries the subgroup Dn(A) into Dn−1(A).
Consequently, we can regard D∗(A) as a subcomplex of the Moore complex C∗(A).
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Proof. Choose an element σ ∈ Dn(A); we wish to show that ∂(σ) belongs to Dn−1(A).
Without loss of generality, we may assume that σ = sn−1

i (τ) for some 0 ≤ i ≤ n − 1 and
some τ ∈ An−1. We now compute

∂(σ) =
n∑
j=0

(−1)jdnj (σ)

= (
i−1∑
j=0

(−1)jdnj sn−1
i τ) + (−1)idni sn−1

i τ + (−1)i+1dni+1s
n−1
i τ + (

n∑
j=i+2

(−1)jdnj sn−1
i τ)

= (
∑
j<i

(−1)jsn−2
i−1 d

n−1
j τ) + (−1)iτ + (−1)i+1τ + (

n∑
j=i+2

(−1)jsn−2
i dn−1

j−1 τ)

∈ im(sn−2
i−1 ) + im(sn−2

i )
⊆ Dn−1(A).

Construction 2.5.5.7 (The Normalized Moore Complex: First Construction). 00QGLet A• be
a simplicial abelian group. We let N∗(A) denote the chain complex given by the quotient
C∗(A)/D∗(A), where C∗(A) is the Moore complex of Construction 2.5.5.1 and D∗(A) ⊆ C∗(A)
is the subcomplex of Proposition 2.5.5.6. We will refer to N∗(A) as the normalized Moore
complex of the simplicial abelian group A•.

Put more informally, the normalized Moore complex N∗(A) of a simplicial abelian group
A• is obtained the Moore complex C∗(A) by forming the quotient by degenerate simplices
of A•.

Remark 2.5.5.8. 00SXBy taking Construction 2.5.5.7 as our definition of the chain complex
N∗(A), we have adopted the perspective that N∗(A) is a quotient of the Moore complex
C∗(A). However, it can also be realized as a subcomplex of the Moore complex C∗(A): see
Construction 2.5.6.15 and Proposition 2.5.6.17.

Construction 2.5.5.9 (The Normalized Chain Complex of a Simplicial Set). 00QHLet S• be
a simplicial set and let Z[S•] be the simplicial abelian group freely generated by S•. We
let N∗(S; Z) denote the normalized Moore complex of Z[S•]. This chain complex can be
described more concretely as follows:

• For each integer n ≥ 0, we can identify Nn(S) with the free abelian group generated
by the set Snd

n of nondegenerate n-simplices of S•.

• The boundary map ∂ : Nn(S)→ Nn−1(S) is given by the formula

∂(σ) =
n∑
i=0

(−1)i
dni (σ) if dni (σ) is nondegenerate

0 otherwise.
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We will refer to N∗(S; Z) as the normalized chain complex of the simplicial set S•.

Example 2.5.5.10.00QJ Let S• = ∆0 be the standard 0-simplex. Then the normalized chain
complex N∗(S; Z) can be identified with abelian group Z, regarded as a chain complex
concentrated in degree zero. Note that the calculation of Example 2.5.5.4 shows that the
quotient map C∗(S; Z) ↠ N∗(S; Z) induces an isomorphism on homology.

Example 2.5.5.10 is a special case of the following:

Proposition 2.5.5.11.00QK For every simplicial abelian group A•, the quotient map C∗(A) ↠
N∗(A) is a quasi-isomorphism of chain complexes: that is, it induces an isomorphism on
homology groups.

Remark 2.5.5.12.00QL In the situation of Proposition 2.5.5.11, an even stronger statement holds:
the quotient map C∗(A) ↠ N∗(A) is a chain homotopy equivalence (Definition 2.5.0.5).

We will give the proof of Proposition 2.5.5.11 in §2.5.6 (see Proposition 2.5.6.21).

Example 2.5.5.13.00QM Let S• be a simplicial set. It follows from Proposition 2.5.5.11 that the
quotient map C∗(S; Z) ↠ N∗(S; Z) induces an isomorphism on homology. In particular, the
homology groups H∗(S; Z) of the simplicial set S• (in the sense of Definition 2.5.5.2) can be
computed by means of the normalized chain complex N∗(S; Z). This has various practical
advantages. For example, if S• is a simplicial set of dimension ≤ d, then the chain complex
N∗(S; Z) is concentrated in degrees ≤ d. It follows that the homology groups H∗(S; Z) are
also concentrated in degrees ≤ d, which is not immediately obvious from the definition (note
that the chain complex C∗(S; Z) is never concentrated in degrees ≤ d, except in the trivial
case where S• is empty).

Example 2.5.5.14.00QN Let S• = N•(Q) be the nerve of a partially ordered set Q. Suppose
that Q has a least element e, which determines a map of simplicial sets i : ∆0 → S• which is
right inverse to the projection map q : S• → ∆0. Passing to normalized chain complexes, we
obtain chain maps

î : Z[0] ≃ N∗(∆0; Z) ↪→ N∗(S•; Z) q̂ : N∗(S•; Z)→ N∗(∆0; Z) ≃ Z[0].

We claim that î and q̂ are chain homotopy inverse to one another. In one direction, this is
clear: the composition q̂ ◦ î is equal to the identity. We complete the proof by constructing
a chain homotopy from the composite map î ◦ q̂ to the identity id on N∗(S•; Z). This
chain homotopy is given by a collection of maps hm : Nm(S; Z) → Nm+1(S; Z), given on
nondegenerate simplices by the construction

(q0 < q1 < · · · < qm) 7→

0 if q0 = e

(e < q0 < q1 < · · · < qm) otherwise.
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In particular, if Q is a partially ordered set with a least element, then the homology
groups of the nerve S• = N•(Q) are given by

H∗(S; Z) =

Z if ∗ = 0
0 otherwise.

Variant 2.5.5.15 (Relative Chain Complexes). 00QPLet S• be a simplicial set and let S′• ⊆ S•
be a simplicial subset. Then we can identify the free simplicial abelian group Z[S′•] with a
simplicial subgroup of Z[S•]. We let C∗(S, S′; Z) and N∗(S, S′; Z) denote the Moore complex
and normalized Moore complex of the simplicial abelian group Z[S•]/Z[S′•]. By virtue of
Proposition 2.5.5.11, these complexes have the same homology groups, which we denote by
H∗(S, S′; Z) and refer to as the relative homology groups of the pair (S′• ⊆ S•).

2.5.6 The Dold-Kan Correspondence

00QQLet Ab denote the category of abelian groups, and Ab∆ = Fun(∆op,Ab) the category
of simplicial abelian groups. The formation of normalized Moore complexes (Construction
2.5.5.7) determines a functor N∗ : Ab∆ → Ch(Z). Our goal in this section is to prove the
following fundamental result, which was discovered independently by Dold ([14]) and Kan
([36]):

Theorem 2.5.6.1 (The Dold-Kan Correspondence). 00QRThe normalized Moore complex functor
determines an equivalence of categories N∗ : Ab∆ → Ch(Z)≥0.

Remark 2.5.6.2. 00QSTheorem 2.5.6.1 admits many generalizations. For example, if A is
an abelian category (Definition [?]), then a variant of Construction 2.5.5.9 supplies an
equivalence of categories

N∗ : {Simplicial objects of A} → Ch(A)≥0,

where Ch(A)≥0 denotes the category of (nonnegatively graded) chain complexes with values
in A (see Theorem [?]). For more general categories A, one can think of the category of
simplicial objects A∆ = Fun(∆op,A) as a replacement for the category of chain complexes
Ch(A)≥0, which is better behaved in “non-additive” situations.

We begin by constructing a right adjoint to the normalized Moore complex functor.

Construction 2.5.6.3 (The Eilenberg-MacLane Functor). 00QTLet n be a nonnegative integer
and let N∗(∆n; Z) denote the normalized chain complex of the standard n-simplex (Con-
struction 2.5.5.9). For every chain complex M∗, we let Kn(M∗) denote the collection of chain
maps from N∗(∆n; Z) into M∗ (which we regard as an abelian group under addition). Note
that the construction [n] 7→ N∗(∆n; Z) determines a functor from the simplex category ∆ to
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the category of chain complexes, so we can regard [n] 7→ Kn(M∗) as a functor from ∆op to
the category of abelian groups. We denote this simplicial abelian group by K(M∗), and refer
to it as the Eilenberg-MacLane space associated to M∗.

Remark 2.5.6.4.00QU Let M∗ be a chain complex. We will generally not distinguish in notation
between the simplicial abelian group K(M∗) and its underlying simplicial set. Note that
K(M∗) is automatically a Kan complex (Proposition 1.2.5.9), which motivates our usage of
the term “space”.

Example 2.5.6.5.00QV Let M∗ be a chain complex. Then we have canonical isomorphisms

K0(M∗) ≃ HomCh(Z)(N∗(∆0; Z),M∗) ≃ HomCh(Z)(Z[0],M∗) ≃ Z0(M).

In other words, we can identify vertices of the simplicial set K(M∗) with 0-cycles of the
chain complex M∗.

Example 2.5.6.6.00QW Let M∗ be a chain complex, and let x, y ∈ M0 be a pair of 0-cycles,
which we identify with vertices of the simplicial set K(M∗). The following conditions are
equivalent:

(a) The vertices x and y belong to the same connected component of the simplicial set
K(M∗) (Definition 1.2.1.8).

(b) There exists an edge e of the simplicial set K(M∗) connecting x to y (so that d1
1(e) = x

and d1
0(e) = y).

(c) The cycles x and y are homologous: that is, there exists an element u ∈M1 satisfying
∂(u) = x− y.

The equivalence of (a)⇔ (b) follows from the fact that K(M∗) is a Kan complex (see Remark
1.4.6.13), while the equivalence (b)⇔ (c) follows immediately from the construction of the
simplicial set K(M∗). It follows that the set of connected components π0(K(M∗)) can be
identified with the 0th homology group H0(M).

Example 2.5.6.7.00QZ Let G be an abelian group and let G[1] denote the chain complex given
by the single group G, concentrated in degree 0. To supply an n-simplex of the simplicial set
K(G[0]), one must give a chain map σ : N∗(∆n; Z)→ G[0]. By definition, a homomorphism
of graded abelian groups from N∗(∆n; Z) to G[0] is given by a tuple {gi}0≤i≤n of elements
of G, indexed by the set [n] = {0 < 1 < · · · < n} of vertices of ∆n. Under this identification,
the chain maps can be identified with those tuples {gi}0≤i≤n which are constant: that is,
which satisfy gi = gj for all i, j ∈ [n]. It follows that the Eilenberg-MacLane space K(G[0])
can be identified with the constant simplicial abelian group G.
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Example 2.5.6.8. 00R0Let G be an abelian group and let G[1] denote the chain complex
consisting of the single abelian group G, concentrated in degree 1. To supply an n-simplex
of the simplicial set K(G[1]), one must give a chain map σ : N∗(∆n; Z) → G[1]. By
definition, a homomorphism of graded abelian groups from N∗(∆n; Z) to G[1] is given by a
system {ai,j}0≤i<j≤n of elements of G, indexed by the set of all nondegenerate edges of ∆n.
Under this identification, the chain maps can be identified with those systems {gi,j}0≤i<j≤n
satisfying gi,j + gj,k = gi,k for 0 ≤ i < j < k ≤ n. It follows that the Eilenberg-MacLane
space K(G[1]) can be identified with the classifying simplicial set B•G of Construction
1.3.2.5.

We now consider a particularly important special case of Construction 2.5.6.3.

Construction 2.5.6.9 (Eilenberg-MacLane Spaces). 00QXLet G be an abelian group, let n be a
nonnegative integer, and let G[n] denote the chain complex consisting of the single abelian
group G, concentrated in degree n (Example 2.5.1.2). We will denote the simplicial abelian
group K(G[n]) by K(G,n) and refer to it as the nth Eilenberg-MacLane space of G.

For small values of n, it will be useful to consider allow more general coefficients.

• If G is any group (not necessarily abelian), we let K(G, 1) denote the classifying
simplicial set B•(G) (Construction 1.3.2.5).

• If G is any set, we let K(G, 0) denote the onstant simplicial set G (Construction
1.1.5.2).

By virtue of Examples 2.5.6.7 and 2.5.6.8, this recovers the first definition in the case where
G is an abelian group.

Notation 2.5.6.10. 00R1Let M∗ be a chain complex. Then every n-simplex σ of the simplicial
set K(M∗) can be identified with a map of chain complexes N∗(∆n; Z)→M∗, which carries
the generator of Nn(∆n; Z) to an n-chain ṽ(σ) ∈Mn. Moreover:

• Since σ is a morphism of chain complexes, we have

∂(ṽ(σ)) =
n∑
i=0

(−1)iṽ(dni σ).

In other words, the construction σ 7→ ṽ(σ) determines a chain map from the Moore
complex C∗(K(M∗)) to the chain complex M∗.

• If σ is a degenerate n-simplex of K(M∗), then the map of chain complexes σ :
N∗(∆n; Z)→M∗ factors through N∗(∆m; Z) for some m < n, and therefore annihilates
the generator of Nn(∆n; Z). It follows that ṽ factors (uniquely) as a composition

C∗(K(M∗)) ↠ N∗(K(M∗)) v−→M∗.
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We will refer to the chain map v : N∗(K(M∗))→M∗ as the counit map.

Proposition 2.5.6.11.00R2 Let M∗ be a chain complex and let v : N∗(K(M∗)) → M∗ be the
counit map of Notation 2.5.6.10. Then, for any simplicial abelian group A•, the composite
map

θ : HomAb∆(A•,K(M∗))→ HomCh(Z)(N∗(A),N∗(K(M∗))) v◦−→ HomCh(Z)(N∗(A),M∗)

is an isomorphism of abelian groups.

Proof. Let us say that a simplicial abelian group A• is free if it can be written as a (possibly
infinite) direct sum of simplicial abelian groups of the form Z[∆n]. Note that every simplicial
abelian group A• admits a surjection P• ↠ A•, where P• is free (for example, we can take P•
to be the direct sum ⊕

σ Z[∆dim(σ)] where σ ranges over all the simplices of A•). Applying
this observation twice, we observe that every simplicial abelian group A• admits a resolution

Q• → P• ↠ A• → 0,

which determines a commutative diagram of exact sequences

0 // HomAb∆(A•,K(M∗)) //

θ

��

HomAb∆(P•,K(M∗))

θ′

��

// HomAb∆(Q•,K(M∗))

θ′′

��
0 // HomCh(Z)(N∗(A),M∗) // HomCh(Z)(N∗(P ),M∗) // HomCh(Z)(N∗(Q),M∗).

Consequently, to prove that θ is an isomorphism, it will suffice to show that θ′ and θ′′ are
isomorphisms. In other words, we may assume without loss of generality that the simplicial
abelian group A• is free. Decomposing A• as a direct sum, we can further reduce to the
case A• = Z[∆n], in which case the result follows immediately from the definitions.

Corollary 2.5.6.12.00R3 The normalized Moore complex functor N∗ : Ab∆ → Ch(Z) admits a
right adjoint K : Ch(Z)→ Ab∆, given on objects by Construction 2.5.6.3.

Note that we can also regard M∗ 7→ K(M∗) as a functor from chain complexes to
simplicial sets (by neglecting the group structure on K(M∗). This simplicial set also has a
universal property:

Corollary 2.5.6.13.00R4 The normalized chain complex functor

N∗(−; Z) : Set∆ → Ch(Z)

admits a right adjoint, given on objects by the functor M∗ 7→ K(M∗) of Construction 2.5.6.3.
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Remark 2.5.6.14. 00R5When regarded as a functor from Ch(Z) to the category of simplicial
sets, the functor M∗ 7→ K(M∗) fits into the paradigm of Variant 1.2.2.8: it is the functor
SingQ• associated to the cosimplicial chain complex

Q : ∆→ Ch(Z) [n] 7→ N∗(∆n; Z).

To deduce Theorem 2.5.6.1, it is convenient to use a different description of the normalized
Moore complex.

Construction 2.5.6.15 (The Normalized Moore Complex: Second Construction). 00R6Let
A• be a simplicial abelian group. For each n ≥ 0, we let Ñn(A) denote the subgroup of
Cn(A) = An consisting of those elements x which satisfy dni (x) = 0 for 1 ≤ i ≤ n. Note that
if x satisfies this condition, then we have

∂(x) =
n∑
i=0

(−1)idni (x) = dn0 (x).

Moreover, the identity dn−1
i dn0 (x) = dn−1

0 dni+1(x) = 0 shows that ∂(x) = dn0 (x) belongs to
the subgroup Ñn−1(A) ⊆ Cn−1 = An−1. We can therefore regard Ñ∗(A) as a subcomplex of
the Moore complex C∗(A).

In the situation of Construction 2.5.6.15, we will abuse terminology by referring to the
chain complex Ñ∗(A) as the normalized Moore complex of A•. This abuse is justified by the
observation that the chain complexes Ñ∗(A) is canonically isomorphic to the normalized
Moore complex N∗(A) of Construction 2.5.5.7 (Proposition 2.5.6.17 below). We will deduce
this from the following more precise statement:

Lemma 2.5.6.16. 00R7Let A• be a simplicial abelian group and let n be a nonnegative integer.
Then the map

f :
⊕

α:[n]↠[m]
Ñm(A)→ An {xα} 7→

∑
α∗(xα)

is an isomorphism of abelian groups. Here the direct sum is indexed by surjective nonde-
creasing maps α : [n]→ [m] for 0 ≤ m ≤ n, and α∗ : Am → An denotes the associated group
homomorphism.

Proof. We first prove that f is surjective. The proof proceeds by induction on n. By virtue of
our inductive hypothesis, the image of f contains the subgroups Ñn(A),Dn(A) ⊆ Cn(A) = An.
It will therefore suffice to show that the composite map

Ñn(A) ↪→ Cn(A) ↠ Cn(A)/Dn(A)

is surjective. Fix an element x ∈ Cn(A)/Dn(A). For each x ∈ Cn(A) representing x, let
ix be the smallest nonnegative integer such that dnj (x) vanishes for ix < j ≤ n. Without
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loss of generality, we may assume that x is chosen so that i = ix is as small as possible.
We wish to prove that i = 0 (so that x belongs to Nn(A)). Assume otherwise, and set
y = x− (sn−1

i−1 ◦ dni )(x). Then y is congruent to x modulo Dn(A), and for i ≤ j ≤ n we have

dnj (y) = dnj (x)− (dnj ◦ sn−1
i−1 ◦ d

n
i )(x)

= dnj (x)−

dni (x) if i = j

(sn−2
i−1 ◦ d

n−1
j−1 ◦ dni )(x) if i < j.

= dnj (x)−

dni (x) if i = j

(sn−2
i−1 ◦ d

n−1
i ◦ dnj )(x) if i < j.

= 0.

It follows that iy < i = ix, contradicting our choice of x.
We now prove that f is injective. Suppose otherwise, so that there exists a nonzero

element
{xα} ∈

⊕
α:[n]↠[m]

Ñm(A)

which is annihilated by f . Then there exists some surjective map β : [n] ↠ [k] such that xβ
is nonzero. Assume that k has been chosen as small as possible. Moreover, we may assume
that β is maximal among nondecreasing maps [n] ↠ [k] such that xβ ̸= 0: in other words,
that for any other map α : [n] ↠ [k] satisfying β(i) ≤ α(i) for 0 ≤ i ≤ n, we either have
β = α or xα = 0. Let γ : [k] → [n] be the map given by γ(j) = min{i ∈ [n] : β(i) = j}.
Then γ is a nondecreasing map satisfying β ◦ γ = id[k] and γ(0) = 0. We then have

γ∗f({xα}) = γ∗(
∑

α:[n]↠[m]
α∗(xα))

=
∑

α:[n]↠[m]
(α ◦ γ)∗(xα).

We now inspect the summands appearing on the right hand side:

• Let α : [n] ↠ [m] be a surjective nondecreasing function, and suppose that the
composite map [k] γ−→ [n] α−→ [m] is not surjective. Then we can choose 0 ≤ i ≤ m such
that i does not belong the image of α◦γ. Then the homomorphism (α◦γ)∗ : Am → Ak
factors through the face operator dmi : Am → Am−1. Note that we must have i > 0
(since γ(0) = 0 and α(0) = 0), so that xα is annihilated by dmi (by virtue of our
assumption that xα belongs to the subgroup Nm(A) ⊆ Am) and therefore also by
(α ◦ γ)∗.

• Let α : [n] ↠ [m] be a surjective nondecreasing function, and suppose that the
composite map [k] γ−→ [n] α−→ [m] is surjective but not injective. In this case, we must
have m < k, so that xα vanishes by virtue of the minimality assumption on k.
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• Let α : [n] ↠ [m] be a surjective map, and suppose that the composite map [k] γ−→
[n] α−→ [m] is bijective, so that m = k and α ◦ γ is the identity on [k]. For 0 ≤ i ≤ n,
we have (γ ◦ β)(i) ≤ i (by the definition of γ), so that

β(i) = ((α ◦ γ) ◦ β)(i) = (α ◦ (γ ◦ β))(i) ≤ α(i).

Invoking our maximality assumption on β, we conclude that either α = β or xα
vanishes.

Combining these observations, we obtain an equality

xβ =
∑

α:[n]↠[m]
(α ◦ γ)∗(xα) = γ∗f({xα}) = 0,

contradicting our choice of β.

Proposition 2.5.6.17. 00R9Let A• be a simplicial abelian group. Then the composite map
Ñ∗(A) ↪→ C∗(A) ↠ N∗(A) is an isomorphism of chain complexes. In other words, the Moore
complex C∗(A) splits as a direct sum of the subcomplex Ñ∗(A) of Construction 2.5.6.15 and
the subcomplex D∗(A) of Proposition 2.5.5.6.

Proof. The surjectivity of the composite map Ñ∗(A) ↪→ C∗(A) ↠ N∗(A) follows from Lemma
2.5.6.16. Moreover, it follows by induction that the subgroup Dn(A) ⊆ An is generated by
the images of the maps

Ñm(A) ↪→ Am
α∗−→ An

where α : [n] ↠ [m] is a nondecreasing surjection and m < n, so that the injectivity also
follows from Lemma 2.5.6.16.

Remark 2.5.6.18. 00R8Let f : A• → B• be a morphism of simplicial abelian groups. By virtue
of Proposition 2.5.6.17 and Lemma 2.5.6.16, the following assertions are equivalent:

• For every integer n ≥ 0, the map of abelian groups An → Bn is surjective (respectively
split surjective, injective, split injective).

• For every integer n ≥ 0, the map of abelian groups Nn(A) → Nn(B) is surjective
(respectively split surjective, injective, split injective).

Warning 2.5.6.19. 00RALet A• be a simplicial abelian group, and let Aop
• be the opposite

simplicial abelian group (obtained by precomposing the functor A• : ∆op → Ab with the
order-reversal involution Op : ∆op →∆op of Notation 1.4.2.1). Then there is a canonical
isomorphism of Moore complexes ψ : C∗(Aop) ≃ C∗(A), given by ψ(x) = (−1)nx for x ∈ An.
This isomorphism carries the subcomplex D∗(Aop) generated by the degenerate simplices of
Aop
• to the subcomplex D∗(A) generated by the degenerate simplices of A•, and therefore

https://kerodon.net/tag/00R9
https://kerodon.net/tag/00R8
https://kerodon.net/tag/00RA


2.5. DIFFERENTIAL GRADED CATEGORIES 329

descends to an isomorphism of normalized Moore complexes N∗(Aop) ≃ N∗(A), where we
view N∗(A) and N∗(Aop) as quotients of C∗(A) and C∗(Aop) (as in Construction 2.5.5.7).
Beware that the isomorphism ψ does not carry the subcomplex Ñ∗(Aop) ⊆ C∗(Aop) of
Construction 2.5.6.15 to the subcomplex Ñ∗(A) ⊆ C∗(A). Instead, it carries Ñ∗(Aop) to
a different subcomplex of C∗(A), given in degree n by those elements x ∈ Cn(A) = An
satisfying dni (x) = 0 for 0 ≤ i < n, and with differential given by x 7→ (−1)ndnn(x). This
subcomplex is yet another incarnation of the normalized Moore complex of A•, which is
canonically isomorphic to Ñ∗(A) but not identical as a subcomplex of C∗(A).

Stated more informally: the definition of the normalized Moore complex N∗(A) as a
quotient of C∗(A) (via Construction 2.5.5.7) is compatible with passage from a simplicial
abelian group A• to its opposite Aop

• , but the realization as a subcomplex of C∗(A) (via
Construction 2.5.6.15) is not.

Remark 2.5.6.20.00RB Let A• be a simplicial abelian group. Then Warning 2.5.6.19 supplies
a canonical isomorphism of normalized Moore complexes N∗(A) ≃ N∗(Aop). By virtue of
Theorem 2.5.6.1, this isomorphism can be lifted uniquely to an isomorphism of simplicial
abelian groups φ : A• ≃ Aop

• . The isomorphism φ is characterized by the requirement that
for every n-simplex x ∈ An, we have φ(x) ≡ (−1)nx modulo degenerate simplices of A•.

We now use Proposition 2.5.6.17 to deduce Proposition 2.5.5.11, which was stated without
proof in §2.5.5. The statement can be reformulated as follows:

Proposition 2.5.6.21.00RC Let A• be a simplicial abelian group. Then:

(a) The quotient map C∗(A) ↠ N∗(A) induces an isomorphism on homology.

(b) The inclusion map Ñ∗(A) ↪→ C∗(A) induces an isomorphism on homology.

(c) The subcomplex D∗(A) ⊆ C∗(A) of Notation 2.5.5.5 is acyclic: that is, its homology
groups are trivial.

Proof. By virtue of Proposition 2.5.6.17, assertions (a), (b), and (c) are equivalent. It will
therefore suffice to prove (b). Note that the map Ñ∗(A) ↪→ C∗(A) is the inclusion of a
direct summand (Proposition 2.5.6.17) and is therefore automatically injective on homology.
To show that it also induces a surjective map, it will suffice to show that every n-cycle
x ∈ Cn(A) is homologous to an element of the subgroup Ñn(A). Let i denote the smallest
nonnegative integer for which the faces dnj (x) vanish for i < j ≤ n; our proof will proceed by
induction on i. If i = 0, then x belongs to Ñn(A), and there is nothing to prove. Otherwise,

https://kerodon.net/tag/00RB
https://kerodon.net/tag/00RC


330 CHAPTER 2. EXAMPLES OF ∞-CATEGORIES

let y ∈ Cn(A) denote the boundary given by ∂(sni (x)). We then compute

y = ∂(sni (x))

=
n+1∑
j=0

(−1)j(dn+1
j ◦ sni )(x)

= (
i−1∑
j=0

(−1)j(sn−1
i−1 ◦ d

n
j )(x)) + (−1)ix+ (−1)i+1x+ (

n∑
j=i+2

(−1)j(sn−1
i ◦ dnj−1)(x))

= sn−1
i−1 (

i−1∑
j=0

(−1)jdnj (x))

= sn−1
i−1 ((

i−1∑
j=0

(−1)jdnj (x)) + (
n∑

j=i+1
(−1)jdnj (x)))

= sn−1
i−1 (∂(x)− (−1)idni (x))

= (−1)i+1(sn−1
i−1 ◦ d

n
i )(x).

Set x′ = x+ (−1)iy. For j ≥ i we compute

dnj (x′) = dnj (x) + (−1)idnj (y)
= dnj (x)− (dnj ◦ sn−1

i−1 ◦ d
n
i )(x)

=

dnj (x)− dni (x) if j = i

dnj (x)− (sn−2
i−1 ◦ d

n−1
i ◦ dnj )(x) if j > i

= 0.

Our inductive hypothesis then guarantees that x′ is homologous to an element of the subgroup
Ñn(A). Since x is homologous to x′, it follows that x is also homologous to an element of
the subgroup Ñn(A).

Warning 2.5.6.22. 00RDLet A• be a semisimplicial abelian group. Then we can still apply
Construction 2.5.6.15 to define a subcomplex Ñ∗(A) of the Moore complex C∗(A) (note that
the definition of Ñ∗(A) refers only to the face operators of A•). However, it is generally not
true that the inclusion map Ñ∗(A) ↪→ C∗(A) induces an isomorphism on homology unless
A• can be promoted to a simplicial abelian group.

We now turn to the proof of the Dold-Kan correspondence. The main ingredient is the
following consequence of Proposition 2.5.6.17:

Proposition 2.5.6.23. 00RELet M∗ be a chain complex and let v : N∗(K(M∗)) → M∗ be the
counit map of Notation 2.5.6.10. Then:
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• The map v0 : N0(K(M∗))→M0 is a monomorphism, whose image is the set Z0(M) of
0-cycles in M∗.

• For n > 0, the map vn : Nn(K(M∗))→Mn is an isomorphism.

Proof. The first assertion follows from Example 2.5.6.5. To prove the second, fix n > 0 and
let f denote the composite map

Ñn(K(M∗)) ↪→ Cn(K(M∗)) ↠ Nn(K(M∗))
vn−→Mn.

By virtue of Proposition 2.5.6.17, it will suffice to show that f is an isomorphism. By
definition, we can identify Cn(K(M∗)) = Kn(M∗) with the set of all chain maps σ :
N∗(∆n; Z) → M∗. Unwinding the definitions, we see that σ belongs to the subgroup
Ñn(K(M∗)) ⊆ Cn(K(M∗)) if and only if it annihilates the subcomplex N∗(Λn

0 ; Z), where
Λn0 ⊂ ∆n is the 0-horn defined in Construction 1.2.4.1. We can therefore identify Ñn(K(M∗))
with the abelian group HomCh(Z)(K∗,M∗), where K∗ denotes the quotient of N∗(∆n; Z)
by the subcomplex N∗(Λn0 ; Z). Note that there are exactly two nondegenerate simplices of
∆n which do not belong to Λn

0 ; let us denote them by τ and τ ′ (where τ is of dimension
n and τ ′ of dimension n − 1). Moreover, the differential on N∗(∆n; Z) satisfies ∂(τ) ≡ τ ′

(mod N∗(Λn
0 ; Z)). We conclude by observing that, under the preceding identification, the

homomorphism f : HomCh(Z)(K∗,M∗)→Mn is given by evaluation on τ , and is therefore
an isomorphism.

Proof of Theorem 2.5.6.1. By virtue of Corollary 2.5.6.12, it will suffice to show that the
construction M∗ 7→ K(M∗) induces an equivalence of categories K : Ch(Z)≥0 → Ab∆. We
first show that the functor K is fully faithful when restricted to Ch(Z)≥0. Let M∗ and M ′∗ be
chain complexes which are concentrated in degrees ≥ 0; we wish to show that the canonical
map

φ : HomCh(Z)(M∗,M ′∗)→ HomAb∆(K(M∗),K(M ′∗))

is an isomorphism. Let θ : HomAb∆(K(M∗),K(M ′∗)) ≃ HomCh(Z)(N∗(K(M∗)),M ′∗) be the
isomorphism of Proposition 2.5.6.11. Unwinding the definitions, we see that θ ◦ φ is given
by precomposition with the counit map v : N∗(K(M∗))→M∗ of Notation 2.5.6.10, and is
therefore an isomorphism by virtue of Proposition 2.5.6.23 (together with our assumption
that M∗ is concentrated in degrees ≥ 0). It follows that φ is also an isomorphism, as desired.

We now prove that the functor K : Ch(Z)≥0 → Ab∆ is essentially surjective. Let A• be a
simplicial abelian group and let M∗ = N∗(A) be its normalized Moore complex. Then there
is a unique map of simplicial abelian groups u : A• → K(M∗) for which the isomorphism

θ : HomAb∆(A•,K(M∗))→ HomCh(Z)(N∗(A),M∗)

of Proposition 2.5.6.11 carries u to the identity map id : N∗(A)→M∗. By construction, the
induced map of normalized Moore complexes N∗(u) : N∗(A)→ N∗(K(M∗)) is right inverse
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to the counit map v : N∗(K(M∗))→M∗, which is an isomorphism by virtue of Proposition
2.5.6.23. Combining this observation with Proposition 2.5.6.17, we deduce that u induces an
isomorphism of chain complexes Ñ∗(A)→ Ñ∗(K(M∗)), and is therefore an isomorphism by
virtue of Lemma 2.5.6.16. It follows that A• ≃ K(M∗) belongs to the essential image of the
functor K, as desired.

2.5.7 The Shuffle Product

00RFLet Ab∆ = Fun(∆op,Ab) denote the category of simplicial abelian groups. We will regard
Ab∆ as a monoidal category with respect to the “levelwise” tensor product of (Example
2.1.2.16): if A• and B• are simplicial abelian groups, then their tensor product A• ⊗ B•
is the simplicial abelian group given by the construction ([n] ∈ ∆op) 7→ An ⊗ Bn. The
category of chain complexes Ch(Z) is also equipped with a monoidal structure (Construction
2.5.1.17); we denote the tensor product of chain complexes X∗ and Y∗ by X∗⊠Y∗ or (X⊠Y )∗;
given chains x ∈ Xp and y ∈ Yq, we will write x⊠ y for the image of (x, y) in the abelian
group (X ⊠ Y )p+q. According to Theorem 2.5.6.1, the normalized Moore complex functor
A• 7→ N∗(A) determines a fully faithful embedding N∗ : Ab∆ ↪→ Ch(Z). Beware that this
functor does not commute with the formation of tensor products. Nevertheless, we have the
following result:

Proposition 2.5.7.1. 00RGThere exists a collection of maps

▽ : Np(A)×Nq(B)→ Np+q(A⊗B) (a, b) 7→ a▽b,

defined for every pair of simplicial abelian groups A• and B• and every pair of integers
p, q ∈ Z, and uniquely determined by the following properties:

• Each of the maps ▽ : Np(A) × Nq(B) → Np+q(A ⊗ B) is bilinear and satisfies the
Leibniz rule ∂(a▽b) = (∂a)▽b + (−1)pa▽(∂b) (and therefore induces a chain map
N∗(A) ⊠ N∗(B)→ N∗(A⊗B); see Exercise 2.5.1.15).

• The operation ▽ depends functorially on A• and B•. That is, if f : A• → A′• and
g : B• → B′• are homomorphisms of simplicial abelian groups, then the diagram

Np(A)×Nq(B) ▽ //

Np(f)×Nq(g)

��

Np+q(A⊗B)

Np+q(f⊗g)

��
Np(A′)×Nq(B′) ▽ // Np+q(A′ ⊗B′)

commutes.
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• For a ∈ A0 and b ∈ B0, we have a▽b = a⊗ b (where we identify a, b, and a⊗ b with
the corresponding elements of N0(A), N0(B), and N0(A⊗B), respectively).

For simplicial abelian groups A• and B• and integer p, q ∈ Z, we will refer to the map

▽ : Np(A)×Nq(B)→ Np+q(A⊗B)

of Proposition 2.5.7.1 as the shuffle product. We begin by giving an explicit construction of
this map, following Eilenberg and MacLane (see [18]).

Notation 2.5.7.2 ((p, q)-Shuffles).00RH Let p and q be nonnegative integers. A (p, q)-shuffle is
a strictly increasing map of partially ordered sets σ : [p+ q]→ [p]× [q], which we will often
identify with a nondegenerate (p+ q)-simplex of the cartesian product ∆p ×∆q.

If σ is a (p, q)-shuffle, we let σ− : [p + q] → [p] and σ+ : [p + q] → [q] denote the
nondecreasing maps given by the components of σ (so that σ(i) = (σ−(i), σ+(i)) for 0 ≤
i ≤ p + q). Let I− denote the set of integers 1 ≤ i ≤ p + q satisfying σ−(i − 1) < σ−(i)
(or equivalently σ+(i− 1) = σ+(i)), and let I+ the set of integers 1 ≤ i ≤ p+ q satisfying
σ+(i− 1) < σ+(i) (or equivalently σ−(i− 1) = σ−(i)). We let (−1)σ denote the product

∏
(i,j)∈I−×I+

1 if i < j

−1 if i > j.

We will refer to (−1)σ as the sign of the (p, q)-shuffle σ.

Construction 2.5.7.3 (The Unnormalized Shuffle Product).00RJ Let A• and B• be simplicial
abelian groups, and suppose we are given elements a ∈ Ap and b ∈ Bq. We let a▽̄b denote
the sum ∑

σ

(−1)σσ∗−(a)⊗ σ∗+(b) ∈ (A⊗B)p+q

Here the sum is taken over all (p, q)-shuffles σ = (σ−, σ+) (Notation 2.5.7.2), and we write
σ∗− : Ap → Ap+q and σ∗+ : Bq → Bp+q for the structure morphisms of the simplicial abelian
groups A• and B•, respectively. We will refer to a▽̄b as the unnormalized shuffle product of
a and b.

We now summarize some essential properties of Construction 2.5.7.3.

Remark 2.5.7.4 (Unitality of the Shuffle Product).00RK Let Z[∆0] be the constant simplicial
abelian group taking the value Z, and let us identify the integer 1 with the corresponding
0-simplex of Z[∆0]. Then, for any simplicial abelian group A•, the canonical isomorphisms
A• ≃ (A⊗Z[∆0])• and A• ≃ (Z[∆0]⊗A)• are given by a 7→ a▽̄1 and a 7→ 1▽̄a, respectively.
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Remark 2.5.7.5 (Commutativity of the Shuffle Product). 00RLLet σ : [p + q] → [p] × [q]
be a (p, q)-shuffle, and let σ′ : [p + q] → [q] × [p] denote the composition of σ with the
isomorphism [p]× [q] ≃ [q]× [p] given by permuting the factors. Then σ′ is a (q, p)-shuffle,
whose sign is given by (−1)σ′ = (−1)pq · (−1)σ. Consequently, if A• and B• are simplicial
abelian groups containing simplices a ∈ Ap and b ∈ Bq, then the canonical isomorphism
(A⊗B)p+q ≃ (B ⊗A)p+q carries a▽̄b to (−1)pq(b▽̄a).

Remark 2.5.7.6 (Associativity of the Shuffle Product). 00RMLet A•, B•, and C• be simplicial
abelian groups containing simplices a ∈ Ap, b ∈ Bq, and c ∈ Cr. Then the canonical
isomorphism (A⊗ (B ⊗ C))p+q+r ≃ ((A⊗B)⊗ C)p+q+r carries a▽̄(b▽̄c) to (a▽̄b)▽̄c. Both
of these iterated shuffle products can be described concretely as the sum∑

σ

(−1)σσ∗−(a)⊗ σ∗0(b)⊗ σ∗+(c),

where the sum is taken over all strictly increasing maps σ = (σ−, σ0, σ+) : [p + q + r] →
[p]× [q]× [r], and (−1)σ denotes the product

∏
1≤i<j≤p+q+r


−1 if σ−(j − 1) < σ−(j) and σ−(i− 1) = σ−(i)
−1 if σ+(j − 1) = σ+(j) and σ+(i− 1) < σ+(i)
1 otherwise.

Proposition 2.5.7.7. 00RNLet A• and B• be simplicial abelian groups. Then the unnormalized
shuffle product ▽̄ : Ap ×Bq → (A⊗B)p+q satisfies the Leibniz rule

∂(a▽̄b) = (∂a)▽̄b+ (−1)pa▽̄(∂b).

Proof. Without loss of generality, we may assume that (p, q) ̸= (0, 0) and that the simplicial
abelian groups A• ≃ Z[∆p] and B• ≃ Z[∆q] are freely generated by a and b, respectively.
In this case, we can identify (A ⊗ B)p+q−1 with the free abelian group generated by
the set of (p + q − 1)-simplices of ∆p × ∆q, which we view as nondecreasing functions
τ : [p + q − 1] → [p] × [q]. For every such simplex τ , let c, c−, and c+ denote the
coefficients of τ appearing in ∂(a▽̄b), (∂a)▽̄b, and a▽̄(∂b), respectively. We wish to prove
that c = c− + (−1)pc+. We may assume without loss of generality that the map τ is
injective (otherwise, we have c = c− = c+ = 0). Let us identify τ with a pair (τ−, τ+),
where τ− : [p+ q − 1]→ [p] and τ+ : [p+ q − 1]→ [q] are nondecreasing functions. We now
distinguish three cases:

(1) Suppose that the map τ− : [p + q − 1] → [p] is not surjective (that is, τ belongs to
the simplicial subset (∂∆p)×∆q ⊆ ∆p ×∆q). Then p > 0 and there exists a unique
integer 0 ≤ i ≤ p which does not belong to the image of τ−. We proceed under the
assumption that i < p (the case i > 0 follows by a similar argument, with minor
changes in notation). We then make the following observations:
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• There is a unique (p, q)-shuffle σ and integer 0 ≤ j ≤ p+ q satisfying τ = dp+q
j (σ).

Here j is the smallest integer satisfying τ−(j) = i + 1, and σ is given by the
formula

σ(k) =


(τ−(k), τ+(k)) if k < j

(i, τ+(j)) if k = j

(τ−(k − 1), τ+(k − 1)) if k > j.

It follows that c = (−1)j · (−1)σ.

• There is a unique (p− 1, q)-shuffle σ′ and integer 0 ≤ a ≤ p such that τ is given
by the composition

[p+ q − 1] σ′−→ [p− 1]× [q]
δa

p×id
−−−→ [p]× [q];

here δap : [p− 1] ↪→ [p] denotes the unique monomorphism whose image does not
contain a (Construction 1.1.1.4). These conditions guarantee that a = i and that
σ′ is given by the formula

σ′(k) =

(τ−(k), τ+(k)) if k < j

(τ−(k)− 1, τ+(k)) if k ≥ j.

Consequently, we have c− = (−1)i · (−1)σ′ .

• There does not exist a (p, q − 1)-shuffle σ′′ and an integer 0 ≤ b ≤ q for which τ

is equal to the composition

[p+ q − 1] σ′′−→ [p]× [q − 1]
id×δb

q−−−−→ [p]× [q].

Consequently, the coefficient c+ vanishes.

We are therefore reduced to verifying the identity (−1)j · (−1)σ = (−1)i · (−1)σ′ , which
is an immediate consequence of the definitions.

(2) Suppose that the map τ+ : [p+ q − 1]→ [q] is not surjective (that is, τ belongs to the
simplicial subset ∆q × (∂∆q) ⊆ ∆p ×∆q). The argument in this case proceeds as in
(1), with minor adjustments in notation.

(3) The functions τ− and τ+ are both surjective. In this case, we have c− = c+ = 0. Note
that there is a unique integer 1 ≤ j ≤ p + q − 1 satisfying τ−(j − 1) < τ−(j) and
τ+(j − 1) < τ+(j). From this, it is easy to see that if σ is a (p, q)-shuffle satisfying
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dp+q
k (σ) = τ for some 0 ≤ k ≤ p+ q, then we must have k = j. Moreover, there are

exactly two (p, q)-shuffles σ satisfying dp+q
j (σ) = τ , given by the formulae

σ(i) =


τ(i) if i < j

(τ−(j − 1), τ+(j)) if i = j

τ(i− 1) if i > j

σ(i) =


τ(i) if i < j

(τ−(j), τ+(j − 1)) if i = j

τ(i− 1) if i > j.

Since these (p, q)-shuffles have opposite sign, we conclude that c = 0 = c− + (−1)pc+,
as desired.

We now adapt the shuffle product to the setting of normalized Moore complexes. For
every simplicial abelian group A•, let D∗(A) ⊆ C∗(A) be the subcomplex generated by the
degenerate simplices of A• (see Proposition 2.5.5.6).

Proposition 2.5.7.8. 00RPLet A• and B• be simplicial abelian groups. Then the unnormalized
shuffle product

▽̄ : Cp(A)× Cq(B)→ Cp+q(A⊗B)

carries the subsets Dp(A) × Cq(B) and Cp(A) × Dq(B) into the subgroup Dp+q(A ⊗ B) ⊆
Cp+q(A⊗B).

Proof. Let a ∈ Ap and b ∈ Bq be simplices of A• and B•, respectively. We wish to show that
if either a belongs to Dp(A) or b belongs to Dq(B), then the unnormalized shuffle product
a▽̄b belongs to Dp+q(A⊗B). Without loss of generality, we may assume that a belongs to
Dp(A). Decomposing a into summands, we can further assume that a = sp−1

i (a′) for some
0 ≤ i ≤ p− 1 and some a′ ∈ Ap−1. Let σ = (σ−, σ+) be a (p, q)-shuffle. Then there exists a
unique integer 0 ≤ j < p+ q satisfying σ−(j) = i and σ−(j + 1) = i+ 1. It then follows that
both σ∗−(a) and σ∗+(b) are fixed points of the composite maps

Ap+q
dp+q

j−−−→ Ap+q−1
sp+q−1

j−−−−→ Ap+q Bp+q
dp+q

j−−−→ Bp+q−1
sp+q−1

j−−−−→ Bp+q,

so that σ∗−(a)⊗ σ∗+(b) is a degenerate simplex of (A⊗B)•. Allowing σ to vary, we deduce
that the shuffle product ∑

σ

(−1)σσ∗−(a)⊗ σ∗+(b)

belongs to Dp+q(A⊗B).

Construction 2.5.7.9 (The Shuffle Product). 00RQLet A• and B• be simplicial abelian groups.
It follows from Proposition 2.5.7.8 that for every pair of integers p, q ∈ Z, there is a unique
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bilinear map ▽ : Np(A)×Nq(B)→ Np+q(A⊗B) for which the diagram

Cp(A)× Cq(B) ▽̄ //

����

Cp+q(A⊗B)

����
Np(A)×Nq(B) ▽ // Np+q(A⊗B)

commutes. We will refer to ▽ : Np(A)×Nq(B)→ Np+q(A⊗B) as the shuffle product map.
Given elements a ∈ Np(A) and b ∈ Nq(B), we will write a▽b for the image of the pair (a, b)
under the shuffle product map, which we refer to as the shuffle product of a and b.

We now summarize some properties of the properties of Construction 2.5.7.9, which
follow immediately from the corresponding results for the unnormalized shuffle product
(Remarks 2.5.7.4, 2.5.7.5, 2.5.7.6, and Proposition 2.5.7.7).

Proposition 2.5.7.10.00RR Let A• and B• be simplicial abelian groups. Then:

(1) The canonical isomorphisms N∗(A) ≃ N∗(A⊗ Z[∆0]) and N∗(A) ≃ N∗(Z[∆0]⊗A) are
given by a 7→ a▽1 and a 7→ 1▽a, respectively; here we identify the integer 1 with its
image in N∗(∆0; Z) ≃ Z.

(2) For a ∈ Np(A) and b ∈ Nq(B), we have a▽b = (−1)pq(b▽a); here we abuse notation
by identifying a▽b with its image under the canonical isomorphism Np+q(A ⊗ B) ≃
Np+q(B ⊗A).

(3) Let C• be another simplicial abelian group, and suppose we are given elements a ∈
Np(A), b ∈ Nq(B), and c ∈ Nr(C). Then a▽(b▽c) = (a▽b)▽c; here we abuse
notation by identifying a▽(b▽c) with its image under the canonical isomorphism
Np+q+r(A⊗ (B ⊗ C)) ≃ Np+q+r((A⊗B)⊗ C).

(4) The shuffle product ▽ : Np(A)×Nq(B)→ Np+q(A⊗B) satisfies the Leibniz rule

∂(a▽b) = (∂a)▽b+ (−1)pa▽(∂b).

Notation 2.5.7.11 (The Eilenberg-Zilber Homomorphism).00RS Let A• and B• be simplicial
abelian groups. It follows from assertion (4) of Proposition 2.5.7.10 that there is a unique
chain map

EZ : N∗(A) ⊠ N∗(B)→ N∗(A⊗B)
satisfying EZ(a⊠b) = a▽b (see Exercise 2.5.1.15). We will refer to EZ as the Eilenberg-Zilber
homomorphism (see Remark 2.5.7.16). It follows from assertions (1) and (3) of Proposition
2.5.7.10 that the collection of chain maps

{EZ : N∗(A) ⊠ N∗(B)→ N∗(A⊗B)}A•,B•∈Ab∆
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determine a lax monoidal structure (Definition 2.1.5.8) on the normalized Moore complex
functor N∗ : Ab∆ → Ch(Z), with unit given by the canonical isomorphism of chain complexes
Z[0] ≃ N∗(Z[∆0]) (in fact, it is even a lax symmetric monoidal structure in the sense of
Definition [?]: this follows from assertion (2) of Proposition 2.5.7.10).

Example 2.5.7.12. 00RTLet S• and T• be simplicial sets, and let Z[S•] and Z[T•] denote the
free simplicial abelian groups generated by S• and T•, respectively. Then the tensor product
Z[S•]⊗ Z[T•] can be identified with the free simplicial abelian group Z[S• × T•] generated
by the cartesian product S• × T•. Invoking Construction 2.5.7.9, we obtain shuffle product
maps

▽ : Np(S; Z)×Nq(T ; Z)→ Np+q(S × T ; Z)

which induce a map of chain complexes EZ : N∗(S; Z)⊠N∗(T ; Z)→ N∗(S × T ; Z). Allowing
S• and T• to vary, these chain maps furnish a lax (symmetric) monoidal structure on the
functor

N∗(−; Z) : Set∆ → Ch(Z) S• 7→ N∗(S; Z).

Remark 2.5.7.13. 00RUThe Eilenberg-Zilber homomorphism of Example 2.5.7.12 admits a
topological interpretation. Recall that, for every simplicial set S•, the topological space |S•|
is a CW complex (Remark 1.2.3.12). More precisely, |S•| admits a CW decomposition with
one cell eσ for each nondegenerate simplex σ : ∆n → S•, where eσ is defined as the image of
the composite map

|∆n|◦ ↪→ |∆n| |σ|−→ |S•|;

here |∆n|◦ = {(t0, . . . , tn) ∈ R>0 : t0 + · · ·+ tn = 1} denotes the interior of the topological
n-simplex. The chain complex N∗(S; Z) of Construction 2.5.5.9 can then be identified with
the cellular chain complex associated to this cell decomposition of |S•|.

When S• = S′• × S′′• factors as a product of two other simplicial sets S′• and S′′• , the
topological space |S•| admits a different CW structure, whose cells are given by φ−1(eσ′ ×
eσ′′); here φ denotes the canonical map |S•| → |S′•| × |S′′• |, and σ′ and σ′′ range over the
collection of nondegenerate simplices of S′• and S′′• , respectively. The cellular chain complex
associated to this cell decomposition can be identified with the tensor product complex
N∗(S′•; Z) ⊠ N∗(S′′• ; Z).

It is not difficult to see that if σ′ ∈ S′p and σ′′ ∈ S′′q are nondegenerate simplices of S′•
and S′′• , respectively, then the subset φ−1(eσ′ × eσ′′) ⊆ |S•| can be written as a finite union
of cells of the form eσ (where σ is a nondegenerate simplex of S•). Writing [σ′] and [σ′′] for
the corresponding generators of Np(S′; Z) and Nq(S′′; Z), the shuffle product is given by

[σ′]▽[σ′′] =
∑
σ

±[σ] ∈ Np+q(S),

https://kerodon.net/tag/00RT
https://kerodon.net/tag/00RU


2.5. DIFFERENTIAL GRADED CATEGORIES 339

where the sum is taken over all nondegenerate (p + q)-simplices σ of S• satisfying eσ ⊆
φ−1(eσ′ × eσ′′); note that every such simplex σ can be written uniquely as a composition

∆p+q τ−→ ∆p ×∆q σ′×σ′′−−−−→ S′• × S′′• = S•

where τ is a (p, q)-shuffle in the sense of Notation 2.5.7.2. Moreover, the sign (−1)τ also admits
a topological interpretation: it is the degree of the open embedding φ|eσ : eσ ↪→ eσ′ × eσ′′
(with respect to certain standard orientations of the cells eσ, eσ′ , and eσ′′).

Theorem 2.5.7.14.00RV Let A• and B• be simplicial abelian groups. Then the Eilenberg-Zilber
homomorphism

EZ : N∗(A) ⊠ N∗(B)→ N∗(A⊗B)

is a quasi-isomorphism: that is, it induces an isomorphism on homology.

Corollary 2.5.7.15.00RW Let S• and T• be simplicial sets. Then the Eilenberg-Zilber homomor-
phism

EZ : N∗(S; Z) ⊠ N∗(T ; Z)→ N∗(S × T ; Z)

is a quasi-isomorphism.

Remark 2.5.7.16.00RX Corollary 2.5.7.15 is essentially due to Eilenberg and Zilber. More pre-
cisely, in [19], Eilenberg and Zilber proved that there exists a collection of quasi-isomorphisms
GS,T : N∗(S; Z) ⊠ N∗(T ; Z)→ N∗(S × T ; Z) depending functorially on the simplicial sets S•
and T•. The proof given in [19] uses the method of acyclic models and does not provide a
concrete description of the maps GS,T . However, it is not difficult to see that such a collection
of chain maps {GS,T } must coincide up to sign with the Eilenberg-Zilber homomorphisms of
Example 2.5.7.12 (see Exercise 2.5.7.18 below).

Variant 2.5.7.17.00RY Let S• and T• be simplicial sets containing simplicial subsets S′• and T ′•,
respectively. Applying Theorem 2.5.7.14 to the simplicial abelian groups Z[S•]/Z[S′•] and
Z[T•]/Z[T ′•], we obtain a quasi-isomorphism

EZ : N∗(S, S′; Z) ⊠ N∗(T, T ′; Z)→ N∗(S × T, (S′ × T ) ∪ (S × T ′); Z),

Proof of Theorem 2.5.7.14. Let us first regard the simplicial abelian group A• as fixed. Let
M∗ ∈ Ch(Z)≥0 be a chain complex of abelian groups which is concentrated in degrees ≥ 0,
and let K(M∗) be the associated Eilenberg-MacLane space (Construction 2.5.6.9). We will
say that M∗ is good if the Eilenberg-Zilber map

N∗(A) ⊠M∗ ≃ N∗(A) ⊠ N∗(K(M∗)) EZ−−→ N∗(A⊗K(M∗))

is a quasi-isomorphism. By virtue of Theorem 2.5.6.1, it will suffice to show that every object
M∗ ∈ Ch(Z)≥0 is good. Writing M∗ as a filtered direct limit of bounded subcomplexes, we
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may assume that M∗ is concentrated in degrees ≤ n for some integer n ≥ 0. We proceed by
induction on n. Let T denote the abelian group Mn, so that we have a short exact sequence
of chain complexes

0→M ′∗ →M∗ → T [n]→ 0,
where M ′∗ is concentrated in degrees ≤ n− 1. Note that this sequence is degreewise split, so
that the associated exact sequence of simplicial abelian groups

0→ K(M ′∗)→ K(M∗)→ K(T [n])→ 0

is also degreewise split (see Remark 2.5.6.18). We therefore have a commutative diagram of
short exact sequences

0 // N∗(A) ⊠M ′∗ //

��

N∗(A) ⊠M∗ //

��

N∗(A) ⊠ T [n] //

��

0

0 // N∗(A⊗K(M ′∗)) // N∗(A⊗K(M∗)) // N∗(A⊗K(T [n])) // 0,

where the left vertical map is a quasi-isomorphism by virtue of our inductive hypothesis.
Invoking Remark 2.5.1.7, we see that M∗ is good if and only if the chain complex T [n] is
good. In particular, the condition that M∗ is good depends only the abelian group T = Mn.
We may therefore assume without loss of generality that M∗ factors as a tensor product
N∗(∆n; Z) ⊠ T [0]. We are therefore reduced to proving Theorem 2.5.7.14 in the special case
where B• factors as a tensor product of Z[∆n] with the abelian group T .

Applying the same argument with the roles of A• and B• reversed, we can also assume
that A• factors as the tensor product of Z[∆m] with another abelian group T ′. In this case,
we are reduced to proving that the Eilenberg-Zilber map

EZ : N∗(∆m; Z) ⊠ N∗(∆n; Z)→ N∗(∆m ×∆n; Z)

becomes a quasi-isomorphism after tensoring both sides with the abelian group T ′ ⊗ T . In
fact, we claim that this map is chain homotopy equivalence. To prove this, let u and v denote
the initial vertices of ∆m and ∆n, respectively, and write [u] and [v] for the corresponding
generators of N0(∆m; Z) and N0(∆n; Z). Then the shuffle product [u]▽[v] is given by [w],
where w = (u, v) is the vertex of ∆m×∆n corresponding to the least element of the partially
ordered set [m]× [n]. We have a commutative diagram of chain complexes

Z[0] ⊠ Z[0] ∼ //

[u]⊠[v]

��

Z[0]

[w]

��
N∗(∆m; Z) ⊠ N∗(∆n; Z) // N∗(∆m ×∆n; Z)
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where the vertical maps are chain homotopy equivalences (Example 2.5.5.14) and the
upper horizontal map is an isomorphism, so the lower horizontal map is a chain homotopy
equivalence as well.

Proof of Proposition 2.5.7.1. It follows immediately from the definitions that the shuffle
product maps

▽ : Np(A)×Nq(B)→ Np+q(A⊗B)

depend functorially on A• and B• and satisfy a▽b = a⊗ b when p = q = 0, and the Leibniz
rule follows from Proposition 2.5.7.10. To complete the proof of Proposition 2.5.7.1, we will
show that the shuffle product is the unique operation with these properties. To this end,
suppose we are given another collection of bilinear maps

▽′ : Np(A)×Nq(B)→ Np+q(A⊗B)

which depend functorially on A• and B• and satisfy the Leibniz rule. In the special case
A• = B• = Z[∆0], we can identify N0(A), N0(B), and N0(A ⊗ B) with the group Z of
integers, so that 1▽′1 = n for some integer n. We will complete the proof by showing that
for every pair of simplicial abelian groups A• and B• and every pair of elements a ∈ Np(A),
b ∈ Nq(B), we have a▽′b = n(a▽b) (in particular, if a▽′b = a⊗ b whenever p = q = 0, we
must have n = 1 and therefore ▽′ = ▽).

Without loss of generality, we may assume that p, q ≥ 0. We will proceed by induction
on p + q. Choose a lift of a to an element of Cp(A), which we identify with a map of
simplicial abelian groups Z[∆p]→ A•. Invoking our assumption that ▽′ is functorial, we can
assume without loss of generality that A• = Z[∆p] and that a is the generator of Np(∆p; Z)
corresponding to the unique nondegenerate p-simplex of ∆p. Similarly, we may assume that
B• = Z[∆q] and that b ∈ Nq(∆q; Z) is the generator given by the unique nondegenerate
q-simplex of ∆q.

Let a and b denote the images of a and b in the relative chain complexes N∗(∆p, ∂∆p; Z) ≃
Z[p] and N∗(∆q, ∂∆q; Z) ≃ Z[q]. Let ∂(∆p×∆q) ⊆ ∆p×∆q denote the union of the simplicial
subsets (∂∆p)×∆q and ∆p × (∂∆q), so that we have an isomorphism of simplicial abelian
groups

(Z[∆p]/Z[∂∆p])⊗ (Z[∆q]/Z[∂∆q]) ≃ Z[∆p ×∆q]/Z[∂(∆p ×∆q)].

By virtue of Theorem 2.5.7.14, the Eilenberg-Zilber homomorphism

EZ : N∗(∆p, ∂∆p; Z) ⊠ N∗(∆q, ∂∆q; Z)→ N∗(∆p ×∆q, ∂(∆p ×∆q; Z)

is a quasi-isomorphism. In particular, the (p + q)-cycles of the chain complex N∗(∆p ×
∆q, ∂(∆p × ∆q; Z) form a cyclic group generated by the shuffle product a▽b. Since the
operation ▽′ satisfies the Leibniz rule, the chain a▽′b ∈ Np+q(∆p ×∆q, ∂(∆p ×∆q; Z) is a
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cycle, and therefore satisfies a▽′b = m(a▽b) for some integer m. Using the commutativity
of the diagram

Np(∆p; Z)×Nq(∆q; Z) ▽′ //

∼

��

Np+q(∆p ×∆q; Z)

∼

��
Np(∆p, ∂∆p; Z)×Nq(∆q, ∂∆q; Z) ▽ // Np+q(∆p ×∆q, ∂(∆p ×∆q); Z)

and the observation that the vertical maps are isomorphisms, we conclude that a▽′b =
m(a▽b). We will complete the proof by showing that m = n. In the case p = q = 0, this
follows from the definition of the integer n. If p+ q > 0, we invoke our inductive hypothesis
to compute

m∂(a▽b) = ∂(a▽′b)
= (∂a)▽′b+ (−1)pa▽′(∂b)
= n((∂a)▽b+ (−1)pa▽(∂b))
= n∂(a▽b).

Since ∂(a▽b) is a nonzero element of the free abelian group Np+q−1(∆p ×∆q; Z), we must
have m = n as desired.

Exercise 2.5.7.18. 00RZFor every pair of simplicial sets S• and T•, let

GS,T : N∗(S; Z) ⊠ N∗(T ; Z)→ N(S × T ; Z)

be a chain map. Assume that the maps GS,T depend functorially on S• and T•: that is, for
all maps of simplicial sets f : S• → S′• and g : T• → T ′•, the diagram of chain complexes

N∗(S; Z) ⊠ N∗(T ; Z)
GS,T //

N∗(f ;Z)⊠N∗(g;Z)

��

N∗(S × T ; Z)

N∗(f×g;Z)

��
N∗(S′; Z) ⊠ N∗(T ′; Z)

GS′,T ′ // N∗(S′ × T ′; Z)

is commutative. Adapt the proof Proposition 2.5.7.1 to show that there exists an integer
n (not depending on S• and T•) such that GS,T = nEZ, where EZ is the Eilenberg-Zilber
homomorphism of Example 2.5.7.12.
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2.5.8 The Alexander-Whitney Construction

00S0 Let A• and B• be simplicial abelian groups, having normalized Moore complexes N∗(A)
and N∗(B) (Construction 2.5.5.7). In §2.5.7, we introduced the Eilenberg-Zilber homomor-
phism

EZ : N∗(A) ⊠ N∗(B)→ N∗(A⊗B)

and showed that it induces an isomorphism on homology groups (Theorem 2.5.7.14). The
Eilenberg-Zilber homomorphism is usually not an isomorphism of chain complexes. However,
it always exhibits the tensor product complex N∗(A) ⊠ N∗(B) as a direct summand of
the normalized Moore complex N∗(A ⊗ B). More precisely, there exist chain maps AW :
N∗(A⊗B)→ N∗(A)⊠N∗(B), depending functorially on A• and B•, for which the composite
map

N∗(A) ⊠ N∗(B) EZ−−→ N∗(A⊗B) AW−−→ N∗(A) ⊠ N∗(B)

is equal to the identity. Our goal in this section is to construct these maps and to establish
their basic properties.

Notation 2.5.8.1.00S1 Let n be a nonnegative integer. For 0 ≤ p ≤ n, we define strictly
increasing functions

ι≤p : [p] ↪→ [n] ι≥p : [n− p] ↪→ [n]

by the formulae ι≤p(i) = i and ι≥p(j) = j + p. If A• is a simplicial abelian group, we let
ι∗≤p : An → Ap and ι∗≥p : An → An−p denote the associated group homomorphisms.

Construction 2.5.8.2 (The Alexander-Whitney Construction: Unnormalized Version).00S2 Let
A• and B• be simplicial abelian groups with Moore complexes C∗(A) and C∗(B), respectively.
We define a map of graded abelian groups AW : C∗(A⊗B)→ C∗(A)⊠C∗(B) by the formula

AW(a⊗ b) =
∑

0≤p≤n
ι∗≤p(a) ⊠ ι∗≥p(b)

for a ∈ An and b ∈ Bn. We will refer to AW as the unnormalized Alexander-Whitney
homomorphism.

Proposition 2.5.8.3.00S3 Let A• and B• be simplicial abelian groups. Then the unnormalized
Alexander-Whitney homomorphism AW : C∗(A⊗B)→ C∗(A) ⊠ C∗(B) is a chain map.

Proof. Let x be an element of the abelian group Cn(A⊗B) = An ⊗Bn; we wish to show
that ∂(AW(x)) = AW(∂x). Without loss of generality, we may assume that n > 0 and that
x has the form a⊗ b, for some elements a ∈ An and b ∈ Bn. In this case, we compute

AW(∂(a⊗ b)) =
n∑
i=0

(−1)iAW(dni a⊗ dni b)
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=
n∑
i=0

n−1∑
p=0

(−1)iι∗≤p(dni a) ⊠ ι∗≥p(dni b)

=
n∑
i=0

i−1∑
p=0

(−1)iι∗≤p(dni a) ⊠ ι∗≥p(dni b) +
n∑
i=0

n−1∑
p=i

(−1)iι∗≤p(dni a) ⊠ ι∗≥p(dni b)

=
n∑
i=0

i−1∑
p=0

(−1)iι∗≤p(a) ⊠ dn−pi−p ι
∗
≥p(b) +

n∑
i=0

n∑
q=i+1

(−1)idqi ι∗≤q(a) ⊠ ι∗≥q(b)

=
n∑
i=0

i∑
p=0

(−1)iι∗≤p(a) ⊠ dn−pi−p ι
∗
≥p(b) +

n∑
i=0

n∑
q=i

(−1)idqi ι∗≤q(a) ⊠ ι∗≥q(b)

=
n∑
p=0

(−1)pι∗≤p(a) ⊠ (
n−p∑
j=0

(−1)jdn−pj ι∗≥p(b)) +
n∑
q=0

(
q∑
i=0

(−1)idqi ι∗≤q(a)) ⊠ ι∗≥q(b)

=
n∑
p=0

(−1)pι∗≤p(a) ⊠ ∂ι∗≥p(b) +
n∑
q=0

∂ι∗≤q(a) ⊠ ι∗≥q(b)

= ∂(
n∑
p=0

ι∗≤p(a) ⊠ ι∗≥p(b))

= ∂(AW(a⊗ b)).

Proposition 2.5.8.4. 00S4The collection of unnormalized Alexander-Whitney homomorphisms
AW : C∗(A ⊗ B) → C∗(A) ⊠ C∗(B) determine a colax monoidal structure on the Moore
complex functor C∗ : Ab∆ → Ch(Z) (see Variant 2.1.5.11).

Proof. We first show that the unnormalized Alexander-Whitney homomorphisms determine
a nonunital colax monoidal structure on the functor C∗ (Variant 2.1.4.16). By construction,
the homomorphism AW : C∗(A ⊗ B) → C∗(A) ⊠ C∗(B) is natural in A• and B•. It will
therefore suffice to show that, for every triple of simplicial abelian groups A•, B•, and C•,
the diagram of chain complexes

C∗(A⊗ (B ⊗ C)) ∼ //

AW

��

C∗((A⊗B)⊗ C)

AW

��
C∗(A) ⊠ C∗(B ⊗ C)

id⊠AW

��

C∗(A⊗B) ⊠ C∗(C)

AW⊠id

��
C∗(A) ⊠ (C∗(B) ⊠ C∗(C)) ∼ // (C∗(A) ⊠ C∗(B)) ⊠ C∗(C)
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commutes, where the horizontal maps are given by the associativity constraints of the
monoidal categories Ab∆ and Ch(Z), respectively. Unwinding the definitions, we see that
both the clockwise and counterclockwise composition are given by the construction

a⊗ (b⊗ c) 7→
∑

0≤p≤q≤n
(ι∗≤p(a) ⊠ ρ∗(b)) ⊠ ι∗≥q(c)

for a ∈ An, b ∈ Bn, and c ∈ Cn, where ρ denotes the nondecreasing map [q − p] ↪→ [n] given
by ρ(i) = i+ p.

Note that the unit object of the category of simplicial abelian groups is the constant
functor ∆op → Ab taking the value Z, which we can identify with the free simplicial abelian
group Z[∆0] generated by the simplicial set ∆0. The image of this object under the functor
AW is the unnormalized chain complex C∗(∆0; Z). On the other hand, the unit object of
Ch(Z) is the chain complex Z[0], which we will identify with the normalized chain complex
N∗(∆0; Z). We will complete the proof of Proposition 2.5.8.4 by showing that the quotient
map ϵ : C∗(∆0; Z) ↠ N∗(∆0; Z) is a counit for the nonunital colax monoidal structure
constructed above (in the sense of Variant 2.1.5.11). To prove this, we must show that for
every simplicial abelian group A•, both of the composite maps

C∗(A) ≃ C∗(A⊗ Z[∆0]) AW−−→ C∗(A) ⊠ C∗(∆0; Z) id⊠ϵ−−−→ C∗(A) ⊠ Z[0] ≃ C∗(A)

C∗(A) ≃ C∗(Z[∆0]⊗A) AW−−→ C∗(∆0; Z) ⊠ C∗(A) ϵ⊠id−−−→ Z[0] ⊠ C∗(A) ≃ C∗(A)

are equal to the identity. This follows immediately from the construction (using the fact
that ϵ vanishes on every element of C∗(∆0; Z) of positive degree).

We now adapt the Alexander-Whitney construction to the setting of normalized Moore
complexes. Recall that, for every simplicial abelian group A•, the degenerate simplices of A•
generate a subcomplex D∗(A) ⊆ C∗(A) (Proposition 2.5.5.6) which is a direct summand of
C∗(A) (Proposition 2.5.6.17). It follows that, if B• is another simplicial abelian group, then
we can view C∗(A) ⊠ D∗(B) and D∗(A) ⊠ C∗(B) as direct summands of C∗(A) ⊠ C∗(B).

Proposition 2.5.8.5.00S5 Let A• and B• be simplicial abelian groups, and let K∗ ⊆ C∗(A⊗B)
be the subcomplex generated by C∗(A) ⊠ D∗(B) and D∗(A) ⊠ C∗(B). Then K∗ contains the
image of the composite map

D∗(A⊗B) ↪→ C∗(A⊗B) AW−−→ C∗(A) ⊠ C∗(B).

Proof. Let x be an n-simplex of the tensor product A• ⊗ B•, let 0 ≤ i ≤ n, and let sni (x)
denote the associated degenerate (n+1)-simplex of A•⊗B•. We wish to show that AW(sni (x))
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belongs to K∗. Without loss of generality, we may assume that x = a⊗ b for n-simplices
a ∈ An and b ∈ Bn. In this case, we have

AW(sni (x)) = AW(sni (a)⊗ sni (b)) =
n+1∑
p=0

ι∗≤p(sni (a)) ⊠ ι∗≥p(sni (b)).

It will therefore suffice to show that each summand ι∗≤p(sni (a)) ⊠ ι∗≥p(sni (b)) belongs to K∗.
This is clear: the simplex ι∗≤p(sni (a)) is degenerate if p > i, and the simplex ι∗≥p(sni (b)) is
degenerate for p ≤ i.

Construction 2.5.8.6 (The Alexander-Whitney Construction: Normalized Version). 00S6Let
A• and B• be simplicial abelian groups. It follows from Proposition 2.5.8.5 that there is a
unique chain map AW : N∗(A⊗B)→ N∗(A) ⊠ N∗(B) for which the diagram

C∗(A⊗B) AW //

����

C∗(A) ⊠ C∗(B)

����
N∗(A⊗B) AW // N∗(A) ⊠ N∗(B).

We will refer to AW as the Alexander-Whitney homomorphism.

We have the following normalized variant of Proposition 2.5.8.4 (which follows immedi-
ately from Proposition 2.5.8.4 itself):

Proposition 2.5.8.7. 00S7The collection of Alexander-Whitney homomorphisms

AW : N∗(A⊗B)→ N∗(A) ⊠ N∗(B)

determine a colax monoidal structure on the normalized Moore complex functor N∗ : Ab∆ →
Ch(Z).

Warning 2.5.8.8. 00S8Let A• and B• be simplicial abelian groups. Then we have a canonical
isomorphism of simplicial abelian groups A• ⊗ B• ≃ B• ⊗ A•, given degreewise by the
construction a⊗ b 7→ b⊗ a. Likewise, there is a canonical isomorphism of chain complexes
N∗(A)⊠N∗(B) ≃ N∗(B)⊠N∗(A) given by the Koszul sign rule (see Warning 2.5.1.14). Beware
that these isomorphisms are not compatible with the Alexander-Whitney construction: that
is, the diagram

N∗(A⊗B)

AW

��

// N∗(B ⊗A)

AW

��
N∗(A) ⊠ N∗(B) // N∗(B) ⊠ N∗(A)
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usually does not commute. Instead, the composite map

N∗(A⊗B) ≃ N∗(B ⊗A) AW−−→ N∗(B) ⊠ N∗(A) ≃ N∗(A) ⊠ N∗(B)

can be identified with the Alexander-Whitney homomorphism associated to the opposite
simplicial abelian groups Aop

• and Bop
• . In other words, the colax monoidal structure of

Proposition 2.5.8.7 is not a colax symmetric monoidal structure (see Definition [?]). The same
remark applies to the unnormalized Alexander-Whitney construction AW of Construction
2.5.8.2.

Proposition 2.5.8.9.00S9 Let A• and B• be simplicial abelian groups. Then the composition

N∗(A) ⊠ N∗(B) EZ−−→ N∗(A⊗B) AW−−→ N∗(A) ⊠ N∗(B)

is the identity map.

Proof. Fix element a ∈ Np(A) and b ∈ Nq(B) having shuffle product a▽b ∈ Np+q(A⊗ B).
We wish to show that the Alexander-Whitney homomorphism AW satisfies AW(a▽b) = a⊠b.
Lift a and b to elements a ∈ Cp(A) = Ap and b ∈ Cq(B) = Bq, respectively. Unwinding the
definitions, we see that AW(a▽b) is given by the image of

AW(a▽̄b) = AW(
∑
σ

(−1)σ(σ∗−a)⊗ (σ∗+(b)))

=
p+q∑
r=0

∑
σ

(−1)σ(ι∗≤rσ∗−)(a) ⊠ (ι∗≥rσ∗+)(b)

under the quotient map C∗(A) ⊠ C∗(B) ↠ N∗(A) ⊠ N∗(B); here the sum is taken over all
(p, q)-shuffles σ = (σ−, σ+) (see Notation 2.5.7.2). Note that the simplex (ι∗≤rσ∗−)(a) ∈ Ar is
degenerate unless σ−(r) = r (which implies that r ≤ p). Similarly, the simplex (ι∗≥rσ∗+)(b) ∈
Bn−r is degenerate unless σ+(r) = r − p (which guarantees that r ≥ p). We may therefore

ignore every term in the sum except for the one with r = p and σ(i) =

(i, 0) if i ≤ p
(p, i− p) if i ≥ p,

for which the corresponding summand is equal to a⊠ b (and therefore has image a⊠ b in
N∗(A) ⊠ N∗(B)).

Warning 2.5.8.10.00SA Let A• and B• be simplicial abelian groups. Then the unnormalized
shuffle product ▽̄ of Construction 2.5.7.3 induces a chain map EZ : C∗(A) ⊠ C∗(B) →
C∗(A⊗B). However, the analogue of Proposition 2.5.8.9 for unnormalized Moore complexes
is false: that is, the composite map

C∗(A) ⊠ C∗(B) EZ−−→ C∗(A⊗B) AW−−→ C∗(A) ⊠ C∗(B)

is usually not equal to the identity.
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Corollary 2.5.8.11. 00SBLet A• and B• be simplicial abelian groups. Then the Alexander-
Whitney homomorphism

AW : N∗(A⊗B)→ N∗(A) ⊠ N∗(B)

is a quasi-isomorphism: that is, it induces an isomorphism on homology.

Proof. By virtue of Proposition 2.5.8.9, the Alexander-Whitney homomorphism is a left
inverse to the Eilenberg-Zilber map EZ : N∗(A) ⊠ N∗(B) → N∗(A ⊗ B), which is a quasi-
isomorphism by virtue of Theorem 2.5.7.14.

2.5.9 Comparison with the Homotopy Coherent Nerve

00SCThroughout this section, we maintain the notational convention of §2.5.8, denoting the
tensor product of chain complexes X∗ and Y∗ by X∗ ⊠ Y∗. According to Proposition 2.5.8.7,
the Alexander-Whitney homomorphisms

AW : N∗(A⊗B)→ N∗(A) ⊠ N∗(B)

determine a colax monoidal structure on the normalized Moore complex functor N∗ :
Ab∆ → Ch(Z). Applying Remark 2.1.5.12, we deduce that the right adjoint functor
K : Ch(Z) → Ab∆ inherits the structure of a lax monoidal functor. Composing with the
(lax monoidal) forgetful functor Ab∆ → Set∆, we obtain the following:

Proposition 2.5.9.1. 00SDThe functor K : Ch(Z) → Set∆ admits a lax monoidal structure,
which associates to each pair of chain complexes X∗ and Y∗ a map of simplicial sets

µX∗,Y∗ : K(X∗)×K(Y∗)→ K(X∗ ⊠ Y∗)

which can be described concretely as follows:

• Let σ and τ be n-simplices of K(X∗) and K(Y∗), respectively, which we identify with
chain maps

σ : N∗(∆n; Z)→ X∗ τ : N∗(∆n; Z)→ Y∗.

Then µX∗,Y∗(σ, τ) ∈ Kn(X∗ ⊠ Y∗) is the composite map

N∗(∆n; Z) ↪→ N∗(∆n ×∆n; Z) AW−−→ N∗(∆n; Z) ⊠ N∗(∆n; Z) σ⊠τ−−→ X∗ ⊠ Y∗.

Applying the general construction described in Remark 2.1.7.4 to the lax monoidal
functor K : Ch(Z)→ Set∆, we obtain the following:

Construction 2.5.9.2. 00SELet C be a differential graded category. We define a simplicial
category C∆

• as follows:
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• The objects of C∆
• are the objects of C.

• For every pair of objects X,Y ∈ Ob(C∆
• ) = Ob(C), the simplicial set HomC∆(X,Y )•

is the generalized Eilenberg-MacLane space K(HomC(X,Y )∗). More concretely, the
n-simplices of HomC∆(X,Y )• are chain maps σ : N∗(∆n; Z)→ HomC(X,Y )∗.

• For every triple of objects X,Y, Z ∈ Ob(C∆
• ) = Ob(C) and every nonnegative integer

n ≥ 0, the composition law

HomC∆(Y,Z)n ×HomC∆(X,Y )n → HomC∆(X,Z)n

carries a pair (σ, τ) to the n-simplex of K(HomC(X,Z)∗) given by the composite map

N∗(∆n; Z) ↪→ N∗(∆n ×∆n; Z)
AW−−→ N∗(∆n; Z) ⊠ N∗(∆n; Z)
σ⊠τ−−→ HomC(Y,Z)∗ ⊠ HomC(X,Y )∗
◦−→ HomC(X,Z)∗.

We will refer to C∆
• as the underlying simplicial category of the differential graded category

C.

Remark 2.5.9.3.00SF Let C be a differential graded category and let C◦ denote its underlying
category (in the sense of Construction 2.5.2.4). Then C◦ is isomorphic to the underlying
ordinary category C∆

0 of the simplicial category C∆ (in the sense of Example 2.4.1.4). Both
of these categories can be described concretely as follows:

• The objects of C◦ ≃ C∆
0 are the objects of C.

• For objects X,Y ∈ C, the morphisms from X to Y in the category C◦ ≃ C∆
0 are given

by 0-cycles in the chain complex HomC(X,Y )∗.

Remark 2.5.9.4.00SG Let C be a differential graded category. Then the underlying simplicial
category C∆

• is locally Kan (Definition 2.4.1.8). This follows from the observation that each
of the simplicial sets HomC∆(X,Y )• = K(HomC(X,Y )∗) has the structure of a simplicial
abelian group, and is therefore automatically a Kan complex (Proposition 1.2.5.9).

Remark 2.5.9.5.00SH Let C be a differential graded category, let X and Y be objects of C,
and let f, g : X → Y be morphisms from X to Y in the underlying category C◦ (that is,
0-cycles of the chain complex HomC(X,Y )∗). Then f and g are homotopic as morphisms of
the differential graded category C (in the sense of Definition 2.5.4.1) if and only if they are
homotopic as morphisms of the simplicial category C∆

• (Remark 2.4.1.9); see Example 2.5.6.6.
It follows that the isomorphism of underlying categories C◦ ≃ C∆

0 of Remark 2.5.9.3 induces
an isomorphism from the homotopy hC (given by Construction 2.5.4.6) to the homotopy
category hC∆ (given by Construction 2.4.6.1).
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Our goal in this section is to establish a refinement of Remark 2.5.9.5. Let C be a
differential graded category and let C∆

• denote the underlying simplicial category. Then C∆
•

is locally Kan (Remark 2.5.9.4), so the homotopy coherent nerve Nhc
• (C∆) is an ∞-category

(Theorem 2.4.5.1). Similarly, the differential graded nerve Ndg
• (C) is an∞-category (Theorem

2.5.3.10). The ∞-categories Nhc
• (C∆) and Ndg

• (C) are generally not isomorphic as simplicial
sets. However, we will construct a comparison map Nhc

• (C∆)→ Ndg
• (C) and show that it is a

trivial Kan fibration (and therefore an equivalence of ∞-categories; see Proposition 4.5.3.11).
We begin with some auxiliary remarks.

Construction 2.5.9.6 (The Fundamental Chain of a Cube). 00SJLet I be a finite set of
cardinality n, and let I = ∏

i∈I ∆1 denote the associated cube (Notation 2.4.5.2), which
we will identify with the nerve of the partially ordered set of all subsets of I. Using this
identification, we obtain a bijective correspondence

{Linear orderings of I} ≃ {Nondegenerate n-simplices of I},

which carries a linear ordering {i1 < i2 < · · · < in} to the chain of subsets

∅ ⊂ {i1} ⊂ {i1, i2} ⊂ · · · ⊂ {i1, . . . , in−1} ⊂ I.

In particular, the symmetric group ΣI of permutations of I acts simply transitively on the
set of nondegenerate n-simplices of I .

Fix a linear ordering of I, corresponding to a nondegenerate n-simplex σ : ∆n → I .
We let [ I ] denote the alternating sum ∑

π∈ΣI
(−1)ππ(σ), which we regard as an n-chain of

the normalized chain complex N∗( I ; Z). We will refer to [ I ] as the fundamental chain
of the cube I . We will be particularly interested in the special case where I is the set
{1, 2, · · · , n}, endowed with its usual ordering; in this case, we denote the cube I by n

and its fundamental chain [ I ] by [ n].

Remark 2.5.9.7. 00SKLet n be a nonnegative integer. Then the fundamental chain [ n] of
Construction 2.5.9.6 is given by the iterated shuffle product

[∆1]▽[∆1]▽ · · ·▽[∆1] ∈ Nn(∆1 ×∆1 × · · · ×∆1; Z) ≃ Nn( n; Z)

(see §2.5.7); here [∆1] denotes the generator of the group N1(∆1; Z) ≃ Z (which is also the
fundamental chain of the 1-dimensional cube 1).

Warning 2.5.9.8. 00SLThe simplicial set I and its normalized chain complex N∗( I ; Z) depend
only on the choice of the finite set I. However, the fundamental chain [ I ] of Construction
2.5.9.6 is a priori ambiguous up to a sign. One can resolve this ambiguity by choosing a
linear ordering on the set I (as in Construction 2.5.9.6), which will be sufficient for our
purposes in this section. However, less is needed: one needs only an orientation on the set I
(or equivalently an orientation of the topological manifold-with-boundary | I | ≃ [0, 1]I).
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Notation 2.5.9.9.00SM Let C be a differential graded category and let C∆
• denote the underlying

simplicial category (Construction 2.5.9.2). Let n ≥ 0 be a nonnegative integer and let σ be
a nondegenerate (n+ 1)-simplex of the homotopy coherent nerve Nhc

• (C∆), which we will
identify with a simplicial functor σ : Path[n+ 1]• → C∆

• . Set X = σ(0) and Y = σ(n+ 1),
and I = {1, 2, · · · , n}, so that Remark 2.4.5.4 supplies a morphism of simplicial sets

I ≃ HomPath[n+1](0, n+ 1)• → HomC∆(X,Y )• = K(HomC(X,Y )∗),

which we can identify with a chain map N∗( I ; Z) → HomC(X,Y )∗. For any choice of
ordering of I, this map carries the fundamental chain [ I ] of Construction 2.5.9.6 to an
element of the abelian group HomC(X,Y )n, which we will denote by σ([ n]).

Proposition 2.5.9.10.00SN Let C be a differential graded category. Then there is a unique
functor of ∞-categories Z : Nhc

• (C∆)→ Ndg
• (C) with the following properties:

• On 0-simplices the functor Z is the identity: that is, it carries each object of the
simplicial category C∆ to the corresponding object of the differential graded category C.

• Let n ≥ 0 and let σ be an (n+ 1)-simplex of Nhc
• (C∆). Set X = σ(0), Y = σ(n+ 1),

and I = {1, 2, · · · , n}, which we endow with the opposite of its usual ordering. Then
the value of Z(σ) on {n+ 1 > n > · · · > 0} is the chain σ([ I ]) ∈ HomC(X,Y )n (see
Notation 2.5.9.9).

Warning 2.5.9.11.01NN In the formulation of Proposition 2.5.9.10, the ordering on the set
I = {1, 2, · · · , n} is dictated by the “prefix” convention that the composition of a string of
morphisms

X0
f1−→ X1

f2−→ X2
f3−→ · · · fn−→ Xn

is denoted by fn ◦ · · · ◦ f1, in which the indices appear (from left to right) in the opposite
of their numerical order. Note that reversing the order on I changes the definition of the
fundamental chain [ I ] by a factor of (−1)n(n−1)/2 (see Warning 2.5.9.8).

The proof of Proposition 2.5.9.10 will require an elementary property of Construction
2.5.9.6.

Notation 2.5.9.12.00SP Let I be a finite linearly ordered set of cardinality n > 0 and let I

denote the corresponding simplicial cube. For each element i ∈ I, the linear ordering on I

restricts to linear ordering on the subset I \ {i}, which determines a fundamental chain

[ I\{i}] ∈ Nn−1( I\{i}; Z).

We will write [{0} × I\{i}] ∈ Nn−1( I ; Z) for the image of the fundamental chain [ I\{i}]
under the inclusion of simplicial sets

I\{i} ≃ {0} × I\{i} ↪→ ∆1 × I\{i} ≃ I .
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Similarly, we write [{1} × I\{i}] ∈ Nn−1( I ; Z) for the image of the fundamental chain
[ I\{i}] under the inclusion

I\{i} ≃ {1} × I\{i} ↪→ ∆1 × I\{i} ≃ I .

Lemma 2.5.9.13. 00SQLet n be a nonnegative integer and let I denote the set {1, 2, · · · , n},
endowed with its usual ordering. Then we have an equality

∂[ I ] =
n∑
i=1

(−1)i([{0} × I\{i}]− [{1} × I\{i}])

in the abelian group Nn−1( I ; Z).

Remark 2.5.9.14. 00SRLemma 2.5.9.13 is a homological incarnation of the following topological
assertion: the geometric realization | I | ≃ [0, 1]I is a manifold, whose boundary can be
written as a union of the faces {0} × [0, 1]I\{i} and {1} × [0, 1]I\{i}.

Proof of Lemma 2.5.9.13. Using the description of [ I ] as a shuffle product (Remark 2.5.9.7)
and the fact that the shuffle product satisfies the Leibniz rule (Proposition 2.5.7.10), we
compute

∂[ I ] = ∂([∆1]▽ · · ·▽[∆1])

=
n∑
i=1

(−1)i−1[ i−1]▽∂([∆1])▽[ n−i]

=
n∑
i=1

(−1)i[ i−1]▽(d1
1[∆1]− d1

0[∆1])▽[ n−i]

=
n∑
i=1

(−1)i([{0} × I\{i}]− [{1} × I\{i}]).

Remark 2.5.9.15. 00SSLet n be a nonnegative integer. It follows from Lemma 2.5.9.13 that
the boundary ∂[ n] belongs to the subcomplex N∗(∂ n; Z) ⊂ N∗( n; Z). In other words,
the image of the fundamental chain [ n] in the relative chain complex

N∗( n, ∂ n; Z) = N∗( n; Z)/N∗(∂ n; Z)

is a cycle. In fact, one can be more precise: the construction 1 7→ [ n] determines a quasi-
isomorphism of chain complexes un : Z[n]→ N∗( n, ∂ n; Z). To prove this, we proceed by
induction on n: the case n = 0 is trivial, and the inductive step follows by identifying u with
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the composition

Z[n] ≃ Z[1] ⊠ Z[n− 1]
id⊠un−1−−−−−→ Z[1] ⊠ N∗( n−1, ∂ n−1; Z)
≃ N∗( 1, ∂ 1; Z) ⊠ N∗( n−1, ∂ n−1; Z)
EZ−−→ N∗( n, ∂ n; Z)

where EZ denotes the Eilenberg-Zilber map of Variant 2.5.7.17 (which is a quasi-isomorphism,
by virtue of Theorem 2.5.7.14). Note that this property characterizes the fundamental chain
[ n] up to sign (since the quotient map N∗( n; Z) ↠ N∗( n, ∂ n; Z) is an isomorphism in
degree n).

Lemma 2.5.9.16.00ST Let I be a finite linearly ordered set which is a union of disjoint subsets
I−, I+ ⊆ I satisfying i− < i+ for each i− ∈ I− and i+ ∈ I+. Then the Alexander-Whitney
homomorphism AW : N∗( I ;Z)→ N∗( I− ; Z)×N∗( I+ ; Z) satisfies

AW([ I ]) = [ I− ] ⊠ [ I+ ].

Proof. Using Remark 2.5.9.7 (and the graded-commutativity of the shuffle product; see
Proposition 2.5.7.10), we observe that the shuffle product map

▽ : N∗( I− ; Z)×N∗( I+ ; Z)→ N∗( I− × I+ ; Z) ≃ N∗( I ; Z)

satisfies [ I ] = [ I− ]▽[ I+ ]. Applying the Alexander-Whitney homomorphism and invoking
Proposition 2.5.8.9, we obtain the identity

AW([ I ]) = AW([ I− ]▽[ I+ ]) = [ I− ] ⊠ [ I+ ].

Proof of Proposition 2.5.9.10. Fix an integer n ≥ 0, and let σ be an (n + 1)-simplex of
the homotopy coherent nerve Nhc

• (C∆), which we will identify with a simplicial functor
σ : Path[n+ 1]• → C∆

• . Set X = σ(0), Y = σ(n+ 1), and let I denote the set {1, 2, · · · , n},
endowed with the opposite of its usual ordering. By virtue of Remark 2.5.3.9, it will suffice
to verify the following three assertions:

(a) If n = 0 and σ is the degenerate edge of Nhc
• (C∆) determined by the object X ∈ C, then

σ([ I ]) = idX .

(b) If n > 0 and σ is degenerate, then σ([ I ]) = 0.
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(c) Let n ≥ 0. For 1 ≤ i ≤ n, let I<i denote the set {1, 2, · · · , i − 1} and let I>i denote
the set {i+ 1, i+ 2, · · · , n}, which we endow with the reverse of their usual orderings.
Then we have

∂σ([ I ]) =
n∑
i=1

(−1)n+1−i(σ≥i([ I>i ])σ≤i([ I<i ])− dn+1
i (σ)([ I\{i}]).

Assertion (a) is immediate from the definition. To prove (b), we observe that σ determines
a map of simplicial sets

HomPath[n+1](0, n+ 1)• → HomC∆(X,Y )• ≃ K(HomC(X,Y )),

which we can identify with a chain map u : N∗(HomPath[n+1](0, n+ 1); Z)→ HomC(X,Y )∗.
If σ is degenerate, then (as a simplicial functor) it factors as a composition

Path[n+ 1]• → Path[n]• → C∆
• ,

where ρ is a simplicial functor satisfying ρ(0) = 0 and ρ(n+ 1) = n. For n > 0, it follows
that the chain map u factors through the complex N∗(HomPath[n](0, n); Z) ≃ N∗( n−1; Z).
Since n−1 is a simplicial set of dimension ≤ n− 1, the chain complex N∗( n−1; Z) vanishes
in degrees ≥ n (see Example 2.5.5.13). In particular, the map u vanishes in degree n, so
that σ([ I ]) = 0.

We now prove (c). Using Lemma 2.5.9.13 (and taking into account the order reversal on
the set I), we obtain the identity

∂σ([ I ]) =
n∑
i=1

(−1)n+1−i(σ([{0} × I\{i}])− σ([{1} × I\{i}]).

It will therefore suffice to show that, for each 1 ≤ i ≤ n, we have equalities

σ([{0} × I\{i}]) = σ≥i([ I>i ]) ◦ σ≤i([ I<i ])

σ([{1} × I\{i}]) = dn+1
i (σ)([ I\{i}])

in the abelian group HomC(X,Y )n−1. The second of these identities follows immediately
from the definition of di(σ). To prove the first, we note that the inclusion {0} × I\{i} ↪→
I ≃ HomPath[n+1](0, n+ 1)• factors as a composition

{0} × I\{i} ≃ I>i × I<i

≃ HomPath[n+1](i, n+ 1)• ×HomPath[n+1](0, i)•
◦−→ HomPath[n+1](0, n+ 1)•.
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Set Z = σ(i). Using the fact that σ is a simplicial functor (and the definition of the simplicial
category C∆

• ), we see that σ([{0} × I\{i}]) is the image of the fundamental chain [ I\{i}]
under the composite map

N∗([ I\{i}]; Z) AW−−→ N∗([ I>i ]; Z) ⊠ N∗([ I<i ]; Z)
σ≥i⊠σ≤i−−−−−→ HomC(Z, Y )∗ ⊠ HomC(X,Z)∗
◦−→ HomC(X,Z)∗.

The desired result now follows from the identity AW([ I\{i}]) = [ I>i ] ⊠ [ I<i ] supplied by
Lemma 2.5.9.16.

Exercise 2.5.9.17.00SU Let C be a differential graded category, and let Z : Nhc
• (C∆)→ Ndg

• (C)
be the functor of ∞-categories supplied by Proposition 2.5.9.10. Show that Z is bijective on
simplices of dimension n ≤ 2 (for the case n = 2, this is essentially the content of Remark
2.5.4.4).

The functor Z : Nhc
• (C∆)→ Ndg

• (C) is generally not bijective on simplices of dimension
n ≥ 3. Nevertheless, we have the following:

Theorem 2.5.9.18.00SV Let C be a differential graded category and let Z : Nhc
• (C∆)→ Ndg

• (C)
be the functor of ∞-categories supplied by Proposition 2.5.9.10. Then Z is a trivial Kan
fibration of simplicial sets.

Proof. Fix an integer n ≥ 0 and a diagram of simplicial sets

∂∆n+1 σ0 //

��

Nhc
• (C∆)

Z

��
∆n+1 τ //

σ

;;

Ndg
• (C);

we wish to show that the map σ0 admits an extension σ : ∆n+1 → Nhc
• (C∆) as indicated,

rendering the diagram commutative. Let us abuse notation by identifying σ0 with a simplicial
functor from Path[∂∆n+1]• to C∆. Set X = σ0(0), Y = σ0(n+ 1), and I = {1, 2, · · · , n}, so
that σ0 determines a morphism of simplicial sets

u0 : ∂ I ≃ HomPath[∂∆n+1](0, n+ 1)→ HomC∆(X,Y )• = K(HomC(X,Y ))

(see Proposition 2.4.6.12), which we will identify with a chain map f0 : N∗(∂ I ; Z) →
HomC(X,Y )∗. By virtue of Corollary 2.4.6.13, choosing an extension of σ0 to a map
σ : ∆n+1 → Nhc

• (C∆) is equivalent to choosing an extension of u0 to a map of simplicial
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sets u : I → K(HomC(X,Y )), or an extension of f0 to a chain map f : N∗( I ; Z) →
HomC(X,Y )∗.

Endow I = {1, · · · , n} with the opposite of its usual ordering and let [ I ] denote the fun-
damental chain of Construction 2.5.9.6. Note that the boundary ∂[ n] belongs to the subcom-
plex N∗(∂ I ; Z) ⊂ N∗( I ; Z) (see Lemma 2.5.9.13). Unwinding the definitions, we see that
τ supplies a chain z ∈ HomC(X,Y )n satisfying ∂(z) = f0(∂[ I ]) ∈ HomC(X,Y )n−1. Let M∗
denote the subcomplex of N∗( I ; Z) generated by N∗(∂ I ; Z) together with the fundamental
chain [ I ], so that f0 extends uniquely to a chain map f1 : M∗ → HomC(X,Y )∗ satisfying
f1([ I ]) = z. Unwinding the definitions, we see that if f : N∗( I ; Z)→ HomC(X,Y )∗ is a
map of chain complexes extending f0, then the corresponding extension σ : ∆n+1 → Nhc

• (C∆)
of σ0 satisfies Z ◦ σ = τ if and only if f |M∗ = f1. We will complete the proof by showing
that M∗ is a direct summand of N∗( I ; Z) (so that any map f1 : M∗ → HomC(X,Y )∗ can
be extended to N∗( I ; Z)). To prove this, note that we have an exact sequence of chain
complexes

0→ Z[n] [ I ]−−−→ N∗( I , ∂ I ; Z)→ N∗( I ; Z)/M∗ → 0,

where the first map is a quasi-isomorphism (Variant 2.5.7.17). It follows that the chain
complex N∗( I ; Z)/M∗ is acyclic and free in each degree, so that the exact sequence

0→M∗ → N∗( I ; Z)→ N∗( I ; Z)/M∗ → 0

splits by virtue of Proposition 2.5.1.10.



Chapter 3

Kan Complexes

00SY Recall that a Kan complex is a simplicial set X with the property that, for n > 0 and
0 ≤ i ≤ n, any morphism of simplicial sets σ0 : Λni → X can be extended to an n-simplex of
X (Definition 1.2.5.1). Kan complexes play an important role in the theory of ∞-categories,
for three different (but closely related) reasons:

(a) Every Kan complex is an ∞-category (Example 1.4.0.3). Conversely, every ∞-category
C contains a largest Kan complex C≃ ⊆ C (obtained from C by removing all non-
invertible morphisms; see Construction 4.4.3.1), which is an important invariant of C.
Consequently, understanding the homotopy theory of Kan complexes can be regarded
as a first step towards understanding ∞-categories in general.

(b) Let C be an ∞-category. To every pair of objects X,Y ∈ C, one can associate a Kan
complex HomC(X,Y ) which we will refer to as the space of maps from X to Y (see
Construction 4.6.1.1). These mapping spaces are essential to the structure of C. For
example, we will see later that a functor of∞-categories F : C → D admits a homotopy
inverse if and only if it is essentially surjective at the level of homotopy categories and
induces a homotopy equivalence HomC(X,Y )→ HomD(F (X), F (Y )) for every pair of
objects X,Y ∈ C (see Theorem 4.6.2.20).

(c) The collection of all Kan complexes can be organized into an ∞-category, which we
will denote by S and refer to as the ∞-category of spaces (Construction 5.5.1.1). The
∞-category S plays a central role in the general theory of ∞-categories, analogous to
the role of Set in classical category theory. This can be articulated in several different
ways:

• To any ∞-category C, one can associate a functor h : C → Fun(Cop,S) called the
Yoneda embedding, which is given informally (and up to homotopy equivalence)
by the construction C 7→ HomC(•, C) (see Definition 8.3.3.9). Like the classical
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Yoneda embedding, the functor h is fully faithful: that is, it induces an equivalence
on mapping spaces (Theorem 8.3.3.13).

• The ∞-category S has a pointed variant S∗, whose objects are pointed Kan
complexes (Construction 5.5.3.1). This ∞-category is equipped with a forgetful
functor S∗ → S, given on objects by the construction (X,x) 7→ X. This forgetful
functor is an example of a left fibration of ∞-categories (see Definition 4.2.1.1).
In fact, it is a universal left fibration in the following sense: for any ∞-category
C, the construction

(F : C → S) 7→ (u : C ×S S∗ → C)

induces a bijection from the set of isomorphism classes of functors F : C → S
to the set of equivalence classes of left fibrations C → C having essentially small
fibers (Corollary 5.6.0.6).

• The ∞-category S admits small colimits (Corollary 7.4.5.6). Moreover, if C is
any other ∞-category which admits small colimits, then evaluation on the Kan
complex ∆0 ∈ S induces an equivalence of ∞-categories

Fun′(S, C)→ C F 7→ F (∆0),

where Fun′(S, C) denotes the full subcategory of Fun(S, C) spanned by those
functors which preserve small colimits (Example 8.4.0.4). In other words, the
∞-category S is freely generated under small colimits by the Kan complex ∆0.

Our goal in this chapter is to give an exposition of the homotopy theory of Kan complexes.
We begin in §3.1 by developing the basic vocabulary of simplicial homotopy theory. In
particular, we introduce the notions of Kan fibration (Definition 3.1.1.1), anodyne morphism
(Definition 3.1.2.1), and (weak) homotopy equivalence between simplicial sets (Definitions
3.1.6.1 and 3.1.6.12), and establish some of their basic formal properties.

Recall that, to any Kan complex X, we can associate a set π0(X) of connected components
of X (Definition 1.2.1.8). In §3.2, we associate to each base point x ∈ X a sequence of groups
{πn(X,x)}n>0, which we refer to as the homotopy groups of X (Construction 3.2.2.4 and
Theorem 3.2.2.10), and establish some of their essential properties. In particular, we prove a
simplicial analogue of Whitehead’s theorem: a morphism of Kan complexes f : X → Y is a
homotopy equivalence if and only if it induces a bijection π0(X)→ π0(Y ) and isomorphisms
πn(X,x)→ πn(Y, f(x)), for every choice of base point x ∈ X and every positive integer n
(Theorem 3.2.7.1).

A general simplicial set X need not be a Kan complex. However, one can always find a
weak homotopy equivalence f : X → Y , where Y is a Kan complex; in this case, we refer to
Y as a fibrant replacement for X (in the case where X is an ∞-category, one can think of Y
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as another ∞-category obtained from X by formally adjoining inverses of all morphisms:
see Proposition 6.3.1.20). The existence of fibrant replacements has an easy formal proof (a
special case of Quillen’s small object argument; see §3.1.7), which gives very little information
about the structure of the Kan complex Y . In §3.3, we outline another approach (due to
Kan) which associates to each simplicial set X a Kan complex Ex∞(X) = lim−→n≥0 Exn(X)
which is defined using combinatorics of iterated subdivision (Construction 3.3.6.1). The
functor X 7→ Ex∞(X) has many useful properties: for example, it preserves Kan fibrations
(Proposition 3.3.6.6) and commutes with finite limits (Proposition 3.3.6.4). As an application,
we show that a Kan fibration of simplicial sets f : X → Y is a weak homotopy equivalence
if and only if it is a trivial Kan fibration (Proposition 3.3.7.6), and that a monomorphism
of simplicial sets i : A ↪→ B is a weak homotopy equivalence if and only if it is anodyne
(Corollary 3.3.7.7).

Let Set∆ denote the category of simplicial sets, and let Kan ⊂ Set∆ denote the full
subcategory spanned by the Kan complexes. We let hKan denote the homotopy category
of Kan complexes (Construction 3.1.5.10), which can be obtained from Kan by identifying
morphisms which are homotopic. Beware that the category hKan is somewhat ill-behaved:
for example, it admits neither pullbacks or pushouts. In §3.4, we address this point by
introducing the notions of homotopy pullback and homotopy pushout diagrams of simplicial
sets (which can be regarded as homotopy-theoretic counterparts for the classical categorical
notion of pullback and pushout diagrams), and establishing their basic properties. We
will later see that these diagrams can be interpreted as pullback and pushout squares in
the ∞-category S (see Examples 7.6.4.2 and 7.6.4.3), rather than its homotopy category
hKan ≃ hS.

Recall that, for every topological space Y , the singular simplicial set Sing•(Y ) is a Kan
complex (Proposition 1.2.5.8). In §3.6, we show that every Kan complex arises in this
way, at least up to homotopy equivalence. More precisely, we show that the unit map
uX : X → Sing•(|X|) is a homotopy equivalence for any Kan complex X (and a weak
homotopy equivalence for any simplicial set X; see Theorem 3.6.4.1). Using this fact, we
show that the geometric realization functor X 7→ |X| induces a fully faithful embedding
of homotopy categories hKan ↪→ hTop, whose essential image consists of those topological
spaces having the homotopy type of a CW complex (Theorem 3.6.0.1). In other words,
the (combinatorially defined) homotopy theory of Kan complexes studied in this section is
essentially equivalent to the (topologically defined) homotopy theory of CW complexes.

3.1 The Homotopy Theory of Kan Complexes

00SZ Let X and Y be simplicial sets, and suppose we are given a pair of maps f0, f1 : X → Y.
A homotopy from f0 to f1 is a morphism of simplicial sets h : ∆1 × X → Y satisfying

https://kerodon.net/tag/00SZ
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f0 = h|{0}×X and f1 = h|{1}×X (Definition 3.1.5.2). Beware that, for general simplicial sets,
this terminology can be misleading: for example, the existence of a homotopy from f0 to f1
need not imply the existence of a homotopy from f1 to f0. However, the situation is better in
the case if we assume that Y• is a Kan complex. In general, we can identify morphisms from
X to Y as vertices of the simplicial set Fun(X,Y) of Construction 1.5.3.1, and homotopies
with edges of the simplicial set Fun(X,Y). In §3.1.3, we will show that when Y is a Kan
complex, then Fun(X,Y) is also a Kan complex (Corollary 3.1.3.4).

Our approach to Corollary 3.1.3.4 is somewhat indirect. We begin in §3.1.1 by introducing
the notion of a Kan fibration between simplicial sets. Roughly speaking, a Kan fibration
f : X → S can be viewed as a family of Kan complexes parametrized by S: in particular, if
f is a Kan fibration, then each fiber Xs = {s} ×S X is a Kan complex (Remark 3.1.1.9). In
§3.1.3, we will deduce Corollary 3.1.3.4 as a consequence of a more general stability result
for Kan fibrations under exponentiation (Theorem 3.1.3.1). Our proof of this result will
make use of the Gabriel-Zisman calculus of anodyne morphisms, which we review in §3.1.2.

We say that a morphism of Kan complexes f : X → Y is a homotopy equivalence if its
image in the homotopy category hKan is an isomorphism: that is, if f admits a homotopy
inverse g : Y → X. This definition makes sense for more general simplicial sets (Definition
3.1.6.1), but is of somewhat limited utility. When working with simplicial sets which are
not Kan complexes, it is often better to consider the more liberal notion of weak homotopy
equivalence (Definition 3.1.6.12), which we introduce and study in §3.1.6. In §3.1.7, we show
that every simplicial set X• admits an anodyne morphism f : X• → Q• where Q• is a Kan
complex (Corollary 3.1.7.2), using a simple incarnation of Quillen’s “small object argument.”

3.1.1 Kan Fibrations

00T0Recall that a simplicial set X is said to be a Kan complex if it has the extension property
with respect to every horn inclusion Λn

i ↪→ ∆n for n > 0 (Definition 1.2.5.1). For many
purposes, it is useful to consider a relative version of this notion, which applies to a morphism
between simplicial sets.
Definition 3.1.1.1. 00T1Let f : X → S be a morphism of simplicial sets. We say that f is a
Kan fibration if, for each n > 0 and each 0 ≤ i ≤ n, every lifting problem

Λni
σ0 //

��

X

f

��
∆n

σ

??

σ // S

admits a solution (as indicated by the dotted arrow). That is, for every map of simplicial
sets σ0 : Λni → X and every n-simplex σ : ∆n → S extending f ◦ σ0, we can extend σ0 to an
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n-simplex σ : ∆n → X satisfying f ◦ σ = σ.

Example 3.1.1.2.00T2 Let X be a simplicial set. Then the projection map X → ∆0 is a Kan
fibration if and only if X is a Kan complex.

Example 3.1.1.3.00T3 Any isomorphism of simplicial sets is a Kan fibration.

Example 3.1.1.4.01GE Let S be a simplicial set and let S′ ⊆ S be a simplicial subset. Then the
inclusion map S′ ↪→ S is a Kan fibration if and only if S′ is a summand of S (see Definition
1.2.1.1).

Remark 3.1.1.5.00T4 The collection of Kan fibrations is closed under retracts. That is, given a
diagram of simplicial sets

X //

f

��

X ′

f ′

��

// X

f

��
S // S′ // S

where both horizontal compositions are the identity, if f ′ is a Kan fibration, then so is f .

Remark 3.1.1.6.00T5 The collection of Kan fibrations is closed under pullback. That is, given
a pullback diagram of simplicial sets

X ′

f ′

��

// X

f

��
S′ // S

where f is a Kan fibration, f ′ is also a Kan fibration.

Remark 3.1.1.7.00ZW Let f : X → S be a map of simplicial sets. Suppose that, for every
simplex σ : ∆n → S, the projection map ∆n ×S X → ∆n is a Kan fibration. Then f is a
Kan fibration. Consequently, if we are given a pullback diagram of simplicial sets

X ′

f ′

��

// X

f

��
S′

g // S

where g is surjective and f ′ is a Kan fibration, then f is also a Kan fibration.
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Remark 3.1.1.8. 00X6The collection of Kan fibrations is closed under filtered colimits. That
is, if {fα : Xα → Sα} is any filtered diagram in the arrow category Fun([1],Set∆) having
colimit f : X → S, and each fα is a Kan fibration of simplicial sets, then f is also a Kan
fibration of simplicial sets.

Remark 3.1.1.9. 00T6Let f : X → S be a Kan fibration of simplicial sets. Then, for every
vertex s ∈ S, the fiber {s} ×S X is a Kan complex (this follows from Remark 3.1.1.6 and
Example 3.1.1.2).

Remark 3.1.1.10. 00T7Let f : X → Y and g : Y → Z be Kan fibrations. Then the composite
map (g ◦ f) : X → Z is a Kan fibration.

Remark 3.1.1.11. 01C5Let f : X → Y be a Kan fibration of simplicial sets. If Y is a Kan
complex, then X is also a Kan complex (this follows by applying Remark 3.1.1.10 in the
case Z = ∆0, by virtue of Example 3.1.1.2).

3.1.2 Anodyne Morphisms

00UGBy definition, a morphism of simplicial sets f : X → S is a Kan fibration if it is weakly
right orthogonal to every horn inclusion Λn

i ↪→ ∆n for 0 ≤ i ≤ n and n > 0 (Definition
1.5.4.3). If this condition is satisfied, then f is weakly right orthogonal to a much larger
collection of morphisms.

Definition 3.1.2.1 (Anodyne Morphisms). 00UHLet T be the smallest collection of morphisms
in the category Set∆ with the following properties:

• For each n > 0 and each 0 ≤ i ≤ n, the horn inclusion Λni ↪→ ∆n belongs to T .

• The collection T is weakly saturated (Definition 1.5.4.12). That is, T is closed under
pushouts, retracts, and transfinite composition.

We say that a morphism of simplicial sets i : A → B is anodyne if it belongs to the collection
T .

Remark 3.1.2.2. 00UJThe class of anodyne morphisms was introduced by Gabriel-Zisman in
[23].

Remark 3.1.2.3. 00UKEvery anodyne morphism of simplicial sets i : A → B is a monomorphism.
This follows from the observation that the collection of monomorphisms is weakly saturated
(Proposition 1.5.5.14) and that every horn inclusion Λni ↪→ ∆n is a monomorphism.

Example 3.1.2.4. 00ULLet i : A ↪→ B be an inner anodyne morphism of simplicial sets
(Definition 1.5.6.4). Then i is anodyne. The converse is false in general. For example, the
horn inclusions Λn0 ↪→ ∆n and Λnn ↪→ ∆n are anodyne (for n > 0), but are not inner anodyne.
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Example 3.1.2.5.0218 For 0 ≤ i ≤ n, the inclusion map {i} ↪→ ∆n is anodyne. To prove this,
let Spine[n] denote the spine of the n-simplex, so that the inclusion Spine[n] ↪→ ∆n is inner
anodyne (Example 1.5.7.7) and therefore anodyne (Example 3.1.2.4). It will therefore suffice
to show that the inclusion {i} ↪→ Spine[n] is anodyne, which is clear (it can be written as a
composition of pushouts of the inclusions {0} ↪→ ∆1 and {1} ↪→ ∆1).
Remark 3.1.2.6.00UM By construction, the collection of anodyne morphisms is weakly saturated.
In particular:

• Every isomorphism of simplicial sets is anodyne.

• If i : A → B and j : B → C are anodyne morphisms of simplicial sets, then the
composition j ◦ i is anodyne.

• For every pushout diagram of simplicial sets

A

i

��

// A′

i′

��
B // B′,

if i is anodyne, then i′ is also anodyne.

• Suppose there exists a commutative diagram of simplicial sets

A

i

��

// A′

i′

��

// A

i

��
B // B′ // B,

where the horizontal compositions are the identity. If i′ is anodyne, then i is anodyne.
Remark 3.1.2.7.00UN Let f : X → S be a morphism of simplicial sets. The following conditions
are equivalent:
(a) The morphism f is a Kan fibration (Definition 3.1.1.1).

(b) For every square diagram of simplicial sets

A

i

��

// X

f

��
B //

??

S
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where i is anodyne, there exists a dotted arrow rendering the diagram commutative.

The implication (b) ⇒ (a) is immediate from the definitions (since the horn inclusions
Λni ↪→ ∆n are anodyne for n > 0). The reverse implication follows from the weak saturation
of the collection of morphisms which are weakly left orthogonal to f (Proposition 1.5.4.13).

Remark 3.1.2.8. 050KLet f : X → S be a Kan fibration of simplicial sets. If f is surjective on
vertices, then it is surjective on n-simplices for every integer n ≥ 0. This follows from the
lifting property of Remark 3.1.2.7, combined with the observation that the inclusion map
{0} ↪→ ∆n is anodyne (Example 3.1.2.5).

We will need the following stability properties for the class of anodyne morphisms:

Proposition 3.1.2.9. 014DLet f : A ↪→ B and f ′ : A′ ↪→ B′ be monomorphisms of simplicial
sets. If either f or f ′ is anodyne, then the induced map

(A ×B′)
∐
A×A′

(B ×A′) ↪→ B ×B′

is anodyne.

The proof of Proposition 3.1.2.9 will require some preliminaries.

Lemma 3.1.2.10. 00TGFor every pair of integers 0 < i ≤ n, the horn inclusion f0 : Λni ↪→ ∆n is
a retract of the inclusion map f : (∆1 × Λni ) ∐

{1}×Λn
i
({1} ×∆n) ↪→ ∆1 ×∆n.

Proof. Let A denote the simplicial subset of ∆1 ×∆n given by the union of ∆1 × Λni with
{1} ×∆n. To prove Lemma 3.1.2.10, it will suffice to show that there exists a commutative
diagram of simplicial sets

{0} × Λni //

f0

��

A //

f

��

Λni

f0

��
{0} ×∆n // ∆1 ×∆n r // ∆n

where the left horizontal maps are given by inclusion and the horizontal compositions are
the identity maps. To achieve this, it suffices to choose r to be given on vertices by the map
of partially ordered sets

r : [1]× [n]→ [n] r(j, k) =

i if j = 1 and k ≤ i
k otherwise.
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Lemma 3.1.2.11.03X4 Let X be a simplicial set which is the union of a simplicial subset Y ⊆ X
with the image of an n-simplex σ : ∆n → X, where n > 0. Suppose that the inverse image
σ−1(Y ) ⊆ ∆n is equal to the horn Λn

i for some 0 ≤ i ≤ n. Then pullback diagram of
simplicial sets

03X5 Λni //

��

∆n

σ

��
Y // X

(3.1)

is also a pushout square.

Proof. Fix an integer m ≥ 0. We wish to show that σ induces a bijection from the set of
m-simplices of ∆n which are not contained in Λni to the set of m-simplices of X which are
not contained in Y . Surjectivity follows from our assumption that X is the union of Y with
the image of σ. To prove injectivity, we proceed by induction on m. Let α, β : ∆m → ∆n be
morphisms which do not factor through Λn

i , and suppose that σ ◦ α = τ = σ ◦ β for some
simplex τ : ∆m → X; we wish to show that α = β.

Suppose first that the simplex α is degenerate: that is, we have α(j) = α(k) for some
0 ≤ j < k ≤ m. Then dmj (α) is an (m − 1)-simplex of ∆n which is not contained Λn

i . It
follows that σ◦dmj (α) = dmj (τ) = σ◦dmj (β) is an (m−1)-simplex of X which is not contained
in Y , so that dmj (β) is not contained in Λni . Applying our inductive hypothesis, we deduce
that dmj (α) = dmj (β). The same argument shows that dmk (α) = dmk (β), so that α = β.

We may therefore assume without loss of generality that the simplex α is nondegenerate.
By a similar argument, we may assume that β is nondegenerate. The equality α = β now
follows from the observation that ∆n contains at most one nondegenerate m-simplex which
is not contained in Λni .

Lemma 3.1.2.12.00TH Let n be a nonnegative integer. Then there exists a chain of simplicial
subsets

X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) ⊂ X(n+ 1) = ∆1 ×∆n

with the following properties:

(a) The simplicial X(0) is given by the union of ∆1× ∂∆n with {1}×∆n (and can therefore
be described abstractly as the pushout (∆1 × ∂∆n) ∐

{1}×∂∆n({1} ×∆n)).

https://kerodon.net/tag/03X4
https://kerodon.net/tag/03X5
https://kerodon.net/tag/00TH
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(b) For 0 ≤ i ≤ n, the inclusion map X(i) ↪→ X(i+ 1) fits into a pushout diagram

Λn+1
i+1

//

��

X(i)

��
∆n+1 // X(i+ 1).

Proof. For 0 ≤ i ≤ n, let σi : ∆n+1 → ∆1 × ∆n denote the map of simplicial sets given

on vertices by the formula σi(j) =

(0, j) if j ≤ i
(1, j − 1) if j > i.

We define simplicial subsets

X(i) ⊆ ∆1 ×∆n inductively by the formulae

X(0) = (∆1 × ∂∆n) ∪ ({1} ×∆n) X(i+ 1) = X(i) ∪ im(σi),

where im(σi) denotes the image of the morphism σi. Note that ∆1 ×∆n is the union of
the simplicial subsets {im(σi)}0≤i≤n, and is therefore equal to X(n + 1). This definition
satisfies condition (a) by construction. To verify (b), it will suffice to show that for 0 ≤ i ≤ n,
the inverse image A = σ−1

i X(i) is equal to Λn+1
i+1 (Lemma 3.1.2.11). Regarding σi as an

(n+1)-simplex of ∆1×∆n, we are reduced to showing that the faces dn+1
j (σi) belong to X(i)

if and only if j ≠ i+ 1. One direction is clear: the face dn+1
j (σi) is contained in ∆1 × ∂∆n

for j /∈ {i, i+ 1}, the face dn+1
i (σi) = dn+1

i (σi−1) is contained in im(σi−1) ⊆ X(i) for i > 0,
and dn+1

0 (σ0) is contained in {1} ×∆n. To complete the proof, it suffices to show that the
face dn+1

i+1 (σi) is not contained in X(i), which follows by inspection.

Proof of Proposition 3.1.2.9. Let us first regard the monomorphism f ′ : A′ ↪→ B′ as fixed,
and let T be the collection of all maps f : A → B for which the induced map

(A ×B′)
∐
A×A′

(B ×A′) ↪→ B ×B′

is anodyne. We wish to show that every anodyne morphism belongs to T . Since T is weakly
saturated, it will suffice to show that every horn inclusion f : Λn

i ↪→ ∆n belongs to T (for
n > 0). Without loss of generality, we may assume that 0 < i, so that f is a retract of
the map g : (∆1 × Λni ) ∐

{1}×Λn
i
({1} ×∆n) ↪→ ∆1 ×∆n (Lemma 3.1.2.10). It will therefore

suffice to show that g belongs to T . Replacing f ′ by the monomorphism

(Λni ×B′)
∐

Λn
i ×A′

(∆n ×B′) ↪→ ∆n ×A′,

we are reduced to showing that the inclusion {1} ↪→ ∆1 belongs to T .
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Let T ′ denote the collection of all morphisms of simplicial sets f ′′ : A′′ → B′′ for which
the map ({1} × B′′) ∐

{1}×A′′(∆1 × A′′) → ∆1 × B′′ is anodyne. We will complete the
proof by showing that T ′ contains all monomorphisms of simplicial sets. By virtue of
Proposition 1.5.5.14, it will suffice to show that T ′′ contains the inclusion map ∂∆m ↪→
∆m, for each m > 0. In other words, we are reduced to showing that the inclusion
({1} × ∆m) ∐

{1}×∂∆m(∆1 × ∂∆m) ↪→ ∆1 × ∆m is anodyne, which follows from Lemma
3.1.2.12.

3.1.3 Exponentiation for Kan Fibrations

00TJ Let B and X be simplicial sets. In §1.5.3, we showed that if X is an ∞-category, then
the simplicial set Fun(B,X) is an ∞-category (Theorem 1.5.3.7). If X is a Kan complex,
we can say more: the simplicial set Fun(B,X) is also a Kan complex (Corollary 3.1.3.4).
This is a consequence of the following stronger result:

Theorem 3.1.3.1.00TK Let f : X → S be a Kan fibration of simplicial sets, and let i : A ↪→ B

be any monomorphism of simplicial sets. Then the induced map

Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is a Kan fibration.

Proof. By virtue of Remark 3.1.2.7, it will suffice to show that if i′ : A′ ↪→ B′ is an anodyne
morphism of simplicial sets, then every lifting problem of the form

A′

i′

��

// Fun(B,X)

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a solution. Equivalently, we must show that every lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

f

��
B ×B′ //

33

S

admits a solution. This follows from Remark 3.1.2.7, since the left vertical map is anodyne
(Proposition 3.1.2.9) and the right vertical map is a Kan fibration.

Let us note some special cases of Theorem 3.1.3.1 (which can be obtained by taking the
simplicial set A to be empty, the simplicial set S to be ∆0, or both).

https://kerodon.net/tag/00TJ
https://kerodon.net/tag/00TK
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Corollary 3.1.3.2. 00TLLet f : X → S be a Kan fibration of simplicial sets. Then, for every
simplicial set B, composition with f induces a Kan fibration Fun(B,X)→ Fun(B,S).

Corollary 3.1.3.3. 00TMLet X be a Kan complex. Then, for every monomorphism of simplicial
sets i : A ↪→ B, the restriction map Fun(B,X)→ Fun(A,X) is a Kan fibration.

Corollary 3.1.3.4. 00TNLet X be a Kan complex and let B be an arbitrary simplicial set. Then
the simplicial set Fun(B,X) is a Kan complex.

Theorem 3.1.3.1 has an analogue for trivial Kan fibrations:

Theorem 3.1.3.5. 014ELet i : A ↪→ B be an anodyne morphism of simplicial sets and let
f : X → S be a Kan fibration. Then the induced map

Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is a trivial Kan fibration.

Proof. We proceed as in the proof of Theorem 3.1.3.1. Let i′ : A′ ↪→ B′ be a monomorphism
of simplicial sets; we must show that every lifting problem

A′

i′

��

// Fun(B,X)

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a solution. Equivalently, we must show that every lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

f

��
B ×B′ //

33

S

admits a solution. This follows from Remark 3.1.2.7, since the left vertical map is anodyne
(Proposition 3.1.2.9) and the right vertical map is a Kan fibration.

Taking S = ∆0 in the statement of Theorem 3.1.3.5, we obtain the following:

Corollary 3.1.3.6. 00UTLet i : A ↪→ B be an anodyne morphism of simplicial sets and let X be
a Kan complex. Then the restriction map Fun(B,X)→ Fun(A,X) is a trivial Kan fibration.

To formulate some further consequences of Theorem 3.1.3.1, it will be convenient to
introduce some notation.

Construction 3.1.3.7. 01ABLet B and X be simplicial sets, and let Fun(B,X) be the simplicial
set parametrizing morphisms from B to X (Construction 1.5.3.1).

https://kerodon.net/tag/00TL
https://kerodon.net/tag/00TM
https://kerodon.net/tag/00TN
https://kerodon.net/tag/014E
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https://kerodon.net/tag/01AB
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• Suppose we are given another simplicial set A equipped with a pair of morphisms
i : A → B and f : A → X. In this case, we let FunA/(B,X) ⊆ Fun(B,X) denote
the fiber of the precomposition morphism Fun(B,X) ◦i−→ Fun(A,X) over the vertex
f ∈ Fun(A,X).

• Suppose we are given another simplicial set S equipped with a pair of morphism
g : B → S and q : X → S. We let Fun/S(B,X) ⊆ Fun(B,X) denote the fiber of the
postcomposition morphism Fun(B,X) q◦−→ Fun(B,S) over the vertex g ∈ Fun(B,S).

• Suppose we are given a commutative diagram of simplicial sets

A
f //

i

��

X

q

��
B

g // S.

In this case, we let FunA//S(B,X) ⊆ Fun(B,X) denote the simplicial subset given by
the intersection FunA/(B,X) ∩ Fun/S(B,X).

Remark 3.1.3.8.01GF Let B and X be simplicial sets, and let us identify vertices of Fun(B,X)
with morphisms f : B → X in the category of simplicial sets. Then:

• Suppose we are given another simplicial set A equipped with a pair of morphisms
i : A → B and f : A → X. Then vertices of the simplicial set FunA/(B,X) can be
identified with morphisms f : B → X satisfying f = f ◦ i.

• Suppose we are given another simplicial set S equipped with a pair of morphisms
g : B → S and q : X → S. Then vertices of the simplicial set Fun/S(B,X) can be
identified with morphisms f : B → X satisfying g = q ◦ f .

• Suppose we are given a square diagram of simplicial sets

A
f //

i

��

X

q

��
B

g //

f

??

S.

Then vertices of the simplicial set FunA//S(B,X) can be identified with solutions
of the associated lifting problem: that is, morphisms of simplicial sets f : B → X

satisfying f = f ◦ i and g = q ◦ f .

https://kerodon.net/tag/01GF
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Remark 3.1.3.9. 01GGSuppose we are given a diagram of simplicial sets

A
f //

i

��

X

q

��
B

g //

f

??

S

which does not commute. Then the simplicial set FunA//S(B,X) = FunA/(B,X) ∩
Fun/S(B,X) of Construction 3.1.3.7 can still be defined, but is automatically empty.

Remark 3.1.3.10. 01GHSuppose we are given a commutative diagram of simplicial sets

A
f //

i

��

X

q

��
B

g //

f

??

S.

Then:

• If S ≃ ∆0 is a final object of the category of simplicial sets, then we have an equality
FunA//S(B,X) = FunA/(B,X) (as simplicial subsets of Fun(B,X)).

• If A ≃ ∅ is an initial object of the category of simplicial sets, then we have an equality
FunA//S(B,X) = Fun/S(B,X) (as simplicial subsets of Fun(B,X)).

• If S ≃ ∆0 and A ≃ ∅ are final and initial objects, respectively, then we have an equality
FunA//S(B,X) = Fun(B,X).

Remark 3.1.3.11. 01GJSuppose we are given a commutative diagram of simplicial sets

A
f //

i

��

X

q

��
B g

//

f

??

S.

Then the simplicial set FunA//S(B,X) can be identified with the fiber of the induced map

Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S)

over the vertex given by the pair (f, g).

https://kerodon.net/tag/01GG
https://kerodon.net/tag/01GH
https://kerodon.net/tag/01GJ
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Example 3.1.3.12.01AC Let q : X → S be a morphism of simplicial sets. Then, for each vertex
s ∈ S, the simplicial set Fun/S({s}, X) can be identified with the fiber Xs = {s} ×S X.

Proposition 3.1.3.13.01GK Suppose we are given a commutative diagram of simplicial sets

A
f //

i

��

X

q

��
B

g //

f

??

S,

where i is a monomorphism and q is a Kan fibration. Then the simplicial set FunA//S(B,X)
is a Kan complex. If i is anodyne, then the Kan complex FunA//S(B,X) is contractible.

Proof. By virtue of Remark 3.1.3.11, the simplicial set FunA//S(B,X) can be identified
with a fiber of the restriction map

θ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,X).

Theorem 3.1.3.1 guarantees that θ is a Kan fibration, so its fibers are Kan complexes by
virtue of Remark 3.1.1.9. If i is anodyne, then θ is a trivial Kan fibration (Theorem 3.1.3.5),
so its fibers are contractible Kan complexes (Remark 1.5.5.10).

Corollary 3.1.3.14.01GL Let B be a simplicial set, let A ⊆ B be a simplicial subset, and let
f : A→ X be a morphism of simplicial sets. If X is a Kan complex, then the simplicial set
FunA/(B,X) is a Kan complex. If the inclusion A ↪→ B is anodyne, then the Kan complex
FunA/(B,X) is contractible.

Proof. Apply Proposition 3.1.3.13 in the special case S = ∆0.

Corollary 3.1.3.15.01GM Let q : X → S be a Kan fibration of simplicial sets, and let g : B → S

be any morphism of simplicial sets. Then the simplicial set Fun/S(B,X) is a Kan complex.

Proof. Apply Proposition 3.1.3.13 in the special case A = ∅.

3.1.4 Covering Maps

0219 Let X and S be topological spaces. Recall that a continuous function f : X → S is a
covering map if every point s ∈ S has an open neighborhood U ⊆ S for which the inverse
image f−1(U) is homeomorphic to a disjoint union of copies of U . This definition has a
counterpart in the setting of simplicial sets:

https://kerodon.net/tag/01AC
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Definition 3.1.4.1. 021ALet f : X → S be a morphism of simplicial sets. We say that f is a
covering map if, for every pair of integers 0 ≤ i ≤ n with n > 0, every lifting problem

Λni //
� _

��

X

f

��
∆n //

>>

S

has a unique solution.

Remark 3.1.4.2. 021BLet f : X → S be a morphism of simplicial sets. Then f is a covering
map if and only if the opposite morphism fop : Xop → Sop is a covering map.

Remark 3.1.4.3. 021CLet f : X → S be a morphism of simplicial sets, and let δ : X → X ×S X
be the relative diagonal of f . Then f is a covering map if and only if both f and δ are Kan
fibrations. In particular, every covering map is a Kan fibration.

Remark 3.1.4.4. 021DSuppose we are given a pullback diagram of simplicial sets

X ′ //

f ′

��

X

f

��
S′ // S.

If f is a covering map, then f ′ is also a covering map.

Remark 3.1.4.5. 021ELet f : X → Y and g : Y → Z be morphisms of simplicial sets. Suppose
that g is a covering map. Then f is a covering map if and only if g ◦ f is a covering map. In
particular, the collection of covering maps is closed under composition.

Remark 3.1.4.6. 021FLet f : X → S be a morphism of simplicial sets. The following conditions
are equivalent:

(a) The morphism f is a covering map (Definition 3.1.4.1).

(b) For every square diagram of simplicial sets

A

i

��

// X

f

��
B //

??

S

https://kerodon.net/tag/021A
https://kerodon.net/tag/021B
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where i is anodyne, there exists a unique dotted arrow rendering the diagram commu-
tative.

This follows by combining Remarks 3.1.2.7 and 3.1.4.3.

Proposition 3.1.4.7.021G Let f : X → S be a covering map of simplicial sets, and let i : A ↪→ B

be any monomorphism of simplicial sets. Then the induced map

Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is a covering map.

Proof. By virtue of Remark 3.1.4.6, it will suffice to show that if i′ : A′ ↪→ B′ is an anodyne
morphism of simplicial sets, then every lifting problem of the form

A′

i′

��

// Fun(B,X)

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a unique solution. Equivalently, we must show that every lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

f

��
B ×B′ //

33

S

admits a unique solution. This follows from Remark 3.1.4.6, since the left vertical map is
anodyne (Proposition 3.1.2.9) and f is a covering map.

Corollary 3.1.4.8.021H Let f : X → S be a covering map of simplicial sets. Then, for every
simplicial set B, composition with f induces a covering map Fun(B,X)→ Fun(B,S).

Proposition 3.1.4.9.021J Let f : X → S be a covering map of topological spaces. Then the
induced map Sing•(f) : Sing•(X) → Sing•(S) is a covering map of simplicial sets (in the
sense of Definition 3.1.4.1).

Proof. Let δ : X → X ×S X be the relative diagonal of f . We first claim δ exhibits X as a
summand of X ×S X in the category of topological spaces (that is, it is a homeomorphism
of X onto a closed and open subset of the fiber product X ×S X). To verify this, we can
work locally on S and thereby reduce to the case where X is a product of S with a discrete
topological space, in which case the result is clear. It follows that the induced map of
singular simplicial sets

Sing•(δ) : Sing•(X) ↪→ Sing•(X ×S X) ≃ Sing•(X)×Sing•(S) Sing•(X)

https://kerodon.net/tag/021G
https://kerodon.net/tag/021H
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is also the inclusion of a summand (Remark 1.2.2.4), and is therefore a Kan fibration by
virtue of Example 3.1.1.4. Consequently, to show that Sing•(f) is a covering map, it will
suffice to show that it is a Kan fibration (Remark 3.1.4.3). This is a special case of Corollary
3.6.6.11, since f : X → S exhibits X as a fiber bundle over S (with discrete fibers).

Warning 3.1.4.10. 021KThe converse of Proposition 3.1.4.9 is false. For example, let f : X → S

be a continuous function between topological spaces where S = ∗ consists of a single
point. In this case, the function f is a covering map if and only if the topology on X is
discrete. However, the induced map of simplicial sets Sing•(f) : Sing•(X)→ Sing•(S) is a
covering map if and only if the simplicial set Sing•(X) is discrete: that is, if and only if
every continuous function [0, 1] → X is constant (Example 3.1.4.13). Many non-discrete
topological spaces satisfy this weaker condition (for example, we could take X to be the
Cantor set).

Remark 3.1.4.11. 021LLet f : X → S be a morphism of simplicial sets. Then f is a covering
map (in the sense of Definition 3.1.4.1) if and only if the induced map of geometric realizations
|X| → |S| is a covering map of topological spaces (see Proposition [?]).

Covering maps of simplicial sets have a very simple local structure:

Proposition 3.1.4.12. 021MLet f : X• → S• be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is a covering map.

(2) For every map of standard simplices u : ∆m → ∆n, composition with u induces a
bijection Xn → Xm ×Sm Sn.

(3) For every n-simplex σ : ∆n → S•, the projection map ∆n ×S• X• → ∆n restricts to an
isomorphism on each connected component of ∆n ×S• X•.

Proof. Assume first that (1) is satisfied; we will prove (2). Let u : ∆m → ∆n be a morphism
of simplicial sets. Choose a vertex v : ∆0 → ∆m. It follows from Example 3.1.2.5 that v and
u ◦ v are anodyne morphisms of simplicial sets. Invoking Remark 3.1.4.6, we conclude that
the right square and outer rectangle in the diagram

Xn

��

◦u // Xm
◦v //

��

X0

��
Sn

◦u // Sm
◦v // S0

are pullback diagrams. It follows that the left square is a pullback diagram as well.

https://kerodon.net/tag/021K
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We next show that (2) implies (3). Fix a map σ : ∆n → S•, and let T = Xn ×Sn {σ}
denote the collection of all n-simplices τ of X• satisfying f(τ) = σ. To prove (3), it will
suffice to show that the tautological map

g :
∐
τ∈T

∆n → ∆n ×S• X•

is an isomorphism of simplicial sets. Equivalently, we must show that for every map of
simplices u : ∆m → ∆n, the induced map T → Xm ×Sm {σ ◦ u} is bijective, which follows
immediately from (2).

We now complete the proof by showing that (3) implies (1). Assume that (3) is satisfied.
We wish to show that, for every pair of integers 0 ≤ i ≤ n with n ≥ 1, every lifting problem

Λni� _

��

// X•

f

��
∆n //

>>

S•

admits a unique solution. To prove this, we are free to replace f by the projection map
∆n ×S• X• → ∆n, and thereby reduce to the case where S• is a standard simplex. In this
case, assumption (3) guarantees that each connected component of X• is isomorphic to S•.
The desired result now follows from the observation that the simplicial sets Λni and ∆n are
connected.

Example 3.1.4.13.021N Let X be a simplicial set. Then the unique morphism f : X → ∆0 is a
covering map of simplicial sets if and only if X is discrete (see Definition 1.1.5.10).

Corollary 3.1.4.14.021P Let f : X → S be a monomorphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f exhibits X as a summand of S (Definition 1.2.1.1).

(2) The morphism f is a covering map.

(3) The morphism f is a Kan fibration.

Proof. The implication (1) ⇒ (2) and (2) ⇒ (3) are immediate. Moreover, if f is a
monomorphism, then the relative diagonal δ : X → X ×S X is an isomorphism, so the
implication (3)⇒ (2) follows from Remark 3.1.4.3. We will complete the proof by showing
that (2)⇒ (1). Let u : ∆m → ∆n be a morphism of standard simplices and let σ : ∆n → S

be a simplex of S; we wish to show that σ factors through f if and only if σ ◦ u factors
through f . This follows immediately from the criterion of Proposition 3.1.4.12.

https://kerodon.net/tag/021N
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3.1.5 The Homotopy Category of Kan Complexes

00TRThe category of simplicial sets is equipped with a good notion of homotopy.

Definition 3.1.5.1. 00TSLet X and Y be simplicial sets, and suppose we are given a pair of
maps f, g : X → Y, which we identify with vertices of the simplicial set Fun(X,Y). We will
say that f and g are homotopic if they belong to the same connected component of the
simplicial set Fun(X,Y) (Definition 1.2.1.8).

Let us now make Definition 3.1.5.1 more concrete.

Definition 3.1.5.2. 00TTLet X and Y be simplicial sets, and suppose we are given a pair of
morphisms f0, f1 : X → Y. A homotopy from f0 to f1 is a morphism h : ∆1 × X → Y

satisfying f0 = h|{0}×X and f1 = h|{1}×X .

Remark 3.1.5.3 (Homotopy Extension Lifting Property). 014FLet f : X → S be a Kan fibration
of simplicial sets. Suppose we are given a morphism of simplicial sets u : B → X and a
homotopy h from f ◦ u to another map v : B → S. Then we can choose a map of simplicial
sets h : ∆1 ×B → X satisfying f ◦ h = h and h|{0}×B = u: in other words, h can be lifted
to a homotopy h from u to another map v = h|{1}×B . Moreover, given any simplicial subset
A ⊆ B and any map h0 : ∆1 × A → X satisfying f ◦ h0 = h|∆1×A and h0|{0}×A = u|A ,
we can arrange that h is an extension of h0. This follows from Theorem 3.1.3.1, which
guarantees that the restriction map

Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is a Kan fibration (and therefore weakly right orthogonal to the inclusion {0} ↪→ ∆1). For a
partial converse, see Corollary 4.2.6.2.

Proposition 3.1.5.4. 00TULet X and Y be simplicial sets, and suppose we are given a pair of
morphisms f, g : X → Y. Then:

• The morphisms f and g are homotopic if and only if there exists a sequence of
morphisms f = f0, f1, . . . , fn = g from X to Y having the property that, for each
1 ≤ i ≤ n, either there exists a homotopy from fi−1 to fi or a homotopy from fi to
fi−1.

• Suppose that Y is a Kan complex. Then f and g are homotopic if and only if there
exists a homotopy from f to g.

Proof. The first assertion follows by applying Remark 1.2.1.23 to the simplicial set Fun(X,Y).
If Y is a Kan complex, then Fun(X,Y) is also a Kan complex (Corollary 3.1.3.4), so the
second assertion follows from Proposition 1.2.5.10.
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Example 3.1.5.5.00TV Let X be a simplicial set and let Y be a topological space. Suppose
we are given a pair of continuous functions f0, f1 : |X| → Y , corresponding to morphisms
of simplicial sets f ′0, f ′1 : X → Sing•(Y ). Let h : [0, 1]× |X| → Y be a continuous function
satisfying f0 = h|{0}×|X| and f1 = h|{1}×|X| (that is, a homotopy from f0 to f1 in the
category of topological spaces). Then the composite map

|∆1 ×X| θ−→ |∆1| × |X| = [0, 1]× |X| h−→ Y

classifies a morphism of simplicial sets h′ : ∆1 ×X → Sing•(Y ), which is a homotopy from
f ′0 to f ′1 (in the sense of Definition 3.1.5.2). We will show later that θ is a homeomorphism
of topological spaces (Corollary 3.6.2.2), so every homotopy from f0 to f1 arises in this way.
In other words, the construction h 7→ h′ induces a bijection

{(Continuous) homotopies from f0 to f1} ≃ {(Simplicial) homotopies from f ′0 to f ′1}.

Example 3.1.5.6.00TW Let X and Y be topological spaces, and let h : [0, 1] × X → Y

be a continuous function, which we regard as a homotopy from f0 = h|{0}×X to f1 =
h|{1}×X . Then h determines a homotopy between the induced map of simplicial sets
Sing•(f0), Sing•(f1) : Sing•(X)→ Sing•(Y ): this follows by applying Example 3.1.5.5 to the
composite map [0, 1]× | Sing•(X)| → [0, 1]×X h−→ Y .

Example 3.1.5.7.00ZX Let C and D be categories and suppose we are given a pair of functors
F,G : C → D, which we identify with morphisms of simplicial sets N•(F ),N•(G) : N•(C)→
N•(D). By definition, a homotopy from N•(F ) to N•(G) is a map of simplicial sets

h : ∆1 ×N•(C) ≃ N•([1]× C)→ N•(D)

satisfying h|{0}×N•(C) = N•(F ) and h|{1}×N•(C) = N•(G). By virtue of Proposition 1.3.3.1,
this is equivalent to the datum of a functor H : [1] × C → D satisfying H|{0}×C = F and
H|{1}×C = G. In other words, we have a canonical bijection

{Natural transformations from F to G}

∼

��
{Homotopies from N•(F ) to N•(G)}

.

In particular, if there exists a natural transformation from F to G, then N•(F ) and N•(G)
are homotopic.

Example 3.1.5.8.00ZY Let X be a simplicial set, let M∗ be a chain complex of abelian groups,
and let K(M∗) denote the associated Eilenberg-MacLane space (Construction 2.5.6.3).
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Suppose we are given a pair of morphisms f, g : X → K(M∗) in the category of simplicial
sets, which we can identify with morphisms f ′, g′ : N∗(X; Z)→M∗ in the category of chain
complexes (Corollary 2.5.6.12); here N∗(X; Z) denotes the normalized Moore complex of X
(Construction 2.5.5.9). The following conditions are equivalent:

(1) The morphisms f and g are homotopic, in the sense of Definition 3.1.5.1.

(2) The chain maps f ′ and g′ are chain homotopic, in the sense of Definition 2.5.0.5.

To prove this, we note that (1) is equivalent to the assertion that there is a homotopy from
f to g (since K(M∗) is a Kan complex; see Remark 2.5.6.4): that is, a map of simplicial
sets h : ∆1 ×X → K(M∗) satisfying h|{0}×X = f and h|{1}×X = g. By virtue of Corollary
2.5.6.12, this is equivalent to the existence of a chain map h′ : N∗(∆1 ×X; Z)→M∗ which
is compatible with f ′ and g′. For any such chain map h′, the composition

N∗(∆1) ⊠ N∗(X; Z) EZ−−→ N∗(∆1 ×X) h′−→M∗

determines a chain homotopy from f ′ to g′ (where EZ denotes the Eilenberg-Zilber homo-
morphism of Example 2.5.7.12). More explicitly, this chain homotopy is given by the map of
graded abelian groups

N∗(X; Z)→M∗+1 σ 7→ h′(τ▽σ),

where τ is the generator of N1(∆1) ≃ Z and ▽ is the shuffle product of Construction 2.5.7.9.
This proves that (1) implies (2). Conversely, if (2) is satisfied, then there exists a chain map
u : N∗(∆1) ⊠ N∗(X; Z)→M∗ compatible with f ′ and g′, and we can verify (1) by taking h′
to be the composite map

N∗(∆1 ×X; Z) AW−−→ N∗(∆1) ⊠ N∗(X; Z) u−→M∗

where AW is the Alexander-Whitney homomorphism of Construction 2.5.8.6.

Notation 3.1.5.9. 00TXLet f : X → Y be a morphism of simplicial sets. We let [f ] denote the
homotopy class of f : that is, the image of f in the set π0 Fun(X,Y) of homotopy classes of
maps from X to Y.

Construction 3.1.5.10 (The Homotopy Category of Kan Complexes). 00TYWe define a category
hKan as follows:

• The objects of hKan are Kan complexes.

• If X and Y are Kan complexes, then HomhKan(X,Y) = [X,Y] = π0(Fun(X,Y)) is the
set of homotopy classes of morphisms from X to Y.
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• If X, Y, and Z are Kan complexes, then the composition law

◦ : HomhKan(Y,Z)×HomhKan(X,Y)→ HomhKan(X,Z)

is characterized by the formula [g] ◦ [f ] = [g ◦ f ].

We will refer to hKan as the homotopy category of Kan complexes.

Remark 3.1.5.11.012T Let Kan denote the full subcategory of Set∆ spanned by the Kan
complexes, and let C be any category. Then precomposition with the quotient map Kan→
hKan induces an isomorphism from the functor category Fun(hKan, C) to the full subcategory
of Fun(Kan, C) spanned by those functors F : Kan→ C which satisfy the following condition:

(∗) If X and Y are Kan complexes and u0, u1 : X → Y are homotopic morphisms, then
F (u0) = F (u1) in HomC(F (X), F (Y )).

Remark 3.1.5.12.02L1 Let C be a locally Kan simplicial category (Definition 2.4.1.8). Then the
homotopy category hC of Construction 2.4.6.1 inherits the structure of an hKan-enriched
category, which can be described concretely as follows:

• For every pair of objects X,Y ∈ C, the mapping object HomhC(X,Y ) is the Kan
complex HomC(X,Y )•, regarded as an object of hKan.

• For every pair of objects X,Y, Z ∈ C, the composition law

HomhC(Y,Z)×HomhC(X,Y )→ HomhC(X,Z)

is the homotopy class of the composition map ◦ : HomC(Y,Z)• × HomC(X,Y )• →
HomC(X,Z)•.

Note that the passage from the category Kan to its homotopy category hKan can be
viewed as a special case of Construction 2.4.6.1, where we view Kan as a simplicial category
with morphism spaces given by HomKan(X,Y )• = Fun(X,Y ). Applying Construction
2.4.6.16 to this simplicial category, we obtain the following variant:

Construction 3.1.5.13 (The Homotopy 2-Category of Kan Complexes).02BQ We define a strict
2-category h2Kan as follows:

• The objects of h2Kan are Kan complexes.

• If X and Y are Kan complexes, then Homh2Kan(X,Y ) is the fundamental groupoid of
the Kan complex Fun(X,Y ).
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• If X, Y , and Z are Kan complexes, then the composition law on h2Kan is given by

Homh2Kan(Y, Z)×Homh2Kan(X,Y ) = π≤1(Fun(Y, Z))× π≤1(Fun(X,Y ))
≃ π≤1(Fun(Y, Z)× Fun(X,Y ))
◦−→ π≤1(Fun(X,Z))
= Homh2Kan(X,Z).

We will refer to h2Kan as the homotopy 2-category of Kan complexes.

Remark 3.1.5.14. 02BRWe can describe the strict 2-category h2Kan more informally as follows:

• The objects of h2Kan are Kan complexes.

• The morphisms of h2Kan are morphisms of Kan complexes f : X → Y .

• If f0, f1 : X → Y are morphisms of Kan complexes, then a 2-morphism f0 ⇒ f1 in
h2Kan is an equivalence class of homotopies h : ∆1 ×X → Y from f0 = h|{0}×X to
f1 = h|{1}×X , where we regard h and h′ as equivalent if they are homotopic relative to
∂∆1×X.

Remark 3.1.5.15. 02BSEvery 2-morphism in the 2-category h2Kan is invertible: that is, h2Kan
is a (2, 1)-category in the sense of Definition 2.2.8.5. Moreover, the homotopy category of
h2Kan (in the sense of Construction 2.2.8.12) can be identified with the category hKan of
Construction 3.1.5.10 (see Remark 2.4.6.18).

3.1.6 Homotopy Equivalences and Weak Homotopy Equivalences

00U1Let f : X → Y be a morphism of Kan complexes. We will say that f is a homotopy
equivalence if the homotopy class [f ] is an isomorphism in the homotopy category hKan of
Construction 3.1.5.10. This definition can be extended to more general simplicial sets in
multiple ways.

Definition 3.1.6.1. 00U2Let f : X → Y be a morphism of simplicial sets. We will say that a
morphism g : Y → X is a simplicial homotopy inverse of f if the compositions g ◦ f and
f ◦ g are homotopic to the identity morphisms idX and idY , respectively (in the sense of
Definition 3.1.5.1). In the case where X and Y are Kan complexes, we will say that g is a
homotopy inverse of f if it is a simplicial homotopy inverse to f . We say that f : X → Y is
a homotopy equivalence if it admits a simplicial homotopy inverse g.

Warning 3.1.6.2. 02BTLet f : X → Y be a morphism of simplicial sets. Many authors refer
to a morphism g : Y → X as a homotopy inverse to f if the compositions g ◦ f and f ◦ g
are homotopic to the identity morphisms idX and idY , respectively. However, when X and
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Y are ∞-categories, it is natural to consider a different (and more restrictive) notion of
homotopy inverse, which requires that g ◦ f and f ◦ g be isomorphic to idX and idY as
objects of the ∞-categories Fun(X,X) and Fun(Y, Y ), respectively (see Definition 4.5.1.10
and Warning 4.5.1.14). For this reason, we will use the term simplicial homotopy inverse
in the setting of Definition 3.1.6.1 (unless X and Y are Kan complexes, in which case the
distinction disappears).

Example 3.1.6.3.00U3 Let f : X → Y be a homotopy equivalence of topological spaces. Then
the induced map of singular simplicial sets Sing•(f) : Sing•(X)→ Sing•(Y ) is a homotopy
equivalence (see Example 3.1.5.6).

Remark 3.1.6.4.00U4 Let f : X → Y be a morphism of simplicial sets. The condition that f is
a homotopy equivalence depends only on the homotopy class [f ] ∈ π0(Fun(X,Y)). Moreover,
if f is a homotopy equivalence, then its simplicial homotopy inverse g : Y → X is determined
uniquely up to homotopy.

Remark 3.1.6.5.00V1 Let f : X → Y be a morphism of Kan complexes. If f is a homotopy
equivalence, then the induced map of fundamental groupoids π≤1(f) : π≤1(X)→ π≤1(Y ) is
an equivalence of categories. In particular, f induces a bijection π0(f) : π0(X)→ π0(Y).

Remark 3.1.6.6.00U5 Let f : X → Y be a morphism of simplicial sets. The following conditions
are equivalent:

• The morphism f is a homotopy equivalence.

• For every simplicial set Z, composition with f induces a bijection π0(Fun(Y,Z)) →
π0(Fun(X,Z)).

• For every simplicial set W, composition with f induces a bijection π0(Fun(W,X))→
π0(Fun(W,Y)).

In particular (taking W = ∆0), if f is a homotopy equivalence, then the induced map
π0(f) : π0(X)→ π0(Y) is a bijection.

Remark 3.1.6.7 (Two-out-of-Three).00U7 Let f : X → Y and g : Y → Z be morphisms of
simplicial sets. If any two of the morphisms f , g, and g ◦ f are homotopy equivalences, then
so is the third.

Remark 3.1.6.8.0193 Let {fi : Xi → Yi}i∈I be a collection of homotopy equivalences of
simplicial sets indexed by a set I, and let f : ∏

i∈I Xi →
∏
i∈I Yi be their product. Then:

• If I is finite, then f is a homotopy equivalence. This follows from Remark 3.1.6.6 and
Corollary 1.2.1.27.
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• If each of the simplicial sets Xi and Yi is a Kan complex, then f is a homotopy
equivalence. This follows from Remark 3.1.6.6 and Corollary 1.2.5.11.

• The morphism f need not be a homotopy equivalence in general (see Warning 1.2.1.28).

We now give some more examples of homotopy equivalences.

Proposition 3.1.6.9. 00U8Let F : C → D be a functor between categories, and suppose that F
admits either a left or a right adjoint. Then the induced map N•(F ) : N•(C)→ N•(D) is a
homotopy equivalence of simplicial sets.

Proof. Without loss of generality, we may assume that F admits a right adjoint G : D → C.
Then there exist natural transformations u : idC → G ◦ F and v : F ◦G→ idD witnessing
an adjunction between F and G, so that N•(F ) is a simplicial homotopy inverse of N•(G)
by virtue of Example 3.1.5.7.

Proposition 3.1.6.10. 00U9Let f : X → S be a trivial Kan fibration of simplicial sets. Then f

is a homotopy equivalence.

Proof. Since f is a trivial Kan fibration, the lifting problem

∅ //

��

X

f

��
S

id //

??

S

admits a solution (Proposition 1.5.5.4). We can therefore choose a morphism of simplicial
sets g : S → X which is a section of f : that is, f ◦ g is the identity morphism from S to
itself. We will complete the proof by showing that g is a simplicial homotopy inverse of f .
In fact, we claim that there exists a homotopy h from idX to the composition g ◦ f . This
follows from the solvability of the lifting problem

{0, 1} ×X (id,g◦f) //

��

X

f

��
∆1 ×X f //

h

44

S.

Example 3.1.6.11. 03DYLet S be a simplicial set and let N∗(S; Z) for the normalized chain
complex of S (Construction 2.5.5.9). Let M∗ be a chain complex of abelian groups, let
K(M∗) denote the associated (generalized) Eilenberg-MacLane space, and let

H∗ = HomCh(Z)(N∗(S,Z),M∗)∗
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denote the chain complex of maps from N∗(S; Z) to M∗. Then there is a map of Kan
complexes

λ : K(H∗)→ Fun(S,K(M∗)),

which classifies the map of chain complexes

N∗(S ×K(H∗); Z) AW−−→ N∗(S; Z) ⊠ N∗(K(H∗); Z)
→ N∗(S) ⊠H∗
ev−→ M∗

where AW is the Alexander-Whitney map (see Construction 2.5.8.6). The morphism λ is a
homotopy equivalence of Kan complexes. To prove this, it will suffice to show that for every
simplicial set T , composition with λ induces a bijection

λT : π0(Fun(T,K(H∗))→ π0(Fun(S × T,K(M∗))).

Using Example 3.1.5.8 (and the definition of the chain complex H∗), we can identify the source
of λT with the set of chain homotopy classes of maps the tensor product N∗(S; Z)⊠N∗(T ; Z)
into M∗, and the target of λT with the set of chain homotopy classes of maps from N∗(S×T ; Z)
into M∗. Under these identifications, we see that λT is induced by precomposition with the
Alexander-Whitney map

AW : N∗(S × T ; Z)→ N∗(S; Z) ⊠ N∗(T ; Z).

This map is a quasi-isomorphism (Corollary 2.5.8.11), and therefore admit a chain homotopy
inverse (since the source and target of AW are nonnegatively graded complexes of free
abelian groups; see Remark [?]).

Definition 3.1.6.12.00UA Let f : X → Y be a morphism of simplicial sets. We will say that f
is a weak homotopy equivalence if, for every Kan complex Z, precomposition with f induces
a bijection π0(Fun(Y,Z))→ π0(Fun(X,Z)).

Proposition 3.1.6.13.00UB Let f : X → Y be a morphism of simplicial sets. If f is a homotopy
equivalence, then it is a weak homotopy equivalence. The converse holds if X and Y are Kan
complexes.

Proof. The first assertion follows from Remark 3.1.6.6. For the second, assume that f is a
weak homotopy equivalence. If X is a Kan complex, then precomposition with f induces a
bijection π0(Fun(Y,X))→ π0(Fun(X,X)). We can therefore choose a map of simplicial sets
g : Y → X such that g◦f is homotopic to the identity onX. It follows that f◦g◦f is homotopic
to f = idY ◦f . Invoking the injectivity of the map π0(Fun(Y, Y)) ◦f−→ π0(Fun(X,Y)), we
conclude that f ◦ g is homotopic to idY , so that g is a homotopy inverse to f .
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Proposition 3.1.6.14. 00UPLet f : A ↪→ B be an anodyne morphism of simplicial sets. Then f

is a weak homotopy equivalence.

Remark 3.1.6.15. 00UZWe will later prove a (partial) converse to Proposition 3.1.6.14: if a
monomorphism of simplicial sets f : A ↪→ B is a weak homotopy equivalence, then f is
anodyne (see Corollary 3.3.7.7).

Proof of Proposition 3.1.6.14. Let i : A ↪→ B be an anodyne morphism of simplicial sets;
we wish to show that i is a weak homotopy equivalence. Let X be any Kan complex. It
follows from Corollary 3.1.3.6 that the restriction map θ : Fun(B,X) → Fun(A,X) is a
trivial Kan fibration. In particular, θ is a homotopy equivalence (Proposition 3.1.6.10), and
therefore induces a bijection on connected components π0(Fun(B,X)) → π0(Fun(A,X))
(Remark 3.1.6.6).

Remark 3.1.6.16 (Two-out-of-Three). 00UDLet f : X → Y and g : Y → Z be morphisms of
simplicial sets. If any two of the morphisms f , g, and g ◦ f are weak homotopy equivalences,
then so is the third.

Proposition 3.1.6.17. 03PJLet f : X → Y be a morphism of simplicial sets, and let Z be a Kan
complex. If f is a weak homotopy equivalence, then composition with f induces a homotopy
equivalence Fun(Y,Z)→ Fun(X,Z).

Proof. By virtue of Remark 3.1.6.6, it will suffice to show that for every simplicial set
A, the induced map θ : Fun(A,Fun(Y,Z)) → Fun(A,Fun(X,Z)) induces a bijection on
connected components. This follows by observing that θ can be identfied with the map
Fun(Y,Fun(A,Z))→ Fun(X,Fun(A,Z)) given be precomposition with f (since Corollary
3.1.3.4 guarantees that the simplicial set Fun(A,Z) is a Kan complex).

Proposition 3.1.6.18. 00ZZLet f : X → Y be a weak homotopy equivalence of simplicial
sets. Then the induced map of normalized chain complexes N∗(X; Z) → N∗(Y ; Z) is a
chain homotopy equivalence. In particular, f induces an isomorphism of homology groups
H∗(X; Z)→ H∗(Y ; Z).

Proof. Let M∗ be a chain complex of abelian groups. We wish to show that precomposition
with N∗(f ; Z) induces a bijection

{Chain homotopy classes of maps N∗(Y ; Z)→M∗}

θ

��
{Chain homotopy classes of maps N∗(X; Z)→M∗}.
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Let K(M∗) denote the Eilenberg-MacLane space associated to M∗ (Construction 2.5.6.3).
Using Example 3.1.5.8, we can identify θ with the map

π0(Fun(Y,K(M∗)))→ π0(Fun(X,K(M∗)))

given by precomposition with f . This map is bijective because f is a weak homotopy
equivalence (by assumption) and K(M∗) is a Kan complex (Remark 2.5.6.4).

Remark 3.1.6.19.0100 There is a partial converse to Proposition 3.1.6.18. If f : X → Y is
a morphism between simply-connected simplicial sets and the induced map H∗(X; Z) →
H∗(Y ; Z) is an isomorphism, one can show that f is a weak homotopy equivalence. Beware
that this is not necessarily true if X and Y are not simply connected (see §[?] for further
discussion).

Remark 3.1.6.20 (Coproducts of Weak Homotopy Equivalences).00X7 Let {f(i) : X(i) →
Y (i)}i∈I be a collection of weak homotopy equivalences of simplicial sets indexed by a set I.
For every Kan complex Z, we have a commutative diagram of Kan complexes

Fun(∐i∈I Y (i), Z) //

∼

��

Fun(∐i∈I X(i), Z)

∼

��∏
i∈I Fun(Y (i), Z) // ∏

i∈I Fun(X(i), Z),

where the vertical maps are isomorphisms. Passing to the connected components (and using
the fact that the functor Q 7→ π0(Q) preserves products when restricted to Kan complexes; see
Corollary 1.2.5.11), we deduce that the map π0(Fun(∐i∈I Y (i), Z))→ π0(Fun(∐i∈I X(i), Z))
is bijective. Allowing Z to vary, we conclude that the induced map ∐

i∈I X(i)→ ∐
i∈I Y (i)

is also a weak homotopy equivalence.

Exercise 3.1.6.21.00UE Let G be the directed graph depicted in the diagram

0 // 1 // 2 // 3 // 4 // · · ·

and let G denote the associated 1-dimensional simplicial set (see Warning 1.2.1.28). Show
that the projection map G → ∆0 is a weak homotopy equivalence, but not a homotopy
equivalence.

Warning 3.1.6.22.00UF Let X and Y be simplicial sets. The existence of a weak homotopy
equivalence f : X → Y does not guarantee the existence of a weak homotopy equivalence
g : Y → X.
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Proposition 3.1.6.23. 02L2Let f : X → Y and f ′ : X ′ → Y ′ be weak homotopy equivalences of
simplicial sets. Then the induced map (f × f ′) : X ×X ′ → Y × Y ′ is also a weak homotopy
equivalence.

Proof. By virtue of Remark 3.1.6.16, it will suffice to show that the morphisms f × idX′ and
idY ×f ′ are weak homotopy equivalences. We will give the proof for f × idX′ ; the analogous
statement for idY ×f ′ follows by a similar argument. Let Z be a Kan complex; we wish to
show that precomposition with f induces a bijection

π0(Fun(X ×X ′, Z)) ≃ π0(Fun(X,Fun(X ′, Z)))
→ π0(Fun(Y,Fun(X ′, Z)))
≃ π0(Fun(Y ×X ′, Z)).

This follows from our assumption that f is a weak homotopy equivalence, since the simplicial
set Fun(X ′, Z) is a Kan complex (Corollary 3.1.3.4).

Warning 3.1.6.24. 02L3The collection of weak homotopy equivalences is not closed under the
formation of infinite products. For example, if q : G→ ∆0 is the weak homotopy equivalence
described in Exercise 3.1.6.21, then a product of infinitely many copies of q with itself is
not a weak homotopy equivalence (since a product of infinitely many copies of G is not a
connected simplicial set: see Warning 1.2.1.28).

3.1.7 Fibrant Replacement

00UUThe formalism of Kan complexes is extremely useful as a combinatorial foundation for
homotopy theory. However, when studying the homotopy theory of Kan complexes, it is
often necessary to contemplate more general simplicial sets. For example, if f0, f1 : S → T

are morphisms of Kan complexes, then a homotopy from f0 to f1 is defined as a morphism
of simplicial sets h : ∆1 × S → T; here neither ∆1 nor the product ∆1 × S is a Kan complex
(except in the trivial case S = ∅; see Exercise 1.2.5.2). When working with a simplicial set
X which is not a Kan complex, it is often convenient to replace X by a Kan complex having
the same weak homotopy type. This can always be achieved: more precisely, one can always
find a weak homotopy equivalence X → Q, where Q is a Kan complex (Corollary 3.1.7.2).
Our goal in this section is to prove a “fiberwise” version of this result, which can be stated
as follows:

Proposition 3.1.7.1. 00UVLet f : X → Y be a morphism of simplicial sets. Then f can be

factored as a composition X
f ′−→ Q(f) f ′′−→ Y, where f ′′ is a Kan fibration and f ′ is anodyne

(hence a weak homotopy equivalence, by virtue of Proposition 3.1.6.14). Moreover, the
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simplicial set Q(f) (and the morphisms f ′ and f ′′) can be chosen to depend functorially on
f , in such a way that the functor

Fun([1], Set∆)→ Set∆ (f : X → Y)→ Q(f)

commutes with filtered colimits.

Before giving the proof of Proposition 3.1.7.1, let us note some of its consequences.
Applying Proposition 3.1.7.1 in the special case Y = ∆0, we obtain the following:

Corollary 3.1.7.2.00UW Let X be a simplicial set. Then there exists an anodyne morphism
f : X ↪→ Q, where Q is a Kan complex.

Warning 3.1.7.3.04GC In the situation of Corollary 3.1.7.2, the Kan complex Q is not uniquely
determined. However, the homotopy type of Q depends only on X. If Q′ is another Kan
complex equipped with a map f ′ : X → Q′, then we can write f ′ = g ◦ f for some map of
Kan complexes g : Q→ Q′ (Remark 3.1.2.7). If f ′ is a weak homotopy equivalence, then g is
also a weak homotopy equivalence (Remark 3.1.6.16) and therefore a homotopy equivalence
(Proposition 3.1.6.13).

Remark 3.1.7.4.00UX In the situation of Corollary 3.1.7.2, the Kan complex Q (and the anodyne
morphism f) can be chosen to depend functorially on X. This follows from the proof of
Proposition 3.1.7.1 given below, but there are other (arguably more elegant) ways to achieve
the same result. For example, we can take Q to be the simplicial set Ex∞(X) of Construction
3.3.6.1 (see Propositions 3.3.6.9 and 3.3.6.7), or the singular simplicial set Sing•(|X|) (see
Proposition 1.2.5.8 and Theorem 3.6.4.1). These constructions also have non-aesthetic
advantages: for example, the functors X 7→ Ex∞(X) and X 7→ Sing•(|X|) both preserve
finite limits.

Corollary 3.1.7.5.00X8 Let f : X → Y be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is anodyne.

(2) The morphism f is weakly left orthogonal to all Kan fibrations. That is, if g : Z → S is
a Kan fibration of simplicial sets, then every lifting problem

X

f

��

// Z

g

��
Y //

??

S

admits a solution.
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Proof. The implication (1) ⇒ (2) follows from Remark 3.1.2.7. To deduce the converse,
we first apply Proposition 3.1.7.1 to write f as a composition X

f ′−→ Q
f ′′−→ Y , where f ′ is

anodyne and f ′′ is a Kan fibration. If f satisfies condition (2), then the lifting problem

X

f

��

f ′ // Q

f ′′

��
Y

id //

??

Y

admits a solution. It follows that f is a retract of f ′ (in the arrow category Fun([1],Set∆)).
Since the collection of anodyne morphisms is closed under retracts, it follows that f is
anodyne.

Recall that the homotopy category hKan of Construction 3.1.5.10 is defined as a quotient
of the category of Kan complexes Kan (by identifying morphisms which are homotopic).
However, it can also be described as a localization of Kan, obtained by inverting the class of
homotopy equivalences (see §6.3).

Proposition 3.1.7.6. 012ULet C be a category and let F : Kan→ C be a functor. The following
conditions are equivalent:

(∗) If X and Y are Kan complexes and u0, u1 : X → Y are homotopic morphisms, then
F (u0) = F (u1) in HomC(F (X), F (Y )).

(∗′) For every homotopy equivalence of Kan complexes u : X → Y , the induced map
F (u) : F (X)→ F (Y ) is an isomorphism in the category C.

Proof. The implication (∗)⇒ (∗′) is immediate (note that a morphism of Kan complexes
u : X → Y is a homotopy equivalence if and only if its homotopy class [u] is an isomorphism
in the homotopy category hKan). For the converse, assume that (∗′) is satisfied, let X and
Y be Kan complexes, and let u0, u1 : X → Y be a pair of homotopic morphisms. Let us
regard u0 and u1 as vertices of the Kan complex Fun(X,Y ). Since u0 and u1 are homotopic,
there exists an edge e : ∆1 → Fun(X,Y ) satisfying e(0) = u0 and e(1) = u1. By virtue
of Proposition 3.1.7.1, this morphism factors as a composition ∆1 e′−→ Q

e′′−→ Fun(X,Y ),
where e′ is anodyne and e′′ is a Kan fibration. Since Fun(X,Y ) is a Kan complex (Corollary
3.1.3.4), it follows that Q is also a Kan complex. Let us identify e′′ with a morphism of Kan
complexes h : Q×X → Y . Let i0 : X ↪→ Q×X be the product of the identity map idX with
the inclusion {e′(0)} ↪→ Q, and define i1 : X ↪→ Q×X similarly. Since e′ is anodyne, the
restrictions e′|{0} and e′|{1} are anodyne. In particular, they are weak homotopy equivalences
(Proposition 3.1.6.14) and therefore homotopy equivalences (Proposition 3.1.6.13), since Q

https://kerodon.net/tag/012U
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is a Kan complex. It follows that i0 and i1 are also homotopy equivalences, so that F (i0)
and F (i1) are isomorphisms (by virtue of assumption (∗′)). Using the fact that i0 and i1 are
left inverse to the projection map π : Q×X → X, we see that F (π) is an isomorphism in C
and that we have

F (u0) = F (h) ◦ F (i0) = F (h) ◦ F (π)−1 = F (h) ◦ F (i1) = F (u1),

as desired.

Corollary 3.1.7.7.012V Let C be a category, let E ⊆ Fun(Kan, C) be the full subcategory spanned
by those functors F : Kan → C which carry homotopy equivalences of Kan complexes to
isomorphisms in the category C. Then precomposition with the quotient map Kan→ hKan
induces an isomorphism of categories Fun(hKan, C)→ E.

Proof. Combine Remark 3.1.5.11 with Proposition 3.1.7.6.

Variant 3.1.7.8.012W Let C be a category, and let E ′ ⊆ Fun(Set∆, C) be the full subcategory
spanned by those functors F : Set∆ → C. which carry weak homotopy equivalences of
simplicial sets to isomorphisms in the category C. Then:

(a) For every functor F ∈ E ′, the restriction F |Kan factors (uniquely) as a composition
Kan ↠ hKan F−→ C.

(b) The construction F 7→ F induces an equivalence of categories E ′ → Fun(hKan, C).

Remark 3.1.7.9.012X Corollary 3.1.7.7 and Variant 3.1.7.8 can be stated more informally as
follows:

• The homotopy category hKan can be obtained from the category Kan of Kan complexes
by formally adjoining inverses to all homotopy equivalences.

• The homotopy category hKan can be obtained from the category Set∆ of simplicial
sets by formally adjoining inverses to all weak homotopy equivalences.

Either of these assertions characterizes the homotopy category hKan up to equivalence (in
fact, Corollary 3.1.7.7 even characterizes hKan up to isomorphism).

Proof of Variant 3.1.7.8. Let E ⊆ Fun(Kan, C) be the full subcategory spanned by those
functors F : Kan→ C which carry homotopy equivalences of Kan complexes to isomorphisms
in C. By virtue of Corollary 3.1.7.7, it will suffice to show that the restriction functor
F 7→ F |Kan induces an equivalence of categories E ′ → E . Using Proposition 3.1.7.1, we can
choose a functor Q : Set∆ → Kan and a natural transformation u : idSet∆ → Q with the
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property that, for every simplicial set X, the induced map uX : X → Q(X) is anodyne. For
every morphism of simplicial sets f : X → Y , we have a commutative diagram

X
f //

uX

��

Y

uY

��
Q(X) Q(f) // Q(Y ),

where the vertical maps are weak homotopy equivalences (Proposition 3.1.6.14). It follows
that if f is a weak homotopy equivalence, then Q(f) is also a weak homotopy equivalence
(Remark 3.1.6.16) and therefore a homotopy equivalence (Proposition 3.1.6.13). In other
words, the functor Q carries weak homotopy equivalences of simplicial sets to homotopy
equivalences of Kan complexes. It follows that precomposition with Q induces a functor
θ : E → E ′. We claim that θ is homotopy inverse to the restriction functor E ′ → E . This
follows from the following pair of observations:

• For every functor F : Set∆ → C, u induces a natural transformation F → F |Kan ◦Q,
which depends functorially on F and is an isomorphism for F ∈ E ′.

• For every functor F0 : Kan→ C, u induces a natural transformation F0 → (F0 ◦Q)|Kan,
which depends functorially on F0 and is an isomorphism for F0 ∈ E .

We now turn to the proof of Proposition 3.1.7.1. We will use an easy version of Quillen’s
“small object argument” (which we will revisit in greater generality in §[?]).

Proof of Proposition 3.1.7.1. Let f : X → Y be a morphism of simplicial sets. We construct
a sequence of simplicial sets {X(m)}m≥0 and morphisms f(m) : X(m) → Y by recursion.
Set X(0) = X and f(0) = f . Assuming that f(m) : X(m) → Y has been defined, let S(m)
denote the set of all commutative diagrams σ :

Λni //

��

X(m)

f(m)

��
∆n uσ // Y,

where 0 ≤ i ≤ n, n > 0, and the left vertical map is the inclusion. For every such commutative
diagram σ, let Cσ = Λni denote the upper left hand corner of the diagram σ, and Dσ = ∆n
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the lower left hand corner. Form a pushout diagram∐
σ∈S(m)Cσ //

��

X(m)

��∐
σ∈S(m)Dσ

// X(m+ 1)

and let f(m+ 1) : X(m+ 1) → Y be the unique map whose restriction to X(m) is equal to
f(m) and whose restriction to each Dσ is equal to uσ. By construction, we have a direct
system of anodyne morphisms

X = X(0) ↪→ X(1) ↪→ X(2) ↪→ · · ·

Set Q(f) = lim−→m
X(m). Then the natural map f ′ : X → Q(f) is anodyne (since the

collection of anodyne maps is closed under transfinite composition), and the system of
morphisms {f(m)}m≥0 can be amalgamated to a single map f ′′ : Q(f) → Y satisfying
f = f ′′ ◦ f ′. It is clear from the definition that the construction f 7→ Q(f) is functorial and
commutes with filtered colimits. To complete the proof, it will suffice to show that f ′′ is a
Kan fibration: that is, that every lifting problem σ :

Λni
v //

��

Q(f)

f ′′

��
∆n //

==

Y

admits a solution (provided that n > 0). Let us abuse notation by identifying each X(m)
with its image in Q(f). Since Λni is a finite simplicial set, its image under v is contained in
X(m) for some m≫ 0. In this case, we can identify σ with an element of the set S(m), so
that the lifting problem

Λni
v //

��

X(m+ 1)

f(m+1)

��
∆n //

;;

Y

admits a solution by construction.

Example 3.1.7.10 (Path Fibrations).0101 If f : X → Y is a morphism of Kan complexes,
then we can give a much more explicit proof of Proposition 3.1.7.1. Let P (f) denote the

https://kerodon.net/tag/0101
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fiber product X ×Fun({0},Y ) Fun(∆1, Y ). Then f factors as a composition X f ′−→ P (f) f ′′−→ Y ,
where f ′′ is given by evaluation at the vertex {1} ⊆ ∆1 and f ′ is obtained by amalgamating
the identity morphism idX with the composition X

f−→ Y
δ−→ Fun(∆1, Y ). Moreover:

• The morphism f ′ is a section of the projection map P (f)→ X, which is a pullback of
the evaluation map Fun(∆1, Y )→ Fun({0}, Y ) and therefore a trivial Kan fibration
(Corollary 3.1.3.6). It follows that f ′ is a weak homotopy equivalence. Since it is also
a monomorphism, it is anodyne (see Corollary 3.3.7.7).

• The morphism f ′′ factors as a composition

P (f) = X ×Fun({0},Y ) Fun(∆1, Y ) u−→ X × Fun({1}, Y ) v−→ Y,

where u is a pullback of the restriction map Fun(∆1, Y )→ Fun(∂∆1, Y ) (and therefore
a Kan fibration by virtue of Corollary 3.1.3.3) and v is a pullback of the projection
map X → ∆0 (and therefore a Kan fibration by virtue of our assumption that X is a
Kan complex). It follows that f ′′ is also a Kan fibration.

The proof of Proposition 3.1.7.1 can be repurposed to obtain many analogous results.

Exercise 3.1.7.11. 00UYLet f : X → Y be a morphism of simplicial sets. Show that f can be
factored as a composition X f ′−→ P(f) f ′′−→ Y, where f ′ is a monomorphism and f ′′ is a trivial
Kan fibration. Moreover, this factorization can be chosen to depend functorially on f (as an
object of the arrow category Fun([1], Set∆)).

Variant 3.1.7.12. 050LLet f : X → Y be a morphism of simplicial sets, and let n be a
nonnegative integer. Arguing as in the proof of Proposition 3.1.7.1, we see that f admits a
factorization X

f ′−→ Q(f) f ′′−→ Y with the following properties:

(a) The morphism f ′ can be realized as a transfinite pushout of horn inclusions Λmi ↪→ ∆m

for 0 ≤ i ≤ m and m > n.

(b) For 0 ≤ i ≤ m and m > n, every lifting problem

Λmi //

��

Q(f)

f ′′

��
∆m //

==

Y

admits a solution.

https://kerodon.net/tag/00UY
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It follows from (a) that morphism f ′ is a monomorphism which is bijective on k-simplices
for k < n.

Now suppose that the morphism f satisfies the following additional condition:

(∗) For 0 ≤ i ≤ m and 0 < m ≤ n, every lifting problem

Λmi //

��

X

f

��
∆m //

>>

Y

admits a solution.

Since f ′ is bijective on k-simplices for k < n, it follows that the morphism f ′′ also satisfies
condition (∗). Combining this with assumption (b), we conclude that f ′′ is a Kan fibration.

Example 3.1.7.13.050M Let n ≥ 0 be an integer and let X be a simplicial set which satisfies
the following condition:

(∗) For 0 < m ≤ n, every horn Λmi → X can be extended to an m-simplex of X.

Applying Variant 3.1.7.12 to the projection map X → ∆0, we conclude that X admits an
anodyne map f : X ↪→ Q which is bijective on k-simplices for k < n, where Q is a Kan
complex.

3.2 Homotopy Groups

00V2 Our goal in this section is to address the following:

Question 3.2.0.1.00V3 Let f : X → Y be a morphism of Kan complexes. Under what conditions
does f admit a homotopy inverse g : Y → X?

Let us begin with a partial answer to Question 3.2.0.1. For every Kan complex X, let
π≤1(X) denote the fundamental groupoid of X (Definition 1.4.6.12). For each vertex x ∈ X,
we let π1(X,x) denote the automorphism group Autπ≤1(X)(x) = Homπ≤1(X)(x, x); we will
refer to π1(X,x) as the fundamental group of X (with respect to the base point x). Every
morphism of Kan complexes f : X → Y induces a functor π≤1(f) : π≤1(X) → π≤1(Y ).
Moreover, if f is a homotopy equivalence, then π≤1(f) is an equivalence of categories (Remark
3.1.6.5). In other words, every homotopy equivalence f : X → Y satisfies the following pair
of conditions:
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(W0) The map π0(f) : π0(X) → π0(Y ) is an isomorphism of sets: that is, f induces a
bijection from the set of connected components of X to the set of connected components
of Y .

(W1) For every choice of vertex x ∈ X having image y = f(x) ∈ Y , the induced map of
fundamental groups π1(X,x)→ π1(Y, y) is an isomorphism.

However, these observations do not supply a complete answer to Question 3.2.0.1: conditions
(W0) and (W1) are necessary for f to be a homotopy equivalence, but they are not sufficient.
In this section, we will remedy the situation by introducing a hierarchy of additional
invariants. To each Kan complex X and each vertex x ∈ X, we will associate a sequence of
sets {πn(X,x)}n≥0, which enjoy the following features:

• For every nonnegative integer n, πn(X,x) is defined as the set of homotopy classes
of pointed maps from the quotient ∆n/ ∂∆n to X (Construction 3.2.2.4). Here it is
important to work in the homotopy theory of pointed simplicial sets, which we review
in §3.2.1.

• When n = 0, we can identify πn(X,x) with the set π0(X) of connected components of
X: in particular, it does not depend on the choice of base point x (Example 3.2.2.6).

• For n > 0, the set πn(X,x) comes equipped with a natural group structure (Theorem
3.2.2.10), which we will construct in §3.2.3. For this reason, we will refer to πn(X,x)
as the nth homotopy group of X (with respect to the base point x). Moreover, the
group πn(X,x) is abelian for n ≥ 2.

• When n = 1, we can identify π1(X,x) with the fundamental group of X as defined
earlier: that is, with the automorphism group of x as an object of the homotopy
category π≤1(X) (Example 3.2.2.12).

• Let f : X → S be a Kan fibration between Kan complexes, let x ∈ X be a vertex
having image s = f(x) ∈ S, and let Xs = {s} ×S X denote the fiber of f over the
vertex s. Then there is a long exact sequence of homotopy groups

· · · → πn+1(S, s) ∂−→ πn(Xs, x)→ πn(X,x)→ πn(S, s) ∂−→ πn−1(Xs, x)→ · · ·

We construct this sequence in §3.2.5, and prove its exactness in §3.2.6 (Theorem
3.2.6.1).

• Let f : X → Y be a morphism of Kan complexes. In §3.2.7, we show that f is a
homotopy equivalence if and only if it induces a bijection π0(f) : π0(X) → π0(Y )
and an isomorphism of homotopy groups πn(X,x)→ πn(Y, f(x)), for every choice of
base point x ∈ X and every positive integer n (Theorem 3.2.7.1). This is a simplicial



3.2. HOMOTOPY GROUPS 395

counterpart of a classical result of Whitehead ([60]). In §3.2.8, we apply this result to
deduce some closure properties for the class of homotopy equivalences (Propositions
3.2.8.1 and 3.2.8.3).

3.2.1 Pointed Kan Complexes

00V4 In §3.1.5, we showed that the collection of Kan complexes can be organized into a
category hKan whose morphisms are given by homotopy classes of maps (Construction
3.1.5.10). In this section, we describe a variant of this construction for Kan complexes which
are equipped with a specified base point. We begin by introducing a slight generalization of
Definition 3.1.5.1.

Definition 3.2.1.1.050N Let X and Y be simplicial sets, and let K ⊆ X be a simplicial subset.
We say that morphisms f0, f1 : X → Y are homotopic relative to K if the following conditions
are satisfied:

• The morphisms f0 and f1 have the same restriction to K: that is, there is a morphism
f : K → Y satisfying f0|K = f = f1|K .

• The morphisms f0 and f1 belong to the same connected component of the simplicial
set {f} ×Fun(K,Y ) Fun(X,Y ).

Example 3.2.1.2.050P Let f0, f1 : X → Y be morphisms of simplicial sets. Then f0 and f1 are
homotopic (in the sense of Definition 3.1.5.1) if and only if they are homotopic relative to
the empty subset ∅ ⊂ X (in the sense of Definition 3.2.1.3).

Definition 3.2.1.3.050Q Let f0, f1 : X → Y be a pair of morphisms of simplicial sets and let
h : ∆1 × X → Y be a homotopy from f0 to f1. If K ⊆ X is a simplicial subset, we say
that h is constant along K if the restriction h|∆1×K factors through the projection map
∆1 ×K ↠ K.

Proposition 3.2.1.4.00V9 Let f, g : X → Y be morphisms of simplicial sets and let K ⊆ X be
a simplicial subset. Then:

• The morphisms f0 and f1 are homotopic relative to K if and only if there exists a
sequence of morphisms f = f0, f1, . . . , fn = g from X to Y having the property that,
for each 1 ≤ i ≤ n, there exists either a homotopy from fi−1 to fi which is constant
along K, or a homotopy from fi to fi−1 which is constant along K.

• Suppose that Y is a Kan complex. Then f and g are homotopic relative to K if and
only if there exists a homotopy from f to g which is constant along K.
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Proof. Set f = f |K . Without loss of generality, we may assume that f is also equal
to g|K . The first assertion follows by applying Remark 1.2.1.23 to the simplicial set
Z = {f}×Fun(K,Y ) Fun(X,Y ). If Y is a Kan complex, then the restriction map Fun(X,Y )→
Fun(K,Y ) is a Kan fibration (Corollary 3.1.3.3), so that Z is a Kan complex (Remark
3.1.1.9). The second assertion now follows from Proposition 1.2.5.10.

We will be primarily interested in applying Definition 3.2.1.3 in the special case where
K = {x} is a vertex of X.

Definition 3.2.1.5. 00V5A pointed simplicial set is a pair (X,x), where X is a simplicial set and
x is a vertex of X. If X is a Kan complex, then we refer to the pair (X,x) as a pointed Kan
complex. If (X,x) and (Y, y) are pointed Kan complexes, then a pointed map from (X,x) to
(Y, y) is a morphism of Kan complexes f : X → Y satisfying f(x) = y. We let Kan∗ denote
the category whose objects are pointed Kan complexes and whose morphisms are pointed
maps.

Remark 3.2.1.6. 00V6We will often abuse terminology by identifying a pointed simplicial set
(X,x) with the underlying simplicial set X. In this case, we will refer to x as the base point
of X.

Definition 3.2.1.7. 00V7Let (X,x) and (Y, y) be simplicial sets. We say that pointed maps
f0, f1 : (X,x)→ (Y, y) are pointed homotopic if they are homotopic relative to the simplicial
subset {x} ⊆ X, in the sense of Definition 3.2.1.3. A pointed homotopy from f0 to f1 is a
homotopy h : ∆1 ×X → Y which is constant along {x} (Definition 3.2.1.3): that is, which
carries ∆1 × {x} to the degenerate edge idy.

Example 3.2.1.8. 00VALet (X,x) be a pointed simplicial set and let (Y, y) be a pointed
topological space. Suppose we are given a pair of continuous functions f0, f1 : |X| → Y

carrying x to y, which we can identify with pointed morphisms f ′0, f ′1 : X → Sing•(Y ). Let
h : [0, 1]× |X| → Y be a continuous function satisfying f0 = h|{0}×|X|, f1 = h|{1}×|X|, and
h(t, x) = y for 0 ≤ t ≤ 1 (that is, h is a pointed homotopy from f0 to f1 in the category of
topological spaces). Then the composite map

|∆1 ×X| θ−→ |∆1| × |X| = [0, 1]× |X| h−→ Y

classifies a morphism of simplicial sets h′ : ∆1×X → Sing•(Y ), which is a pointed homotopy
from f ′0 to f ′1 (in the sense of Definition 3.2.1.7). By virtue of Corollary 3.6.2.2, the map θ

is a homeomorphism, so every pointed homotopy from f0 to f1 arises in this way. In other
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words, the construction h 7→ h′ induces a bijection

{(Continuous) pointed homotopies from f0 to f1}

∼

��
{(Simplicial) pointed homotopies from f ′0 to f ′1}.

Example 3.2.1.9.00VB Let (X,x) and (Y, y) be pointed topological spaces, and let h : [0, 1]×X →
Y be a continuous function satisfying h(t, x) = y for 0 ≤ t ≤ 1, which we regard as a pointed
homotopy from f0 = h|{0}×X to f1 = h|{1}×X . Then h determines a homotopy between the
induced map of simplicial sets Sing•(f0), Sing•(f1) : Sing•(X)→ Sing•(Y ): this follows by
applying Example 3.2.1.8 to the composite map [0, 1]× | Sing•(X)| → [0, 1]×X h−→ Y .

Notation 3.2.1.10.00VC Let (X,x) and (Y, y) be pointed simplicial sets. We let [X,Y ]∗ denote
the set π0(Fun(X,Y )×Fun({x},Y ) {y}) of pointed homotopy classes of morphisms from (X,x)
to (Y, y). If f : X → Y is a morphism of pointed simplicial sets, we denote its pointed
homotopy class by [f ] ∈ [X,Y ]∗.

Warning 3.2.1.11.00VD Notation 3.2.1.10 has the potential to create confusion. If (X,x) and
(Y, y) are pointed simplicial sets and f : X → Y is a morphism satisfying f(x) = y, then
we use the notation [f ] to represent both the homotopy class of f as a map of simplicial
sets (that is, the image of f in the set π0(Fun(X,Y ))), and the pointed homotopy class
of f as a map of pointed simplicial sets (that is, the image of f in the set [X,Y ]∗ =
π0(Fun(X,Y )×Fun({x},Y ) {y})). Beware that these usages are not the same: in general, it
is possible for a pair of pointed morphisms f, g : X → Y to be homotopic without being
pointed homotopic.

Construction 3.2.1.12 (The Homotopy Category of Pointed Kan Complexes).00VE We define
a category hKan∗ as follows:

• The objects of hKan∗ are pointed Kan complexes (X,x).

• If (X,x) and (Y, y) are Kan complexes, then HomhKan((X,x), (Y, y)) = [X,Y]∗ is the
set of pointed homotopy classes of morphisms from (X,x) to (Y, y).

• If (X,x), (Y, y), and (Z, z) are Kan complexes, then the composition law

◦ : HomhKan((Y, y), (Z, z))×HomhKan((X,x), (Y, y))→ HomhKan((X,x), (Z, z))

is characterized by the formula [g] ◦ [f ] = [g ◦ f ].

We will refer to hKan∗ as the homotopy category of pointed Kan complexes.
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Note that there is a forgetful functor hKan∗ → hKan, given on objects by the construction
(X,x) 7→ X. This forgetful functor is conservative:

Proposition 3.2.1.13. 00WWLet f : (X,x)→ (Y, y) be a morphism of pointed Kan complexes.
The following conditions are equivalent:

(1) The underlying morphism of simplicial sets f : X → Y is a homotopy equivalence
(Definition 3.1.6.1): that is, there exists a morphism of simplicial sets g : Y → X such
that g ◦ f and f ◦ g are homotopic to the identity maps idX and idY , respectively.

(2) The map f is a pointed homotopy equivalence: that is, there exists a morphism of pointed
simplicial sets g : (Y, y)→ (X,x) such that g ◦ f and f ◦ g are pointed homotopic to
the identity maps idX and idY , respectively.

We will deduce Proposition 3.2.1.13 from the following slightly more precise result:

Lemma 3.2.1.14. 04GDLet f : (X,x)→ (Y, y) be a morphism of pointed Kan complexes, and
suppose that the homotopy class [f ] admits a left inverse in the homotopy category hKan.
Then [f ] also admits a left homotopy inverse in the pointed homotopy category hKan∗.

Proof. Let g : Y → X be a left homotopy inverse of f . Then there exists a homotopy
α : ∆1 ×X → X from the identity morphism idX = α|{0}×X to g ◦ f = α|{1}×X . Then the
restriction α|∆1×{x} determines an edge e : x→ g(y) of X. Since X is a Kan complex, we can
use Remark 3.1.5.3 to construct another map g′ : Y → X and a homotopy β : ∆1 × Y → X

from g′ = β|{0}×Y to g = β|{1}×Y , such that β|{y}×∆1 is the edge e. Precomposing β with
id∆1 ×f , we obtain a homotopy βf from g′ ◦ f to g ◦ f . Let σ = s1

0(e) denote the degenerate
2-simplex of X depicted in the diagram

x

e

!!
x

idx

??

e // g(y).

Corollary 3.1.3.3 guarantees that the evaluation map evx : Fun(X,X)→ Fun({x}, X) ≃ X
is a Kan fibration, so we can lift σ to a 2-simplex of Fun(X,X) depicted in the diagram

g′ ◦ f

βf

""
idX

γ

==

α // g ◦ f.
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By construction, γ is a pointed homotopy from idX to the composition g′ ◦ f , so that the
homotopy class [g′] is a left inverse to [f ] in the pointed homotopy category hKan∗.

Proof of Proposition 3.2.1.13. Let f : (X,x) → (Y, y) be a morphism of pointed Kan
complexes which is a homotopy equivalence; we wish to show that f is a pointed homotopy
equivalence (the reverse implication follows immediately from the definitions). Using Lemma
3.2.1.14, we deduce that there is a morphism of pointed Kan complexes g : (Y, y)→ (X,x)
such that the homotopy class [g] is a left inverse of [f ] in the pointed homotopy category
hKan∗. Since f is a homotopy equivalence, it follows that g is also a homotopy equivalence.
Applying Lemma 3.2.1.14 again, we conclude that [g] admits a left inverse in the pointed
homotopy category hKan∗. In particular, [g] is an isomorphism in hKan∗, so its right inverse
[f ] is also an isomorphism.

Proposition 3.2.1.15.02LD Let f : (X,x) → (Y, y) be a morphism of pointed simplicial sets,
where Y is a Kan complex. The following conditions are equivalent:

(1) The morphism f is nullhomotopic as an unpointed map. That is, there exists a vertex
z ∈ Y and a homotopy from f to the constant map z : X → Y taking the value z (see
Definition 3.2.4.5).

(2) The morphism f is nullhomotopic as a pointed map: that is, there exists a vertex y ∈ Y
and a pointed homotopy from f to the constant map y : X → Y .

Proof. The implication (2)⇒ (1) is immediate from the definition. To prove the converse,
suppose that there exists a a homotopy h : ∆1 × X → Y satisfying h|{0}×X = f and
h|{1}×X = z for some vertex z ∈ Y . Let e : y → z be the edge of Y given by the restriction
h|∆1×{x} and let σ = s1

0(e) denote the degenerate 2-simplex of Y depicted in the diagram

y

e

��
y

idy

??

e // z.

Let e : y → y′ denote the image of e in Fun(X,Y ). Since Y is a Kan complex, the restriction
map q : Fun(X,Y ) → Fun({x}, Y ) ≃ Y is a Kan fibration (Corollary 3.1.3.3). It follows
that the lifting problem

Λ2
2

(•,h,e) //

��

Fun(X,Y )

q

��
∆2 σ //

;;

Y,
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admits a solution which carries the edge N•({0 < 1}) ⊆ ∆2 to a pointed homotopy from f

to y.

3.2.2 The Homotopy Groups of a Kan Complex

00VJLet X be a topological space and let x ∈ X be a point. For every positive integer n, we
let πn(X,x) denote the set of homotopy classes of pointed maps (Sn, x0)→ (X,x), where Sn
denotes a sphere of dimension n and x0 ∈ Sn is a chosen base point. The set πn(X,x) can
be endowed with the structure of a group, which we refer to as the nth homotopy group of X
(with respect to the base point x). Note that the sphere Sn can be realized as the quotient
space |∆n|/| ∂∆n |, obtained from the topological simplex |∆n| by collapsing its boundary
to the point q. We can therefore identify pointed maps (Sn, x0) → (X,x) with maps of
simplicial sets f : ∆n → Sing•(X) which carry the boundary ∂∆n to the simplicial subset
{x} ⊆ Sing•(X). In [35], Kan elaborated on this observation to give a direct construction
of the homotopy group πn(X,x) in terms of the simplicial set Sing•(X) (and the vertex x).
Moreover, his construction can be applied directly to any Kan complex.

Notation 3.2.2.1. 00VKLet B be a simplicial set and let A ⊆ B be a simplicial subset. We let
B/A denote the pushout B∐

A{q}, formed in the category of simplicial sets. We regard
B/A as a pointed simplicial set, with base point given by the vertex q.

Remark 3.2.2.2. 00VLLet B be a simplicial set and let A be a simplicial subset. Then the
simplicial set B/A can be described more informally as follows: it is obtained from B by
collapsing the simplicial subset A ⊆ B to a single vertex q. Beware that this informal
description is a bit misleading when A = ∅: in this case, the natural map B → B/A is not
surjective (instead, B/A can be described as the coproduct B+ = B

∐
{q}, obtained from B

by adding a new base point).

Example 3.2.2.3. 00VMFor n ≥ 0, the geometric realization |∆n/ ∂∆n | can be obtained from
the topological n-simplex |∆n| by collapsing the boundary | ∂∆n | to a point (or by adding a
new base point, in the degenerate case n = 0). It follows that |∆n/ ∂∆n | is homeomorphic
to a sphere of dimension n.

Construction 3.2.2.4. 00VNLet (X,x) be a pointed Kan complex and let n be a nonnegative
integer. We let πn(X,x) denote the set [∆n/ ∂∆n, X]∗ of pointed homotopy classes of maps
from ∆n/ ∂∆n to X (Notation 3.2.1.10). For n > 0, we will refer to πn(X,x) as the nth
homotopy group of X with respect to the base point x (see Theorem 3.2.2.10 below). In the
special case n = 1, we refer to π1(X,x) as the fundamental group of X with respect to the
base point x.

Notation 3.2.2.5. 00VPLet (X,x) be a pointed Kan complex and let n be a nonnegative
integer. Then the set of pointed morphisms ∆n/ ∂∆n → X can be identified with the set
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of n-simplices σ : ∆n → X having the property that σ|∂∆n is equal to the constant map
∂∆n → {x} ⊆ X. In this case, we write [σ] for the image of σ in the set πn(X,x). Note that,
if τ is another n-simplex of X for which τ |∂∆n is the constant map ∂∆n → {x} ⊆ X, then the
equality [σ] = [τ ] holds in πn(X,x) if and only if there exists a homotopy h : ∆1 ×∆n → X

such that σ = h|{0}×∆n , τ = h|{1}×∆n , and h|∆1×∂∆n is the constant map taking the value
x.

Example 3.2.2.6.00VQ Let (X,x) be a pointed Kan complex. Then π0(X,x) can be identified
with the set π0(X) of connected components of X (Definition 1.2.1.8). Beware that, unlike
the higher homotopy groups {πn(X,x)}n≥1, there is no naturally defined group structure on
π0(X,x).

Example 3.2.2.7.00VR Let X be a topological space and let x ∈ X be a base point, which we
identify with a vertex of the singular simplicial set Sing•(X). For every positive integer n,
we can identify πn(Sing•(X), x) with the set πn(X,x) of (pointed) homotopy classes of maps
from the sphere Sn ≃ |∆n/ ∂∆n | into X.

Example 3.2.2.8.00VS Let X be a Kan complex, let x be a vertex of X, and let e, e′ : x→ x

be edges of X which begin and end at the vertex x. Then the equality [e] = [e′] holds in
the fundamental group π1(X,x) if and only if e is homotopic to e′ as a morphism in the
∞-category X (in the sense of Definition 1.4.3.1); see Corollary 1.4.3.7.

Remark 3.2.2.9.00VT Let n be a nonnegative integer. By virtue of Corollary 3.1.7.2, there exists
an anodyne morphism f : ∆n/ ∂∆n → Q, where Q is a Kan complex. Let q ∈ Q denote the
image of the base point of ∆n/ ∂∆n. If (X,x) is a pointed Kan complex, then precomposition
with f induces a trivial Kan fibration Fun(Q,X)→ Fun(∆n/ ∂∆n, X) (Theorem 3.1.3.5),
hence also a trivial Kan fibration

Fun(Q,X)×Fun({q},X) {x} → Fun(∆n/ ∂∆n, X)×Fun({q0},X) {x}.

Passing to connected components, we see that f induces a bijection HomhKan∗(Q,X) ≃
πn(X,x). In other words, the functor (X,x) 7→ πn(X,x) is corepresentable (in the pointed
homotopy category hKan∗) by the pointed Kan complex (Q, q) (which can be regarded as a
combinatorial incarnation of the n-sphere).

Theorem 3.2.2.10.00VU Let (X,x) be a pointed Kan complex and let n be a positive integer.
Then there is a unique group structure on the set πn(X,x) with the following properties:

(a) Let e : ∆n → {x} → X be the constant map. Then the homotopy class [e] is the identity
element of πn(X,x).

(b) Let f : ∂∆n+1 → X be a morphism of simplicial sets, corresponding to a tuple
(σ0, σ1, . . . , σn+1) of n-simplices of X (see Proposition 1.1.4.13). Assume that each
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restriction σi|∂∆n is equal to the constant map ∂∆n → {x} ⊆ X. Then f extends to a
map ∆n+1 → X if and only if the product

[σ0]−1[σ1][σ2]−1[σ3] · · · [σn+1](−1)n

is equal to the identity element of πn(X,x).

Moreover, if n ≥ 2, then the group πn(X,x) is abelian.

We will give the proof of Theorem 3.2.2.10 in §3.2.3.

Exercise 3.2.2.11. 00VVShow that when n > 0 is odd, condition (a) of Theorem 3.2.2.10 follows
from condition (b) (beware that this is not true when n is even).

Example 3.2.2.12. 00VWIn the special case n = 1, we can rewrite condition (b) of Theorem
3.2.2.10 as follows:

• Let f , g, and h be edges of X which begin and end at the vertex x. Then the equality
[h] = [g][f ] holds (in the fundamental group π1(X,x)) if and only if there exists a
2-simplex σ of X which witnesses h as a composition of f and g (in the sense of
Definition 1.4.4.1), as indicated in the diagram

x

g

  
x

f

??

h // x.

It follows that the fundamental group π1(X,x) can be identified with the automorphism
group of x as an object of the fundamental groupoid π≤1(X) = hX .

Example 3.2.2.13. 050RLet G be a groupoid and let x be an object of G, which we identify
with a vertex of the Kan complex X = N•(G) (see Proposition 1.3.5.2). Then:

• The set π0(X) = π0(X,x) can be identified with the collection of isomorphism classes
of objects of G.

• The fundamental group π1(X,x) can be identified with the automorphism group
AutG(x) of x as an object of G.

• The homotopy groups πn(X,x) are trivial for n ≥ 2, since an n-simplex σ : ∆n → X

is determined by the restriction σ|∂∆n (see Exercise 1.3.1.5).
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Warning 3.2.2.14.00VX Let (X,x) be a pointed Kan complex, so that π1(X,x) can be identified
with the set Homπ≤1(X)(x, x) of homotopy classes of paths from x to itself. We have adopted
the convention that the multiplication on π1(X,x) is given by composition in the homotopy
category hX . In other words, if f, g : x→ x are edges which begin and end at x, then the
product [g][f ] ∈ π1(X,x) is the homotopy class of a path which can be described informally
as traversing the path f first, followed by the path g. Beware that the opposite convention
is also common in the literature (note that his issue is irrelevant for the higher homotopy
groups {πn(X,x)}n≥2, since they are abelian).

Remark 3.2.2.15.00VY Let (X,x) be a pointed Kan complex. For n ≥ 2, the homotopy group
πn(X,x) is abelian. We will generally emphasize this by using additive notation for the
group structure on πn(X,x): that is, we denote the group law by

+ : πn(X,x)× πn(X,x)→ πn(X,x) (ξ, ξ′) 7→ ξ + ξ′.

With this convention, we can restate property (b) of Theorem 3.2.2.10 as follows:

(b) Let f : ∂∆n+1 → X be a morphism of simplicial sets, corresponding to a tuple
(σ0, σ1, . . . , σn+1) of n-simplices of X. Then f extends to an (n + 1)-simplex of
X if and only if the sum ∑n+1

i=0 (−1)i[σi] vanishes in πn(X,x).

Remark 3.2.2.16 (Functoriality).00VZ Let f : X → Y be a morphism of Kan complexes, let x be
a vertex of X, and set y = f(x). For each n ≥ 1, the morphism f induces a homomorphism
πn(f) : πn(X,x) → πn(Y, y), characterized by the formula πn(f)([σ]) = [f(σ)] for each
n-simplex σ of X for which σ|∂∆n is the constant map ∂∆n → {x} ↪→ X. We can therefore
regard the construction (X,x) 7→ πn(X,x) as a functor from the category of pointed Kan
complexes to the category of groups. Moreover, this functor preserves filtered colimits.

Remark 3.2.2.17 (Homotopy Invariance).04GE In the situation of Remark 3.2.2.16, suppose
that f : X → Y is a homotopy equivalence. It follows from Proposition 3.2.1.13 that the
homotopy class [f ] determines an isomorphism from (X,x) to (Y, y) in the pointed homotopy
category hKan∗. In particular, the induced map πn(X,x)→ πn(Y, y) is an isomorphism of
groups for all n > 0 (and a bijection of sets for n = 0).

Example 3.2.2.18 (Independence of Base Point).04GF Let X be a Kan complex and let e : x→ y

be an edge of X. Then evaluation at the vertices 0, 1 ∈ ∆1 determines a diagram of pointed
Kan complexes (X,x) ev0←−− (Fun(∆1, X), e) ev1−−→ (X, y), where the underlying maps are
trivial Kan fibrations (Corollary 3.1.3.6). Applying For each n > 0, Remark 3.2.2.17 then
supplies isomorphisms of homotopy groups

πn(X,x) ∼←− πn(Fun(∆1, X), e) ∼−→ πn(X, y).
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Warning 3.2.2.19. 04GGLet X be a Kan complex and let n > 0 be an integer. It follows from
Example 3.2.2.18 that if two vertices x, y ∈ X belong to the same connected component
of X, then the homotopy groups πn(X,x) and πn(X, y) are isomorphic. Beware that, in
general, there is no canonical isomorphism between πn(X,x) and πn(X, y): the isomorphism
constructed in Example 3.2.2.18 depends on (the homotopy class) of the chosen edge
e : x→ y.

Remark 3.2.2.20. 00W0Let X be a Kan complex and let x be a vertex of X. Then x can also
be regarded as a vertex of the opposite simplicial set Xop, which is also a Kan complex. For
n ≥ 1, we have an evident bijection φ : πn(X,x) ≃ πn(Xop, x). If n ≥ 2, then this bijection
is an isomorphism of abelian groups. Beware that, in the case n = 1, it is generally not an
isomorphism of groups: instead, it is an anti-isomorphism (that is, it satisfies the identity
φ(ξξ′) = φ(ξ′)φ(ξ) for ξ, ξ′ ∈ π1(X,x); see Warning 3.2.2.14 above).

Remark 3.2.2.21. 00W1Let (X,x) be a pointed Kan complex and let n be a positive integer.
Suppose that σ, σ′ : ∆n → X are n-simplices of X for which σ|∂∆n and σ′|∂∆n are equal to the
constant map ∂∆n → {x} ⊆ X. It follows from Theorem 3.2.2.10 that the equality [σ] = [σ′]
holds (in the homotopy group πn(X,x)) if and only if there exists an (n+ 1)-simplex τ of X
such that dn+1

0 (τ) = σ, dn+1
1 (τ) = σ′, and dn+1

i (τ) is the constant map ∆n → {x} ⊆ X for
2 ≤ i ≤ n+ 1.

Exercise 3.2.2.22 (Homotopy of Eilenberg-MacLane Spaces). 00W2Let M∗ be a chain complex of
abelian groups and let X = K(M∗) be the associated Eilenberg-MacLane space (Construction
2.5.6.3). Let x ∈ X be the vertex corresponding to the zero element, and let n be a positive
integer. Note that a pointed map from ∆n/ ∂∆n to X can be identified with a map of
chain complexes N∗(∆n, ∂∆n; Z) ≃ Z[n]→M∗: in other words, it can be identified with an
n-cycle of the chain complex M∗, which we will denote by σ.

(1) Let σ, σ′ : ∆n → X be n-simplices whose restriction to ∂∆n is equal to the constant
map ∂∆n → {x} ↪→ X. Show that [σ] = [σ′] in πn(X,x) if and only if σ and σ′ are
homologous as n-cycles of M∗ (use Remark 3.2.2.21).

(2) Show that the [σ] 7→ [σ] induces an isomorphism from πn(X,x) to the homology group
Hn(M).

In particular, if A is an abelian group and m ≥ 0 is an integer, then the homotopy groups of
the Eilenberg-MacLane space X = K(A,m) are given by

πn(X,x) =

A if n = m

0 otherwise.
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3.2.3 The Group Structure on πn(X, x)

00W3 Let (X,x) be a pointed Kan complex and let n ≥ 2 be an integer, which we regard
as fixed throughout this section. Our goal is to give a proof of Theorem 3.2.2.10, which
supplies a group structure on the set πn(X,x) = [∆n/ ∂∆n, X]∗ (note that the case n = 1 of
Theorem 3.2.2.10 is subsumed in our construction of the homotopy category π≤1(X) = hX ,
by virtue of Example 3.2.2.12).

Notation 3.2.3.1.00W4 Let Σ denote the collection of all n-simplices σ : ∆n → X having
the property that the restriction σ|∂∆n is equal to the constant map ∂∆n → {x} ⊆ X.
We let e ∈ Σ denote the constant map ∆n → {x} ⊆ X. Note that an (n + 2)-tuple
σ⃗ = (σ0, σ1, . . . , σn+1) of elements of Σ can be identified with a map of simplicial sets
f : ∂∆n+1 → X, having the property that the restriction of f to the (n − 1)-skeleton of
∂∆n+1 is equal to the constant map skn−1(∂∆n+1)→ {x} ⊆ X (see Proposition 1.1.4.13).
We will say that a tuple σ⃗ bounds if f can be extended to an (n+ 1)-simplex of X: that is,
if there exists an (n+ 1)-simplex τ of X satisfying σi = dn+1

i (τ) for 0 ≤ i ≤ n+ 1.
The construction σ 7→ [σ] determines a surjective map Σ ↠ πn(X,x). We will say that a

pair of elements σ, σ′ ∈ Σ are homotopic if [σ] = [σ′] (that is, if there is a homotopy from σ

to σ′ which is constant along the boundary ∂∆n).

Lemma 3.2.3.2.00W5 Let σ⃗ = (σ0, σ1, . . . , σn+1) be an (n+2)-tuple of elements of Σ. The condi-
tion that σ⃗ bounds depends only on the sequence of homotopy classes {[σi] ∈ πn(X,x)}0≤i≤n+1.
In other words, if σ⃗′ = (σ′0, σ′1, . . . , σ′n+1) is another (n+ 2)-tuple of elements of Σ satisfying
[σ′i] = [σi] for 0 ≤ i ≤ n+ 1 and σ⃗ bounds, then σ⃗′ also bounds.

Proof. Let us identify σ⃗ and σ⃗′ with morphisms of simplicial sets f, f ′ : ∂∆n+1 → X

(carrying the (n − 1)-skeleton of ∂∆n+1 to the vertex x). For 0 ≤ i ≤ n + 1, the equality
[σi] = [σ′i] allows us choose a homotopy hi : ∆1 × ∆n → X from σi to σ′i which carries
∆1 × ∂∆n to the vertex {x} ⊆ X. These maps can be amalgamated to a homotopy h from
f to f ′: that is, an edge joining f to f ′ in the simplicial set Fun(∂∆n+1, X). If σ⃗ bounds,
then f can be extended to an (n+ 1)-simplex τ : ∆n+1 → X. Since X is a Kan complex,
the restriction map Fun(∆n+1, X)→ Fun(∂∆n+1, X) is a Kan fibration (Corollary 3.1.3.3),
so h can be extended to a homotopy h̃ from τ to another map τ ′ : ∆n+1 → X satisfying
τ ′|∂∆n+1 = f ′. It follows that the tuple σ⃗′ also bounds.

Remark 3.2.3.3.00W6 Let η⃗ = (η0, η1, . . . , ηn+1) be an (n + 2)-tuple of elements of πn(X,x),
so that we can write ηi = [σi] for some n-simplex σi ∈ Σ. We will say that the tuple of
homotopy classes η⃗ bounds if the tuple of simplices σ⃗ = (σ0, σ1, . . . , σn+1) bounds, in the
sense of Notation 3.2.3.1. By virtue of Lemma 3.2.3.2, this condition is independent of the
choice of σ⃗.

With this terminology, Theorem 3.2.2.10 asserts (in the case n ≥ 2) that there is a unique
abelian group structure on the set πn(X,x) with the following pair of properties:
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(a) The identity element of πn(X,x) is the homotopy class [e].

(b) An (n + 2)-tuple η⃗ = (η0, η1, . . . , ηn+1) bounds if and only if the sum ∑n+1
i=0 (−1)iηi

vanishes in πn(X,x).

Lemma 3.2.3.4. 00W7Let 0 ≤ i ≤ n + 1, and suppose we are given a collection of homotopy
classes {ηj ∈ πn(X,x)}0≤j≤n+1,j ̸=i. Then there is a unique element ηi ∈ πn(X,x) for which
the tuple η⃗ = (η0, η1, . . . , ηn+1) bounds.

Proof. For j ̸= i, choose an element σj ∈ Σ satisfying [σj ] = ηj . Then the tuple of n-
simplices (σ0, . . . , σi−1, •, σi+1, . . . , σn+1) determines a map of simplicial sets f0 : Λn+1

i → X

(see Proposition 1.2.4.7). Since X is a Kan complex, we can extend f0 to an (n + 1)-
simplex τ of X. Then ηi = [dn+1

i (τ)] has the property that the tuple η⃗ = (η0, η1, . . . , ηn+1)
bounds. This proves existence. To prove uniqueness, suppose we are given another element
η′i ∈ πn(X,x) for which the tuple (η0, . . . , ηi−1, η

′
i, ηi+1, . . . , ηn+1) bounds. Write η′i = [σ′i]

for some σ′i ∈ Σ, so that we can choose a simplex τ ′ : ∆n+1 → X satisfying

dn+1
j (τ ′) =

σ′i if j = i

σj otherwise.

Since the inclusion Λn+1
i ↪→ ∆n+1 is anodyne, so the restriction map Fun(∆n+1, X) →

Fun(Λn+1
i , X) is a trivial Kan fibration (Corollary 3.1.3.6). It follows that there exists a

homotopy from τ to τ ′ which is constant along the subset Λn+1
i ⊆ ∆n+1, so that ηi =

[dn+1
i (τ)] = [dn+1

i (τ ′)] = η′i.

As a special case of Lemma 3.2.3.4, we obtain several potential candidates for the
composition law on πn(X,x):

Lemma 3.2.3.5. 00W8Fix 1 ≤ i ≤ n. Then there is a unique function mi : πn(X,x)×πn(X,x)→
πn(X,x) with the following property:

(∗) Let ηi−1, ηi, and ηi+1 be elements of πn(X,x). Then the (n+ 2)-tuple

([e], . . . , [e], ηi−1, ηi, ηi+1, [e], . . . , [e])

bounds if and only if ηi = mi(ηi−1, ηi+1).

Example 3.2.3.6. 00W9Let σ be an element of Σ, and let 1 ≤ i ≤ n. Then the degenerate

(n + 1)-simplex τ = sni (σ) satisfies dn+1
j (τ) =

σ if j ∈ {i, i+ 1}
e otherwise.

It follows that the

multiplication map mi : πn(X,x) × πn(X,x) → πn(X,x) of Lemma 3.2.3.5 satisfies the
identity mi([e], [σ]) = [σ]. A similar argument shows that mi([σ], [e]) = [σ].
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Lemma 3.2.3.7.00WA Let η⃗ = (η0, η1, . . . , ηn+1) be an (n+ 2)-tuple of elements of πn(X,x), let
1 ≤ i ≤ n be an integer, and let α be another element of πn(X,x). If η⃗ bounds, then the
tuple (η0, . . . , ηi−2,mi(α, ηi−1),mi(α, ηi), ηi+1, . . . , ηn+1) also bounds.

Proof. For 0 ≤ i ≤ n+ 1, choose an element σi ∈ Σ satisfying [σi] = ηi. Since η⃗ bounds, we
can choose an (n + 1)-simplex σ of X satisfying σi = dn+1

i (σ) for 0 ≤ i ≤ n + 1. Choose
τ ∈ Σ satisfying [τ ] = α. Since X is a Kan complex, we can choose (n + 1)-simplices
ρ, ρ′ : ∆n+1 → X satisfying the identities

dn+1
j (ρ) =



e if 0 ≤ j < i− 1
τ if j = i− 1
σi−1 if j = i+ 1
e of i+ 1 < j ≤ n+ 1.

dn+1
j (ρ′) =



e if 0 ≤ j < i− 1
τ if j = i− 1
σi if j = i+ 1
e of i+ 1 < j ≤ n+ 1.

The definition of mi supplies identities mi(α, ηi−1) = [dn+1
i (ρ)] and mi(α, ηi) = [dn+1

i (ρ′)].
The tuple (sni (σ0), . . . , sni (σi−2), ρ, ρ′, •, σ, sni+1(σi+2), . . . , sni+1(σn+1)) therefore determines a
map of simplicial sets Λn+2

i+1 → X (Proposition 1.2.4.7). Since X is a Kan complex, this map
can be extended to an (n+ 2)-simplex of X. Let σ′ denote the (i+ 1)st face of this simplex.
By construction, we have

dn+1
j (σ′) =


dn+1
i (ρ) if j = i− 1
dn+1
i (ρ′) if j = i

σj otherwise,

so that σ′ witnesses that the tuple (η0, . . . , ηi−2,mi(α, ηi−1),mi(α, ηi), ηi+1, . . . , ηn+1) bounds.

Lemma 3.2.3.8.00WB Let α, β, and γ be elements of πn(X,x). For 2 ≤ i ≤ n, we have
mi(α,mi−1(β, γ)) = mi−1(β,mi(α, γ)).

Proof. Applying Lemma 3.2.3.7 to the tuple ([e], . . . , [e], β,mi−1(β, γ), γ, [e], . . . , [e]), we
deduce that the tuple ([e], . . . , [e], β,mi(α,mi−1(β, γ)),mi(α, γ), [e], . . . , [e]) bounds, which
is equivalent to the asserted identity.

Lemma 3.2.3.9.00WC Let α and β be elements of πn(X,x). For 2 ≤ i ≤ n, we have mi(α, β) =
mi−1(β, α).

Proof. Combining Lemma 3.2.3.8 with Example 3.2.3.6, we obtain

mi(α, β) = mi(α,mi−1(β, [e])) = mi−1(β,mi(α, [e])) = mi−1(β, α).
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Proof of Theorem 3.2.2.10. For every pair of elements α, β ∈ πn(X,x), let αβ denote the
homotopy class m1(α, β), where m1 : πn(X,x)× πn(X,x)→ πn(X,x) is the multiplication
map of Lemma 3.2.3.5. We first note that this multiplication is associative: for every triple
of elements α, β, γ ∈ πn(X,x), Lemmas 3.2.3.9 and 3.2.3.8 yield identities

α(βγ) = m1(α,m1(β, γ))
= m1(α,m2(γ, β))
= m2(γ,m1(α, β))
= m1(m1(α, β), γ)
= (αβ)γ.

Example 3.2.3.6 shows that [e] is a two-sided identity with respect to multiplication. For every
element α ∈ πn(X,x), Lemma 3.2.3.4 implies that we can choose an element β ∈ πn(X,x)
for which the tuple (α, [e], β, [e], [e], . . . , [e]) bounds, so that αβ = m1(α, β) = [e]. This
shows that α has a right inverse, and a similar argument shows that α has a left inverse. It
follows that multiplication determines a group structure on the set πn(X,x), having [e] as
the identity element.

We now verify that the multiplication on πn(X,x) satisfies condition (b) of Theorem
3.2.2.10. Suppose we are given an (n+1)-tuple η⃗ = (η0, η1, . . . , ηn+1) of elements of πn(X,x).
We wish to show that η⃗ bounds if and only if the product η−1

0 η1η
−1
2 · · · η

(−1)n

n+1 is equal to the
identity element of πn(X,x). If η⃗ = ([e], [e], . . . , [e]), there is nothing to prove. Otherwise,
there exists some smallest positive integer i such that ηi−1 ̸= [e]. We proceed by descending
induction on i. If i > n, we must show that ([e], [e], . . . , [e], ηn, ηn+1) bounds if and only if
ηn = ηn+1, which follows from Example 3.2.3.6. Let us therefore assume that 1 ≤ i ≤ n.
Define η⃗′ = (η′0, η′1, . . . , η′n+1) by the formula

η′j =

mi(η−1
i−1, ηj) if j = i− 1 or j = i

ηj otherwise.

Invoking Lemma 3.2.3.9 repeatedly, we obtain

η′i−1 = mi(η−1
i−1, ηi−1) =

η
−1
i−1ηi−1 if i is odd
ηi−1η

−1
i−1 if i is even

= [e]

η′i = mi(η−1
i−1, ηi) =

η
−1
i−1ηi if i is odd
ηiη
−1
i−1 if i is even

.

We therefore have an equality

η−1
0 η1η

−1
2 · · · η

(−1)n

n+1 = η′−1
0 η′1η

′−1
2 · · · η′(−1)n

n+1 .
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Invoking our inductive hypothesis, we conclude that this product vanishes if and only if
the tuple η⃗′ bounds. By virtue of Lemma 3.2.3.7, this is equivalent to the assertion that η⃗
bounds.

We now complete the proof of Theorem 3.2.2.10 by showing that the multiplication
on πn(X,x) is commutative. Fix a pair of elements σ, σ′ ∈ Σ. Then the tuples of n-
simplices (σ, e, σ′, •, e, e, . . . , e) and (σ′, e, σ, •, e, e, . . . , e) determine maps of simplicial sets
f, f ′ : Λn+1

3 → X (Proposition 1.2.4.7). Since X is a Kan complex, we can extend f and
f ′ to (n + 1)-simplices of X, which we will denote by τ and τ ′, respectively. It follows
from the preceding arguments that the faces dn+1

3 (τ) and dn+1
3 (τ ′) are representatives of the

products [σ′][σ] and [σ][σ′] in πn(X,x), respectively. Let e : ∆n+1 → X denote the constant
map taking the value x. Then the tuple of (n+ 1)-simplices (τ, sn0 (σ), sn1 (σ), τ ′, •, e, e, . . . , e)
determines a map of simplicial sets g : Λn+2

4 → X (Proposition 1.2.4.7). Since X is a
Kan complex, we can extend g to an (n + 2)-simplex of X. Then the fourth face of this
extension witnesses that the tuple of n-simplices (dn+1

3 (τ), e, e, dn+1
3 (τ ′), e, . . . , e) bounds, so

that we have an equality [σ′][σ] = [dn+1
3 (τ)] = [dn+1

3 (τ ′)] = [σ][σ′] in the homotopy group
πn(X,x).

3.2.4 Contractibility

02L4 We now study the class of contractible simplicial sets.

Definition 3.2.4.1.04GH Let X be a simplicial set. We say that X is contractible if the projection
map X → ∆0 is a homotopy equivalence (Definition 3.1.6.1).

Example 3.2.4.2.00XA Let C be a category. If C has an initial object or a final object, then
the simplicial set N•(C) is contractible (this is a special case of Proposition 3.1.6.9). In
particular, for every integer n ≥ 0, the standard simplex ∆n is contractible.

Though the condition of contractibility makes sense for any simplicial set X, we will be
primarily interested in the special case where X is a Kan complex. In this case, Definition
3.2.4.1 agrees with Definition 1.5.5.8:

Theorem 3.2.4.3.04GJ Let X be a Kan complex. The following conditions are equivalent:

(1) The Kan complex X is contractible.

(2) The Kan complex X is connected and the homotopy groups πn(X,x) vanish for each
n > 0 and every choice of base point x ∈ X.

(3) The projection map X → ∆0 is a trivial Kan fibration of simplicial sets.

Remark 3.2.4.4.04GK In the formulation of Theorem 3.2.4.3, we can replace (2) by the following
a priori weaker condition:
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(2′) The Kan complex X is connected and, for some choice of base point x ∈ X, the
homotopy groups πn(X,x) vanish for each n > 0.

See Example 3.2.2.18.

For the proof of Theorem 3.2.4.3, it will be convenient to introduce some terminology.

Definition 3.2.4.5. 02L7Let f : X → Y be a morphism of simplicial sets. We will say that f
is nullhomotopic if there exists a vertex y ∈ Y for which f is homotopic to the constant
morphism X → {y} ↪→ Y .

Example 3.2.4.6. 02L8Let X be a simplicial set, and let ∅ denote the empty simplicial set.
Then there is a unique morphism of simplicial sets ∅ ↪→ X, which is nullhomotopic if and
only if X is nonempty (note that, by the convention of Definition 3.2.4.5, the identity map
∅ → ∅ is not considered to be nullhomotopic).

Example 3.2.4.7. 02LELet (X,x) be a pointed Kan complex, let n > 0 be a positive integer, and
let σ : ∆n/ ∂∆n → (X,x) be a morphism of pointed simplicial sets. Then σ is nullhomotopic
(in the sense of Definition 3.2.4.5) if and only if the pointed homotopy class [σ] is equal to
the identity element in the homotopy group πn(X,x). See Proposition 3.2.1.15.

Exercise 3.2.4.8. 050SLet X be a simplicial set. Show that the following conditions are
equivalent:

(1) The simplicial set X is contractible: that is, the projection map X → ∆0 is a homotopy
equivalence (Definition 3.2.4.1).

(2) The identity morphism idX : X → X is nullhomotopic.

(3) Every morphism of simplicial sets f : X → Y is nullhomotopic.

(4) Every morphism of simplicial sets g : Z → X is nullhomotopic.

In particular, these conditions are satisfied in the special case where X = ∆n is a standard
simplex.

Remark 3.2.4.9. 050TLet f : X → Y be a morphism of simplicial sets, and let f ′ : X → Y

be a morphism which is homotopic to f . Then f is nullhomotopic if and only if f ′ is
nullhomotopic.

Remark 3.2.4.10. 02L9Let f : X → Y and g : Y → Z be morphisms of simplicial sets. If either
f or g is nullhomotopic, then the composition g ◦ f is nullhomotopic.
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Remark 3.2.4.11.050U Let X be a simplicial set. Then X is weakly contractible if and only if,
for every Kan complex Y , every morphism of simplicial sets f : X → Y is nullhomotopic.
To prove this, we may assume that X is nonempty (otherwise the identity morphism idX is
not nullhomotopic; see Example 3.2.4.6). Then, for any Kan complex Y , the diagonal map
δY : X → Fun(X,Y ) admits a left inverse (given by evaluation at any vertex x ∈ X), and is
automatically injective on connected components. It follows that X is weakly contractible
if and only if, for every Kan complex Y , the morphism δY is also surjective on connected
components: that is, every morphism f : X → Y is homotopic to a constant map.

Lemma 3.2.4.12.050V Let X be a Kan complex and let 0 ≤ i ≤ n be integers with n > 0. Then
every morphism σ0 : Λni → X is nullhomotopic.

Proof. Since X is a Kan complex, we can extend σ0 to an n-simplex σ : ∆n → X. By virtue
of Remark 3.2.4.10, it will suffice to show that σ is nullhomotopic, which is a special case of
Exercise 3.2.4.8.

Variant 3.2.4.13.050W Let X be a Kan complex and let n ≥ 0 be an integer. Then a morphism
of simplicial sets σ0 : ∂∆n → X is nullhomotopic if and only if it can be extended to an
n-simplex of X. The “if” direction follows immediately from Exercise 3.2.4.8 (and does
not require the assumption that X is a Kan complex). For the converse, suppose that σ0
is homotopic to a constant map σ′0 : ∂∆n → {x} ↪→ X. Since σ′0 can be extended to a
map σ′ : ∆n → {x} ↪→ X, it follows from the homotopy extension lifting property (Remark
3.1.5.3) that σ0 can also be extended to an n-simplex of X.

Lemma 3.2.4.14.050X Let X be a Kan complex and let n ≥ 2 be an integer. The following
conditions are equivalent:

(an) Every morphism ∂∆n → X can be extended to an n-simplex of X (that is, it is
nullhomotopic).

(bn) For every vertex x ∈ X, the homotopy group πn−1(X,x) is trivial.

Proof. We first show that (an) implies (bn). Fix a vertex x ∈ X and an (n − 1)-simplex
σ : ∆n−1 → X such that σ|∂∆n−1 is the constant map taking the value x. Amalgamating σ
with the constant map Λn

n → X, we obtain a morphism τ : ∂∆n → X. If condition (1) is
satisfied, then τ can be extended to an n-simplex of X. Theorem 3.2.2.10 then guarantees
that the (pointed) homotopy class [σ] is the identity element of the group πn−1(X,x).

We now show that (bn) implies (an). Let τ : ∂∆n → X be any morphism of simplicial
sets. Using Lemma 3.2.4.12, we see that the restriction τ |Λn

n
is nullhomotopic. Applying the

homotopy lifting property (Remark 3.1.5.3), we conclude that τ is homotopic to a morphism
τ ′ : ∂∆n → X for which τ ′|Λn

n
is the constant map taking the value x, for some vertex x ∈ X.

In particular, τ ′ is constant when restricted to the (n− 2)-skeleton of ∆n. If the homotopy
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group πn−1(X,x) is trivial, then Theorem 3.2.2.10 guarantees that τ ′ can be extended to an
n-simplex of X. Applying Remark 3.1.5.3 again, we conclude that τ can also be extended to
an n-simplex of X.

Variant 3.2.4.15. 050YIn the situation of Lemma 3.2.4.14, the extension condition (an) also
makes sense for n = 0 and n = 1. Here condition (a0) is equivalent to the requirement that
π0(X) has at least one element (that is, X is nonempty), and condition (a1) is equivalent
to the requirement that π0(X) has at most one element (that is, X is either empty or
connected). In particular, X satisfies conditions (a0) and (a1) if and only if it is connected.

Proof of Theorem 3.2.4.3. Let X be a Kan complex. We wish to show that the following
conditions are equivalent:

(1) The Kan complex X is contractible: that is, the projection map X → ∆0 is a homotopy
equivalence.

(2) The Kan complex X is connected and the homotopy groups πn(X,x) vanish for every
integer n > 0 and every vertex x ∈ X.

(3) The projection map X → ∆0 is a trivial Kan fibration: that is, every morphism of
simplicial sets ∂∆m → X can be extended to an m-simplex of X.

The implication (1)⇒ (2) follows from Remark 3.2.2.17, and the implication (3)⇒ (1) is
a special case of Proposition 3.1.6.10. The equivalence of (2) and (3) follows from Lemma
3.2.4.14 and Variant 3.2.4.15.

When working with simplicial sets which are not Kan complexes, it will generally be
convenient to work with the following variant of Definition 3.2.4.1.

Definition 3.2.4.16. 04GWLet X be a simplicial set. We say that X is weakly contractible if the
projection map X → ∆0 is a weak homotopy equivalence (Definition 3.1.6.12).

Remark 3.2.4.17. 00WZLet X be a simplicial set. If X is contractible, then it is weakly
contractible. The converse holds if X is a Kan complex (Proposition 3.1.6.13). Beware that
the converse is false in general (Exercise 3.1.6.21).

Remark 3.2.4.18. 02L5Let f : X → Y be a weak homotopy equivalence of simplicial sets. Then
X is weakly contractible if and only if Y is weakly contractible (see Remark 3.1.6.16). If f is
a homotopy equivalence, then X is contractible if and only if Y is contractible (see Remark
3.1.6.7).

Example 3.2.4.19. 02L6Let n be a positive integer. For 0 ≤ i ≤ n, the horn Λn
i is weakly

contractible. This follows from Remark 3.2.4.18, since the inclusion map Λni ↪→ ∆n is a weak
homotopy equivalence (Proposition 3.1.6.14) and the simplex ∆n is contractible (Example
3.2.4.2).
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3.2.5 The Connecting Homomorphism

00WD Let S be a Kan complex, and let f : X → S be a Kan fibration of simplicial sets (so
that X is also a Kan complex). Fix a vertex x ∈ X, let s = f(x) be its image in S, and
let Xs denote the fiber {s} ×S X (so that Xs is also a Kan complex, and we can regard x

as a vertex of Xs). In §3.2.6, we will show that the homotopy groups of X, S, and Xs are
related by a long exact sequence

· · · → πn+1(S, s) ∂−→ πn(Xs, x)→ πn(X,x)→ πn(S, s) ∂−→ πn−1(Xs, x)→ · · ·

(see Theorem 3.2.6.1 below). In this section, we set the stage by constructing the maps
∂ : πn+1(S, s)→ πn(Xs, x) which appear in this sequence.

Definition 3.2.5.1.00WE Let f : (X,x) → (S, s) be a Kan fibration between pointed Kan
complexes and let n ≥ 0 be a nonnegative integer. Suppose we are given a pair of maps
σ : ∆n → Xs and τ : ∆n+1 → S, having the property that σ|∂∆n and τ |∂∆n+1 are the constant
maps taking the values x and s, respectively. We will say that σ is incident to τ if there
exists a simplex τ̃ : ∆n+1 → X satisfying τ = f(τ̃), σ = dn+1

0 (τ̃), and τ̃ |Λn+1
0

: Λn+1
0 → X is

the constant map taking the value x.

Proposition 3.2.5.2.00WF Let f : (X,x) → (S, s) be a Kan fibration between pointed Kan
complexes and let n ≥ 0 be a nonnegative integer. Then there exists a unique function
∂ : πn+1(S, s)→ πn(Xs, x) with the following property:

(∗) Let σ : ∆n → Xs and τ : ∆n+1 → S be simplices having the property that σ|∂∆n and
τ |∂∆n+1 are the constant maps taking the values x and s, respectively. Then σ is
incident to τ (in the sense of Definition 3.2.5.1) if and only if ∂([τ ]) = [σ].

Construction 3.2.5.3 (The Connecting Homomorphism).00WG Let f : (X,x) → (S, s) be a
Kan fibration between pointed Kan complexes. For each n ≥ 0, we will refer to the map
∂ : πn+1(S, s) → πn(Xs, x) of Proposition 3.2.5.2 as the connecting homomorphism (for
n ≥ 1, it is a group homomorphism: see Proposition 3.2.5.4 below).

Proof of Proposition 3.2.5.2. Let τ : ∆n+1 → S be an (n+ 1)-simplex for which τ |∂∆n+1 is
the constant map taking the value s. To prove Proposition 3.2.5.2, it will suffice to prove
the following:

(1) There exists an n-simplex σ : ∆n → Xs such that σ|∂∆n is the constant map taking the
value x and σ is incident to τ .

(2) Let σ′ : ∆n → Xs and τ ′ : ∆n+1 → S have the property that σ′|∂∆n and τ ′|∂∆n+1 are
the constant maps taking the values x and s, respectively, and suppose that [τ ] = [τ ′]
in πn+1(S, s). Then σ′ is incident to τ ′ if and only if [σ] = [σ′] in πn(Xs, x).
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Assertion (1) follows from the solvability of the lifting problem

Λn+1
0

//

��

X

f

��
∆n+1 τ //

τ̃

>>

S,

where the upper horizontal map is constant taking the value x. Let σ′ and τ ′ be as in (2),
and let τ̃ ′0 : ∂∆n+1 → Xs be the map given by the tuple of n-simplices (σ′, e, . . . , e) (see
Proposition 1.1.4.13) where e : ∆n → Xs denotes the constant map taking the value x. If
[σ] = [σ′] in πn(Xs, x), then we can choose a homotopy from σ to σ′ (in the Kan complex Xs)
which is constant along the boundary ∂∆n, and therefore a homotopy h̃0 from τ̃ |∂∆n+1 to τ̃ ′0
(also in the Kan complex Xs) which is constant along the simplicial subset Λn+1

0 ⊂ ∂∆n+1.
Let h : ∆1 ×∆n+1 → S be a homotopy from τ to τ ′ which is constant on ∂∆n+1. Since f is
a Kan fibration, the homotopy extension lifting problem

(∆1 × ∂∆n+1) ∐
{0}×∂∆n+1({0} ×∆n+1) (̃h0,τ̃) //

��

X

f

��
∆1 ×∆n+1 h //

h̃

66

S

admits a solution h̃ : ∆1×∆n+1 → X (Remark 3.1.5.3), which we can regard as a homotopy
from τ̃ to another (n + 1)-simplex τ̃ ′ : ∆n+1 → X. By construction, this (n + 1)-simplex
witnesses that σ′ is incident to τ ′.

For the converse, suppose that σ′ is incident to τ ′, so that there exists an (n+ 1)-simplex
τ̃ ′ : ∆n+1 → X satisfying dn+1

0 (τ̃ ′) = σ′, f(τ̃ ′) = τ ′, and τ̃ ′|Λn+1
0

is the constant map taking
the value x. Since f is a Kan fibration, the lifting problem

(∆1 × Λn+1
0 ) ∐

∂∆1×Λn+1
0

(∂∆1×∆n+1) (e,(τ̃ ,τ̃ ′)) //

��

X

f

��
∆1 ×∆n+1 h //

h̃

66

S

admits a solution, where e : ∆1 × Λn+1
0 → X is the constant map taking the value x. Then

h̃ is a homotopy from τ̃ to τ̃ ′ (in the Kan complex X) which is constant along the horn
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Λn+1
0 ⊆ ∆n+1, and it restricts to a homotopy from σ = dn+1

0 (τ̃) to σ′ = dn+1
0 (τ̃ ′) (in the

Kan complex Xs) which is constant along the boundary ∂∆n. It follows that [σ] = [σ′] in
πn(Xs, x).

Proposition 3.2.5.4.00WH Let f : (X,x) → (S, s) be a Kan fibration between pointed Kan
complexes, and let n ≥ 1 be a positive integer, and let ∂ : πn+1(S, s)→ πn(Xs, x) be as in
Proposition 3.2.5.2. Then ∂ is a group homomorphism.

Proof. To avoid confusion in the case n = 1, let us use multiplicative notation for the
group structures on both πn+1(S, s) and πn(Xs, x). It is easy to see that the constant map
∆n → {x} ⊆ Xs is incident to the constant map ∆n+1 → {s} ⊆ S, so the map ∂ carries
the identity element of πn+1(S, s) to the identity element of πn(Xs, x). To complete the
proof, it will suffice to show that if (η0, η1, . . . , ηn+1) is an (n + 2)-tuple of elements of
πn+1(S, s) for which the product η−1

0 η1η
−1
2 · · · η

(−1)n

n+1 vanishes in πn+1(S, s), then the product
∂(η0)−1∂(η1)∂(η2)−1 · · · ∂(ηn+1)(−1)n vanishes in πn(Xs, x). To prove this, choose simplices
τi : ∆n+1 → S for which each restriction τi|∂∆n+1 is the constant map taking the value s and
[τi] = ηi. Using our assumption that f is a Kan fibration, we can lift each τi to a simplex
τ̃i : ∆n+1 → X carrying the horn Λn+1

0 to the vertex x ∈ X, so that ∂(ηi) = [dn+1
0 (τ̃i)]. Since

πn+1(S, s) is abelian, the vanishing of the product η−1
0 η1η

−1
2 · · · η

(−1)n

n+1 guarantees that we
can choose an (n+ 2)-simplex ρ : ∆n+2 → S such that dn+2

0 (ρ) is the constant map taking
the value s and dn+2

i (ρ) = τi−1 for 1 ≤ i ≤ n+ 2. Let ρ̃0 : Λn+2
0 → X be the map given by

the tuple of (n+ 1)-simplices (•, τ̃0, τ̃1, . . . , τ̃n+1) (see Proposition 1.2.4.7). Since f is a Kan
fibration, the lifting problem

Λn+2
0

ρ̃0 //

��

X

f

��
∆n+2 ρ //

ρ̃

>>

S

admits a solution. Then σ = dn+2
0 (ρ̃) is an (n+1)-simplex of Xs satisfying dn+1

i (σ) = dn+1
0 (τ̃i)

for 0 ≤ i ≤ n+ 1, and therefore witnesses that the product

[dn+1
0 (σ)]−1[dn+1

1 (σ)][dn+1
2 (σ)]−1 · · · [dn+1

n+1(σ)](−1)n = ∂(η0)−1∂(η1)∂(η2)−1 · · · ∂(ηn+1)(−1)n

vanishes in the homotopy group πn(Xs, x).

In the special case n = 0, we do not have a group structure on the set π0(Xs, x), so we
cannot assert that the connecting map ∂ : π1(S, s)→ π0(Xs, x) is a group homomorphism.
Nevertheless, the map ∂ is compatible with the group structure on π1(S, s) in the following
sense:
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Variant 3.2.5.5. 00WJLet f : X → S be a Kan fibration between Kan complexes, let s be a vertex
of S, and set Xs = {s}×SX. Then there is a unique left action a : π1(S, s)×π0(Xs)→ π0(Xs)
of the fundamental group π1(S, s) on π0(Xs) with the following property;

(∗) For each element η ∈ π1(S, s) and each vertex x of Xs, we have a(η, [x]) = ∂x(η), where
∂x : π1(S, s)→ π0(Xs, x) = π0(Xs) is given by Proposition 3.2.5.2.

Proof. We first show that the function a is well-defined: that is, that the map ∂x : π1(S, s)→
π0(Xs) depends only on the image of x in π0(Xs). Fix an element η ∈ π1(S, s), which we
can write as the homotopy class of an edge v : s → s in the Kan complex S. Let x and
x′ be vertices belonging to the same connected component of Xs, so that there exists an
edge u : x′ → x of X satisfying f(u) = ids. We wish to show that ∂x(η) = ∂x′(η) in π0(Xs).
Since f is a Kan fibration, we can lift v to an edge ṽ : x→ y in X. Using the fact that f is
a Kan fibration, we can solve the lifting problem

Λ2
1

(ṽ,•,u) //

��

X

f

��
∆2 s1

0(v)
//

σ

??

S

to obtain a 2-simplex σ of X depicted in the diagram

x

ṽ

��
x′

u

??

ṽ′ // y.

The edges ṽ and ṽ′ then witness the identities ∂x(η) = [y] = ∂x′(η) in π0(Xs).
We now complete the proof by showing that the function a : π1(S, s)× π0(Xs)→ π0(Xs)

determines a left action of π1(S, s) on π0(Xs). Note that the identity element of π1(S, s) is
given by the homotopy class of the degenerate edge ids : s→ s of S. For each x ∈ Xs, we can
lift ids to the edge idx : x→ x of X, which witnesses the identity a([ids], [x]) = ∂x([ids]) = [x]
in π0(Xs). To complete the argument, it will suffice to show that for every pair of edges g, g′ :
s → s of S and every vertex x ∈ Xs, we have an equality a([g′][g], [x]) = a([g′], a([g], [x]))
in π0(Xs). Since f is a Kan fibration, we can lift g to an edge g̃ : x → y in X, and g′ to
an edge g̃′ : y → z in X. Since X is a Kan complex, the map (g̃′, •, g̃) : Λ2

1 → X can be
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completed to a 2-simplex σ of X, as depicted in the diagram

y

g̃′

��
x

g̃

??

g̃′′ // z.

The edges g̃, g̃′, and g̃′′ then witness the identities a([g], [x]) = [y], a([g′], [y]) = [z], and
a([g′][g], [x]) = [z] (respectively), so that we have an equality

a([g′][g], [x]) = [z] = a([g′], [y]) = a([g]′, a([g], [x]))

as desired.

Warning 3.2.5.6.00WK Let f : (X,x) → (S, s) be a Kan fibration between pointed Kan
complexes. Then x and s can also be regarded as vertices of the opposite simplicial sets
Xop
s and Sop, respectively, and we have canonical bijections πn+1(S, s) ≃ πn+1(Sop, s)

and πn(Xs, x) ≃ πn(Xop
s , x), respectively. However, these bijections are not necessarily

compatible with the connecting homomorphisms of Construction 3.2.5.3. The diagram

πn+1(S, s) ∼ //

∂

��

πn+1(Sop, s)

∂

��
πn(Xs, x) ∼ // πn(Xop

s , x)

commutes when n is odd, but anticommutes if n ≥ 2 is even. This phenomenon is also visible
in the case n = 0: in this case, the connecting maps ∂ : π1(Sop, s)→ π0(Xop

s , x) determine
a left action of the fundamental group π1(Sop, s) on π0(Xop

s , x) ≃ π0(Xs, x), which can be
interpreted as a right action of the group π1(S, s) on π0(Xs, x) (see Remark 3.2.2.20). To
recover the left action of Variant 3.2.5.5, we must compose with the anti-homomorphism
π1(S, s)→ π1(S, s) given by η 7→ η−1.

3.2.6 The Long Exact Sequence of a Fibration

00WL If (X,x) is a pointed Kan complex, then we regard each πn(X,x) as a pointed set, with
base point given by the homotopy class of the constant map ∆n → {x} ⊆ X (if n ≥ 1, then
this is the identity element with respect to the group structure on πn(X,x)). Recall that a
diagram of pointed sets

· · · → (Gn+1, en+1) fn−→ (Gn, en) fn−1−−−→ (Gn−1, en−1)→ · · ·
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is said to be exact if the image of each fn is equal to the fiber f−1
n−1{en−1} = {g ∈ Gn :

fn−1(g) = en−1}. Our goal in this section is to prove the following:

Theorem 3.2.6.1. 00WMLet f : (X,x)→ (S, s) be a Kan fibration between pointed Kan complexes.
Then the sequence of pointed sets

· · · → π2(S, s) ∂−→ π1(Xs, x)→ π1(X,x)→ π1(S, s) ∂−→ π0(Xs, x)→ π0(X,x)→ π0(S, s)

is exact; here ∂ : πn+1(S, s) → πn(Xs, x) denotes the connecting homomorphism of Con-
struction 3.2.5.3.

Theorem 3.2.6.1 really amounts to three separate assertions, which we will formulate
and prove individually (Propositions 3.2.6.2, 3.2.6.4, and 3.2.6.6).

Proposition 3.2.6.2. 00WNLet f : (X,x) → (S, s) be a Kan fibration between pointed Kan
complexes and let n ≥ 0 be an integer. Then the sequence of pointed sets

πn(Xs, x)→ πn(X,x)→ πn(S, s)

is exact.

In the special case n = 0, the content of Proposition 3.2.6.2 can be formulated without
reference to the base point x ∈ X:

Corollary 3.2.6.3. 00WPLet f : X → S be a Kan fibration between Kan complexes, let s be a
vertex of S, and set Xs = {s} ×S X. Then the image of the map π0(Xs)→ π0(X) is equal
to the fiber of the map π0(f) : π0(X) → π0(S) over the connected component [s] ∈ π0(S)
determined by the vertex s. In other words, a vertex x ∈ X satisfies [f(x)] = [s] in π0(S) if
and only if the connected component of x has nonempty intersection with the fiber Xs.

Proof of Proposition 3.2.6.2. Fix an n-simplex σ : ∆n → X such that σ|∂∆n is the constant
map carrying ∂∆n to the base point x ∈ X. We wish to show that the homotopy class [σ]
belongs to the image of the map πn(Xs, x) → πn(X,x) if and only if the image [f(σ)] is
equal to the base point of πn(S, s). The “only if” direction is clear, since the composite map
Xs ↪→ X

f−→ S is equal to the constant map taking the value s. For the converse, suppose
that [f(σ)] is the base point of πn(S, s). Then there exists a homotopy h : ∆1 ×∆n → S

from f(σ) to the constant map σ′0 : ∆n → {s} ⊆ S, which is constant when restricted to the
boundary ∂∆n. Since f is a Kan fibration, we can lift h to a homotopy h̃ : ∆1 ×∆n → X

from σ to another n-simplex σ′ : ∆n → X, where h̃ is constant along the boundary ∂∆n

and f(σ′) = σ′0 (Remark 3.1.5.3). Then σ′ represents a homotopy class [σ′] ∈ πn(Xs, x), and
the homotopy h̃ witnesses that [σ] is equal to the image of [σ′] in πn(X,x).
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Proposition 3.2.6.4.00WQ Let f : (X,x) → (S, s) be a Kan fibration between pointed Kan
complexes and let n ≥ 0 be an integer. Then the sequence of pointed sets πn+1(S, s) ∂−→
πn(Xs, x)→ πn(X,x) is exact, where ∂ is the connecting homomorphism of Construction
3.2.5.3.

In the special case n = 0, Proposition 3.2.6.4 can also be formulated without reference
to the base point x ∈ X.

Corollary 3.2.6.5.00WR Let f : X → S be a Kan fibration between Kan complexes, let s be a
vertex of S, and set Xs = {s} ×S X. Then two elements of π0(Xs) have the same image in
π0(X) if and only if they belong to the same orbit of the action of the fundamental group
π1(S, s) (see Variant 3.2.5.5). In other words, the inclusion of Kan complexes Xs ↪→ X

induces a monomorphism of sets (π1(S, s)\π0(Xs)) ↪→ π0(X).

Proof. Combine Variant 3.2.5.5 with Proposition 3.2.6.4.

Proof of Proposition 3.2.6.4. Fix an n-simplex σ : ∆n → Xs such that σ|∂∆n is the constant
map carrying ∂∆n to the base point x ∈ Xs. By construction, the homotopy class [σ] ∈
πn(Xs, x) belongs to the image of the connecting homomorphism ∂ : πn+1(S, s)→ πn(Xs, x)
if and only if there exists an (n+ 1)-simplex τ : ∆n+1 → S such that τ |∂∆n+1 is the constant
map taking the value s and σ is incident to τ , in the sense of Definition 3.2.5.1. This condition
is equivalent to the existence of an (n+ 1)-simplex τ̃ : ∆n+1 → X satisfying dn+1

0 (τ̃) = σ and
dn+1
i (τ̃) is equal to the constant map e : ∆n → {x} ⊆ X for 1 ≤ i ≤ n+ 1. In other words,

it is equivalent to the assertion that the tuple of n-simplices of X (σ, e, e, . . . , e) bounds, in
the sense of Notation 3.2.3.1. For n ≥ 1, this is equivalent to the vanishing of the image of
[σ] in the homotopy group πn(X,x) (Theorem 3.2.2.10). When n = 0, it is equivalent to the
equality [σ] = [x] in π0(X) by virtue of Remark 1.4.6.13.

Proposition 3.2.6.6.00WS Let f : (X,x) → (S, s) be a Kan fibration between pointed Kan

complexes and let n ≥ 0 be an integer. Then the sequence of pointed sets πn+1(X,x) πn+1(f)−−−−−→
πn+1(S, s) ∂−→ πn(Xs, x) is exact, where ∂ is the connecting homomorphism of Construction
3.2.5.3.

Corollary 3.2.6.7.00WT Let f : (X,x)→ (S, s) be a Kan fibration between pointed Kan complexes.
Then the image of the induced map π1(f) : π1(X,x)→ π1(S, s) is equal to the stabilizer of
[x] ∈ π0(Xs) (with respect to the action of π1(S, s) on π0(Xs) supplied by Variant 3.2.5.5.

Proof. Combine Variant 3.2.5.5 with Proposition 3.2.6.6.

Proof of Proposition 3.2.6.6. Fix an (n + 1)-simplex τ : ∆n+1 → S for which τ |∂∆n+1 is
the constant map taking the value s. By construction, the connecting homomorphism
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∂ : πn+1(S, s) → πn(Xs, x) carries [τ ] to the base point of πn(Xs, x) if and only if the
constant map e : ∆n → {x} ↪→ Xs is incident to τ , in the sense of Definition 3.2.5.1. This
is equivalent to the requirement that τ can be lifted to a map τ̃ : ∆n+1 → X for which
τ̃ |∂∆n+1 is the constant map taking the value x, which clearly implies that that [τ ] belongs to
the image of the map πn+1(f) : πn+1(X,x)→ πn+1(S, s). To prove the reverse implication,
suppose that [τ ] belongs to the image of πn+1(f), so that we can write [τ ] = [f(τ̃ ′)] for some
map τ̃ ′ : ∆n+1 → X for which τ̃ ′|∂∆n+1 is the constant map taking the value x. It follows
that there is a homotopy h : ∆1 ×∆n+1 → S from f(τ̃ ′) to τ which is constant along the
boundary ∂∆n+1. Since f is a Kan fibration, we can lift h to a map h̃ : ∆1 ×∆n+1 → X

such that h|{0}×∆n+1 = τ̃ ′ and h|∆1×∂∆n+1 is the constant map taking the value x (Remark
3.1.5.3). The restriction τ̃ = h|{1}×∆n+1 then satisfies f(τ̃) = τ and τ̃ |∂∆n+1 is the constant
map taking the value x.

Corollary 3.2.6.8. 050ZLet f : (X,x)→ (S, s) be a Kan fibration between pointed Kan complexes
and let n > 0 be an integer. Then the homotopy group πn(Xs, x) vanishes if and only if f
satisfies both of the following conditions:

• The group homomorphism πn(f) : πn(X,x)→ πn(S, s) is injective.

• The group homomorphism πn+1(f) : πn+1(X,x)→ πn+1(S, s) is surjective.

Variant 3.2.6.9. 0510Let f : (X,x)→ (S, s) be a Kan fibration between Kan complexes. Then
the fiber Xs is connected if and only if f satisfies both of the following conditions:

• The connected component [s] ∈ π0(S) has a unique preimage under the map π0(f) :
π0(X)→ π0(S) (given by [x] ∈ π0(X)).

• The map of fundamental groups π1(X,x)→ π1(S, s) is surjective.

3.2.7 Whitehead’s Theorem for Kan Complexes

00WULet f : X → Y be a continuous function between nonempty topological spaces. If X
and Y are CW complexes, then a classical theorem of Whitehead (see [60]) asserts that
f is a homotopy equivalence if and only if it induces a bijection π0(X) ≃ π0(Y ) and, for
every base point x ∈ X, the induced map of homotopy groups πn(X,x)→ πn(Y, f(x)) is an
isomorphism for n > 0 (Corollary 3.6.3.10). Our goal in this section is to prove an analogous
statement in the setting of Kan complexes.

Theorem 3.2.7.1. 00WVLet f : X → Y be a morphism of Kan complexes. Then f is a homotopy
equivalence if and only if it satisfies the following pair of conditions:

(a) The map of sets π0(f) : π0(X)→ π0(Y ) is a bijection.
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(b) For every vertex x ∈ X having image y = f(x) in Y and every positive integer n, the
map of homotopy groups πn(f) : πn(X,x)→ πn(Y, y) is an isomorphism.

We begin by proving Theorem 3.2.7.1 in the case of a Kan fibration.

Proposition 3.2.7.2.00X1 Let f : X → Y be a Kan fibration between Kan complexes. The
following conditions are equivalent:

(1) The morphism f is a trivial Kan fibration.

(2) The morphism f is a homotopy equivalence.

(3) The map of sets π0(f) : π0(X) → π0(Y ) is a bijection and, for every vertex x ∈ X

and every integer n > 0, the map of homotopy groups πn(X,x) → πn(Y, y) is an
isomorphism.

(4) For each vertex y ∈ Y , the fiber Xy = {y} ×Y X is a contractible Kan complex.

Proof. The implication (1) ⇒ (2) follows from Proposition 3.1.6.10 and the implication
(2) ⇒ (3) from Remark 3.2.2.17. Using Corollary 3.2.6.8 and Variant 3.2.6.9, we can
reformulate (3) as follows:

(3′) The map π0(f) is surjective and, for every vertex x ∈ X having image y = f(x), the
homotopy groups πn(Xy, x) vanish for n > 0.

The equivalence of (3′)⇔ (4) follows from Theorem 3.2.4.3. We will complete the proof by
showing that (4) implies (1). Assume that condition (4) is satisfied; we wish to show that
every lifting problem

∂∆m //

��

X

f

��
∆m σ //

==

Y

admits a solution. Since σ is nullhomotopic (Exercise 3.2.4.8), we can use the homotopy
extension lifting property to to reduce to the special case where σ is the constant map
∆m → {y} ↪→ Y for some vertex y ∈ Y . In this case, the desired result follows from the
contractibility of the fiber Xy (Theorem 3.2.4.3).

Remark 3.2.7.3.00X3 For the equivalences (1) ⇔ (2) ⇔ (4) of Proposition 3.2.7.2, it is not
necessary to assume that X and Y are Kan complexes. See Proposition 3.3.7.6.
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Proof of Theorem 3.2.7.1. Let f : X → Y be a morphism of Kan complexes. Suppose that
π0(f) : π0(X)→ π0(Y ) is a bijection and that the induced map πn(X,x)→ πn(Y, f(x)) is an
isomorphism for every base point x ∈ X and every positive integer n; we wish to show that
f is a homotopy equivalence (the converse follows from Remark 3.2.2.17). Using Proposition
3.1.7.1 (or Example 3.1.7.10), we can factor f as a composition X f ′−→ X ′

f ′′−→ Y , where f ′ is
anodyne and f ′′ is a Kan fibration. Then X ′ is Kan complex (Remark 3.1.1.11), so that f ′
is a homotopy equivalence (Proposition 3.1.6.13). It will therefore suffice to show that the
Kan fibration f ′′ is a homotopy equivalence, which follows from Proposition 3.2.7.2.

Corollary 3.2.7.4. 03DZLet C∗ and D∗ be chain complexes of abelian groups and let f : C∗ → D∗
be a morphism of chain complexes. The following conditions are equivalent:

(1) The induced map of generalized Eilenberg-MacLane spaces K(C∗)→ K(D∗) is a homotopy
equivalence (see Construction 2.5.6.3).

(2) For every integer n ≥ 0, the induced map of homology groups Hn(C) → Hn(D) is an
isomorphism.

Proof. Remark 2.5.6.4 guarantees that the simplicial sets K(C∗) and K(D∗) are Kan com-
plexes. By virtue of Theorem 3.2.7.1, (1) is equivalent to the following pair of assertions:

(1′) The chain map f induces a bijection π0(K(C∗))→ π0(K(D∗)).

(1′′) For every vertex x of K(C∗) having image y ∈ K(D∗) and every integer n > 0, the
induced of homotopy groups

πn(K(C∗), x)→ πn(K(D∗), y)

is an isomorphism.

Note that we have a commutative diagram of pointed Kan complexes

(K(C∗), 0) K(f) //

∼

��

(K(D∗), 0)

∼

��
(K(C∗), x) K(f) // (K(D∗), y),

where the vertical isomorphisms are given by translation by x and y, respectively (using the
group structure on the Kan complexes K(C∗) and K(D∗). Consequently, to verify (1′′), we
may assume without loss of generality that x = 0. Applying Exercise 3.2.2.22, we see that
(1′) and (1′′) can be reformulated as follows:
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(2′) The chain map f induces an isomorphism H0(C)→ H0(D).

(2′′) For every integer n > 0, the chain map f induces an isomorphism Hn(C)→ Hn(D).

3.2.8 Closure Properties of Homotopy Equivalences

00XB We now apply Whitehead’s theorem (Theorem 3.2.7.1) to establish some stability
properties for the collection of homotopy equivalences between Kan complexes (and weak
homotopy equivalences between arbitrary simplicial sets).

Proposition 3.2.8.1.00XC Suppose we are given a commutative diagram of Kan complexes

X
g //

f

��

X ′

f ′

��
S

h // S′,

where f and f ′ are Kan fibrations and h is a homotopy equivalence. Then the following
conditions are equivalent:

(1) The morphism g is a homotopy equivalence.

(2) For each vertex s ∈ S having image s′ = h(s) in S′, the map of fibers gs : Xs → X ′s′ is a
homotopy equivalence.

Remark 3.2.8.2.00XD In the situation of Proposition 3.2.8.1, the assumption that S and S′ are
Kan complexes can be eliminated at the cost of working with weak homotopy equivalences
in place of homotopy equivalences: see Proposition 3.3.7.1.

Proof of Proposition 3.2.8.1. Assume first that (1) is satisfied. Let s be a vertex of S having
image s′ = h(s) in S′; we wish to show that the induced map gs : Xs → X ′s′ is a homotopy
equivalence. By virtue of Remark 3.1.6.6, it will suffice to show that for every simplicial
set W , the induced map Fun(W,Xs)→ Fun(W,X ′h(s)) is bijective on connected components.
Replacing X by Fun(W,X) (and making similar replacements for X ′, S, and S′), we may
reduce to the problem of showing that gs induces a bijection π0(Xs) → π0(X ′s′). Let us
regard π0(Xs) and π0(X ′s′) as endowed with actions of the fundamental groups π1(S, s) and
π1(S′, s′), respectively (Variant 3.2.5.5). Using our assumption that g and h are homotopy
equivalences, we conclude that the induced maps

π0(X)→ π0(X ′) π0(S)→ π0(S′) π1(S, s)→ π1(S′, s′)
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are bijective. Applying Corollaries 3.2.6.3 and 3.2.6.5, we conclude that gs induces a
bijection π1(S, s)\π0(Xs) → π1(S′, s′)\π0(X ′s′). It will therefore suffice to show that, for
every vertex x ∈ Xs, the stabilizer in π1(S, s) of the connected component [x] ∈ π0(Xs) maps
isomorphically to the stabilizer in π1(S′, s′) of the connected component [g(x)] ∈ π0(X ′s′).
This follows from Corollary 3.2.6.7, since g induces an isomorphism π1(X,x)→ π1(X ′, g(x)).

We now show that (2)⇒ (1). Assume that, for each vertex s ∈ S having image s′ = h(s)
in S′, the induced map gs : Xs → X ′s′ is a homotopy equivalence. We wish to show that
g is a homotopy equivalence. We first show that the map π0(g) : π0(X) → π0(X ′) is
bijective. Our assumption that h is a homotopy equivalence guarantees that the map
π0(h) : π0(S) → π0(S′) is bijective. It will therefore suffice to show that, for each vertex
s ∈ S having image s′ = h(s), the induced map π0(X)×π0(S) {[s]} → π0(X ′)×π0(S′) {[s′]} is
bijective. Using Corollaries 3.2.6.3 and 3.2.6.5, we can identify this with the map of quotients
(π1(S, s)\π0(Xs))→ (π1(S′, s′)\π0(X ′s′)). The desired result now follows from the bijectivity
of the map π0(gs) : π0(Xs)→ π0(X ′s′) and of the group homomorphism π1(S, s)→ π1(S′, s′).

To complete the proof that g is a homotopy equivalence, it will suffice (by virtue of
Theorem 3.2.7.1) to show that for every vertex x ∈ X having image x′ = g(x) and every
positive integer n, the group homomorphism πn(X,x) → πn(X ′, x′) is an isomorphism.
Setting s = f(x) and s′ = f(x′), we have a commutative diagram of exact sequences

πn+1(S, s) //

∼

��

πn(Xs, x) //

∼

��

πn(X,x) //

��

πn(S, s) //

∼

��

πn−1(Xs, x)

∼

��
πn+1(S′, s′) // πn(X ′s′ , x′) // πn(X ′, x′) // πn(S′, s′) // πn−1(X ′s′ , x′).

Our assumptions that gs and h are homotopy equivalences guarantee that the outer vertical
maps are bijective, and elementary diagram chase shows that that the middle vertical map
is an isomorphism.

Proposition 3.2.8.3. 00XELet W denote the full subcategory of Fun([1],Set∆) spanned by those
morphisms of simplicial sets f : X → Y which are weak homotopy equivalences. Then W is
closed under the formation of filtered colimits in Fun([1], Set∆).

Proof. Suppose we are given a filtered diagram {fα : Xα → Yα} in W, so that each fα is
a weak homotopy equivalence of simplicial sets. We wish to show that the induced map
f : (lim−→α

Xα)→ (lim−→α
Yα) is also a weak homotopy equivalence. Using Proposition 3.1.7.1,

we can choose a diagram of morphisms {uα : Yα ↪→ Y ′α} with the following properties:

• Each of the maps uα is anodyne, and the induced map u : (lim−→α
Yα) → (lim−→α

Y ′α) is
anodyne.

https://kerodon.net/tag/00XE
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• Each of the simplicial sets Y ′α is a Kan complex, and (therefore) the colimit lim−→α
Y ′α is

also a Kan complex.

Since every anodyne morphism is a weak homotopy equivalence (Proposition 3.1.6.14), we
can replace {fα : Xα → Yα} by the diagram of composite maps {(uα ◦ fα) : Xα → Y ′α}, and
therefore reduce to the case where each Yα is a Kan complex.

Let us regard the system of morphisms {fα} as a morphism from the filtered diagram of
simplicial sets {Xα} to the filtered diagram {Yα}. Applying Proposition 3.1.7.1 again, we
see that this diagram admits a factorization {Xα}

{gα}−−−→ {X ′α}
{hα}−−−→ {Yα} with the following

properties:

• Each of the morphisms gα is anodyne, and the induced map g : (lim−→α
Xα)→ (lim−→α

X ′α)
is anodyne.

• Each of the morphisms hα is a Kan fibration, and (therefore) the induced map
(lim−→α

X ′α)→ (lim−→α
Yα) is also a Kan fibration.

Arguing as before, we can replace {fα : Xα → Yα} by the diagram of morphisms {hα :
X ′α → Yα}, and thereby reduce to the case where each fα is a Kan fibration. In this case,
Proposition 3.2.7.2 guarantees that each fα is a trivial Kan fibration. It follows that the
colimit map f : (lim−→α

Xα)→ (lim−→α
Yα) is also a trivial Kan fibration, and therefore a (weak)

homotopy equivalence by virtue of Proposition 3.1.6.10.

Corollary 3.2.8.4.03PK The collection of weakly contractible simplicial sets is closed under the
formation of filtered colimits.

Corollary 3.2.8.5.03PL Let S be a nonempty linearly ordered set. Then the nerve N•(S) is
weakly contractible.

Proof. By virtue of Corollary 3.2.8.4, we may assume without loss of generality that S is
finite. In this case, there is an isomorphism S ≃ [n] for some integer n ≥ 0, so that N•(S) is
isomorphic to the standard simplex ∆n.

3.3 The Ex∞ Functor

00XF Let f : X → S be a Kan fibration of simplicial sets. If S is a Kan complex, then X is
also a Kan complex. Moreover, for every vertex x ∈ X having image s = f(x) ∈ S, Theorem
3.2.6.1 supplies an exact sequence of homotopy groups

· · · → π2(S, s) ∂−→ π1(Xs, x)→ π1(X,x)→ π1(S, s) ∂−→ π0(Xs, x)→ π0(X,x)→ π0(S, s).

If S is not a Kan complex, then the results of §3.2.6 do not apply directly. However, one
can obtain similar information by replacing f by a Kan fibration f ′ : X ′ → S′ between Kan
complexes, using the following result:

https://kerodon.net/tag/03PK
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Theorem 3.3.0.1. 00XGLet f : X → S be a Kan fibration of simplicial sets. Then there exists a
commutative diagram of simplicial sets

X
g′ //

f

��

X ′

f ′

��
S

g // S′

with the following properties:

(a) The simplicial sets S′ and X ′ are Kan complexes.

(b) The morphisms g and g′ are weak homotopy equivalences.

(c) The morphism f ′ is a Kan fibration.

(d) For every vertex s ∈ S, the induced map g′s : Xs → X ′g(s) is a homotopy equivalence of
Kan complexes.

Note that we can almost deduce Theorem 3.3.0.1 formally from the results of §3.1.7.
Given a Kan fibration f : X → S, we can always choose an anodyne map g : S → S′, where
S′ is a Kan complex (Corollary 3.1.7.2). Applying Proposition 3.1.7.1, we deduce that g ◦ f
factors as a composition X g′−→ X ′

f ′−→ S′, where f ′ is a Kan fibration and g′ is anodyne. The
resulting commutative diagram

X
g′ //

f

��

X ′

f ′

��
S

g // S′

then satisfies conditions (a), (b), and (c) of Theorem 3.3.0.1. However, it is not so obvious
that this diagram also satisfies condition (d). To guarantee this, it is convenient to adopt a
different approach to the results of §3.1.7. Following Kan ([33]), we will introduce a functor
Ex∞ : Set∆ → Set∆ and a natural transformation of functors ρ∞ : idSet∆ → Ex∞ with the
following properties:

(a′) For every simplicial set S, the simplicial set Ex∞(S) is a Kan complex (Proposition
3.3.6.9).

(b′) For every simplicial set S, the morphism ρ∞S : S → Ex∞(S) is a weak homotopy
equivalence (Proposition 3.3.6.7).

https://kerodon.net/tag/00XG
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(c′) For every Kan fibration of simplicial sets f : X → S, the induced map Ex∞(f) :
Ex∞(X)→ Ex∞(S) is a Kan fibration (Proposition 3.3.6.6).

(d′) The functor Ex∞ : Set∆ → Set∆ commutes with finite limits (Proposition 3.3.6.4). In
particular, for every morphism of simplicial sets f : X → S and every vertex s ∈ S,
the canonical map Ex∞(Xs) → {s} ×Ex∞(S) Ex∞(X) is an isomorphism (Corollary
3.3.6.5).

It follows from these assertions that for any Kan fibration f : X → S, the diagram of
simplicial sets

X

f

��

ρ∞X // Ex∞(X)

Ex∞(f)

��
S

ρ∞S // Ex∞(S)

satisfies the requirements of Theorem 3.3.0.1.
Most of this section is devoted to the definition of the functor Ex∞ (and the natural

transformation ρ∞) and the verification of assertions (a′) through (d′). The construction is
rooted in classical geometric ideas. Let n be a nonnegative integer, let

|∆n| = {(t0, t1, . . . , tn) ∈ [0, 1]n+1 : t0 + t1 + · · ·+ tn = 1}

denote the topological simplex of dimension n. This topological space admits a triangu-
lation whose vertices are the barycenters of its faces. More precisely, there is a canonical
homeomorphism of topological spaces | Sd(∆n)| ∼−→ |∆n|, where Sd(∆n) denotes the nerve of
the partially ordered set of faces of ∆n (Proposition 3.3.2.3). For every topological space Y ,
composition with this homeomorphism induces a bijection

φn : Singn(Y ) ∼−→ HomSet∆(Sd(∆n),Sing•(Y )).

Motivated by this observation, we define a functor X 7→ Ex(X) = Ex•(X) from the category
of simplicial sets to itself by the formula Exn(X) = HomSet∆(Sd(∆n), X) (Construction
3.3.2.5). The preceding discussion can then be summarized by noting that, when X =
Sing•(Y ) is the singular simplicial set of a topological space Y , the bijections {φn}n≥0
determine an isomorphism of semisimplicial sets φ : X → Ex(X) (Example 3.3.2.9). Beware
that φ is generally not an isomorphism of simplicial sets: that is, it need not be compatible
with degeneracy operators.

In §3.3.3, we show that the functor Ex : Set∆ → Set∆ admits a left adjoint (Corollary
3.3.3.4). We denote the value of this left adjoint on a simplicial set X by Sd(X), and refer
to it as the subdivision of X. It is essentially immediate from the definition that, in the
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special case where X = ∆n is a standard simplex, we recover the simplicial set Sd(∆n)
defined above. More generally, we will say that a simplicial set X is braced if the collection
of nondegenerate simplices of X is closed under face operators (Definition 3.3.1.1). If this
condition is satisfied, then the subdivision Sd(X) can be identified with the nerve of the
category ∆nd

X of nondegenerate simplices of X (Proposition 3.3.3.16). Moreover, we also have
a canonical homeomorphism of topological spaces | Sd(X)| → |X|, which carries each vertex
of N•(∆nd

X ) to the barycenter of the corresponding simplex of |X| (Proposition 3.3.3.6).
In §3.3.4, we associate to every simplicial set X a pair of comparison maps

λX : Sd(X)→ X ρX : X → Ex(X);

we refer to λX as the last vertex map of X (Construction 3.3.4.3). In the special case X = ∆n,
the source and target of λX are both weakly contractible, so λX is automatically a weak
homotopy equivalence. From this observation, it follows from a simple formal argument that
λX is a weak homotopy equivalence for every simplicial set X (Proposition 3.3.4.8). In §3.3.5,
we exploit this to show that the functor Ex carries Kan fibrations to Kan fibrations (Corollary
3.3.5.4), and that the comparison map ρX : X → Ex(X) is a weak homotopy equivalence
for every simplicial set X (Theorem 3.3.5.1). Consequently, the functor Ex : Set∆ → Set∆
satisfies analogues of properties (b′), (c′), and (d′) above.

Unfortunately, the functor Ex : Set∆ → Set∆ does not satisfy the analogue of condition
(a′): in general, a simplicial set of the form Ex(X) need not satisfy the Kan extension
condition. However, one can show that it satisfies a slightly weaker condition: for any
morphism of simplicial sets f0 : Λn

i → Ex(X), the composite map Λn
i

f0−→ Ex(X)
ρEx(X)−−−−→

Ex2(X) can be extended to an n-simplex of the simplicial set Ex2(X) = Ex(Ex(X)). We
apply this observation in §3.3.6 to deduce that the direct limit

Ex∞(X) = lim−→(X ρX−−→ Ex(X)
ρEx(X)−−−−→ Ex2(X)

ρEx2(X)−−−−−→ Ex3(X)→ · · · )

is a Kan complex (Proposition 3.3.6.9). Moreover, properties (b′), (c′), and (d′) for the
functor X 7→ Ex∞(X) are immediate consequences of the analogous properties of the functor
X 7→ Ex(X).

We close this section by outlining some applications of the functor Ex∞. In §3.3.7 we
prove that, in the situation of Theorem 3.3.0.1, assertion (d) is a formal consequence of
(b) and (c) (Proposition 3.3.7.1). Using this, we show that a Kan fibration of simplicial
sets f : X → S is a weak homotopy equivalence if and only if it is a trivial Kan fibration
(Proposition 3.3.7.6), and that a monomorphism of simplicial sets g : X ↪→ Y is a weak
homotopy equivalence if and only if it is anodyne (Corollary 3.3.7.7). In §3.3.8 we prove
a refinement of Theorem 3.3.0.1, which guarantees that every Kan fibration f : X → S is
actually isomorphic to the pullback of a Kan fibration f ′ : X ′ → S′ between Kan complexes
(Theorem 3.3.8.1).
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3.3.1 Digression: Braced Simplicial Sets

00XT Let ∆ denote the simplex category (Definition 1.1.0.2), and let ∆inj denote the subcate-
gory of ∆ spanned by the injective maps (Definition 1.1.1.2). Composition with the inclusion
functor ∆op

inj ↪→∆op determines a forgetful functor from the category Set∆ = Fun(∆op,Set)
of simplicial sets to the category Fun(∆op

inj,Set) of semisimplicial sets (Remark 1.1.1.3). Our
goal in this section is to show that this functor admits a faithful left adjoint, which we will
denote by S• 7→ S+

• . We begin by describing the essential image of this left adjoint.

Definition 3.3.1.1.00XU Let X• be a simplicial set. We will say that X• is braced if, for
every nondegenerate simplex σ ∈ Xn of dimension n > 0, the faces {dni (σ)}0≤i≤n are also
nondegenerate.

Exercise 3.3.1.2.00XV Let C be a category. Show that the nerve N•(C) is braced if and only if
C satisfies the following condition:

(∗) For every pair of morphisms f : X → Y and g : Y → X in C satisfying g ◦ f = idX , we
have X = Y and f = g = idX .

In particular, for any partially ordered set Q, the nerve N•(Q) is braced.

Example 3.3.1.3.00XW Every simplicial set of dimension ≤ 1 is braced.

Notation 3.3.1.4.00XX Let X• be a simplicial set. For each nonnegative integer n, we let
Xnd
n ⊆ Xn denote the collection of nondegenerate n-simplices of X•. If X• is braced

(Definition 3.3.1.1), then the face operators {dni : Xn → Xn−1}0≤i≤n carry Xnd
n into Xnd

n−1.
In this case, the construction [n] 7→ Xnd

n determines a semisimplicial set, which we will
denote by Xnd

• .

The terminology of Definition 3.3.1.1 is motivated by the heuristic that a braced simplicial
set X• is “supported” by the semisimplicial subset Xnd

• ⊆ X•. This heuristic is supported
by the following:

Proposition 3.3.1.5.00XY Let X• and Y• be simplicial sets, and suppose that X• is braced.
Then the restriction map

{Morphisms of simplicial sets f : X• → Y•}

��
{Morphisms of semisimplicial sets f0 : Xnd

• → Y•}

is a bijection.
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Proof. Fix a morphism of semisimplicial sets f0 : Xnd
• → Y•; we wish to show that f0 extends

uniquely to a morphism of simplicial sets from X• to Y•. Let σ be an n-simplex of X•.
By virtue of Proposition 1.1.3.8, we can write σ uniquely as α∗(τ), where α : [n] ↠ [m]
is a nondecreasing surjection and τ is a nondegenerate m-simplex of X•. Define f(σ) =
α∗f0(τ) ∈ Yn. It is clear that any extension of f0 to a morphism of simplicial sets X• → Y•
must be given by the construction σ 7→ f(σ). It will therefore suffice to show that the
construction σ 7→ f(σ) is a morphism of simplicial sets.

Let σ, τ , and α be as above, and fix a nondecreasing map β : [n′] → [n]. We wish to
prove that f(β∗σ) = β∗f(σ) in the set Yn′ . Note that (α ◦ β) : [n′]→ [m] factors uniquely
as a composition [n′] α′−→ [m′] β′−→ [m], where α′ is surjective and β′ is injective. Since X• is
braced, β′∗(τ) is a nondegenerate m′-simplex of X•. We now compute

f(β∗σ) = f(β∗α∗τ)
= f(α′∗β′∗τ)
= α′∗f0(β′∗τ)
= α′∗β′∗f0(τ)
= β∗α∗f0(τ)
= β∗f(σ).

where the second and fifth equality follow from the identity α ◦ β = β′ ◦ α′, the third and
sixth equality follow from the definition of f , and the fourth equality from the fact that f0
is a morphism of semisimplicial sets.

We now show that every semisimplicial set S• can be obtained from the procedure of
Notation 3.3.1.4.

Construction 3.3.1.6. 00XZLet S• be a semisimplicial set. For each n ≥ 0, we let S+
n denote

the collection of pairs (α, τ) where α : [n] ↠ [m] is a nondecreasing surjection of linearly
ordered sets and τ is an element of Sm.

Let β : [n′]→ [n] be a morphism in the category ∆. For every element (α, τ) ∈ S+
n , the

composite map α ◦ β : [n′] → [m] factors uniquely as a composition [n′] α′−→ [m′] β′−→ [m],
where α′ is surjective and β′ is injective. We define a map β∗ : S+

n → S+
n′ by the formula

β∗(α, τ) = (α′, β′∗(τ)) ∈ S+
n′ .

Proposition 3.3.1.7. 00Y0Let S• be a semisimplicial set. Then:

(1) The assignments

([n] ∈∆) 7→ S+
n (β : [n′]→ [n]) 7→ (β∗ : S+

n → S+
n′)

of Construction 3.3.1.6 define a simplicial set S+
• .
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(2) The construction (τ ∈ Sn) 7→ ((id[m], τ) ∈ S+
n ) determines a monomorphism of semisim-

plicial sets ι : S• ↪→ S+
• .

(3) The simplicial set S+
• is braced, and ι induces an isomorphism from S• to the semisim-

plicial subset (S+
• )nd ⊆ S+

• .

Proof. It follows immediately that for each n ≥ 0, the function id∗[n] : S+
n → S+

n is the identity
map. To prove (1), it will suffice to show that for every pair of composable morphisms
[n′′] γ−→ [n′] β−→ [n] in ∆, we have an equality γ∗ ◦ β∗ = (β ◦ γ)∗ of functions from S+

n to S+
n′′ .

Fix an element (α, τ) ∈ S+
n , where α : [n]→ [m] is a surjective nondecreasing function and

τ is an element of Sm. There is a unique commutative diagram

[n′′] γ //

α′′

��

[n′]

α′

��

β // [n]

α

��
[m′′] γ′ // [m′] β′ // [m]

in the category ∆, where the vertical maps are surjective and the lower horizontal maps are
injective. We then compute

(γ∗ ◦ β∗)(α, τ) = γ∗(α′, β′∗τ)
= (α′′, γ′∗β′∗τ)
= (α′′, (β′ ◦ γ′)∗τ)
= (β ◦ γ)∗(α, τ),

which completes the proof of (1).
Assertion (2) is immediate from the definition. Note that if β : [n′]→ [n] is a nondecreas-

ing surjection, then the map β∗ : S+
n → S+

n′ is given by the formula β∗(α, τ) = (α ◦ β, τ). It
follows that an n-simplex σ = (α, τ) of S+

• is nondegenerate if and only if α : [n] ↠ [m] is a
bijection: that is, if and only if σ belongs to the image of ι. Since the image of ι is closed
under face operators (by virtue of (2)), we conclude that S+

• is braced and that ι induces an
isomorphism of semisimplicial sets S• ≃ (S+

• )nd.

Corollary 3.3.1.8.00Y1 Let Setbr
∆ ⊆ Set∆ denote the (non-full) subcategory whose objects are

braced simplicial sets and whose morphisms are maps f : X• → Y• which carry nondegenerate
simplices of X• to nondegenerate simplices of Y•. Then the construction X• 7→ Xnd

• induces
an equivalence of categories Setbr

∆ → {Semisimplicial sets}, with homotopy inverse given by
the construction S• → S+

• .

https://kerodon.net/tag/00Y1
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Proof. Let X• and Y• be braced simplicial sets. It follows from Proposition 3.3.1.5 that the
restriction functor HomSet∆(X•, Y•) → HomFun(∆op

inj,Set)(Xnd
• , Y•) is a bijection. Moreover,

the image of HomSetbr
∆

(X•, Y•) under this bijection is the collection of morphisms of semisim-
plicial sets from Xnd

• to Y nd
• ⊆ Y•. This proves full-faithfulness, and the essential surjectivity

follows from Proposition 3.3.1.7.

Corollary 3.3.1.9. 00Y2Let S• be a semisimplicial set. Then, for every simplicial set Y•,
composition with the map ι : S• ↪→ S+

• induces a bijection

{Morphisms of simplicial sets f : S+
• → Y•}

��
{Morphisms of semisimplicial sets f0 : S• → Y•}.

Proof. Combine Proposition 3.3.1.5 with Proposition 3.3.1.7.

Corollary 3.3.1.10. 00Y3The forgetful functor

{Simplicial sets} → {Semisimplicial sets}

has a left adjoint, given on objects by the construction S• 7→ S+
• .

Corollary 3.3.1.11. 00Y4Let X• be a braced simplicial set. Then the inclusion of semisimplicial
sets g0 : Xnd

• ↪→ X• extends uniquely to an isomorphism g : (Xnd
• )+ ≃ X•.

Proof. It follows from Corollary 3.3.1.9 that g0 extends uniquely to a map of simplicial sets
g : (Xnd

• )+ → X•. To show that g is an isomorphism, it will suffice to show that for every
simplicial set Y•, composition with g induces a bijection

HomSet∆(X•, Y•) → HomSet∆((Xnd
• )+, Y•)

≃ HomFun(∆op
inj,Set)(Xnd

• , Y•),

which is precisely the content of Proposition 3.3.1.5.

Example 3.3.1.12. 04HMLet M be a nonunital monoid and let M+ = M∪{e} denote the monoid
obtained from M by adjoining a unit element (Remark 1.3.2.11). Let B•(M+) denote the
classifying simplicial set of Construction 1.3.2.5, and let B•(M) be the semisimplicial set
introduced in Variant 1.3.2.12. The inclusion map M ↪→M+ induces a monomorphism of
semisimplicial sets ι : B•M ↪→ B•(M+), whose image consists of the nondegenerate simplices
of B•(M+). It follows that the simplicial set B•(M+) is braced and that ι extends to an
isomorphism of simplicial sets (B•M)+ ∼−→ B•(M+) (Corollary 3.3.1.11).
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3.3.2 The Subdivision of a Simplex

00XH Let n ≥ 0 be a nonnegative integer and let

|∆n| = {(t0, t1, . . . , tn) ∈ [0, 1]n+1 : t0 + t1 + · · ·+ tn = 1}

be the topological n-simplex. For every nonempty subset S ⊆ [n] = {0 < 1 < · · · < n}, let
|∆S | denote the corresponding face of |∆n|, given by the collection of tuples (t0, . . . , tn) ∈ |∆n|
satisfying ti = 0 for i /∈ S. Let bS denote the barycenter of the simplex |∆S |: that is, the point

(t0, . . . , tn) ∈ |∆S | ⊆ |∆n| given by ti =


1
|S| if i ∈ S
0 otherwise.

The collection of barycenters

{bS}∅≠S⊆[n] can be regarded as the vertices of a triangulation of |∆n|, which we indicate in
the case n = 2 by the following diagram:

•

• •

•

• • •

In this section, we show that this triangulation arises from the identification of |∆n| with
the geometric realization of another simplicial set (Proposition 3.3.2.3).

Notation 3.3.2.1.00XJ Let Q be a partially ordered set. We let Chain[Q] denote the collection
of all nonempty, finite, linearly ordered subsets of Q. We regard Chain[Q] as a partially
ordered set, where the partial order is given by inclusion. In the special case where
Q = [n] = {0 < 1 < . . . < n} for some nonnegative integer n, we denote the partially ordered
set Chain[Q] by Chain[n].

https://kerodon.net/tag/00XH
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Remark 3.3.2.2 (Functoriality). 00XKLet f : Q→ Q′ be a nondecreasing map between partially
ordered sets. Then f induces a map Chain[f ] : Chain[Q] → Chain[Q′], which carries
each nonempty linearly ordered subset S ⊆ Q to its image f(S) ⊆ Q′. By means of this
construction, we can regard Q 7→ Chain[Q] as functor from the category of partially ordered
sets to itself.

Proposition 3.3.2.3. 00XLLet n ≥ 0 be an integer. Then there is a unique homeomorphism of
topological spaces

f : |N•(Chain[n])| → |∆n|

with the following properties:

(1) For every nonempty subset S ⊆ [n], the map f carries S (regarded as a vertex of
N•(Chain[n])) to the barycenter bS ∈ |∆S | ⊆ |∆n|.

(2) For every m-simplex σ : ∆m → N•(Chain[n]), the composite map

|∆m| |σ|−→ |N•(Chain[n])| f−→ |∆n|

is affine: that is, it extends to an R-linear map from Rm+1 ⊇ |∆m| to Rn+1 ⊇ |∆n|.

Proof. Note that an affine map |∆m| → |∆n| is uniquely determined by its values on the
vertices of the topological m-simplex |∆m|. From this observation, it is easy to deduce that
there is a unique continuous function f : |N•(Chain[n])| → |∆n| which satisfies conditions
(1) and (2) of Proposition 3.3.2.3. We will complete the proof by showing that f is a
homeomorphism. Since the domain and codomain of f are compact Hausdorff spaces, it
will suffice to show that f is a bijection. Unwinding the definitions, this can be restated as
follows:

(∗) For every point (t0, t1, . . . , tn) ∈ |∆n|, there exists a unique chain S0 ⊊ S1 ⊊ · · · ⊊ Sm
of subsets of [n] and positive real numbers (s0, s1, . . . , sm) satisfying the identities∑

si = 1 (t0, t1, . . . , tn) =
∑

sibSi .

We will deduce (∗) from the following more general assertion:

(∗′) For every element (t0, t1, . . . , tn) ∈ Rn+1
≥0 , there exists a unique (possibly empty) chain

S0 ⊊ S1 ⊊ · · · ⊊ Sm of subsets of [n] and positive real numbers (s0, s1, . . . , sm)
satisfying (t0, t1, . . . , tn) = ∑

sibSi .

Note that, if (t0, t1, . . . , tn) and (s0, s1, . . . , sm) are as in (∗′), then we automatically have∑m
i=0 si = ∑n

j=0 tj . It follows that assertion (∗) is a special case of (∗′). To prove (∗′), let
K ⊆ [n] be the collection of those integers j for which tj ≠ 0. We proceed by induction
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on the cardinality of k = |K|. If k = 0 is empty, there is nothing to prove. Otherwise, set
r = min{kti}i∈K . We can then write

(t0, t1, . . . , tn) = rbK + (t′0, t′1, . . . , t′n)

for a unique sequence of nonnegative real numbers (t′0, . . . , t′n). Applying our inductive
hypothesis to the sequence (t′0, . . . , t′n), we deduce that there is a unique chain of sub-
sets S0 ⊊ S1 ⊊ · · · ⊊ Sm−1 of [n] and positive real numbers (s0, s1, . . . , sm−1) satisfying
(t′0, t′1, . . . , t′n) = ∑

sibSi . Note that each Si is contained in K ′, and therefore properly
contained in K. To complete the proof, we extend this sequence by setting Sm = K and
sm = r.

Remark 3.3.2.4 (Functoriality).00XM Let α : [m]→ [n] be a nondecreasing function between
partially ordered sets, so that α induces a nondecreasing map Chain[α] : Chain[m] →
Chain[n] (Remark 3.3.2.2). If α is injective, then the diagram of topological spaces

|N•(Chain[m])|

|N•(Chain[α])|

��

fm

∼
// |∆m|

|α|

��
|N•(Chain[n])| fn

∼
// |∆n|

is commutative, where the horizontal maps are the homeomorphisms supplied by Proposition
3.3.2.3. Beware that if α is not injective, this this diagram does not necessarily commute.
For example, the induced map |∆m| → |∆n| carries the barycenter of |∆m| to the point

( |α
−1(0)|
m+ 1 ,

|α−1(1)|
m+ 1 , . . . ,

|α−1(n)|
m+ 1 ) ∈ |∆n|,

which need not be the barycenter of any face |∆n|.

It will be convenient to repackage Proposition 3.3.2.3 (and Remark 3.3.2.4) as a statement
about the singular simplicial set functor Sing• : Top → Set∆ of Construction 1.2.2.2. We
first introduce a bit of notation (which will play an essential role throughout §3.3).

Construction 3.3.2.5 (The Ex Functor).00XN Let X be a simplicial set. For every non-
negative integer n, we let Exn(X) denote the collection of all morphisms of simplicial
sets N•(Chain[n]) → X. By virtue of Remark 3.3.2.2, the construction ([n] ∈ ∆op) 7→
(Exn(X) ∈ Set) determines a simplicial set which we will denote by Ex(X). The construc-
tion X 7→ Ex(X) determines a functor from the category of simplicial sets to itself, which
we denote by Ex : Set∆ → Set∆.
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Remark 3.3.2.6. 00XPThe construction X 7→ Ex(X) can be regarded as a special case of Variant
1.2.2.8: it is the functor SingT• : Set∆ → Set∆ associated to the cosimplicial object T of Set∆
given by the construction [n] 7→ N•(Chain[n]).

Remark 3.3.2.7. 00XQThe functor X 7→ Ex(X) preserves filtered colimits of simplicial sets.
To prove this, it suffices to observe that each of the simplicial sets N•(Chain[n]) has only
finitely many nondegenerate simplices (since the partially ordered set Chain[n]) is finite).

Example 3.3.2.8. 00XRLet C be a category and let N•(C) denote the nerve of C. Then n-simplices
of the simplicial set Ex(N•(C)) can be identified with functors from the partially ordered set
Chain[n] into C (see Proposition 1.3.3.1).

Example 3.3.2.9. 00XSLet X be a topological space and let Sing•(X) denote the singular
simplicial set of X. For each nonnegative integer n, the n-simplices of Sing•(X) are given
by continuous functions |∆n| → X, and the n-simplices of Ex(Sing•(X)) are given by
continuous functions |N•(Chain[n])| → X. The homeomorphism |N•(Chain[n])| ≃ |∆n| of
Proposition 3.3.2.3 determines a bijection Singn(X) ∼−→ Exn(Sing•(X)), and Remark 3.3.2.4
guarantees that these bijections are compatible with the face operators on the simplicial sets
Sing•(X) and Ex(Sing•(X)). In other words, Proposition 3.3.2.3 supplies an isomorphism
of semisimplicial sets φ : Sing•(X) ∼−→ Ex(Sing•(X)). Beware that φ is generally not an
isomorphism of simplicial sets: that is, it usually does not commute with the degeneracy
operators on Sing•(X) and Ex(Sing•(X)).

Variant 3.3.2.10 (Ex for Semisimplicial Sets). 0102Note that, for every nonnegative integer n,
the simplicial set N•(Chain[n]) is braced (Exercise 3.3.1.2). If X is a semisimplicial set, we
write Exn(X) for the collection of all morphisms of semisimplicial sets N•(Chain[n])nd → X;
here N•(Chain[n])nd denotes the semisimplicial subset of N•(Chain[n]) spanned by the
nondegenerate simplices. The construction [n] 7→ Exn(X) determines a semisimplicial set,
which we denote by Ex(X).

Note that, if X is the underlying semisimplicial set of a simplicial set Y , then Ex(X) is
the underlying semisimplicial set of the simplicial set Ex(Y ) given by Construction 3.3.2.5
(this is a special case of Proposition 3.3.1.5). In other words, the construction X 7→ Ex(X)
determines a functor from the category of semisimplicial sets to itself which fits into a
commutative diagram

{Simplicial sets} Ex //

��

{Simplicial sets}

��
{Semisimplicial sets} Ex // {Semisimplicial sets}.
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3.3.3 The Subdivision of a Simplicial Set

00Y5 Let n ≥ 0 be a nonnegative integer. In §3.3.2, we showed that the topological n-simplex
|∆n| can be identified with the geometric realization of the set of its faces Chain[n], partially
ordered by inclusion (Proposition 3.3.2.3). We now prove a generalization of this result,
replacing the standard simplex ∆n by an arbitrary braced simplicial set X and the nerve
N•(Chain[n]) by another simplicial set Sd(X), which we will refer to as the subdivision of X.

Definition 3.3.3.1 (Subdivision).00Y6 Let X and Y be simplicial sets. We will say that a
morphism of simplicial sets u : X → Ex(Y ) exhibits Y as a subdivision of X if, for every sim-
plicial set Z, composition with u induces a bijection HomSet∆(Y,Z)→ HomSet∆(X,Ex(Z))
(see Construction 3.3.2.5).

Notation 3.3.3.2.00Y7 Let X be a simplicial set. It follows immediately from the definitions
that if there exists a simplicial set Y and a morphism u : X → Ex(Y ) which exhibits Y as a
subdivision of X, then the simplicial set Y (and the morphism u) are uniquely determined
up to isomorphism and depend functorially on X. To emphasize this dependence, we will
denote Y by Sd(X) and refer to it as the subdivision of X.

Proposition 3.3.3.3.00Y8 Let X be a simplicial set. Then there exists another simplicial set
Sd(X) and a morphism u : X → Ex(Sd(X)) which exhibits Sd(X) as a subdivision of X, in
the sense of Notation 3.3.3.2.

Proof. By virtue of Remark 3.3.2.6, this is a special case of Proposition 1.2.3.15.

Corollary 3.3.3.4.00Y9 The functor Ex : Set∆ → Set∆ admits a left adjoint, given by the
construction X 7→ Sd(X).

Example 3.3.3.5.00YA Let n be a nonnegative integer. Then the identity map

id : N•(Chain[n])→ N•(Chain[n])

determines a map of simplicial sets u : ∆n → Ex(N•(Chain[n])), which exhibits N•(Chain[n])
as the subdivision of ∆n. In particular, the subdivision Sd(∆2) is the 2-dimensional simplicial
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set indicated in the diagram

{1}

�� ��

��

{0, 1}

##

{1, 2}

{{
{0, 1, 2}

{0}

55

//

FF

{0, 2}

OO

{2}.oo

ii

XX

Proposition 3.3.3.6. 00YBLet X be a braced simplicial set. Then there is a canonical homeo-
morphism of topological spaces fX : |Sd(X)| → |X|.

Proof. For every topological space Y , Example 3.3.2.9 supplies an isomorphism of semisim-
plicial sets Sing•(Y )→ Ex(Sing•(Y )). These isomorphisms depend functorially on Y , and
can therefore be regarded as an isomorphism of functors G ◦ Sing•

∼−→ G ◦ Ex ◦Sing•, where
G : Set∆ → Fun(∆op

inj,Set) denotes the forgetful functor from simplicial sets to semisimplicial
sets. Passing to left adjoints, we conclude that for every semisimplicial set S•, we have
a canonical homeomorphism | Sd(S+

• )| ≃ |S+
• |, depending functorially on S•. Proposition

3.3.3.6 now follows from Corollary 3.3.1.11 (applied to the semisimplicial set Xnd).

Remark 3.3.3.7. 00YCThe homeomorphisms fX : |Sd(X)| ≃ |X| constructed in the proof of
Proposition 3.3.3.6 are characterized by the following properties:

• In the special case where X = ∆n is a standard simplex, fX is given by the composition

|Sd(∆n)| ≃ |N•(Chain[n])| f−→ |∆n|,

where the first map is supplied by the identification Sd(∆n) ≃ N•(Chain[n]) of Example
3.3.3.5 and f is the homeomorphism of Proposition 3.3.2.3.
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• Let u : X → Y be a morphism of braced simplicial sets which carries nondegenerate
simplices of X to nondegenerate simplices of Y . Then the diagram of topological
spaces

|Sd(X)| fX

∼
//

| Sd(u)|

��

|X|

|u|

��
|Sd(Y )| fY

∼
// |Y |

commutes.

Warning 3.3.3.8.00YD Let u : X → Y be a morphism of braced simplicial sets. If u does not
carry nondegenerate simplices of X to nondegenerate simplices of Y , then the diagram of
topological spaces

| Sd(X)| fX //

|Sd(u)|∼

��

|X|

|u|

��
|Sd(Y )| fY

∼
// |Y |

does not necessarily commute (this phenomenon occurs already in the case where X and Y
are simplices: see Remark 3.3.2.4).

The subdivision construction is closely related to the category of simplices introduced in
§1.2.3.

Construction 3.3.3.9.04HN Let X be a simplicial set and let ∆X denote the category of
simplices of X (Construction 1.1.3.9). Unwinding the definitions, we see that n-simplices σ
of the simplicial set N•(∆X) can be identified with diagrams of simplicial sets

∆k0 → ∆k1 → · · · → ∆kn τ−→ X.

For 0 ≤ i ≤ n, let Si ⊆ [kn] be the image of the underlying map of linearly ordered sets
[k0] → [kn], and suppose we are given a morphism u : X → Ex(Y ) which exhibits Y as a
subdivision of X. Then u carries τ to a kn-simplex of Ex(Y ), which we can identify with a
morphism N•(Chain[kn])→ Y carrying (S0 ⊆ S1 ⊆ · · · ⊆ Sn) to an n-simplex σ′ of Y . The
construction σ 7→ σ′ depends functorially on [n], and therefore determines a comparison
map ψX : N•(∆X)→ Y = Sd(X).

Example 3.3.3.10.04HP Let X = ∆n be a standard simplex. Then the comparison map
ψX : N•(∆X) → Sd(X) of Construction 3.3.3.9, can be identified with the nerve of the
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functor ∆X → Chain[n], which carries each morphism ∆m → ∆n to the image of the
underlying map of linearly ordered sets [m]→ [n].

Notation 3.3.3.11. 00YELet X be a simplicial set and let ∆X be the category of simplices of X
(Construction 1.1.3.9). By definition, the objects of ∆X are given by pairs ([n], σ), where n
is a nonnegative integer and σ is an n-simplex of X. We let ∆nd

X denote the full subcategory
of ∆X spanned by those pairs ([n], σ) where σ is a nondegenerate n-simplex of X. We will
refer to ∆nd

X as the category of nondegenerate simplices of X.

Example 3.3.3.12. 00YFLet S be a semisimplicial set, and let S+ be the braced simplicial set
given by Construction 3.3.1.6. Then the category of nondegenerate simplices ∆nd

S+ can be
described concretely as follows:

• The objects of ∆nd
S+ are pairs ([n], σ), where [n] is an object of ∆inj and σ is an element

of Sn.

• A morphism from ([n], σ) to ([n′], σ′) in ∆nd
S+ is a strictly increasing function α : [n] ↪→

[n′] satisfying σ = α∗(σ′) in the set Sn.

In other words, ∆nd
S+ is the category of elements of the functor S : ∆op

inj → Set (see Variant
5.2.6.2).

Example 3.3.3.13. 00YJLet Q be a partially ordered set, and let N•(Q) denote its nerve.
By definition, the nondegenerate n-simplices of N•(Q) can be identified with the strictly
increasing functions σ : {0 < 1 < · · · < n} → Q. The construction ([n], σ) 7→ im(σ)
determines an isomorphism from the category of nondegenerate simplices ∆nd

N•(Q) to the
partially ordered set Chain[Q] of Notation 3.3.2.1.

Warning 3.3.3.14. 00YGThough the category ∆nd
X is defined for any simplicial set X, it is

primarily useful in the case where X is braced (where we can use the description supplied
by Example 3.3.3.12).

Exercise 3.3.3.15. 00YHLet X be a simplicial set. Show that X is braced if and only if the
inclusion functor ∆nd

X ↪→∆X admits a left adjoint.

Proposition 3.3.3.16. 00YLLet X be a braced simplicial set. Then the comparison map ψX :
N•(∆X) → Sd(X) of Construction 3.3.3.9 restricts to an isomorphism ψ◦X : N•(∆nd

X ) ∼−→
Sd(X).

Example 3.3.3.17. 00YMLet Q be a partially ordered set. Combining Proposition 3.3.3.16 with
Example 3.3.3.13, we obtain a canonical isomorphism Sd(N•(Q)) ≃ N•(Chain[Q]). In the
special case Q = [n], this recovers the isomorphism Sd(∆n) ≃ N•(Chain[n]) of Example
3.3.3.5.

https://kerodon.net/tag/00YE
https://kerodon.net/tag/00YF
https://kerodon.net/tag/00YJ
https://kerodon.net/tag/00YG
https://kerodon.net/tag/00YH
https://kerodon.net/tag/00YL
https://kerodon.net/tag/00YM


3.3. THE Ex∞ FUNCTOR 441

The proof of Proposition 3.3.3.16 will make use of the following:

Lemma 3.3.3.18.00YQ The functor

{Semisimplicial Sets} → {Simplicial Sets} S 7→ N•(∆nd
S+)

preserves colimits.

Proof. Let n be a nonnegative integer. For every semisimplicial set S, Example 3.3.3.12
allows us to identify n-simplices of the nerve N•(∆nd

S+) with the set of pairs (τ, σ), where τ is a
m-simplex of N•(∆inj) (given by a diagram of increasing functions [k0] ↪→ [k1] ↪→ · · · ↪→ [kn])
and σ is an element of the set Skn . It follows that the functor S 7→ Nn(∆nd

S+) preserves colimits.
Allowing n to vary, we conclude that the functor S 7→ N•(∆nd

S+) preserves colimits.

Variant 3.3.3.19.04HQ The proof of Lemma 3.3.3.18 also shows that the functor

Set∆ → Set∆ X 7→ N•(∆X)

preserves colimits. Consequently, the comparison maps ψX : N•(∆X)→ Sd(X) of Construc-
tion 3.3.3.9 are uniquely determined by the following properties:

• The construction X 7→ ψX is functorial: that is, it determines a natural transformation
from the functor X 7→ N•(∆X) to the subdivision functor Sd.

• When X = ∆n is a standard simplex, ψX is the nerve of the functor

∆X → Chain[n] (α : [m]→ [n] 7→ im(α) ⊆ [n])

described in Example 3.3.3.10.

Proof of Proposition 3.3.3.16. Let X be a braced simplicial set. By virtue of Corollary
3.3.1.8, we can assume that X = S+ for some semisimplicial set S. Let φS denote the
composite map

N•(∆nd
S+) ↪→ N•(∆X) ψX−−→ Sd(X) = Sd(S+);

we wish to show that φS is an isomorphism. By virtue of Lemma 3.3.3.18, the construction
S 7→ φS commutes with small colimits. Since every functor S : ∆op

inj → Set can be written
as a colimit of representable functors (see §[?]), we may assume without loss of generality
that S is the semisimplicial set represented by an object [n] ∈ ∆inj; that is, X = ∆n is
the standard simplex. In this case, the conclusion follows immediately from the concrete
description of ψX given in Example 3.3.3.10.
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Remark 3.3.3.20 (Functoriality). 00YNLet u : X → Y be a morphism of braced simplicial sets.
Then u induces a morphism between their subdivisions

N•(∆nd
X ) ≃ Sd(X) Sd(u)−−−→ Sd(Y ) ≃ N•(∆nd

Y ),

which can be identified with a functor U : ∆nd
X → ∆nd

Y (Proposition 1.3.3.1). If u carries
nondegenerate simplices of X to nondegenerate simplices of Y , then the functor U is easy
to describe: it is given on objects by the formula U([n], σ) = ([n], u(σ)). More generally, U
carries an object ([n], σ) ∈∆nd

X to an object ([m], τ) ∈∆nd
Y , characterized by the requirement

that u(σ) factors as a composition ∆n ↠ ∆m τ−→ Y (see Proposition 1.1.3.8).

Warning 3.3.3.21. 00YPIn the statement of Proposition 3.3.3.16, the hypothesis that X is
braced cannot be omitted. For example, let X be the simplicial set ∆2 ∐

∆1 ∆0 obtained
from the standard 2-simplex by collapsing a single edge, which we depict informally by the
diagram

•

��
• // •.
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Then the subdivision of X is the 2-dimensional simplicial set depicted in the diagram

•

��

��

•

��

•

��
•

•

77

// •

OO

•.oo

gg

WW

This simplicial set cannot arise as the nerve of a category, because it contains a nondegenerate
2-simplex σ for which d2

2(σ) is degenerate.

3.3.4 The Last Vertex Map

00YR Let X be a simplicial set and let Sd(X) denote its subdivision (Notation 3.3.3.2). If
X is braced, then Proposition 3.3.3.6 supplies a canonical homeomorphism of topological
spaces | Sd(X)| ≃ |X|. Beware that X and Sd(X) need not be isomorphic as simplicial sets:
for example, the standard simplex X = ∆n has n + 1 vertices, while subdivision Sd(∆n)
has 2n+1 − 1 vertices. Nevertheless, we will prove in this section that X and Sd(X) are
weakly homotopy equivalent. More precisely, for every simplicial set X there is a canonical
weak homotopy equivalence λX : Sd(X) → X, which we refer to as the last vertex map
(Construction 3.3.4.3).

Notation 3.3.4.1.00YS Let Q be a partially ordered set. Every finite, nonempty, linearly ordered
subset S ⊆ Q has a largest element, which we will denote by Max(S). The construction
S 7→ Max(S) determines a nondecreasing function Max : Chain[Q]→ Q, where Chain[Q] is
defined as in Notation 3.3.2.1.
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Remark 3.3.4.2. 00YTLet f : P → Q be a nondecreasing function between partially ordered
sets. Then the diagram of partially ordered sets

Chain[P ] Max //

S 7→f(S)

��

P

f

��
Chain[Q] Max // Q

is commutative.

Construction 3.3.4.3. 00YULet X be a simplicial set. For every n-simplex σ : ∆n → X, we let
ρX(σ) denote the composite map

N•(Chain[n]) Max−−−→ ∆n σ−→ X,

which we regard as an n-simplex of the simplicial set Ex(X) of Construction 3.3.2.5. It
follows from Remark 3.3.4.2 that the construction σ 7→ ρX(σ) determines a map of simplicial
sets ρX : X → Ex(X).

Let u : X → Ex(Sd(X)) be a map of simplicial sets which exhibits Sd(X) as a subdivision
of X (Definition 3.3.3.1). Then there is a unique map of simplicial sets λX : Sd(X)→ X for
which the composition X → Ex(Sd(X)) Ex(λX)−−−−−→ Ex(X) is equal to ρX . We will refer to λX
as the last vertex map of X.

Remark 3.3.4.4 (Functoriality). 00YVThe morphisms ρX : X → Ex(X) and λX : Sd(X)→ X

depend functorially on the simplicial set X. That is, for every map of simplicial sets
f : X → Y , the diagrams

X
ρX //

f

��

Ex(X)

Ex(f)

��

Sd(X) λX //

Sd(f)

��

X

f

��
Y

ρY // Ex(Y ) Sd(Y ) λY // Y

are commutative. We may therefore regard the constructions X 7→ ρX and X 7→ λX as
natural transformations of functors

ρ : idSet∆ → Ex λ : Sd→ idSet∆ .

Example 3.3.4.5. 00YWLet Q be a partially ordered set, so that we can identify the subdivision
of N•(Q) with the nerve of the partially ordered set Chain[Q] (Example 3.3.3.17). Under
this identification, the last vertex map λN•(Q) corresponds to the morphism N•(Chain[Q])→
N•(Q) induced by Max : Chain[Q]→ Q.

https://kerodon.net/tag/00YT
https://kerodon.net/tag/00YU
https://kerodon.net/tag/00YV
https://kerodon.net/tag/00YW


3.3. THE Ex∞ FUNCTOR 445

Example 3.3.4.6.00YX Let X be a discrete simplicial set (Definition 1.1.5.10). Then the maps

ρX : X → Ex(X) λX : Sd(X)→ X

are isomorphisms.

Example 3.3.4.7.00YY Let X be a braced simplicial set, so that the subdivision Sd(X) can be
identified with the nerve of the category ∆nd

X of nondegenerate simplices of X (Proposition
3.3.3.16). Under this identification, the last vertex map λX corresponds to a morphism of
simplicial sets N•(∆nd

X )→ X. Concretely, if τ is a k-simplex of N•(∆nd
X ) corresponding to a

diagram

∆n0 //

σ0

((

∆n1 //

σ1

!!

· · · // ∆nk−1

σk−1

||

// ∆nk

σk

vv
X,

then λX(τ) is the k-simplex of X given by the composition

∆k f−→ ∆nk
σk−→ X,

where f carries each vertex {i} ⊆ ∆k to the image of the last vertex {ni} ⊆ ∆ni under the
map ∆ni → ∆nk given by horizontal composition in the diagram.

We can now state the main result of this section:

Proposition 3.3.4.8.00YZ Let X be a simplicial set. Then the last vertex map λX : Sd(X)→ X

is a weak homotopy equivalence.

Remark 3.3.4.9.00Z0 Proposition 3.3.4.8 has a counterpart for the comparison map ρX : X →
Ex(X), which we will prove in §3.3.5 (see Theorem 3.3.5.1).

Proof of Proposition 3.3.4.8. For each integer n ≥ 0, let skn(X) denote the n-skeleton of
the simplicial set X. Then the last vertex map λX : Sd(X)→ X can be realized as a filtered
colimit of the last vertex maps λskn(X) : Sd(skn(X))→ skn(X). Since the collection of weak
homotopy equivalences is closed under the formation of filtered colimits (Proposition 3.2.8.3),
it will suffice to show that each of the maps λskn(X) is a weak homotopy equivalence. We
may therefore replace X by skn(X), and thereby reduce to the case where X is n-skeletal
for some nonnegative integer n ≥ 0. We proceed by induction on n. If n = 0, then the
simplicial set X is discrete and λX is an isomorphism (Example 3.3.4.6). We will therefore
assume that n > 0.
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Fix a Kan complex Q; we wish to show that composition with λX : Sd(X) → X

induces a bijection π0(Fun(X,Q))→ π0(Fun(Sd(X), Q)). In fact, we will show that the map
Fun(X,Q) → Fun(Sd(X), Q) is a weak homotopy equivalence. Let Y = skn−1(X) be the
(n− 1)-skeleton of X, so that we have a commutative diagram

Fun(X,Q) θ //

��

Fun(Sd(X), Q)

��
Fun(Y,Q) // Fun(Sd(Y ), Q),

where the lower horizontal map is a homotopy equivalence by virtue of our inductive
hypothesis (together with Proposition 3.1.6.17). It will therefore suffice to show that, for
every morphism of simplicial sets f : Y → Q, the induced map of fibers

θf : {f} ×Fun(Y,Q) Fun(X,Q)→ {f} ×Fun(Sd(Y ),Q) Fun(Sd(X), Q)

is a homotopy equivalence (Proposition 3.2.8.1).
Let S denote the collection of nondegenerate n-simplices of X, let X ′ = ∐

σ∈S ∆n denote
their coproduct, and let Y ′ = ∐

σ∈S ∂∆n denote the boundary of X ′. Proposition 1.1.4.12
then supplies a pushout diagram of simplicial sets∐

σ∈S
∂∆n //

��

∐
σ∈S

∆n

��
Y // X,

which we can use to identify θf with the induced map

θ′f : {f} ×Fun(Y ′,Q) Fun(X ′, Q)→ {f} ×Fun(Sd(Y ′),Q) Fun(Sd(X ′), Q).

Invoking Proposition 3.2.8.1 again, we are reduced to showing that the horizontal maps
appearing in the diagram

Fun(X ′, Q) θ //

��

Fun(Sd(X ′), Q)

��
Fun(Y ′, Q) // Fun(Sd(Y ′), Q)



3.3. THE Ex∞ FUNCTOR 447

are homotopy equivalences. By virtue of Proposition 3.1.6.17, it will suffice to show that the
last vertex maps λY ′ : Sd(Y ′)→ Y ′ and λX′ : Sd(X ′)→ X ′ are weak homotopy equivalences.
In the first case, this follows from our inductive hypothesis (since Y ′ has dimension < n). In
the second, we can use Remark 3.1.6.20 to reduce to the problem of showing that the last
vertex map λ∆n : Sd(∆n)→ ∆n is a weak homotopy equivalence. This is clear, since both
Sd(∆n) and ∆n are contractible by virtue of Example 3.2.4.2 (they can be realized as the
nerves of partially ordered sets Chain[n] and [n], each of which has a largest element).

3.3.5 Comparison of X with Ex(X)

00Z1 The goal of this section is to prove the following variant of Proposition 3.3.4.8:
Theorem 3.3.5.1.00Z2 Let X be a simplicial set. Then the comparison map ρX : X → Ex(X)
of Construction 3.3.4.3 is a weak homotopy equivalence.

Corollary 3.3.5.2.0103 Let f : X → Y be a morphism of simplicial sets. Then f is a weak
homotopy equivalence if and only if Ex(f) is a weak homotopy equivalence.

Proof. We have a commutative diagram

X

ρX

��

f // Y

ρY

��
Ex(X) Ex(f) // Ex(Y ),

where the vertical maps are weak homotopy equivalences (Theorem 3.3.5.1). The desired
result now follows from the two-out-of-three property (Remark 3.1.6.16).

The proof of Theorem 3.3.5.1 will make use of the following fact, which we prove at the
end of this section:
Proposition 3.3.5.3.00Z3 Let f : X → Y be an anodyne morphism of simplicial sets. Then the
induced map Sd(f) : Sd(X)→ Sd(Y ) is also anodyne.

Corollary 3.3.5.4.00Z4 Let f : X → Y be a Kan fibration of simplicial sets. Then the induced
map Ex(f) : Ex(X)→ Ex(Y ) is also a Kan fibration.

Proof. We must show that every lifting problem

Λni //

��

Ex(X)

Ex(f)

��
∆n //

==

Ex(Y )
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admits a solution. This follows by applying Remark 3.1.2.7 to the associated lifting problem

Sd(Λni ) //

��

X

f

��
Sd(∆n) //

==

Y,

since the left vertical map is anodyne by virtue of Proposition 3.3.5.3.

Corollary 3.3.5.5. 00Z5Let X be a Kan complex. Then the simplicial set Ex(X) is also a Kan
complex.

Proposition 3.3.5.6. 00Z6Let X and Y be simplicial sets, where Y is a Kan complex. Then
the bijection

HomSet∆(Sd(X), Y ) ≃ HomSet∆(X,Ex(Y ))

respects homotopy. That is, for every pair of maps f, g : Sd(X)→ Y having counterparts
f ′, g′ : X → Ex(Y ), then f is homotopic to g if and only if f ′ is homotopic to g′.

Proof. Assume first that f and g are homotopic, so that there exists a morphism of simplicial
sets h : ∆1 × Sd(X) → Y satisfying h|{0}×Sd(X) = f and h|{1}×Sd(X) = g. The composite
map

Sd(∆1 ×X)→ Sd(∆1)× Sd(X)
λ∆1×id
−−−−−→ ∆1 × Sd(X) h−→ Y

then determines a morphism of simplicial sets h′ : ∆1 ×X → Ex(Y ), which is immediately
seen to be a homotopy from f ′ to g′.

Conversely, suppose that f ′ and g′ are homotopic. Since Ex(Y ) is a Kan complex
(Corollary 3.3.5.5), we can choose a morphism of simplicial sets h′ : ∆1 × X → Ex(Y )
satisfying h|{0}×X = f ′ and h′|{1}×X = g′, which we can identify with a map u : Sd(∆1 ×
X) → Y . Let v denote the composite map Sd(∆1 × X) → Sd(X) f−→ Y , so that u and
v have the same restriction to Sd({0} × X). Note that the inclusion of simplicial sets
{0} ×X ↪→ ∆1 ×X is anodyne (Proposition 3.1.2.9), so the subdivision Sd({0} ×X) ↪→
Sd(∆1 × X) is also anodyne (Proposition 3.3.5.3). It follows that the restriction map
Fun(Sd(∆1 × X), Y ) → Fun(Sd({0} × X), Y ) is a trivial Kan fibration, so that u and v

belong to the same path component of Fun(Sd(∆1 ×X), Y ) and are therefore homotopic. It
follows that f = v|Sd({1}×X) and g = u|Sd({1}×X) are also homotopic.

We can now prove a special case of Theorem 3.3.5.1.

Proposition 3.3.5.7. 00Z7Let Y be a Kan complex. Then the comparison map ρY : Y → Ex(Y )
of Construction 3.3.4.3 is a homotopy equivalence.
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Proof. Fix a simplicial set X. We wish to show that postcomposition with ρY induces a
bijection

{Maps of simplicial sets X → Y }/homotopy

��
{Maps of simplicial sets X → Ex(Y )}/homotopy.

By virtue of Proposition 3.3.5.6, this is equivalent to the assertion that precomposition with
the last vertex map λX : Sd(X)→ X induces a bijection

{Maps of simplicial sets X → Y }/homotopy

��
{Maps of simplicial sets Sd(X)→ Y }/homotopy,

which follows from the fact that λX is a weak homotopy equivalence (Proposition 3.3.4.8).

To deduce Theorem 3.3.5.1 from Proposition 3.3.5.7, we will need the following:

Proposition 3.3.5.8.00Z8 Let X be a simplicial set, and let ρX : X → Ex(X) be the comparison
map of Construction 3.3.4.3. Then the morphisms ρEx(X),Ex(ρX) : Ex(X)→ Ex(Ex(X))
are homotopic.

Proof. Let Q be a partially ordered set. Using Example 3.3.3.17, we can identify the
subdivisions Sd(N•(Q)) and Sd(Sd(N•(Q))) with the nerves of partially ordered sets Chain[Q]
and Chain[Chain[Q]], respectively. Under this identification, a morphism of simplicial sets

Sd(λN•(Q)), λSd(N•(Q)) : Sd(Sd(N•(Q)))→ Sd(N•(Q))

corresponds to a nondecreasing functions Chain[Chain[Q]]→ Chain[Q], whose value on a
linearly ordered subset S⃗ = (S0 ⊂ S1 ⊂ · · · ⊂ Sn) of Chain[Q] is given by

Sd(λN•(Q))(S⃗) = {Max(S0), . . . ,Max(Sn)} λSd(N•(Q))(S⃗) = Sn.

Note that we always have an inclusion {Max(S0), . . . ,Max(Sn)} ⊆ Sn. It follows that there
is a unique map of simplicial sets

hQ : ∆1 × Sd(Sd(N•(Q)))→ Sd(N•(Q))

satisfying hQ|{0}×Sd(Sd(N•(Q))) = Sd(λN•(Q)) and hQ|{1}×Sd(Sd(N•(Q))) = λSd(N•(Q)), depend-
ing functorially on Q.

https://kerodon.net/tag/00Z8
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Let σ be an n-simplex of the simplicial set Ex(X), which we identify with a map
σ : Sd(∆n)→ X. We let f(σ) denote the composite map

∆1 × Sd(Sd(∆n))
h[n]−−→ Sd(∆n) σ−→ X,

which we will identify with an n-simplex of the simplicial set Fun(∆1,Ex(Ex(X))). The
construction σ 7→ f(σ) then determines a morphism of simplicial sets f : Ex(X) →
Fun(∆1,Ex(Ex(X))), which we can identify with a map ∆1 × Ex(X) → Ex(Ex(X)). By
construction, this map is a homotopy from ρEx(X) to Ex(ρX).

Proof of Theorem 3.3.5.1. Let X be a simplicial set. We wish to prove that the comparison
map ρX : X → Ex(X) is a weak homotopy equivalence. Fix a Kan complex Y ; we must
show that composition with ρX induces a bijection π0(Fun(Ex(X), Y )) → π0(Fun(X,Y )).
This map fits into a diagram

π0(Fun(Ex(X), Y )) ◦ρX //

ρY ◦∼

��

π0(Fun(X,Y ))

ρY ◦∼

��

f 7→Ex(f)

vv
π0(Fun(Ex(X),Ex(Y ))) ◦ρX // π0(Fun(X,Ex(Y ))),

where the vertical maps are bijective (Proposition 3.3.5.7) and the lower triangle commutes
by the naturality of ρ. To show that the upper horizontal map is bijective, it will suffice to
show that the upper triangle also commutes. Fix a map f : Ex(X)→ Y . We then compute

Ex(f ◦ ρX) = Ex(f) ◦ Ex(ρX) ∼ Ex(f) ◦ ρEx(X) = ρY ◦ f

where the equality on the left follows from functoriality, the equality on the right from the
naturality of ρ, and the homotopy in the middle is supplied by Proposition 3.3.5.8.

We close this section with the proof of Proposition 3.3.5.3.

Lemma 3.3.5.9. 00Z9Let J be a nonempty finite set, let P (J) denote the collection of subsets
of J (partially ordered by inclusion), and set P−(J) = P (J) \ {J}. Then the inclusion of
simplicial sets

θ : N•(P−(J)) ↪→ N•(P (J)) = J

is anodyne.

Proof. Fix an element j ∈ J and set I = J \ {j}, so that the simplicial cube J can
be identified with the product ∆1 × I ≃ ∆1 × N•(P (I)). Under this identification, θ
corresponds to the inclusion map

(∆1 ×N•(P−(I)))
∐

{0}×N•(P−(I))
({0} ×N•(P (I))) ↪→ ∆1 ×N•(P (I)),

https://kerodon.net/tag/00Z9
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which is anodyne by virtue of Proposition 3.1.2.9.

Proof of Proposition 3.3.5.3. Let S be the collection of all morphisms of simplicial sets
f : X → Y for which the induced map Sd(f) : Sd(X) → Sd(Y ) is anodyne. Since the
subdivision functor Sd preserves colimits, the collection S is weakly saturated (in the sense of
Definition 1.5.4.12). To prove Proposition 3.3.5.3, it will suffice to show that S contains every
horn inclusion. Fix a positive integer n and another integer 0 ≤ i ≤ n. We will complete the
proof by showing that the inclusion Λni ↪→ ∆n induces an anodyne map Sd(Λni )→ Sd(∆n).

Let J = [n] \ {i}, let P (J) denote the collection of all subsets of J , partially ordered by
inclusion. Set P−(J) = P (J)\{J}, P+(J) = P (J)\{∅}, and P±(J) = P (J)\{∅, J}. In what
follows, we identify Sd(∆n) with the nerve of the partially ordered set Chain[n] of nonempty
subsets of [n], and Sd(Λni ) with the nerve of the partially ordered subset of Chain[n] obtained
by removing the elements [n] and J (Proposition 3.3.3.16). The construction J0 7→ J0 ∪ {i}
determines an inclusion of partially ordered sets P (J)→ Chain[n], hence a monomorphism
of simplicial sets

g : J = N•(P (J)) ↪→ N•(Chain[n]) = Sd(∆n).

Let Z ⊆ Sd(∆n) be the union of Sd(Λn
i ) with the image of g. An elementary calculation

shows that the inverse image g−1(Sd(Λn
i )) can be identified with the nerve of the subset

P−(J) ⊆ P (J), so that we have a pushout diagram of simplicial sets

N•(P−(J)) //

��

Sd(Λni )

��
N•(P (J)) g // Z.

The left vertical map is anodyne by virtue of Lemma 3.3.5.9, so the right vertical map
is anodyne as well. Let h : [1] × P+(J) → Chain[n] be the map of partially ordered sets
given h(0, J0) = J0 and h(1, J0) = J0 ∪ {i}. Then h determines a map of simplicial sets
∆1 × N•(P+(J))→ Sd(∆n). An elementary calculation shows that this map of simplicial
sets fits into a pushout diagram

({1} ×N•(P+(J))) ∐
{1}×N•(P±(J))(∆1 ×N•(P±(J))) //

��

Z

��
∆1 ×N•(P+(J)) h // Sd(∆n).
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The left vertical map in this diagram is anodyne by virtue of Proposition 3.1.2.9, so the
inclusion Z ↪→ Sd(∆n) is also anodyne. It follows that the composite map Sd(Λni ) ↪→ Z ↪→
Sd(∆n) is anodyne, as desired.

3.3.6 The Ex∞ Functor

00ZALet X be a simplicial set. In §3.1.7, we proved that one can always choose an embedding
j : X ↪→ Q, where Q is a Kan complex and j is a weak homotopy equivalence (Corollary
3.1.7.2). In [33], Kan gave an explicit construction of such an embedding, based on iteration
of the construction X 7→ Ex(X).

Construction 3.3.6.1 (The Ex∞ Functor). 00ZBFor every nonnegative integer n, we let Exn
denote the n-fold iteration of the functor Ex : Set∆ → Set∆ of Construction 3.3.2.5, given
inductively by the formula

Exn(X) =

X if n = 0
Ex(Exn−1(X)) if n > 0.

For every simplicial set X, we let Ex∞(X) denote the colimit of the diagram

X
ρX−−→ Ex(X)

ρEx(X)−−−−→ Ex2(X)
ρEx2(X)−−−−−→ Ex3(X)→ · · · ,

where each ρExn(X) denotes the comparison map of Construction 3.3.4.3, and we let ρ∞X :
X → Ex∞(X) denote the tautological map. The construction X 7→ Ex∞(X) determines a
functor Ex∞ from the category of simplicial sets to itself, and the construction X 7→ ρ∞X
determines a natural transformation of functors idSet∆ → Ex∞.

Our goal in this section is to record the main properties of Construction 3.3.6.1. In
particular, for every simplicial set X, we show that Ex∞(X) is a Kan complex (Proposition
3.3.6.9) and that the comparison map ρ∞X : X → Ex∞(X) is a weak homotopy equivalence
(Proposition 3.3.6.7).

Proposition 3.3.6.2. 00ZCLet X be a simplicial set. Then the comparison map ρ∞X : X →
Ex∞(X) is a monomorphism of simplicial sets. Moreover, it is bijective on vertices.

Proof. It will suffice to show that each of the comparison maps ρExn(X) : Exn(X) →
Exn+1(X) is a monomorphism which is bijective on vertices. Replacing X by Exn(X), we
can reduce to the case n = 0. Fix m ≥ 0. On m-simplices, the comparison map ρX is given
by the map of sets

HomSet∆(∆m, X)→ HomSet∆(Sd(∆m), X)

induced by precomposition with the last vertex map λ∆m : Sd(∆m)→ ∆m. To complete the
proof, it suffices to observe that λ∆m is an epimorphism of simplicial sets (in fact, it admits

https://kerodon.net/tag/00ZA
https://kerodon.net/tag/00ZB
https://kerodon.net/tag/00ZC


3.3. THE Ex∞ FUNCTOR 453

a section ∆m → Sd(∆m) ≃ N•(Chain[m]), given by the chain of subsets {0} ⊂ {0, 1} ⊂
· · · ⊂ {0, 1, . . . ,m}), and an isomorphism in the special case m = 0.

Example 3.3.6.3.00ZD Let X be a discrete simplicial set (Definition 1.1.5.10). Invoking Example
3.3.4.6 repeatedly, we deduce that the transition maps in the diagram

X
ρX−−→ Ex(X)

ρEx(X)−−−−→ Ex2(X)
ρEx2(X)−−−−−→ Ex3(X)→ · · · ,

are isomorphisms. It follows that the comparison map ρ∞X : X → Ex∞(X) is also an
isomorphism.

Proposition 3.3.6.4.00ZE The functor X 7→ Ex∞(X) preserves filtered colimits and finite limits.

Proof. It will suffice to show that, for every nonnegative integer n, the functor X 7→ Exn(X)
preserves filtered colimits and finite limits. Proceeding by induction on n, we can reduce
to the case n = 1. We now observe that the functor Ex preserves all limits of simplicial
sets (either by construction, or because it admits a left adjoint X 7→ Sd(X)), and preserves
filtered colimits by virtue of Remark 3.3.2.7.

Corollary 3.3.6.5.00ZF Let f : X → S be a morphism of simplicial sets. Let s be a vertex of S,
which we will identify (via Proposition 3.3.6.2) with its image in Ex∞(S). Then the canonical
map Ex∞(Xs) → Ex∞(X)s is an isomorphism of simplicial sets. Here Xs = {s} ×S X
denotes the fiber of f over the vertex s, and Ex∞(X)s = {s} ×Ex∞(S) Ex∞(X) is defined
similarly.

Proof. Combine Proposition 3.3.6.4 with Example 3.3.6.3.

Proposition 3.3.6.6.00ZG Let f : X → S be a morphism of simplicial sets. If f is a Kan
fibration, then the induced map Ex∞(f) : Ex∞(X)→ Ex∞(S) is also a Kan fibration.

Proof. Since the collection of Kan fibrations is stable under the formation of filtered colimits
(Remark 3.1.1.8), it will suffice to show that each of the maps Exn(f) : Exn(X)→ Exn(S)
is a Kan fibration. Proceeding by induction on n, we can reduce to the case n = 1, which
follows from Corollary 3.3.5.4.

Proposition 3.3.6.7.00ZH Let X be a simplicial set. Then the comparison map ρ∞X : X →
Ex∞(X) is a weak homotopy equivalence.

Proof. By virtue of Proposition 3.2.8.3, it will suffice to show that for each n ≥ 0, the
composite map

X
ρX−−→ Ex(X)

ρEx(X)−−−−→ · · ·
ρExn−1(X)−−−−−−→ Exn(X)

is a weak homotopy equivalence. Proceeding by induction on n, we are reduced to showing
that each of the comparison maps ρExn−1(X) : Exn−1(X) → Exn(X) is a weak homotopy
equivalence, which is a special case of Theorem 3.3.5.1.
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Corollary 3.3.6.8. 00ZJLet f : X → Y be a morphism of simplicial sets. Then f is a weak
homotopy equivalence if and only if Ex∞(f) is a weak homotopy equivalence.

Proof. We have a commutative diagram

X

ρ∞X

��

f // Y

ρ∞Y

��
Ex∞(X) Ex∞(f) // Ex∞(Y ),

where the vertical maps are weak homotopy equivalences (Proposition 3.3.6.7). The desired
result now follows from the two-out-of-three property (Remark 3.1.6.16).

Proposition 3.3.6.9. 00ZKLet X be a simplicial set. Then Ex∞(X) is a Kan complex.

Proof. Let X be a simplicial set and suppose we are given a morphism of simplicial sets
f0 : Λni → Ex∞(X), for some n > 0 and 0 ≤ i ≤ n. We wish to show that f0 can be extended
to an n-simplex of Ex∞(X). Since the simplicial set Λn

i has finitely many nondegenerate
simplices, we can assume that f0 factors as a composition Λni

f ′0−→ Exm(X)→ Ex∞(X), for
some positive integer m. We will complete the proof by showing that f ′0 can be extended to
an n-simplex of Exm+1(X): that is, that there exists a commutative diagram of simplicial
sets

Λni
f ′0 //

��

Exm(X)

ρExm(X)

��
∆n f ′ // Exm+1(X).

Replacing X by Exm−1(X), we can reduce to the case m = 1. In this case, f ′0 can be
identified with a morphism of simplicial sets g0 : Sd(Λn

i )→ X. Unwinding the definitions,
we see that the problem of finding a simplex f ′ : ∆n → Ex2(X) with the desired property is
equivalent to the problem of finding a morphism g : Sd(Sd(∆n))→ X whose restriction to
Sd(Sd(Λni )) is equal to the composition

Sd(Sd(Λni ))
Sd(λΛn

i
)

−−−−−→ Sd(Λni ) g0−→ X.

Without loss of generality, we may assume that X = Sd(Λni ) and that g0 is the identity
map. Let Chain[n] be the collection of all nonempty subsets of [n] (Notation 3.3.2.1) and
let Q ⊂ Chain[n] be the subset obtained by removing [n] and [n] \ {i}. Using Proposition
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3.3.3.16, we can identify Sd(Λni ), Sd(Sd(Λni )), and Sd(Sd(∆n)) with the nerves of the partially
ordered sets Q, Chain[Q], and Chain[Chain[n]], respectively. To complete the proof, it
will suffice to show that there exists a nondecreasing function of partially ordered sets
g : Chain[Chain[n]]→ Q having the property that, for every element (S0 ⊂ S1 ⊂ · · · ⊂ Sm)
of Chain[Q], we have g(S0 ⊂ S1 ⊂ · · · ⊂ Sm) = {Max(S0),Max(S1), . . . ,Max(Sm)} ∈ Q.
This requirement is satisfied if g is defined by the formula

g(S0 ⊂ S1 ⊂ · · · ⊂ Sm) = {Max′(S0),Max′(S1), . . . ,Max′(Sm)},

where Max′ : Chain[n]→ [n] is the (non-monotone) map of sets given by

Max′(S) =

i if S = [n] or S = [n] \ {i}
Max(S) otherwise.

Corollary 3.3.6.10.00ZL Let X be a Kan complex. Then the comparison map ρ∞X : X → Ex∞(X)
is a homotopy equivalence.

Proof. Since Ex∞(X) is also a Kan complex (Proposition 3.3.6.9), it will suffice to show that
ρ∞X is a weak homotopy equivalence (Proposition 3.1.6.13), which follows from Proposition
3.3.6.7.

3.3.7 Application: Characterizations of Weak Homotopy Equivalences

00ZM Let f : X → S be a Kan fibration between Kan complexes. In §3.2.7, we proved that f is
a homotopy equivalence if and only if it is a trivial Kan fibration (Proposition 3.2.7.2). We
now apply the machinery of §3.3.6 to extend this result to the case where S is an arbitrary
simplicial set. First, we need a slight generalization of Proposition 3.2.8.1.

Proposition 3.3.7.1.00ZN Suppose we are given a commutative diagram of simplicial sets

X
u //

��

X ′

��
S

v // S′,

where the vertical maps are Kan fibrations and v is a weak homotopy equivalence. The
following conditions are equivalent:

(1) The morphism u is a weak homotopy equivalence.
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(2) For every vertex s ∈ S, the induced map of fibers ut : Xs → X ′v(s) is a homotopy
equivalence of Kan complexes.

Proof. Using Corollaries 3.3.6.8 and 3.3.6.5, we can replace (1) and (2) by the following
assertions:

(1′) The morphism Ex∞(u) : Ex∞(X)→ Ex∞(X ′) is a weak homotopy equivalence.

(2′) For every vertex s ∈ S, the induced map of fibers us : Ex∞(X)s → Ex∞(X ′)v(s) is a
homotopy equivalence of Kan complexes.

The equivalence of (1′) and (2′) follows by applying Proposition 3.2.8.1 to the diagram

Ex∞(X) Ex∞(u) //

��

Ex∞(X ′)

��
Ex∞(S) Ex∞(v) // Ex∞(S′).

Note that every simplicial set appearing in this diagram is a Kan complex (Proposition
3.3.6.9), the vertical maps are Kan fibrations (Proposition 3.3.6.6) and Ex∞(v) is a homotopy
equivalence by virtue of Corollary 3.3.6.8.

Example 3.3.7.2. 0511Let f : X → S be a Kan fibration of simplicial sets, and let s ∈ S be a
vertex. If S is weakly contractible, then Proposition 3.3.7.1 guarantees that the inclusion
map Xs ↪→ X is a weak homotopy equivalence.

Remark 3.3.7.3. 0512Let f : X → S be a Kan fibration of simplicial sets. If s and t are
vertices of S which belong to the same connected component, then the Kan complexes Xs

and Xt are homotopy equivalent. To prove this, we may assume without loss of generality
that there is an edge of S with source s and target t. Replacing f by the projection map
∆1 ×S X → ∆1, we are reduced to the case where S = ∆1; in this case, the Example 3.3.7.2
guarantees that the inclusion maps Xs ↪→ X ←↩ Xt are weak homotopy equivalences.

Corollary 3.3.7.4. 0104Let v : T → S be a weak homotopy equivalence of simplicial sets. For
every Kan fibration f : X → S, the projection map T ×S X → X is also a weak homotopy
equivalence.
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Corollary 3.3.7.5.0105 Suppose we are given a commutative diagram of simplicial sets

Y
u //

��

X

��
S,

where the vertical maps are Kan fibrations. Then u is a weak homotopy equivalence if and
only if every vertex s ∈ S satisfies the following condition:

(∗s) The induced map of fibers us : Xs → Ys is a homotopy equivalence of Kan complexes.

Proposition 3.3.7.6.00ZP Let f : X → S be a Kan fibration of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is a trivial Kan fibration.

(2) The morphism f is a homotopy equivalence.

(3) The morphism f is a weak homotopy equivalence.

(4) For every vertex s ∈ S, the fiber Xs = {s} ×S X is a contractible Kan complex.

Proof. The implication (1)⇒ (2) is Proposition 3.1.6.10, the implication (2)⇒ (3) follows
from Proposition 3.1.6.13, the equivalence (3)⇔ (4) is a special case of Corollary 3.3.7.5,
and the equivalence (4)⇔ (1) follows from Proposition 3.5.2.1.

Corollary 3.3.7.7.00ZQ Let f : X → Y be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is anodyne.

(2) The morphism f is both a monomorphism and a weak homotopy equivalence.

Proof. The implication (1)⇒ (2) follows from Proposition 3.1.6.14 and Remark 3.1.2.3. To
prove the converse, assume that f is a weak homotopy equivalence and apply Proposition
3.1.7.1 to write f as a composition X

f ′−→ Q
f ′′−→ Y , where f ′ is anodyne and f ′′ is a Kan

fibration. Then f ′ is a weak homotopy equivalence (Proposition 3.1.6.14), so f ′′ is a weak
homotopy equivalence (Remark 3.1.6.16). Invoking Proposition 3.3.7.6, we conclude that f ′′
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is a trivial Kan fibration. If f is a monomorphism, then the lifting problem

X

f

��

f ′ // Q

f ′′

��
Y

idY //

??

Y

admits a solution. It follows that f is a retract of f ′ (in the arrow category Fun([1],Set∆)).
Since the collection of anodyne morphisms is closed under retracts, we conclude that f is
anodyne.

3.3.8 Application: Extending Kan Fibrations

00ZRIn the proof of Proposition 3.3.7.6, we made essential use of the fact that any Kan
fibration of simplicial sets f : X → S is (fiberwise) homotopy equivalent to a pullback
S ×S′ X ′ → S, where f ′ : X ′ → S′ is a Kan fibration between Kan complexes. This can
be achieved by taking f ′ to be the Kan fibration Ex∞(f) : Ex∞(X) → Ex∞(S). Using a
variant of this construction, one can obtain a more precise result.

Theorem 3.3.8.1. 00ZSLet f : X → S be a Kan fibration between simplicial sets, and let
g : S ↪→ S′ be an anodyne map. Then there exists a pullback diagram of simplicial sets

X

f

��

// X ′

f ′

��
S

g // S′,

where f ′ is a Kan fibration.

Remark 3.3.8.2. 00ZTWe refer the reader to [37] for a proof of Theorem 3.3.8.1 which is slightly
different from the proof given below (it avoids the use of Kan’s Ex∞-functor by appealing
instead to the theory of minimal Kan fibrations, which we will discuss in §[?]). See also [53]
and [50].

Remark 3.3.8.3. 00ZUIf f : X → S is a Kan fibration of simplicial sets, then every vertex s ∈ S
determines a Kan complex Xs = {s} ×S X. One can think of the construction s 7→ Xs as
supplying a map from S to the “space” of all Kan complexes. Roughly speaking, one can
think of Theorem 3.3.8.1 as asserting that this “space” itself behaves like a Kan complex.
We will return to this idea in §5.6.
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The proof of Theorem 3.3.8.1 is based on the following observation:

Lemma 3.3.8.4.00ZV Let f : Y → T be a Kan fibration of simplicial sets, and suppose we are
given simplicial subsets X ⊆ Y and S ⊆ T satisfying the following conditions:

(a) The morphism f carries X to S, and the restriction f0 = f |X is a Kan fibration from X

to S.

(b) For every vertex s ∈ S, the inclusion of fibers Xs ↪→ Ys is a homotopy equivalence of
Kan complexes.

Let Y ′ ⊆ Y denote the simplicial subset spanned by those simplices σ : ∆n → Y having the
property that the restriction σ|S×T ∆n factors through X. Then the restriction f |Y ′ : Y ′ → T

is a Kan fibration.

Proof. Set YS = S ×T Y ⊆ Y . It follows from assumption (b) and Corollary 3.3.7.5 that
the inclusion X ↪→ YS is a weak homotopy equivalence, and is therefore anodyne (Corollary
3.3.7.7). Since f0 is a Kan fibration, the lifting problem

X
id //

��

X

f0

��
YS

f |YS //

r

>>

S

admits a solution: that is, there exists a retraction r from YS to the simplicial subset X ⊆ YS
which is compatible with projection to S. Since f is a Kan fibration, Theorem 3.1.3.5
guarantees that the map

Fun(YS , YS)→ Fun(X,YS)×Fun(X,S) Fun(YS , S)

is a trivial Kan fibration. We can therefore choose a homotopy H : ∆1 × YS → YS from
idYS

= H|{0}×YS
to r = H|{1}×YS

, such that f ◦H is the constant homotopy from f |YS
to

itself.
Choose an anodyne map of simplicial sets i : A ↪→ B. We wish to show that every lifting

problem of the form
A

g0 //

i

��

Y ′

f |Y ′

��
B

g //

g

>>

T
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admits a solution. Since f is a Kan fibration, we can choose a map g′ : B → Y satisfying
g′|A = g0 and f ◦ g = g. Let BS ⊆ B denote the simplicial subset given by the fiber product
S ×T B, and let g1 : (A ∪BS)→ Y be the map of simplicial sets characterized by g1|A = g0
and g1|BS

= r ◦ g′|BS
(this map is well-defined, since r ◦ g′ and g0 agree on the intersection

A ∩ BS). Note that H induces a homotopy h0 : ∆1 × (A ∪ BS) → Y from g′|A∪BS
to

g1 (compatible with the projection to S). Since f is a Kan fibration, we can lift h0 to a
homotopy h : ∆1 ×B → Y from g′ to some map g : B → Y , compatible with the projection
to S (Remark 3.1.5.3). It follows from the construction that g takes values in the simplicial
subset Y ′ ⊆ Y and satisfies the requirements g|A = g0 and f ◦ g = g.

Proof of Theorem 3.3.8.1. Let f : X → S be a Kan fibration of simplicial sets. Let us abuse
notation by identifying X and S with simplicial subsets of Y = Ex∞(X) and T = Ex∞(S),
respectively (via the monomorphisms ρ∞X : X ↪→ Ex∞(X) and ρ∞S : S ↪→ Ex∞(S)), and
let Y ′ ⊆ Ex∞(X) be the simplicial subset defined in the statement of Lemma 3.3.8.4. Let
g : S ↪→ S′ be an anodyne morphism of simplicial sets. Since Ex∞(S) is a Kan complex
(Proposition 3.3.6.9), the morphism ρ∞S : S → Ex∞(S) extends to a map of simplicial sets
u : S′ → Ex∞(S). Set X ′ = S′ ×Ex∞(S) Y

′, so that we have a commutative diagram

X

f

��

// X ′

f ′

��

// Y ′

��
S

g // S′
u // Ex∞(S)

where the right square and outer rectangle are pullback diagrams, so the left square is a
pullback diagram as well. Since the projection map Y ′ → Ex∞(S) is a Kan fibration (Lemma
3.3.8.4), it follows that f ′ is also a Kan fibration.

3.4 Homotopy Pullback and Homotopy Pushout Squares

0106Recall that the category of simplicial sets admits arbitrary limits and colimits (Remark
1.1.0.8). In particular, given a diagram of simplicial sets X0 → X ← X1, we can form the
fiber product X0 ×X X1. Beware that, in general, this construction is not invariant under
weak homotopy equivalence:
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Warning 3.4.0.1.0107 Suppose we are given a commutative diagram of simplicial sets

X0

��

// X

��

X1oo

��
Y0 // Y Y1oo

for which the vertical maps are weak homotopy equivalences. Then the induced map

X0 ×X X1 → Y0 ×Y Y1

need not be a weak homotopy equivalence. For example, the pullback of the upper half of
the diagram

{0} // ∆1

��

{1}oo

{0} ∼ // ∆0 {1},∼oo

is empty, while the pullback of the lower half is isomorphic to ∆0.

Under some mild assumptions, the bad behavior described in Warning 3.4.0.1 can be
avoided.

Proposition 3.4.0.2.0109 Suppose we are given a commutative diagram of simplicial sets

X0

��

f // X

��

X1oo

��
Y0

f ′ // Y Y1,oo

where the vertical maps are weak homotopy equivalences. If f and f ′ are Kan fibrations,
then the induced map X0 ×X X1 → Y0 ×Y Y1 is a weak homotopy equivalence.

Proof. We have a commutative diagram

X0 ×X X1 //

��

Y0 ×Y Y1

��
X1 // Y1,
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where the vertical maps are Kan fibrations (since they are pullbacks of f and f ′, respectively).
By virtue of Proposition 3.3.7.1, it will suffice to show that for each vertex x ∈ X1 having
image y ∈ Y1, the induced map of fibers

(X0 ×X X1)x ≃ X0 ×X {x} → Y0 ×Y {y} = (Y0 ×Y Y1)y

is a homotopy equivalence of Kan complexes. This follows by applying Proposition 3.3.7.1
to the diagram

X0

f

��

// Y0

f ′

��
X // Y.

To address the phenomenon described in Warning 3.4.0.1 more generally, it is convenient
to work with a homotopy-invariant replacement for the fiber product.

Construction 3.4.0.3 (The Homotopy Fiber Product). 010BLet f0 : X0 → X and f1 : X1 → X

be morphisms of simplicial sets, where X is a Kan complex. We let X0 ×h
X X1 denote the

simplicial set
X0 ×Fun({0},X) Fun(∆1, X)×Fun({1},X) X1.

We will refer to X0 ×h
X X1 as the homotopy fiber product of X0 with X1 over X.

Warning 3.4.0.4. 0327For any diagram of simplicial sets X0 → X ← X1, the simplicial set
X0 ×Fun({0},X) Fun(∆1, X)×Fun({1},X) X1 is well-defined. However, we will refer to it as a
homotopy fiber product (and denote it by X0 ×h

X X1) only in the case where X is a Kan
complex. In more general situations, we will refer to this simplicial set as the oriented
fiber product of X0 with X1 over X, and denote it by X0 ×̃X X1 (Definition 4.6.4.1). In the
setting of ∞-categories, we will adopt a slightly different definition for the homotopy fiber
product X0 ×h

X X1: see Construction 4.5.2.1.

Example 3.4.0.5. 01KKLet f0 : X0 → X and f1 : X1 → X be continuous functions between
topological spaces. We let X0 ×h

X X1 denote the set of all triples (x0, x1, p) where x0 is
a point of X0, x1 is a point of X1, and p : [0, 1] → X is a continuous function satisfying
p(0) = f0(x0) and p(1) = f1(x1). We will refer to X0 ×h

X X1 as the homotopy fiber product
of X0 with X1 over X. The homotopy fiber product X1 ×h

X X1 carries a natural topology,
given by viewing it as a subspace of the product X0 ×X1 × HomTop([0, 1], X) (where we
endow the path space HomTop([0, 1], X) with the compact-open topology). We then have a
canonical isomorphism of simplicial sets

Sing•(X0 ×h
X X1) ≃ Sing•(X0)×h

Sing•(X) Sing•(X1)
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where the right hand side is the homotopy fiber product of Kan complexes given in Con-
struction 3.4.0.3.

Remark 3.4.0.6 (Homotopy Fibers).0328 Let f : X → Y be a morphism of Kan complexes.
Then f is a homotopy equivalence if and only if, for each vertex y ∈ Y , the homotopy
fiber X ×h

Y {y} is a contractible Kan complex. To see this, we observe that f factors as a
composition

X
δ−→ X ×h

Y Y
π−→ Y,

where δ is a homotopy equivalence and π is a Kan fibration (Example 3.1.7.10). It follows that
f is a homotopy equivalence if and only if π is a homotopy equivalence, which is equivalent
to the requirement that each fiber π−1{y} = X ×h

Y {y} is contractible (Proposition 3.3.7.6).

In the situation of Construction 3.4.0.3, the diagonal inclusion

X ↪→ Fun(∆1, X) x 7→ idx

induces a monomorphism from the ordinary fiber product X0 ×X X1 to the homotopy fiber
product X0 ×h

X X1.

Proposition 3.4.0.7.0329 Let f0 : X0 → X and f1 : X1 → X be morphisms of simplicial sets.
Assume that X is a Kan complex and that either f0 or f1 is a Kan fibration. Then the
inclusion map X0 ×X X1 → X0 ×h

X X1 is a weak homotopy equivalence.

Proof. Without loss of generality we may assume that f0 is a Kan fibration. Since
X is a Kan complex, the evaluation map ev0 : Fun(∆1, X) → Fun({1}, X) is a triv-
ial Kan fibration (Corollary 3.1.3.6), and therefore induces a trivial Kan fibration q :
Fun(∆1, X) ×Fun({1},X) X1 → X1. The diagonal map δ : X ↪→ Fun(∆1, X) determines a
map s : X1 → Fun(∆1, X)×Fun({1},X) X1 which is a section of q, and therefore also a weak
homotopy equivalence. The desired result now follows by applying Proposition 3.4.0.2 to
the diagram

X0
f0 // X X1

f1oo

s

��
X0

f0 // X Fun(∆1, X)×Fun({1},X) X1.oo

Warning 3.4.0.8.032A The conclusion of Proposition 3.4.0.7 is generally false if neither f0 or f1
is assumed to be a Kan fibration. For example, suppose that X is a Kan complex containing
vertices x and y. If x ̸= y, then the fiber product {x} ×X {y} is empty. However, the
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homotopy fiber product {x} ×h
X {y} is not necessarily empty: its vertices can be identified

with edges p : x→ y having source x and target y.

In general, the failure of the inclusion map X0×XX1 ↪→ X0×h
XX1 to be a weak homotopy

equivalence should be viewed as a feature, rather than a bug. From the perspective of
homotopy theory, the homotopy fiber product is better behaved than the ordinary fiber
product:

Proposition 3.4.0.9. 032BSuppose we are given a commutative diagram of simplicial sets

X0 //

��

X

��

X1oo

��
Y0 // Y Y1oo

where X and Y are Kan complexes and the vertical maps are weak homotopy equivalences.
Then the induced map X0 ×h

X X1 → Y0 ×h
Y Y1 is also a weak homotopy equivalence.

Proof. Apply Proposition 3.4.0.2 to the commutative diagram

Fun(∆1, X) //

��

Fun(∂∆1, X)

��

X0 ×X1oo

��
Fun(∆1, Y ) // Fun(∂∆1, Y ) Y0 × Y1,oo

noting that the left horizontal maps are Kan fibrations by virtue of Corollary 3.1.3.3.

Warning 3.4.0.10. 032CLet f0 : X0 → X and f1 : X1 → X be morphisms of simplicial sets,
where X is a Kan complex. The homotopy fiber products X0 ×h

X X1 and X1 ×h
X X0 are

generally not isomorphic as simplicial sets. Instead, we have a canonical isomorphism

(X1 ×h
X X0)op ≃ Xop

0 ×
h
Xop X

op
1 .

However, X0×h
X X1 and X1×h

X X0 have the same weak homotopy type. To see this, we can
use Proposition 3.1.7.1 to factor f0 as a composition X0

w−→ X ′0
f ′0−→ X, where w is a weak

homotopy equivalence and f ′0 is a Kan fibration. Using Propositions 3.4.0.7 and 3.4.0.9, we
see that the maps

X0 ×h
X X1 → X ′0 ×h

X X1 ←↩ X ′0 ×X X1 ≃ X1 ×X X ′0 ↪→ X1 ×h
X X ′0 ← X1 ×h

X X0

are weak homotopy equivalences.
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For many applications, it will be useful to reformulate the notion of homotopy fiber
product by viewing it as a property of diagrams, rather than as a construction. Recall that
a commutative diagram of simplicial sets

032D X01 //

��

X0

��
X1 // X

(3.2)

is a pullback square if the induced map θ : X01 → X0 ×X X1 is an isomorphism of simplicial
sets. If X is a Kan complex, we will say that the diagram (3.2) is a homotopy pullback
square if the composite map

X01
θ−→ X0 ×X X1 ↪→ X0 ×h

X X1

is a weak homotopy equivalence of simplicial sets. In §3.4.1, we give an overview of the
theory of homotopy pullback diagrams (beginning with an extension to the case where X is
not a Kan complex: see Definition 3.4.1.1 and Corollary 3.4.1.6).

The preceding discussion has an analogue for pushout diagrams. Given morphisms of
simplicial sets f0 : A→ A0 and f1 : A→ A1 having the same source, we define the homotopy
pushout of A0 with A1 along A to be the iterated coproduct

A0
∐h

A
A1 = A0

∐
({0}×A)

(∆1 ×A)
∐

({1}×A)
A1

(Construction 3.4.2.2). We say that a commutative diagram of simplicial sets

A
f0 //

f1

��

A0

��
A1 // A01

is a homotopy pushout square if the induced map

A0
∐h

A
A1 ↠ A0

∐
A
A1 → A01

is a weak homotopy equivalence (Proposition 3.4.2.5). Many of the basic properties of
homotopy pullback diagrams have counterparts for homotopy pushout diagrams, which we
summarize in §3.4.2.
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The notions of homotopy pullback and homotopy pushout diagram were introduced
by Mather (in the setting of topological spaces, rather than simplicial sets) and have
subsequently proven to be a very useful tool in algebraic topology. In [41], Mather established
two fundamental results relating homotopy pullback and homotopy pushout squares, which
are now known as the Mather cube theorems:

• Suppose we are given a homotopy pushout square of simplicial sets

A //

��

B

��
C // D.

If D → D is a Kan fibration, then the induced diagram

A×D D //

��

B ×D D

��
C ×D D // D

is also a homotopy pushout square (Proposition 3.4.3.2). Stated more informally, the
collection of homotopy pushout squares is stable under pullback by Kan fibrations. In
§3.4.3 we establish a slightly more general (and homotopy invariant) version of this
statement, which is known as Mather’s second cube theorem (Theorem 3.4.3.3).

• Suppose we are given a commutative diagram of simplicial sets

C

��

Aoo i //

��

B

��
C A

i //oo B,

in which both squares are homotopy pullbacks. If i and i are monomorphisms, then
both squares in the induced diagram

C //

��

C
∐
AB

��

Boo

��
C // C

∐
AB Boo
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are also homotopy pullback squares (Proposition 3.4.4.3). In §3.4.4 we establish a
slightly more general (and homotopy invariant) version of this statement, which is
known as Mather’s first cube theorem (Theorem 3.4.4.4).

The homotopy theory of topological spaces provides a rich supply of examples of homotopy
pushout squares. Let X be a topological space which can be written as the union of two
open subsets U, V ⊆ X. In §3.4.6, we show that the resulting diagram of singular simplicial
sets

Sing•(U ∩ V ) //

��

Sing•(U)

��
Sing•(V ) // Sing•(X)

is a homotopy pushout square (Theorem 3.4.6.1). To carry out the proof, we make use
of the fact that the weak homotopy type of a simplicial set X can be recovered from its
underlying semisimplicial set (see Proposition 3.4.5.4 and Corollary 3.4.5.5), which we explain
in §3.4.5). We conclude in §3.4.7 by applying Theorem 3.4.6.1 to deduce the classical Seifert-
van Kampen theorem (Theorem 3.4.7.1) and the excision theorem for singular homology
(Theorem 3.4.7.3).

Remark 3.4.0.11.010J The notions of homotopy pullback and homotopy pushout diagrams
can be regarded as homotopy-invariant replacements for the usual notion of pullback and
pushout diagrams, respectively. We will later make this heuristic precise by showing that a
commutative diagram in the ordinary category of Kan complexes

X01 //

��

X0

��
X1 // X

is a homotopy pullback square (homotopy pushout square) if and only if it is a pullback
square (pushout square) when regarded as a diagram in the ∞-category S of Kan complexes
(Construction 5.5.1.1); see Examples 7.6.4.2 and 7.6.4.3.

3.4.1 Homotopy Pullback Squares

010K We begin by formulating the notion of a homotopy pullback square for general simplicial
sets.
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Definition 3.4.1.1. 010LA commutative diagram of simplicial sets

010M

X01 //

��

X0

q

��
X1 // X

(3.3)

is a homotopy pullback square if, for every factorization q = q′ ◦ w where w : X0 → X ′0
is a weak homotopy equivalence and q′ : X ′0 → X is a Kan fibration, the induced map
X01 → X ′0 ×X X1 is a weak homotopy equivalence.

To verify the condition of Definition 3.4.1.1 in general, it suffices to consider a single
factorization q = q′ ◦ w:

Proposition 3.4.1.2. 010NSuppose we are given a commutative diagram of simplicial sets

010P

X01 //

��

X0

q

��
X1 // X.

(3.4)

Suppose that q factors as a composition X0
w′−→ X ′0

q′−→ X, where w′ is a weak homotopy
equivalence and q′ is a Kan fibration. Then (3.4) is a homotopy pullback square if and only
if the induced map ρ′ : X01 → X ′0 ×X X1 is a weak homotopy equivalence.

Proof. Suppose that q admits another factorization X0
w′′−−→ X ′′0

q′′−→ X, where w′′ is a weak
homotopy equivalence and q′′ is a Kan fibration. We wish to show that ρ′ is a weak homotopy
equivalence if and only if the induced map ρ′′ : X01 → X ′′0 ×X X1 is a weak homotopy
equivalence. To prove this equivalence, we may assume without loss of generality that w′
is anodyne (since this can always be arranged using Proposition 3.1.7.1). In this case, the
lifting problem

X0

w′

��

w′′ // X ′′0

q′′

��
X ′0

u

>>

q′ // X

admits a solution u : X ′0 → X ′′0 (Remark 3.1.2.7). Since w′ and w′′ are weak homotopy
equivalences, the equality w′′ = u◦w′ guarantees that u is also a weak homotopy equivalence
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(Remark 3.1.6.16), so that the map X ′0×X X1 → X ′′0 ×X X1 is a weak homotopy equivalence
by virtue of Proposition 3.4.0.2.

Example 3.4.1.3.010U Suppose we are given a commutative diagram of simplicial sets

010V

X01 //

��

X0

q

��
X1 // X,

(3.5)

where q is a Kan fibration. Applying Proposition 3.4.1.2 to the factorization q = q ◦ idX0 , we
see that (3.5) is a homotopy pullback square if and only if the induced map X01 → X0×XX1
is a weak homotopy equivalence. In particular, if (3.5) is a pullback diagram, then it is also
a homotopy pullback diagram. Beware that this conclusion is generally false when q is not a
Kan fibration.

Example 3.4.1.4.010S Suppose we are given a commutative diagram of simplicial sets

010T

X ′ //

q′

��

X

q

��
S′ // S,

(3.6)

where q and q′ are Kan fibrations. Then (3.6) is a homotopy pullback square if and only
if, for each vertex s′ ∈ S′ having image s ∈ S, the induced map of fibers X ′s′ → Xs is a
homotopy equivalence of Kan complexes. This is essentially a restatement of Proposition
3.3.7.1 (by virtue of Proposition 3.4.1.2).

Corollary 3.4.1.5.010Q Suppose we are given a commutative diagram of simplicial sets

010R

X01 //

q′

��

X0

q

��
X1 // X,

(3.7)

where q is a weak homotopy equivalence. Then (3.7) is a homotopy pullback square if and
only if q′ is a weak homotopy equivalence.

https://kerodon.net/tag/010U
https://kerodon.net/tag/010V
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Proof. Apply Proposition 3.4.1.2 to the factorization q = idX ◦q.

Corollary 3.4.1.6. 032ESuppose we are given a commutative diagram of simplicial sets

032F

X01 //

q′

��

X0

q

��
X1 // X,

(3.8)

where X is a Kan complex. Then (3.8) is a homotopy pullback square if and only if the
induced map

θ : X01 → X0 ×X X1 ↪→ X0 ×h
X X1

is a weak homotopy equivalence.

Proof. Using Proposition 3.1.7.1, we can factor q as a composition X0
w−→ X ′0

q′−→ X, where
w is a weak homotopy equivalence and q′ is Kan fibration. We then have a commutative
diagram

X01
θ //

ρ

��

X0 ×h
X X1

��
X ′0 ×X X1 // X ′0 ×h

X X1,

where the bottom horizontal map is a weak homotopy equivalence (Proposition 3.4.0.7) and
the right vertical map is also a weak homotopy equivalence (Proposition 3.4.0.9). It follows
that θ is a weak homotopy equivalence if and only if ρ is a weak homotopy equivalence. By
virtue of Proposition 3.4.1.2, this is equivalent to the requirement that the diagram (3.8) is
a homotopy pullback square.

Remark 3.4.1.7. 032GA commutative diagram of simplicial sets

X01 //

��

X0

��
X1 // X

https://kerodon.net/tag/032E
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is a homotopy pullback square if and only if the induced diagram of opposite simplicial sets

Xop
01

//

��

Xop
0

��
Xop

1
// Xop

is a homotopy pullback square.

Warning 3.4.1.8.010W For a general pair of morphisms f0 : X0 → X, f1 : X1 → X in the
category of simplicial sets, there need not exist a homotopy pullback square

X01 //

��

X0

f0

��
X1

f1 // X.

For example, if f0 : {0} ↪→ ∆1 and f1 : {1} ↪→ ∆1 are the inclusion maps, then the existence
of a commutative diagram

010X

X01 //

��

{0}

f0

��
{1} f1 // ∆1

(3.9)

guarantees that the simplicial set X01 is empty, in which case (3.9) is not a homotopy
pullback square.

Note that Definition 3.4.1.1 is a priori asymmetric: it involves replacing the map
f0 : X0 → X by a Kan fibration, but leaving the map f1 : X1 → X unchanged. However,
this turns out to be irrelevant.

Proposition 3.4.1.9 (Symmetry).010Y A commutative diagram of simplicial sets

X01 //

��

X0

f0

��
X1

f1 // X

https://kerodon.net/tag/010W
https://kerodon.net/tag/010X
https://kerodon.net/tag/010Y
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is a homotopy pullback square if and only if the transposed diagram

X01 //

��

X1

f1

��
X0

f0 // X

is a homotopy pullback square.

Proof. Using Proposition 3.1.7.1, we can choose factorizations

X0
w0−→ X ′0

f ′0−→ S X1
w1−→ X ′1

f ′1−→ S

of f0 and f1, where both f ′0 and f ′1 are Kan fibrations and both w0 and w1 are weak homotopy
equivalences. We have a commutative diagram of simplicial sets

X01
u //

v

��

X0 ×X X ′1
//

v′

��

X0

w0

��
X ′0 ×X X1

u′ //

��

X ′0 ×X X ′1
//

��

X ′0

f ′0

��
X1

w1 // X ′1
f ′1 // X.

We wish to show that u is a weak homotopy equivalence if and only if v is a weak homotopy
equivalence (see Proposition 3.4.1.2). This follows from the two-out-of-three property
(Remark 3.1.6.16), since the morphisms u′ and v′ are weak homotopy equivalences by virtue
of Corollary 3.3.7.4.
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Remark 3.4.1.10.010Z Suppose we are given a commutative diagram of simplicial sets

X01

w′

��

// X0

w

��
X ′01

//

��

X ′0

��
X1 // X,

where w and w′ are weak homotopy equivalences. Then the lower half of the diagram is a
homotopy pullback square if and only if the outer rectangle is a homotopy pullback square
(see Corollary 3.4.1.12 for a slight generalization).

Proposition 3.4.1.11 (Transitivity).0110 Suppose we are given a commutative diagram of
simplicial sets

032H Z //

h

��

Y //

g

��

X

f

��
U // T // S

(3.10)

where the right half of (3.10) is a homotopy pullback square. Then the left half of (3.10) is a
homotopy pullback square if and only if the outer rectangle is a homotopy pullback square.

Proof. By virtue of Proposition 3.1.7.1, the morphism f factors as a composition X
wX−−→

X ′
f ′−→ S, where f ′ is a Kan fibration and wX is a weak homotopy equivalence. Set

Y ′ = T ×S X ′, so that g factors as a composition Y
wY−−→ Y ′

g′−→ T where g′ is a Kan
fibration. Since the right half of (3.10) is a homotopy pullback square, the morphism wY is
a weak homotopy equivalence. Applying Proposition 3.4.1.2, we see that both conditions
are equivalent to the requirement that the induced map Z → U ×T Y ′ ≃ U ×S X ′ is a weak
homotopy equivalence.

Corollary 3.4.1.12 (Homotopy Invariance).0111 Suppose we are given a commutative diagram

https://kerodon.net/tag/010Z
https://kerodon.net/tag/0110
https://kerodon.net/tag/032H
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of simplicial sets

X01 //

��

w01

&&

X0

��

w0

&&
Y01 //

��

Y0

��

X1 //

w1

&&

X

w

&&
Y1 // Y,

where the morphisms w0, w1, and w are weak homotopy equivalences. Then any two of the
following conditions imply the third:

(1) The back face

X01 //

��

X0

��
X1 // X

is a homotopy pullback square.

(2) The front face

Y01 //

��

Y0

��
Y1 // Y

is a homotopy pullback square.

(3) The morphism w01 : X01 → Y01 is a weak homotopy equivalence of simplicial sets.
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Proof. Using Corollary 3.4.1.5, we see that the bottom square in the commutative diagram

X01 //

��

X0

��
X1 //

w1

��

X

w

��
Y1 // Y,

is a homotopy pullback square. Applying Propositions 3.4.1.11 and 3.4.1.9, we see that (1)
is equivalent to the following:

(1′) The diagram
X01 //

��

X0

��
Y1 // Y

is a homotopy pullback square.

If condition (3) is satisfied, then the equivalence (1′) ⇔ (2) is a special case of Remark
3.4.1.10. Conversely, if (1′) and (2) are satisfied, then Propositions 3.4.1.11 and 3.4.1.9
guarantee that the upper half of the commutative diagram

X01 //

w01

��

X0

w0

��
Y01 //

��

Y0

��
Y1 // Y

is a homotopy pullback square, so that w01 is a weak homotopy equivalence by virtue of
Corollary 3.4.1.5.
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Suppose we are given a commutative diagram of Kan complexes σ :

X01 //

��

X0

��
X1

f1 // X.

It follows from Corollary 3.4.1.12 that the condition that σ is a homotopy pullback square
depends only on the homotopy type of σ as an object of the diagram category Fun([1] ×
[1],Kan). Beware that it does not depend only on the image of σ in the homotopy category
hKan.

Example 3.4.1.13. 01YULet X be a Kan complex containing a vertex x ∈ X, let ΩX denote
the loop space {x}×h

X {x}, and let P denote the path space X ×h
X {x}, and let ι : ΩX ↪→ P

be the inclusion map. We then have a pullback diagram of Kan complexes

032JΩX ι //

��

P

ev0

��
{x} // X,

(3.11)

where ev0 is given by evaluation at the vertex 0 ∈ ∆1. Since ev0 is a Kan fibration, the
diagram (3.11) is also a homotopy pullback square (Example 3.4.1.3). Note that the Kan
complex P is contractible, so that ι is homotopic to the constant map ι′ : ΩX → P carrying
ΩX to the constant path idx. However, the commutative diagram of Kan complexes

ΩX ι′ //

��

P

ev0

��
{x} // X

is never a homotopy pullback square unless the Kan complex ΩX is contractible (again by
Example 3.4.1.3).

Proposition 3.4.1.14 (Summands). 01GNSuppose we are given a homotopy pullback square of

https://kerodon.net/tag/01YU
https://kerodon.net/tag/032J
https://kerodon.net/tag/01GN
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simplicial sets
X01

u //

v

��

X0

f0

��
X1

f1 // X.

Let X ′0 ⊆ X0, X ′1 ⊆ X1, and X ′ ⊆ X be summands satisfying f0(X ′0) ⊆ X ′ ⊇ f1(X ′1), and
set X ′01 = u−1(X ′0) ∩ v−1(X ′1) ⊆ X01. Then the diagram of simplicial sets

X ′01
//

��

X ′0

��
X ′1

// X ′

is also a homotopy pullback square.

Proof. Consider the diagram of simplicial sets

v−1(X ′1) //

��

X01
u //

v

��

X0

f0

��
X ′1

// X1 // X.

The square on the left is a pullback diagram whose horizontal maps are Kan fibrations
(Example 3.1.1.4), and is therefore a homotopy pullback square (Example 3.4.1.3). The
square on the right is a homotopy pullback by assumption. Applying Proposition 3.4.1.11,
we deduce that bottom half of the commutative diagram

X ′01
//

��

X ′0

��
v−1(X ′1) //

��

X0

��
X ′1

// X



478 CHAPTER 3. KAN COMPLEXES

is a homotopy pullback square. The top half is a pullback diagram whose vertical maps
are Kan fibrations (Example 3.1.1.4), and is therefore also a homotopy pullback square
(Example 3.4.1.3). Applying Proposition 3.4.1.11 again, we conclude that the outer rectangle
in the diagram

X ′01
//

��

X ′0

��

X ′0

��
X ′1

// X ′ // X

is a homotopy pullback square. Here the square on the right is a pullback diagram of Kan
fibrations (Example 3.1.1.4), and therefore a homotopy pullback. Applying Proposition
3.4.1.11 again, we conclude that the left square is a homotopy pullback, as desired.

3.4.2 Homotopy Pushout Squares

0112We now formulate a dual version of Definition 3.4.1.1.
Definition 3.4.2.1. 0113A commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

is a homotopy pushout square if, for every Kan complex X, the diagram of Kan complexes

Fun(A01, X) //

��

Fun(A0, X)

��
Fun(A1, X) // Fun(A,X)

is homotopy pullback square (Definition 3.4.1.1).
We begin by observing that if a diagram of simplicial sets

A
f0 //

f1

��

A0

��
A1 // A01

https://kerodon.net/tag/0112
https://kerodon.net/tag/0113
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is a homotopy pushout square, then we can recover the simplicial set A01 (up to weak
homotopy equivalence) from the morphisms f0 : A→ A0 and f1 : A→ A1. To see this, it
will be convenient to introduce a dual version of Construction 3.4.0.3.

Construction 3.4.2.2 (Homotopy Pushouts).032K Let f0 : A → A0 and f1 : A → A1 be
morphisms of simplicial sets. We let A0

∐h
AA1 denote the iterated pushout

A0
∐

({0}×A)
(∆1 ×A)

∐
({1}×A)

A1.

We will refer to A0
∐h
AA1 as the homotopy pushout of A0 with A1 along A. Note that the

projection map ∆1 × A ↠ A induces a comparison map A0
∐h
AA1 ↠ A0

∐
AA1 from the

homotopy pushout to the usual pushout, which is an epimorphism of simplicial sets.

Remark 3.4.2.3.032L Let f0 : A→ A0 and f1 : A→ A1 be morphisms of simplicial sets, and
let X be a Kan complex. Then the simplicial set Fun(A,X) is a Kan complex (Corollary
3.1.3.4), and we have a canonical isomorphism

Fun(A0
∐h

A
A1, X) ≃ Fun(A0, X)×h

Fun(A,X) Fun(A1, X),

where the right hand side is the homotopy fiber product of Construction 3.4.0.3.

Remark 3.4.2.4.032M Let f0 : A→ A0 and f1 : A→ A1 be morphisms of simplicial sets. Then
we have a canonical isomorphism (A0

∐h
AA1)op ≃ Aop

1
∐h
AopA

op
0 .

Proposition 3.4.2.5.032N A commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

is a homotopy pushout square if and only if the induced map

θ : A0
∐h

A
A1 ↠ A0

∐
A
A1 → A01

is a weak homotopy equivalence of simplicial sets.

Proof. Let X be a Kan complex, so that Fun(A,X) is also a Kan complex (Corollary 3.1.3.4).
Applying Corollary 3.4.1.6, we see that the diagram

Fun(A01, X) //

��

Fun(A0, X)

��
Fun(A1, X) // Fun(A,X)

https://kerodon.net/tag/032K
https://kerodon.net/tag/032L
https://kerodon.net/tag/032M
https://kerodon.net/tag/032N
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is a homotopy pullback square if and only if the composite map

ρX : Fun(A01, X)→ Fun(A0, X)×Fun(A,X) Fun(A1, X) ↪→ Fun(A0, X)×h
Fun(A,X) Fun(A1, X)

is a homotopy equivalence. Using the isomorphism of Remark 3.4.2.3, we can identify
ρX with the morphism Fun(A01, X)→ Fun(A0

∐h
AA1, X) given by precomposition with θ.

Proposition 3.4.2.5 now follows by allowing the Kan complex X to vary.

We now summarize some of the formal properties enjoyed by Definition 3.4.2.1 and
Construction 3.4.2.2.

Proposition 3.4.2.6. 032PA commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

is a homotopy pushout square if and only if the induced diagram of opposite simplicial sets

Aop //

��

Aop
0

��
Aop

1
// Aop

01

is a homotopy pushout square.

Proof. Apply Remark 3.4.1.7.

Proposition 3.4.2.7 (Symmetry). 0114A commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

https://kerodon.net/tag/032P
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is a homotopy pushout square if and only if the transposed diagram

A //

��

A1

��
A0 // A01

is a homotopy pushout square.

Proof. Apply Proposition 3.4.1.9.

Proposition 3.4.2.8 (Transitivity).0115 Suppose we are given a commutative diagram of
simplicial sets

A //

��

B //

��

C

��
A′ // B′ // C ′,

where the left half is a homotopy pushout square. Then the right half is a homotopy pushout
square if and only if the outer rectangle is a homotopy pushout square.

Proof. Apply Proposition 3.4.1.11.

Proposition 3.4.2.9 (Homotopy Invariance).0116 Suppose we are given a commutative diagram
of simplicial sets

A //

��

w

&&

A0

��

w0

''
B //

��

B0

��

A1 //

w1

&&

A01
w01

''
B1 // B01,

where the morphisms w, w0, and w1 are weak homotopy equivalences. Then any two of the
following three conditions imply the third:

https://kerodon.net/tag/0115
https://kerodon.net/tag/0116
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(1) The back face
A //

��

A0

��
A1 // A01

is a homotopy pushout square.

(2) The front face
B //

��

B0

��
B1 // B01

is a homotopy pushout square.

(3) The morphism w01 is a weak homotopy equivalence.

Proof. Combine Corollary 3.4.1.12 with Proposition 3.1.6.17.

Proposition 3.4.2.10. 0117Suppose we are given a commutative diagram of simplicial sets

0118

A
f //

��

B

��
A′

f ′ // B′

(3.12)

where f is a weak homotopy equivalence. Then (3.12) is a homotopy pushout square if and
only if f ′ is a weak homotopy equivalence.

Proof. For every Kan complex X, we obtain a commutative diagram of simplicial sets

0119

Fun(A,X) Fun(B,X)uoo

Fun(A′, X)

OO

Fun(B′, X),u′oo

OO

(3.13)

https://kerodon.net/tag/0117
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where u is a homotopy equivalence of Kan complexes (Proposition 3.1.6.17). Applying
Corollary 3.4.1.5, we conclude that (3.13) is a homotopy pullback square if and only if u
is a homotopy equivalence of Kan complexes. Consequently, (3.12) is a homotopy pushout
square if and only if, for every Kan complex X, the composition with f ′ induces a homotopy
equivalence Fun(B′, X)→ Fun(A′, X). By virtue of Proposition 3.1.6.17, this is equivalent
to the requirement that f ′ is a weak homotopy equivalence.

Proposition 3.4.2.11.011A Suppose we are given a commutative diagram of simplicial sets

011B

A
f0 //

��

A0

��
A1 // A01,

(3.14)

where f0 is a monomorphism. Then (3.14) is a homotopy pushout square if and only if the
induced map A0

∐
AA1 → A01 is a weak homotopy equivalence.

Proof. For every Kan complex X, we obtain a commutative diagram of simplicial sets

011C

Fun(A,X) Fun(A0, X)uoo

Fun(A1, X)

OO

Fun(A01, X),oo

OO

(3.15)

where u is a Kan fibration (Corollary 3.1.3.3). It follows that the diagram (3.15) is a
homotopy pullback square if and only if the induced map

Fun(A01, X)→ Fun(A0, X)×Fun(A,X) Fun(A1, X) ≃ Fun(A0
∐
A

A1, X)

is a weak homotopy equivalence (Example 3.4.1.3). Consequently, the diagram (3.14) is
a homotopy pushout square if and only if, for every Kan complex X, the induced map
Fun(A01, X)→ Fun(A0

∐
AA1, X) is a homotopy equivalence of Kan complexes. By virtue of

Proposition 3.1.6.17, this is equivalent to the requirement that the morphism A0
∐
AA1 → A

is a weak homotopy equivalence.

https://kerodon.net/tag/011A
https://kerodon.net/tag/011B
https://kerodon.net/tag/011C
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Example 3.4.2.12. 011DSuppose we are given a pushout diagram of simplicial sets

012Q

A
f0 //

��

A1

��
A1 // A01.

(3.16)

If f0 is a monomorphism, then (3.16) is also a homotopy pushout diagram.

Corollary 3.4.2.13. 032QLet f0 : A→ A0 and f1 : A→ A1 be morphisms of simplicial sets. If
either f0 or f1 is a monomorphism, then the comparison map A0

∐h
AA1 ↠ A0

∐
AA1 is a

weak homotopy equivalence.

Proof. Combine Example 3.4.2.12 with Proposition 3.4.2.5.

Corollary 3.4.2.14. 032RSuppose we are given a commutative diagram of simplicial sets

A0

��

A
f0oo f1 //

��

A1

��
B0 B

g0oo g1 // B1,

where f0 and g0 are monomorphisms and the vertical maps are weak homotopy equivalences.
Then the induced map

A0
∐
A

A1 → B0
∐
B

B1

is a weak homotopy equivalence.

Proof. Combine Example 3.4.2.12 with Proposition 3.4.2.9.

Corollary 3.4.2.15. 032SSuppose we are given a commutative diagram of simplicial sets

A0

��

A
f0oo f1 //

��

A1

��
B0 B

g0oo g1 // B1,

https://kerodon.net/tag/011D
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where the vertical maps are weak homotopy equivalences. Then the induced map

A0
∐h

A
A1 → B0

∐h
B
B1

is also a weak homotopy equivalence.

Proof. Apply Corollary 3.4.2.14 to the diagram

∆1 ×A

��

∂∆1×Aoo //

��

A0
∐
A1

��
∆1 ×B ∂∆1×Boo // B0

∐
B1.

Let us conclude with an application of these concepts.

Proposition 3.4.2.16.032T Suppose we are given a commutative diagram of simplicial sets

X
f //

��

Y

��
S

with the following property: for every simplex σ : ∆k → S, the induced map fσ : ∆k ×S X →
∆k ×S Y is a weak homotopy equivalence of simplicial sets. Then f is a weak homotopy
equivalence of simplicial sets.

Proof. We will prove the following stronger assertion: for every morphism of simplicial sets
S′ → S, the induced map

fS′ : S′ ×S X → S′ ×S Y

is a weak homotopy equivalence of simplicial sets. By virtue of Proposition 3.2.8.3, (and
Remark 1.1.4.4), we may assume without loss of generality that S′ has dimension ≤ k for
some integer k ≥ −1. We proceed by induction on k. In the case k = −1, the simplicial set
S′ is empty and there is nothing to prove. Assume therefore that k ≥ 0. Let S′′ denote
the (k − 1)-skeleton of S′ and let I be the set of nondegenerate k-simplices of S′, so that

https://kerodon.net/tag/032T


486 CHAPTER 3. KAN COMPLEXES

Proposition 1.1.4.12 supplies a pushout diagram of simplicial sets∐
i∈I

∂∆k //

��

∐
i∈I

∆k

��
S′′ // S′,

where the horizontal maps are monomorphisms. It follows that the front and back faces of
the diagram

( ∐
i∈I

∂∆k)×S X //

��

u

$$

∐
i∈I

(∆k ×S X)

��

v

$$∐
i∈I

(∂∆k×SY )

��

// ∐
i∈I

(∆k ×S Y )

��

S′′ ×S X //

fS′′

&&

S′ ×S X

fS′

%%
S′′ ×S Y // S′ ×S Y

are homotopy pushout squares (Proposition 3.4.2.11). Consequently, to show that fS′ is a
weak homotopy equivalence, it will suffice to show that fS′′ , u, and v are weak homotopy
equivalences (Proposition 3.4.2.9). In the first two cases, this follows from our inductive
hypothesis. We may therefore replace S′ by the coproduct ∐

i∈I ∆k, and thereby reduce to
the case of a coproduct of simplices. Using Remark 3.1.6.20, we can further reduce to the
case where S′ ≃ ∆k is a standard simplex, in which case the desired result follows from our
hypothesis on f .

Corollary 3.4.2.17. 032ULet f : X → S be a morphism of simplicial sets. Suppose that, for
every k-simplex ∆k → S, the fiber product ∆k ×S X is weakly contractible. Then f is a weak
homotopy equivalence.

Proof. Apply Proposition 3.4.2.16 in the special case Y = S.

https://kerodon.net/tag/032U
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3.4.3 Mather’s Second Cube Theorem

011H Our goal in this section is to prove a theorem of Mather (Theorem 3.4.3.3), which asserts
that the collection of homotopy pushout squares is stable under the formation of homotopy
pullback. This is an analogue (and consequence) of a more elementary statement about sets:

Exercise 3.4.3.1.011J Suppose we are given a pushout square of sets

A //

��

B

��
C // D.

Then, for every map of sets D → D, the induced diagram

A×D D //

��

B ×D D

��
C ×D D // D

is also a pushout square.

Since limits and colimits in the category of simplicial sets are computed pointwise,
Exercise 3.4.3.1 immediately implies that the collection of pushout squares in the category of
simplicial sets is stable under the formation of pullback along any morphism of simplicial sets
q : D → D. This statement has an analogue for homotopy pushout diagrams of simplicial
sets, provided that we assume that q is a Kan fibration.

Proposition 3.4.3.2.011K Suppose we are given a homotopy pushout square of simplicial sets

011L

A
f //

��

B

��
C // D,

(3.17)

https://kerodon.net/tag/011H
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and let q : D → D be a Kan fibration of simplicial sets. Then the induced diagram

A×D D //

��

B ×D D

��
C ×D D // D

is also a homotopy pushout square.

Proof. Choose a factorization of f as a composition A f ′−→ B′
w−→ B, where f ′ is a monomor-

phism and w is a weak homotopy equivalence (Exercise 3.1.7.11). Set D′ = B′
∐
AC. Our

assumption that (3.17) is a homotopy pushout square guarantees that the induced map
D′ → D is a weak homotopy equivalence (Proposition 3.4.2.11). We have a commutative
diagram of simplicial sets

A×D D //

��

B′ ×D D //

��

B ×D D

��
C ×D D // D′ ×D D // D.

The left square in this diagram is a pushout square (by virtue of Exercise 3.4.3.1) and the
map A×DD → B′×DD is a monomorphism, so it is a homotopy pushout square (Example
3.4.2.12). It follows from Corollary 3.3.7.4 that the horizontal maps on the right side of the
diagram are weak homotopy equivalences, so the right square is also a homotopy pushout
(Proposition 3.4.2.10). Applying Proposition 3.4.2.8, we deduce that the outer rectangle is
also a homotopy pushout square, as desired.

We now formulate a homotopy-invariant version of Proposition 3.4.3.2.

Theorem 3.4.3.3 (Mather’s Second Cube Theorem [41]). 011MSuppose we are given a cubical

https://kerodon.net/tag/011M
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diagram of simplicial sets

A //

��

��

B

��

��
C //

��

D

q

��

A //

��

B

��
C // D

having the property that the faces

011N

A //

��

B

��

A //

��

C

��
A // B A // C

C //

��

D

��

B //

��

D

��
C // D B // D

(3.18)

are homotopy pullback squares. If the bottom face

A //

��

B

��
C // D

https://kerodon.net/tag/011N
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is a homotopy pushout square, then the top face

A //

��

B

��
C // D

is also a homotopy pushout square.

Proof. Using Proposition 3.1.7.1, we can factor q as a composition D
w−→ D

′ q′−→ D, where
w is a weak homotopy equivalence and q′ is a Kan fibration. We then obtain another
commutative diagram

011P

A //

��

$$

B

��

##
C //

��

D

w

��

A×D D
′ //

$$

B ×D D
′

""
C ×D D

′ // D
′
,

(3.19)

where the bottom face is a homotopy pushout square by virtue of Proposition 3.4.3.2. Since
the diagrams (3.18) are homotopy pullback squares, the vertical arrows in (3.19) are weak
homotopy equivalences. Applying Proposition 3.4.2.9, we conclude that the top face

A //

��

B

��
C // D

is also a homotopy pushout square.

https://kerodon.net/tag/011P
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3.4.4 Mather’s First Cube Theorem

011Q Our goal in this section is to prove a converse of Theorem 3.4.3.3, known as Mather’s
first cube theorem. As before, we begin with an elementary statement about the category of
sets.

Exercise 3.4.4.1.011R Suppose we are given a commutative diagram of sets

C

��

Aoo i //

��

B

��
C Aoo i // B

where both squares are pullback diagrams, and i is a monomorphism (so that i is also a
monomorphism). Show that both squares in the resulting diagram

C //

��

C
∐
AB

��

Boo

��
C // C

∐
AB Boo

are pullback squares.

Warning 3.4.4.2.011S The conclusion of Exercise 3.4.4.1 does not necessarily hold if the map i
is not injective. For example, let G be a group with multiplication map m : G×G→ G, and
let π, π′ : G×G→ G be the projection maps onto the two factors. Then the diagram of sets

G

��

G×Gπoo π′ //

m

��

G

��
∗ Goo // ∗

consists of pullback squares, but the induced diagram

G

��

// G
∐
G×GG

��

G

��

oo

∗ // ∗
∐
G ∗ ∗oo

https://kerodon.net/tag/011Q
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does not (except in the case where G is trivial).

Exercise 3.4.4.1 has an analogue for homotopy pullback diagrams of simplicial sets.

Proposition 3.4.4.3. 011TSuppose we are given a commutative diagram of simplicial sets

C

��

Aoo i //

��

B

��
C A

i //oo B,

in which both squares are homotopy pullbacks. If i and i are monomorphisms, then both
squares in the induced diagram

C //

��

C
∐
AB

��

Boo

��
C // C

∐
AB Boo

are also also homotopy pullbacks.

Proposition 3.4.4.3 is an immediate consequence of Example 3.4.2.12 together with the
following homotopy-invariant statement:

Theorem 3.4.4.4 (Mather’s First Cube Theorem). 011USuppose we are given a cubical diagram
of simplicial sets

011V

A //

��

��

B

��

��
C //

��

D

��

A //

��

B

��
C // D

(3.20)

https://kerodon.net/tag/011T
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having the property that the back and left faces

A //

��

B

��

A //

��

C

��
A // B A // C

are homotopy pullback squares, and the top and bottom faces

A //

��

B

��

A //

��

B

��
C // D C // D

are homotopy pushout squares. Then the front and right faces

C //

��

D

��

B //

��

D

��
C // D B // D

are also homotopy pullback squares.

Proof. The proof will proceed in several steps, each of which involves replacing one or more
of the terms in (3.20) by a weakly equivalent simplicial set (by virtue of Corollary 3.4.1.12
and Proposition 3.4.2.9, such replacements will not affect the truth of our hypotheses or
of the desired conclusion). Let us denote each of the morphisms appearing in the diagram
(3.20) by fXY , where X,Y ∈ {A,B,C,D,A,B,C,D} are the source and target of fXY ,
respectively.

• By virtue of Proposition 3.1.7.1, the morphism fBB : B → B factors as a composition

B
w−→ B

′ f
′
BB−−→ B, where w is anodyne and f ′

BB
is a Kan fibration. Replacing B by

B
′ (and D by the pushout B′∐BD), we can reduce to the case where fBB is a Kan

fibration. Similarly, we can arrange that the map fCC : C → C is a Kan fibration.

• Applying Proposition 3.1.7.1 again, we can factor the morphism g : A → A ×(B×C)
(B × C) as a composition

A
w−→ A

′ g′−→ A×(B×C) (B × C),
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where w is anodyne and g′ is a Kan fibration. Replacing A by A′, we can reduce to
the case where g is a Kan fibration, so that the morphism fAA is also a Kan fibration.

• By virtue of Exercise 3.1.7.11, the morphism fAB factors as a composition A
f ′AB−−→

B′
w−→ B, where f ′AB is a monomorphism and w is a trivial Kan fibration. Replacing

B by B′ (and B by the fiber product B′ ×B B
′), we can reduce to the case where fAB

is a monomorphism. Similarly, we may assume that fAC is a monomorphism.

• By virtue of Exercise 3.1.7.11, the morphism fAB factors as a composition A
f ′

AB−−→
B
′ w−→ B, where f ′

AB
is a monomorphism and w is a trivial Kan fibration. Replacing

B by B′, we can reduce to the case where fAB is a monomorphism. Similarly, we can
assume that fAC is a monomorphism.

• The back face

011X

A
f

AB //

f
AA

��

B

f
BB

��
A

fAB // B

(3.21)

is a homotopy pullback square in which the horizontal maps are monomorphisms and
the vertical maps are Kan fibrations. It follows that, for every vertex a ∈ A having
image b = fAB(a) ∈ B, the induced map of fibers Aa → Bb is a homotopy equivalence.
Let B′ ⊆ B denote the simplicial subset spanned by those simplices σ : ∆n → B having
the property that the restriction σ|A×B∆n factors through A. Applying Lemma 3.3.8.4,
we deduce that the restriction fBB|B′ : B′ → B is also a Kan fibration. Moreover, the
inclusion map B

′
↪→ B induces a homotopy equivalence of fibers B′b ↪→ Bb, for each

vertex b ∈ B. It follows that the inclusion B
′
↪→ B is a weak homotopy equivalence

(Corollary 3.3.7.5). Replacing B by B′, we can reduce to the case where the diagram
(3.21) is a pullback square. Similarly, we can arrange that the diagram

A
f

AC //

f
AA

��

C

f
CC

��
A

fAC // C

is a pullback square.

https://kerodon.net/tag/011X
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• By assumption, the top and bottom faces

011Y

A //

f
AC

��

B

��

A //

fAC

��

B

��
C // D C // D

(3.22)

are homotopy pushout squares. Since fAC and fAC are monomorphisms, it follows
that the induced maps

C
∐
A

B → D C
∐
A

B → D

are weak homotopy equivalences (Proposition 3.4.2.11). We may therefore replace D
by the pushout C ∐

AB and D by the pushout C ∐
AB, and thereby reduce to the

case where the diagrams (3.22) are pushout squares.

• Applying Exercise 3.4.4.1 levelwise, we deduce that the front and right faces

011Z

C //

f
CC

��

D

f
DD

��

B //

f
BB

��

D

f
DD

��
C // D B // D

(3.23)

are pullback squares in the category of simplicial sets. In particular, for every simplex
σ : ∆n → D, the projection map ∆n ×D D → ∆n is a pullback either of fBB or of
fCC , and is therefore a Kan fibration. Applying Remark 3.1.1.7, we conclude that
fDD : D → D is a Kan fibration. It follows that the diagrams (3.23) are also homotopy
pullback squares, as desired.

3.4.5 Digression: Weak Homotopy Equivalences of Semisimplicial Sets

0120 Recall that a morphism of simplicial sets f : X → Y is a weak homotopy equivalence
if, for every Kan complex Z, precomposition with f induces a bijection π0(Fun(Y,Z)) →
π0(Fun(X,Z)) (Definition 3.1.6.12). Our goal in this section is to show that this condition
depends only on the underlying morphism of semisimplicial sets. To see this, we begin by
recalling that the forgetful functor

{Simplicial Sets} → {Semisimplicial Sets}

admits a left adjoint, which we denote by X 7→ X+ (Corollary 3.3.1.10).

https://kerodon.net/tag/011Y
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Definition 3.4.5.1. 0121Let f : X → Y be a morphism of semisimplicial sets. We will say that
f is a weak homotopy equivalence if the induced map of simplicial sets f+ : X+ → Y + is a
weak homotopy equivalence, in the sense of Definition 3.1.6.12.

Remark 3.4.5.2. 0122The collection of weak homotopy equivalences of semisimplicial sets
is closed under the formation of filtered colimits. This follows immediately from the
corresponding assertion for simplicial sets (Proposition 3.2.8.3), since the construction
X 7→ X+ commutes with filtered colimits.

Remark 3.4.5.3. 0123Let f : X → Y and g : Y → Z be morphisms of semisimplicial sets. If
any two of the morphisms f , g, and g ◦ f are weak homotopy equivalences, then so is the
third (see Remark 3.1.6.16).

When X is a simplicial set, we write vX : X+ → X for the counit map (that is, the
unique morphism of simplicial sets whose restriction to (X+)nd ≃ X is the identity map).
To compare Definition 3.4.5.1 with Definition 3.1.6.12, we need the following:

Proposition 3.4.5.4. 0124For every simplicial set X, the counit map vX : X+ → X is a weak
homotopy equivalence.

Corollary 3.4.5.5. 0125Let f : X → Y be a morphism of simplicial sets. Then f is a weak
homotopy equivalence (in the sense of Definition 3.1.6.12) if and only if the underlying
morphism of semisimplicial sets is a weak homotopy equivalence (in the sense of Definition
3.4.5.1).

Proof. We have a commutative diagram of simplicial sets

X+ f+
//

vX

��

Y +

vY

��
X

f // Y,

where the vertical maps are weak homotopy equivalences by virtue of Proposition 3.4.5.4.
Invoking Remark 3.1.6.16, we deduce that f is a weak homotopy equivalence if and only if
f+ is a weak homotopy equivalence.

Corollary 3.4.5.6. 0126For every semisimplicial set X, the inclusion map ι : X ↪→ X+ is a
weak homotopy equivalence of semisimplicial sets.

Proof. We wish to show that the map ι+ : X+ → (X+)+ is a weak homotopy equivalence of
simplicial sets. This is clear, since ι+ is right inverse to the counit map vX+ : (X+)+ → X+,
which is a weak homotopy equivalence of simplicial sets by virtue of Proposition 3.4.5.4.
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Variant 3.4.5.7.0127 Let X be a simplicial set, and let ι : X ↪→ X+ be the inclusion map. Then
the map Ex(ι) : Ex(X) ↪→ Ex(X+) is a weak homotopy equivalence of semisimplicial sets.

Proof. By virtue of Proposition 3.4.5.4, the counit map vX : X+ → X is a weak homotopy
equivalence of simplicial sets. Applying Corollary 3.3.5.2, we deduce that the map Ex(vX) :
Ex(X+) → Ex(X) is a weak homotopy equivalence of simplicial sets, hence also a weak
homotopy equivalence of the underlying semisimplicial sets (Corollary 3.4.5.5). Since the
composite map

Ex(X) Ex(ι)−−−→ Ex(X+) Ex(vX)−−−−→ Ex(X)

is the identity, it follows that Ex(ι) is also a weak homotopy equivalence of semisimplicial
sets.

Corollary 3.4.5.8.0128 Let X and Y be simplicial sets and let f : X → Y be a morphism
of semisimplicial sets. Then f is a weak homotopy equivalence of semisimplicial sets if
and only if the induced map Ex(f) : Ex(X) → Ex(Y ) is a weak homotopy equivalence of
semisimplicial sets.

Proof. By definition, f : X → Y is a weak homotopy equivalence of semisimplicial sets if and
only if the induced map f+ : X+ → Y + is a weak homotopy equivalence of simplicial sets.
By virtue of Corollary 3.3.5.2, this is equivalent to the assertion that Ex(f+) : Ex(X+)→
Ex(Y +) is a weak homotopy equivalence when viewed as a morphism of simplicial sets, or
equivalently when viewed as a morphism of semisimplicial sets (Corollary 3.4.5.5). The
desired result now follows by inspecting the commutative diagram of semisimplicial sets

Ex(X) Ex(f) //

��

Ex(Y )

��
Ex(X+) Ex(f+) // Ex(Y +),

since the vertical maps are weak homotopy equivalences by virtue of Variant 3.4.5.7.

We now turn to the proof of Proposition 3.4.5.4. The main ingredient we will need is the
following is the following:

Lemma 3.4.5.9.0129 Let C be a category, and suppose that the collection of non-identity
morphisms in C is closed under composition. Then the counit map vN•(C) : N•(C)+ → N•(C)
is a homotopy equivalence of simplicial sets.

Proof. Let C+ denote the category obtained from C by formally adjoining a new identity
morphism id+

X for each object X ∈ C. More precisely, the category C+ is defined as follows:

https://kerodon.net/tag/0127
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• The objects of C+ are the objects of C.

• For every pair of objects X,Y ∈ C+, we have

HomC+(X,Y ) =

HomC(X,Y ) if X ̸= Y

HomC(X,Y ) ∐
{id+

X} if X = Y.

• If f : X → Y and g : Y → Z are morphisms in C+, then the composition g ◦ f is
equal to g if f = id+

Y , to the morphism f if g = id+
Y , and is otherwise given by the

composition law for morphisms in C.

Note that the collection of non-identity morphisms in C+ is closed under composition, so
that the nerve N•(C+) is a braced simplicial set (Exercise 3.3.1.2). Unwinding the definitions,
we see that the semisimplicial subset N•(C+)nd ⊆ N•(C+) can be identified with the N•(C)
(as a semisimplicial set). Using Corollary 3.3.1.11, we obtain a canonical isomorphism of
simplicial sets N•(C)+ ≃ N•(C+). Under this isomorphism, the counit map vN•(C) is induced
by the functor F : C+ → C which is the identity on objects, and carries each morphism
f ∈ HomC(X,Y ) ⊆ HomC+(X,Y ) to itself.

Let G : C → C+ be the functor which is the identity on objects, and which carries a
morphism f ∈ HomC(X,Y ) to the morphism

G(f) =

id+
X if X = Y and f = idX

f otherwise.
∈ HomC+(X,Y );

this functor is well-defined by virtue of our assumption that the collection of non-identity
morphisms of C is closed under composition. We will complete the proof by showing that
the induced map N•(G) : N•(C) → N•(C+) is a simplicial homotopy inverse of N•(F ) =
vN•(C). One direction is clear: the composition C G−→ C+ F−→ C is the identity functor
idC, so N•(F ) ◦ N•(G) is equal to the identity. The composition C+ F−→ C G−→ C+ is
not the identity functor on C+: for each object X ∈ C, it carries the morphism idX ∈
HomC(X,X) ⊂ HomC+(X,X) to the “new” identity morphism id+

X . However, there is a
natural transformation α : G ◦ F → idC+ , given by the construction (X ∈ C+) 7→ idX . It
follows that the map of simplicial sets N•(G) ◦N•(F ) is homotopic to the identity (Example
3.1.5.7).

Proof of Proposition 3.4.5.4. We proceed as in the proof of Proposition 3.3.4.8. For every
simplicial set X, the counit map vX : X+ → X can be realized as a filtered colimit of
counit maps {vskn(X) : skn(X)+ → skn(X)}n≥0. Since the collection of weak homotopy
equivalences is closed under the formation of filtered colimits (Proposition 3.2.8.3), it will
suffice to show that each of the maps vskn(X) is a weak homotopy equivalence. We may
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therefore replace X by skn(X), and thereby reduce to the case where X is n-skeletal for
some nonnegative integer n ≥ 0. We now proceed by induction on n.

Let Y = skn−1(X) be the (n − 1)-skeleton of X. Let S denote the collection of
nondegenerate n-simplices of X, let X ′ = ∐

σ∈S ∆n denote their coproduct, and let Y ′ =∐
σ∈S ∂∆n denote the boundary of X ′. Proposition 1.1.4.12 then supplies a pushout diagram

of simplicial sets

012A

Y ′ //

��

X ′

��
Y // X.

(3.24)

Note that both (3.24) and the induced diagram

Y ′+ //

��

X ′+

��
Y + // X+

are homotopy pushout squares (this is a special case of Example 3.4.2.12, since the maps
Y ′ ↪→ X ′ and Y ′+ ↪→ X ′+ are monomorphisms). Moreover, our inductive hypothesis
guarantees that the maps vY : Y + → Y and vY ′ : Y ′+ → Y ′ are weak homotopy equivalences.
Applying Proposition 3.4.2.9 to the commutative diagram

Y ′+ //

��

vY ′

!!

Y +

vY

  

��

Y ′ //

��

Y

��

X ′+ //

vX′

  

X+

vX

  
X ′ // X,

https://kerodon.net/tag/012A
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we are reduced to proving that vX′ is a weak homotopy equivalence. Using Remark 3.1.6.20,
we can reduce further to the problem of showing that the map vX : X+ → X is a weak
homotopy equivalence in the special case X = ∆n, which follows from Lemma 3.4.5.9.

3.4.6 Excision

012BLet X be a topological space which is a union of two open subsets U, V ⊆ X. Then the
diagram

U ∩ V //

��

U

��
V // X

is a pushout square in the category of topological spaces. Stated more informally, the
topological space X can be obtained by gluing U and V along their common open subset
U ∩ V . This observation has a homotopy-theoretic counterpart:

Theorem 3.4.6.1 (Excision). 012CLet X be a topological space, and let U, V ⊆ X be subsets
whose interiors Ů ⊆ U and V̊ ⊆ V comprise an open covering of X. Then the diagram of
singular simplicial sets

Sing•(U ∩ V ) //

��

Sing•(U)

��
Sing•(V ) // Sing•(X)

is a homotopy pushout square (Definition 3.4.2.1).

Remark 3.4.6.2. 012DIn the situation of Theorem 3.4.6.1, the canonical maps Sing•(U) ←↩
Sing•(U ∩ V ) ↪→ Sing•(V ) are monomorphisms. Consequently, the conclusion of Theorem
3.4.6.1 is equivalent to the assertion that the natural map

Sing•(U)
∐

Sing•(U∩V )
Sing•(V )→ Sing•(X)

is a weak homotopy equivalence of simplicial sets (see Proposition 3.4.2.11).
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Warning 3.4.6.3.012E In the situation of Theorem 3.4.6.1, it is generally not true that the
diagram

Sing•(U ∩ V ) //

��

Sing•(U)

��
Sing•(V ) // Sing•(X)

is a pushout square of simplicial sets. Concretely, this is because the image of a continuous
function f : |∆n| → X need not be contained in either U or V .

Our goal in this section is to prove a stronger version Theorem 3.4.6.1, where we allow
more general coverings of X.

Definition 3.4.6.4.012F Let X be a topological space and let U be a collection of subsets of X.
We say that a singular n-simplex σ : |∆n| → X is U-small if its image is contained in U ,
for some U ∈ U . We let SingUn (X) denote the subset of Singn(X) consisting of the U-small
simplices. Note that the subsets {SingUn (X)}n≥0 are stable under the face and degeneracy
operators of the simplicial set Sing•(X), and therefore determine a simplicial subset which
we will denote by SingU• (X) ⊆ Sing•(X).

Remark 3.4.6.5.012G In the situation of Definition 3.4.6.4, the simplicial set SingU• (X) is
given by the union ⋃

U∈U Sing•(U), where we regard each Sing•(U) as a simplicial subset of
Sing•(X).

Our main result can now be stated as follows:

Theorem 3.4.6.6.012H Let X be a topological space and let U be a collection of subsets of X
satisfying X = ⋃

U∈U Ů . Then the inclusion map SingU• (X) ↪→ Sing•(X) is a weak homotopy
equivalence.

Proof of Theorem 3.4.6.1 from Theorem 3.4.6.6. Let X be a topological space and let U =
{U, V } be a pair of subsets of X. Then SingU• (X) can be identified with the pushout

Sing•(U)
∐

Sing•(U∩V )
Sing•(V ),

formed in the category of simplicial sets. Theorem 3.4.6.6 then asserts that if X = Ů ∪ V̊ ,
then the inclusion

Sing•(U)
∐

Sing•(U∩V )
Sing•(V ) ↪→ Sing•(X)

is a weak homotopy equivalence. By virtue of Remark 3.4.6.2, this is equivalent to Theorem
3.4.6.1.
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The proof of Theorem 3.4.6.6 is based on the observation that every singular n-simplex
σ : |∆n| → X can be “decomposed” into U-small simplices by repeatedly applying the
barycentric subdivision described in Proposition 3.3.2.3. To make this precise, we need the
following geometric observation:

Lemma 3.4.6.7. 012JLet V be a normed vector space over the real numbers and let K ⊆ V

be the convex hull of a finite collection of points v0, v1, . . . , vn ∈ V , given by the image of a
continuous function:

f : |∆n| → V (t0, t1, . . . , tn) 7→ t0v0 + t1v1 + · · ·+ tnvn.

Let σ be any m-simplex of the subdivision Sd(∆n), let fσ denote the composite map

|∆m| |σ|−→ |Sd(∆n)| ≃ |∆n| f−→ V

(where the homeomorphism | Sd(∆n)| ≤ |∆n| is supplied by Proposition 3.3.2.3), and let
K0 ⊆ K be the image of fσ. Then the diameters of K0 and K satisfy the inequality
diam(K0) ≤ n

n+1diam(K).

Proof. Let us denote the norm on the vector space V by | • |V . Fix points x, y ∈ |∆m|; we
wish to show that |fσ(x)− fσ(y)|V ≤ n

n+1diam(K). Note that, if we regard the point x as
fixed, then the function y 7→ |fσ(x)− fσ(y)|V is convex, and therefore achieves its supremum
at some vertex of |∆m|. We may therefore assume without loss of generality that y is a
vertex of |∆m|. Similarly, we may assume that x is a vertex of |∆m|. We may also assume
that x ̸= y (otherwise there is nothing to prove). Exchanging x and y if necessary, it follows
that there exist disjoint nonempty subsets A,B ⊆ {0, 1, . . . , n} of cardinality a = |A| and
b = |B| satisfying

fσ(x) =
∑
i∈A

vi
a

fσ(y) =
∑

i∈A∪B

vi
a+ b

.

We then compute

|fσ(x)− fσ(y)|V = |
∑

(i,j)∈A×B

vi − vj
a(a+ b) |V

≤
∑

(i,j)∈A×B

|vi − vj |V
a(a+ b)

≤
∑

(i,j)∈A×B

diam(K)
a(a+ b)

= b

a+ b
diam(K)

≤ n

n+ 1diam(K).
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Proof of Theorem 3.4.6.6. Let X be a topological space and let U be a collection of subsets
of X satisfying X = ⋃

U∈U Ů . For each k ≥ 0, let Y (k) ⊆ Sing•(X) denote the semisimplicial
subset spanned by those singular n-simplices f : |∆n| → X having the property that, for
every m-simplex σ of the iterated subdivision Sdk(∆n), the composite map

|∆m| |σ|−→ |Sdk(∆n)| ≃ |∆n| f−→ X

is U-small; here the identification |Sdk(∆n)| ≃ |∆n| is given by iteratively applying the
barycentric subdivision of Proposition 3.3.2.3. By construction, we have inclusions of
semisimplicial sets

SingU• (X) = Y (0) ⊆ Y (1) ⊆ Y (2) ⊆ · · · ⊆ Sing•(X).

We first claim that Sing•(X) = ⋃
k≥0 Y (k). Fix a continuous function f : |∆n| → X,

regarded as an n-simplex of Sing•(X); we wish to show that f belongs to Y (k) for k ≫ 0.
Let us identify the topological n-simplex |∆n| with the subset of Euclidean space V = Rn+1

given by the convex hull of the standard basis vectors {vi}0≤i≤n. Then the collection of
inverse images {f−1(U)}U∈U can be refined to an open covering of |∆n|. It follows that
there exists a positive real number ϵ with the property that, for every point v ∈ |∆n|, the
open ball

Bϵ(v) = {w ∈ |∆n| : |v − w|V < ϵ}

is contained in f−1(U), for some U ∈ U . Choose an integer k satisfying ( n
n+1)kdiam(|∆n|) < ϵ.

It then follows from iterated application of Lemma 3.4.6.7 that the composite map

|Sdk(∆n)| ≃ |∆n| f−→ X

carries each simplex of Sdk(∆n) into a subset U ⊆ X belonging to U , so that f belongs to
the semisimplicial subset Y (k) ⊆ Sing•(X).

Note that the inclusion ι : SingU• (X) ↪→ Sing•(X) is a weak homotopy equivalence of
simplicial sets if and only if it is a weak homotopy equivalence when regarded as a morphism
of semisimplicial sets (Corollary 3.4.5.5). It follows from the preceding argument that, as
a morphism of semisimplicial sets, ι can be realized as a filtered colimit of the inclusion
maps ι(k) : SingU• (X) = Y (0) ↪→ Y (k). Since the collection of weak homotopy equivalences
is closed under filtered colimits (Remark 3.4.5.2), it will suffice to show that each ι(k) is a
weak homotopy equivalence. Proceeding by induction on k, we are reduced to showing that
each of the inclusion maps Y (k) ↪→ Y (k+ 1) is a weak homotopy equivalence. Note that the
semisimplicial isomorphism φ : Sing•(X) ≃ Ex(Sing•(X)) of Example 3.3.2.9 restricts to a
map φU : SingU• (X)→ Ex(SingU• (X)) (which is generally not an isomorphism). Unwinding
the definitions, we see that the inclusion Y (k) ↪→ Y (k + 1) can be identified with the map
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Exk(φU ) : Exk(SingU• (X))→ Exk+1(SingU• (X)) (see Variant 3.3.2.10). By virtue of Corollary
3.4.5.8, it will suffice to show that φU is a weak homotopy equivalence.

Fix an integer n ≥ 0 as above, let Chain[n] denote the collection of all nonempty subsets
of [n] = {0 < 1 < · · · < n}. Let σ be an n-simplex of the simplicial set ∆1×SingU• (X), which
we identify with a pair (ϵ, f) where ϵ : [n]→ [1] is a nondecreasing function and f : |∆n| → X

is a continuous map of topological spaces. Define a map of sets gϵ : Chain[n]→ |∆n| by the
formula

gϵ(S) =


∑

i∈S
vi

|S| if ϵ|S = 0
vMax(S) otherwise.

Then gϵ extends to a continuous map

gϵ : |N•(Chain[n])| → |∆n|

which is affine when restricted to each simplex of |N•(Chain[n])| ≃ | Sd(∆n)|. The composite
map

| Sd(∆n)| gϵ−→ |∆n| f−→ X

can be identified with an n-simplex of Ex(SingU• (X)), which we will denote by h(σ). It is
not difficult to see that the construction σ 7→ h(σ) is compatible with face operators, and
therefore determines a morphism of semisimplicial sets h : ∆1 × SingU• (X)→ Ex(SingU• (X)).
By construction, this morphism fits into a commutative diagram of semisimplicial sets

∆1 × SingU• (X)

h

''

{0} × SingU• (X)

φU

��

i0oo

{1} × SingU• (X)

i1

OO

ρ // Ex(SingU• (X)),

where i0 and i1 are the inclusion maps and ρ = ρSingU• (X) is the comparison map of
Construction 3.3.4.3. Note that the morphisms i0, i1, and ρ are weak homotopy equivalences
of simplicial sets (Theorem 3.3.5.1), and therefore also weak homotopy equivalences of
semisimplicial sets (Corollary 3.4.5.5). Invoking the two-out-of-three property (Remark
3.4.5.3), we conclude that h and φU are also weak homotopy equivalences of semisimplicial
sets.

3.4.7 The Seifert van-Kampen Theorem

012K
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Let X be a topological space containing a pair of subsets U, V ⊆ X. If X is covered by
the interiors Ů and V̊ , then Theorem 3.4.6.1 guarantees that the diagram of Kan complexes

Sing•(U ∩ V ) //

��

Sing•(U)

��
Sing•(V ) // Sing•(X)

is a homotopy pushout square. In this section, we apply this assertion to recover several
classical results in algebraic topology.

Theorem 3.4.7.1 (Seifert-van Kampen).012L Let X be a topological space containing a pair of
subsets U, V ⊆ X which satisfy the following conditions:

(1) The topological spaces U , V , and U ∩ V are path connected.

(2) The interiors Ů ⊆ U and V̊ ⊆ V comprise an open covering of X.

Then, for every point x ∈ U ∩ V , the diagram

π1(U ∩ V, x) //

��

π1(U, x)

��
π1(V, x) // π1(X,x)

is a pushout square in the category of groups.

We will deduce Theorem 3.4.7.1 from the following variant of Brown ([7]), which does
not require any connectivity hypotheses.

Theorem 3.4.7.2 (Seifert-van Kampen, Groupoid Version).012M Let X be a topological space,
and let U, V ⊆ X be subsets whose interiors Ů ⊆ U and V̊ ⊆ V comprise an open covering
of X. Then the diagram of fundamental groupoids

π≤1(U ∩ V ) //

��

π≤1(U)

��
π≤1(V ) // π≤1(X)

is a pushout square in the (ordinary) category Cat.

https://kerodon.net/tag/012L
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Proof. Let C be a category; we wish to show that the diagram of sets σ :

HomCat(π≤1(U ∩ V ), C) HomCat(π≤1(U), C)oo

HomCat(π≤1(V ), C)

OO

HomCat(π≤1(X), C)

OO

oo

is a pullback square. Replacing C by its core C≃ (Construction 1.3.5.4), we may assume
without loss of generality that C is a groupoid. Let N•(C) denote the nerve of C, so that we
can identify σ with the diagram

HomSet∆(Sing•(U ∩ V ),N•(C)) HomSet∆(Sing•(U),N•(C))oo

HomSet∆(Sing•(V ),N•(C))

OO

HomSet∆(Sing•(X),N•(C)).

OO

oo

Let K denote the pushout Sing•(U) ∐
Sing•(U∩V ) Sing•(V ), which we regard as a simplicial

subset of Sing•(X). Unwinding the definitions, we must show that every morphism of
simplicial sets f : K → N•(C) extends uniquely to a map f : Sing•(X) → N•(C). Note
that the inclusion K ↪→ Sing•(X) is a weak homotopy equivalence (Theorem 3.4.6.1) and
therefore anodyne (Corollary 3.3.7.7), so the existence of f follows from the observation
that N•(C) is a Kan complex (Proposition 1.3.5.2). To prove uniqueness, suppose that we
are given a pair of maps f, f ′ : Sing•(X) → N•(C) satisfying f |K = f = f

′|K . It follows
that there exists a homotopy h : ∆1 × Sing•(X)→ N•(C) which is constant when restricted
to ∆1 ×K. Note that f and f

′ can be identified with functors F, F ′ : π≤1(X) → C, and
h with a natural transformation of functors H : F → F ′. Since every vertex of Sing•(X)
is contained in K, this natural transformation carries each point x ∈ X to the identity
morphism idf(x) : F (x)→ F (x) = F ′(x). It follows that the functors F and F ′ are identical,
so that the morphisms f and f

′ are the same.

Proof of Theorem 3.4.7.1. For every group G, let us write BG for the groupoid having a
single object with automorphism group G (Remark 1.3.2.4). Fix a point x ∈ U ∩ V . To
show that the diagram

π1(U ∩ V, x) //

��

π1(U, x)

��
π1(V, x) // π1(X,x)
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is a pushout square in the category of groups, it will suffice to show that the diagram σ0:

Bπ1(U ∩ V, x) //

��

Bπ1(U, x)

��
Bπ1(V, x) // Bπ1(X,x)

is a pushout square in the (ordinary) category Cat.
For each point y ∈ X, choose a continuous path py : [0, 1]→ X satisfying p(0) = x and

p(1) = y. By virtue of our assumption that U , V , and U ∩ V are path connected, we can
arrange that these paths satisfy the following requirements:

• If y = x, then py : [0, 1]→ X is the constant map taking the value x.

• If y is contained in the intersection U ∩ V , then the path py factors through U ∩ V .

• If y is contained in U , then the path py factors through U .

• If y is contained in V , then the path py factors through V .

Note that, for W ∈ {X,U, V, U ∩ V }, we can identify Bπ1(W,x) with the full subcategory
of π≤1(W ) spanned by the point x. Let rW : π≤1(W ) → Bπ1(W,x) be the functor which
carries each point of W to the point x, and each morphism α ∈ Homπ≤1(W )(y, z) to the
composition [pz]−1 ◦ α ◦ [py] (where [py] and [pz] denote the homotopy classes of the paths
py and pz, regarded as morphisms in the fundamental groupoid π≤1(W )). The functors rW
restrict to the identity on Bπ1(W,x) and are compatible as W varies, and therefore exhibit
σ0 as a retract of the diagram σ :

π≤1(U ∩ V ) //

��

π≤1(U)

��
π≤1(V ) // π≤1(X)

in the category Fun([1] × [1],Cat). Since σ is a pushout square (by virtue of Theorem
3.4.7.2), it follows that σ0 is also a pushout square.

If X is a topological space and U ⊆ X is a subspace (not necessarily open), we will
write H∗(X,U ; Z) for the relative homology groups of the pair (X,U): that is, the homology
groups of the quotient chain complex C∗(X; Z)/C∗(U ; Z) (see Example 2.5.5.3).
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Theorem 3.4.7.3 (Excision for Homology). 012NLet X be a topological space and let U, V ⊆ X
be subsets whose interiors Ů ⊆ U and V̊ ⊆ V comprise an open covering of X. Then the
inclusion U ↪→ X induces an isomorphism of relative homology groups

H∗(U,U ∩ V ; Z)→ H∗(X,V ; Z).

Proof. Let K denote the pushout Sing•(U) ∐
Sing•(U∩V ) Sing•(V ). We then have a commu-

tative diagram of short exact sequences of chain complexes

0 // C∗(V ; Z) // C∗(K; Z) //

θ′

��

C∗(U ; Z)/C∗(U ∩ V ; Z)

θ

��

// 0

0 // C∗(V ; Z) // C∗(X; Z) // C∗(X; Z)/C∗(V ; Z) // 0.

Consequently, to show that θ is a quasi-isomorphism, it will suffice to show that θ′ is a
quasi-isomorphism (Remark 2.5.1.7). This is a special case of Proposition 3.1.6.18, since
the inclusion K ↪→ Sing•(X) is a weak homotopy equivalence of simplicial sets (Theorem
3.4.6.1).

Remark 3.4.7.4 (The Mayer-Vietoris Sequence). 012PLet X be a topological space, let U, V ⊆ X
be subsets whose interiors Ů ⊆ U and V̊ ⊆ V comprise an open covering of X, and set
K = Sing•(U) ∐

Sing•(U∩V ) Sing•(V ). Then the inclusion K ↪→ Sing•(X) induces a quasi-
isomorphism C∗(K; Z) ↪→ C∗(X; Z) (by virtue of Theorem 3.4.6.1 and Proposition 3.1.6.18),
and we have a short exact sequence of chain complexes

0→ C∗(U ∩ V ; Z)→ C∗(U ; Z)⊕ C∗(V ; Z)→ C∗(K; Z)→ 0.

Passing to homology groups (see Construction [?]), we obtain a long exact sequence of
abelian groups

· · · → H∗+1(X; Z) δ−→ H∗(U ∩ V ; Z)→ H∗(U ; Z)⊕H∗(V ; Z)→ H∗(X; Z)→ · · ·

which we refer to as the Mayer-Vietoris sequence of the covering {U, V }. The existence of
this sequence is essentially equivalent to the statement of Theorem 3.4.7.3.

3.5 Truncations and Postnikov Towers

0513Let (X,x) be a pointed Kan complex. In §3.2.2, we introduced a sequence of groups

{πm(X,x)}m>0
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called the homotopy groups of (X,x). These groups are very useful tools for analyzing the
homotopy type of X. For example, the Kan complex X is contractible if and only if it
connected and all of its homotopy groups are trivial (Theorem 3.2.4.3). This is a special
case of the following more general result, which classifies Kan complexes having (at most)
one nontrivial homotopy group:

Proposition 3.5.0.1.0514 Let X be a connected Kan complex, let x ∈ X be a vertex, and let n
be a positive integer. Suppose that the homotopy groups πm(X,x) vanish for every positive
integer m ̸= n. Then X is homotopy equivalent to an Eilenberg-MacLane space K(G,n) for
some group G (which is abelian if n ≥ 2).

We will prove Proposition 3.5.0.1 in §3.5.7 (see Corollary 3.5.7.18). To carry out the
proof, it will be useful to break the hypothesis of Proposition 3.5.0.1 into two parts. In what
follows, we fix a positive integer n.

• We say that a Kan complex X is n-connective if it is connected and the homotopy
group πm(X,x) vanishes for every integer 0 < m < n and every choice of base point
x ∈ X.

• We say that a Kan complex X is n-truncated if the homotopy group πm(X,x) vanishes
for every integer m > n and every choice of base point x ∈ X.

Stated more informally, a Kan complex X is n-connective if its homotopy groups are
concentrated in degrees ≥ n, and n-truncated if its homotopy groups are concentrated in
degrees ≤ n. Each of these conditions admits a number of equivalent formulations, which
we study in §3.5.1 and §3.5.7, respectively.

Proposition 3.5.0.1 asserts that if a Kan complex X is both n-connective and n-truncated,
then it is homotopy equivalent to an Eilenberg-MacLane space K(G,n). We will deduce this
from a structural analysis of n-truncated Kan complexes in general. We begin by observing
that X is n-truncated if and only if, for every integer m ≥ n+ 2, the restriction map

θm : HomSet∆(∆m, X)→ HomSet∆(∂∆m, X)

is surjective (see Proposition 3.5.7.7). In §3.5.3, §3.5.4, and §3.5.5, we study stronger versions
of this condition:

• We say that X is (n+ 1)-coskeletal if, for every integer m ≥ n+ 2, the map θm is a
bijection (Definition 3.5.3.1).

• We say that X is weakly n-coskeletal if it is (n + 1)-coskeletal and, in addition, the
map θn+1 is injective (Definition 3.5.4.1).

https://kerodon.net/tag/0514
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• We say that X is an n-groupoid if it is weakly n-coskeletal and every n-simplex
σ : ∆n → X is determined by its homotopy class relative to ∂∆n (see Definition 3.5.5.1
and Proposition 3.5.5.12).

For any Kan complex X, we have the following implications:

X is an n-groupoid

��
X is weakly n-coskeletal

��
X is (n+ 1)-coskeletal

��
X is n-truncated.

None of these implications is reversible. However, they are reversible “up to homotopy”
in the following sense: every n-truncated Kan complex is homotopy equivalent to an n-
groupoid. More generally, in §3.5.6 we will associate to any Kan complex X an n-groupoid
π≤n(X), which we refer to as the fundamental n-groupoid of X (Construction 3.5.6.10). It
is equipped with a comparison map f : X → π≤n(X) which is universal among maps from
X to n-groupoids (Proposition 3.5.6.5), which is a homotopy equivalence if and only if X is
n-truncated (Variant 3.5.7.16).

Remark 3.5.0.2. 0515The preceding characterization of n-truncated Kan complexes has a
counterpart for n-connective Kan complexes. A Kan complex X is n-connective if and only
if it is homotopy equivalent to a Kan complex Y having a single m-simplex for each m < n

(Proposition 3.5.2.9 and Remark 3.5.2.10). We will prove Proposition 3.5.0.1 by showing that,
in this case, the fundamental n-groupoid π≤n(Y ) is isomorphic to an Eilenberg-MacLane
space K(G,n), for some group G. See Proposition 3.5.5.16.

For any Kan complex X, the collection of fundamental n-groupoids {π≤n(X)} can be
organized into an inverse system

· · · → π≤3(X)→ π≤2(X)→ π≤1(X)→ π0(X)
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which we will refer to as the (canonical) Postnikov tower of X (Example 3.5.8.2). In §3.5.8,
we show that each of the transition maps π≤n(X)→ π≤n−1(X) is a Kan fibration, whose
fiber over a vertex x is homotopy equivalent to the Eilenberg-MacLane space K(G,n) for
G = πn(X,x) (Corollary 3.5.8.9). Stated more informally, every Kan complex X can be
built as a successive extension of Eilenbeg-MacLane spaces.

For many applications, it will be useful to work with relative versions of the preceding
conditions. Let f : X → Y be a morphism of Kan complexes. Let us assume for simplicity
that f is a Kan fibration, so that the fiber Xy = {y}×Y X is a Kan complex for each vertex
y ∈ Y . We will say that f is n-connective if each of the Kan complexes Xy is n-connective
(see Definition 3.5.1.13 and Proposition 3.5.1.22), and we say that f is n-truncated if each
of the Kan complexes Xy is n-truncated (see Definition 3.5.9.1 and Proposition 3.5.9.8).
In §3.5.2 and §3.5.9, we study a number of different formulations of these conditions. In
particular, we show that both are characterized by lifting properties:

• A Kan fibration f : X → Y is n-connective if and only if the every lifting problem

0516 A //

��

X

f

��
B //

??

Y

(3.25)

admits a solution, provided that B is a simplicial set of dimension ≤ n and A is a
simplicial subset of B. (Proposition 3.5.2.1).

• A Kan fibration f : X → Y is n-truncated if and only if every lifting problem (3.25) has
solution, provided that A is a simplicial subset of B which contains the (n+1)-skeleton
of B (Corollary 3.5.9.23).

3.5.1 Connectivity

0517 Recall that a simplicial set X is connected if the set of path components π0(X) has exactly
one element (Corollary 1.2.1.15). When X is a Kan complex, we can use the homotopy
groups introduced in §3.2 to formulate a hierarchy of stronger connectivity conditions.

Definition 3.5.1.1.04GL Let X be a Kan complex and let n be a nonnegative integer. We
say that X is n-connective if it is nonempty and, for every vertex x ∈ X and every integer
0 ≤ m < n, the set πm(X,x) consists of a single element.

Remark 3.5.1.2.0518 It will sometimes be useful to extend Definition 3.5.1.1 to the case where
n is an arbitrary integer. By convention, if n < 0, then every Kan complex X is n-connective.
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Warning 3.5.1.3. 04GMThe terminology of Definition 3.5.1.1 is not standard. Many authors
refer to a Kan complex X as n-connected if it is (n+ 1)-connective in the sense of Definition
3.5.1.1.

Remark 3.5.1.4. 04GNLet X be a Kan complex. It follows from Example 3.2.2.18 that the
isomorphism class of the homotopy group πm(X,x) depends only on the connected component
[x] ∈ π0(X). Consequently, if n > 0, then X is n-connective if and only if it is connected and
the homotopy groups πm(X,x) are trivial for 0 < m < n for some choice of vertex x ∈ X.

Remark 3.5.1.5 (Homotopy Invariance). 04GPLet X and Y be Kan complexes which are
homotopy equivalent. Then X is n-connective if and only if Y is n-connective. See Remark
3.2.2.17.

Variant 3.5.1.6. 04GQLet X be a simplicial set and let n be an integer. Using Corollary 3.1.7.2,
we can choose an anodyne map X ↪→ Q, where Q is a Kan complex. We will say that X is
n-connective if the Kan complex Q is n-connective, in the sense of Definition 3.5.1.1. By
virtue of Remark 3.5.1.5 (and Warning 3.1.7.3), this condition is independent of the choice
of Q.

Example 3.5.1.7. 04GRA simplicial set X is 0-connective if and only if it is nonempty.

Example 3.5.1.8. 04GSA simplicial set X is 1-connective if and only if it is connected (see
Corollary 1.2.1.15).

Example 3.5.1.9. 04GTA Kan complex X is 2-connective if and only if it is simply connected:
that is, X is connected and the fundamental group π1(X,x) vanishes (by virtue of Remark
3.5.1.4, this condition does not depend on the choice of base point x ∈ X).

Example 3.5.1.10. 0519Let X be a Kan complex which has only a single k-simplex for 0 ≤ k ≤ n
(that is, the n-skeleton skn(X) is isomorphic to ∆0). Then X is (n+ 1)-connective. For a
partial converse, see Proposition 3.5.2.9.

Remark 3.5.1.11. 051ALet X be a simplicial set. Then X is weakly contractible if and only if
it is n-connective for every integer n. To prove this, we can use Corollary 3.1.7.2 to reduce
to the case where X is a Kan complex, in which case it is a reformulation of Proposition
3.5.1.12.

Definition 3.5.1.1 admits a number of alternative formulations.

Proposition 3.5.1.12. 04GVLet X be a Kan complex and let n be a nonnegative integer. The
following conditions are equivalent:

(1) The Kan complex X is n-connective.
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(2) For every integer 0 ≤ m ≤ n, every morphism ∂∆m → X can be extended to an
m-simplex of X.

(3) Let B be a simplicial set of dimension ≤ n and let A ⊆ B be a simplicial subset. Then
every morphism f0 : A→ X admits an extension f : B → X.

(4) Let A be a simplicial set of dimension < n. Then every morphism f : A → X is
nullhomotopic.

Proof. The equivalence (1)⇔ (2) follows from Lemma 3.2.4.14 (and Variant 3.2.4.15), the
implication (2)⇒ (3) follows from Proposition 1.1.4.12, and the implication (4)⇒ (2) follows
from Variant 3.2.4.13. We complete the proof by showing that (3) implies (4). Applying
assumption (3) to the inclusion map ∅ ⊆ ∆0, we deduce that there exists a vertex x ∈ X. It
will therefore suffice to show that if A is a simplicial set of dimension < n, then every pair
of morphisms f0, f1 : A→ X are homotopic (in particular, f0 is homotopic to the constant
map A→ {x}). This follows by applying (3) to the inclusion map ∂∆1×A ↪→ ∆1 ×A (see
Proposition 1.1.3.6).

We now introduce a relative version of Definition 3.5.1.1.

Definition 3.5.1.13.04GZ Let f : X → Y be a morphism of Kan complexes. We say that f is
n-connective if it satisfies the following conditions:

• If n ≥ 0, then the underlying map of connected components π0(X) → π0(Y ) is
surjective.

• If n > 0 and x ∈ X is a vertex having image y = f(x), the induced map πm(X,x)→
πm(Y, y) is a bijection when m < n and a surjection when m = n.

Remark 3.5.1.14.04H0 Suppose we are given a diagram of Kan complexes

X ′

f ′

��

// X

f

��
Y ′ // Y

which commutes up to homotopy. If the horizontal maps are homotopy equivalences, then f
is n-connective if and only if f ′ is n-connective.
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Variant 3.5.1.15. 04H1Let f : X → Y be a morphism of simplicial sets and let n be a nonnegative
integer. Using Proposition 3.1.7.1, we can choose a commutative diagram

04H2X //

f

��

X ′

f ′

��
Y // Y ′,

(3.26)

where X ′ and Y ′ are Kan complexes and the horizontal maps are weak homotopy equivalences.
We will say that f is n-connective if the morphism of Kan complexes f ′ is n-connective, in
the sense of Definition 3.5.1.13. It follows from Remark 3.5.1.14 that this condition does not
depend on the choice of the diagram (3.26).

Example 3.5.1.16. 051BFor n < 0, every morphism of simplicial sets f : X → Y is n-connective.

Example 3.5.1.17. 051CA morphism of simplicial sets f : X → Y is 0-connective if and only if
the induced map π0(f) : π0(X)→ π0(Y ) is surjective.

Example 3.5.1.18. 04H3Let X be a simplicial set and let n be an integer. Then X is n-connective
(in the sense of Variant 3.5.1.6) if and only if the projection map X → ∆0 is n-connective
(in the sense of Variant 3.5.1.15).

Remark 3.5.1.19. 04HJLet f : X → Y be a morphism of simplicial sets. Then f is a weak
homotopy equivalence if and only if it is n-connective for every integer n. To see this, we
can assume without loss of generality that X and Y are Kan complexes, in which case it is
a restatement of Theorem 3.2.7.1.

Remark 3.5.1.20. 04H4Let f, f ′ : X → Y be morphisms of simplicial sets which are homotopic.
Then f is n-connective if and only if f ′ is n-connective.

Remark 3.5.1.21 (Monotonicity). 04H5Let n be a nonnegative integer and let f : X → Y be
an n-connective morphism of simplicial sets. Then f is also m-connective for every integer
m ≤ n.

Proposition 3.5.1.22. 04H7Let f : X → Y be a Kan fibration of simplicial sets and let n be an
integer. Then f is n-connective (in the sense of Variant 3.5.1.15) if and only if, for every
vertex y ∈ Y , the Kan complex Xy = {y} ×Y X is n-connective (in the sense of Definition
3.5.1.1).
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Proof. Using Proposition 3.1.7.1, we can choose a commutative diagram

X

f

��

// X ′

f ′

��
Y

g // Y ′

where the horizontal maps are inner anodyne, Y ′ is a Kan complex, and f ′ is a Kan fibration.
Without loss of generality, we may assume that the map g is bijective on vertices (for example,
we could take Y ′ = Ex∞(Y ); see Proposition 3.3.6.2). It follows from Proposition 3.3.7.1
that for each vertex y ∈ Y , the induced map of Kan complexes Xy → X ′g(y) is a homotopy
equivalence. In particular, Xy is n-connective if and only if X ′g(y) is n-connective (Remark
3.5.1.5). We can therefore replace f by f ′, and thereby reduce to proving Proposition 3.5.1.22
in the special case where X and Y are Kan complexes.

Without loss of generality, we may assume that n ≥ 0 (otherwise, the assertion is
vacuous). Our proof proceeds by induction on n. In the case n = 0, we must show that
f induces a surjection π0(f) : π0(X) → π0(Y ) if and only if every fiber of f is nonempty,
which follows from (Corollary 3.2.6.3). Let us therefore assume that n > 0 and that f has
nonempty fibers. To carry out the inductive step, it will suffice to show that for every vertex
x ∈ X having image y = f(x), the following conditions are equivalent:

(a) The morphism f induces a surjective group homomorphism πn(X,x)→ πn(Y, y), and
the kernel of the map πn−1(X,x)→ πn−1(Y, y) is trivial (by convention, in the case
n = 1, we define this kernel to be the inverse image of [y] ∈ π0(Y )).

(b) The set πn−1(Xy, x) consists of a single element.

This follows from Corollary 3.2.6.8 in the case n > 1, and from Variant 3.2.6.9 in the case
n = 1.

Remark 3.5.1.23.051D In the situation of Proposition 3.5.1.22, it is not necessary to verify that
Xy is n-connective for every vertex y ∈ Y ; it is enough to check this condition at one vertex
in each connected component of Y (see Remark 3.3.7.3). In particular, if Y is connected,
then it is enough to check that Xy is n-connective for any vertex y ∈ Y .

Corollary 3.5.1.24.051E Let n be an integer and suppose we are given a homotopy pullback
square of simplicial sets

04HU X //

f

��

X ′

f ′

��
Y

g // Y ′.

(3.27)
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If the morphism f is n-connective (in the sense of Variant 3.5.1.6), then f ′ is also n-
connective. Moreover, the converse holds if g is surjective on connected components.

Proof. Using Proposition 3.1.7.1, we can reduce to the case where f and f ′ are Kan fibrations.
In this case, our assumption that (3.27) is a homotopy pullback square guarantees that for
every vertex y ∈ Y , the induced map of fibers Xy → X ′g(y) is a homotopy equivalence of Kan
complexes (Example 3.4.1.4). The desired result now follows from criterion of Proposition
3.5.1.22 (together with Remark 3.5.1.23).

Corollary 3.5.1.25. 051FLet f : X → Y be a morphism of Kan complexes and let n be an
integer. The following conditions are equivalent:

(1) The morphism f is n-connective.

(2) For every morphism of Kan complexes Y ′ → Y , the projection map Y ′ ×h
Y X → Y ′ is

n-connective.

(3) For every vertex y ∈ Y , the homotopy fiber {y} ×h
Y X is n-connective

Proof. Using Proposition 3.4.0.9, we can reduce to the case where f is a Kan fibration. In
this case, we can use Proposition 3.4.0.7 to reformulate conditions (2) and (3) as follows:

(2′) For every morphism of Kan complexes Y ′ → Y , the projection map Y ′ ×Y X → Y ′ is
n-connective.

(3′) For every vertex y ∈ Y , the fiber {y} ×Y X is n-connective.

The equivalence (1) ⇔ (3′) now follows from Proposition 3.5.1.22, and the equivalence
(1)⇔ (2′) from Corollary 3.5.1.24

Proposition 3.5.1.26. 04H6Let f : X → Y be a morphism of simplicial sets and let n be an
integer. Then:

(1) If the Y is n-connective and f is n-connective, then X is n-connective.

(2) If X is n-connective and Y is (n+ 1)-connective, then f is n-connective.

(3) If f is n-connective and X is (n+ 1)-connective, then Y is (n+ 1)-connective.

Proof. Without loss of generality, we may assume that X and Y are Kan complexes. We
proceed by induction on n. If n < 0, then assertions (1) and (2) are vacuous, and (3) reduces
to the assertion that if X is nonempty, then Y is also nonempty. When n = 0, we can
restate Proposition 3.5.1.26 as follows:

(10) If Y is nonempty and π0(f) : π0(X)→ π0(Y ) is surjective, then X is nonempty.
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(20) If X is nonempty and Y is connected, then the map π0(f) : π0(X)→ π0(Y ) is surjective.

(30) If π0(f) : π0(X)→ π0(Y ) is surjective and X is connected, then Y is connected.

Assume that n > 0, and let x ∈ X be a vertex having image y = f(x). The inductive step is
a consequence of the following observations:

(1n) If the morphism πn−1(f) : πn−1(X,x) → πn−1(Y, y) is bijective and πn−1(Y, y) is a
singleton, then πn−1(X,x) is also a singleton.

(2n) If the sets πn−1(X,x) and πn(Y, y) are singletons, then πn−1(f) is injective and πn(f)
is surjective.

(3n) If πn(f) is surjective and πn(X,x) is a singleton, then πn(Y, y) is a singleton.

Corollary 3.5.1.27.051G Let Y be a simplicial set and let n ≥ −1 be an integer. The following
conditions are equivalent:

(1) The simplicial set Y is n-connective.

(2) The simplicial set Y is nonempty and, for every vertex y ∈ Y , the inclusion map
{y} ↪→ Y is (n− 1)-connective.

(3) There exists a vertex y ∈ Y for which the inclusion map {y} ↪→ Y is (n− 1)-connective.

Corollary 3.5.1.28 (Transitivity).04H9 Let f : X → Y and g : Y → Z be morphisms of
simplicial sets and let n be an integer. Then:

(1) If f and g are n-connective, then the composition (g ◦ f) : X → Z is n-connective.

(2) If g ◦ f is n-connective and g is (n+ 1)-connective, then f is n-connective.

(3) If f is n-connective and (g ◦ f) is (n+ 1)-connective, then g is (n+ 1)-connective.

Proof. Using Proposition 3.1.7.1, we can reduce to the case where Z is a Kan complex and
the morphisms f and g are Kan fibrations. Using the criterion of Proposition 3.5.1.22, we
can further reduce to the case Z = ∆0. In this case, Corollary 3.5.1.28 is a restatement of
Proposition 3.5.1.26.

Corollary 3.5.1.29.04HA Let f : X → Y be a Kan fibration of simplicial sets and let n be a
nonnegative integer. Then f is n-connective if and only if it satisfies the following pair of
conditions:

(a) The map of connected components π0(f) : π0(X)→ π0(Y ) is surjective.
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(b) The diagonal map δX/Y : X → X ×Y X is (n− 1)-connective.

Proof. Without loss of generality, we may assume that condition (a) is satisfied. Since f is a
Kan fibration, every vertex y ∈ Y has the form f(x) for some vertex x ∈ X (Corollary 3.2.6.3).
It follows that every fiber of f can also be viewed as a fiber of the map q : X ×Y X → X

given by projection onto the first factor. Using the criterion of Proposition 3.5.1.22, we see
that f is n-connective if and only if q is n-connective. The desired result now follows by
applying Corollary 3.5.1.28 to the morphisms X

δX/Y−−−→ X ×Y X
q−→ X, since the composite

map q ◦ δX/Y = idX is n-connective.

Variant 3.5.1.30. 051HLet f : X → Y be a morphism of Kan complexes which is surjective on
connected components and let n ≥ 0 be an integer. The following conditions are equivalent:

(1) The morphism f is n-connective.

(2) The induced map
θ : Fun(∆1, X) = X ×h

X X → X ×h
Y X

is (n− 1)-connective.

(3) For every pair of vertices x, x′ ∈ X, the map of path spaces

{x} ×h
X {x′} → {f(x)} ×h

Y {f(x′)}

is (n− 1)-connective.

Proof. Using Proposition 3.1.7.1, we can factor f as a composition X
i−→ X

f−→ Y , where f
is a Kan fibration and i is a homotopy equivalence. Replacing X by a full simplicial subset
if necessary, we may further assume that i is surjective on vertices. It follows from Remark
3.5.1.14 (and Proposition 3.4.0.9) that conditions (1), (2), or (3) is satisfied by f if and
only if it is satisfied by f . Consequently, we may replace f by f and thereby reduce to
proving Variant 3.5.1.30 in the special case where f is a Kan fibration. In this case, we have
a commutative diagram

X //

δX/Y

��

Fun(∆1, X)

θ
��

X ×Y X // X ×h
Y X

where the horizontal maps are homotopy equivalences (Proposition 3.4.0.7), so the equivalence
of (1) and (2) follows from Corollary 3.5.1.29 (together with Remark 3.5.1.14). Since θ is a
Kan fibration (Theorem 3.1.3.1), the equivalence of (2) and (3) follows from Proposition
3.5.1.22.
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Corollary 3.5.1.31.04HL Let f : X → Y be a Kan fibration of simplicial sets. Then f is a weak
homotopy equivalence if and only if the relative diagonal δX/Y : X → X ×Y X is a weak
homotopy equivalence and the map of connected components π0(X)→ π0(Y ) is a surjection.

Proof. Combine Remark 3.5.1.19 with Corollary 3.5.1.29.

Corollary 3.5.1.32.04HB Let n be a nonnegative integer. Then a simplicial set X is n-connective
if and only if it is nonempty and the diagonal map δX : X → X ×X is (n− 1)-connective.

Proof. Using Corollary 3.1.7.2 and Proposition 3.1.6.23, we can reduce to the situation
where X is a Kan complex. In this case, the follows by applying Corollary 3.5.1.31 in the
special case Y = ∆0.

Corollary 3.5.1.33.02LF A simplicial set X is weakly contractible if and only if it is nonempty
and the diagonal map δX : X ↪→ X ×X is a weak homotopy equivalence.

Proof. Combine Remark 3.5.1.19 with Corollary 3.5.1.32.

3.5.2 Connectivity as a Lifting Property

051J Suppose we are given a commutative diagram of simplicial sets

051K X

f

��

// X ′

f ′

��
Y // Y ′.

(3.28)

If (3.28) is a homotopy pullback square and f ′ is n-connective, then Corollary 3.5.1.24
guarantees that f is also n-connective. In this section, we will prove a dual result: if (3.28)
is a homotopy pushout square and f is n-connective, then f ′ is also n-connective (Corollary
3.5.2.7). We will deduce this from the following relative version of Proposition 3.5.1.12:

Proposition 3.5.2.1.04HC Let f : X → Y be a Kan fibration of simplicial sets and let n be an
integer. The following conditions are equivalent:

(1) The morphism f is n-connective.

(2) For every vertex y ∈ Y , the Kan complex Xy = {y} ×Y X is n-connective.
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(3) For every simplicial set B of dimension ≤ n and every simplicial subset A ⊆ B, every
lifting problem

A //

��

X

f

��
B //

??

Y

admits a solution.

(4) For every integer 0 ≤ m ≤ n, every lifting problem

∂∆m //

��

X

f

��
∆m σ //

==

Y

admits a solution.

Proof. The equivalence (1) ⇔ (2) is Proposition 3.5.1.22, the implication (3) ⇒ (4) is
immediate, and the converse follows from Proposition 1.1.4.12. Note that any morphism
σ : ∆m → Y is homotopic to a constant map. Using the homotopy extension lifting property
(Remark 3.1.5.3), we see that (4) is equivalent to the following a priori weaker assertion:

(4′) For every integer 0 ≤ m ≤ n and every vertex y ∈ Y , every lifting problem

∂∆m //

��

Xy

fy

��
∆m σ //

==

{y}

admits a solution.

The equivalence of (2) and (4′) now follows from Proposition 3.5.1.12.

Corollary 3.5.2.2. 051LLet n be an integer and let f : X → Y be a morphism of simplicial sets
which is bijective on k-simplices for k < n and surjective for k = n. Then f is n-connective.
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Proof. For n ≤ 0, this follows immediately from Example 3.5.1.17. We will therefore assume
that n > 0. Our assumptions on f guarantee that for 0 < m ≤ n, every lifting problem

Λmi //

��

X

f

��
∆m //

>>

Y

admits a solution. Using Variant 3.1.7.12, we can factor f as a composition X
i−→ X ′

f ′−→ Y ,
where i is an anodyne morphism which is bijective on k-simplices for k < n, and f ′ is a Kan
fibration. Since the collection of n-connective morphisms is closed under composition, it will
suffice to show that f ′ is n-connective. By virtue of Proposition 3.5.1.22, this is equivalent
to the assertion that for each vertex y ∈ Y , the fiber X ′y = {y}×Y X is an n-connective Kan
complex. This follows from Example 3.5.1.10.

Example 3.5.2.3.051M Let X be a simplicial set, let n be an integer, and let skn(X) denote
the n-skeleton of X. Then the inclusion map i : skn(X) ↪→ X is bijective on m-simplices for
m ≤ n. Applying Corollary 3.5.2.2, we conclude that i is n-connective.
Corollary 3.5.2.4.051N Let f : X → Z be a Kan fibration of simplicial sets and let n be an
integer. The following conditions are equivalent:

(1) The morphism f is n-connective.

(2) The morphism f factors as a composition X
f ′−→ Y

f ′′−→ Z, where f ′ is a monomorphism
which is bijective on k-simplices for k ≤ n and f ′′ is a trivial Kan fibration.

(3) The morphism f factors as a composition X
f ′−→ Y

f ′′−→ Z where f ′ is bijective on
k-simplices for k < n and surjective for k = n, and f ′′ is n-connective.

Proof. The implication (2) ⇒ (3) is immediate and the implication (3) ⇒ (1) follows
from Corollary 3.5.2.2 (since the collection of n-connective morphisms is closed under
composition; see Corollary 3.5.1.28). We will complete the proof by showing that (1) implies
(2). Using a variant of Exercise 3.1.7.11, we can choose a factorization of f as a composition
X

f ′−→ Y
f ′′−→ Z with the following properties;

(a) For every integer m > n, every lifting problem

∂∆m //

��

Y

f ′′

��
∆m //

==

Z
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admits a solution.

(b) The morphism f ′ can be realized as a transfinite pushout of inclusion maps ∂∆m ↪→ ∆m

for m > n.

It follows immediately from (b) that the morphism f ′ is bijective on k-simplices for 0 ≤ k ≤ n.
We will complete the proof by showing that, if f is n-connective, then f ′′ is a trivial Kan
fibration: that is, every lifting problem

051P∂∆m //

��

Y

f ′′

��
∆m //

==

Z

(3.29)

admits a solution. For m > n, this follows from (b). For m ≤ n, we can identify (3.29) with
a lifting problem

∂∆m //

��

X

f

��
∆m //

==

Z,

which admits a solution by virtue of our assumption that f is an n-connective Kan fibration
(Proposition 3.5.2.1).

Corollary 3.5.2.5. 051QLet X be a Kan complex and let n be an integer. The following conditions
are equivalent:

(1) The Kan complex X is n-connective.

(2) There exists a monomorphism of Kan complexes f : X ↪→ Y where Y is contractible and
f is bijective on k-simplices for 0 ≤ k ≤ n.

(3) There exists a morphism of simplicial sets f : X → Y where Y is n-connective, f is
bijective on k-simplices for k < n, and f is surjective on n-simplices.

Proof. Apply Corollary 3.5.2.4 in the special case Z = ∆0 (together with Example 3.5.1.18).

Corollary 3.5.2.6. 051RFor every nonnegative integer n, the simplicial set ∂∆n is (n − 1)-
connective.
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Proof. Since the inclusion map ∂∆n ↪→ ∆n is bijective on k-simplices for k < n, it will
suffice to show that the standard simplex ∆n is (n− 1)-connective (Corollary 3.5.2.5). This
is clear, since ∆n is contractible (Example 3.2.4.2).

Corollary 3.5.2.7.051S Let n be an integer, and suppose we are given a homotopy pushout
square of simplicial sets

051T X //

f

��

X ′

f ′

��
Y // Y ′.

(3.30)

If f is n-connective, then f ′ is also n-connective.

Proof. Using Proposition 3.1.7.1, we can factor f as a composition X i−→ X
f−→ Y , where i is

anodyne and f is a Kan fibration. Replacing X by X and X ′ by the pushout X ′∐X X, we
are reduced to proving Corollary 3.5.2.7 in the special case where f is a Kan fibration. In
this case, we can use Corollary 3.5.2.4 to factor f as a composition X

f̃−→ Ỹ
q−→ Y , where

q is a trivial Kan fibration and f̃ is a monomorphism which is bijective on k-simplices for
k ≤ n. In this case, our assumption that (3.30) is a homotopy pushout square guarantees
that the induced map X ′∐X Ỹ → Y ′ is a weak homotopy equivalence (Proposition 3.4.2.11).
Consequently, to show that f ′ is n-connective, it will suffice to show that the inclusion map
j : X ′ ↪→ X ′

∐
X Ỹ is n-connective (Corollary 3.5.1.28). This is a special case of Corollary

3.5.2.2, since j is bijective on k-simplices for k ≤ n.

Definition 3.5.2.8.051U Let X be a simplicial set and let n be a nonnegative integer. We
say that X is n-reduced if, for every nonnegative integer m ≤ n, the n-skeleton skn(X) is
isomorphic to the standard 0-simplex ∆0: that is, X has a single m-simplex for every integer
0 ≤ m ≤ n.

Proposition 3.5.2.9.051V Let X be a simplicial set and let n ≥ 0 be an integer. Then X is
(n+ 1)-connective if and only if there exists a weak homotopy equivalence f : X → Y , where
Y is n-reduced.

Proof. Assume first that there exists a weak homotopy equivalence f : X → Y , where Y is
n-reduced. Choose a vertex y ∈ Y . Our assumption that Y is n-reduced guarantees that the
inclusion map i : {y} ↪→ Y is bijective on m-simplices for m ≤ n. Applying Corollary 3.5.2.2,
we deduce that i is n-connective. It follows that Y is (n+ 1)-connective (Corollary 3.5.1.27).
Since f is a weak homotopy equivalence, the simplicial set X is also (n+ 1)-connective.

We now prove the converse. Assume that X is (n + 1)-connective. In particular, X
is nonempty; we can therefore choose a vertex x ∈ X. Using Proposition 3.1.7.1, we
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can factor the inclusion map {x} ↪→ X as a composition {x} j−→ E
g−→ X, where j is

anodyne and g is a Kan fibration. Since the simplicial set E is weakly contractible, our
hypothesis that X is (n + 1)-connective guarantees that f is n-connective (Proposition
3.5.1.26). Applying Corollary 3.5.2.4, we can factor g as a composition E

g′−→ X̃
g′′−→ X,

where g′ is a monomorphism which is bijective on m-simplices for m ≤ n and g′′ is a trivial
Kan fibration. Let s be a section of g′′ and let Y = X̃/E be the simplicial set obtained from
X̃ by collapsing the image of g′, so that we have a pushout square

051WE
g′ //

��

X̃

q

��
∆0 // Y.

(3.31)

Since g′ is a monomorphism, (3.31) is a homotopy pushout square (Example 3.4.2.12). Since
E is weakly contractible, it follows that q is a weak homotopy equivalence (Proposition
3.4.2.10). It follows that the composite map X

s−→ X̃
q−→ Y is a weak homotopy equivalence

from X to an n-reduced simplicial set Y .

Remark 3.5.2.10. 051XIn the situation of Proposition 3.5.2.9, we can arrange that the simplicial
set Y is a Kan complex: this follows from Example 3.1.7.13.

We now record a few other consequences of Proposition 3.5.2.1.

Proposition 3.5.2.11. 051YLet m and n be integers and let f : X → Y be an (m+n)-connective
morphism of Kan complexes. Let B be a simplicial set of dimension ≤ m, and let A ⊆ B be
a simplicial subset. Then the restriction map

u : Fun(B,X)→ Fun(A,X)×Fun(A,Y ) Fun(B, Y )

is n-connective.

Proof. Without loss of generality, we may assume that m ≥ 0 (otherwise, our hypothesis
guarantees that A and B are empty, so that u is an isomorphism) and that n ≥ 0 (otherwise,
the conclusion that u is n-connective is vacuous). Using Proposition 3.1.7.1, we can factor f
as a composition X j−→ X ′

f ′−→ Y , where j is anodyne and f ′ is a Kan fibration. Since Y is a
Kan complex, the simplicial set X ′ is a Kan complex (Remark 3.1.1.11), so j is a homotopy
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equivalence of Kan complexes. We then have a commutative diagram

Fun(B,X)

j◦

��

u // Fun(A,X)×Fun(A,Y ) Fun(B, Y )

��
Fun(B,X ′) u′ // Fun(A,X)×Fun(A,Y ) Fun(B, Y )

where the vertical maps are homotopy equivalences (see Proposition 3.4.0.2). Consequently,
to show that u is n-connective, it will suffice to show that u′ is n-connective. We may
therefore replace f by f ′, and thereby reduce to proving Proposition 3.5.2.11 in the special
case where f is a Kan fibration. In this case, u is also a Kan fibration (Theorem 3.1.3.1). By
virtue of Proposition 3.5.2.1, it will suffice to show that if B′ is a simplicial set of dimension
≤ n and A′ ⊆ B′ is a simplicial subset, then every lifting problem

04HE A′ //

��

Fun(B,X)

u

��
B′ //

77

Fun(A,X)×Fun(A,Y ) Fun(B, Y )

(3.32)

admits a solution. Unwinding the definitions, we can rewrite (3.32) as a lifting problem

(A×B′) ∐
(A×A′)(B ×A′) //

��

X

f

��
B ×B′ //

88

Y.

Since the simplicial set B×B′ has dimension ≤ m+n (Proposition 1.1.3.6), the existence of
a solution follows from our assumption that f is (m+n)-connective (Proposition 3.5.2.1).

Corollary 3.5.2.12.04HF Let m and n be integers, let B be a simplicial set of dimension ≤ m,
and let X be a Kan complex which is (m+ n)-connective. Then, for every simplicial subset
A ⊆ B, the restriction map Fun(B,X)→ Fun(A,X) is n-connective.

Proof. Apply Proposition 3.5.2.11 in the special case Y = ∆0.

Corollary 3.5.2.13.04HG Let m and n be integers, let B be a simplicial set of dimension ≤ m,
and let f : X → Y be a morphism of Kan complexes which is (m+ n)-connective. Then the
induced map Fun(B,X)→ Fun(B, Y ) is n-connective.
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Proof. Applying Proposition 3.5.2.11 in the special case A = ∅.

Corollary 3.5.2.14. 04HHLet m and n be integers, let X be a Kan complex which is (m+ n)-
connective, and let B be a simplicial set of dimension ≤ m. Then the Kan complex Fun(B,X)
is n-connective.

Proof. Apply Corollary 3.5.2.12 in the special case A = ∅ (or Corollary 3.5.2.13 in the special
case Y = ∆0).

3.5.3 Coskeletal Simplicial Sets

051ZLet X be a simplicial set and let n be an integer. Recall that X has dimension ≤ n

if every m-simplex of X is degenerate for m > n (Definition 1.1.3.1). If this condition is
satisfied, then X is determined by its simplices of dimension ≤ n in the following sense:
to give a morphism of simplicial sets f : X → Y , it suffices to specify the value of f on
m-simplices for m ≤ n (see Proposition 1.1.3.11 for a precise statement). In this section, we
introduce a dual condition which instead controls the classification of morphisms Y → X

(Proposition 3.5.3.10).

Definition 3.5.3.1. 0520Let n be an integer and let X be a simplicial set. We say that X is
n-coskeletal if, for every nonnegative integer m > n, the restriction map

θm : HomSet∆(∆m, X)→ HomSet∆(∂∆m, X)

is a bijection: that is, every morphism of simplicial sets ∂∆m → X extends uniquely to an
m-simplex of X.

Example 3.5.3.2. 0521Let n be a negative integer. Then a simplicial set X is n-coskeletal if
and only if it is a final object of Set∆: that is, if and only if it is isomorphic to the standard
0-simplex ∆0.

Example 3.5.3.3. 0522Let Q be a partially ordered set. Then the nerve N•(Q) is 1-coskeletal.
In particular, every discrete simplicial set is 1-coskeletal.

Example 3.5.3.4. 0523Let C be a category. Then the nerve N•(C) is 2-coskeletal. See Exercise
1.3.1.5.

Example 3.5.3.5. 0524Let C be a 2-category. Then the Duskin nerve ND
• (C) is 3-coskeletal. See

Corollary 2.3.1.10.

Remark 3.5.3.6 (Monotonicity). 0525Let m be an integer and let X be an m-coskeletal
simplicial set. Then X is n-coskeletal for every integer n ≥ m.
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Remark 3.5.3.7.0526 Let n be an integer. Then the collection of n-coskeletal simplicial sets is
closed under the formation of limits (in the category Set∆).

Remark 3.5.3.8.0527 Let n be a positive integer. Then a simplicial set X is n-coskeletal if and
only if each connected component of X is n-coskeletal (beware that this is false for n = 0).

Proposition 3.5.3.9.0528 Let (A∗, ∂) be a chain complex of abelian groups, let X = K(A∗)
be the associated Eilenberg-MacLane space, and let n be a nonnegative integer. Then X is
n-coskeletal if and only if it satisfies the following conditions:

(a) The abelian groups Am vanish for m ≥ n+ 2.

(b) The boundary map ∂ : An+1 → An is a monomorphism, whose image is the group of
n-cycles Zn = {y ∈ An : ∂y = 0}.

Proof. Fix an integer m ≥ 0, and let σ : ∆m → ∆m be the identity map, which we identify
with its image in the normalized chain complex N∗(∆m; Z). Then ∂(σ) = ∑m

i=0(−1)idmi (σ)
is a cycle in the subcomplex N∗(∂∆m; Z). Suppose we are given a morphism of simplicial
sets τ0 : ∂∆m → X, which we identify with a chain map f0 : N∗(∂∆m; Z) → A∗. Then
y = f0(∂σ) is an (m− 1)-cycle of A∗. Note that, if m > 0, then every (m− 1)-cycle y of A∗
can be obtained in this way (for example, we can take f0 : N∗(∂∆m; Z)→M∗ to be the map
of chain complexes which carries dm0 (σ) to y and every other nondegenerate simplex to zero).

If τ : ∆m → X is an extension of τ0 corresponding to a map of chain complexes
f : N∗(∆m; Z) → A∗, then x = f(σ) is an m-chain of A∗ satisfying ∂(x) = y. This
construction induces a bijection

{m-simplices τ with τ |∂∆m = τ0}
∼−→ {x ∈ Am with ∂(x) = y}.

It follows that the simplicial set X is n-coskeletal if and only if it satisfies the following
condition for each m > n:

(bm) The boundary map ∂ : Am → Am−1 is a monomorphism whose image is the group of
(m− 1)-cycles Zm−1 = {y ∈ Am−1 : ∂y = 0}.

Note that (bn+1) is a restatement of (b). Moreover, if condition (bm) is satisfied for some
integer m, then condition (bm+1) is equivalent to the requirement that the abelian group
Am+1 is trivial. In particular, (bm) is satisfied for all m > n if and only if A∗ satisfies
conditions (a) and (b).

Proposition 3.5.3.10.0529 Let X be a simplicial set. For every integer n, the following
conditions are equivalent:

(1) The simplicial set X is n-coskeletal.
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(2) For every simplicial set S, the restriction map

θS : HomSet∆(S,X)→ HomSet∆(skn(S), X)

is a bijection.

Proof. For every nonnegative integer m > n, the n-skeleton of ∆m is contained in ∂∆m,
and therefore coincides with with the n-skeleton of ∂∆m. We therefore have a commutative
diagram of restriction maps

HomSet∆(∆m, X)

θ∆m

((

// HomSet∆(∂∆m, X)

θ∂∆m

vv
HomSet∆(skn(∆m), X).

If condition (2) is satisfied, then the vertical maps are bijections, so the horizontal map is a
bijection as well. Allowing m to vary, we deduce that X is n-coskeletal.

We now prove the converse. For every simplicial set S, we can identify HomSet∆(S,X)
with the inverse limit of the tower of restriction maps

· · · → HomSet∆(skn+2(S), X)→ HomSet∆(skn+1(S), X)→ HomSet∆(skn(S), X).

Consequently, to prove (2), it will suffice to show that the restriction map

HomSet∆(skm(S), X)→ HomSet∆(skm−1(S), X)

is a bijection for m > n. Using Proposition 1.1.4.12, we can reduce to the case S = ∆m, in
which case the statement reduces to the assertion that X is n-coskeletal.

Remark 3.5.3.11. 052AIn the situation of Proposition 3.5.3.10, it suffices to consider the special
case where S = ∆m is a standard simplex. This follows from Corollary 1.1.4.9, since any
simplicial set can be realized as a colimit of simplices (Remark 1.1.3.13).

Corollary 3.5.3.12. 052BLet n be an integer and let K and X be simplicial sets. If X is
n-coskeletal, then Fun(K,X) is also n-coskeletal.

Proof. By virtue of Proposition 3.5.3.10, it will suffice to show that for every simplicial
set S, the restriction map θ : HomSet∆(S,Fun(K,X)) → HomSet∆(skn(S),Fun(K,X)) is
a bijection. Using Proposition 1.5.3.2, we can identify θ with the horizontal map in the
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commutative diagram

HomSet∆(S ×K,X) //

((

HomSet∆(skk(S)×K,X)

vv
HomSet∆(skn(S ×K), X).

It will therefore suffice to show that the vertical maps in this diagram are bijections, which
follows from our assumption that X is n-coskeletal (Proposition 3.5.3.10).

Corollary 3.5.3.13.052C Let X• : ∆op → Set∆ be a simplicial set and let n be an integer. Then
X• is n-coskeletal if and only if it satisfies the following condition for each m ≥ 0:

(∗n) Let C = ∆≤n∆m denote the category of simplices of ∆m having dimension ≤ m (see
Construction 1.1.3.9). Then the tautological map

θm : Xm → lim←−
([k],σ)∈Cop

Xk

is a bijection.

Proof. For each n ≥ 0, we can identify θm with the restriction map

HomSet∆(∆m, X•)→ HomSet∆(S•, X•),

where S• denotes the colimit lim−→([k],σ)∈C ∆k. Using Corollary 1.1.4.8, we can identify S• with
the n-skeleton skn(∆m), so the desired result follows from Proposition 3.5.3.10 and Remark
3.5.3.11.

Remark 3.5.3.14.052D Corollary 3.5.3.13 can be reformulated using the language of Kan
extensions (see Definition 7.3.0.1): it asserts that a simplicial set X• : ∆op → Set is n-
coskeletal if and only if it is right Kan extended from the full subcategory of ∆op spanned
by the objects {[k]}k≤n. Compare with Remark 1.1.3.12.

Definition 3.5.3.15.052E Let X be a simplicial set and let n be an integer. We will say that a
morphism of simplicial sets f : X → Y exhibits Y as an n-coskeleton of X if it satisfies the
following pair of conditions:

• The simplicial set Y is n-coskeletal.

• The morphism f is bijective on m-simplices for m ≤ n.
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Proposition 3.5.3.16 (Existence). 052FLet X be a simplicial set. For every integer n, there
exists a simplicial set coskn(X) and a morphism f : X → coskn(X) which exhibits coskn(X)
as an n-coskeleton of X.

Proof. Let coskn(X) denote the simplicial set given by the construction

([m] ∈∆op) 7→ HomSet∆(skn(∆m), X),

and let f : X → coskn(X) be the morphism of simplicial sets given on m-simplices by the
restriction map HomSet∆(∆m, X)→ HomSet∆(skn(∆m), X)). If m ≤ n, then skn(∆m) = ∆m;
it follows that f is bijective on m-simplices for m ≤ n. We will complete the proof by
showing that coskn(X) is n-coskeletal. Fix an integer m > n; we wish to show that the
restriction map

θ : HomSet∆(∆m, coskn(X))→ HomSet∆(∂∆m, coskn(X))

is a bijection. Writing ∂∆m as a colimit of simplices (Remark 1.1.3.13) and applying
Corollary 1.1.4.9, we can identify θ with the restriction map

HomSet∆(skn(∆m), X)→ HomSet∆(skn(∂∆m), X).

The desired result now follows from the observation that the n-skeleton of ∆m is contained
in ∂∆m.

Definition 3.5.3.15 can be reformulated as a universal mapping property.

Proposition 3.5.3.17 (Uniqueness). 052GLet n be an integer and let f : X → Y be a morphism
of simplicial sets, where Y is n-coskeletal. The following conditions are equivalent:

(1) The morphism f exhibits Y as an n-coskeleton of X: that is, it is bijective on m-simplices
for m ≤ n.

(2) For every n-coskeletal simplicial set Z, composition with f induces an isomorphism of
simplicial sets Fun(Y,Z)→ Fun(X,Z).

(3) For every n-coskeletal simplicial set Z, composition with f induces a bijection

HomSet∆(Y, Z)→ HomSet∆(X,Z).

Proof. Assertion (3) is equivalent to the requirement that, for every n-coskeletal simplicial
set Z and every simplicial set K, composition with f induces a bijection

HomSet∆(K,Fun(Y, Z))→ HomSet∆(K,Fun(X,Z)).
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By virtue of Corollary 3.5.3.12, we can replace Z by Fun(K,Z) and thereby reduce to the
case K = ∆0. This proves the equivalence (2)⇔ (3).

The implication (1) ⇒ (3) follows immediately from Proposition 3.5.3.10. We will
complete the proof by showing that (3) implies (1). Using Proposition 3.5.3.16, we can
choose a morphism u : X → coskn(X) which exhibits coskn(X) as an n-coskeleton of X.
Then u satisfies condition (3), so f factors (uniquely) as a composition X u−→ coskn(X) g−→ Y .
We can therefore replace X by coskn(X) and thereby reduce to the case where X is n-
coskeletal. In this case, condition (3) implies that f is an isomorphism of (n-coskeletal)
simplicial sets, and therefore bijective on m-simplices for m ≤ n.

Notation 3.5.3.18.052H Let X be a simplicial set and let n be an integer. It follows from
Proposition 3.5.3.16 that there exists a morphism of simplicial sets f : X → Y which exhibits
Y as an n-coskeleton of X. Moreover, Proposition 3.5.3.17 guarantees that Y is unique up
to (canonical) isomorphism and depends functorially on X. To emphasize this dependence,
we will denote Y by coskn(X) and refer to it as the n-coskeleton of X. More explicitly, we
can take coskn(X) to be the simplicial set constructed in the proof of Proposition 3.5.3.16,
given by the construction

([m] ∈∆op) 7→ HomSet∆(skn(∆m), X).

Corollary 3.5.3.19.052J Let n be an integer. Then the inclusion functor

{n-coskeletal simplicial sets} ↪→ Set∆

admits a left adjoint, given on objects by the construction X 7→ coskn(X).

Remark 3.5.3.20.052K For every integer n, the coskeleton functor

coskn : Set∆ → Set∆

preserves small limits and filtered colimits. If n > 0, then it also preserves coproducts.

Remark 3.5.3.21.052L Let X be a simplicial set, let n be an integer, and let coskn(X) denote
the n-coskeleton of X. For every simplicial set S, we have canonical isomorphisms

HomSet∆(skn(S), X) ∼−→ HomSet∆(skn(S), coskn(X)) ∼←− HomSet∆(S, coskn(X))

where the map on the left is bijective because the map X → coskn(X) is bijective on
simplices of dimension ≤ n, and the map on the right is bijective by virtue of Proposition
3.5.3.10. Note that this observation was implicitly used (in the special case S = ∂∆m) in
the proof of Proposition 3.5.3.16.
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Remark 3.5.3.22. 052MLet X be a simplicial set and let n be an integer. Then the tautological
map u : X → coskn(X) is bijective on m-simplices for m ≤ n. Applying Corollary 3.5.2.2,
we deduce that f is n-connective.

Proposition 3.5.3.23. 052NLet X be a Kan complex and let n be an integer. Then the n-
coskeleton coskn(X) is also a Kan complex.

Proof. Let m be a positive integer. Fix an integer 0 ≤ i ≤ m and a morphism of simplicial
sets σ0 : Λm

i → coskn(X); we wish to show that σ0 can be extended to an m-simplex of
coskn(X). Using Remark 3.5.3.21, we can identify σ0 with a morphism of simplicial sets
f0 : skn(Λm

i ) → X; we wish to show that f0 can be extended to the n-skeleton of ∆m. If
n < m − 1, then skn(Λm

i ) = skn(∆m) and there is nothing to prove. We may therefore
assume that n ≥ m− 1, so that skn(Λm

i ) = Λm
i . In this case, our assumption that X is a

Kan complex guarantees that f0 can be extended to an n-simplex of X.

Example 3.5.3.24. 052PLet A∗ be a nonnegatively graded chain complex of abelian groups
and let X = K(A∗) denote the associated simplicial abelian group. For every integer n ≥ 0,
the coskeleton coskn(X) inherits the structure of a simplicial abelian group. It follows
from Theorem 2.5.6.1 that coskn(X) can be identified with the Eilenberg-MacLane space
K(A′∗), for some nonnegatively graded chain complex A′∗. Here A′∗ is universal among chain
complexes which satisfy conditions (a) and (b) of Proposition 3.5.3.9 and are equipped with
a chain map A∗ → A′∗. More concretely, we can identify A′∗ with the chain complex

· · · → 0→ Zn ↪→ An
∂−→ An−1

∂−→ An−2 → · · · ,

where Zn is the group of n-cycles of A∗.

3.5.4 Weakly Coskeletal Simplicial Sets

052QIt will be useful to consider a variant of Definition 3.5.3.1.

Definition 3.5.4.1. 052RLet n be an integer. We say that a simplicial set X is weakly n-coskeletal
if the restriction map

HomSet∆(∆m, X)→ HomSet∆(∂∆m, X)

is a bijection for m ≥ n+ 2 and and injection for m = n+ 1 (provided that n ≥ −1).

Remark 3.5.4.2. 052SLet n be an integer and let X be a simplicial set. Then:

• If X is n-coskeletal, then it is weakly n-coskeletal.

• If X is weakly n-coskeletal, then it is (n+ 1)-coskeletal.
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Example 3.5.4.3.052T For n ≤ −2, a simplicial set X is weakly n-coskeletal if and only if it
isomorphic to the standard 0-simplex ∆0.

Example 3.5.4.4.052U A simplicial set X is weakly (−1)-coskeletal if and only if it is either
empty or isomorphic to the standard 0-simplex ∆0.

Example 3.5.4.5.052V Let Q be a partially ordered set. Then the nerve N•(Q) is weakly
0-coskeletal. In particular, every discrete simplicial set is weakly 0-coskeletal.

Example 3.5.4.6.052W Let C be a category. Then the nerve N•(C) is weakly 1-coskeletal. See
Exercise 1.3.1.5.

Example 3.5.4.7.052X Let C be a 2-category. Then the Duskin nerve ND
• (C) is weakly 2-

coskeletal. See Corollary 2.3.1.10.

Exercise 3.5.4.8.052Y Let A∗ be a chain complex of abelian groups and let n ≥ −1 be an
integer. Show that the Eilenberg-MacLane space K(A∗) is weakly n-coskeletal if and only if
it satisfies the following conditions:

• The abelian groups Am vanish for m ≥ n+ 2.

• The differential ∂ : An+1 → An is a monomorphism.

Compare with Proposition 3.5.3.9.

Remark 3.5.4.9.052Z For every integer n, the collection of weakly n-coskeletal simplicial sets is
closed under the formation of limits.

Remark 3.5.4.10.0530 Let n be a nonnegative integer. Then a simplicial set X is weakly
n-coskeletal if and only if each connected component of X is weakly n-coskeletal.

Exercise 3.5.4.11.0531 Let X be a Kan complex and let n ≥ −1 be an integer. Show that
X is weakly n-coskeletal if and only if, for every integer m > n, the restriction map
θm : HomSet∆(∆m, X)→ HomSet∆(∂∆m, X) is injective.

Proposition 3.5.4.12.0532 Let n be an integer. Then a simplicial set X is weakly n-coskeletal
if and only if it satisfies the following conditions:

(1) For every simplicial set S, the restriction map

θS : HomSet∆(S,X)→ HomSet∆(skn(S), X)

is a monomorphism.

(2) The image of θS consists of those morphisms skn(S)→ X which can be extended to the
(n+ 1)-skeleton of S.
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Proof. For every integer m > n, the n-skeleton skn(∆m) is contained in the boundary ∂∆m,
and therefore coincides with the n-skeleton of ∂∆m. We therefore have a commutative
diagram of restriction maps

HomSet∆(∆m, X)

θ∆m

((

// HomSet∆(∂∆m, X)

θ∂∆m

vv
HomSet∆(skn(∆m), X).

If condition (1) is satisfied, then the vertical maps are injective, so the upper horizontal map
is also injective. Moreover, if m ≥ n+ 2, then ∂∆m contains the (n+ 1)-skeleton of ∆m. In
this case, condition (2) guarantees that the vertical maps have the same image, so that the
horizontal map is bijective. It follows that X is weakly n-coskeletal.

We now prove the converse. Assume that X is weakly n-coskeletal, and let S be a
simplicial set. Then we can identify HomSet∆(S,X) with the inverse limit of the tower of
restriction maps

· · · → HomSet∆(skn+2(S), X)→ HomSet∆(skn+1(S), X)→ HomSet∆(skn(S), X).

Consequently, to prove (1), it will suffice to show that the restriction map

HomSet∆(skm+1(S), X)→ HomSet∆(skm(S), X)

is injective for m = n and bijective for m > n. Using Proposition 1.1.4.12, we can reduce
to the case S = ∆m+1 is a standard simplex, in which case the desired result is immediate
from the definition.

Corollary 3.5.4.13. 0533Let n be an integer and let K and X be simplicial sets. If X is weakly
n-coskeletal, then Fun(K,X) is also weakly n-coskeletal.

Proof. It follows from Corollary 3.5.3.12 that Fun(K,X) is (n+1)-coskeletal. It will therefore
suffice to show that, if n ≥ −1, then the restriction map θ : HomSet∆(∆n+1,Fun(K,X))→
HomSet∆(∂∆n+1,Fun(K,X)) is injective. Note that θ can be identified with the restriction
map

HomSet∆(∆n+1 ×K,X)→ HomSet∆(∂∆n+1×K,X).

Since ∂∆n+1×K contains the n-skeleton of ∆n+1 ×K, the injectivity of this map follows
from Proposition 3.5.4.12.

Definition 3.5.4.14. 0534Let X be a simplicial set and let n be an integer. We will say that
a morphism of simplicial sets f : X → Y exhibits Y as a weak n-coskeleton of X if the
following conditions are satisfied:
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• The simplicial set Y is weakly n-coskeletal.

• The morphism f is bijective on simplices of dimension ≤ n and surjective on (n+ 1)-
simplices (provided that n ≥ −1).

Warning 3.5.4.15.0535 The terminology of Definition 3.5.4.14 is potentially confusing. If
f : X → Y is a morphism which exhibits Y as an n-coskeleton of X, then it generally
does not exhibit Y as a weak n-coskeleton of X (because f need not be surjective on
(n+ 1)-simplices).

Remark 3.5.4.16.0536 Let f : X → Y be a morphism of simplicial sets which exhibits Y as a
weak n-coskeleton of X. Then f is (n+ 1)-connective. See Corollary 3.5.2.2.

Proposition 3.5.4.17.0537 Let X be a simplicial set, let n be an integer, and let cosk◦n(X)
denote the image of tautological map coskn+1(X)→ coskn(X). Then the composite map

f : X → coskn+1(X) ↠ cosk◦n(X)

exhibits cosk◦n(X) as a weak n-coskeleton of X.

Proof. The tautological map X → coskn+1(X) is bijective on m-simplices for m ≤ n + 1,
so f is surjective on m-simplices for m ≤ n+ 1. Moreover, for m ≤ n, the composite map
X

f−→ cosk◦n(X) ↪→ coskn(X) is bijective on m-simplices for m ≤ n, so that f is injective
on m-simplices. To complete the proof, it will suffice to show that cosk◦n(X) is weakly
n-coskeletal. Fix an integer m > n and a morphism σ0 : ∂∆m → cosk◦n(X). Since coskn(X)
is n-coskeletal, the morphism σ0 extends uniquely to an m-simplex σ of coskn(X). To
complete the proof, it will suffice to show that if m ≥ n+ 2, then σ is contained in cosk◦n(X):
that is, that it can be lifted to an m-simplex of coskn+1(X). Using Remark 3.5.3.21, we can
identify σ with a morphism of simplicial sets u : skn(∆m) → X; we wish to show that u
can be extended to the (n+ 1)-skeleton of ∆m. By virtue of Proposition 1.1.4.12, this is
equivalent to the requirement that, for every nondegenerate (n+ 1)-simplex τ of ∆m, the
composite map

∂∆n+1 τ |∂∆n+1−−−−−→ skn(∆m) u−→ X

can be extended to an (n+ 1)-simplex of X. This follows from our assumption that σ0 ◦ τ
factors through cosk◦n(X).

Definition 3.5.4.14 can be reformulated as a universal mapping property.

Proposition 3.5.4.18.0538 Let n be an integer and let f : X → Y be a morphism of simplicial
sets, where Y is weakly n-coskeletal. The following conditions are equivalent:

(1) The morphism f exhibits Y as a weak n-coskeleton of X: that is, it is bijective on
m-simplices for m ≤ n and surjective on (n+ 1)-simplices (provided that n ≥ −1).
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(2) For every weakly n-coskeletal simplicial set Z, composition with f induces an isomorphism
of simplicial sets Fun(Y,Z)→ Fun(X,Z).

(3) For every weakly n-coskeletal simplicial set Z, composition with f induces a bijection
HomSet∆(Y,Z)→ HomSet∆(X,Z).

Proof. Condition (3) is equivalent to the requirement that, for every weakly n-coskeletal
simplicial set Z and every simplicial set K, composition with f induces a bijection

HomSet∆(K,Fun(Y, Z))→ HomSet∆(K,Fun(X,Z)).

By virtue of Corollary 3.5.4.13, we can replace Z by Fun(K,Z) and thereby reduce to the
case K = ∆0. This proves the equivalence (2)⇔ (3).

We next show that (1) implies (3). Assume that condition (1) is satisfied, and let Z be a
weakly n-coskeletal simplicial set. We then have a commutative diagram

HomSet∆(Y,Z) ◦f //

��

HomSet∆(X,Z)

��
HomSet∆(skn(Y ), Z) ◦f // HomSet∆(skn(X), Z).

Since f is bijective on m-simplices for m ≤ n, the lower horizontal map is a bijection. Using
Proposition 3.5.4.12, we see that the vertical maps are injective. Consequently, to prove (3),
it will suffice to show that their images agree (under the bijection provided by the the lower
horizontal map). This follows from Proposition 3.5.4.12, together with our assumption that
f is surjective on (n+ 1)-simplices.

We now show that (3) implies (1). Using Proposition 3.5.4.17, we can choose a morphism
u : X → cosk◦n(X) which exhibits cosk◦n(X) as a weak n-coskeleton of X. Then u satisfies
condition (3), so f factors (uniquely) as a composition X

u−→ cosk◦n(X) g−→ Y . We can
therefore replace X by cosk◦n(X) and thereby reduce to the case where X is weakly n-
coskeletal. Condition (3) then guarantees that f is an isomorphism of (weakly n-coskeletal)
simplicial sets, so condition (1) is automatic.

Notation 3.5.4.19. 0539Let X be a simplicial set and let n be an integer. It follows from
Proposition 3.5.4.17 that there exists a morphism of simplicial sets f : X → Y which exhibits
Y as a weak n-coskeleton of X. Moreover, Proposition 3.5.4.18 guarantees that Y is unique
up to (canonical) isomorphism and depends functorially on X. To emphasize this dependence,
we will denote Y by cosk◦n(X) and refer to it as the weak n-coskeleton of X. More explicitly,
we can take cosk◦n(X) to be the image of the restriction map coskn+1(X)→ coskn(X) (see
the proof of Proposition 3.5.4.17).
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Corollary 3.5.4.20.053A Let n be an integer. Then the inclusion functor

{Weakly n-coskeletal simplicial sets} ↪→ Set∆

admits a left adjoint, given on objects by the construction X 7→ cosk◦n(X).

Remark 3.5.4.21.053B Let X be a simplicial set, let n be an integer, and let cosk◦n(X) denote
the weak n-coskeleton of X. It follows from Proposition 3.5.4.12 that, for every simplicial
set S, the restriction map

HomSet∆(S, cosk◦n(X))→ HomSet∆(skn(S), cosk◦n(X)) ∼←− HomSet∆(skn(S), X)

is an injection, whose image consists of those morphisms f : skn(S) → X which can be
extended to the (n+ 1)-skeleton of S.

Let X be a simplicial set. For every n, the weak n-coskeleton cosk◦n(X) is (n + 1)-
coskeletal (Remark 3.5.4.2). It follows from Proposition 3.5.3.17 that the tautological map
X → cosk◦n(X) factors (uniquely) through the (n+ 1)-coskeleton of X.

Proposition 3.5.4.22.053C Let X be a simplicial set. For every integer n, the tautological map
q : coskn+1(X)→ cosk◦n(X) is a trivial Kan fibration.

Proof. Fix an integer m ≥ 0; we wish to show that every lifting problem

053D ∂∆m σ0 //

��

coskn+1(X)

q

��
∆m σ //

σ

::

cosk◦n(X)

(3.33)

admits a solution. We consider two cases:

• If m ≤ n+ 1, then σ can be lifted to an m-simplex of X. In particular, there exists an
m-simplex σ of coskn+1(X) satisfying q(σ) = σ. Since q is bijective on k-simplices for
k ≤ n, the commutativity of the diagram (3.33) guarantees that σ|∂∆m = σ0.

• If m ≥ n + 2, then σ0 extends uniquely to an m-simplex σ of coskn+1(X). The
commutativity of diagram (3.33) guarantees that q(σ) and σ have the same restriction
to ∂∆m, and therefore coincide (since ∂∆m contains the (n+ 1)-skeleton of ∆m).

In either case, the m-simplex σ is a solution to the lifting problem (3.33).

Corollary 3.5.4.23.053E Let X be a simplicial set and let n be an integer. If X is a Kan
complex, then the weak n-coskeleton cosk◦n(X) is a Kan complex.
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Proof. Proposition 3.5.4.22 supplies a trivial Kan fibration

q : coskn+1(X) ↠ cosk◦n(X).

Since coskn+1(X) is a Kan complex (Proposition 3.5.3.23), it follows that cosk◦n(X) is also a
Kan complex (Proposition 1.5.5.11).

Corollary 3.5.4.24. 053FLet X be a simplicial set and let n ≥ −2 be an integer. The following
conditions are equivalent:

(1) The comparison map f : coskn+2(X)→ cosk◦n(X) is a trivial Kan fibration.

(2) Every morphism ∂∆n+2 → X can be extended to an (n+ 2)-simplex of X.

(3) The weak (n+ 1)-coskeleton cosk◦n+1(X) coincides with coskn+1(X).

Proof. The equivalence of (2) and (3) follows from Remark 3.5.4.21. The implication
(3)⇒ (1) follows from the observation that f factors as a composition

coskn+2(C) ↠ cosk◦n+1(C) ↪→ coskn+1(C) ↠ cosk◦n(C),

where the outer maps are trivial Kan fibrations (Proposition 3.5.4.22). We will complete the
proof by showing that (2) implies (3). Suppose we are given a morphism σ0 : ∂∆n+2 → C.
Since cosk◦n(C) is (n+ 1)-coskeletal we can extend F ◦σ0 to an (n+ 2)-simplex σ of cosk◦n(C).
If condition (2) is satisfied, then the lifting problem

∂∆n+2 σ0 //

��

C

F
��

∆n+2

99

σ // cosk◦n(C)

admits a solution; in particular, σ0 can be extended to an (n+ 2)-simplex of C.

Example 3.5.4.25. 053GLet A∗ be a nonnegatively graded chain complex of abelian groups and
let X = K(A∗) denote the associated simplicial abelian group. For every integer n ≥ −1, the
weak n-coskeleton cosk◦n(X) inherits the structure of a simplicial abelian group. It follows
from Theorem 2.5.6.1 that cosk◦n(X) can be identified with the Eilenberg-MacLane space
K(A′∗), for some nonnegatively graded chain complex A′∗. Here A′∗ is universal among chain
complexes which satisfy the criterion of Exercise 3.5.4.8 and are equipped with a chain map
A∗ → A′∗. More concretely, we can identify A′∗ with the chain complex

· · · → 0→ An+1/Zn+1 ↪→ An
∂−→ An−1 → · · · ,

where Zn+1 ⊆ An+1 denotes the subgroup of (n+ 1)-cycles of A∗.
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Proposition 3.5.4.26.053H Let X be a Kan complex. Then, for every integer n, the tautological
map u : X → cosk◦n(X) is a Kan fibration.

Warning 3.5.4.27.053J Let X be a Kan complex. For every integer n, we have a commutative
diagram

X
u //

v

##

cosk◦n(X)

coskn+1(X)

q

99

where u is a Kan fibration (Proposition 3.5.4.26) and q is a trivial Kan fibration (Proposition
3.5.4.22). Beware that v is usually not a Kan fibration.

Proof of Proposition 3.5.4.26. Fix a pair of integers 0 ≤ i ≤ m with m > 0; we wish to show
that every lifting problem

053K Λmi
σ0 //

��

X

u

��
∆m

σ

;;

σ // cosk◦n(X)

(3.34)

admits a solution. We consider two cases:

• If m ≤ n+ 1, then we can choose an m-simplex σ of X satisfying u(σ) = σ. Since u
is bijective on simplices of dimension ≤ n, the commutativity of the diagram (3.34)
guarantees that σ|Λm

i
= σ0.

• If m ≥ n + 2, then our assumption that X is a Kan complex guarantees that σ0
can be extended to an m-simplex σ of X. The commutativity of the diagram (3.34)
then guarantees that q(σ) and σ have the same restriction to the horn Λmi ⊂ ∆m. In
particular, they have the same restriction to the n-skeleton of ∆m, so q(σ) = σ.

In either case, it follows that σ is a solution to the lifting problem (3.34).

3.5.5 Higher Groupoids

053L Recall that a groupoid is a category G in which every morphism is an isomorphism
(Definition 1.3.5.1). By virtue of Propositions 1.3.3.1 and 1.3.5.2, the construction G 7→ N•(G)
determines a fully faithful functor from the category of groupoids to the category of Kan
complexes. Consequently, little information is lost by identifying G with N•(G), and thereby
viewing groupoids as special kinds of Kan complexes. In this section, we exploit this
perspective to introduce a notion of n-groupoid for n ≥ 0.
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Definition 3.5.5.1. 053MLet n be a nonnegative integer. An n-groupoid is a Kan complex X
which satisfies the following condition: for every pair of integers 0 ≤ i ≤ m with m > n, the
restriction map HomSet∆(∆m, X)→ HomSet∆(Λmi , X) is a bijection.

Remark 3.5.5.2. 053NIn the situation of Definition 3.5.5.1, the assumption that X is a Kan
complex already guarantees that the restriction map HomSet∆(∆m, X)→ HomSet∆(Λmi , X)
is surjective. Consequently, X is an n-groupoid if and only if, whenever σ and τ are simplices
of X having dimension m > n which satisfy σ|Λm

i
= τ |Λm

i
for some 0 ≤ i ≤ m, we have

σ = τ .

Remark 3.5.5.3 (Monotonicity). 053PLet m ≥ 0 and let X be an m-groupoid. Then X is also
an n-groupoid for any n ≥ m.

Warning 3.5.5.4. 053QWe have now given two a priori different definitions for the notion of
2-groupoid:

• According to Definition 2.2.8.24, a 2-groupoid is a 2-category C such that every
1-morphism of C is an isomorphism and every 2-morphism of C is an isomorphism.

• According to Definition 3.5.5.1, a 2-groupoid is a simplicial set X satisfying certain
extension conditions.

We will show later that definitions are compatible: a simplicial set X is a 2-groupoid in the
sense of Definition 3.5.5.1 if and only if it is isomorphic to the Duskin nerve ND

• (C), where C
is a 2-groupoid in the sense of Definition 2.2.8.24 (in this case, the 2-category C is uniquely
determined up to non-strict isomorphism; see Theorem 2.3.4.1). See Proposition [?].

Remark 3.5.5.5. 053RLet X be a simplicial set and let n ≥ 0 be an integer. Then X is an
n-groupoid if and only if every connected component of X is an n-groupoid.

Remark 3.5.5.6. 053SLet {Xj}j∈J be a diagram of simplicial sets having limit X = lim←−j∈J Xj

and let n be a nonnegative integer. If each Xj is an n-groupoid and X is a Kan complex,
then X is also an n-groupoid. In particular, any product of n-groupoids is an n-groupoid
(see Example 1.2.5.3).

Proposition 3.5.5.7. 053TA simplicial set X is a 0-groupoid if and only if it is discrete: that
is, if and only if it is isomorphic to a constant simplicial set S for some set S.

Proof. By virtue of Remark 3.5.5.5, we may assume without loss of generality that X is
connected. Assume that X is a 0-groupoid; we wish to show that the projection map
X → ∆0 is an isomorphism (the converse follows immediately from the definition). To prove
this, it will suffice to show that for every pair of m-simplices σ, τ : ∆m → X, we have σ = τ .
Our proof proceeds by induction on m. If m > 0, then our inductive hypothesis guarantees
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that σ|Λm
0

= τ |Λm
0

, so that σ = τ by virtue of our assumption that X is a 0-groupoid. It
will therefore suffice to treat the case m = 0, so that σ and τ can be identified with vertices
x, y ∈ X. Since X is a connected Kan complex, there exists an edge e : x→ y with source x
and target y (Proposition 1.2.5.10). Our assumption that X is a 0-groupoid then guarantees
that e = idx, so that x = y as desired.

Proposition 3.5.5.8.053U Let X be a simplicial set. The following conditions are equivalent:

(1) There exists a groupoid G and an isomorphism of simplicial sets X ∼−→ N•(G).

(2) The simplicial set X is a 1-groupoid (in the sense of Definition 3.5.5.1).

(3) The simplicial set X is a Kan complex, and the tautological map X → N•(π≤1(X)) is
an isomorphism.

Proof. We first show that (1) implies (2). For every groupoid G, Proposition 1.3.5.2 guarantees
that the simplicial set N•(G) is a Kan complex. To show that N•(G) is a 1-groupoid, we
must prove that if σ, τ : ∆m → N•(G) are m-simplices for m ≥ 2 which have the same
restriction to some horn Λm

i ⊂ ∆m, then σ = τ . For m > 2, this is immediate (since Λm
i

contains the 1-skeleton of ∆m). In the case m = 2, we can identify m-simplices of N•(G)
with commutative diagrams

Y

g

��
X

f

??

h // Z

in the groupoid G. The desired result then follows from the observation that any two of the
morphisms f , g, and h determine the third.

The implication (3) ⇒ (1) is immediate. We will complete the proof by showing that
(2) implies (3). Assume that X is a 1-groupoid and let G = π≤1(X) be its fundamental
groupoid. We wish to show that the tautological map u : X → N•(G) is an isomorphism:
that is, it is bijective on m-simplices for m ≥ 0. The proof proceeds by induction on m. The
case m = 0 is immediate from the definitions. For m ≥ 2, we have a commutative diagram

HomSet∆(∆m, X) u◦ //

��

HomSet∆(∆m,N•(G))

��
HomSet∆(Λm0 , X) u◦ // HomSet∆(Λm0 ,N•(G))
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where the vertical maps are bijective (since X and N•(G) are 1-groupoids) and the bottom
horizontal map is bijective (by virtue of our inductive hypothesis); it follows that the upper
horizontal map is bijective as well. It will therefore suffice to treat the case m = 1. Let
e, e′ : x → y be edges of the simplicial set X having the same source and target; we wish
to show that if the homotopy classes [e] and [e′] coincide (as morphisms in the category
G = π≤1(X)), then e = e′. Let σ be a 2-simplex of X which is a homotopy from e to e′:
that is, a 2-simplex whose boundary is depicted in the diagram

y

idy

��
x

e

??

e′ // y

(see Definition 1.4.3.1). Let τ be the right-degenerate 2-simplex s1
1(e). Then σ and τ have

the same restriction to the horn Λ2
1 ⊂ ∆2. Invoking our assumption that X is a 1-groupoid,

we conclude that σ = τ . In particular, we have e′ = d2
1(σ) = d2

1(τ) = e.

Proposition 3.5.5.9. 053VLet n be a nonnegative integer, let A∗ be a chain complex of abelian
groups, and let X = K(A∗) denote the associated Eilenberg-MacLane space (Construction
2.5.6.3). Then X is an n-groupoid if and only if the abelian groups Am vanish for m > n.

Proof. Fix a pair of integers 0 ≤ i ≤ m with m > n. Let σ : ∆m → ∆m be the identity
map, which we identify with its image in the normalized chain complex N∗(∆m; Z). Then
the chain complex N∗(∆m; Z) splits as a direct sum of N∗(Λmi ; Z) with the subcomplex C∗
spanned by the σ and ∂(σ). We therefore obtain a canonical bijection

HomSet∆(∆m, X) ≃ HomCh(Z)(N∗(∆m; Z), A∗)
≃ HomCh(Z)(N∗(Λmi ; Z), A∗)×HomCh(Z)(C∗, A∗)
≃ HomSet∆(Λmi , X)×Am.

It follows that the restriction map HomSet∆(∆m, X)→ HomSet∆(Λmi , X) is a bijection if and
only if the abelian group Am vanishes. The desired result follows by allowing the integers
0 ≤ i ≤ m to vary.

Proposition 3.5.5.10. 053WLet n be a nonnegative integer and let X be a Kan complex. Then:

(1) If X is weakly (n− 1)-coskeletal, then it is an n-groupoid.

(2) If X is an n-groupoid, then it is weakly n-coskeletal.
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Proof. We first prove (1). Assume that X is weakly (n− 1)-coskeletal. Suppose we are given
an integer m > n and a pair of m-simplices σ, τ : ∆m → X which satisfy σ|Λm

i
= τ |Λm

i
for

some 0 ≤ i ≤ m; we wish to show that σ = τ . Note that dmi (σ) and dmi (τ) are (m − 1)-
simplices of X which coincide on the boundary ∂∆m−1. Since X is weakly (n− 1)-coskeletal,
it follows that dmi (σ) = dmi (τ), so that σ and τ coincide on the boundary ∂∆m. Invoking
our assumption that X is weakly (n− 1)-coskeletal again, we conclude that σ = τ .

We now prove (2). Suppose that X is an n-groupoid; we wish to show that it is weakly
n-coskeletal. By virtue of Exercise 3.5.4.11, it will suffice to show that for every integer
m > n, the restriction map

θ : HomSet∆(∆m, X)→ HomSet∆(∂∆m, X)

is injective. This is clear: our assumption that X is an n-groupoid guarantees that the
composition of θ with the restriction map HomSet∆(∂∆m, X) → HomSet∆(Λm

0 , X) is a
bijection.

Corollary 3.5.5.11.053X Let n be a nonnegative integer and let X be a Kan complex. If X is
(n−1)-coskeletal, then it is an n-groupoid. if X is an n-groupoid, then it is (n+1)-coskeletal.

Proof. Combine Proposition 3.5.5.10 with Remark 3.5.4.2.

Proposition 3.5.5.12.053Y Let n ≥ 0 be an integer and let X be a Kan complex which is weakly
n-coskeletal. Then X is an n-groupoid if and only if it satisfies the following condition:

(∗) Let σ0, σ1 : ∆n → X be n-simplices which are homotopic relative to ∂∆n (Definition
3.2.1.3). Then σ0 = σ1.

Proof. Assume first that X is an n-groupoid and let σ0, σ1 : ∆n → X be n-simplices of X
which are homotopic relative to ∂∆n. Since X is a Kan complex, there exists a homotopy
h : ∆1 ×∆n → X from σ0 to σ1 which is constant along ∂∆n (Proposition 3.2.1.4). For
0 ≤ i ≤ n, let αi : [n+ 1]→ [1]× [n] denote the nondecreasing function given by the formula

αi(j) =

(0, j) if j ≤ i
(1, j − 1) if j > i,

and let τi denote the (n+ 1)-simplex of X given by the composition

∆n+1 αi−→ ∆1 ×∆n h−→ X.

Let ρi, ρ′i : ∆n → X be the n-simplices of X given by ρi = dn+1
i (τi) and ρ′i = dn+1

i+1 (τi); by
construction, we have

σ0 = ρ′n ρn = ρ′n−1 · · · ρ1 = ρ′0 ρ0 = σ1.
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We will complete the proof by showing that ρi = ρ′i for 0 ≤ i ≤ n. Using our assumption
that the homotopy h is constant along the boundary ∂∆n, we see that the degenerate
(n+ 1)-simplex sni (ρi) coincides with τi on the horn Λn+1

i ⊂ ∆n+1. Invoking our assumption
that X is an n-groupoid, we conclude that τi = sni (ρi). Applying the face operator dn+1

i+1 , we
obtain ρi = ρ′i.

We now prove the converse. Assume that X satisfies condition (∗); we wish to show that
the Kan complex X is an n-groupoid. Fix a pair of integers 0 ≤ i ≤ m with m > n and
a pair of m-simplices τ0, τ1 : ∆m → X which coincide on the horn Λm

i ⊂ ∆m; we wish to
show that τ0 = τ1. Since X is weakly n-coskeletal, it will suffice to prove that τ0 and τ1
coincide on the boundary ∂∆m: that is, to show that the (m− 1)-simplices σ0 = dmi (τ0) and
σ1 = dmi (τ1) coincide. Note that σ0 and σ1 have the same restriction to the boundary ∂∆m−1.
Consequently, if m ≥ n+ 2, the desired result follows from our assumption that X is weakly
n-coskeletal. We may therefore assume that m = n+1. By virtue of (∗), it will suffice to show
that the (m−1)-simplices σ0 and σ1 are homotopic relative to ∂∆m−1. In fact, we will prove
a stronger claim: the m-simplices τ0 and τ1 are homotopic relative to the horn Λm

i ⊂ ∆m.
This follows from the observation that the restriction map Fun(∆m, X)→ Fun(Λmi , X) is a
trivial Kan fibration; see Corollary 3.1.3.6.

Corollary 3.5.5.13 (Exponentation for n-Groupoids). 053ZLet n ≥ 0 be an integer and let X
be an n-groupoid. Then, for any simplicial set K, the simplicial set Fun(K,X) is also an
n-groupoid.

Proof. It follows from Corollary 3.1.3.4 that Fun(K,X) is a Kan complex. Since X is
weakly n-coskeletal (Proposition 3.5.5.10), it follows that Fun(K,X) is also weakly n-
coskeletal (Corollary 3.5.4.13). We will complete the proof by showing that Fun(K,X)
satisfies condition (∗) of Proposition 3.5.5.12. Suppose we are given a pair of n-simplices
σ0, σ1 : ∆n → Fun(K,X) which are homotopic relative to ∂∆n; we wish to show that
σ0 = σ1. Let us identify σ0 and σ1 with morphisms f0, f1 : ∆n×K → X. Since X is weakly
n-coskeletal, it will suffice to show that f0 and f1 coincide on m-simplices τ = (τ ′, τ ′′) of
∆n ×K for m ≤ n. If τ ′ factors through the boundary ∂∆n, this follows immediately from
the equality σ0|∂∆n = σ1|∂∆n . We may therefore assume without loss of generality that
m = n and that τ ′ : ∆m → ∆n is the identity map. In this case, our assumption that σ0 and
σ1 are homotopic relative to ∂∆n guarantees that f0(τ) and f1(τ) are homotopic relative to
∂∆n, so that f0(τ) = f1(τ) by virtue of Proposition 3.5.5.12.

Corollary 3.5.5.14. 0540Let n be a nonnegative integer and let f : X → Y be a morphism of
Kan complexes. Assume that Y is an n-groupoid and that f is bijective on m-simplices for
m < n. The following conditions are equivalent:

(1) The morphism f is a Kan fibration.
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(2) The morphism f is surjective on n-simplices.

(3) The morphism f is n-connective.

Proof. We first show that (1) implies (2). Here we may assume that n > 0 (otherwise,
the result is a special case of Proposition 3.5.1.22). Let τ be an n-simplex of Y , and set
τ0 = τ |Λn

0
. Since f is bijective on m-simplices for m < n, we can lift τ0 to a morphism

τ0 : Λn0 → X. If f is a Kan fibration, then the lifting problem

Λn0
τ0 //

��

X

f

��
∆n

τ

>>

τ // Y

admits a solution, given by an n-simplex τ of X satisfying f(τ) = τ .
The implication (2)⇒ (3) is a special case of Corollary 3.5.2.2. We will complete the

proof by showing that (3) implies (1). Assume that f is n-connective and fix a pair of
integers 0 ≤ i ≤ m with m > 0; we wish to show that every lifting problem

Λmi
σ0 //

��

X

f

��
∆m

σ

>>

σ // Y

admits a solution. We consider three cases:

• Suppose that m < n. In this case, our assumption that f is bijective on m-simplices
guarantees that there is a unique m-simplex σ of X satisfying f(σ) = σ. By construc-
tion, we have (f ◦σ)|Λm

i
= σ|Λm

i
= f ◦σ0. Since f is bijective on simplices of dimension

< m, it follows that σ0 = σ|Λm
i

.

• Suppose that m > n. In this case, our assumption that X is a Kan complex guarantees
that we can extend σ0 to an m-simplex σ of X. By construction, we have

(f ◦ σ)|Λm
i

= f ◦ σ0 = σ|Λm
i
.

Since Y is an n-groupoid, it follows that f ◦ σ = σ.

• Suppose that m = n. Since f is bijective on (n− 1)-simplices, the morphism σ0 admits
a unique extension σ1 : ∂∆n → X satisfying f ◦ σ1 = σ|∂∆n . The morphism f factors
as a composition

X
i−→ X ×Fun({0},Y ) Fun(∆1, Y ) q−→ Y,



546 CHAPTER 3. KAN COMPLEXES

where i is a homotopy equivalence and q is a Kan fibration (see Example 3.1.7.10).
Since f is n-connective, the Kan fibration q is also n-connective (Proposition 3.5.1.26).
Applying Proposition 3.5.2.1, we conclude that there is an n-simplex σ of X satisfying
σ1 = σ|∂∆n and a homotopy from f(σ) to σ which is constant when restricted to ∂∆n.
Since Y is an n-groupoid, Proposition 3.5.5.12 guarantees that f(σ) = σ.

Corollary 3.5.5.15. 0541Let n be a nonnegative integer and let f : X → Y be a homotopy
equivalence of n-groupoids. If f is bijective on m-simplices for m < n, then f is an
isomorphism.

Proof. It follows from Corollary 3.5.5.14 that f is a Kan fibration. Applying Proposition
3.2.7.2, we deduce that f is a trivial Kan fibration. In particular, f admits a section
g : Y ↪→ X. To complete the proof, it will suffice to show that g is an epimorphism of
simplicial sets. This follows from Corollary 3.5.5.14, since g is also bijective on m-simplices
for m < n.

Proposition 3.5.5.16. 0542Let X be a Kan complex and let n ≥ 0 be an integer. The following
conditions are equivalent:

(1) The Kan complex X is isomorphic to an Eilenberg-MacLane space K(G,n). Here G is a
set if n = 0, a group if n = 1, and an abelian group if n ≥ 2 (see Construction 2.5.6.9).

(2) The Kan complex X is an n-groupoid having a single m-simplex for each m < n.

Proof. If n = 0, the desired result follows from Proposition 3.5.5.7. If n = 1, then X is
an n-groupoid if and only if it is isomorphic to the nerve N•(C), where C is a groupoid
(Proposition 3.5.5.8). In this case, the assumption that X has a single vertex is equivalent
to the requirement that the category C contains a single object C, in which case we can
identify N•(C) with the classifying simplicial set K(G, 1) = B•G for G = AutC(C). We may
therefore assume that n ≥ 2. The implication (1) ⇒ (2) follows from Proposition 3.5.5.9.
For the converse, assume that X is an n-groupoid having a single m-simplex for each m < n.
Let x be the unique vertex of X and set G = πn(X,x). For every n-simplex σ of X, the
restriction σ|∂∆n is the constant map taking the value x, so the homotopy class [σ] can be
regarded as an element of the group G. Our assumption that X is an n-groupoid guarantees
that the assignment σ 7→ [σ] determines a bijection from the collection of n-simplices of
X to the group G, which determines an isomorphism f0 from the n-skeleton of X to the
n-skeleton of K(G,n). Invoking Theorem 3.2.2.10, we see that a morphism τ0 : ∂∆n+1 → X

can be extended to an (n+ 1)-simplex of X if and only if the composite map

∂∆n+1 τ0−→ skn(X) f0−→ K(G,n)
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can be extended to an (n + 1)-simplex of K(G,n). Since K(G,n) is weakly n-coskeletal,
it follows that f0 extends uniquely to a morphism of simplicial sets f : X → K(G,n)
(Proposition 3.5.4.12) which is surjective on (n + 1)-simplices. In particular, f exhibits
K(G,n) as a weak n-coskeleton of X (Definition 3.5.4.14). Since X is weakly n-coskeletal
(Proposition 3.5.5.10), we conclude that f is an isomorphism.

3.5.6 Higher Fundamental Groupoids

0543 Let X be a Kan complex. Recall that the fundamental groupoid π≤1(X) is a category
whose objects are the vertices of X, and whose morphisms are given by homotopy classes of
paths (Definition 1.4.6.12). We now consider a higher-dimensional version of this construction.

Definition 3.5.6.1.0544 Let X be a Kan complex and let n ≥ 0 be an integer. We say that a
morphism of Kan complexes f : X → Y exhibits Y as a fundamental n-groupoid of X if the
following conditions are satisfied:

(a) The simplicial set Y is an n-groupoid (Definition 3.5.5.1).

(b) The morphism f is bijective on m-simplices for m < n.

(c) The morphism f is surjective on n-simplices.

(d) If σ and σ′ are n-simplices of X satisfying f(σ) = f(σ′), then σ and σ′ are homotopic
relative to ∂∆n (see Definition 3.2.1.3).

Remark 3.5.6.2.0545 Let n be a nonnegative integer and let f : X → Y be a morphism of
Kan complexes which exhibits Y as a fundamental n-groupoid of X. Then f is a Kan
fibration (Corollary 3.5.5.14). In particular, since it is surjective on vertices, it is surjective
on m-simplices for every integer m (see Remark 3.1.2.8).

Example 3.5.6.3.0546 LetX be a Kan complex and let π≤1(X) denote the fundamental groupoid
of X (Definition 1.4.6.12). Then the nerve N•(π≤1(X)) is a 1-groupoid (Proposition 3.5.5.8).
By construction, the tautological map u : X → N•(π≤1(X)) is bijective on vertices and
surjective on edges. Moreover, two edges of X have the same image in N•(π≤1(X)) if and
only if they are homotopic relative to ∂∆1 (see Corollary 1.4.3.7). It follows that u exhibits
N•(π≤1(X)) as a fundamental 1-groupoid of X.

Example 3.5.6.4.0547 Let n be a nonnegative integer and let X be an n-groupoid. Then the
identity map idX : X → X exhibits X as a fundamental n-groupoid of itself.

Fundamental n-groupoids can be characterized by a universal mapping property.
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Proposition 3.5.6.5. 0548Let n be a nonnegative integer and let f : X → Y be a morphism
of Kan complexes which exhibits Y as a fundamental n-groupoid of X. Then, for every
n-groupoid Z, composition with f induces an isomorphism of simplicial sets Fun(Y, Z)→
Fun(X,Z).

Proof. Let K be a simplicial set; we will show that precomposition with f induces a bi-
jection HomSet∆(K,Fun(Y, Z))→ HomSet∆(K,Fun(X,Z)). Replacing Z by the n-groupoid
Fun(K,Z) (Corollary 3.5.5.13), we are reduced to proving that the natural map

θ : HomSet∆(Y, Z) ◦f−→ HomSet∆(X,Z)

is a bijection.
Let h : X → Z be a morphism of Kan complexes; we wish to show that there is a

unique morphism g : Y → Z satisfying g ◦ f = h. We first claim that there is a unique
morphism g0 : skn(Y )→ Z satisfying g0 ◦ skn(f) = h|skn(X). Our assumption that f exhibits
Y as a fundamental n-groupoid of X guarantees that skn(f) is surjective. It will therefore
suffice to show that if σ and σ′ are m-simplices of X for m ≤ n satisfying f(σ) = f(σ′),
then h(σ) = h(σ′). If m < n, then σ = σ′ and the result is clear. In the case m = n, the
assumption that f(σ) = f(σ′) guarantees that σ and σ′ are homotopic relative to ∂∆n, in
which case the desired result follows from Proposition 3.5.5.12.

It follows from Remark 3.5.6.2 that every (n + 1)-simplex τ of Y can be lifted to an
(n + 1)-simplex τ̃ of X. In particular, g0 ◦ τ |∂∆n+1 extends to an (n + 1)-simplex of Z,
given by h(τ̃). Since Z is weakly n-coskeletal (Proposition 3.5.5.10), Proposition 3.5.4.12
guarantees that g0 extends uniquely to a morphism g : Y → Z, which automatically satisfies
the equation g ◦ f = h.

Notation 3.5.6.6. 0549Let X be a Kan complex and let n ≥ 0 be an integer. We will see
later that there exists a morphism of Kan complexes f : X → Y which exhibits Y as a
fundamental n-groupoid of X (Theorem 3.5.6.17). It follows from Proposition 3.5.6.5 that
Y is unique up to (canonical) isomorphism and depends functorially on X. To emphasize
this dependence, we will typically denote the simplicial set Y by π≤n(X), and refer to it as
the fundamental n-groupoid of X.

Warning 3.5.6.7. 054ALet X be a Kan complex. We have now assigned two different meanings
to the notation π≤1(X):

• The fundamental groupoid of X (Definition 1.4.6.12), which is a category.

• The fundamental 1-groupoid of X (Notation 3.5.6.6), which is a simplicial set.

However, the danger of confusion is slight: by virtue of Example 3.5.6.3, the fundamental
1-groupoid of X is isomorphic to the nerve of the fundamental groupoid of X.
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Example 3.5.6.8.054B Let X be a Kan complex, let π0(X) be the set of connected components
of X. Then the fundamental 0-groupoid π≤0(X) can be identified with the constant simplicial
set π0(X). More precisely, the tautological map X → π0(X) exhibits π0(X) as a fundamental
0-groupoid of X (see Proposition 3.5.5.7).

Example 3.5.6.9.054C Let n ≥ 0 be an integer and let X = K(A∗) be the Eilenberg-MacLane
space associated to a chain complex of abelian groups

· · · → An+1
∂−→ An

∂−→ An−1
∂−→ An−2 → · · ·

(see Construction 2.5.6.3). Let Bn ⊆ An denote the image of the differential ∂ : An+1 → An,
and let A′∗ denote the chain complex

· · · → 0→ An/Bn → An−1
∂−→ An−2 → · · ·

Since A′∗ is concentrated in degrees ≤ n, the Eilenberg-MacLane space K(A′∗) is n-groupoid,
which we can identify with the fundamental n-groupoid π≤n(X). More precisely, the quotient
map A∗ ↠ A′∗ is an isomorphism in degrees < n and induces an isomorphism on homology
in degrees ≤ n, so the induced map of Kan complexes K(A∗) ↠ K(A′∗) exhibits K(A′∗) as a
fundamental n-groupoid of X.

Let X be a Kan complex. Our goal for the remainder of this section is to give an explicit
construction of a fundamental n-groupoid of X, for each n ≥ 0.

Construction 3.5.6.10.054D Let n be a nonnegative integer, let X be a Kan complex. and let
cosk◦n(X) denote the weak n-coskeleton of X (Notation 3.5.4.19). For every integer m ≥ 0,
we will identify m-simplices of cosk◦n(X) with morphisms σ : skn(∆m)→ X which can be
extended to the (n+ 1)-skeleton of ∆m (see Remark 3.5.4.21). Given two such morphisms
σ, σ′ : skn(∆m) → X, we write σ ∼m σ′ if σ and σ′ are homotopic relative to skn−1(∆m).
The construction

([m] ∈∆op) 7→ HomSet∆(∆m, cosk◦n(X))/ ∼m
determines a simplicial set, which we will denote by π≤n(X). By construction, we have an
epimorphism of simplicial sets q : cosk◦n(X) ↠ π≤n(X), which determines a comparison map
X → π≤n(X).

Remark 3.5.6.11.054E In the situation of Construction 3.5.6.10, the relation σ ∼m σ′ implies
that σ = σ′ whenever m < n. It follows that the tautological map v : X → π≤n(X) is
bijective on simplices of dimension < n, and surjective on simplices of dimension n.

Proposition 3.5.6.12.054F Let X be a Kan complex and let n be a nonnegative integer. Then,
for every simplicial set A, the comparison map

θ : HomSet∆(A, cosk◦n(X))→ HomSet∆(A, π≤n(X))
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is surjective. Moreover, if f0, f1 : A → cosk◦n(X) are morphisms of simplicial sets which
correspond to maps u0, u1 : skn(A) → X, then θ(f0) = θ(f1) if and only if u0 and u1 are
homotopic relative to skn−1(A).

Proof. We first prove that θ is a surjection. Fix a morphism g : A → π≤n(X). Using
Remark 3.5.6.11 (and Proposition 1.1.4.12), we see that g|skn(A) can be lifted to a morphism
of simplicial sets u : skn(A) → X. We will show that u can be extended to the (n + 1)-
skeleton of A (and is therefore classified by a morphism f : A → cosk◦n(X) satisfying
θ(f) = g; see Remark 3.5.4.21). By virtue of Proposition 1.1.4.12 and Variant 3.2.4.13,
this is equivalent to the assertion that for every (n+ 1)-simplex σ of A having restriction
σ0 = σ|∂∆n+1 , the composition (g ◦ σ0) : ∂∆n+1 → X is nullhomotopic. Choose a lift
of g(σ) to an (n + 1)-simplex of cosk◦n(X), which we identify with a nullhomotopic map
τ0 : ∂∆n+1 → X. By construction, g◦σ0 and τ0 coincide after composing with the comparison
map v : X → π≤n(X). Using Proposition 1.1.4.12 again, we see that g ◦ σ0 and τ0 are
homotopic relative to the skn−1(∆n+1), so that g ◦ σ0 is also nullhomotopic.

Now suppose that we are given a pair of morphisms f0, f1 : A → cosk◦n(X) satisfying
θ(f0) = θ(f1). We wish to show that the associated maps u0, u1 : skn(A)→ X are homotopic
relative to skn−1(A) (the converse is immediate from the definitions). Using Remark 3.5.6.11,
we deduce that u0 and u1 coincide on skn−1(A). By virtue of Proposition 1.1.4.12, we are
reduced to showing that for every nondegenerate n-simplex σ of A, the compositions u0 ◦ σ
and u1 ◦ σ are homotopic relative to ∂∆n. This follows from our assumption that the maps
θ(f0), θ(f1) : A→ π≤n(X) coincide on the simplex σ.

Remark 3.5.6.13. 054GLet X be a Kan complex, let n ≥ 0 be an integer, and let A be a
simplicial set. Stated more informally, Proposition 3.5.6.12 asserts that HomSet∆(A, π≤n(X))
can be viewed as a subquotient of the set HomSet∆(skn(A), X):

• A morphism u : skn(A)→ X determines a map from A to π≤n(X) if and only if u can
be extended to the (n+ 1)-skeleton of A.

• Two such morphisms u0, u1 : skn(A)→ X determine the same map from A to π≤n(X)
if and only if they are homotopic relative to the (n− 1)-skeleton of A.

Corollary 3.5.6.14. 054HLet X be a Kan complex and let n ≥ 0 be an integer. Then the
comparison map q : cosk◦n(X) ↠ π≤n(X) of Construction 3.5.6.10 is a trivial Kan fibration.
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Proof. Fix an integer m ≥ 0; we wish to show that every lifting problem

054J ∂∆m

��

σ0 // cosk◦n(X)

q

��
∆m

;;

σ // π≤n(X)

(3.35)

admits a solution.
Let σ be any m-simplex of cosk◦n(X) satisfying q(σ) = σ. By virtue of Remark 3.5.6.11,

the commutativity of the diagram (3.35) guarantees that σ0 and σ coincide on the (n− 1)-
skeleton of ∂∆m. Consequently, if m ≤ n, then σ is a solution to the the lifting problem
(3.35). We will therefore assume that m > n. In this case, the boundary ∂∆m contains the
n-skeleton of ∆m. It will therefore suffice to show that σ0 can be extended to an m-simplex
σ′ of cosk◦n(X): the commutativity of the diagram (3.35) guarantees that any such extension
satisfies the identity q(σ′) = σ (Proposition 3.5.6.12). If m ≥ n+ 2, then the existence of σ′
is automatic (since cosk◦n(X) is (n+ 1)-coskeletal). It will therefore suffice to treat the case
m = n+ 1. In this case, we can identify σ0 with a morphism τ0 : ∂∆n+1 → X, and we wish
to show that τ0 is nullhomotopic. Note that σ|∂∆m determines a morphism τ1 : ∂∆n+1 → X.
Moreover, the commutativity of the diagram (3.35) guarantees that τ0 and τ1 are homotopic
relative to skn−1(∆n+1) (Proposition 3.5.6.12). It will therefore suffice to show that τ1 is
nullhomotopic, which follows from the existence of σ.

Corollary 3.5.6.15.054K Let X be a Kan complex, let n be a nonnegative integer, and let
π≤n(X) be as in Construction 3.5.6.10. Then the quotient map coskn+1(X) ↠ π≤n(X) is a
trivial Kan fibration of simplicial sets.

Proof. Combine Corollary 3.5.6.14 with Proposition 3.5.4.22.

Corollary 3.5.6.16.054L Let X be a Kan complex, let n be a nonnegative integer, and let
π≤n(X) be as in Construction 3.5.6.10. Then π≤n(X) is an n-groupoid.

Proof. By virtue of Proposition 3.5.3.23, the coskeleton coskn+1(X) is a Kan complex.
Combining Corollary3.5.6.15 with Proposition 1.5.5.11, we conclude that π≤n(X) is a Kan
complex. To complete the proof, it will suffice to show that if σ and τ are m-simplices
of π≤n(X) for some m > n which satisfy σ|Λm

i
= τ |Λm

i
for some 0 ≤ i ≤ m, then σ = τ .

Choose maps σ̃, τ̃ : skn(∆m) → X representing σ and τ . Using Proposition 3.5.6.12, we
can choose a homotopy from σ̃|skn(Λm

i ) to τ̃ |skn(Λm
i ) which is constant when restricted to the

skeleton skn−1(Λmi ) = skn−1(∆m). If m ≥ n+ 2, then h is also a homotopy from σ̃|skn(∆m)
to τ̃ |skn(∆m), so that σ = τ as desired. In the case m = n+ 1, the morphisms σ̃ and τ̃ can

https://kerodon.net/tag/054J
https://kerodon.net/tag/054K
https://kerodon.net/tag/054L


552 CHAPTER 3. KAN COMPLEXES

be extended to morphisms σ, τ : ∆n+1 → X. Using Corollary 3.1.3.6, we can extend h to
a homotopy h from σ to τ . Restricting this homotopy to the n-skeleton of ∆m, we again
conclude that σ = τ .

Theorem 3.5.6.17. 054MLet X be a Kan complex. For every n ≥ 0, the comparison map
v : X → π≤n(X) of Construction 3.5.6.10 exhibits π≤n(X) as a fundamental n-groupoid of
X.

Proof. It follows from Remark 3.5.6.11 that v is bijective on m-simplices for m < n and
surjective on n-simplices. By construction, if σ and σ′ are n-simplices of X, then v(σ) = v(σ′)
if and only if σ and σ′ are homotopic relative to ∂∆n. It will therefore suffice to show that
π≤n(X) is an n-groupoid, which follows from Corollary 3.5.6.16.

3.5.7 Truncated Kan Complexes

054NLet X be a Kan complex. According to Proposition 3.5.2.1, X is n-connective if and
only if, for every nonnegative integer m ≤ n, every map ∂∆m → X can be extended to an
m-simplex of X. We now study a dual version of this condition.

Definition 3.5.7.1. 054PLet n be an integer. We say that a Kan complex X is n-truncated if,
for every integer m ≥ n+ 2, every morphism of simplicial sets ∂∆m → X can be extended
to an m-simplex of X.

Example 3.5.7.2. 054QLet n be an integer. Recall that a Kan complex X is (n+ 1)-coskeletal if,
for every integer m ≥ n+2, every morphism of simplicial sets ∂∆m → X extends uniquely to
an m-simplex of X (Definition 3.5.3.1). If this condition is satisfied, then X is n-truncated.
In particular, every n-groupoid is n-truncated (Corollary 3.5.5.11). See Proposition 3.5.7.15
(or Variant 3.5.7.16) for a partial converse.

Example 3.5.7.3. 054RFor n ≤ −2, a Kan complex X is n-truncated if and only if it is
contractible (see Theorem 3.2.4.3).

Example 3.5.7.4. 054SA Kan complex X is (−1)-truncated if and only if it is either empty or
contractible.

Example 3.5.7.5. 054TA Kan complex X is 0-truncated if and only if it satisfies any of the
following equivalent conditions:

• Every connected component of X is contractible.

• The projection map X ↠ π0(X) is a trivial Kan fibration of simplicial sets.

• The projection map X ↠ π0(X) is a homotopy equivalence.
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• The Kan complex X is homotopy equivalent to a discrete simplicial set.

Remark 3.5.7.6.054U Let n be an integer. Then the collection of n-truncated Kan complexes
is closed under products.

Proposition 3.5.7.7.054V Let X be a Kan complex and let n ≥ 0 be an integer. Then X is
n-truncated if and only if it satisfies the following condition for every integer m > n:

(∗m) For every vertex x ∈ X, the homotopy group πm(X,x) is trivial.

Proof. Apply Lemma 3.2.4.14.

Remark 3.5.7.8.054W Proposition 3.5.7.7 is also true in the case n = −1, provided that restate
condition (∗m) as follows:

(∗′m) For every vertex x ∈ X, the set πm(X,x) consists of a single element.

Note that (∗′0) is equivalent to the assertion that every pair of vertices of X belong to
the same connected component: that is, every morphism ∂∆1 → X can be extended to a
1-simplex of X.

Remark 3.5.7.9.054X In the situation of Proposition 3.5.7.7, it is not necessary to verify the
vanishing of the group πm(X,x) for every choice of vertex x ∈ X; it is enough to check this
at one point from each connected component of X (see Example 3.2.2.18). In particular, if
X is connected, then it is enough to check that this condition holds for any choice of vertex
x ∈ X.

Example 3.5.7.10.054Y Let n ≥ −1 be an integer and let A∗ be a chain complex of abelian
groups. Then the Eilenberg-MacLane space K(A∗) is n-truncated if and only if the homology
groups Hm(A) vanish for m > n (see Exercise 3.2.2.22).

Remark 3.5.7.11.054Z Let n ≥ 0 be a nonnegative integer. Then a Kan complex X is
n-truncated if and only if every connected component of X is n-truncated.

Corollary 3.5.7.12 (Homotopy Invariance).0550 Let n ≥ −2 and let X and Y be Kan complexes
which are homotopy equivalent. Then X is n-truncated if and only if Y is n-truncated.

Proof. For n ≥ 0 this follows from the criterion of Proposition 3.5.7.7. The case n < 0
follows from Examples 3.5.7.4 and 3.5.7.3.

Corollary 3.5.7.13.0551 Let n be an integer and let f : X → Y be a morphism of n-truncated
Kan complexes. Then f is a homotopy equivalence if and only if it is (n+ 1)-connective.

Proof. If n ≤ −2, then X and Y are contractible and there is nothing to prove. For n ≥ −1,
the desired result follows by combining Proposition 3.5.7.7 (and Remark 3.5.7.8) with
Theorem 3.2.7.1.
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Corollary 3.5.7.14. 0552Let f : X → Y be a morphism of Kan complexes which is n-connective
for some integer n. Then the induced map coskn(f) : coskn(X)→ coskn(Y ) is a homotopy
equivalence.

Proof. We have a commutative diagram of Kan complexes

X //

f

��

coskn(X)

coskn(f)

��
Y // coskn(Y ),

where the horizontal maps are n-connective (Remark 3.5.3.22). Applying Corollary 3.5.1.28,
we deduce that coskn(f) is n-connective. Since coskn(X) and coskn(Y ) are (n−1)-truncated
(Example 3.5.7.2), Corollary 3.5.7.13 guarantees that coskn(f) is a homotopy equivalence.

Proposition 3.5.7.15. 0553Let X be a Kan complex and let n be an integer. The following
conditions are equivalent:

(1) The Kan complex X is n-truncated.

(2) There exists an n-truncated Kan complex Y which is homotopy equivalent to X.

(3) There exists an (n+ 1)-coskeletal Kan complex Y which is homotopy equivalent to X.

(4) The tautological map X → coskn+1(X) is a homotopy equivalence.

Proof. The implication (2)⇒ (1) follows from Corollary 3.5.7.12, the implication (3)⇒ (2)
from Example 3.5.7.2, and the implication (4)⇒ (3) from the observation that coskn+1(X)
is a Kan complex (Proposition 3.5.3.23). We will complete the proof by showing that (1)
implies (4). Assume that X is n-truncated; we wish to show that the tautological map
u : X → coskn+1(X) is a homotopy equivalence. Since coskn+1(X) is also n-truncated
(Example 3.5.7.2), it will suffice to show that u is (n+ 1)-connective (Corollary 3.5.7.13).
This is a special case of Remark 3.5.3.22.

Variant 3.5.7.16. 0554Let X be a Kan complex and let n ≥ 0. The following conditions are
equivalent:

(1) The Kan complex X is n-truncated.

(2) There exists a homotopy equivalence X → Y , where Y is an n-groupoid.

(3) The tautological map X → π≤n(X) is a homotopy equivalence.
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Proof. The implication (3) ⇒ (2) follows from Corollary 3.5.6.16 and the implication
(2)⇒ (1) follows from Example 3.5.7.2. The implication (3)⇒ (1) follows from Proposition
3.5.7.15, since the tautological map X → π≤n(X) factors as a composition

X → coskn+1(X) q−→ π≤n(X),

where q is a trivial Kan fibration (Corollary 3.5.6.15).

Example 3.5.7.17.0555 Let X be a Kan complex. The following conditions are equivalent:

• The Kan complex X is 1-truncated.

• For every vertex x ∈ X, the homotopy groups πn(X,x) are trivial for n ≥ 2.

• There exists a groupoid G and a homotopy equivalence X ∼−→ N•(G).

• The tautological map X → π≤1(X) is a homotopy equivalence.

We now give the proof of Proposition 3.5.0.1:

Corollary 3.5.7.18.0556 Let X be a Kan complex and let n ≥ 0 be an integer. The following
conditions are equivalent:

(1) There exists a homotopy equivalence of Kan complexes X → K(G,n). Here G is a set if
n = 0, a group if n = 1, and an abelian group if n ≥ 2 (see Construction 2.5.6.9).

(2) The Kan complex X is n-truncated and n-connective.

Proof. We will show that (2) ⇒ (1) (the reverse implication is clear). Assume that X is
n-truncated and n-connective. By virtue of Proposition 3.5.2.9 (and Remark 3.5.2.10), we
can assume that X has a single m-simplex for each m < n. Our assumption that X is
n-truncated guarantees that the tautological map X → π≤n(X) is a homotopy equivalence
(Variant 3.5.7.16). It will therefore suffice to show that π≤n(X) is an Eilenberg-MacLane
space K(G,n), which follows from the criterion of Proposition 3.5.5.16.

Definition 3.5.7.19.0557 Let f : X → Y be a morphism of Kan complexes and let n be an
integer. We say that f exhibits Y as an n-truncation of Y if Y is n-truncated and f is
(n + 1)-connective. We say that Y is an n-truncation of X if there exists a morphism
f : X → Y which exhibits Y as an n-truncation of X.

Remark 3.5.7.20.0558 Let f : X → Y be a morphism of Kan complexes and let n ≥ 0. Then
f exhibits Y as an n-truncation of X if and only if the following conditions are satisfied:

• The morphism f induces a bijection from π0(X) to π0(Y ).
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• For every vertex x ∈ X having image y = f(x), the map of homotopy groups
πm(X,x)→ πm(Y, y) is a bijection for 0 < m ≤ n.

• For each vertex y ∈ Y and every integer m > n, the homotopy group πm(Y, y) vanishes.

See Proposition 3.5.7.7.

Remark 3.5.7.21. 0559Let f : X → Y be a morphism of Kan complexes. The condition that f
exhibits Y as an n-truncation of X depends only on the homotopy class [f ] (see Remark
3.5.1.20).

Remark 3.5.7.22. 055ALet f : X → Y and be a morphism of Kan complexes, and let g : Y → Z

be a homotopy equivalence of Kan complexes. Then f exhibits Y as an n-truncation of X if
and only if g ◦ f exhibits Z as an n-truncation of X. See Corollaries 3.5.1.28 and 3.5.7.12.

Example 3.5.7.23. 055BLet X be a Kan complex and let n be an integer. The coskeleton
coskn+1(X) is a Kan complex (Proposition 3.5.3.23) which is (n+1)-coskeletal, and therefore
n-truncated (Example 3.5.7.2). Remark 3.5.3.22 guarantees that the tautological map
f : X → coskn+1(X) is (n + 1)-connective. It follows that f exhibits coskn+1(X) as an
n-truncation of X.

Example 3.5.7.24. 055CLet X be a Kan complex and let n be an integer. Then the tautological
map X → cosk◦n(X) exhibits the weak coskeleton cosk◦n(X) as an n-truncation of X. This
follows from Example 3.5.7.23 and Remark 3.5.7.22, since the quotient map coskn+1(X) ↠
cosk◦n(X) is a trivial Kan fibration (Proposition 3.5.4.22). Alternatively, it can be deduced
directly from Remark 3.5.4.16.

Example 3.5.7.25. 055DLet X be a Kan complex and let n be a nonnegative integer. Then
the tautological map f : X → π≤n(X) exhibits the fundamental n-groupoid π≤n(X) as
an n-truncation of X. This follows from Example 3.5.7.23 and Remark 3.5.7.22, since the
quotient map coskn+1(X) ↠ π≤n(X) is a trivial Kan fibration (Corollary 3.5.6.15).

Example 3.5.7.26. 055ELet f : X → Y be a morphism of Kan complexes. Then f exhibits Y
as a (−1)-truncation of X if and only if one of the following two conditions is satisfied:

• Both X and Y are empty.

• The Kan complex X is nonempty and Y is contractible.

See Example 3.5.7.4.

Example 3.5.7.27. 055FLet f : X → Y be a morphism of Kan complexes. For n ≤ −2, f
exhibits Y as an n-truncation of X if and only if Y is contractible. See Example 3.5.7.3.
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Example 3.5.7.28.055G Let X be a Kan complex and let n be an integer. Then the projection
map X → ∆0 exhibits ∆0 as an n-truncation of X if and only if X is (n+ 1)-connective.

Let X be a Kan complex and let n be an integer. It follows from Example 3.5.7.23 that
there exists a morphism of Kan complexes f : X → Y which exhibits Y as an n-truncation
of X. We now show that this property characterizes Y up to homotopy equivalence. This is
a consequence of the following universal mapping property:

Proposition 3.5.7.29.055H Let n be an integer and let f : X → Y be a morphism of Kan
complexes, where Y is n-truncated. The following conditions are equivalent:

(1) The morphism f exhibits Y as an n-truncation of X: that is, f is (n+ 1)-connective.

(2) For every n-truncated Kan complex Z, composition with f induces a homotopy equivalence
of Kan complexes Fun(Y,Z)→ Fun(X,Z).

(3) For every n-truncated Kan complex Z, composition with the homotopy class [f ] induces
a bijection π0(Fun(Y,Z))→ π0(Fun(X,Z)).

Proof. We first show that (1) implies (2). Let Z be an n-truncated simplicial set; we wish to
show that composition with f induces a homotopy equivalence θ : Fun(Y,Z)→ Fun(X,Z).
By virtue of Proposition 3.5.7.15, we may assume without loss of generality that Z is
(n+ 1)-coskeletal. In this case, we can use Proposition 3.5.3.17 to identify θ with the map

Fun(coskn+1(Y ), Z)→ Fun(coskn+1(X), Z)

given by precomposition with coskn+1(f). If f is (n+ 1)-connective, then Corollary 3.5.7.14
guarantees that coskn+1(f) is a homotopy equivalence, so that θ is also a homotopy equiva-
lence.

The implication (2)⇒ (3) follows from Remark 3.1.6.5. We will complete the proof by
showing that (3) implies (1). Let u : X → coskn+1(X) be the tautological map. Then u

exhibits coskn+1(X) as an n-truncation of X (Example 3.5.7.23). In particular, coskn+1(X)
is an n-truncated Kan complex, so condition (3) guarantees that there exists a morphism
g : Y → coskn+1(X) such that g ◦ f is homotopic to u. For every n-truncated Kan complex
Z, we have a commutative diagram

HomhKan(coskn+1(X), Z)) ◦[g] //

◦[u]

((

HomhKan(Y,Z)

◦[f ]

ww
HomhKan(X,Z),

where the vertical maps are bijective. It follows that g is a homotopy equivalence, so that f
exhibits Y as an n-truncation of X by virtue of Remarks 3.5.7.22 and 3.5.7.21.
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Corollary 3.5.7.30. 055JLet n be an integer and let hKan≤n denote the full subcategory of the
homotopy category hKan spanned by the n-truncated Kan complexes. Then the inclusion
map hKan≤n ↪→ hKan admits a left adjoint, given by the construction X 7→ coskn+1(X).

3.5.8 The Postnikov Tower of a Kan Complex

055KIf X is a Kan complex, then its truncations can be arranged into a diagram.

Definition 3.5.8.1. 055LLet X be a Kan complex. Suppose we are given an inverse system of
Kan complexes Y = {Y (n)}n≥0, which we display as

· · · → Y (3)→ Y (2)→ Y (1)→ Y (0).

We say that a morphism of simplicial sets u : X → lim←−n Y (n) exhibits Y as a Postnikov
tower of X if, for every integer n ≥ 0, the induced map un : X → Y (n) exhibits Y (n)
as an n-truncation of Y : that is, Y (n) is n-truncated and un is (n + 1)-connective (see
Definition 3.5.7.19). We say that Y is a Postnikov tower of X if there exists a morphism
u : X → lim←−n Y (n) which exhibits Y as a Postnikov tower of X.

Example 3.5.8.2 (The Canonical Tower). 055MLet X be a Kan complex. For every integer
n ≥ 0, let un denote the tautological map from X to its fundamental n-groupoid π≤n(X).
Since π≤n(X) is also an (n+ 1)-groupoid (Remark 3.5.5.3), Proposition 3.5.6.5 guarantees
that un factors uniquely as a composition X

un+1−−−→ π≤n+1(X) rn−→ π≤n(X). We therefore
obtain an inverse system of Kan complexes

· · · → π≤3(X) r2−→ π≤2(X) r1−→ π≤1(X) r0−→ π≤0(X),

Since each un is bijective on m-simplices for m < n, the induced map u : X → lim←−n π≤n(X)
is an isomorphism of simplicial sets. It follows from Example 3.5.7.25 that u exhibits
the inverse system {π≤n(X)}n≥0 as a Postnikov tower of X, which we will refer to as the
canonical Postnikov tower of X.

Remark 3.5.8.3 (Uniqueness). 055NLet X be a Kan complex and let Y = {Y (n)}n≥0 be a
Postnikov tower of X. Then Y is homotopy equivalent to the canonical Postnikov tower of
Example 3.5.8.2. More precisely, let u : X → lim←−n Y (n) be a morphism of simplicial sets
which exhibits Y as a Postnikov tower of X, given by a compatible system of morphisms

https://kerodon.net/tag/055J
https://kerodon.net/tag/055K
https://kerodon.net/tag/055L
https://kerodon.net/tag/055M
https://kerodon.net/tag/055N


3.5. TRUNCATIONS AND POSTNIKOV TOWERS 559

un : X → Y (n). We then have a commutative diagram of towers

· · · // π≤3(X) //

π≤3(u3)

��

π≤2(X)

π≤2(u2)

��

// π≤1(X)

π≤1(u1)

��

// π≤0(X)

π≤0(u0)

��
· · · // π≤3(Y (3)) // π≤2(Y (2)) // π≤1(Y (1)) // π≤0(Y (0))

· · · // Y (3)

OO

// Y (2)

OO

// Y (1)

OO

// Y (0),

OO

where the upper vertical maps are homotopy equivalences by virtue of our assumption
that un is (n+ 1)-connective (see Corollaries 3.5.7.14 and 3.5.6.15), and the lower vertical
maps are homotopy equivalences by virtue of our assumption that each Y (n) is n-truncated
(Variant 3.5.7.16).

Example 3.5.8.4 (The Coskeletal Tower).055P Let X be a Kan complex. For every integer
n, let vn : X → coskn(X) denote the tautological map from X to its n-coskeleton. Since
the coskn(X) is (n + 1)-coskeletal, the morphism vn factors (uniquely) as a composition
X

vn+1−−−→ coskn+1(X) qn−→ coskn(X). We therefore obtain an inverse system of Kan complexes

· · · → cosk4(X) q3−→ cosk3(X) q2−→ cosk2(X) q1−→ cosk1(X)

which we will refer to as the coskeletal tower of X. Since vn is bijective on m-simplices for
m ≤ n, the induced map v : X → lim←−n coskn(X) is an isomorphism of simplicial sets. It
follows from Example 3.5.7.23 that v exhibits the coskeletal tower as a Postnikov tower
of X (that is, each of the morphisms vn+1 : X → coskn+1(X) exhibits coskn+1(X) as an
n-truncation of X).

Example 3.5.8.5 (The Weakly Coskeletal Tower).055Q Let X be a Kan complex. For every
integer n ≥ 0, let v◦n : X → cosk◦n(X) denote the tautological map from X to its weak
n-coskeleton (Notation 3.5.4.19). Since the cosk◦n(X) is (n+ 1)-coskeletal, the morphism v◦n

factors (uniquely) as a composition X
v◦n+1−−−→ cosk◦n+1(X) q◦n−→ cosk◦n(X). We therefore obtain

an inverse system of Kan complexes

· · · → cosk◦3(X)
q◦2−→ cosk◦2(X)

q◦1−→ cosk◦1(X)
q◦0−→ cosk◦0(X)

which we will refer to as the weakly coskeletal tower of X. Since v◦n is bijective on m-simplices
for m < n, the induced map v◦ : X → lim←−n cosk◦n(X) is an isomorphism of simplicial sets. It
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follows from Example 3.5.7.24 that v◦ exhibits the weakly coskeletal tower as a Postnikov
tower of X (that is, each of the morphisms v◦n : X → cosk◦n(X) exhibits cosk◦n(X) as an
n-truncation of X).

Remark 3.5.8.6. 055RLet X be a Kan complex. Then the Postnikov towers described in
Examples 3.5.8.2, 3.5.8.4, and 3.5.8.5 are related by a commutative diagram

055S· · · // cosk4(X) //

��

cosk3(X) //

��

cosk2(X) //

��

cosk1(X)

��
· · · // cosk◦3(X) //

��

cosk◦2(X) //

��

cosk◦1(X) //

��

cosk◦0(X)

��
· · · // π≤3(X) // π≤2(X) // π≤1(X) // π≤0(X),

(3.36)
where the vertical maps are trivial Kan fibrations (see Proposition 3.5.4.22 and Corollary
3.5.6.14).

Proposition 3.5.8.7. 055TLet X be a Kan complex, let n ≥ 0 be an integer, and let v◦n−1 denote
the tautological map from X to its weak (n− 1)-coskeleton cosk◦n−1(X). Then:

(1) The morphism v◦n−1 factors uniquely as a composition X → π≤n(X) fn−→ cosk◦n−1(X).

(2) The morphism fn exhibits cosk◦n−1(X) as a weak (n− 1)-coskeleton of the fundamental
n-groupoid π≤n(X).

(3) The morphism fn is a Kan fibration.

(4) Let x ∈ X be a vertex and set G = πn(X,x). Then the fiber {x} ×cosk◦n−1(X) π≤n(X) is
isomorphic to the Eilenberg-MacLane space K(G,n) of Construction 2.5.6.9.

Proof. Since the weak coskeleton cosk◦n−1(X) is an n-groupoid (Proposition 3.5.5.10), as-
sertion (1) is a special case of Proposition 3.5.6.5. Note that, since v◦n−1 is surjective on
n-simplices, the morphism fn has the same property. Consequently, to prove (2), it will
suffice to show that fn is bijective on m-simplices for m < n (see Definition 3.5.4.14). This
is clear, since the morphisms v◦n−1 and un : X → π≤n(X) are bijective on m-simplices.

Assertion (3) follows by combining (2) with Proposition 3.5.4.26. It remains to prove
(4). Fix a vertex x ∈ X, and let us abuse notation by identifying x with its images in
π≤n(X) and cosk◦n−1(X). Let Y denote the fiber f−1

n {x}. It follows from (3) that Y is a
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Kan complex. Applying Remark 3.5.5.6, we see that Y is an n-groupoid. Since fn is bijective
on m-simplices for m < n, the simplicial set Y has a single m-simplex for m < n. Applying
Proposition 3.5.5.16, we obtain an isomorphism Y

∼−→ K(G,n) where G is a set if n = 0, a
group if n = 1, and an abelian group if n ≥ 2. To complete the proof, it suffices to observe
that the tautological maps

G ≃ πn(Y, x)→ πn(π≤n(X), x) π←−n (X,x)

are isomorphisms: for the map on the right, this follows from Example 3.5.7.25, and for the
map on the left it follows from the long exact sequence of Theorem 3.2.6.1.

Remark 3.5.8.8.055U LetX be a Kan complex. Then the morphisms fn : π≤n(X)→ cosk◦n−1(X)
of Proposition 3.5.8.7 fit into a commutative diagram

· · · // cosk◦3(X) //

��

cosk◦2(X) //

��

cosk◦1(X) //

��

cosk◦0(X)

��
· · · //

<<

π≤3(X) //

f3

::

π≤2(X) //

f2

::

π≤1(X)

f1

::

// π≤0(X),

which intertwines the intertwine the canonical Postnikov tower of Example 3.5.8.2 with the
weakly coskeletal tower of Example 3.5.8.5.
Corollary 3.5.8.9.055V Let X be a Kan complex. Then the transition maps in the canonical
Postnikov tower

· · · → π≤3(X)→ π≤2(X)→ π≤1(X)→ π≤0(X)
are Kan fibrations. Moreover, for every vertex x ∈ X and every integer n > 0, there is a
canonical homotopy equivalence

K(G,n)→ {x} ×π≤n−1(X) π≤n(X),

for G = πn(X,x).
Proof. For n > 0, the transition map π≤n(X)→ π≤n−1(X) factors as a composition

π≤n(X) fn−→ cosk◦n−1(X) g−→ π≤n−1(X),

where fn is the Kan fibration of Proposition 3.5.8.7 and g is the trivial Kan fibration of
Corollary 3.5.6.14. We therefore obtain a pullback diagram of Kan complexes

K(G,n) //

��

{x} ×π≤n−1(X) π≤n(X)

��
{x} // {x} ×π≤n−1(X) cosk◦n−1(X)
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where the vertical maps are Kan fibrations and the lower right corner is contractible. In
particular, the lower horizontal map is a homotopy equivalence. Applying Corollary 3.4.1.5,
we deduce that the upper horizontal map is also a homotopy equivalence.

Variant 3.5.8.10. 055WLet X be a Kan complex. Then the transition maps in the weakly
coskeletal tower

· · · → cosk◦3(X)→ cosk◦2(X)→ cosk◦1(X)→ cosk◦0(X)

are Kan fibrations (whose fibers are homotopy equivalent to Eilenberg-MacLane spaces).

Warning 3.5.8.11. 055XLet X be a Kan complex. Then the transition maps in the coskeletal
tower

· · · → cosk4(X)→ cosk3(X)→ cosk2(X)→ cosk1(X)

are generally not Kan fibrations. See Warning 3.5.4.27.

3.5.9 Truncated Morphisms

055YWe now formulate a relative version of Definition 3.5.7.1.

Definition 3.5.9.1. 055ZLet f : X → Y be a morphism of Kan complexes and let n ≥ −1 be
an integer. We say that f is n-truncated if, for every vertex x ∈ X having image y = f(x),
the induced map

πm(f) : πm(X,x)→ πm(Y, y)

is injective for m = n+1 and bijective for m > n+1. If n ≤ −2, we say that f is n-truncated
if it is (−1)-truncated and the map π0(f) : π0(X)→ π0(Y ) is surjective.

Example 3.5.9.2. 0560For n ≤ −2, a morphism of Kan complexes f : X → Y is n-truncated if
and only if it is a homotopy equivalence. This is a reformulation of Theorem 3.2.7.1.

Example 3.5.9.3. 0561A morphism of Kan complexes f : X → Y is (−1)-truncated if and only
if it induces a homotopy equivalence from X to a summand of Y .

Example 3.5.9.4. 0562Let X be a Kan complex and let n be an integer. Then X is n-truncated
(in the sense of Definition 3.5.7.1) if and only if the projection map X → ∆0 is n-truncated
(in the sense of Definition 3.5.9.1). For n ≥ 0, this is a restatement of Proposition 3.5.7.7.

Remark 3.5.9.5 (Homotopy Invariance). 0563Let f, f ′ : X → Y be morphisms of Kan complexes
which are homotopic. Then f is n-truncated if and only if f ′ is n-truncated.

Remark 3.5.9.6 (Monotonicity). 0564Let f : X → Y be a morphism of Kan complexes which
is m-truncated for some integer m. Then f is also n-truncated for every integer n ≥ m.
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Remark 3.5.9.7 (Symmetry).0565 Let f : X → Y be a morphism of Kan complexes. Then f

is n-truncated if and only if the opposite morphism fop : Xop → Y op is n-truncated. See
Remark 3.2.2.20.

Proposition 3.5.9.8.0566 Let f : X → Y be a Kan fibration between Kan complexes and let
n be an integer. Then f is n-truncated (in the sense of Definition 3.5.9.1) if and only if,
for each vertex y ∈ Y , the Kan complex Xy = {y} ×Y X is n-truncated (in the sense of
Definition 3.5.7.1).

Proof. For n ≥ 0, this follows from Corollary 3.2.6.8. This extends to the case n = −1 by
virtue of Variant 3.2.6.9, and to the case n ≤ −2 by virtue of Corollary 3.2.6.3.

Remark 3.5.9.9.0567 In the situation of Proposition 3.5.9.8, it is not necessary to verify that
the fiber Xy is n-truncated for every vertex y ∈ Y ; it is enough to check this condition at
one vertex from each connected component of Y (see Remark 3.3.7.3). In particular, if Y
is connected, then it is enough to check that the fiber Xy is n-truncated for any choice of
vertex y ∈ Y .

Variant 3.5.9.10.0568 Suppose we are given a commutative diagram of Kan complexes

X
f //

��

Y

��
Z,

where the vertical maps are Kan fibrations. Then f is n-truncated if and only if, for every
vertex z ∈ Z, the induced map fz : Xz → Yz is n-truncated. To prove this, we can use
Proposition 3.1.7.1 to reduce to the case where f is a Kan fibration. In this case, the desired
result follows from the criterion of Proposition 3.5.9.8 (since a Kan complex can be realized
as a fiber of f if and only if it can be realized as a fiber of fz for some vertex z ∈ Z).

Corollary 3.5.9.11.0569 Let n be an integer and suppose we are given a homotopy pullback
diagram of Kan complexes

056A X //

f

��

X ′

f ′

��
Y

g // Y ′.

(3.37)

If f ′ is n-truncated, then f is also n-truncated. The converse holds if π0(g) is surjective.
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Proof. Using Proposition 3.1.7.1, we can reduce to the case where f and f ′ are Kan fibrations.
In this case, our assumption that (3.37) is a homotopy pullback square guarantees that
for each vertex y ∈ Y , the induced map of fibers Xy → X ′g(y) is a homotopy equivalence
(Example 3.4.1.4) In particular, Xy is n-truncated if and only if X ′g(y) is n-truncated
(Corollary 3.5.7.12). The desired result now follows from the criterion of Proposition 3.5.9.8
(together with Remark 3.5.9.9).

Corollary 3.5.9.12. 056BLet f : X → Y be a morphism of Kan complexes and let n be an
integer. The following conditions are equivalent:

(1) The morphism f is n-truncated.

(2) For every morphism of Kan complexes Y ′ → Y , the projection map Y ′ ×h
Y X → Y ′ is

n-truncated.

(3) For every vertex y ∈ Y , the homotopy fiber {y} ×h
Y X is n-truncated.

Proof. Using Proposition 3.4.0.9, we can reduce to the case where f is a Kan fibration. In
this case, we can use Proposition 3.4.0.7 to reformulate conditions (2) and (3) as follows:

(2′) For every morphism of Kan complexes Y ′ → Y , the projection map Y ′ ×Y X → Y ′ is
n-truncated.

(3′) For every vertex y ∈ Y , the fiber {y} ×Y X is n-truncated.

The equivalence (1) ⇔ (3′) now follows from Proposition 3.5.9.8, and the equivalence
(1)⇔ (2′) from Corollary 3.5.9.11.

Proposition 3.5.9.13. 056CLet f : X → Y be a morphism of Kan complexes and let n be an
integer. Then:

(a) If Y is n-truncated and f is n-truncated, then X is n-truncated.

(b) If X is n-truncated and Y is (n+ 1)-truncated, then f is n-truncated.

(c) If X is n-truncated, f is (n−1)-truncated, and π0(f) is surjective, then Y is n-truncated.

Proof. For every integer m ≥ 0 and every vertex x ∈ X having image y = f(x), we make
the following observations:

(am) If the morphism πm(f) : πm(X,x)→ πm(Y, y) is injective and πm(Y, y) is a singleton,
then πm(X,x) is also a singleton.

(bm) If the sets πm(X,x) and πm+1(Y, y) are singletons, then πm(f) is injective and πm+1(f)
is surjective.
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(cm) If πm(f) is surjective and πm(X,x) is a singleton, then πm(Y, y) is a singleton.

If n ≥ −1, then Proposition 3.5.9.13 follows by combining these observations with Proposition
3.5.7.7 (together with Remarks 3.5.7.8 and 3.5.7.9), by allowing m to range over integers
> n and allowing the vertex x to vary. The case n ≤ −2 then follows from the following
additional observations:

(a−1) If the morphism π0(f) is surjective and π0(Y ) is nonempty, then π0(X) is also
nonempty.

(b−1) If π0(X) is nonempty and π0(Y ) has at most one element, then π0(f) is surjective.

(c−1) If π0(X) is nonempty, then π0(Y ) is also nonempty.

Corollary 3.5.9.14 (Transitivity).056D Let f : X → Y and g : Y → Z be morphisms of Kan
complexes and let n be an integer. Then:

(a) If the morphisms f and g are n-truncated, then the composition (g ◦ f) : X → Z is
n-truncated.

(b) If (g ◦ f) is n-truncated and g is (n+ 1)-truncated, then f is n-truncated.

(c) If (g ◦ f) is n-truncated, f is (n − 1)-truncated, and π0(f) is surjective, then g is
n-truncated.

Proof. Using Proposition 3.1.7.1, we can reduce to the case where Z is a Kan complex and
the morphisms f and g are Kan fibrations. Using the criterion of Proposition 3.5.9.8, we
can further reduce to the case Z = ∆0. In this case, Corollary 3.5.9.14 is a restatement of
Proposition 3.5.9.13.

Proposition 3.5.9.15.056E Let X be a Kan complex, let n be an integer, and let k be a
nonnegative integer. If X is n-truncated, then the diagonal map δ : X → Fun(∂∆k, X) is
(n− k)-truncated. The converse holds if k ≤ n+ 2.

Proof. We proceed by induction on k. If k = 0, the result is a reformulation of Example
3.5.9.4. Let us therefore assume that k > 0. Note that δ factors as a composition X ↪→
Fun(∆k, X) Rk−−→ Fun(∂∆k, X), where the first map is a homotopy equivalence (see Example
3.2.4.2) and Rk is a Kan fibration (Corollary 3.1.3.3). Consequently, δ is (n− k)-truncated
if and only if the morphism Rk is (n− k)-truncated. To carry out the inductive step, it will
suffice to prove the following:

(∗) If Rk−1 : Fun(∆k−1, X) → Fun(∂∆k−1, X) is m-truncated, then Rk : Fun(∆k, X) →
Fun(∂∆k, X) is (m− 1)-truncated. The converse holds for m ≥ −1.
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Assume first that Rk−1 is m-truncated. Note that we have a pullback diagram of restriction
maps

056FFun(∂∆k, X) T //

��

Fun(Λkk, X)

��
Fun(∆k−1, X)

Rk−1 // Fun(∂∆k−1, X).

(3.38)

Applying the criterion of Proposition 3.5.9.8, we conclude that T is also m-truncated. Note
that the composition (T ◦Rk) : Fun(∆k, X)→ Fun(Λkk, X) is given by precomposition with
the horn inclusion Λk

k ↪→ ∆k, and is therefore a trivial Kan fibration (Corollary 3.1.3.6).
In particular, T ◦ Rk is (m − 1)-truncated, so Corollary 3.5.9.14 guarantees that Rk is
(m− 1)-truncated by virtue of Corollary 3.5.9.14.

We now prove the converse. Assume that Rk is (m − 1)-truncated and that m ≥ −1;
we wish to show that Rk−1 is m-truncated. Let Fun′(∂∆k, X) denote the summand of
Fun(∂∆k, X) whose vertices are nullhomotopic maps ∂∆k → X, and let T ′ : Fun′(∂∆k, X)→
Fun(Λk

k, X) be the restriction map. As above, the composition T ′ ◦ Rk is a trivial Kan
fibration, and therefore m-truncated Applying Corollary 3.5.9.14, we conclude that T ′ is
m-truncated.

Fix a morphism σ0 : ∂∆k−1 → X, and set Y = {σ0} ×Fun(∂∆k−1,X) Fun(∆k−1, X); by
virtue of Proposition 3.5.9.8, it will suffice to show that Y is m-truncated. We first consider
the case m ≥ 0. By virtue of Remark 3.5.7.11, it will suffice to show that every connected
component Z ⊆ Y is m-truncated. Fix a vertex of Z, corresponding to a map σ : ∆k=1 → X

extending σ0. Choose an extension of σ to a k-simplex τ : ∆k → X (for example, we can take
τ to be the degenerate k-simplex sk−1

k−1(σ)), and set τ0 = τ |Λk
k
. Since (3.38) is a pullback square,

it induces an isomorphism from Y to the fiber T−1{τ0} = {τ0} ×Fun(Λk
k
,X) Fun(∂∆k, X).

By construction, this isomorphism identifies Z to a connected component of the fiber
T ′−1{τ0} = ×Fun(Λk

k
,X) Fun(∂∆k, X). Our assumption that T ′ is m-truncated guarantees

that this fiber T ′−1{τ0} is m-truncated (Proposition 3.5.9.8), so that Z is also m-truncated
(Remark 3.5.7.11).

We now treat the case m = −1: in this case, we wish to show that Y is either empty
or contractible. Let us assume that Y is nonempty: that is, σ0 can be extended to a
(k− 1)-simplex σ : ∆k−1 → X. Define τ and τ0 as above, so that we can identify Y with the
fiber T−1{τ0}. We will complete the proof by showing that T is a trivial Kan fibration. Since
T is a Kan fibration, it will suffice to show that it is a homotopy equivalence (Proposition
3.2.7.2). Since T ◦Rk is a homotopy equivalence, we are reduced to showing that Rk is a
homotopy equivalence. This is a reformulation of our hypothesis that Rk is (m−1)-truncated
(see Example 3.5.9.2).
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Corollary 3.5.9.16.056G Let f : X → Y be a Kan fibration between Kan complexes, let n be an
integer, and let k be a nonnegative integer. If f is n-truncated, then the relative diagonal
map

δ : X → Y ×Fun(∂∆k,Y ) Fun(∂∆k, X)

is (n− k)-truncated. The converse holds if k ≥ n+ 2.

Proof. We have a commutative diagram of Kan complexes

X
δ //

f

��

Y ×Fun(∂∆k,Y ) Fun(∂∆k, X)

xx
Y

where the vertical maps are Kan fibrations. Using Variant 3.5.9.10, we see that δ is
(n− k)-truncated if and only if, for each vertex y ∈ Y , the induced map of fibers

Xy → {y} ×Fun(∂∆k,Y ) Fun(∂∆k, X) ≃ Fun(∂∆k, Xy)

is (n− k)-truncated. The desired result now follows from Proposition 3.5.9.15.

Corollary 3.5.9.17.056H Let f : X → Y be a Kan fibration between Kan complexes and let
n ≥ −1. Then f is n-truncated if and only if the relative diagonal δX/Y : X → X ×Y X is
(n− 1)-truncated.

Proof. Apply Corollary 3.5.9.16 in the case k = 1.

Example 3.5.9.18.056J Let X be a Kan complex. Then the diagonal map δX : X ↪→ X ×X
factors as a composition

X
u−→ Fun(∆1, X)→ q Fun(∂∆1, X) ≃ X ×X,

where u is a homotopy equivalence and q is a Kan fibration (Corollary 3.1.3.3). Combining
Corollary 3.5.9.17 with Proposition 3.5.9.8, we see that the following conditions are equivalent
for every integer n ≥ −1:

• The Kan complex X is n-truncated.

• The diagonal morphism δX : X ↪→ X ×X is (n− 1)-truncated.

• For every pair of vertices x, y ∈ X, the path space

{x} ×h
X {y} = {(x, y)} ×Fun(∂∆1,X) Fun(∆1, X)

is (n− 1)-truncated.
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Variant 3.5.9.19. 056KLet f : X → Y be a morphism between Kan complexes, let n be an
integer, and let k be a nonnegative integer. If f is n-truncated, then the restriction map

u : Fun(∆k, X)→ Fun(∆k, Y )×Fun(∂∆k,Y ) Fun(∂∆k, X)

is (n− k)-truncated. The converse holds if k ≥ n+ 2.

Proof. Using Proposition 3.1.7.1, we can factor f as a composition X
i−→ X ′

f ′−→ Y , where i
is anodyne and f ′ is a Kan fibration. Then X ′ is a Kan complex (Remark 3.1.1.11), so i is a
homotopy equivalence. We then have a commutative diagram

Fun(∆k, X) u //

��

Fun(∆k, Y )×Fun(∂∆k,Y ) Fun(∂∆k, X)

��
Fun(∆k, X ′) // Fun(∆k, Y )×Fun(∂∆k,Y ) Fun(∂∆k, X ′)

where the vertical maps are homotopy equivalences. It follows that u is (n− k)-truncated if
and only if u′ is (n− k)-truncated. We may therefore replace f by f ′ and thereby reduce to
proving Variant 3.5.9.19 in the special case where f is a Kan fibration. In this case, we have
a commutative diagram

X
δ //

��

Y ×Fun(∂∆k,Y ) Fun(∂∆k, X)

��
Fun(∆k, X) u // Fun(∆k, Y )×Fun(∂∆k,Y ) Fun(∂∆k, X)

where the vertical maps are homotopy equivalences (by virtue of the contractibility of ∆k).
It follows that u is (n− k)-truncated if and only if δ is (n− k)-truncated, so that Variant
3.5.9.19 is a reformulation of Corollary 3.5.9.16.

Corollary 3.5.9.20. 056LLet f : X → Y be a morphism of Kan complexes and let n ≥ −2. The
following conditions are equivalent:

(1) The morphism f is n-truncated.

(2) The restriction map

θ : Fun(∆n+2, X)→ Fun(∆n+2, Y )×Fun(∂∆n+2,Y ) Fun(∂∆n+2, X)

is a homotopy equivalence.
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(3) The diagram of Kan complexes

Fun(∆n+2, X)

f

��

// Fun(∂∆n+2, X)

��
Fun(∆n+2, Y ) // Fun(∂∆n+2, Y )

is a homotopy pullback square.

(4) The diagram of Kan complexes

X

f

��

// Fun(∂∆n+2, X)

��
Y // Fun(∂∆n+2, Y )

is a homotopy pullback square.

Proof. The equivalence (1)⇔ (2) follows by applying Variant 3.5.9.19 in the special case
k = n + 2. The equivalence (2) ⇔ (3) follows from Example 3.4.1.3, and the equivalence
(3)⇔ (4) from Corollary 3.4.1.12.

Remark 3.5.9.21.056M In the situation of Corollary 3.5.9.20, suppose that f is a Kan fibration.
Then the morphism θ is also a Kan fibration (Theorem 3.1.3.1). Consequently, f is n-
truncated if and only if θ is a trivial Kan fibration (Proposition 3.2.7.2).

Corollary 3.5.9.22.056N Let X be a Kan complex and let n ≥ −2 be an integer. Then X is
n-truncated if and only if the diagonal map X → Fun(∂∆n+2, X) is a homotopy equivalence.

Corollary 3.5.9.23.056P Let f : X → Y be a Kan fibration between Kan complexes and let n be
an integer. The following conditions are equivalent:

(1) The morphism f is n-truncated.

(2) For every nonnegative integer m ≥ n+ 2, the induced map

θ : Fun(∆m, X)→ Fun(∂∆m, X)×Fun(∂∆m,Y ) Fun(∆m, Y )

is a trivial Kan fibration.
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(3) For every nonnegative integer m ≥ n+ 2, every lifting problem

∂∆m //

��

X

f

��
∆m

==

// Y

has a solution.

(4) For every simplicial set B and every simplicial subset A ⊆ B which contains the (n+ 1)-
skeleton skn+1(B), every lifting problem

A //

��

X

f

��
B

??

// Y

admits a solution.

Proof. If f is n-truncated, then it is also n′-truncated for every integer n′ ≥ n (Remark
3.5.9.6). Consequently, the implication (1) ⇒ (2) follows from Remark 3.5.9.21. The
implication (2) ⇒ (3) is immediate from the definitions, and the implication (3) ⇒ (1)
follows from Proposition 3.5.9.8. The equivalence (3) ⇔ (4) follows from Proposition
1.1.4.12.

Proposition 3.5.9.24. 056QLet f : X → Y be an n-truncated Kan fibration between Kan
complexes, let k be an integer, and let j : A→ B be a morphism of simplicial sets which is
(k − 1)-connective. Then the induced map

θ : Fun(B,X)→ Fun(A,X)×Fun(A,Y ) Fun(B, Y )

is (n− k)-truncated.

Proof. Using Proposition 3.1.7.1, we can factor j as a composition A i−→ A′
j−→ B, where i is

anodyne and j is a Kan fibration. In this case, θ factors as a composition

Fun(B,X) θ′−→ Fun(A′, X)×Fun(A′,Y ) Fun(B, Y ) ρ−→ Fun(A,X)×Fun(A,Y ) Fun(B, Y ),

where ρ is a trivial Kan fibration (Theorem 3.1.3.5). It will therefore suffice to show that θ′
is (n− k)-truncated. Using Corollary 3.5.2.4 (or Exercise 3.1.7.11, in the case k = 0), we
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can factor j′ as a composition A′
j̃−→ B̃

q−→ B, where j̃ is a monomorphism which is bijective
on simplices of dimension ≤ k − 1 and q is a trivial Kan fibration. In this case, we have a
commutative diagram

Fun(B,X) θ′ //

��

Fun(A′, X)×Fun(A′,Y ) Fun(B, Y )

��
Fun(B̃,X) θ̃ // Fun(A′, X)×Fun(A′,Y ) Fun(B̃, Y )

where the vertical maps are homotopy equivalences. Consequently, to prove that θ is (n− k)-
truncated, it will suffice to show that θ̃ is (n− k)-truncated. We may therefore replace j
by j̃ and thereby reduce to proving Proposition 3.5.9.24 in the special case where j is a
monomorphism which is bijective on simplices of dimension ≤ k − 1.

If j is a monomorphism, then θ is a Kan fibration (Theorem 3.1.3.1). Consequently, to
show that θ is (n− k)-connective, it will suffice to show that every lifting problem

∂∆m //

��

Fun(B,X)

θ

��
∆m

77

// Fun(A,X)×Fun(A,Y ) Fun(B, Y )

has a solution, provided that m ≥ n− k + 2 (Corollary 3.5.9.23) Unwinding the definitions,
we can rewrite this as a lifting problem

A //

j

��

Fun(∆m, X)

θ′

��
B

66

// Fun(∂∆m, X)×Fun(∂∆m,Y ) Fun(∆m, Y ).

Since f is a Kan fibration, θ′ is also a Kan fibration (Theorem 3.1.3.1), and our assumption
that f is n-truncated guarantees that θ′ is (n−m)-truncated (Variant 3.5.9.19). In particular,
θ′ is (k− 2)-truncated (Remark 3.5.9.6), so the existence of the desired solution follows from
Corollary 3.5.9.23.

Corollary 3.5.9.25.056R Let X be an n-truncated Kan complex, let k be an integer, and let
j : A → B be a (k − 1)-connective morphism of simplicial sets. Then the induced map
Fun(B,X)→ Fun(A,X) is (n− k)-connective.
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Proof. Apply Proposition 3.5.9.24 in the special case Y = ∆0 (see Example 3.5.9.4).

Corollary 3.5.9.26. 056SLet f : X → Y be an n-truncated morphism between Kan complexes.
Then, for every simplicial set B, the induced map Fun(B,X)→ Fun(B, Y ) is n-truncated.

Proof. Using Proposition 3.1.7.1, we can reduce to the case where f is a Kan fibration. In
this case, the desired result follows by applying Proposition 3.5.9.24 in the special case A = ∅
(and the integer k is equal to zero).

Corollary 3.5.9.27. 056TLet X be an n-truncated Kan complex. Then, for any simplicial set
B, the Kan complex Fun(B,X) is also n-truncated.

Proof. Apply Corollary 3.5.9.25 in the special case A = ∅ (or Corollary 3.5.9.26 in the special
case Y = ∆0).

Corollary 3.5.9.28. 056ULet n ≥ −2 be an integer and let f : X → Y be a morphism of Kan
complexes. The following conditions are equivalent:

(1) The morphism f is n-truncated.

(2) For every (n+ 1)-connective morphism of simplicial sets A→ B, the diagram of Kan
complexes

Fun(B,X) //

��

Fun(A,X)

��
Fun(B, Y ) // Fun(A, Y )

is a homotopy pullback square.

(3) The diagram
X //

��

Fun(∂∆n+2, X)

��
Y // Fun(∂∆n+2, Y )

is a homotopy pullback square.

Proof. The equivalence (1) ⇔ (3) follows from Corollary 3.5.9.20, and the implication
(2)⇒ (3) from Corollary 3.5.2.6. It will therefore suffice to show that (1) implies (2). Using
Proposition 3.1.7.1, we can reduce to the case where f is a Kan fibration. In this case, the
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map Fun(A,X)→ Fun(A, Y ) is also a Kan fibration (Corollary 3.1.3.2), so condition (2) is
equivalent to the requirement that the map θ : Fun(B,X)→ Fun(A,X)×Fun(A,Y ) Fun(B, Y )
is a homotopy equivalence (Example 3.4.1.3). This follows from Proposition 3.5.9.24 (and
Example 3.5.9.2).

Corollary 3.5.9.29.056V Let X be a Kan complex and let n ≥ −2 be an integer. The following
conditions are equivalent:

(1) The Kan complex X is n-truncated.

(2) For m ≥ n+ 2, every morphism f : ∂∆m → X is nullhomotopic.

(3) If A is an (n + 1)-connective simplicial set, then every morphism f : A → X is
nullhomotopic.

(4) If A is an (n+ 1)-connective simplicial set, then the diagonal map X → Fun(A,X) is a
homotopy equivalence.

(5) For every (n + 1)-connective morphism of simplicial sets A → B, the induced map
Fun(B,X)→ Fun(A,X) is a homotopy equivalence.

Proof. The equivalence of (1)⇔ (2) follows from Variant 3.2.4.13. The implication (3)⇒ (2)
follows from Corollary 3.5.2.6 and the implications (5) ⇒ (4) ⇒ (3) are immediate (see
Example 3.5.1.18). To complete the proof, it will suffice to show that (1) implies (5). This
follows by applying Corollary 3.5.9.28 in the special case Y = ∆0.

3.6 Comparison with Topological Spaces

012Y Let Set∆ denote the category of simplicial sets and let Top denote the category of
topological spaces. In §1.2.2 and §1.2.3, we constructed a pair of adjoint functors

Set∆
|•| //Top .

Sing•
oo

Our goal in this section is to prove that, after passing to homotopy categories, these functors
are not far from being (mutually inverse) equivalences:

Theorem 3.6.0.1.012Z The geometric realization functor | • | : Set∆ → Top induces an equiva-
lence from the homotopy category hKan to the full subcategory of hTop spanned by those
topological spaces X which have the homotopy type of a CW complex.
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Theorem 3.6.0.1 is essentially due to Milnor (see [44]). We give a proof in §3.6.5, which
has three main steps. The first of these is of a technical nature: we must show that
geometric realization is well-defined at the level of homotopy categories (see Construction
3.6.5.1). Let X and Y be Kan complexes, and suppose that we are given a pair of morphisms
f0, f1 : X → Y . If f0 is homotopic to f1 (in the category of Kan complexes), then there exists
a morphism of simplicial sets h : ∆1 ×X → Y satisfying f0 = h|{0}×X and f1 = h|{1}×X .
Passing to geometric realizations, we obtain a continuous function |h| : |∆1 ×X| → |Y |. We
would like to interpret |h| as a homotopy from |f0| to |f1| (in the category of topological
spaces). For this, we need to know that the comparison map

|∆1 ×X| → |∆1| × |X| ≃ [0, 1]× |X|

is a homeomorphism. In §3.6.2, we prove a more general assertion: for any pair of simplicial
sets A and B, the comparison map |A × B| → |A| × |B| is a bijection (Theorem 3.6.2.1),
which is a homeomorphism if either A or B is finite (that is, if either A or B has only finitely
many nondegenerate simplices; see Corollary 3.6.2.2).

The second step in the proof of Theorem 3.6.0.1 is to show that the geometric realization
functor | • | : hKan→ hTop is fully faithful (Proposition 3.6.5.2). This is equivalent to the
assertion that for any Kan complex X, the unit map uX : X → Sing•(|X|) is a homotopy
equivalence. More generally, we show in §3.6.4 that for any simplicial set X, the unit map
uX : X → Sing•(|X|) is a weak homotopy equivalence (Theorem 3.6.4.1). Our strategy is
to reduce to the case where the simplicial set X is finite, and to proceed by induction on
the number of nondegenerate simplices of X. The inductive step will make use of excision
(Theorem 3.4.6.1) to analyze the homotopy type of the Kan complex Sing•(|X|).

To complete the proof of Theorem 3.6.0.1, we must show that if Y is a topological space,
then the counit map vY : | Sing•(Y )| → Y is a homotopy equivalence if and only if Y has
the homotopy type of a CW complex (Proposition 3.6.5.3). It follows formally from the
preceding step that the map vY is always a weak homotopy equivalence: that is, it induces
a bijection on path components and an isomorphism on homotopy groups for any choice
of base point (Corollary 3.6.4.2). We will complete the proof using a result of Whitehead
which asserts that any weak homotopy equivalence between CW complexes is a homotopy
equivalence (see Proposition 3.6.3.8 and Corollary 3.6.3.10), which we prove in §3.6.3.

3.6.1 Digression: Finite Simplicial Sets

0130We now introduce a finiteness condition on simplicial sets.

Definition 3.6.1.1. 0131We say that a simplicial set X is finite if it satisfies the following pair
of conditions:

• For every integer n ≥ 0, the set of n-simplices Xn ≃ HomSet∆(∆n, X) is finite.
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• The simplicial set X is finite-dimensional (Definition 1.1.3.1): that is, there exists an
integer m such that every nondegenerate simplex has dimension ≤ m.

Example 3.6.1.2.0132 For each integer n ≥ 0, the standard n-simplex ∆n is finite.

Remark 3.6.1.3.0133 Let X be a finite simplicial set. Then any simplicial subset Y ⊆ X is
also finite. In particular, any retract of X is finite.

Remark 3.6.1.4.0134 If X and Y are finite simplicial sets, then the coproduct X ∐
Y is also

finite.

Remark 3.6.1.5.0135 Let f : X ↠ Y be an epimorphism of simplicial sets. If X is finite, then
Y is also finite.

Remark 3.6.1.6.0136 Let X and Y be finite simplicial sets. Then the product X × Y is finite
(see Proposition 1.1.3.6).

Proposition 3.6.1.7.0137 Let X be a simplicial set. The following conditions are equivalent:

(a) The simplicial set X has only finitely many nondegenerate simplices.

(b) There exists an epimorphism of simplicial sets f : Y ↠ X, where Y ≃
∐
i∈I ∆ni is a

finite coproduct of standard simplices.

(c) The simplicial set X is finite (Definition 3.6.1.1).

Proof. If X is finite, then it has dimension ≤ n for some integer n ≫ 0. It follows that
every nondegenerate simplex of X has dimension ≤ n. Since X has only finitely many
(nondegenerate) simplices of each dimension, it follows that X has only finitely many
nondegenerate simplices. This proves that (c)⇒ (a). The implication (b)⇒ (c) follows from
Example 3.6.1.2 together with Remarks 3.6.1.4 and 3.6.1.5. We will complete the proof by
showing that (a) implies (b). Let {σi : ∆ni → X}i∈I be the collection of all nondegenerate
simplices of X, and amalgamate the morphisms σi to a single map f : Y = ∐

i∈I ∆ni → X.
By construction, every nondegenerate simplex of X belongs to the image of f and therefore
every simplex of f belongs to the image of f (see Proposition 1.1.3.8). It follows that f is
an epimorphism of simplicial sets. If condition (a) is satisfied, then the set I is finite, so
that f : Y ↠ X satisfies the requirements of (b).

Remark 3.6.1.8.0138 Every simplicial set X can be realized as a union ⋃
X′⊆X X

′, where X ′
ranges over the collection of finite simplicial subsets of X (to prove this, we observe that
every n-simplex σ is contained in a finite simplicial subset X ′ ⊆ X: in fact, we can take X ′
to be the image of σ : ∆n → X). Moreover, the collection of finite simplicial subsets of X is
closed under finite unions. It follows that realization X ≃ ⋃

X′⊆X X
′ exhibits X as a filtered

colimit of its finite simplicial subsets.
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Proposition 3.6.1.9. 02LGLet X be a simplicial set. Then X is finite if and only if it is a
compact object of the category Set∆: that is, if and only if the corepresentable functor

Set∆ → Set Y 7→ HomSet∆(X,Y )

commutes with filtered colimits.

Proof. By virtue of Remark 3.6.1.8, we can write X as a filtered colimit of finite simplicial
subsets Y ⊆ X. If X is a compact object of Set∆, then the identity map idX : X → X

factors through some finite simplicial subset Y ⊆ X. It follows that Y = X, so that X is a
finite simplicial set. To prove the converse, assume that X is finite. Using Proposition 3.6.1.7,
we can choose an epimorphism of simplicial sets U ↠ X, where U is a finite coproduct
of standard simplices. In particular, U is also a finite simplicial set (Example 3.6.1.2 and
Remark 3.6.1.4). The fiber product U ×X U can be regarded as a simplicial subset of U ×U ,
and is therefore also finite (Remarks 3.6.1.6 and 3.6.1.3). Applying Proposition 3.6.1.7 again,
we can choose an epimorphism of simplicial sets V ↠ U ×X U , where V is a finite coproduct
of standard simplices. It follows that X can be realized as the coequalizer of a pair of maps
f0, f1 : V → U . Consequently, to show that X is compact, it will suffice to show that U and
V are compact. Since the collection of compact objects of Set∆ is closed under the formation
of finite coproducts and coequalizers, we are reduced to showing that each standard simplex
∆n is a compact object of Set∆. This is an immediate consequence of Proposition 1.1.0.12
and Remark 1.1.0.8.

Corollary 3.6.1.10. 03X6Let X be a finite simplicial set. Then the functor

Set∆ → Set∆ Y 7→ Fun(X,Y )

commutes with filtered colimits.

Proof. Since colimits in the category of simplicial sets are computed levelwise (Remark
1.1.0.8), it will suffice to that the functor

Set∆ → Set Y 7→ HomSet∆(∆n,Fun(X,Y )) ≃ HomSet∆(∆n ×X,Y )

commutes with filtered colimits for each n ≥ 0. This is a special case of Proposition 3.6.1.9,
since the product ∆n × X is also a finite simplicial set (Remark 3.6.1.6 and Example
3.6.1.2.

Let X be a simplicial set having geometric realization |X|. For every simplicial subset
X ′ ⊆ X, the inclusion of X ′ into X induces a homeomorphism from |X ′| onto a closed subset
of |X|. In what follows, we will abuse notation by identifying |X ′| with its image in |X|.
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Proposition 3.6.1.11.0139 Let X be a simplicial set. Then a subset K ⊆ |X| is compact if and
only if it is closed and contained in |X ′| ⊆ |X|, for some finite simplicial subset X ′ ⊆ X.

Corollary 3.6.1.12.013A A simplicial set X is finite if and only if the topological space |X| is
compact.

The proof of Proposition 3.6.1.11 is based on the following observation:

Lemma 3.6.1.13.013B Let X be a simplicial set and let S be a subset of the geometric realization
|X|. Suppose that, for every nondegenerate n-simplex σ of X, the inverse image of S under
the composite map |∆n| → |X| contains only finitely many points of the interior ˚|∆n| ⊆ |∆n|.
Then S is closed.

Proof. The geometric realization |X| can be described as the colimit lim−→σ:∆n→X |∆
n|, indexed

by the category of simplices of X (see Construction 1.1.3.9). Consequently, to show that the
subset S ⊆ |X| is closed, it will suffice to show that the inverse image |σ|−1(S) ⊆ |∆n| is
closed, for every n-simplex σ : ∆n → X. We proceed by induction on n. Using Proposition
1.1.3.8, we can reduce to the case where σ is nondegenerate. In this case, our inductive
hypothesis guarantees that |σ|−1(S) has closed intersection with the boundary | ∂∆n | ⊆ |∆n|.
Since |σ|−1(S) contains only finitely many points in the interior of |∆n|, it is closed.

Proof of Proposition 3.6.1.11. Let X be a simplicial set. If X ′ ⊆ X is a finite simplicial
subset, then the geometric realization |X ′| is a continuous image of a finite disjoint union∐
i∈I |∆ni | (Proposition 3.6.1.7), and is therefore compact. It follows that any closed subset

K ⊆ |X ′| is also compact. Conversely suppose that K ⊆ |X| is compact. Since |X| is
Hausdorff, the set K is closed. We wish to show that K is contained in |X ′| for some finite
simplicial subset X ′ ⊆ X. Suppose otherwise. Then we can choose an infinite collection
of nondegenerate simplices {σj : ∆nj → X}j∈J for which each of the corresponding cells

˚|∆nj | ↪→ |X| contains some point xj ∈ K. Applying Lemma 3.6.1.13, we deduce that for
every subset J ′ ⊆ J , the set {xj}j∈J ′ is closed in |X|. In particular, {xj}j∈J is an infinite
closed subset of K endowed with the discrete topology, contradicting our assumption that
K ⊆ |X| is compact.

3.6.2 Exactness of Geometric Realization

013C Our goal in this section is to study the exactness properties of the geometric realization
functor X 7→ |X| of Definition 1.2.3.1. Our main result can be stated as follows:

Theorem 3.6.2.1.013D The geometric realization functor

Set∆ → Set X 7→ |X|

preserves finite limits. In particular, for every diagram of simplicial sets X → Z ← Y , the
induced map |X ×Z Y | → |X| ×|Z| |Y | is a bijection.
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Before giving the proof of Theorem 3.6.2.1, let us collect some consequences.

Corollary 3.6.2.2. 013ELet X and Y be simplicial sets. Then the canonical map θX,Y :
|X × Y | → |X| × |Y | is a bijection. If either X or Y is finite, then θ is a homeomorphism.

Proof. The first assertion follows immediately from Theorem 3.6.2.1. If X and Y are
both finite, then the product X × Y is also finite (Remark 3.6.1.6), so that the geometric
realizations |X|, |Y |, and |X × Y | are compact Hausdorff spaces (Corollary 3.6.1.12). In
this case, θX,Y is a continuous bijection between compact Hausdorff spaces, and therefore a
homeomorphism.

Now suppose that X is finite and Y is arbitrary. Let M = HomTop(|X|, |X × Y |) denote
the set of all continuous functions from |X| to |X × Y |, endowed with the compact-open
topology. For every finite simplicial subset Y ′ ⊆ Y , the composite map

|X| × |Y ′|
θ−1

X,Y ′−−−→ |X × Y ′| ↪→ |X × Y |,

determines a continuous function ρY ′ : |Y ′| →M . Writing the geometric realization |Y | as a
colimit lim−→Y ′⊆Y |Y

′| (see Remark 3.6.1.8), we can amalgamate the functions fY ′ to a single
continuous function ρ : |Y | →M . Our assumption that X guarantees that the topological
space |X| is compact and Hausdorff, so the evaluation map

ev : |X| ×M → |X × Y | (x, f) 7→ f(x)

is continuous (see Theorem [?]). We complete the proof by observing that the bijection θ−1
X,Y

is a composition of continuous functions

|X| × |Y | id×ρ−−−→ |X| ×M ev−→ |X × Y |,

and is therefore continuous.

Warning 3.6.2.3. 013FLet X and Y be simplicial sets. If neither X or Y is assumed to be
finite, then the comparison map θX,Y : |X × Y | → |X| × |Y | need not be a homeomorphism.
For an explicit counterexample, we refer the reader to Section 5 of [15].

Remark 3.6.2.4. 013GLet X and Y be simplicial sets having at most countably many simplices of
each dimension. Then the comparison map θX,Y : |X ×Y | → |X| × |Y | is a homeomorphism.
For a proof, we refer the reader to [44].

Example 3.6.2.5. 013HLet X be a simplicial set and let Y be a topological space, and let
HomTop(|X|, Y )• be the simplicial set defined in Example 2.4.1.5. For each n ≥ 0, precom-
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position with the homeomorphism |X ×∆n| → |X| × |∆n| induces a bijection

HomTop(|X|, Y )n = HomTop(|X| × |∆n|, Y )
≃ HomTop(|X ×∆n|, Y )
≃ HomSet∆(X ×∆n, Sing•(Y ))
= Fun(X,Sing•(Y ))n.

These bijections are compatible with face and degeneracy operators, and therefore determine
an isomorphism of simplicial sets HomTop(|X|, Y )• → Fun(X,Sing•(Y )).

We now turn to the proof of Theorem 3.6.2.1. Our proof will make use of an explicit
description of the underlying set of a geometric realization |X| (see Remark 3.6.2.10) which
given by Drinfeld in [16] (and also appears in unpublished work of Besser and Grayson).

Construction 3.6.2.6.013J Let S be a finite subset of the unit interval [0, 1], and assume that
0, 1 ∈ S. For each n ≥ 0, we let |∆n|S denote the subset of the topological n-simplex

|∆n| = {(t0, . . . , tn) ∈ Rn+1
≥0 : t0 + t1 + · · ·+ tn = 1}

consisting of those tuples (t0, t1, . . . , tn) having the property that each of the partial sums
t0 + t1 + · · · ti belongs to S. Note that these subsets are stable under the coface and
codegeneracy operators of the cosimplicial topological space |∆•|, so we can regard the
construction [n] 7→ |∆n|S as a cosimplicial set.

By virtue of Proposition 1.2.3.15, the functor

Set→ Set∆ (Y 7→ ([n] 7→ HomSet(|∆n|S , Y )))

admits a left adjoint, which we will denote by | • |S : Set∆ → Set and refer to as the S-partial
geometric realization. Concretely, this functor carries a simplicial set X to the colimit
|X|S = lim−→∆n→X |∆

n|S , where the colimit is indexed by the category of simplices ∆X of
Construction 1.1.3.9.

Remark 3.6.2.7.013K For each integer n ≥ 0, the topological n-simplex |∆n| can be identified
with the filtered direct limit lim−→S

|∆n|S , where S ranges over the collection of all finite
subsets of [0, 1] which contain the endpoints 0 and 1 (which we regard as a partially ordered
set with respect to inclusion). We therefore obtain a canonical isomorphism of cosimplicial
sets lim−→S

|∆•|S ∼−→ |∆•|. It follows that, for every simplicial set X, the canonical map
lim−→S

|X|S → |X| is a bijection.

Notation 3.6.2.8.013L Let Lin ̸=∅ denote the category whose objects are nonempty finite linearly
ordered sets, and whose morphisms are nondecreasing functions. Note that, if S is a finite
subset of the unit interval [0, 1], then the complement [0, 1] \ S has finitely many connected
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components. Moreover, there is a unique linear ordering on the set π0([0, 1] \ S) for which
the quotient map

([0, 1] \ S)→ π0([0, 1] \ S)

is nondecreasing. We can therefore regard π0([0, 1] \ S) as an object of the category Lin ̸=∅.

Proposition 3.6.2.9. 013MLet S be a finite subset of the unit interval [0, 1] which contains 0
and 1. Then the cosimplicial set

|∆•|S : ∆→ Set [n] 7→ |∆n|S

is a corepresentable functor. More precisely, there exists a functorial bijection |∆n|S ≃
HomLin ̸=∅(π0([0, 1] \ S), [n]).

Proof. Let S = {0 = s0 < s1 < · · · < sk = 1} be a finite subset of the unit interval [0, 1]
which contains 0 and 1. Let n be a nonnegative integer and let (t0, . . . , tn) be a point of
|∆n|S . For every real number u ∈ [0, 1] \S, there exists a unique integer 0 ≤ i ≤ n satisfying

t0 + t1 + · · ·+ ti−1 < u < t0 + t1 + · · ·+ ti.

The construction u 7→ i defines a continuous nondecreasing function ([0, 1] \ S)→ [n]. This
observation induces a bijection

|∆n|S ≃ {Continuous nondecreasing functions f : [0, 1] \ S → [n]}
≃ HomLin ̸=∅(π0([0, 1] \ S), [n]).

Explicitly, the inverse bijection carries a continuous nondecreasing function f : [0, 1]\S → [n]
to the sequence

(µ(f−1{0}), µ(f−1{1}), · · · , µ(f−1{n})),

where
µ(f−1{i}) =

∑
(sj−1,sj)⊆f−1{i}

(sj − sj−1)

denotes the measure of the inverse image f−1{i}.

Proof of Theorem 3.6.2.1. Let U : Top→ Set denote the forgetful functor. We wish to show
that the composite functor

Set∆
|•|−→ Top U−→ Set

preserves finite limits. By virtue of Remark 3.6.2.7, we can write this composite functor as a
filtered colimit of functors of the form X 7→ |X|S , where S ranges over all finite subsets of
the unit interval [0, 1] which contain 0 and 1. It will therefore suffice to show that each of
the functors X 7→ |X|S preserves finite limits. Using Proposition 3.6.2.9, see that X 7→ |X|S
can be identified with the evaluation functor X 7→ Xm, where m is chosen so that there is
an isomorphism of linearly ordered sets [m] ≃ π0([0, 1] \ S).
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Remark 3.6.2.10.013N Let X be a simplicial set, which we view as a functor from ∆op to the
category of sets. Then X admits a canonical extension to a functor Linop

̸=∅ → Set, given on
objects by the construction (I = {i0 < i1 < · · · < in}) 7→ Xn. Let us write X(I) for the
value of this extension on an object I ∈ Lin ̸=∅. Arguing as in the proof of Theorem 3.6.2.1,
we obtain a canonical bijection

lim−→
S

X([0, 1] \ S) ≃ lim−→
S

|X|S
∼−→ X,

where the (filtered) colimit is taken over the collection of all finite subsets S ⊆ [0, 1] containing
0 and 1.

3.6.3 Weak Homotopy Equivalences in Topology

013P Let X and Y be topological spaces, and let f : X → Y be a continuous function. Recall
that f is a homotopy equivalence if there exists a continuous function g : Y → X such that
g ◦ f and f ◦ g are homotopic to the identity maps idX and idY , respectively. In other
words, f is a homotopy equivalence if its homotopy class [f ] is invertible when regarded as a
morphism in the homotopy category of topological spaces hTop (see Example 2.4.6.6). For
some purposes, it is convenient to consider a somewhat weaker condition.

Definition 3.6.3.1.013Q Let X and Y be topological spaces. We say that a continuous function
f : X → Y is a weak homotopy equivalence if the induced map of singular simplicial sets
Sing•(f) : Sing•(X)→ Sing•(Y ) is a homotopy equivalence (Definition 3.1.6.1).

Remark 3.6.3.2.013R Let f : X → Y be a continuous function between topological spaces.
Then f is a weak homotopy equivalence of topological spaces if and only if Sing•(f) is a
weak homotopy equivalence of simplicial sets. This is a special case of Proposition 3.1.6.13,
since the simplicial sets Sing•(X) and Sing•(Y ) are Kan complexes (Proposition 1.2.5.8).

Example 3.6.3.3.013S Let X and Y be topological spaces, and let f : X → Y be a homotopy
equivalence. Then f is a weak homotopy equivalence. This is a reformulation of Example
3.1.6.3.

Remark 3.6.3.4.013T Let f : X → Y be a continuous function between topological spaces.
Then f is a weak homotopy equivalence if and only if it satisfies the following pair of
conditions:

• The induced map of path components π0(f) : π0(X)→ π0(Y ) is a bijection.

• For every point x ∈ X and every n ≥ 1, the map of homotopy groups πn(f) :
πn(X,x)→ πn(Y, f(x)) is an isomorphism.
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This follows by applying Theorem 3.2.7.1 to the map of Kan complexes Sing•(f) : Sing•(X)→
Sing•(Y ) (see Example 3.2.2.7).

Example 3.6.3.5. 013UWe say that a topological space X is weakly contractible if the projection
map f : X → ∗ is a weak homotopy equivalence (in other words, X is weakly contractible if
the singular simplicial set Sing•(X) is a contractible Kan complex). Using Remark 3.6.3.4,
we see that X is weakly contractible if and only if it is path connected (that is, the set π0(X)
is a singleton) and the homotopy groups πn(X,x) are trivial for n > 0 and any choice of
base point x ∈ X (assuming that X is path connected, this condition is independent of the
choice of base point).

Remark 3.6.3.6. 013VRecall that a topological space X is contractible if the projection map
X → ∗ is a homotopy equivalence. Equivalently, X is contractible if the identity map
idX : X → X is homotopic to the constant function X → {x} ↪→ X, for some base point
x ∈ X. It follows from Example 3.6.3.3 that every contractible topological space is weakly
contractible. In particular, for each n ≥ 0, the standard simplex |∆n| is weakly contractible.

Example 3.6.3.7. 013WLet X be a topological space with the property that every continuous
path p : [0, 1] → X is constant (this condition is satisfied, for example, if X is totally
disconnected). Let X ′ denote the topological space whose underlying set coincides with
X, but endowed with the discrete topology. Then the identity map f : X ′ → X induces
an isomorphism of singular simplicial sets Sing•(X ′)→ Sing•(X), and is therefore a weak
homotopy equivalence of topological spaces. However, f is a homotopy equivalence if and
only if the topology on X is discrete (since any homotopy inverse of f must coincide with
the identity map f−1 : X → X ′).

Example 3.6.3.7 illustrates that the notions of homotopy equivalence and weak homotopy
equivalence are not the same in general. However, they agree for sufficiently nice topological
spaces.

Proposition 3.6.3.8. 013XLet f : X → Y be a weak homotopy equivalence of topological spaces.
Assume that both X and Y have the homotopy type of a CW complex (that is, there exist
homotopy equivalences X ′ → X and Y ′ → Y , where X ′ and Y ′ are CW complexes). Then f

is a homotopy equivalence.

Warning 3.6.3.9. 013YIn the formulation of Proposition 3.6.3.8, the hypothesis that X and
Y have the homotopy type of a CW complex cannot be omitted. For any topological
space Y , the counit map v : | Sing•(Y )| → Y is a weak homotopy equivalence (Corollary
3.6.4.2), whose domain is a CW complex (Remark 1.2.3.12). If Y satisfies the conclusion of
Proposition 3.6.3.8, then v is a homotopy equivalence, so Y has the homotopy type of a CW
complex.
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Corollary 3.6.3.10 (Whitehead’s Theorem for Topological Spaces).013Z Let X and Y be
topological spaces having the homotopy type of CW complexes, and let f : X → Y be a
continuous function. Then f is a homotopy equivalence if and only if it satisfies the following
pair of conditions:

• The induced map of path components π0(f) : π0(X)→ π0(Y ) is a bijection.

• For every point x ∈ X and every n ≥ 1, the map of homotopy groups πn(f) : πn(X,x)→
πn(Y, f(x)) is an isomorphism.

Proof. Combine Remark 3.6.3.4 with Proposition 3.6.3.8 (and Example 3.6.3.3).

We will deduce Proposition 3.6.3.8 from the following:

Lemma 3.6.3.11.0140 Let f : X → Y be a weak homotopy equivalence of topological spaces,
let K be a CW complex, and let g : K → Y be a continuous function. Then there exists a
continuous function g : K → X such that g is homotopic to f ◦ g.

Proof. For each n ≥ −1, let skn(K) denote the n-skeleton of K (with respect to some
fixed cell decomposition), so that sk−1(K) = ∅. To prove Lemma 3.6.3.11, it will suffice to
construct a compatible sequence of continuous functions gn : skn(K)→ X and homotopies
hn : [0, 1]× skn(K)→ Y from gn to g|skn(K). We proceed by recursion. Assume that n ≥ 0
and that the pair (gn−1, hn−1) has already been constructed. Let S denote the collection of
n-cells of K. For each s ∈ S, let bs : | ∂∆n | → skn−1(K) denote the corresponding attaching
map. To construct the pair (gn, hn), it will suffice to show that each composition gn−1◦bs can
be extended to a continuous map us : |∆n| → X and that each composition hn−1◦(bs× id[0,1])
can be extended to a homotopy from us to g||∆n|. Unwinding the definitions, we can rephrase
this as a lifting problem

∂∆n //

��

Sing•(X)×Fun({0},Sing•(Y )) Fun(∆1,Sing•(Y ))

θ

��
∆n //

55

Fun({1}, Sing•(Y ))

in the category of simplicial sets. Here the morphism θ is the path fibration of Example
3.1.7.10 (associated to the map of Kan complexes Sing•(f) : Sing•(X) → Sing•(Y )). Our
assumption that f is a weak homotopy equivalence guarantees that Sing•(f) is a homotopy
equivalence of Kan complexes, so that θ is also a homotopy equivalence. Applying Proposition
3.2.7.2, we deduce that θ is a trivial Kan fibration, so that the lifting problem admits a
solution as desired.
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Proof of Proposition 3.6.3.8. In what follows, we denote the homotopy class of a continuous
function f : X → Y by [f ]. Let f : X → Y be a weak homotopy equivalence of topological
spaces, and suppose that there exists a homotopy equivalence u : Y ′ → Y , where Y ′ is a CW
complex. Using Lemma 3.6.3.11, we deduce that [u] = [f ] ◦ [u] for some continuous function
u : Y ′ → X. Let v : Y → Y ′ be a homotopy inverse to u and set g = u ◦ v. Then

[f ] ◦ [g] = [f ◦ u] ◦ [v] = [u] ◦ [v] = [idY ],

so g is a right homotopy inverse to f . Since f is a weak homotopy equivalence, it follows
that g is also a weak homotopy equivalence. If X also has the homotopy type of a CW
complex, then we can apply the same reasoning to deduce that g admits a right homotopy
inverse f ′ : X → Y . Then

[g] ◦ [f ] = [g] ◦ [f ] ◦ [idX ] = [g] ◦ [f ] ◦ [g] ◦ [f ′] = [g] ◦ [idY ] ◦ [f ′] = [g] ◦ [f ′] = [idX ].

It follows that g is also a left homotopy inverse to f , so that f is a homotopy equivalence
(with homotopy inverse g).

3.6.4 The Unit Map u : X → Sing•(|X|)

0141Our goal in this section is to prove the following result:

Theorem 3.6.4.1 (Milnor). 0142Let X be a simplicial set. Then the unit map uX : X →
Sing•(|X|) is a weak homotopy equivalence of simplicial sets.

Theorem 3.6.4.1 was proved by Milnor in [44]. It is closely related to the following earlier
result of Giever ([25]):

Corollary 3.6.4.2. 0143Let X be a topological space. Then the counit map vX : |Sing•(X)| → X

is a weak homotopy equivalence of topological spaces.

Proof. We must show that Sing•(vX) : Sing•(| Sing•(X)|) → Sing•(X) is a homotopy
equivalence of Kan complexes. This is clear, since Sing•(vX) is left inverse to the unit
map uSing•(X) : Sing•(X)→ Sing•(| Sing•(X)|), which is a weak homotopy equivalence by
virtue of Theorem 3.6.4.1 (and therefore a homotopy equivalence, since both Sing•(X) and
Sing•(| Sing•(X)|) are Kan complexes).

Corollary 3.6.4.3. 03X7Let f : X → Y be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is a weak homotopy equivalence, in the sense of Definition 3.1.6.12.

(2) The induced map of topological spaces |X| → |Y | is a weak homotopy equivalence, in the
sense of Definition 3.6.3.1.
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(3) The induced map of topological spaces |X| → |Y | is a homotopy equivalence.

Proof. We have a commutative diagram of simplicial sets

X
f //

uX

��

Y

uY

��
Sing•(|X|)

Sing•(|f |) // Sing•(|Y |),

where the vertical maps are weak homotopy equivalences by virtue of Theorem 3.6.4.1. The
equivalence (1)⇔ (2) now follows from Remark 3.1.6.16. The implication (3)⇒ (2) follows
from Example 3.6.3.3, and the reverse implication is a special case of Proposition 3.6.3.8
(since the topological spaces |X| and |Y | are CW complexes; see Remark 1.2.3.12).

Example 3.6.4.4.03X8 A simplicial set X is weakly contractible if and only if the geometric
realization |X| is a contractible topological space.

Proof of Theorem 3.6.4.1. Let X be a simplicial set. By virtue of Remark 3.6.1.8, we can
write X as a filtered colimit of finite simplicial subsets X ′ ⊆ X. It follows from Proposition
3.6.1.11 that, for any compact topological space K, every continuous function f : K → |X|
factors through |X ′| ⊆ |X| for some finite simplicial subset X ′ ⊆ X. Applying this
observation in the case K = |∆n|, we conclude that the natural map lim−→X′⊆X Sing•(|X ′|)→
Sing•(|X|) is an isomorphism of simplicial sets. It follows that the unit map uX : X →
Sing•(|X|) can be realized as filtered colimit of unit maps uX′ : X ′ → Sing•(|X ′|). Since the
collection of weak homotopy equivalences is closed under filtered colimits (Proposition 3.2.8.3),
it will suffice to show that each of the morphisms uX′ is a weak homotopy equivalence.
Replacing X by X ′, we are reduced to proving Theorem 3.6.4.1 under the additional
assumption that the simplicial set X is finite.

We now proceed by induction on the dimension of X. If X is empty, then uX is an
isomorphism and the result is obvious. Otherwise, let n ≥ 0 be the dimension of X. We
proceed by induction on the number of nondegenerate n-simplices of X. Using Proposition
1.1.4.12, we can choose a pushout diagram

0144

∂∆n //

��

∆n

��
X ′ // X,

(3.39)
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where X ′ is a simplicial subset of X with a smaller number of nondegenerate n-simplices.
Since the inclusion ∂∆n ↪→ ∆n is a monomorphism, the diagram (3.39) is also a homotopy
pushout square (Proposition 3.4.2.11). By virtue of our inductive hypotheses, the unit
morphisms uX′ and u∂∆n are weak homotopy equivalences. Since the simplicial sets ∆n and
Sing•(|∆n|) are contractible (Remark 3.2.4.17), the unit map u∆n is also a (weak) homotopy
equivalence. Invoking Proposition 3.4.2.9, we see that uX is a homotopy equivalence if and
only if the diagram of simplicial sets

0145

Sing•(| ∂∆n |) //

��

Sing•(|∆n|)

��
Sing•(|X ′|) // Sing•(|X|),

(3.40)

is also homotopy pushout square.
Let V = |∆n| \ | ∂∆n | be the interior of the topological n-simplex, and fix a point v ∈ V

having image x ∈ |X|. We then have a commutative diagram of simplicial sets

0146

Sing•(V \ {v}) //

��

Sing•(V )

��
Sing•(| ∂∆n |) //

��

Sing•(|∆n| \ {v}) //

��

Sing•(|∆n|)

��
Sing•(|X ′|) // Sing•(|X| \ {x}) // Sing•(|X|).

(3.41)

Note that the left horizontal maps and the upper vertical maps are homotopy equivalences,
since they are obtained from homotopy equivalences of topological spaces

|X ′| ↪→ |X| \ {x} | ∂∆n | ↪→ |∆n| \ {v} ←↩ V \ {v} |∆n| ←↩ V

(see Example 3.6.3.3). It follows that the upper square and left square in diagram (3.41)
are homotopy pushout squares (Proposition 3.4.2.10). Moreover, the outer rectangle on the
right is a homotopy pushout square by virtue of Theorem 3.4.6.1. Applying Proposition
3.4.1.11, we deduce that the lower right square and bottom rectangle are also homotopy
pushout squares.
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3.6.5 Comparison of Homotopy Categories

0147 Our goal in this section is to carry out the proof of Theorem 3.6.0.1. We begin with an
elementary application of the results of §3.6.2.

Construction 3.6.5.1 (Geometric Realization as a Simplicial Functor).0148 Let X and Y be
simplicial sets and let σ be an n-simplex of the simplicial set Fun(X,Y ), which we identify
with a morphism ∆n ×X → Y . By virtue of Corollary 3.6.2.2, the geometric realization of
σ can be identified with a continuous function

|σ| : |∆n| × |X| → |Y |,

which we can view as an n-simplex of the simplicial set HomTop(|X|, |Y |)• parametrizing
continuous functions from X to Y (see Example 2.4.1.5). This construction is compatible
with face and degeneracy operators, and therefore determines a morphism of simplicial
sets Fun(X,Y ) → HomTop(|X|, |Y |)•. Allowing X and Y to vary, we obtain a simplicial
structure on the geometric realization functor | • | : Set∆ → Top.

Proposition 3.6.5.2.0149 Let X and Y be simplicial sets. If Y is a Kan complex, then the
comparison map

θ : Fun(X,Y )→ HomTop(|X|, |Y |)•

of Construction 3.6.5.1 is a homotopy equivalence of Kan complexes.

Proof. Using Example 3.6.2.5, we can identify θ with the morphism

Fun(X,Y )→ Fun(X,Sing•(|Y |))

given by postcomposition with the unit map uY : Y → Sing•(|Y |). By virtue of Theorem
3.6.4.1, the map uY is a weak homotopy equivalence. Since Y and Sing•(|Y |) are Kan
complexes, we conclude that uY is a homotopy equivalence (Proposition 3.1.6.13). It follows
that θ is also a homotopy equivalence (it admits a homotopy inverse, given by postcomposition
with any homotopy inverse to uY ).

Proposition 3.6.5.3.014A Let X be a topological space. The following conditions are equivalent:

(1) The counit map |Sing•(X)| → X is a homotopy equivalence of topological spaces.

(2) There exists a Kan complex Y and a homotopy equivalence of topological spaces |Y | → X.

(3) There exists a simplicial set Y and a homotopy equivalence of topological spaces |Y | → X.

(4) There exists a homotopy equivalence of topological spaces X ′ → X, where X ′ is a CW
complex.
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Proof. The implication (1) ⇒ (2) follows from the observation that Sing•(X) is a Kan
complex (Proposition 1.2.5.8), the implication (2) ⇒ (3) is trivial, and the implication
(3)⇒ (4) follows from Remark 1.2.3.12. To complete the proof, it will suffice to show that if
X has the homotopy type of a CW complex, then the counit map v : | Sing•(X)| → X is a
homotopy equivalence. By virtue of Proposition 3.6.3.8, it will suffice to show that v is a
weak homotopy equivalence, which follows from Corollary 3.6.4.2.

Corollary 3.6.5.4. 04HVLet f : Y → Z be a continuous function between topological spaces. The
following conditions are equivalent:

(1) The function f is a weak homotopy equivalence (Definition 3.6.3.1).

(2) For every simplicial set S, the induced map Fun(S, Sing•(Y ))→ Fun(S, Sing•(Z)) is a
homotopy equivalence of Kan complexes.

(3) For every simplicial set S, the induced map HomTop(|S|, Y )• → HomTop(|S|, Z)• is a
homotopy equivalence of Kan complexes.

(4) For every topological space X which has the homotopy type of a CW complex, the induced
map HomTop(X,Y )• → HomTop(X,Z)• is a homotopy equivalence of Kan complexes.

Proof. The equivalence (1)⇔ (2) follows from Proposition 3.1.6.17, the equivalence (2)⇔ (3)
from Example 3.6.2.5, and the equivalence (3)⇔ (4) from Proposition 3.6.5.3.

Proof of Theorem 3.6.0.1. Using Construction 3.6.5.1, we see that the geometric realization
functor | • | : Set∆ → Top induces a functor of homotopy categories | • | : hKan→ hTop. It
follows from Proposition 3.6.5.2 that this functor is fully faithful, and from Proposition 3.6.5.3
that its essential image consists of those topological spaces X which have the homotopy
type of a CW complex.

Remark 3.6.5.5. 014BProposition 3.6.5.2 implies a stronger version of Theorem 3.6.0.1: the
simplicially enriched functor | • | : Kan → Top induces a fully faithful embedding of
∞-categories Nhc

• (Kan)→ Nhc
• (Top) (see Remark 5.5.1.9).

Using Theorem 3.6.4.1, we can also give a purely topological characterization of the
homotopy category hKan (which does not make reference to the theory of simplicial sets).

Corollary 3.6.5.6. 014CLet C be a category, and let E ′ ⊆ Fun(Top, C) be the full subcategory
spanned by those functors F : Top → C. which carry weak homotopy equivalences of
topological spaces to isomorphisms in the category C. Then:

(a) For every functor F ∈ E ′, the composite functor

Kan |•|−→ Top F−→ C
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factors uniquely as a composition Kan ↠ hKan F−→ C.

(b) The construction F 7→ F induces an equivalence of categories E ′ → Fun(hKan, C).

We can state Corollary 3.6.5.6 more informally as follows: the homotopy category hKan
of Kan complexes can be obtained from the category of topological spaces Top by formally
adjoining inverses to all weak homotopy equivalences.

Proof of Corollary 3.6.5.6. Let E ⊆ Fun(Kan, C) be the full subcategory spanned by those
functors F : Kan→ C which carry homotopy equivalences of Kan complexes to isomorphisms
in C. By virtue of Corollary 3.1.7.7, it will suffice to show that precomposition with the
geometric realization functor | • | : Kan→ Top induces an equivalence of categories E ′ → E .
We claim that this functor has a homotopy inverse E → E ′, given by precomposition with
the functor Sing• : Top→ Kan. This follows from the following pair of observations:

• For every functor F : Top→ C, the counit map F ◦Sing• → F is an isomorphism when
F belongs to E ′ (since, for every topological space X, the counit map |Sing•(X)| → X

is a weak homotopy equivalence; see Corollary 3.6.4.2).

• For every functor F0 : Kan→ C, the unit map F0 → F0 ◦ Sing• is an isomorphism (since,
for every simplicial set Y , the unit map Y → Sing•(|Y |) is a weak homotopy equivalence
of simplicial sets, and therefore induces a homotopy equivalence of topological spaces
|Y | → | Sing•(|Y |)|).

3.6.6 Serre Fibrations

021Q We now study the counterpart of Definition 3.1.1.1 in the setting of topological spaces.

Definition 3.6.6.1.021R Let q : X → S be a continuous function between topological spaces.
We say that q is a Serre fibration if, for every integer n ≥ 0, every lifting problem

{0} × |∆n| //

��

X

q

��
[0, 1]× |∆n| //

;;

S

admits a solution.

Example 3.6.6.2.021S For every topological space X, the projection map X → {∗} is a Serre
fibration.
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Remark 3.6.6.3. 021TSuppose we are given a pullback diagram

X ′ //

q′

��

X

q

��
S′ // S

in the category of topological spaces. If q is a Serre fibration, then q′ is also a Serre fibration.

Remark 3.6.6.4. 021ULet f : X → Y and g : Y → Z be Serre fibrations. Then the composition
(g ◦ f) : X → Z is a Serre fibration.

Proposition 3.6.6.5. 021VLet q : X → S be a continuous function between topological spaces.
Then q is a Serre fibration if and only if the induced map of singular simplicial sets Sing•(q) :
Sing•(X)→ Sing•(S) is a Kan fibration.

Remark 3.6.6.6. 021WIn the special case where S is a point, Proposition 3.6.6.5 reduces to the
assertion that for every topological space X, the singular simplicial set Sing•(X) is a Kan
complex, which was established earlier as Proposition 1.2.5.8.

Proof of Proposition 3.6.6.5. Assume first that the map Sing•(q) : Sing•(X)→ Sing•(S) is
a Kan fibration of simplicial sets. It follows that, for each n ≥ 0, Sing•(q) is weakly right
orthogonal to the inclusion map {0} × ∆n ↪→ ∆1 × ∆n (which is anodyne, by virtue of
Proposition 3.1.2.9). It follows that the continuous function q is weakly right orthogonal to
the map of geometric realizations |{0} ×∆n| ↪→ |∆1 ×∆n|, which can be identified with the
inclusion {0} × |∆n| ↪→ [0, 1]× |∆n| (see Corollary 3.6.2.2). Allowing n to vary, we deduce
that q is a Serre fibration.

We now prove the converse. Suppose that q is a Serre fibration; we wish to show that the
induced map of simplicial sets Sing•(q) : Sing•(X)→ Sing•(S) is weakly right orthogonal to
the horn inclusion Λni ↪→ ∆n for every pair of integers 0 ≤ i ≤ n with n > 0. Equivalently,
we wish to show that q is weakly right orthogonal to the inclusion of geometric realizations
ι : |Λni | ↪→ |∆n|. We proceed by refining the proof of Proposition 1.2.5.8. Define a continuous
function c : |∆n| → [0, 1] by the formula c(t0, t1, · · · , tn) = min{t0, . . . , ti−1, ti+1, . . . , tn}.
Let h : [0, 1]× |∆n| → |∆n| be the continuous function given by the formula

h(s, (t0, · · · , tn)) = (t0 − λ, · · · , ti−1 − λ, ti + nλ, ti+1 − λ, · · · , tn − λ)

λ = max{0, c(t0, · · · , tn)− s}

By construction, the composition

|∆n| (c,id)−−−→ [0, 1]× |∆n| h−→ |∆n|
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is the identity map. Moreover, the function (c, id) carries the horn |Λni | ⊂ |∆n| to the closed
subset {0} × |∆n| ⊆ |∆n|, and the function h carries {0} × |∆n| to the horn |Λn

i | ⊂ |∆n|.
It follows that h and (c, id) exhibit ι as a retract of the inclusion map ι′ : {0} × |∆n| ↪→
[0, 1]×|∆n| in the category of topological spaces. Consequently, to show that q is weakly right
orthogonal to ι, it will suffice to show that it is weakly right orthogonal to ι′ (Proposition
1.5.4.9), which follows immediately from our assumption that q is a Serre fibration.

Exercise 3.6.6.7.021X Show that, for every pair of integers 0 ≤ i ≤ n with n > 0, there exists a
homeomorphism of topological spaces

h : [0, 1]× |∆n−1| ≃ |∆n|

which restricts to a homeomorphism of {0} × |∆n−1| with the horn |Λn
i | ⊂ |∆n|. Use this

homeomorphism to give a more direct proof of Proposition 3.6.6.5.

Corollary 3.6.6.8 (The Homotopy Extension Lifting Property).021Y Let q : X → S be a
continuous function between topological spaces. The following conditions are equivalent:

(1) The morphism q is a Serre fibration.

(2) For every simplicial set B, every lifting problem

{0} × |B| //
� _

��

X

q

��
[0, 1]× |B| //

;;

S

admits a solution.

(3) For every monomorphism of simplicial sets A ↪→ B, every lifting problem

021Z ([0, 1]× |A|) ∐
({0}×|A|)({0} × |B|) //
� _

��

X

q

��
[0, 1]× |B| //

77

S

(3.42)

admits a solution.

https://kerodon.net/tag/021X
https://kerodon.net/tag/021Y
https://kerodon.net/tag/021Z


592 CHAPTER 3. KAN COMPLEXES

Proof. The implication (3)⇒ (2)⇒ (1) are immediate from the definition. We will complete
the proof by showing that (1) implies (3). Using Corollary 3.6.2.2, we observe that every
lifting problem of the form (3.42) can be rewritten as a lifting problem

(∆1×A) ∐
({0}×A)({0} ×B) //

ι

��

Sing•(X)

Sing•(q)

��
∆1 ×B //

77

Sing•(S)

in the category of simplicial sets. If q is Serre fibration, then Sing•(q) is a Kan fibration
(Proposition 3.6.6.5), so the existence of the desired lifting follows from the observation that
ι is an anodyne morphism (Proposition 3.1.2.9).

Remark 3.6.6.9. 0220A continuous function q : X → S is a Hurewicz fibration if, for every
topological space Y , every lifting problem

{0} × Y //

��

X

q

��
[0, 1]× Y //

<<

S

admits a solution. Equivalently, q is a Hurewicz fibration if the evaluation map

HomTop([0, 1], X)→ HomTop({0}, X)×HomTop({0},S) HomTop([0, 1], S)

admits a continuous section, where we endow HomTop([0, 1], X) and HomTop([0, 1], S) with
their compact-open topologies. Every Hurewicz fibration is a Serre fibration. However, the
converse is false.

The lifting condition of Definition 3.6.6.1 can be tested locally:

Proposition 3.6.6.10. 0221Let q : X → S be a continuous function between topological spaces.
Suppose that, for every point s ∈ S, there exists an open subset U ⊆ S containing the point s
for which the induced map qU : U ×SX → U is a Serre fibration. Then q is a Serre fibration.

Proof. Let U be the collection of all open subsets U ⊆ S for which the map qU is a Serre
fibration. Suppose we are given a finite simplicial set B and a simplicial subset A ⊆ B. We
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will say that a lifting problem

([0, 1]× |A|) ∐
({0}×|A|)({0} × |B|) //
� _

ι

��

X

q

��
[0, 1]× |B| h //

77

S

is U-small if, for every element s ∈ [0, 1] and every simplex σ : ∆k → B, the image of the
composite map

{s} × |∆k| σ−→ [0, 1]× |B| h−→ S

is contained in some open set belonging to the cover U . We first claim that every U-small
lifting problem admits a solution. Proceeding by induction on the number of simplices of B
which do not belong to A, we can reduce to the case where B is a standard simplex and A is
its boundary. In this case, it follows from our U -smallness assumption and the compactness
of the product [0, 1]× |B| that there exists some integer m≫ 0 with the property that, for
each 1 ≤ k ≤ m, the composite map

[k − 1
m

,
k

m
]× |B| ↪→ [0, 1]× |B| h−→ S

has image contained in some open set Uk ∈ U . Writing ι as a composition of inclusion maps

([0, 1]× |A|)
∐

([0, k−1
m

]×|A|)

([0, k − 1
m

]× |B|) ↪→ ([0, 1]× |A|)
∐

([0, k
m

]×|A|)

([0, k
m

]× |B|),

we are reduced to solving a finite sequence of lifting problems

([k−1
m , km ]× |A|) ∐

({ k−1
m
}×|A|)({

k−1
m } × |B|) //

� _

��

Uk ×S X

qUk

��
[k−1
m , km ]× |B| //

55

Uk,

which is possible by virtue of our assumption that qUk
is a Serre fibration (Corollary 3.6.6.8).

Fix an integer n ≥ 0; we wish to show that every lifting problem

0222 {0} × |∆n| //

��

X

q

��
[0, 1]× |∆n| h //

;;

S

(3.43)
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admits a solution. Fix an integer t ≥ 0, and B = Sdt(∆n) denote the t-fold subdivision of
∆n. Then Proposition 3.3.3.6 supplies a homeomorphism |B| ≃ |∆n|, which we can use to
rewrite (3.43) as a lifting problem

0223{0} × |B| //

��

X

q

��
[0, 1]× |B| h′ //

;;

S

(3.44)

It follows from Lemma 3.4.6.7 that the lifting problem (3.44) is U-small for t ≫ 0, and
therefore admits a solution by the first step of the proof.

Corollary 3.6.6.11. 0224Let q : X → S be a continuous function between topological spaces.
Suppose that q is a fiber bundle: that is, for every point s ∈ S, there exists an open set
U ⊆ S containing s and a homeomorphism U ×S X ≃ U × Y for some topological space Y
(compatible with the projection to U). Then q is a Serre fibration.

Proof. By virtue of Proposition 3.6.6.10, it suffices to check this locally on S and we may
therefore assume that there exists a pullback diagram

X

q

��

// Y

��
S // {∗}

for some topological space Y . Using Remark 3.6.6.3, we are reduced to showing that the
projection map Y → {∗} is a Serre fibration, which follows from Example 3.6.6.2.
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Chapter 4

The Homotopy Theory of
∞-Categories

01GP Let q : X → S be a morphism of simplicial sets. Recall that q is a Kan fibration if
and only if it is weakly right orthogonal to every horn inclusion Λn

i ↪→ ∆n for n > 0 and
0 ≤ i ≤ n. The theory of Kan fibrations can be viewed as a relativization of the theory of
Kan complexes, which plays an essential role in the classical homotopy theory of simplicial
sets (as in Chapter 3). In this chapter, we study several weaker notions of fibration, which
will play an analogous role in the study of ∞-categories:

• We say that a morphism of simplicial sets q : X → S is an inner fibration if it is weakly
right orthogonal to every inner horn inclusion Λni ↪→ ∆n, 0 < i < n (Definition 4.1.1.1).
If this condition is satisfied, then for each vertex s ∈ S, the fiber Xs = {s} ×S X is
an ∞-category (Remark 4.1.1.6). Consequently, the theory of inner fibrations can be
regarded as a relative version of the theory of ∞-categories, which we study in §4.1.

• We say that a morphism of simplicial sets q : X → S is a left fibration if it is weakly
right orthogonal to the horn inclusions Λni ↪→ ∆n for 0 ≤ i < n, and a right fibration if
it is weakly right orthogonal to the horn inclusions Λni ↪→ ∆n for 0 < i ≤ n (Definition
4.2.1.1). If either of these conditions are satisfied, then the fiber Xs = {s} ×S X
is a Kan complex for each vertex s ∈ S (Corollary 4.4.2.3). We will see later that
the construction s 7→ Xs is covariantly functorial when q is a left fibration, and
contravariantly functorial when q is a right fibration (see §5.2.2). In §4.2, we develop
some basic formal properties of left and right fibrations; we will carry out a more
detailed analysis in Chapter 5.

• We say that a morphism of simplicial sets q : X → S is an isofibration if it is weakly
right orthogonal to every inclusion of simplicial sets A ↪→ B which is a categorical

595
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equivalence (Definition 4.5.5.5). This condition is primarily useful in the case where
X and S are ∞-categories, in which case it is equivalent to the requirement that q
is an inner fibration which satisfies a lifting property with respect to isomorphisms
(Proposition 4.5.5.1). We study isofibrations between∞-categories in §4.4, and between
general simplicial sets in §4.5.5).

If q : X → S is a morphism of simplicial sets, we have the following diagram of
implications:

q is a trivial Kan fibration

��
q is a Kan fibration

$,rz
q is a left fibration

$,

q is a right fibration

rz
q is an isofibration

��
q is an inner fibration.

Beware that, in general, none of these implications is reversible.
In §4.3, we consider some prototypical examples of left and right fibrations which arise

frequently in practice. Let C be an ∞-category. To each object X ∈ C, one can associate
a simplicial set C/X , whose n-simplices are given by maps σ : ∆n+1 → C which carry the
final vertex of ∆n+1 to the object X ∈ C. In particular, vertices of C/X can be identified
with morphisms f : Y → X in C having target X, and edges of C/X can be identified with
commutative diagrams

Z //

  

Y

~~
X.
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in the ∞-category C (see Notation 4.3.5.6 for a precise definition). The simplicial set C/X
is itself an ∞-category, which we will refer to as the slice ∞-category of C over the object
X. Moreover, the evident forgetful functor C/X → C (given on objects by the construction
(f : Y → X) 7→ Y ) is a right fibration (Proposition 4.3.6.1). A dual version of this
construction produces another ∞-category CX/ whose objects are morphisms f : X → Y in
the ∞-category C, which we refer to as the coslice ∞-category of C under the object X. The
slice and coslice constructions (and generalizations thereof) provide a rich supply of right
and left fibrations between simplicial sets, and will play an essential role throughout this
book.

Recall that an equivalence of categories is a functor F : C → D which admits a homotopy
inverse: that is, for which there exists another functor G : D → C such that G ◦ F and
F ◦G are isomorphic to the identity functors idC and idD, respectively. In §4.5, we study
the ∞-categorical counterpart of this notion. We say that a morphism of simplicial sets
F : C → D is a categorical equivalence if, for every ∞-category E , precomposition with F

induces a bijection

{Isomorphism classes of diagrams D → E} → {Isomorphism classes of diagrams C → E};

see Definition 4.5.3.1. If C and D are∞-categories, then this is equivalent to the requirement
that F admits a homotopy inverse G : D → C in the sense described above (see Example
4.5.3.3). In this case, we say that F is an equivalence of ∞-categories (Definition 4.5.1.10).

A functor F : C → D between ordinary categories is an equivalence if and only if it
satisfies the following pair of conditions:

(1) The functor F is fully faithful. That is, for every pair of objects X,Y ∈ C, the functor
F induces a bijection HomC(X,Y )→ HomD(F (X), F (Y )).

(2) The functor F is essentially surjective: that is, every object Y ∈ D is isomorphic to
F (X), for some object X ∈ C.

This characterization is quite useful: in practice, it is often easier to verify conditions
(1) and (2) than to explicitly describe a homotopy inverse of the functor F (which might
require some auxiliary choices). In §4.6, we establish an analogue of this characterization
in the ∞-categorical setting. To every pair of objects X and Y of an ∞-category C, we
associate a Kan complex HomC(X,Y ) which we refer to as the space of morphisms from
X to Y (Construction 4.6.1.1). We say that a functor of ∞-categories F : C → D is fully
faithful if it induces a homotopy equivalence HomC(X,Y )→ HomD(F (X), F (Y )) for every
pair of objects X,Y ∈ C (Definition 4.6.2.1). In §4.6.2, we show that F is an equivalence
of ∞-categories if and only if it is fully faithful and essentially surjective at the level of
homotopy categories (Theorem 4.6.2.20).
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4.1 Inner Fibrations

01B8Recall that a simplicial set X is an ∞-category if, for every pair of integers 0 < i < n,
every morphism of simplicial sets σ0 : Λn

i → X can be extended to an n-simplex of X
(Definition 1.4.0.1). The goal of this section is to introduce and study a relative version of
this condition. We say that a morphism of simplicial sets q : X → S is an inner fibration
if it is weakly right orthogonal to the horn inclusion Λn

i ↪→ ∆n for 0 < i < n (Definition
4.1.1.1). In the special case S = ∆0, this reduces to the assumption that X is an ∞-category
(Example 4.1.1.2). More generally, we will see in §4.1.1 that a morphism q : X → S is
an inner fibration if and only if the inverse image of every simplex of S is an ∞-category
(Remark 4.1.1.13).

Let C be an ∞-category. We will say that a simplicial subset C′ ⊆ C is a subcategory of C
if the inclusion map C′ ↪→ C is an inner fibration (Definition 4.1.2.2). In this case, C′ is also
an ∞-category, whose homotopy category hC′ can be identified with a subcategory of hC
(in the sense of classical category theory). In §4.1.2, we show that every subcategory of hC
can be obtained (uniquely) in this way: more precisely, the construction C′ 7→ hC′ induces a
bijection from the set of subcategories of C to the set of subcategories of hC (Proposition
4.1.2.10).

Recall that a morphism of simplicial sets i : A ↪→ B is said to be inner anodyne if it can
be constructed from inner horn inclusions Λni ↪→ ∆n using pushouts, retracts, and transfinite
composition (Definition 1.5.6.4). It follows immediately from the definitions that a morphism
of simplicial sets q : X → S is an inner fibration if and only if it is weakly right orthogonal
to all inner anodyne morphisms (Proposition 4.1.3.1). In §4.1.3, we use a version of Quillen’s
small object argument (Proposition 4.1.3.2) to show that, conversely, a morphism i : A ↪→ B

is inner anodyne if and only if it is weakly left orthogonal to every inner fibration (Corollary
4.1.3.4).

If C is an ∞-category and K is an arbitrary simplicial set, then the simplicial set
Fun(K, C) is also an ∞-category (Theorem 1.5.3.7). In §4.1.4, we establish a relative form
of this result: if q : X → S is an inner fibration of simplicial sets, then postcomposition
with q induces another inner fibration Fun(K,X)→ Fun(K,S) (Corollary 4.1.4.3). This is
a special case of a more general result (Proposition 4.1.4.1), which is essentially equivalent
to the stability of inner anodyne morphisms under the formation of pushout-products (see
Lemma 1.5.7.5).

4.1.1 Inner Fibrations of Simplicial Sets

01B9We now introduce the primary objects of interest in this section.
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https://kerodon.net/tag/01B9


4.1. INNER FIBRATIONS 599

Definition 4.1.1.1.01BA Let q : X → S be a morphism of simplicial sets. We say that q is an
inner fibration if, for every pair of integers 0 < i < n, every lifting problem

Λni
σ0 //

��

X

q

��
∆n

σ

??

σ // S

admits a solution (as indicated by the dotted arrow). That is, for every map of simplicial
sets σ0 : Λni → X and every n-simplex σ : ∆n → S extending q ◦ σ0, we can extend σ0 to an
n-simplex σ : ∆n → X satisfying q ◦ σ = σ.

Example 4.1.1.2.01BB Let X be a simplicial set. Then the projection map X → ∆0 is an inner
fibration if and only if X is an ∞-category.

Remark 4.1.1.3.01CB Let q : X → S be a morphism of simplicial sets. Then q is an inner
fibration if and only if the opposite morphism qop : Xop → Sop is an inner fibration.

Remark 4.1.1.4.01BD The collection of inner fibrations is closed under retracts. That is, given
a diagram of simplicial sets

X //

q

��

X ′

q′

��

// X

q

��
S // S′ // S

where both horizontal compositions are the identity, if q′ is an inner fibration, then so is q.

Remark 4.1.1.5.01BE The collection of inner fibrations is closed under pullback. That is, given
a pullback diagram of simplicial sets

X ′

q′

��

// X

q

��
S′

f // S

where q is an inner fibration, the morphism q′ is also an inner fibration. Conversely, if q′ is
an inner fibration and f is surjective, then q is an inner fibration.
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Remark 4.1.1.6. 01BFLet q : X → S be an inner fibration of simplicial sets. Then, for every
vertex s ∈ S, the fiber Xs = {s} ×S X is an ∞-category (this follows from Remark 4.1.1.5
and Example 4.1.1.2).

Remark 4.1.1.7. 01BGThe collection of inner fibrations is closed under filtered colimits. That
is, if {qα : Xα → Sα} is a filtered diagram in the arrow category Fun([1], Set∆) having
colimit q : X → S, and each qα is an inner fibration of simplicial sets, then q is also an inner
fibration of simplicial sets.

Remark 4.1.1.8. 01BHLet p : X → Y and q : Y → Z be inner fibrations of simplicial sets. Then
the composite map (q ◦ p) : X → Z is an inner fibration of simplicial sets.

Remark 4.1.1.9. 01BJLet q : X → Y be an inner fibration of simplicial sets. If Y is an
∞-category, then X is also an ∞-category (this follows by combining Remark 4.1.1.8 with
Example 4.1.1.2).

Proposition 4.1.1.10. 01BKLet C be a category, and let q : X → N•(C) be a morphism of
simplicial sets. Then q is an inner fibration if and only if X is an ∞-category.

Proof. If q is an inner fibration, then Remark 4.1.1.9 guarantees that X is an ∞-category.
Conversely, suppose that X is an ∞-category and that we are given a lifting problem

Λni
σ0 //

��

X

q

��
∆n

σ

==

σ // N•(C)

for integers 0 < i < n. Our assumption that X is an ∞-category guarantees that σ0 can be
extended to an n-simplex σ : ∆n → X. The equality q ◦ σ = σ is automatic by virtue of
Proposition 1.3.4.1.

Corollary 4.1.1.11. 01NPLet F : C → D be a functor between ordinary categories. Then the
induced map N•(F ) : N•(C)→ N•(D) is an inner fibration of simplicial sets.

Example 4.1.1.12. 01CCLet C be an ∞-category and let hC denote its homotopy category
(Construction 1.4.5.1). Then the canonical map C → N•(hC) is an inner fibration.

Remark 4.1.1.13. 01BLLet q : X → S be a morphism of simplicial sets. The following conditions
are equivalent:

(1) The morphism q is an inner fibration.
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(2) For every simplex σ : ∆n → S, the projection map ∆n ×S X → ∆n is an inner fibration.

(3) For every simplex σ : ∆n → S, the fiber product ∆n ×S X is an ∞-category.

The equivalence (1)⇔ (2) is immediate from the definition, and the equivalence (2)⇔ (3)
follows from Proposition 4.1.1.10.

Remark 4.1.1.14.02250225 Suppose we are given an inverse system of simplicial sets

· · · → X(4)→ X(3)→ X(2)→ X(1)→ X(0),

where each of the transition maps X(n) → X(n − 1) is an inner fibration. Then each of
the projection maps lim←−nX(n) → X(m) is an inner fibration. In particular, if any of the
simplicial sets X(m) is an∞-category, then the inverse limit lim←−nX(n) is also an∞-category.

4.1.2 Subcategories of ∞-Categories

01CD Let C be a category, and let Ob(C) be the set of objects of C. Suppose that we are
given a subset Ob′(C) ⊆ Ob(C) and, for every pair of objects X,Y ∈ Ob′(C), a subset
Hom′C(X,Y ) ⊆ HomC(X,Y ) satisfying the following conditions:

• For every object X ∈ Ob′(C), the identity morphism idX belongs to Hom′C(X,X).

• For every triple of objects X,Y, Z ∈ Ob′(C) and every pair of morphisms f ∈
Hom′C(X,Y ), g ∈ Hom′C(Y,Z), the composition g ◦ f belongs to Hom′C(X,Z).

In this case, we can construct a category C′ by setting Ob(C′) = Ob′(C) and HomC′(X,Y ) =
Hom′C(X,Y ) for every pair of objects X,Y ∈ Ob(C′) (where the composition of morphisms
in C′ agrees with their composition in C). In this situation, we refer to C′ as the subcategory
of C spanned by the objects Ob′(C) and the morphisms {Hom′C(X,Y )}X,Y ∈Ob′(C).

Remark 4.1.2.1.01CE Let C be a category. We will say that a category C′ is a subcategory of C
if it arises from the construction described above (for some collection of objects Ob′(C) and
collections of morphisms {Hom′C(X,Y )}X,Y ∈Ob′(C)). Phrased differently, a category C′ is a
subcategory of C if the following conditions are satisfied:

• The set of objects Ob(C′) is a subset of the set of objects Ob(C).

• For every pair of objects X,Y ∈ Ob(C′) ⊆ Ob(C), the set of morphisms HomC′(X,Y )
is a subset of the set of morphisms HomC(X,Y ).

• There is a functor C′ → C which is the identity on objects and morphisms.

We write C′ ⊆ C to indicate that C′ is a subcategory of C.
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We now generalize the notion of subcategory to the setting of ∞-categories.

Definition 4.1.2.2. 01CFLet C be an ∞-category. A subcategory of C is a simplicial subset
C′ ⊆ C for which the inclusion map C′ ↪→ C is an inner fibration.

Remark 4.1.2.3. 01CGLet C be an ∞-category and let C′ ⊆ C be a subcategory. Then C′ is also
an ∞-category (Remark 4.1.1.9).

Example 4.1.2.4. 01CHLet C be an ordinary category and let N•(C) be its nerve. For every
subcategory C′ ⊆ C, the nerve N•(C′) can be viewed as a subcategory of N•(C) (the inclusion
map N•(C′) ↪→ N•(C) is automatically an inner fibration, by virtue of Proposition 4.1.1.10).
We will see in a moment that every subcategory of N•(C) arises in this way (Corollary
4.1.2.11). In other words, when restricted to (the nerves of) ordinary categories, Definition
4.1.2.2 reduces to the classical notion of subcategory.

Warning 4.1.2.5. 01CJThe terminology of Definition 4.1.2.2 has the potential to cause confusion.
If C is an ∞-category and C′ ⊆ C is a subcategory, then C′ need not be (isomorphic to the
nerve of) an ordinary category. Our use of the term “subcategory” (rather than the more
technically correct “sub-∞-category”) is intended to avoid awkward language.

Remark 4.1.2.6 (Pullbacks of Subcategories). 01CKLet F : C → D be a functor between
∞-categories, and let D′ be a subcategory of D. Then the inverse image F−1(D′) ⊆ C is a
subcategory of C (see Remark 4.1.1.5).

Remark 4.1.2.7. 01CLLet C be an ∞-category and let C′ ⊆ C be a subcategory. Suppose that C
contains a 2-simplex σ :

Y

g

��
X

f

??

h // Z

which witnesses h as a composition of g and f (Definition 1.4.4.1). If f and g belong to the
subcategory C′, then the 2-simplex σ also belongs to the subcategory C′ (since the inclusion
C′ ↪→ C is weakly right orthogonal to the horn inclusion Λ2

1 ↪→ ∆2). In particular, if f and g
belong to C′, then h also belongs to C′.

Remark 4.1.2.8. 01CMLet C be an ∞-category and let C′ ⊆ C be a subcategory. Suppose we are
given a pair of morphisms f, g : X → Y in C having the same source and target. If f and
g are homotopic as morphisms in the ∞-category C and f belongs to the subcategory C′,
then g also belongs to the subcategory C′ and the morphisms f and g are homotopic in the
∞-category C′. This a special case of Remark 4.1.2.7 (note that f and g are homotopic if
and only if g is a composition of f with the identity morphism idY ; see Definition 1.4.3.1).
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Remark 4.1.2.9.01CN Let C be an ∞-category, let C′ ⊆ C be a subcategory, let σ : ∆n → C be
an n-simplex of C for n > 0. The following conditions are equivalent:

(1) The n-simplex σ is contained in the subcategory C′.

(2) For every pair of integers 0 ≤ i < j ≤ n, the edge

∆1 ≃ N•({i < j}) ↪→ ∆n σ−→ C

is contained in the subcategory C′.

(3) For every integer 1 ≤ j ≤ n, the edge

∆1 ≃ N•({j − 1 < j}) ↪→ ∆n σ−→ C

is contained in the subcategory C′.

The implications (1)⇒ (2)⇒ (3) are immediate from the definitions, and the implication
(3)⇒ (1) follows from fact that the inclusion C′ ↪→ C is weakly right orthogonal to the inner
anodyne morphism Spine[n] ↪→ ∆n (see Example 1.5.7.7 and Proposition 4.1.3.1).

Proposition 4.1.2.10.01CP Let C be an ∞-category, let hC be its homotopy category, and let
F : C → N•(hC) be the canonical map. Then the construction (D ⊆ hC) 7→ (F−1(N•(D)) ⊆ C)
induces a bijection

{Subcategories of the ordinary category hC} ≃ {Subcategories of the ∞-category C}

Proof. We first observe that if D is a subcategory of the homotopy category hC, then the nerve
N•(D) is a subcategory of the ∞-category N•(hC) (Example 4.1.2.4), so that F−1(N•(D))
is a subcategory of the ∞-category C (Remark 4.1.2.6). Moreover, the subcategory D
is uniquely determined by its inverse image F−1(N•(D)): this follows from the fact that
F : C → N•(hC) is an epimorphism of simplicial sets (Remark 1.5.7.9). To complete the
proof, it will suffice to show that every subcategory C′ ⊆ C arises in this way. Note that
the inclusion map C′ ↪→ C induces a functor of homotopy categories G : hC′ ↪→ hC, which is
obviously injective at the level of objects. In addition, for every pair of objects X,Y ∈ hC′,
the functor G induces a monomorphism HomhC′(X,Y )→ HomhC(X,Y ): this follows from
the observation that a pair of morphisms f, g : X → Y are homotopic in the ∞-category
C′ if and only if they are homotopic in the ∞-category C (Remark 4.1.2.8). It follows that
the functor G induces an isomorphism from hC′ onto a subcategory D ⊆ hC. We therefore
have an inclusion C′ ⊆ F−1(N•(D)). To complete the proof, it will suffice to show that this
inclusion is an equality. In other words, we must show that an n-simplex σ : ∆n → C is
contained in C′ if and only if the induced map [n] → hC factors through the subcategory
D ⊆ hC. Without loss of generality, we may assume that n > 0 (the case n = 0 is trivial).
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Using Remark 4.1.2.9, we can reduce to the case where n = 1, so that σ can be identified
with a morphism g : X → Y in the ∞-category C. Our assumption that F (σ) belongs to
N•(D) guarantees that g is homotopic to a morphism f : X → Y which belongs to the
subcategory C′ ⊆ C (and, in particular, that the objects X and Y belong to C′). Invoking
Remark 4.1.2.8, we conclude that g also belongs to the subcategory C′, as desired.

Corollary 4.1.2.11. 01CQLet C be an ordinary category. Then the construction C′ 7→ N•(C′)
induces a bijection

{Subcategories of the ordinary category C} ≃ {Subcategories of the ∞-category N•(C)}

Proof. Combine Proposition 4.1.2.10 with Example 1.4.5.4.

Corollary 4.1.2.12. 01CRLet C be an ∞-category, let S be a collection of objects of C, and let T
be a collection of morphisms of C. The following conditions are equivalent:

• There exists a subcategory C′ ⊆ C whose objects are the elements of S and whose
morphisms are the elements of T .

• The collections S and T satisfy the following conditions:

(1) For each object X ∈ S, the identity morphism idX belongs to T .

(2) For each morphism f : X → Y of C which belongs to T , the objects X and Y

belong to S.

(3) If f : X → Y is an morphism of C which belongs to T and g : X → Y is a
morphism of C which is homotopic to f , then g also belongs to T .

(4) If f : X → Y and g : Y → Z are morphisms of C which belong to T , then some
composition (g ◦ f) : X → Z also belongs to T .

Moreover, if these conditions are satisfied, then the subcategory C′ ⊆ C is uniquely determined
by S and T .

Proof. The necessity of conditions (1) and (2) is immediate, and the necessity of (3) and (4)
follow from Remark 4.1.2.8 and Remark 4.1.2.7. Conversely, suppose that conditions (1)
through (4) are satisfied. Using (1), (2), and (4), we deduce that there exists a subcategory
D ⊆ hC whose objects are the elements of S and whose morphisms are the homotopy
classes of morphisms belonging to T . Let C′ ⊆ C be the inverse image of the subcategory
N•(D) ⊆ N•(hC). It follows immediately from the definition that an object of C belongs to
the subcategory C′ if and only if it is an element of S, and from (3) that a morphism of C
belongs to the subcategory C′ if and only if it is an element of T . The uniqueness of the
subcategory C′ follows from Proposition 4.1.2.10.
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Definition 4.1.2.13.01CS Let C be an ∞-category. Suppose we are given a collection S of
objects of C and a collection T of morphisms of C satisfying the assumptions of Corollary
4.1.2.12, so that there exists a unique subcategory C′ ⊆ C whose objects are the elements
of S and whose morphisms are the elements of T . In this case, we will refer to C′ as the
subcategory of C spanned by the objects of S and the morphisms of T .

Remark 4.1.2.14.01CT Let C be an ∞-category, and let C′ ⊆ C be the subcategory spanned by
the collection of objects S of C and a collection of morphisms T of C. Then a morphism of
simplicial sets f : K → C factors through the subcategory C′ ⊆ C if and only if it carries
each vertex of K to an element of S and each edge of K to an element of T .

Let C be an ordinary category. Recall that a subcategory C′ ⊆ C is full if, for every
pair of objects X,Y ∈ C′, the inclusion map HomC′(X,Y ) ↪→ HomC(X,Y ) is bijective. This
definition has an obvious counterpart in the ∞-categorical setting.

Definition 4.1.2.15.01CU Let C be a simplicial set. We say that a simplicial subset C′ ⊆ C is
full if it satisfies the following condition:

• Let σ : ∆n → C be a simplex of C having the property that, for each integer 0 ≤ i ≤ n,
the vertex σ(i) ∈ C belongs to C′. Then σ belongs to C′.

If this condition is satisfied, then the inclusion map C′ ↪→ C is an inner fibration. In particular,
if C is an ∞-category, then C′ is a subcategory of C; in this case, we will say that C′ is a full
subcategory of C.

Proposition 4.1.2.16.01CV Let C be a simplicial set and let S be a collection of vertices of C.
Then there exists a unique full simplicial subset C′ ⊆ C having vertex set S.

Proof. Take C′ to be the simplicial subset of C consisting of those simplices σ : ∆n → C
having the property that, for 0 ≤ i ≤ n, the vertex σ(i) belongs to S.

Definition 4.1.2.17.01CW Let C be a simplicial set and let S be a collection of vertices of C.
By virtue of Proposition 4.1.2.16, there exists a unique full simplicial subset C′ ⊆ C having
vertex set S. We will refer to C′ as the full simplicial subset of C spanned by S. If C is an
∞-category, we will refer to C′ as the full subcategory of C spanned by S.

Remark 4.1.2.18.01CX Let C be a simplicial set and let C′ ⊆ C be the full simplicial subset
of C spanned by a set of vertices S of C. Then a morphism of simplicial sets f : K → C
factors through the simplicial subset C′ ⊆ C if and only if, for every vertex x ∈ K, the image
f(x) ∈ C belongs to S.

Remark 4.1.2.19.01CY Let C be an ordinary category. Then the construction C′ 7→ N•(C′)
induces a bijection

{Full subcategories of C} ≃ {Full subcategories of N•(C)}.
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4.1.3 Inner Anodyne Morphisms

01BMBy definition, a morphism of simplicial sets q : X → S is an inner fibration if it is weakly
right orthogonal to every inner horn inclusion Λni ↪→ ∆n. From this, one can immediately
deduce a stronger lifting property.

Proposition 4.1.3.1. 01BNLet q : X → S be a morphism of simplicial sets. Then q is an inner
fibration if and only if it satisfies the following condition:

(∗) For every square diagram of simplicial sets

A

i

��

// X

q

��
B //

??

S

where i is inner anodyne, there exists a dotted arrow rendering the diagram commuta-
tive.

Proof. The “if” direction is immediate from the definition, since the horn inclusion Λni ↪→ ∆n

is inner anodyne for 0 < i < n. The reverse implication follows from Proposition 1.5.4.13.

Proposition 4.1.3.2. 01BPLet f : X → Y be a morphism of simplicial sets. Then f can be

factored as a composition X
f ′−→ Q(f) f ′′−→ Y, where f ′′ is an inner fibration and f ′ is inner

anodyne. Moreover, the simplicial set Q(f) (and the morphisms f ′ and f ′′) can be chosen
to depend functorially on f , in such a way that the functor

Fun([1], Set∆)→ Set∆ (f : X → Y)→ Q(f)

commutes with filtered colimits.

Proof. We proceed as in the proof of Proposition 3.1.7.1. We construct a sequence of
simplicial sets {X(m)}m≥0 and morphisms f(m) : X(m) → Y by recursion. Set X(0) = X

and f(0) = f . Assuming that f(m) : X(m) → Y has been defined, let S(m) denote the set
of all commutative diagrams σ :

Λni //

��

X(m)

f(m)

��
∆n uσ // Y,

https://kerodon.net/tag/01BM
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where 0 < i < n and the left vertical map is the inclusion. For every such commutative
diagram σ, let Cσ = Λni denote the upper left hand corner of the diagram σ, and Dσ = ∆n

the lower left hand corner. Form a pushout diagram∐
σ∈S(m)Cσ //

��

X(m)

��∐
σ∈S(m)Dσ

// X(m+ 1)

and let f(m+ 1) : X(m+ 1) → Y be the unique map whose restriction to X(m) is equal to
f(m) and whose restriction to each Dσ is equal to uσ. By construction, we have a direct
system of inner anodyne morphisms

X = X(0) ↪→ X(1) ↪→ X(2) ↪→ · · ·

Set Q(f) = lim−→m
X(m). Then the natural map f ′ : X → Q(f) is inner anodyne (since the

collection of inner anodyne maps is closed under transfinite composition), and the system
of morphisms {f(m)}m≥0 can be amalgamated to a single map f ′′ : Q(f) → Y satisfying
f = f ′′ ◦ f ′. It is clear from the definition that the construction f 7→ Q(f) is functorial and
commutes with filtered colimits. To complete the proof, it will suffice to show that f ′′ is a
inner fibration: that is, that every lifting problem σ :

Λni
v //

��

Q(f)

f ′′

��
∆n //

==

Y

admits a solution (provided that 0 < i < n). Let us abuse notation by identifying each X(m)
with its image in Q(f). Since Λni is a finite simplicial set, its image under v is contained in
X(m) for some m≫ 0. In this case, we can identify σ with an element of the set S(m), so
that the lifting problem

Λni
v //

��

X(m+ 1)

f(m+1)

��
∆n //

;;

Y

admits a solution by construction.
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Applying Proposition 4.1.3.2 in the special case Y = ∆0, we obtain the following:

Corollary 4.1.3.3. 01BQLet X be a simplicial set. Then there exists an inner anodyne morphism
f : X → Q(X), where Q(X) is an ∞-category. Moreover, the ∞-category Q(X) (and the
morphism f) can be chosen to depend functorially on X, in such a way that the functor
X 7→ Q(X) commutes with filtered colimits.

Using Proposition 4.1.3.2, we obtain the following counterpart of Proposition 4.1.3.1:

Corollary 4.1.3.4. 01BRLet i : A→ B be a morphism of simplicial sets. Then i is inner anodyne
if and only if it satisfies the following condition:

(∗) For every square diagram of simplicial sets

A

i

��

// X

q

��
B //

??

S

where q is an inner fibration, there exists a dotted arrow rendering the diagram
commutative.

Proof. The “if” direction follows from Proposition 4.1.3.1. For the converse, suppose that
condition (∗) is satisfied. Using Proposition 4.1.3.2, we can factor i as a composition
A

i′−→ Q
q−→ B, where i′ is inner anodyne and q is an inner fibration. If the lifting problem

A

i

��

i′ // Q

q

��
B

id //

r

??

B

admits a solution, then the morphism r exhibits i as a retract of i′ (in the arrow category
Fun([1],Set∆)). Since the collection of inner anodyne morphisms is closed under retracts, it
follows that i is inner anodyne.

4.1.4 Exponentiation for Inner Fibrations

01BSRecall that, if C is an ∞-category and B is an arbitrary simplicial set, then the simplicial
set Fun(B, C) is also an ∞-category (Theorem 1.5.3.7). We now record a relative version of
this result.
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Proposition 4.1.4.1.01BT Let q : X → S be an inner fibration of simplicial sets, and let
i : A ↪→ B be a monomorphism of simplicial sets. Then the restriction map

ρ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S)

is also an inner fibration of simplicial sets.

Proof. By virtue of Proposition 4.1.3.1, it will suffice to show that every lifting problem

A′

i′

��

// Fun(B,X)
ρ

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a solution, provided that i′ is inner anodyne. Equivalently, we must show that every
lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

q

��
B ×B′ //

33

S

admits a solution. This follows from Proposition 4.1.3.1, since the left vertical map is inner
anodyne (Lemma 1.5.7.5) and q is an inner fibration.

Corollary 4.1.4.2.01BU Let C be an ∞-category and let i : A ↪→ B be a monomorphism of
simplicial sets. Then the restriction functor Fun(B, C)→ Fun(A, C) is an inner fibration.

Proof. Apply Proposition 4.1.4.1 in the special case S = ∆0.

Corollary 4.1.4.3.01BV Let q : X → S be an inner fibration of simplicial sets and let B be an
arbitrary simplicial set. Then composition with q induces an inner fibration Fun(B,X)→
Fun(B,S).

Proof. Apply Proposition 4.1.4.1 in the special case A = ∅.

We now record an analogous generalization of Proposition 1.5.7.6.

Proposition 4.1.4.4.01BW Let q : X → S be an inner fibration of simplicial sets, and let
i : A ↪→ B be an inner anodyne morphism of simplicial sets. Then the restriction map

ρ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S)

is a trivial Kan fibration.
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Proof. We wish to show that every lifting problem

A′

i′

��

// Fun(B,X)
ρ

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a solution, provided that i′ is a monomorphism of simplicial sets. Equivalently, we
must show that every lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

q

��
B ×B′ //

33

S

admits a solution. This follows from Proposition 4.1.3.1, since the left vertical map is inner
anodyne (Lemma 1.5.7.5) and q is an inner fibration.

Proposition 4.1.4.4 admits the following converse (generalizing Theorem 1.5.6.1):

Proposition 4.1.4.5. 01BXLet q : X → S be a morphism of simplicial sets. Then q is an inner
fibration if and only if the induced map

ρ : Fun(∆2, X)→ Fun(Λ2
1, X)×Fun(Λ2

1,S) Fun(∆2, S)

is a trivial Kan fibration.

Proof. The “only if” direction follows from Proposition 4.1.4.4. For the converse, we observe
that ρ is a trivial Kan fibration if and only if q is weakly right orthogonal to the inclusion
map

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2

for every nonnegative integer m. Since the collection of inner anodyne morphisms is generated
(as a weakly saturated class) by such inclusions (Lemma 1.5.6.9), it follows that q is weakly
right orthogonal to all inner anodyne morphisms (Proposition 1.5.4.13) and is therefore an
inner fibration (Proposition 4.1.3.1).

Proposition 4.1.4.6. 01GQSuppose we are given a commutative diagram

A
f //

i

��

X

q

��
B

g //

f

??

S

https://kerodon.net/tag/01BX
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of simplicial sets, where i is a monomorphism and q is an inner fibration. Then the simplicial
set FunA//S(B,X) of Construction 3.1.3.7 is an∞-category. Moreover, if i is inner anodyne,
then FunA//S(B,X) is a contractible Kan complex.

Proof. By virtue of Remark 3.1.3.11, the simplicial set FunA//S(B,X) can be identified
with a fiber of the restriction map

θ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S).

Proposition 4.1.4.1 asserts that θ is an inner fibration of simplicial sets, so its fibers are
∞-categories (Remark 4.1.1.6). If i is inner anodyne, then Proposition 4.1.4.4 guarantees
that θ is a trivial Kan fibration, so its fibers are contractible Kan complexes.

Corollary 4.1.4.7.01GR Let B be a simplicial set, let A ⊆ B be a simplicial subset, and let
f : A→ C be a morphism of simplicial sets. If C is an ∞-category, then the simplicial set
FunA/(B, C) is an ∞-category. Moreover, if the inclusion A ↪→ B is inner anodyne, then
FunA/(B, C) is a contractible Kan complex.

Proof. Apply Proposition 4.1.4.6 in the special case S = ∆0.

Corollary 4.1.4.8.01GS Let q : X → S be an inner fibration of simplicial sets and let g : B → S

be any morphism of simplicial sets. Then the simplicial set Fun/S(B,X) is an ∞-category.

Proof. Apply Proposition 4.1.4.6 in the special case A = ∅.

4.1.5 Inner Covering Maps

0226 We now study a special class of inner fibrations.

Definition 4.1.5.1.0227 Let f : X → S be a morphism of simplicial sets. We say that f is an
inner covering map if, for every pair of integers 0 < i < n, every lifting problem

Λni //
� _

��

X

f

��
∆n // S

has a unique solution.

Example 4.1.5.2.0228 Every covering map of simplicial sets (in the sense of Definition 3.1.4.1)
is an inner covering map. In particular, if f : X → S is a covering map of topological spaces,
then the induced map Sing•(f) : Sing•(X)→ Sing•(S) is an inner covering of simplicial sets
(Proposition 3.1.4.9).
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Example 4.1.5.3. 0229Let X be a simplicial set. Then the projection map f : X → ∆0 is
an inner covering map if and only if X is isomorphic to the nerve of a category (this is a
restatement of Proposition 1.3.4.1).

Remark 4.1.5.4. 022ALet f : X → S be a morphism of simplicial sets. Then f is an inner
covering map if and only if the opposite morphism fop : Xop → Sop is an inner covering
map.

Remark 4.1.5.5. 022BLet f : X → S be a morphism of simplicial sets, and let δ : X → X ×S X
be the relative diagonal of f . Then f is an inner covering map if and only if both f and δ

are inner fibrations. In particular, every inner covering map is an inner fibration.

Example 4.1.5.6. 022CLet f : X ↪→ S be a monomorphism of simplicial sets, so that the
relative diagonal δ : X ↪→ X ×S X is an isomorphism. Then f is an inner fibration if and
only if it is an inner covering. In particular, if C is an ∞-category and C0 ⊆ C is subcategory,
then the inclusion map C0 ↪→ C is an inner covering.

Remark 4.1.5.7. 022DSuppose we are given a pullback diagram of simplicial sets

X ′ //

f ′

��

X

f

��
S′ // S.

If f is an inner covering map, then f ′ is also an inner covering map.

Remark 4.1.5.8. 022ELet f : X → Y and g : Y → Z be morphisms of simplicial sets. Suppose
that g is an inner covering map. Then f is an inner covering map if and only if g ◦ f is
an inner covering map. In particular, the collection of inner covering maps is closed under
composition.

Remark 4.1.5.9. 022FLet f : X → S be a morphism of simplicial sets. The following conditions
are equivalent:

(a) The morphism f is an inner covering map (Definition 4.1.5.1).

(b) For every square diagram of simplicial sets

A

i

��

// X

f

��
B //

??

S

https://kerodon.net/tag/0229
https://kerodon.net/tag/022A
https://kerodon.net/tag/022B
https://kerodon.net/tag/022C
https://kerodon.net/tag/022D
https://kerodon.net/tag/022E
https://kerodon.net/tag/022F


4.2. LEFT AND RIGHT FIBRATIONS 613

where i is inner anodyne, there exists a unique dotted arrow rendering the diagram
commutative.

Proposition 4.1.5.10.022G Let C be a category, and let f : X → N•(C) be a morphism of
simplicial sets. Then f is an inner covering map if and only if X is isomorphic to the nerve
of a category.

Proof. Combine Remark 4.1.5.8 with Example 4.1.5.2.

Corollary 4.1.5.11.022H Let f : X → S be a morphism of simplicial sets. Then f is an
inner covering if and only if, for every simplex σ : ∆n → S, the fiber product ∆n ×S X is
isomorphic to the nerve of a category.

Proof. Suppose f is an inner covering. For every simplex σ : ∆n → S, it follows from
Remark 4.1.5.7 that the projection map ∆n ×S X → ∆n is also an inner covering map, so
that ∆n ×S X is isomorphic to the nerve of a category by virtue of Proposition 4.1.5.10.
Conversely, to show that f is an inner covering map, it will suffice to show that every lifting
problem

Λni //
� _

��

X

f

��
∆n // S

has a unique solution for 0 < i < n. If the fiber product ∆n ×S X is the nerve of a category,
then the existence and uniqueness of the desired solution follow from (and uniqueness) of
the desired solution follow from Proposition 1.3.4.1.

Exercise 4.1.5.12.022J Let f : X → S be an inner covering map of simplicial sets and let
i : A ↪→ B be any monomorphism of simplicial sets. Show that the restriction map

θ : Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is also an inner covering map. If i is inner anodyne, show that θ is an isomorphism.

4.2 Left and Right Fibrations

014H Let q : X → S be a morphism of simplicial sets. Recall that q is a Kan fibration if
and only if it is weakly right orthogonal to every horn inclusion Λn

i ↪→ ∆n for n > 0 and
0 ≤ i ≤ n (Definition 3.1.1.1). In particular, if q is a Kan fibration, then it is weakly right
orthogonal to both of the inclusion maps {0} ↪→ ∆1 ←↩ {1}. Concretely, this translates into
the following pair of assertions:
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(Left Path Lifting Property): Let q : X → S be a Kan fibration of simplicial sets, let x
be a vertex of X, and let e : q(x)→ y be an edge of S originating at the vertex q(x).
Then there exists an edge e : x→ y in X which originates at the vertex x and satisfies
q(e) = e.

(Right Path Lifting Property): Let q : X → S be a Kan fibration of simplicial sets, let
y be a vertex of X, and let e : x → q(y) be an edge of S terminating at the vertex
q(y). Then there exists an edge e : x→ y in X which terminates at the vertex y and
satisfies q(e) = e.

In §4.2.1, we introduce stronger versions of these lifting properties. We say that a
morphism of simplicial sets q : X → S is a left fibration if it is weakly right orthogonal to the
horn inclusions Λni ↪→ ∆n for 0 ≤ i < n, and a right fibration if it is weakly right orthogonal
to the horn inclusions Λn

i ↪→ ∆n for 0 < i ≤ n (Definition 4.2.1.1). Setting n = 1, we see
that every left fibration satisfies the left path lifting property, and that every right fibration
satisfies the right path lifting property. Moreover, this assertion has a partial converse. Note
that evaluation at the vertices of ∆1 induces morphisms of simplicial sets

ev0 : Fun(∆1, X)→ Fun({0}, X)×Fun({0},S) Fun(∆1, S) ≃ X ×S Fun(∆1, S)

ev1 : Fun(∆1, X)→ Fun({1}, X)×Fun({1},S) Fun(∆1, S) ≃ X ×S Fun(∆1, S).

In §4.2.6, we show that f is a left fibration if and only if the evaluation map ev0 is a trivial
Kan fibration, and that f is a right fibration if and only if ev1 is a trivial Kan fibration
(Proposition 4.2.6.1). The “only if” direction of this assertion is a special case of general
stability properties of left and right fibrations under exponentiation, which we prove in
§4.2.5 (Propositions 4.2.5.1 and 4.2.5.4). Our proofs will make use of some basic facts about
left anodyne and right anodyne morphisms of simplicial sets, which we establish in §4.2.4.

The notions of left and right fibration have antecedents in classical category theory. In
§4.2.2, we show that the induced map of simplicial sets N•(U) : N•(E)→ N•(C) is a right
fibration if and only if U is a fibration in groupoids (see Definition 4.2.2.1). We will be
particularly interested in the special case where U is a fibration in groupoids for which each
fiber EC = {C} ×C E is a discrete category. In §4.2.3, we show that this is equivalent to
the condition that the induced map of simplicial sets N•(U) is a right covering of simplicial
sets (Proposition 4.2.3.16): that is, it satisfies a unique lifting property for horn inclusions
Λni ↪→ ∆n with 0 < i ≤ n (Definition 4.2.3.8).

4.2.1 Left and Right Fibrations of Simplicial Sets

01GTWe begin by introducing some terminology.

https://kerodon.net/tag/01GT
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Definition 4.2.1.1.00T9 Let f : X → S be a morphism of simplicial sets. We will say that f is
a left fibration if, for every pair of integers 0 ≤ i < n, every lifting problem

Λni
σ0 //

��

X

f

��
∆n

σ

??

σ // S

has a solution (as indicated by the dotted arrow). That is, for every map of simplicial sets
σ0 : Λn

i → X and every n-simplex σ : ∆n → S extending f ◦ σ0, we can extend σ0 to an
n-simplex σ : ∆n → X satisfying f ◦ σ = σ.

We say that f is a right fibration if, for every pair of integers 0 < i ≤ n, every lifting
problem

Λni
σ0 //

��

X

f

��
∆n

σ

??

σ // S

has a solution.

Example 4.2.1.2.014K Any isomorphism of simplicial sets is both a left fibration and a right
fibration.

Remark 4.2.1.3.00TA Let f : X → S be a morphism of simplicial sets. Then f is a left fibration
if and only if the opposite morphism fop : Xop → Sop is a right fibration.

Remark 4.2.1.4.01GU Let f : X → S be a morphism of simplicial sets. If f is either a left
fibration or a right fibration, then it is an inner fibration. In this case, if S is an ∞-category,
then X is also an ∞-category (Remark 4.1.1.9).

Example 4.2.1.5.014L A morphism of simplicial sets f : X → S is a Kan fibration if and only
if it is both a left fibration and a right fibration.

Warning 4.2.1.6.00TD In the statement of Example 4.2.1.5, both hypotheses are necessary: a
left fibration of simplicial sets need not be a right fibration and vice versa. For example, the
inclusion map {1} ↪→ ∆1 is a left fibration, but not a right fibration (and therefore not a
Kan fibration).
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Remark 4.2.1.7. 014MThe collection of left and right fibrations is closed under retracts. That
is, suppose we are given a diagram of simplicial sets

X //

f

��

X ′

f ′

��

// X

f

��
S // S′ // S

where both horizontal compositions are the identity. If f ′ is a left fibration, then f is a left
fibration. If f ′ is a right fibration, then f is a right fibration.

Remark 4.2.1.8. 014NThe collections of left and right fibrations are closed under pullback.
That is, suppose we are given a pullback diagram of simplicial sets

X ′

f ′

��

// X

f

��
S′ // S.

If f is a left fibration, then f ′ is also a left fibration. If f is a right fibration, then f ′ is a
right fibration.

Remark 4.2.1.9. 014PLet f : X → S be a map of simplicial sets. Suppose that, for every
simplex σ : ∆n → S, the projection map ∆n ×S X → ∆n is a left fibration (right fibration).
Then f is a left fibration (right fibration). Consequently, if we are given a pullback diagram
of simplicial sets

X ′

f ′

��

// X

f

��
S′

g // S

where g is surjective and f ′ is a left fibration (right fibration), then f is also a left fibration
(right fibration).

Remark 4.2.1.10. 014QThe collections of left and right fibrations are closed under filtered
colimits. That is, suppose we are given a filtered diagram {fα : Xα → Sα} in the arrow
category Fun([1],Set∆), having colimit f : X → S. If each fα is a left fibration , then f is
also a left fibration. If each fα is a right fibration, then f is also a right fibration.
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Remark 4.2.1.11.014R Let f : X → Y and g : Y → Z be morphisms of simplicial sets. If both
f and g are left fibrations, then the composite map (g ◦ f) : X → Z is a left fibration. If
both f and g are right fibrations, then g ◦ f is a right fibration.

4.2.2 Fibrations in Groupoids

0156 We now introduce a category-theoretic counterpart of Definition 4.2.1.1.
Definition 4.2.2.1.0157 Let U : E → C be a functor between categories. We say that U is a
fibration in groupoids if the following conditions are satisfied:
(A) For every object Y ∈ E and every morphism f : X → U(Y ) in C, there exists a morphism

f : X → Y in E with X = U(X) and f = U(f).

(B) For every morphism g : Y → Z in E and every object X ∈ E , the diagram of sets

HomE(X,Y ) g◦ //

U

��

HomE(X,Z)

U

��
HomC(U(X), U(Y )) U(g)◦ // HomC(U(X), U(Z))

is a pullback square.
In this case, we will also say that E is fibered in groupoids over C.
Warning 4.2.2.2.015L The requirement that a functor U : E → C is a fibration in groupoids is
not invariant under equivalence. For example, an equivalence of categories need not be a
fibration in groupoids.
Remark 4.2.2.3.0159 Condition (B) of Definition 4.2.2.1 can be rephrased as follows: given
any commutative diagram

Y

g

��
X

h //

f

??

Z

in the category C and any partially defined lift

Y

g

��
X

f

??

h // Z
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to a diagram in E (so that U(g) = g and U(h) = h), there exists a unique extension as
indicated (that is, a unique morphism f : X → Y in C satisfying U(f) = f).

Variant 4.2.2.4. 015ALet U : E → C be a functor between categories. We say that U is a
opfibration in groupoids if the following conditions are satisfied:

(A′) For every object X ∈ E and every morphism f : U(X) → Y in C, there exists a
morphism f : X → Y in E with Y = U(Y ) and f = U(f).

(B′) For every morphism g : X → Y in E and every object Z ∈ E , the diagram of sets

HomE(Y,Z) ◦g //

U

��

HomE(X,Z)

U

��
HomC(U(Y ), U(Z)) ◦U(g) // HomC(U(X), U(Z))

is a pullback square.

In this case, we will also say that E is opfibered in groupoids over C.

Warning 4.2.2.5. 015BSome authors use the term cofibration in groupoids to refer to what we
call an opfibration in groupoids. We will avoid the use of the word “cofibration” in this
context, since it appears often in homotopy theory with a very different meaning.

Remark 4.2.2.6. 01SVLet U : E → C be a functor between categories. Then U is an opfibration
in groupoids if and only if the opposite functor Uop : Eop → Cop is a fibration in groupoids.

Example 4.2.2.7. 015CLet E be a category, let [0] denote the category having a single object
and a single morphism, and let U : E → [0] be the unique functor. The following conditions
are equivalent:

• The functor U is a fibration in groupoids.

• The functor U is an opfibration in groupoids.

• The category E is a groupoid.

Remark 4.2.2.8. 015DSuppose we are given a pullback diagram

E ′ //

U ′

��

E

U

��
C′ // C
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in the ordinary category Cat (so that the category E ′ is isomorphic to the fiber product
C′×C E). If U is a fibration in groupoids, then so is U ′. Similarly, if U is an opfibration in
groupoids, then so is U ′.

The notion of a fibration in groupoids can be regarded as a special case of the notion of
a right fibration between simplicial sets:

Proposition 4.2.2.9.015H Let U : E → C be a functor between categories. Then:

(1) The functor U is a fibration in groupoids if and only if the induced map N•(U) : N•(E)→
N•(C) is a right fibration of simplicial sets.

(2) A functor U is an opfibration in groupoids if and only if the induced map N•(U) :
N•(E)→ N•(C) is a left fibration of simplicial sets.

Proof. We will prove (1); the proof of (2) is similar. Assume first that U is a fibration in
groupoids; we wish to show that for every pair of integers 0 < i ≤ n, every lifting problem

015J Λni
σ0 //

��

N•(E)

N•(U)

��
∆n τ //

==

N•(C)

(4.1)

admits a solution. If 0 < i < n, then σ0 admits a unique extension σ : ∆n → N•(E)
(Proposition 1.3.4.1). Moreover, since N•(U) ◦ σ and τ coincide on the simplicial subset
Λn
i ⊆ ∆n, they automatically coincide (again by Proposition 1.3.4.1). We may therefore

assume without loss of generality that i = n. We consider four cases:

• If n = 1, then the existence of a solution to the lifting problem (4.1) is equivalent to
condition (A) of Definition 4.2.2.1, and is therefore ensured by our assumption that U
is a fibration in groupoids.

• If n = 2, then the existence of a solution to the lifting problem (4.1) follows from
condition (B) of Definition 4.2.2.1 (see Remark 4.2.2.3), and is again ensured by our
assumption that U is a fibration in groupoids.

• If n = 3, then the morphism σ0 encodes a collection of objects {Xj}0≤j≤3 and
morphisms {fkj : Xj → Xk}0≤j<k≤3 in the category E , which satisfy the identities

f30 = f31 ◦ f10 f30 = f32 ◦ f20 f31 = f32 ◦ f21.

To extend σ0 to a 3-simplex σ of N•(C), we must show that f20 = f21 ◦ f10 (note that
any such extension automatically satisfies τ = N•(U) ◦ σ, since the horn Λ3

3 contains

https://kerodon.net/tag/015H
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the 1-skeleton of ∆3). Invoking our assumption that U is a fibration in groupoids, we
deduce that the map

HomE(X0, X2)→ HomE(X0, X3)×HomC(F (X0), F (X2)) u 7→ (f32 ◦ u, F (u))

is injective. Using the calculation

f32 ◦ f20 = f30 = f31 ◦ f10 = (f32 ◦ f21) ◦ f10 = f32 ◦ (f21 ◦ f10),

we are reduced to proving that U(f20) is equal to U(f21 ◦ f10) = U(f21)◦U(f10), which
follows from the existence of the 3-simplex τ .

• If n ≥ 4, then the horn Λni contains the 2-skeleton of ∆n. It follows that σ0 admits a
unique extension to a map σ : ∆n → N•(E), which automatically satisfies τ = N•(U)◦σ.

We now prove the converse. Assume that N•(U) is a right fibration of simplicial sets; we
wish to show that U is a fibration in groupoids. As above, we note that condition (A) of
Definition 4.2.2.1 follows from the solvability of the lifting problem (4.1) in the special case
i = n = 1. To verify condition (B), we must show that for every diagram

Y

g

��
X

h // Z

in the category E and every compatible extension

U(Y )

U(g)

""
U(X)

f

<<

U(h) // U(Z)

in the category C, there exists a unique morphism f : X → Y in E satisfying U(f) = f and
g ◦ f = h. The existence of f follows from the solvability of the lifting problem (4.1) in the
special case i = n = 2. To prove uniqueness, suppose we are given a pair of morphisms
f, f ′′ : X → Y in E satisfying U(f) = f = U(f ′) and g ◦ f = h = g ◦ f ′. Consider the
not-necessarily-commutative diagram

Y
idY //

g

))

Y

g

##
X

f

;;

f ′

55

h // Z
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in the category E . Every triangle in this diagram commutes with the possible exception
of the upper left, so it determines a map of simplicial sets σ0 : Λ3

3 → N•(E). Moreover,
the equation U(u) = U(u′) guarantees that N•(F ) ◦ σ0 extends to a 3-simplex τ of N•(D).
Invoking the solvability of the lifting problem (4.1) in the case i = n = 3, we conclude that
σ0 can be extended to a 3-simplex of C, which witnesses the identity f ′ = idY ◦f = f .

4.2.3 Left and Right Covering Maps

022K Recall that a Kan fibration of simplicial sets f : X → S is a covering map if, for every
pair of integers 0 ≤ i ≤ n with n ≥ 1, every lifting problem

Λni //
� _

��

X

f

��
∆n�� // S

admits a unique solution (Definition 3.1.4.1). In this section, we study counterparts of this
definition in the setting of left and right fibrations.

Definition 4.2.3.1.01QH Let U : E → C be a functor between categories. We say that U is a left
covering functor if it satisfies the following condition:

• For every object X ∈ E and every morphism f : U(X)→ Y in the category C, there is
a unique pair (Y, f), where Y is an object of E with U(Y ) = Y and f : X → Y is a
morphism in E with U(f) = f .

We say that U is a right covering functor if it satisfies the following dual condition:

• For every object Y ∈ E and every morphism f : X → U(Y ) in the category C, there is
a unique pair (X, f), where X is an object of E satisfying U(X) = X and f : X → Y

is a morphism in E satisfying U(f) = f .

Remark 4.2.3.2.022L Let U : E → C be a functor between categories. Then U is a right
covering functor and only if the opposite functor Uop : Eop → Cop is a left covering functor.

Example 4.2.3.3.01QL We define a category Set∗ as follows:

• The objects of Set∗ are pairs (X,x), where X is a set and x ∈ X is an element.

• A morphism from (X,x) to (Y, y) in Set∗ is a function f : X → Y satisfying f(x) = y.

We will refer to Set∗ as the category of pointed sets. The construction (X,x) 7→ X determines
a left covering functor Set∗ → Set (for a more general assertion, see Remark 4.3.1.6).
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Example 4.2.3.4. 01QMLet [0] denote the category having a single object and a single morphism.
For any category E , there is a unique functor U : E → [0]. The following conditions are
equivalent:

• The functor U is a left covering functor.

• The functor U is a right covering functor.

• The category E is discrete: that is, every morphism in E is an identity morphism.

Remark 4.2.3.5. 022MLet U : E → C be a functor between categories. The following conditions
are equivalent:

• The functor U is an isomorphism of categories.

• The functor U is a left covering functor which induces a bijection Ob(E)→ Ob(C).

• The functor U is a right covering functor which induces a bijection Ob(E)→ Ob(C).

Remark 4.2.3.6. 01QNSuppose we are given a pullback diagram of categories

E ′ //

U ′

��

E

U

��
C′ // C .

If U is a left covering functor, then U ′ is a left covering functor. If U is a right covering
functor, then U ′ is a right covering functor.

Proposition 4.2.3.7. 01RSLet U : E → C be a functor between categories. Then:

• The functor U is a right covering map (in the sense of Definition 4.2.3.1) if and only
if it is a fibration in groupoids (Definition 4.2.2.1) and, for every object C ∈ C, the
fiber EC = {C} ×C E is a discrete category.

• The functor U is left covering map (in the sense of Definition 4.2.3.1) if and only if it
is an opfibration in groupoids (Variant 4.2.2.4) and, for every object C ∈ C, the fiber
EC = {C} ×C E is a discrete category.

Proof. We will prove the first assertion; the second follows by a similar argument. Assume
first that U is a right covering map. Then, for each object C ∈ C, the projection map
EC → {C} is also a right covering map (Remark 4.2.3.6), so that EC is a discrete category by
virtue of Example 4.2.3.4. We wish to show that U is a fibration in groupoids. Suppose that
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we are given an object Y of the category E and a morphism f : X → U(Y ) in C. By virtue
of our assumption that U is a right covering map, we can lift f uniquely to a morphism
f : X → Y in the category E . Suppose that we are given a diagram

X

f

��
W

h // Y

in the category E and a morphism g : U(W )→ U(Y ) in C satisfying U(h) = U(f) ◦ g; we
wish to show that there is a unique morphism g : W → X in E satisfying U(g) = g and
h = f ◦ g. Invoking our assumption that U is a right covering map, we deduce that there is a
unique pair (W ′, g′), where W ′ is an object of E satisfying U(X ′) = U(X) and g′ : W ′ → X

is a morphism satisfying U(g′) = g. To complete the proof, it will suffice to show that
W ′ = W and f ◦ g′ = h. This follows from the assumption that U is a right covering map,
U(W ′) = U(W ) and U(f ◦ g′) = U(f) ◦ U(g′) = U(f) ◦ g = U(h).

We now prove the converse. Assume that U is a fibration in groupoids and that, for
every object C ∈ C, the fiber EC = {C}×C E is a discrete category. We wish to show that U
is a right covering map. Fix an object Y ∈ E and a morphism f : X → U(Y ) in the category
C. Since U is a fibration in groupoids, we can choose an object X ∈ E satisfying U(X) = X

and a morphism f : X → Y satisfying U(f) = f . To complete the proof, it will suffice to
show that if X ′ is any object of E satisfying U(X ′) = X and f ′ : X ′ → Y is any morphism
satisfying U(f ′) = f , then X ′ = X and f ′ = f . Since U is a fibration in groupoids, we see
that there is a unique commutative diagram

X

f

��
X ′

e

>>

f ′ // Y

in the category E satisfying U(e) = idX . In this case, our assumption that the fiber EX is a
discrete category guarantees that e is an identity morphism. It follows that X = X ′ and
f ′ = f ◦ e = f ◦ idX = f , as desired.

We now reformulate Definition 4.2.3.1 in the language of simplicial sets.

Definition 4.2.3.8.022N Let f : X → S be a morphism of simplicial sets. We say that f is a

https://kerodon.net/tag/022N
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left covering map if, for every pair of integers 0 ≤ i < n, every lifting problem

Λni //
� _

��

X

f

��
∆n //

>>

S

admits a unique solution. We say that f is a right covering map if the analogous condition
holds for 0 < i ≤ n.

Remark 4.2.3.9. 022PLet f : X → S be a morphism of simplicial sets. Then f is a left covering
map and only if the opposite morphism fop : Xop → Sop is a right covering map.

Remark 4.2.3.10. 022QLet f : X → S be a morphism of simplicial sets. Then f is a covering
map (in the sense of Definition 3.1.4.1) if and only if f is both a left covering map and a
right covering map (in the sense of Definition 4.2.3.8).

Remark 4.2.3.11. 022RLet f : X → S be a morphism of simplicial sets, and let δ : X → X×SX
be the relative diagonal of f . Then f is a left covering map (Definition 4.2.3.8) if and only
if both f and δ are left fibrations. Similarly, f is a right covering map if and only if both f
and δ are right fibrations. In particular, every left covering map is a left fibration, and every
right covering map is a right fibration.

Example 4.2.3.12. 022SLet f : X → S be a monomorphism of simplicial sets. Then f is a left
covering map if and only if it is a left fibration, and a right covering map if and only if it is
a right fibration.

Remark 4.2.3.13. 022TLet f : X → S be a morphism of simplicial sets. If f is either a left
covering map or a right covering map, then it is an inner covering map (see Definition
4.1.5.1).

Remark 4.2.3.14. 022ULet f : X → Y and g : Y → Z be morphisms of simplicial sets, and
suppose that g is a left covering map. Then f is a left covering map if and only if g ◦ f is a
left covering map. Similarly, if g is a right covering map, then f is a right covering map
if and only if g ◦ f is a right covering map. In particular, the collections of left and right
covering maps are closed under composition.

Remark 4.2.3.15. 022VSuppose we are given a pullback diagram of simplicial sets

X ′ //

f ′

��

X

f

��
S′ // S.
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If f is a left covering map, then f ′ is a left covering map. If f is a right covering map then
f ′ is a right covering map.

Conversely, suppose that f : X → S is a morphism of simplicial sets having the property
that, for every n-simplex ∆n → S, the projection map ∆n×SX → ∆n is a left covering map.
Then f is left covering map. If every projection map ∆n ×S X → ∆n is a right covering
map, then f is a right covering map.

Definition 4.2.3.1 can be regarded as a special case of Definition 4.2.3.8:

Proposition 4.2.3.16.022W Let C be a category and let f : X → N•(C) be a morphism of
simplicial sets. Then:

• The morphism f is a left covering map (in the sense of Definition 4.2.3.8) if and only
if X is isomorphic to the nerve of a category E and the induced map F : E → C is a
left covering functor (in the sense of Definition 4.2.3.1).

• The morphism f is a right covering map if and only if X is isomorphic to the nerve of
a category E and the induced map F : E → C is a right covering functor.

Proof. We will prove the first assertion; the proof of the second is similar. Assume first
that f is a left covering map. Then f is also an inner covering map (Remark 4.2.3.13). By
virtue of Proposition 4.1.5.10, we can assume without loss of generality that X = N•(E) is
the nerve of a category E , so that f : X → N•(C) can be realized as the nerve of a functor
F : E → C (Proposition 1.3.3.1). We wish to show that F is a left covering functor: that
is, for every object Y ∈ E and every morphism u : F (Y ) → Z in C, there exists a unique
morphism u : Y → Z of E satisfying F (Z) = Z and F (u) = u. In other words, we wish to
show that the lifting problem

{0}� _

��

Y // N•(E)

N•(F )

��
∆1

u

==

u // N•(C)

has a unique solution, which again follows from our assumption that f is a left covering
map.

We now prove the converse. Assume that f arises as the nerve of a left covering functor

https://kerodon.net/tag/022W
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F : E → C. We wish to show that, for every pair of integers 0 ≤ i < n, every lifting problem

Λni
σ0 //

� _

��

N•(E)

N•(F )

��
∆n

σ

==

σ // N•(C)

has a unique solution. Note that the functor F is an opfibration in groupoids (Proposition
4.2.3.7), so that N•(F ) is a left fibration of simplicial sets (Proposition 4.2.2.9). This proves
the existence of the lift σ. To prove uniqueness, suppose that σ and σ′ are n-simplices of
N•(E) satisfying σ|Λn

i
= σ′|Λn

i
and f(σ) = f(σ′); we wish to show that σ = σ′. Fix integers

0 ≤ j < k ≤ n, so that σ carries the edge N•({j < k}) ⊆ ∆n to a morphism u : Y → Z of
E , and σ′ carries N•({j < k}) ⊆ ∆n to a morphism u′ : Y ′ → Z ′ of E . Since the vertex j

belongs to Λni ⊆ ∆n, we must have Y = Y ′. The equality f(σ) = f(σ′) guarantees that F (u)
and F (u′) are the same morphism of C. Applying our assumption that F is a left covering
functor, we conclude that Z = Z ′ and u = u′.

Remark 4.2.3.17. 022XLet f : X → S be a morphism of simplicial sets which is either a left
covering map or a right covering map. For each vertex s ∈ S, the fiber Xs = {s} ×S X is
a discrete simplicial set. To prove this, we can use Remark 4.2.3.15 to reduce to the case
where S = {s} is a 0-simplex, in which case it follows by combining Proposition 4.2.3.16
with Example 4.2.3.4.

Corollary 4.2.3.18. 022YLet f : X → S be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is a left covering map of simplicial sets.

(2) For every category C and every morphism of simplicial sets N•(C) → S, the pullback
N•(C)×S X is isomorphic to the nerve of a category E, and f induces a left covering
functor F : E → C.

(3) For every n-simplex ∆n → S, the fiber product ∆n ×S X is isomorphic to the nerve of a
category E and the induced map E → [n] is a left covering functor.

Proof. Combine Proposition 4.2.3.16 with Remark 4.2.3.15.

Proposition 4.2.3.19. 022ZLet f : X → S be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is an isomorphism.
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(2) The morphism f is a left covering map and induces a bijection from the set of vertices
of X to the set of vertices of S.

(3) The morphism f is a right covering map and induces a bijection from the set of vertices
of X to the set of vertices of S.

Proof. The implications (1)⇒ (2) and (1)⇒ (3) are immediate. We will show that (2)⇒ (1);
the proof that (3)⇒ (1) is similar. Assume that f is a left covering map which is bijective
at the level of vertices; we wish to show that every n-simplex σ : ∆n → S can be lifted
uniquely to an n-simplex of X. Replacing f by the projection map ∆n ×S X → ∆n, we
may assume that S = ∆n is a standard simplex (Remark 4.2.3.15). In this case, Proposition
4.2.3.16 guarantees that we can identify f with the nerve of a left covering map of categories
F : E → [n], so the desired result follows from Remark 4.2.3.5.

Corollary 4.2.3.20.0230 Let f : X → S be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f is a covering map.

(2) The morphism f is a left covering map and a Kan fibration.

(3) The morphism f is a right covering map and a Kan fibration.

Proof. The implication (1)⇒ (2) follows from Remarks 4.2.3.10 and 3.1.4.3. We will prove
that (2)⇒ (1) (the equivalence of (1) and (3) follows by a similar argument). Assume that
f is a left covering map and a Kan fibration; we wish to show that f is a covering map. By
virtue of Remark 3.1.4.3, it will suffice to show that the relative diagonal δ : X → X ×S X is
a Kan fibration. Note that δ is a left fibration (Remark 4.2.3.11) and therefore a left covering
map (Example 4.2.3.12). Let D ⊆ X ×S X denote the smallest summand which contains
the image of δ. We will complete the proof by showing that δ induces an isomorphism
from X to D (see Corollary 3.1.4.14). By virtue of Proposition 4.2.3.19, it will suffice to
show that the map δ : X → D is bijective on vertices. Equivalently, we must show that
if (e, e′) : (x, x′)→ (y, y′) is any edge of the simplicial X ×S X, then x = x′ if and only if
y = y′. If x = x′, then our assumption that f is a covering map immediately guarantees
that e = e′, so that y = y′. For the converse, suppose that y = y′, and set s = f(x) = f(x′).
Invoking our assumption that f is a Kan fibration, we conclude that there exists a 2-simplex
σ : ∆2 → X whose boundary is indicated in the diagram

x′

e′

��
x

u

??

e // y,

https://kerodon.net/tag/0230
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where f(u) = ids. Since f is a left covering map, the fiber Xs = {s}×SX is discrete (Remark
4.2.3.17). It follows that u is a degenerate 1-simplex of X, so that x = x′ as desired.

4.2.4 Left Anodyne and Right Anodyne Morphisms

014STo study left and right fibrations between simplicial sets, it is useful to consider the
following counterpart of Definitions 3.1.2.1 and 1.5.6.4:

Definition 4.2.4.1 (Left Anodyne Morphisms). 014TLet TL be the smallest collection of
morphisms in the category Set∆ with the following properties:

• For every pair of integers 0 ≤ i < n, the horn inclusion Λni ↪→ ∆n belongs to TL.

• The collection TL is weakly saturated (Definition 1.5.4.12). That is, TL is closed under
pushouts, retracts, and transfinite composition.

We say that a morphism of simplicial sets f : A→ B is left anodyne if it belongs to TL.

Variant 4.2.4.2 (Right Anodyne Morphisms). 014ULet TR be the smallest collection of mor-
phisms in the category Set∆ with the following properties:

• For every pair of integers 0 < i ≤ n, the horn inclusion Λni ↪→ ∆n belongs to TR.

• The collection TR is weakly saturated (Definition 1.5.4.12). That is, TR is closed under
pushouts, retracts, and transfinite composition.

We say that a morphism of simplicial sets f : A→ B is right anodyne if it belongs to TR.

Remark 4.2.4.3. 014VLet f : A→ B be a morphism of simplicial sets. Then f is left anodyne
if and only if the opposite morphism fop : Aop → Bop is right anodyne.

Remark 4.2.4.4. 014WLet f : A→ B be a morphism of simplicial sets. If f is either left or right
anodyne, then it is anodyne (Definition 3.1.2.1). In particular, any left or right anodyne
morphism of simplicial sets is a monomorphism (Remark 3.1.2.3) and a weak homotopy
equivalence (Proposition 3.1.6.14). Conversely, if f is inner anodyne (Definition 1.5.6.4),
then it is both left anodyne and right anodyne. That is, we have inclusions

{Inner anodyne morphisms}

∩

⊂ {Left anodyne morphisms}

∩

{Right anodyne morphisms} ⊂ {Anodyne morphisms}.

All of these inclusions are strict (see Example 4.2.4.7).

Proposition 4.2.4.5. 014XLet q : X → S be a morphism of simplicial sets. Then:
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(1) The morphism q is a left fibration if and only if, for every square diagram of simplicial
sets

A

i

��

// X

q

��
B //

??

S

where i is left anodyne, there exists a dotted arrow rendering the diagram commutative.

(2) The morphism q is a right fibration if and only if, for every square diagram of simplicial
sets

A

i

��

// X

q

��
B //

??

S

where i is right anodyne, there exists a dotted arrow rendering the diagram commutative.

Proof. The “only if” directions are immediate from the definitions, and the “if” directions
follow from Proposition 1.5.4.13.

Corollary 4.2.4.6.0231 Let q : X → S be a morphism of simplicial sets. Then:

(1) The morphism q is a left covering map if and only if, for every square diagram of
simplicial sets

A

i

��

// X

q

��
B //

??

S

where i is left anodyne, there exists a unique dotted arrow rendering the diagram
commutative.

(2) The morphism q is a right covering map if and only if, for every square diagram of
simplicial sets

A

i

��

// X

q

��
B //

??

S

https://kerodon.net/tag/0231
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where i is right anodyne, there exists unique a dotted arrow rendering the diagram
commutative.

Proof. Combine Proposition 4.2.4.5 with Remark 4.2.3.11.

Example 4.2.4.7. 014YThe inclusion map i0 : {0} ↪→ ∆1 is left anodyne (and therefore anodyne).
However, it is not right anodyne (and therefore not inner anodyne). This follows from
Proposition 4.2.4.5, since the lifting problem

{0} id //

i0

��

{0}

i0

��
∆1 id //

>>

∆1

does not admit a solution (note that the inclusion map i0 : {0} ↪→ ∆1 is a right fibration;
see Warning 4.2.1.6).

Proposition 4.2.4.8. 014ZLet f : X → Y be a morphism of simplicial sets. Then f can be

factored as a composition X
f ′−→ Q(f) f ′′−→ Y, where f ′′ is a left fibration and f ′ is left

anodyne. Moreover, the simplicial set Q(f) (and the morphisms f ′ and f ′′) can be chosen
to depend functorially on f , in such a way that the functor

Fun([1], Set∆)→ Set∆ (f : X → Y)→ Q(f)

commutes with filtered colimits.

Proof. We proceed as in the proof of Proposition 3.1.7.1. We construct a sequence of
simplicial sets {X(m)}m≥0 and morphisms f(m) : X(m) → Y by recursion. Set X(0) = X

and f(0) = f . Assuming that f(m) : X(m) → Y has been defined, let S(m) denote the set
of all commutative diagrams σ :

Λni //

��

X(m)

f(m)

��
∆n uσ // Y,

where 0 ≤ i < n and the left vertical map is the inclusion. For every such commutative
diagram σ, let Cσ = Λni denote the upper left hand corner of the diagram σ, and Dσ = ∆n

https://kerodon.net/tag/014Y
https://kerodon.net/tag/014Z


4.2. LEFT AND RIGHT FIBRATIONS 631

the lower left hand corner. Form a pushout diagram∐
σ∈S(m)Cσ //

��

X(m)

��∐
σ∈S(m)Dσ

// X(m+ 1)

and let f(m+ 1) : X(m+ 1) → Y be the unique map whose restriction to X(m) is equal to
f(m) and whose restriction to each Dσ is equal to uσ. By construction, we have a direct
system of left anodyne morphisms

X = X(0) ↪→ X(1) ↪→ X(2) ↪→ · · ·

Set Q(f) = lim−→m
X(m). Then the natural map f ′ : X → Q(f) is left anodyne (since the

collection of left anodyne maps is closed under transfinite composition), and the system
of morphisms {f(m)}m≥0 can be amalgamated to a single map f ′′ : Q(f) → Y satisfying
f = f ′′ ◦ f ′. It is clear from the definition that the construction f 7→ Q(f) is functorial and
commutes with filtered colimits. To complete the proof, it will suffice to show that f ′′ is a
left fibration: that is, that every lifting problem σ :

Λni
v //

��

Q(f)

f ′′

��
∆n //

==

Y

admits a solution (provided that 0 ≤ i < n). Let us abuse notation by identifying each X(m)
with its image in Q(f). Since Λni is a finite simplicial set, its image under v is contained in
X(m) for some m≫ 0. In this case, we can identify σ with an element of the set S(m), so
that the lifting problem

Λni
v //

��

X(m+ 1)

f(m+1)

��
∆n //

;;

Y

admits a solution by construction.

Variant 4.2.4.9.0150 Let f : X → Y be a morphism of simplicial sets. Then f can be factored
as a composition X

f ′−→ Q(f) f ′′−→ Y, where f ′′ is a right fibration and f ′ is right anodyne.

https://kerodon.net/tag/0150
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Moreover, the simplicial set Q(f) (and the morphisms f ′ and f ′′) can be chosen to depend
functorially on f , in such a way that the functor

Fun([1],Set∆)→ Set∆ (f : X → Y)→ Q(f)

commutes with filtered colimits.
Using Proposition 4.2.4.8 (and Variant 4.2.4.9), we obtain the following converse of

Proposition 4.2.4.5:
Corollary 4.2.4.10. 0151Let i : A→ B be a morphism of simplicial sets. Then:

(1) The morphism i is left anodyne if and only if, for every square diagram of simplicial sets

A

i

��

// X

f

��
B //

??

S

where f is left fibration, there exists a dotted arrow rendering the diagram commutative.

(2) The morphism i is right anodyne if and only if, for every square diagram of simplicial
sets

A

i

��

// X

f

��
B //

??

S

where f is right fibration, there exists a dotted arrow rendering the diagram commuta-
tive.

Proof. We will prove (1); the proof of (2) is similar. Using Proposition 4.2.4.8, we can factor
i as a composition A

i′−→ Q
f−→ B, where i′ is left anodyne and f is a left fibration. If the

lifting problem
A

i

��

i′ // Q

f

��
B

id //

r

??

B

admits a solution, then the map r exhibits i as a retract of i′ (in the arrow category
Fun([1], Set∆)). Since the collection of anodyne morphisms is closed under retracts, it follows
that i is anodyne. This proves the “if” direction of (1); the reverse implication follows from
Proposition 4.2.4.5.

https://kerodon.net/tag/0151
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4.2.5 Exponentiation for Left and Right Fibrations

0152 We now establish a stability property for left and right fibrations under exponentiation.

Proposition 4.2.5.1.00TP Let f : X → S and i : A ↪→ B be morphisms of simplicial sets, where
i is a monomorphism, and let

ρ : Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

be the induced map. If f is a left fibration, then ρ is a left fibration. If f is a right fibration,
then ρ is a right fibration.

Corollary 4.2.5.2.00TQ Let f : X → S be a morphism of simplicial sets, let B be an arbitrary
simplicial set, and let ρ : Fun(B,X)→ Fun(B,S) be the morphism induced by composition
with f . If f is a left fibration, then ρ is a left fibration. If f is a right fibration, then ρ is a
right fibration.

Proposition 4.2.5.1 is essentially equivalent to the following stability property of left and
right anodyne morphisms:

Proposition 4.2.5.3.0153 Let f : A ↪→ B and f ′ : A′ ↪→ B′ be monomorphisms of simplicial
sets. If f is left anodyne, then the induced map

θ : (A×B′)
∐
A×A′

(B ×A′) ↪→ B ×B′

is left anodyne. If f is right anodyne, then θ is right anodyne.

Proof. We will prove the second assertion (the first follows by a similar argument). We
proceed as in the proof of Proposition 3.1.2.9. Let us first regard the monomorphism
f ′ : A′ ↪→ B′ as fixed, and let T be the collection of all maps f : A → B for which the
induced map

θf,f ′ : (A ×B′)
∐
A×A′

(B ×A′) ↪→ B ×B′

is right anodyne. We wish to show that every right anodyne morphism belongs to T . Since T
is weakly saturated, it will suffice to show that every horn inclusion f : Λni ↪→ ∆n belongs to
T for 0 < i ≤ n. In this case, Lemma 3.1.2.10 guarantees that f is a retract of the morphism
g : (∆1×Λni ) ∐

{1}×Λn
i
({1}×∆n) ↪→ ∆1×∆n. It will therefore suffice to show that g belongs

to T . Replacing f ′ by the monomorphism (Λni ×B′)
∐

Λn
i ×A′

(∆n ×A′) ↪→ ∆n ×B′, we are
reduced to showing that the inclusion {1} ↪→ ∆1 belongs to T .

Let T ′ denote the collection of all morphisms of simplicial sets f ′′ : A′′ → B′′ for
which the map ({1} × B′′) ∐

{1}×A′′(∆1 × A′′) → ∆1 × B′′ is right anodyne. We will
complete the proof by showing that T ′ contains all monomorphisms of simplicial sets. By
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virtue of Proposition 1.5.5.14, it will suffice to show that T ′′ contains the inclusion map
∂∆m ↪→ ∆m, for each m > 0. In other words, we are reduced to showing that the inclusion
({1}×∆m) ∐

{1}×∂∆m(∆1× ∂∆m) ↪→ ∆1×∆m is right anodyne, which follows from Lemma
3.1.2.12.

Proof of Proposition 4.2.5.1. Let f : X → S be a left fibration of simplicial sets and let
i : A ↪→ B be a monomorphism of simplicial sets. We wish to show that the restriction map

ρ : Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is also a left fibration (the dual assertion about right fibrations follows by passing to opposite
simplicial sets). By virtue of Proposition 4.2.4.5, this is equivalent to the assertion that
every lifting problem

A′

i′

��

// Fun(B,X)
ρ

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a solution, provided that i′ is left anodyne. Equivalently, we must show that every
lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

f

��
B ×B′ //

33

S

admits a solution. This follows from Proposition 4.2.4.5, since the left vertical map is left
anodyne (Proposition 4.2.5.3) and the right vertical map is a left fibration.

Proposition 4.2.5.3 has another application, which will be useful in the next section:

Proposition 4.2.5.4. 0154Let f : X → S and i : A → B be morphisms of simplicial sets, and
let

ρ : Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

be the induced map. If f is a left fibration and i is left anodyne, then ρ is a trivial Kan
fibration. If f is a right fibration and i is right anodyne, then ρ is a trivial Kan fibration.

Proof. We proceed as in the proof of Proposition 4.2.5.1. Assume that f is a left fibration
and that i is left anodyne; we will show that ρ is a trivial Kan fibration (the dual assertion
for right fibrations follows by a similar argument). Fix a monomorphism of simplicial sets
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i′ : A′ ↪→ B′; we wish to show that every lifting problem

A′

i′

��

// Fun(B,X)
ρ

��
B′

33

// Fun(B,S)×Fun(A,S) Fun(A,X)

admits a solution. Equivalently, we must show that every lifting problem

(A ×B′) ∐
A×A′(B ×A′) //

��

X

f

��
B ×B′ //

33

S

admits a solution. This follows from Proposition 4.2.4.5, since the left vertical map is left
anodyne (Proposition 4.2.5.3) and the right vertical map is a left fibration.

Exercise 4.2.5.5.032V Let f : X → S be a left covering morphism of simplicial sets. Show that,
for any left anodyne morphism i : A ↪→ B, the induced map

ρ : Fun(B,X)→ Fun(B,S)×Fun(A,S) Fun(A,X)

is an isomorphism of simplicial sets.

4.2.6 The Homotopy Extension Lifting Property

00T8 We now show that left and right fibrations can be characterized by homotopy lifting
properties.

Proposition 4.2.6.1.00TE Let f : X → S be a morphism of simplicial sets. Then:

• The morphism f is a left fibration if and only if the evaluation map

ev0 : Fun(∆1, X)→ Fun({0}, X)×Fun({0},S) Fun(∆1, S)

is a trivial Kan fibration.

• The morphism f is a right fibration if and only if the evaluation map

ev1 : Fun(∆1, X)→ Fun({1}, X)×Fun({1},S) Fun(∆1, S)

is a trivial Kan fibration.
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Proof. We prove the second assertion; the first follows by passing to opposite simplicial sets.
If f is a right fibration, then the evaluation map ev1 is a trivial Kan fibration by virtue of
Proposition 4.2.5.4 (since the inclusion {1} ↪→ ∆1 is right anodyne). Conversely, suppose
that ev1 is a trivial Kan fibration. Then every lifting problem

(∆1 × Λni ) ∐
{1}×Λn

i
({1} ×∆n) //

��

X

f

��
∆1 ×∆n //

33

S

admits a solution. In other words, f is weakly right orthogonal to the inclusion map

u : (∆1 × Λni )
∐

{1}×Λn
i

({1} ×∆n) ↪→ ∆1 ×∆n.

If 0 < i ≤ n, then the horn inclusion u0 : Λn
i ↪→ ∆n is a retract of u (Lemma 3.1.2.10). It

follows that f is also weakly left orthogonal to u0 (Proposition 1.5.4.9): that is, every lifting
problem

Λni
σ0 //

��

X

f

��
∆n

σ

??

σ // S

admits a solution.

Corollary 4.2.6.2. 0155Let f : X → S be a morphism of simplicial sets. Then f is a Kan
fibration if and only if both of the evaluation maps

ev0 : Fun(∆1, X)→ Fun({0}, X)×Fun({0},S) Fun(∆1, S)

ev1 : Fun(∆1, X)→ Fun({1}, X)×Fun({1},S) Fun(∆1, S)

are trivial Kan fibrations.

Proof. Combine Proposition 4.2.6.1 with Example 4.2.1.5.

Remark 4.2.6.3 (The Homotopy Extension Lifting Property). 00TBLet f : X → S be a
morphism of simplicial sets. Unwinding the definitions, we see that the following conditions
are equivalent:

• The morphism f is a left fibration.
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https://kerodon.net/tag/00TB


4.2. LEFT AND RIGHT FIBRATIONS 637

• For every monomorphism of simplicial sets i : A ↪→ B, every lifting problem

A

i

��

// Fun(∆1, X)

ev0
��

B //

33

Fun({0}, X)×Fun({0},S) Fun(∆1, S)

admits a solution (indicated by the dotted arrow in the diagram).

• For every monomorphism of simplicial sets i : A ↪→ B, every lifting problem

(∆1 ×A) ∐
{0}×A({0} ×B) //

��

X

f

��
∆1 ×B h //

h

33

S

admits a solution (indicated by the dotted arrow in the diagram).

• Let u : B → X be a map of simplicial sets and let h : ∆1 × B → S be a map
satisfying h|{0}×B = f ◦ u: that is, h is a homotopy from f ◦ u to another map
v = h|{1}×B . Then we can choose a map of simplicial sets h : ∆1 ×B → X satisfying
f ◦ h = h and h|{0}×B = u: in other words, h can be lifted to a homotopy h from u to
another map v = h|{1}×B . Moreover, given any simplicial subset A ⊆ B and any map
h0 : ∆1 ×A → X satisfying f ◦ h0 = h|∆1×A and h0|{0}×A = u|A , we can arrange that
h is an extension of h0.

In the special case where B = ∆0 and A = ∅, each of these assertions reduces to the left
path lifting property of f .

Exercise 4.2.6.4.0232 Let f : X → S be a morphism of simplicial sets. Show that:

• The morphism f is a left covering map if and only if the evaluation map

ev0 : Fun(∆1, X)→ Fun({0}, X)×Fun({0},S) Fun(∆1, S)

is an isomorphism of simplicial sets

• The morphism f is a right covering map if and only if the evaluation map

ev1 : Fun(∆1, X)→ Fun({1}, X)×Fun({1},S) Fun(∆1, S)

is an isomorphism of simplicial sets.

• The morphism f is a covering map if and only if both ev0 and ev1 are isomorphisms.
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638 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

4.3 The Slice and Join Constructions

015MLet F : K → C be a functor between categories. A cone over F is an object C ∈ C
together with a collection of morphisms {αK : C → F (K)}K∈K with the following property:
for every morphism β : K → K ′ of the category K, the diagram

C

αK

}}

αK′

!!
F (K) F (β) // F (K ′)

commutes. The collection of cones (C, {αK}K∈K) can be organized into a category, which
we will denote by C/F and refer to as the slice category of C over F (Construction 4.3.1.8).
This construction plays an important role in category theory: for example, a limit of the
diagram F is (by definition) a final object of the category C/F .

Our goal in this section is to generalize the construction (F : K → C) 7→ C/F to the setting
of ∞-categories. Our first step is to show that the slice category C/F can be characterized
by a universal property. In §4.3.2, we associate to every pair of categories D and K a new
category D ⋆K, which we refer to as the join of D and K (Definition 4.3.2.1). This is a new
category which contains D and K as full subcategories, having a unique morphism from
each object of D to each object of K (and no morphisms in the opposite direction). We then
show the datum of a functor D → C/F is equivalent to the datum of a functor F : D ⋆K → C
satisfying F |K = F (Proposition 4.3.2.10).

In §4.3.3, we extend the join construction to the setting of ∞-categories. To every pair
of simplicial sets X and Y , we associate a new simplicial set X ⋆ Y (Construction 4.3.3.13),
which contains X and Y as (disjoint) simplicial subsets. This construction has the following
features:

• For every pair of categories C and D, there is a canonical isomorphism of simplicial sets
N•(C) ⋆N•(D) ≃ N•(C ⋆D) (Example 4.3.3.23). Consequently, the join operation on
simplicial sets can be regarded as a generalization of the join operation on categories.

• For every pair of ∞-categories C and D, the join C ⋆D is an ∞-category (Corollary
4.3.3.25).

• For every pair of simplicial sets X and Y , the join X ⋆Y is equipped with a continuous
bijection

|X ⋆ Y | ≃ |X|
∐

(|X|×{0}×|Y |)
(|X| × [0, 1]× |Y |)

∐
(|X|×{1}×|Y |)

|Y |,
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which is a homeomorphism if either X or Y is finite (Proposition 4.3.4.11 and Corollary
4.3.4.12).

Let f : K → X be any morphism of simplicial sets. In §4.3.5, we introduce a new
simplicial set X/f , which we will refer to as the slice of X over f (Construction 4.3.5.1). The
simplicial set X/f is characterized (up to isomorphism) by the following universal mapping
property: for any simplicial set Y , the datum of a morphism of simplicial sets Y → X/f is
equivalent to the datum of a morphism of simplicial sets f : Y ⋆ K → X satisfying f |K = f

(Proposition 4.3.5.13). Moreover, we will show that it has the following additional properties:

• If F : K → C is a functor between categories and N•(F ) : N•(K) → N•(C) is the
associated map of simplicial sets, then there is a canonical isomorphism of simplicial
sets N•(C)/N•(F ) ≃ N•(C/F ) (Example 4.3.5.7). Consequently, the slice operation on
simplicial sets can be regarded as a generalization of the slice operation on categories.

• If C is an∞-category and f : K → C is a morphism of simplicial sets, then the simplicial
set C/f is also an ∞-category. Moreover, the evident forgetful functor C/f → C is a
right fibration of ∞-categories (Proposition 4.3.6.1).

• If q : X → S is a left fibration of simplicial sets and f : K → X is any morphism
of simplicial sets, then the natural map X/f → X ×S S/(q◦f) is a Kan fibration of
simplicial sets (Corollary 4.3.7.3).

• If q : X → S is a right fibration of simplicial sets and x ∈ X is a vertex (which we
identify with a map of simplicial sets ∆0 → X) having image s ∈ S, then the induced
map X/x → S/s is a trivial Kan fibration of simplicial sets (Corollary 4.3.7.13).

4.3.1 Slices of Categories

015N We begin by discussing the slice construction in a special case.

Construction 4.3.1.1 (Slice Categories over Objects).015P Let C be a category containing an
object S. We define a category C/S as follows:

• The objects of C/S are pairs (X, f), where X is an object of C and f : X → S is a
morphism in C.

• If (X, f) and (Y, g) are objects of C/S , then a morphism from (X, f) to (Y, g) in the
category C/S is a morphism u : X → Y in the category C satisfying f = g ◦ u. In other
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words, morphisms from (X, f) to (Y, g) are given by commutative diagrams

X
u //

f

��

Y

g

��
S

in the category C.

• Composition of morphisms in the category C/S is given by composition of morphisms
in the category C.

We will refer to C/S as the slice category of C over S.

Example 4.3.1.2. 015QLet Set denote the category of sets, and let S ∈ Set be a set. Then the
construction

(f : X → S) 7→ {Xs = f−1{s}}s∈S
induces an equivalence of categories Set/S →

∏
s∈S Set.

Remark 4.3.1.3. 015RLet C be a category which admits finite limits and let ∗ denote a final
object of C. For any object S ∈ C, one can adapt the construction of Example 4.3.1.2 to
define a functor

F : C/S →
∏

s:∗→S
C F (X → S) = {∗ ×S X}s:∗→S .

Motivated by this observation, it is often useful to think of objects of the slice category C/S
as “families” of objects of C which are parametrized by S. Beware that the functor F is
usually not an equivalence of categories.

Variant 4.3.1.4 (Coslice Categories under Objects). 015SLet C be a category containing an
object S. We define a category CS/ as follows:

• The objects of CS/ are pairs (X, f), where X is an object of C and f : S → X is a
morphism in C.

• If (X, f) and (Y, g) are objects of CS/, then a morphism from (X, f) to (Y, g) in the
category CS/ is a morphism u : X → Y in the category C satisfying g = f ◦ u. In other
words, morphisms from (X, f) to (Y, g) are given by commutative diagrams

S

f

��

g

��
X

u // Y
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in the category C.

• Composition of morphisms in the category CS/ is given by composition of morphisms
in the category C.

We will refer to CS/ as the coslice category of C under S.

Remark 4.3.1.5.015T Variant 4.3.1.4 is formally dual to Construction 4.3.1.1. More precisely,
if S is an object of a category C, then we have a canonical isomorphism of categories

(C/S)op ≃ (Cop)S/,

where we view S also as an object of the opposite category Cop.

Remark 4.3.1.6.0233 Let C be a category and let S be an object of C. Then the forgetful
functor C/S → C is a right covering map, in the sense of Definition 4.2.3.1. Similarly, the
forgetful functor CS/ → C is a left covering map.

Remark 4.3.1.7 (Slice Categories as Oriented Fiber Products).015U Let C be a category and
let Fun([1], C) denote the arrow category of C, so that the elements 0, 1 ∈ [1] determine
evaluation functors

ev0 : Fun([1], C)→ Fun({0}, C) ≃ C ev1 : Fun([1], C)→ Fun({1}, C) ≃ C .

For each object S ∈ C, the slice category C/S can be identified with the fiber of the evaluation
functor ev1 over S, and the coslice category CS/ can be identified with the fiber of the
evaluation functor ev0 over S. That is, we have pullback diagrams

CS/ //

��

Fun([1], C)

ev0

��

C/S ////

��

Fun([1], C)

��
{S} // C {S} // C .

In other words, we can identify C/S with the oriented fiber product C ×̃C{S} of Notation
2.1.4.19 (here we identify the object S with the constant functor [0]→ C taking the value
S), and CS/ with the oriented fiber product {S} ×̃C C.

For many applications it is useful to consider a generalization of Construction 4.3.1.1,
which associates a slice category C/F to an arbitrary diagram F : K → C (instead of a single
object S ∈ C).
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Construction 4.3.1.8 (Slice Categories over Diagrams). 015VLet K and C be categories. For
each object C ∈ C, we let C : K → C denote the associated constant functor (carrying each
object of K to the object C and each morphism of K to the identity morphism idC). The
construction C 7→ C determines a functor C → Fun(K, C).

For every functor F : K → C, we let C/F denote the fiber product C ×Fun(K,C) Fun(K, C)/F ,
where Fun(K, C)/F is the slice category of Construction 4.3.1.1. Similarly, we let CF/ denote
the fiber product C ×Fun(K,C) Fun(K, C)F/, where Fun(K, C)F/ denotes the coslice category
of Variant 4.3.1.4. We will refer to C/F as the slice category of C over F , and to CF/ as the
coslice category of C under F .

Remark 4.3.1.9. 015WThe slice and coslice constructions of Construction 4.3.1.8 are mutually
dual. More precisely, if F : K → C is a functor between categories and F op : Kop → Cop is
the induced functor between opposite categories, then we have canonical isomorphisms

(C/F )op ≃ (Cop)F op/ (CF/)op ≃ (Cop)/F op .

Example 4.3.1.10. 015XLet [0] denote the category having a single object and a single morphism.
For any category C, the diagonal map

δ : C → Fun([0], C) S 7→ S

is an isomorphism of categories. It follows that, for any object S ∈ C, we have canonical
isomorphisms

C/S ≃ C/S CS/ ≃ CS/ .

Consequently, we can view Construction 4.3.1.1 and Variant 4.3.1.4 as special cases of
Construction 4.3.1.8.

Remark 4.3.1.11. 015YLet F : K → C be a functor between categories. Remark 4.3.1.7, we see
that the slice and coslice categories of Construction 4.3.1.8 are can be realized as oriented
fiber products: more precisely, we have canonical isomorphisms

C/F ≃ C ×̃Fun(K,C){F} CF/ ≃ {F} ×̃Fun(K,C) C .

Remark 4.3.1.12. 015ZLet C be a category and let F : K → C be a diagram in C. If F admits
a limit S = lim←−I∈K F (I), then the slice category C/F is isomorphic to C/S . Similarly, if F
admits a colimit S′ = lim−→I∈K F (I), then the coslice category CF/ is isomorphic to CS/. In
§7.1, we will use this observation to extend the theory of limits and colimits to the setting
of ∞-categories.
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4.3.2 Joins of Categories

0160 Our next goal is to characterize the slice categories of Construction 4.3.1.8 by a universal
mapping property.

Definition 4.3.2.1 (Joins of Categories).0161 Let C and D be categories. We define a category
C ⋆D as follows:

• The set of objects Ob(C ⋆D) is the disjoint union of Ob(C) with Ob(D).

• Given a pair of objects X,Y ∈ Ob(C ⋆D), we have

HomC ⋆D(X,Y ) =



HomC(X,Y ) if X,Y ∈ Ob(C)
HomD(X,Y ) if X,Y ∈ Ob(D)
∗ if X ∈ Ob(C), Y ∈ Ob(D)
∅ if X ∈ Ob(D), Y ∈ Ob(C).

• Let f : X → Y and g : Y → Z be morphisms in C ⋆D. If X,Y, Z ∈ Ob(C),
then g ◦ f ∈ HomC ⋆D(X,Z) is given by the composition of morphisms in C. If
X,Y, Z ∈ Ob(D), then g ◦ f is given by composition of morphisms in D. Otherwise,
we let g ◦ f denote the unique morphism from X to Z (note that in this case, we
necessarily have X ∈ Ob(C) and Z ∈ Ob(D)).

We will refer to C ⋆D as the join of C with D.

Remark 4.3.2.2.0162 In the situation of Definition 4.3.2.1, we will generally abuse notation by
identifying C and D with full subcategories of the join C ⋆D.

Remark 4.3.2.3.0163 Let F : C → C′ and G : D → D′ be functors. Then F and G induce a
functor

(F ⋆ G) : C ⋆D → C′ ⋆D′,

which is uniquely determined by the requirement that it coincides with F on the full
subcategory C ⊆ C ⋆D and with G on the full subcategory D ⊆ C ⋆D. We can therefore
regard the join construction as a functor

⋆ : Cat×Cat→ Cat (C,D) 7→ C ⋆D,

where Cat denotes the category of (small) categories.

Example 4.3.2.4.0164 Let C and D be categories. If D is empty, then the inclusion map
C ↪→ C ⋆D is an isomorphism of categories.
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Example 4.3.2.5 (Cones). 0165Let [0] denote the category having a single object and a single
morphism, and let C be an arbitrary category. We let C◁ denote the join [0] ⋆ C, and C▷ the
join C ⋆[0]. We refer to C◁ as the left cone of C, and to C▷ as the right cone on C.

More informally, we can describe the left cone C◁ as the category obtained from C by
adjoining a new object X0 satisfying

HomC◁(X0, Y ) = ∗ HomC◁(X0, X0) = ∗ HomC◁(Y,X0) = ∅

for Y ∈ C. Note that X0 is an initial object of the category C◁, which we will refer to as the
cone point of C◁. Similarly, the right cone C▷ is obtained from C by adjoining a new object
which we refer to as the cone point of C▷ (and which is a final object of C▷).

Remark 4.3.2.6. 0166Let C, D, and E be categories. Then there is a canonical isomorphism of
iterated joins

α : C ⋆(D ⋆ E) ≃ (C ⋆D) ⋆ E ,

characterized by the requirement that it restricts to the identity on C, D, and E (which
we can regard as full subcategories of both C ⋆(D ⋆ E) and (C ⋆D) ⋆ E , by means of Remark
4.3.2.2).

Remark 4.3.2.7. 0167Let Cat denote the category of (small) categories. Then Cat admits a
monoidal structure, where the tensor product is given by the join functor

⋆ : Cat×Cat→ Cat (C,D) 7→ C ⋆D

of Remark 4.3.2.3, and the associativity constraints are the isomorphisms of Remark 4.3.2.6.
The unit for this monoidal structure is the empty category ∅ ∈ Cat (Example 4.3.2.4).

Warning 4.3.2.8. 0168The join operation of Definition 4.3.2.1 is not commutative. For example,
if C is a category, then the left cone C◁ need not be isomorphic (or even equivalent) to the
right cone C▷. However, we do have canonical isomorphisms

(C ⋆D)op ≃ Dop ⋆ Cop,

depending functorially on C and D.

We now relate the join construction of Definition 4.3.2.1 with the slice categories of
Construction 4.3.1.8. We begin with a simple observation.

Lemma 4.3.2.9. 0169Let C and D be categories, and let ιC : C ↪→ C ⋆D and ιD : D ↪→ C ⋆D
denote the inclusion maps. Then:

(1) The inclusion functor ιC factors uniquely as a composition

C ιC−→ (C ⋆D)/ιD → C ⋆D .
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(2) The inclusion functor ιD factors uniquely as a composition

D ιD−→ (C ⋆D)ιC/ → C ⋆D .

Proof. Let πC : C ×D → C and πD : C ×D → D denote the projection maps. Using Remark
4.3.1.11, we see that both (1) and (2) are equivalent to the assertion that there is a unique
natural transformation u from ιC ◦ πC to ιD ◦ πD (as functors from the product category
C ×D to the join category C ⋆D). Concretely, this natural transformation carries each object
(C,D) ∈ C ×D to the unique element of HomC ⋆D(C,D).

Proposition 4.3.2.10.016A Let C be a category and let G : D → E be a functor between
categories. For every functor U : C ⋆D → E extending G, let F (U) denote the composite
functor

C ιC−→ (C ⋆D)/ιD
U−→ E/(U◦ιD) = E/G .

Then the construction U 7→ F (U) induces a bijection

{Functors U : C ⋆D → E satisfying U |D = G} → {Functors F : C → E/G}.

Example 4.3.2.11.016B Let G : D → E be a functor of categories. Applying Proposition
4.3.2.10 in the case C = [0], we see that objects of the slice category E/G can be identified
with functors U : D◁ → E satisfying U |D = G.

Example 4.3.2.12.016C Let C and E be categories and let S be an object of E . Applying
Proposition 4.3.2.10 in the case D = [0], we see that functors from C to the slice category
E/S can be identified with functors U : C▷ → E which carry the cone point of C▷ to the
object S.

In the situation of Proposition 4.3.2.10, we can use Remark 4.3.1.11 to identify functors
F : C → E/G with ordered pairs (F, v), where F : C → E is a functor (given by the
composition of F with the forgetful functor E/G → E) and v is a natural transformation
from F ◦ πC to G ◦ πD (regarded as functors from C ×D to E). Note that, in the case where
F = F (U) is obtained from a functor U : C ⋆D → E , we have F = U |C. We can therefore
reformulate Proposition 4.3.2.10 in a more symmetric fashion:

Proposition 4.3.2.13.016D Let C, D, and E be categories, and suppose we are given functors
F : C → E and G : D → E. Let u : ιC ◦πC → ιD ◦πD be the natural transformation appearing
in the proof of Lemma 4.3.2.9. Then evaluation on u induces a bijection

{Functors U : C ⋆D → E with U |C = F and U |D = G}

��
{Natural transformations from F ◦ πC to G ◦ πD }

.
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Proof. Let v be a natural transformation from F ◦ πC to G ◦ πD, carrying each object
(C,D) ∈ C ×D to a morphism vC,D : F (C)→ G(D) in the category E . We wish to show that
there is a unique functor U : C ⋆D → E satisfying U |C = F , H|D = G, and U(uC,D) = vC,D
for (C,D) ∈ C ×D. These requirements uniquely determine the value of U on all objects
and morphisms of the category C ⋆D. To complete the proof, it will suffice to show that U is
compatible with composition: that is, for every pair of morphisms s : X → Y and t : Y → Z

in C ⋆D, we have U(t ◦ s) = U(t) ◦ U(s). We consider four cases:

• If X, Y , and Z belong to C, then we have U(t◦s) = F (t◦s) = F (t)◦F (s) = U(t)◦U(s).

• If X and Y belong to C and Z belongs to D, then we have U(t ◦ s) = vX,Z =
vY,Z ◦ F (s) = U(t) ◦ U(s), where the second equality follows from the naturality of v
in the first variable.

• If Y and Z belong to D and X belongs to C, then we have U(t ◦ s) = vX,Z =
G(t) ◦ vX,Y = U(t) ◦ U(s), where the second equality follows from the naturality of v
in the second variable.

• If X, Y , and Z belong to D, then we have U(t◦s) = G(t◦s) = G(t)◦G(s) = U(t)◦U(s).

Remark 4.3.2.14. 016EStated more informally, Proposition 4.3.2.13 asserts that the join C ⋆D
is universal among categories E which are equipped with a pair of functors C F−→ E G←− D and
a natural transformation v : (F ◦ πC)→ (G ◦ πD). More precisely, there is a pushout square

(C ×{0} × D) ∐(C ×{1} × D) //

��

C ×[1]×D

��
(C ×{0}) ∐({1} × D) // C ⋆D

in the (ordinary) category Cat, where the right vertical map encodes the natural transfor-
mation u : ιC ◦ πC → ιD ◦ πD appearing in the proof of Lemma 4.3.2.9.

Example 4.3.2.15 (The Universal Property of a Cone). 016FLet C be a category. Applying
Remark 4.3.2.14 in the special case D = [0], we obtain a pushout diagram of categories

C ×{1} //

��

C ×[1]

��
[0] // C▷,
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where the bottom horizontal map carries the unique object of [0] to the cone point of C▷.
This is essentially a reformulation of Examples 4.3.2.11 and 4.3.2.12. Stated more informally,
the right cone C▷ is obtained from the product [1]× C by “collapsing” the full subcategory
{1} × C to the cone point. Similarly, the left cone of a category D is characterized by the
existence of a pushout diagram

{0} × D //

��

[1]×D

��
[0] // D◁ .

For completeness, we record the dual of Proposition 4.3.2.10, which supplies a universal
property of coslice categories (and is also a reformulation of Proposition 4.3.2.13).

Corollary 4.3.2.16.016G Let D be a category and let F : C → E be a functor between categories.
For every functor U : C ⋆D → E extending F , let G(U) denote the composite functor

D ιD−→ (C ⋆D)ιC/
U−→ E(U◦ιC)/ = EF/ .

Then the construction U 7→ G(U) induces a bijection

{Functors U : C ⋆D → E satisfying U |C = F} → {Functors G : D → EF/}.

Corollary 4.3.2.17.016H

• For any category D, the join functor

Cat→ CatD / C 7→ C ⋆D

admits a right adjoint, given on objects by the slice construction (G : D → E) 7→ E/G.

• For any category C, the join functor

Cat→ CatC / D 7→ C ⋆D

admits a right adjoint, given on objects by the coslice construction (F : C → E) 7→ EF/.

Remark 4.3.2.18.016J Let G : D → E be a functor between categories. According to Remark
4.3.1.11, the slice category E/G can be identified with the iterated fiber product

(Fun([0], E)×Fun({0}×D,E) Fun([1]×D, E))×Fun({1}×D,E) {G}.
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Using Example 4.3.2.15, we can identify the left factor with the functor category Fun(D◁, E).
We therefore obtain a pullback diagram of categories

E/G //

��

Fun(D◁, E)

��
{G} // Fun(D, E),

which recovers Example 4.3.2.11 at the level of objects.
Similarly, if F : C → E is a functor of categories, then the coslice category EF/ fits into a

pullback square
EF/ //

��

Fun(C▷, E)

��
{F} // Fun(C, E).

4.3.3 Joins of Simplicial Sets

016KOur next goal is to extend the join operation of Definition 4.3.2.1 to the setting of
∞-categories (and more general simplicial sets). We begin with a slightly more general
discussion. Let Lin denote the category whose objects are finite linearly ordered sets
and whose morphisms are nondecreasing functions. The functor category Fun(Linop,Set)
is equivalent to the category of augmented simplicial sets (see §[?]), and contains a full
subcategory which is equivalent to the category of simplicial sets (see Proposition 4.3.3.11
below).

Notation 4.3.3.1. 016LLet J be a linearly ordered set. We say that a subset I ⊆ J is an initial
segment of J if it is closed downwards: that is, if, for every pair of elements i ≤ j in J , we
have (j ∈ I)⇒ (i ∈ I). We will write I ⊑ J to indicate that I is an initial segment of J .

Construction 4.3.3.2 (Joins of Augmented Simplicial Sets). 016MFor every pair of functors
X,Y : Linop → Set, we let (X ⋆ Y ) : Linop → Set denote a new functor given on objects by
the formula

(X ⋆ Y )(J) =
∐
I⊑J

(X(I)× Y (J \ I)).

Here the coproduct is indexed by the collection of all initial segments I ⊑ J .
More formally, the functor (X ⋆ Y ) : Linop → Set can be described as follows:
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• For every finite linearly ordered set J , (X ⋆Y )(J) is the collection of all triples (I, x, y),
where I is an initial segment of J , x is an element of X(I), and y is an element of
Y (J \ I).

• If α : J ′ → J is a nondecreasing function, then the induced map (X ⋆ Y )(α) :
(X ⋆ Y )(J)→ (X ⋆ Y )(J ′) is given by the construction

(I, x, y) 7→ (α−1(I), X(α|α−1(I))(x), Y (α|α−1(J\I))(y)).

We will refer to X ⋆ Y as the join of X and Y .

Example 4.3.3.3.016N Let E : Linop → Set denote the functor given by

E(I) =

∗ if I = ∅
∅ otherwise.

For every functor X : Linop → Set, we have canonical bijections

(X ⋆ E)(J) =
∐
I⊑J

(X(I)× E(J \ I)) ≃ X(J)× E(∅) ≃ X(J)

(E ⋆ X)(J) =
∐
I⊑J

(E(I)×X(J \ I)) ≃ E(∅)×X(J) ≃ X(J).

These bijections depend functorially on J , and therefore determine isomorphisms of functors

X ⋆ E ≃ X ≃ E ⋆ X.

Remark 4.3.3.4 (Functoriality).016P Construction 4.3.3.2 determines a functor

⋆ : Fun(Linop,Set)× Fun(Linop, Set)→ Fun(Linop,Set) (X,Y ) 7→ X ⋆ Y.

Note that this functor preserves colimits separately in each variable.
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Remark 4.3.3.5 (Associativity). 016QLet X, Y , and Z be functors from Linop to the category
of sets. For every finite linearly ordered set K, we have a canonical bijection

(X ⋆ (Y ⋆ Z))(K) =
∐
I⊑K

(X(I)× (Y ⋆ Z)(K \ I))

=
∐
I⊑K

(X(I)×
∐

J⊑K\I
(Y (J)× Z(K \ (I ∪ J))))

≃
∐
I⊑K

∐
J⊑K\I

(X(I)× Y (J)× Z(K \ (I ∪ J)))

≃
∐
J ′⊑K

∐
I⊑J ′

(X(I)× Y (J ′ \ I)× Z(K \ J ′))

≃
∐
J ′⊑K

(
∐
I⊑J ′

(X(I)× Y (J ′ \ I)× Z(K \ J ′))

=
∐
J⊑K

((X ⋆ Y )(J ′) ⋆ Z(K \ J ′))

= ((X ⋆ Y ) ⋆ Z)(K).

These bijections depend functorially on K ∈ Linop, and therefore supply an isomorphism of
functors αX,Y,Z : X ⋆ (Y ⋆ Z) ≃ (X ⋆ Y ) ⋆ Z.

Remark 4.3.3.6. 016RThe join operation of Construction 4.3.3.2 determines a functor

⋆ : Fun(Linop, Set)× Fun(Linop,Set)→ Fun(Linop, Set).

This functor determines a monoidal structure on the category Fun(Linop,Set), whose asso-
ciativity constraints are the isomorphisms αX,Y,Z of Remark 4.3.3.5 and whose unit object
is the functor E of Example 4.3.3.3.

Example 4.3.3.7. 016SFor every category C, let hC : Linop → Set denote the functor represented
by C, given by the formula

hC(J) = {Functors from J to C}.

For every pair of categories C and D and every finite linearly ordered set J , we have a
canonical bijection

(hC ⋆ hD)(J) =
∐
I⊑J

hC(I)× hD(J \ I)

=
∐
I⊑J
{Functors I → C} × {Functors (J \ I)→ D}

≃ {Functors J → C ⋆D}
= hC ⋆D(J).
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These bijections depend functorially on J , and therefore determine an isomorphism hC ⋆hD ≃
hC ⋆D in the category Fun(Linop,Set); here C ⋆D denotes the join of the categories C and D,
in the sense of Definition 4.3.2.1.

Remark 4.3.3.8.016T Let C be a small monoidal category. Then the presheaf category
Fun(Cop,Set) inherits a monoidal structure given by Day convolution (see §[?]), which
is characterized up to equivalence by the following properties:

(1) The Yoneda embedding

h : C → Fun(Cop,Set) C 7→ HomC(•, C)

can be promoted to a symmetric monoidal functor.

(2) The tensor product on Fun(Cop,Set) preserves small colimits separately in each variable.

Let us specialize to the case where C = Lin is the category of finite linearly ordered sets.
Note that Lin can be identified with a full subcategory of Cat which is closed under the
formation of joins (and contains the unit object ∅ ∈ Cat), and therefore inherits the structure
of a monoidal category (where the tensor product is given by joins). With respect to this
monoidal structure, the Yoneda embedding h : Lin→ Fun(Linop,Set) satisfies condition (1)
(Example 4.3.3.7), and the join functor on Fun(Linop,Set) satisfies (2) by virtue of Remark
4.3.3.4. It follows that the join operation on Fun(Linop,Set) is given by Day convolution
(with respect to the join operation on the category Lin).

We now adapt Construction 4.3.3.2 to the setting of simplicial sets.

Notation 4.3.3.9.016U Let Fun∗(Linop,Set) denote the full subcategory of Fun(Linop,Set)
spanned by those functors X : Linop → Set for which the set X(∅) is a singleton (that is,
the full subcategory spanned by those functors which preserve final objects).

Remark 4.3.3.10.016V For every pair of functors X,Y : Linop → Set, we have a canonical
bijection (X ⋆ Y )(∅) = X(∅)× Y (∅). In particular, if X and Y belong to the subcategory
Fun∗(Linop,Set) ⊆ Fun(Linop,Set), then the join X ⋆ Y also belongs to Fun∗(Linop,Set).
Moreover, Fun∗(Linop, Set) contains the unit object E of Example 4.3.3.3. It follows that
Fun∗(Linop,Set) inherits the structure of a monoidal category (with respect to the join
operation of Construction 4.3.3.2).

Recall that the simplex category ∆ of Definition 1.1.0.2 is the full subcategory of Lin
spanned by objects of the form [n] = {0 < 1 < · · · < n} for n ≥ 0.

Proposition 4.3.3.11.016W The restriction functor

Fun∗(Linop,Set)→ Set∆ X 7→ X|∆op

is an equivalence of categories.
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Proof. Let S be a one-element set, and let Fun′∗(Linop,Set) denote the full subcategory of
Fun(Linop, Set) spanned by those functors X : Linop → Set satisfying X(∅) = S. Since the
inclusion functor Fun′∗(Linop,Set) ↪→ Fun∗(Linop, Set) is an equivalence of categories, it will
suffice to show that the restriction functor

Fun′∗(Linop, Set)→ Set∆ X 7→ X|∆op

is an equivalence of categories. Let Lin ̸=∅ denote the full subcategory of Lin spanned by
the nonempty finite linearly ordered sets, so that the category Lin can be identified with
the left cone Lin◁̸=∅ of Example 4.3.2.5. Using Proposition 4.3.2.13 (and the fact that the
forgetful functor Set/∗ → Set is an isomorphism), we deduce that the restriction functor
C → Fun(Linop

̸=∅, Set) is an isomorphism of categories. We are therefore reduced to showing
that the restriction functor Fun(Linop

̸=∅,Set) → Fun(∆op,Set) = Set∆ is an equivalence
of categories. This is clear, since the inclusion ∆ ↪→ Lin ̸=∅ is an equivalence (Remark
1.1.0.3).

Remark 4.3.3.12. 016XThe inclusion functor ∆ ↪→ Lin ̸=∅ has a unique left inverse R : Lin ̸=∅ →
∆, given on objects by the formula R(I) = [n] when I has cardinality n+ 1. It follows that
the equivalence Fun∗(Linop,Set) → Set∆ of Proposition 4.3.3.11 admits an explicit right
inverse, which carries a simplicial set X : ∆op → Set to the functor X+ : Linop → Set given
by the formula

X+(I) =

X(R(I)) if I is nonempty
∗ otherwise.

Construction 4.3.3.13 (Joins of Simplicial Sets). 016YLet X and Y be simplicial sets. We let
X ⋆ Y denote the simplicial set given by the restriction (X+ ⋆ Y +)|∆op . Here X+, Y + ∈
Fun∗(Linop,Set) are given by Remark 4.3.3.12, and X+⋆Y + denotes the join of Construction
4.3.3.2. We will refer to X ⋆ Y as the join of X and Y . The construction X,Y 7→ X ⋆ Y

determines a functor ⋆ : Set∆×Set∆ → Set∆, which we will refer to as the join functor. It
is characterized (up to isomorphism) by the fact that the diagram

Fun∗(Linop, Set)× Fun∗(Linop,Set) ⋆ //

��

Fun∗(Linop,Set)

��
Set∆×Set∆

⋆ // Set∆

commutes up to isomorphism, where the vertical maps are the equivalences supplied by
Proposition 4.3.3.11.
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Remark 4.3.3.14.016Z For every pair of simplicial sets X and Y , we have canonical monomor-
phisms

X ≃ X ⋆ ∅ ↪→ X ⋆ Y ←↩ ∅ ⋆ Y ≃ Y.

We will often abuse notation by identifying X and Y with the simplicial subsets of X ⋆ Y

given by the images of these monomorphisms.

Remark 4.3.3.15.0170 Let X and Y be simplicial sets. For each n-simplex σ : ∆n → X ⋆ Y ,
exactly one of the following conditions holds:

• The morphism σ factors through X (where we identify X with a simplicial subset of
X ⋆ Y as in Remark 4.3.3.14).

• The morphism σ factors through Y (where we identify Y with a simplicial subset of
X ⋆ Y as in Remark 4.3.3.14).

• The morphism σ factors as a composition

∆n = ∆p+1+q ≃ ∆p ⋆∆q σ−⋆σ+−−−−→ X ⋆ Y,

for integers p, q ≥ 0 satisfying p + 1 + q = n and simplices σ− : ∆p → X and
σ+ : ∆q → Y of X and Y , respectively. Moreover, in this case, the simplices σ− and
σ+ (and the integers p, q ≥ 0) are uniquely determined.

Remark 4.3.3.16.0171 Let i : X ↪→ X ′ and j : Y ↪→ Y ′ be monomorphisms of simplicial sets.
From the description of Remark 4.3.3.15, we see that the join (i ⋆ j) : X ⋆ Y → X ′ ⋆ Y ′ is
also a monomorphism of simplicial sets.

Remark 4.3.3.17.0172 Let X• and Y• be simplicial sets. By virtue of Remark 4.3.3.15, the join
(X ⋆ Y )• can be described explicitly by the formula

(X ⋆ Y )n = Xn ⨿ (
∐

p+1+q=n
Xp × Yq)⨿ Yn.

In these terms, the face and degeneracy operators {dni : (X ⋆ Y )n → (X ⋆ Y )n−1}0≤i≤n and
{sni : (X ⋆ Y )n → (X ⋆ Y )n+1} are given on the first and third summand by the analogous
operators for X• and Y•, and on elements (σ, τ) ∈ Xp × Yq by the formula

dni (σ, τ) =

(dpi (σ), τ) if i ≤ p
(σ, dqi−1−p(τ)) if i > p.

sni (σ, τ) =

(spi (σ), τ) if i ≤ p
(σ, sqi−1−p(τ)) if i > p.

Remark 4.3.3.18.056W Let X and Y be simplicial sets, and let σ : ∆m → X⋆Y be an m-simplex
which factors as a composition

∆m ≃ ∆m− ⋆∆m+ σ−⋆σ+−−−−→ X ⋆ Y
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for some integers m−,m+ ≥ 0 satisfying m− + 1 + m+ = m. Then σ is nondegenerate if
and only if both σ− and σ+ are nondegenerate. It follows that, for every integer n, the
n-skeleton of X ⋆ Y is given by the union

skn(X) ∪ (
⋃

p+1+q=n
skp(X) ⋆ skq(Y )) ∪ skn(Y ).

In particular, we have an equality

dim(X ⋆ Y ) = dim(X) + 1 + dim(Y ),

provided that we adopt the convention that an empty simplicial set has dimension −1.

Remark 4.3.3.19. 02LHLet X and Y be finite simplicial sets. Then the join X ⋆ Y is also finite.

Remark 4.3.3.20. 0173For every pair of simplicial sets X and Y , we have a canonical isomor-
phism (X ⋆ Y )op ≃ Y op ⋆ Xop.

Remark 4.3.3.21. 0234Let X, Y , and K be simplicial sets. Unwinding the definitions, we see
that morphisms from K to X ⋆ Y can be identified with triples (π, f−, f+), where

π : K → ∆1 f− : {0} ×∆1 K → X f+ : {1} ×∆1 K → Y

are morphisms of simplicial sets (note that, when K is a simplex, this recovers the description
of Remark 4.3.3.17).

Example 4.3.3.22. 0174For every simplicial set X, we have canonical isomorphisms X ⋆ ∅ ≃
X ≃ ∅ ⋆ X (compare with Example 4.3.3.3).

Example 4.3.3.23. 0175Let C and D be categories. Using Example 4.3.3.7, we obtain a canonical
isomorphism of simplicial sets N•(C) ⋆N•(D) ≃ N•(C ⋆D), where C ⋆D denotes the join of
the categories C and D.

In particular, for integers p, q ≥ 0, there is a unique isomorphism of simplicial sets

∆p ⋆∆q ≃ ∆p+1+q,

which is given on vertices of ∆p by the construction i 7→ i and on vertices of ∆q by
j 7→ p+ 1 + j.

Proposition 4.3.3.24. 02QULet u : X → X ′ and v : Y → Y ′ be inner fibrations of simplicial
sets. Then the join (u ⋆ v) : X ⋆ Y → X ′ ⋆ Y ′ is also an inner fibration of simplicial sets.

Corollary 4.3.3.25. 02QVLet C and D be ∞-categories. Then the join C ⋆D is an ∞-category.

https://kerodon.net/tag/02LH
https://kerodon.net/tag/0173
https://kerodon.net/tag/0234
https://kerodon.net/tag/0174
https://kerodon.net/tag/0175
https://kerodon.net/tag/02QU
https://kerodon.net/tag/02QV


4.3. THE SLICE AND JOIN CONSTRUCTIONS 655

Proof. Since C and D are ∞-categories, the projection maps u : C → ∆0 and v : D → ∆0 are
inner fibrations (Example 4.1.1.2). Applying Proposition 4.3.3.24, we deduce that the join

(u ⋆ v) : C ⋆D → ∆0 ⋆∆0 ≃ ∆1

is also an inner fibration. Since ∆1 is an ∞-category, it follows that C ⋆D is an ∞-category
(Remark 4.1.1.9).

Proof of Proposition 4.3.3.24. Let u : X → X ′ and v : Y → Y ′ be inner fibrations of
simplicial sets and let 0 < i < n be integers; we wish to show that every lifting problem

02QW Λni
σ0 //

��

X ⋆ Y

u⋆v

��
∆n σ′ //

σ

<<

X ′ ⋆ Y ′

(4.2)

admits a solution. If σ′ factors through either X ′ or Y ′, this follows immediately from our
assumption that u and v are inner fibrations. We may therefore assume without loss of
generality that σ′ factors as a composition

∆n = ∆p+1+q ≃ ∆p ⋆∆q
σ′−⋆σ

′
+−−−−→ X ′ ⋆ Y ′

for some pair of integers p, q ≥ 0 satisfying p+ 1 + q = n and simplices σ′− : ∆p → X ′ and
σ′+ : ∆q → Y ′. Let ι− denote the inclusion map

∆p ↪→ ∆p ⋆∆q ≃ ∆p+1+q = ∆n,

and define ι+ : ∆q ↪→ ∆n similarly. Note that both ι− and ι+ factor through the inner horn
Λn
i ⊆ ∆n. Set σ− = σ0 ◦ ι− and σ+ = σ0 ◦ ι+. Unwinding the definitions, we see that the

composite map
∆n = ∆p+1+q ≃ ∆p ⋆∆q σ−⋆σ+−−−−→ X ⋆ Y

determines an n-simplex σ of X ⋆ Y which is a solution to the lifting problem (4.2).

Construction 4.3.3.26.0177 Let X be a simplicial set. We will denote the join ∆0 ⋆ X by
X◁ and refer to it as the left cone of X. Similarly, we denote the join X ⋆∆0 by X▷ and
refer to it as the right cone of X. We will often abuse notation by using Remark 4.3.3.14 to
identify X with its image in the cones X◁ and X▷. Moreover, Remark 4.3.3.14 also supplies
morphisms of simplicial sets X◁ ←↩ ∆0 ↪→ X▷, which we can identify with vertices which we
refer to as the cone points of X◁ and X▷, respectively.
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Example 4.3.3.27. 0178Let C be a category. Then Example 4.3.3.23 supplies canonical
isomorphisms

N•(C)◁ ≃ N•(C◁) N•(C)▷ ≃ N•(C▷),

where C◁ and C▷ denote the left and right cones of C (see Example 4.3.2.5).

Example 4.3.3.28. 0179Let n ≥ 0, and let ∆n denote the standard n-simplex. Using Example
4.3.3.27, we see that there is a unique isomorphism of simplicial sets (∆n)▷ ≃ ∆n+1, which
carries each vertex i ∈ {0, 1, . . . , n} to itself and the cone point of (∆n)▷ to the final
vertex n+ 1. This isomorphism carries the simplicial subset (∂∆n)▷ ⊆ (∆n)▷ to the horn
Λn+1
n+1 ⊆ ∆n+1. Similarly, the left cone (∂∆n)◁ is isomorphic to the horn Λn+1

0 .

Remark 4.3.3.29. 017AFor every simplicial set X, Remark 4.3.3.20 supplies a canonical isomor-
phism (X◁)op ≃ (Xop)▷, carrying the cone point of X◁ to the cone point of (Xop)▷.

Remark 4.3.3.30. 056XLet X be a simplicial set. Then, for every nonnegative integer n, the
n-skeleton of the cone X▷ fits into a pushout diagram

skn−1(X) //

��

skn−1(X)▷

��
skn(X) // skn(X)▷;

see Remark 4.3.3.18. In particular, X▷ has dimension ≤ n if and only if X has dimension
≤ n− 1.

Remark 4.3.3.31. 017BLet X be a simplicial set. Then the construction Y 7→ X ⋆Y determines
a functor

Set∆ → (Set∆)X/
which preserves small colimits. It follows that the composite functor

Set∆ → (Set∆)X/ → Set∆ Y 7→ X ⋆ Y

preserves filtered colimits and pushouts. Beware that it does not preserve colimits in general
(for example, it carries the initial object ∅ ∈ Set∆ to the simplicial set X, which need not be
initial).

Remark 4.3.3.32 (Associativity). 017CLet X, Y , and Z be simplicial sets. Then Remark
4.3.3.5 supplies a canonical isomorphism of simplicial sets αX,Y,Z : X ⋆ (Y ⋆Z) ≃ (X ⋆Y ) ⋆Z.
These isomorphisms are associativity constraints for a monoidal structure on the category
of simplicial sets, which is characterized (up to isomorphism) by the requirement that the
equivalence Fun∗(Linop,Set)→ Set∆ of Proposition 4.3.3.11 can be promoted to a monoidal
functor.
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Warning 4.3.3.33.017D Let C and D be categories. Then the join C ⋆D of Definition 4.3.2.1 is
characterized (up to isomorphism) by the existence of a pushout diagram

({0} × C ×D) ∐({1} × C ×D) //

��

[1]× C ×D

��
({0} × C) ∐({1} × D) // C ⋆D

in the category Cat (see Remark 4.3.2.14). Beware that, in the setting of simplicial sets, the
analogous statement is not quite true. To every pair of simplicial sets X and Y , one can
associate a commutative diagram of simplicial sets

({0} ×X × Y ) ∐({1} ×X × Y ) //

��

∆1 ×X × Y

��
({0} ×X) ∐({1} × Y ) // X ⋆ Y

(see Construction 4.5.8.1), which is almost never a pushout square. Nevertheless, the pushout
can be regarded as a good approximation to the join X ⋆ Y : see Proposition 4.5.8.2 and
Theorem 4.5.8.8.

4.3.4 Joins of Topological Spaces

017E The join operation on simplicial sets admits a topological interpretation.

Construction 4.3.4.1.017F Let X and Y be topological spaces, and let [0, 1] = |∆1| denote the
unit interval. We let X ⋆ Y denote the topological space given by the iterated pushout

X
∐

(X×{0}×Y )
(X × [0, 1]× Y )

∐
(X×{1}×Y )

Y.

We will refer to X ⋆ Y as the join of X and Y .

Remark 4.3.4.2.017G Let X and Y be topological spaces. Then the join X ⋆Y of Construction
4.3.4.1 is equipped with a pair of maps ιX : X ↪→ X ⋆ Y and ιY : Y ↪→ X ⋆ Y . It is not
difficult to see that these maps are closed embeddings: that is, they induce homeomorphisms
from X and Y onto closed subsets of X ⋆ Y . We will generally abuse notation by identifying
X and Y with their images under ιX and ιY , respectively.
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Remark 4.3.4.3. 017HLet X, Y , and Z be topological spaces. Then the datum of a continuous
function X ⋆ Y → Z is equivalent to the datum of a triple (fX , fY , h), where fX : X → Z

and fY : Y → Z are continuous functions and h : X × [0, 1]× Y → Z is a homotopy from
fX ◦πX to fY ◦πY ; here πX : X ×Y → X and πY : X ×Y → Y denote the projection maps.

Remark 4.3.4.4 (Symmetry). 017JLet X and Y be topological spaces. Then there is a canonical
homeomorphism X ⋆ Y ≃ Y ⋆ X, which is induced by the homeomorphism

X × [0, 1]× Y → Y × [0, 1]×X (x, t, y) 7→ (y, 1− t, x).

Example 4.3.4.5 (Cones). 017KLet ∗ denote the topological space consisting of a single point.
For any topological space X, we write X◁ for the join ∗ ⋆X, and X▷ for the join X ⋆ ∗, given
more concretely by the formulae

X◁ = ∗
∐

({0}×X)
([0, 1]×X) X▷ = (X × [0, 1])

∐
(X×{1})

∗.

We will refer to both X◁ and X▷ as the cone on X (note that they are canonically homeo-
morphic, by virtue of Remark 4.3.4.4).

Remark 4.3.4.6. 017LLet X be a locally compact Hausdorff space. Then the functor

Top→ TopX/ Y 7→ X ⋆ Y

preserves colimits. This follows from the fact that the functors Y 7→ X × Y and Y 7→
X × [0, 1]× Y preserve colimits.

Example 4.3.4.7. 017MFor each integer n ≥ 0, let |∆n| = {(u0, . . . , un) ∈ R≥0 : u0+· · ·+un = 1}
denote the topological n-simplex. For p, q ≥ 0, we have maps |∆p| ι−→ |∆p+1+q| ι′←− |∆q| given
by the formulae

ι(u0, . . . , up) = (u0, . . . , up, 0, . . . , 0) ι′(v0, . . . , vq) = (0, . . . , 0, v0, . . . , vq).

There is a “straight-line” homotopy h : |∆p| × [0, 1] × |∆q| → |∆p+1+q| from ι ◦ π|∆p| to
ι′ ◦ π|∆q |, given concretely by the formula

h((u0, . . . , up), t, (v0, . . . , vq)) = ((1− t)u0, (1− t)u1, . . . , (1− t)up, tv0, . . . , tvq).

By virtue of Remark 4.3.4.3, the triple (ι, ι′, h) can be identified with a continuous function
Hp,q : |∆p| ⋆ |∆q| → |∆p+1+q|.

Proposition 4.3.4.8. 017NLet p and q be nonnegative integers. Then the function Hp,q :
|∆p| ⋆ |∆q| → |∆p+1+q| of Example 4.3.4.7 is a homeomorphism of topological spaces.
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Proof. Since |∆p| ⋆ |∆q| is compact and |∆p+1+q| is Hausdorff, the continuous function
Hp,q is automatically closed. To complete the proof, it will suffice to show that Hp,q is
bijective. Fix a point x of |∆p+1+q|, given by a sequence of nonnegative real numbers
(u0, . . . , um, v0, v1, . . . , vn) satisfying

u0 + · · ·+ um + v0 + · · ·+ vn = 0.

Set t = v0 + · · ·+ vn. If t = 0, the set H−1
p,q {x} consists of a single point of |∆p| (regarded

as a subset of |∆p| ⋆ |∆q|), given by the sequence (u0, . . . , um). If t = 1, the set H−1
p,q {x}

consists of a single point of |∆q| (regarded as a subset of |∆p| ⋆ |∆q|), given by the sequence
(v0, . . . , vm). In the case 0 < t < 1, the set H−1

p,q {x} consists of a single point of |∆p| ⋆ |∆q|,
given as the image of the triple

( u0
1− t , . . . ,

um
1− t), t, (

v0
t
, . . . ,

vn
t

)) ∈ |∆p| × [0, 1]× |∆n|.

We now compare the join operation on topological spaces (given by Construction 4.3.4.1)
to the join operation on simplicial sets (given by Construction 4.3.3.13).

Construction 4.3.4.9.017P Let X and Y be simplicial sets, and let σ : ∆n → X ⋆ Y be a
morphism. We define a continuous function f(σ) : |∆n| → |X| ⋆ |Y | as follows (see Remark
4.3.3.15):

• If σ factors through X, we let f(σ) denote the composition

|∆n| |σ|−→ |X|
ι|X|−−→ |X| ⋆ |Y |,

where the second map is the inclusion of Remark 4.3.4.2.

• If σ factors through Y , we let f(σ) denote the composition

|∆n| |σ|−→ |Y |
ι|Y |−−→ |X| ⋆ |Y |,

where the second map is the inclusion of Remark 4.3.4.2.

• If σ factors as a composition

∆n = ∆p+1+q ≃ ∆p ⋆∆q σ−⋆σ+−−−−→ X ⋆ Y,

then we let f(σ) denote the composite map

|∆n| = |∆p+1+q|
H−1

p,q−−−→ |∆p| ⋆ |∆q| |σ−|⋆|σ+|−−−−−−→ |X| ⋆ |Y |,

where Hp,q denotes the homeomorphism of Proposition 4.3.4.8.
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The construction σ 7→ f(σ) is compatible with face and degeneracy operators, and therefore
determines a morphism of simplicial sets f : X ⋆ Y → Sing•(|X| ⋆ |Y |). We will identify f
with a continuous function TX,Y : |X ⋆ Y | → |X| ⋆ |Y |, which we will refer to as the join
comparison map.

Example 4.3.4.10. 017QLet X = ∆p and Y = ∆q be standard simplices. Then the join
comparison map TX,Y : |∆p ⋆∆q| → |∆p| ⋆ |∆q| fits into a commutative diagram

|∆p ⋆∆q|

|ρ|

$$

TX,Y // |∆p| ⋆ |∆q|

Hp,q

yy
|∆p+1+q|,

where ρ : ∆p ⋆∆q ≃ ∆p+1+q denotes the isomorphism of simplicial sets appearing in Example
4.3.3.23 and Hp,q is the homeomorphism of Proposition 4.3.4.8. In particular, TX,Y is a
homeomorphism.

Proposition 4.3.4.11. 017RLet X and Y be simplicial sets. If either X or Y is finite, then the
join comparison map TX,Y : |X⋆Y | → |X|⋆ |Y | of Construction 4.3.4.9 is a homeomorphism.

Proof. Without loss of generality, we may assume that X is finite. Then the geometric
realization |X| is a compact Hausdorff space (Corollary 3.6.1.12). Using Remarks 4.3.4.6
and 4.3.3.31, we see that the functors

Set∆ → Top|X|/ Y 7→ |X ⋆ Y |, Y 7→ |X| ⋆ |Y |

preserve colimits. Consequently, if we regard X as fixed, then the collection of simplicial sets
Y for which TX,Y is a homeomorphism is closed under colimits. Since every simplicial set
can be realized as a colimit of standard simplices (Remark 1.1.3.13), it will suffice to prove
Proposition 4.3.4.11 in the special case where Y = ∆q is a standard simplex. In this case, Y
is also finite. Repeating the preceding argument (with the roles of X and Y reversed), we
are reduced to proving that TX,Y is a homeomorphism in the case where X = ∆p is also a
standard simplex. In this case, the desired result follows from Example 4.3.4.10.

Corollary 4.3.4.12. 017SLet X be a simplicial set. Then the join comparison maps T∆0,X and
TX,∆0 supply homeomorphisms of topological spaces

|X◁| ≃ |X|◁ |X▷| ≃ |X|▷.

Here X◁ and X▷ denote the left and right cones on X in the category of simplicial sets
(Construction 4.3.3.26), while |X|◁ and |X|▷ denote the cone |X| in the category of topological
spaces (Example 4.3.4.5).
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The join comparison map TX,Y : |X ⋆ Y | → |X| ⋆ |Y | need not be a homeomorphism in
general. However, we do have the following:

Corollary 4.3.4.13.017T Let X and Y be simplicial sets. Then the join comparison map
TX,Y : |X ⋆ Y | → |X| ⋆ |Y | is a bijection.

Proof. As a map of sets, we can realize TX,Y as a filtered colimit of join comparison maps
TX′,Y , where X ′ ranges over the finite simplicial subsets of X (Remark 3.6.1.8). Each of
these maps is bijective (even a homeomorphism), by virtue of Proposition 4.3.4.11.

Warning 4.3.4.14.017U Let X and Y be simplicial sets, and let X ⋄ Y denote the simplicial set
given by the iterated coproduct

X
∐

(X×{0}×Y )
(X ×∆1 × Y )

∐
(X×{1}×Y )

Y

(see Notation 4.5.8.3). Since the formation of geometric realization commutes with the
formation of colimits, we have an evident comparison map of topological spaces

|X ⋄ Y | → |X| ⋆ |Y |.

This map is always bijective, and is a homeomorphism if either X or Y is finite (see Corollary
3.6.2.2). In this case, Corollary 4.3.4.13 supplies a homeomorphism of geometric realizations
|X ⋄ Y | ≃ |X ⋆ Y |. Beware that this homeomorphism does not arise from a morphism of
simplicial sets. In the case X = ∆p and Y = ∆q, it arises from the homotopy

h : |∆p| × |∆1| × |∆q| → |∆p+1+q|

h((u0, . . . , up), t, (v0, . . . , vq)) = ((1− t)u0, (1− t)u1, . . . , (1− t)up, tv0, . . . , tvq).

appearing in Example 4.3.4.7, which is not piecewise-linear with respect to the natural
triangulation of the polysimplex |∆p| × |∆1| × |∆q|.

4.3.5 Slices of Simplicial Sets

017V Let C be a category. In §4.3.1, we associated to every diagram F : K → C a slice category
C/F and a coslice category CF/ (Construction 4.3.1.8). We now introduce a generalization
of this construction, where we replace (the nerves of) C and K by arbitrary simplicial sets.
As our starting point, we recall that the construction C 7→ C/F can be characterized as the
right adjoint of the join functor

Cat→ CatK / E 7→ E ⋆K

(see Corollary 4.3.2.17).
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Construction 4.3.5.1 (Slice Simplicial Sets). 017WLet f : K → X be a morphism of simplicial
sets. We define a simplicial set X/f as follows:

• For each n ≥ 0, an n-simplex of X/f is a map of simplicial sets f : ∆n ⋆ K → X

satisfying f |K = f .

• For every nondecreasing function α : [m]→ [n] in ∆, the associated map

α∗ : {n-simplices of X/f} → {m-simplices of X/f}

carries an n-simplex f : ∆n ⋆ K → X to the composite map

∆m ⋆ K
α⋆idK−−−−→ ∆n ⋆ K

f−→ X.

We will refer to X/f as the slice simplicial set of X over f .

Remark 4.3.5.2. 017XLet f : K → X be a morphism of simplicial sets, and let f : ∆n ⋆K → X

be an n-simplex of the slice simplicial set X/f . Then the restriction f |∆n is an n-simplex of
X. The construction f 7→ f |∆n determines a morphism of simplicial sets X/f → X, which
we will refer to as the projection map or the forgetful functor (in the case where X is an
∞-category). We will often abuse notation by identifying a vertex of X/f with its image in
X.

Variant 4.3.5.3 (Coslice Simplicial Sets). 017YLet f : K → X be a morphism of simplicial sets.
We define a simplicial set Xf/ as follows:

• For each n ≥ 0, an n-simplex of Xf/ is a map of simplicial sets f : K ⋆ ∆n → X

satisfying f |K = f .

• For every nondecreasing function α : [m]→ [n] in ∆, the associated map

α∗ : {n-simplices of Xf/} → {m-simplices of Xf/}

carries an n-simplex f : K ⋆∆n → X to the composite map

K ⋆∆m idK ⋆α−−−−→ K ⋆∆n f−→ X.

We will refer to Xf/ as the coslice simplicial set of X under f . As in Remark 4.3.5.2, it is
equipped with a projection map Xf/ → X.

Remark 4.3.5.4. 017ZConstruction 4.3.5.1 and Variant 4.3.5.3 are opposite to one another.
More precisely, if f : K → X is a morphism of simplicial sets and fop : Kop → Xop

denotes the induced map of opposite simplicial sets, then we have a canonical isomorphism
of simplicial sets (X/f )op ≃ (Xop)fop/.
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Remark 4.3.5.5.0180 Let f : K → X be a morphism of simplicial sets. Then vertices of the slice
simplicial set X/f are morphisms of simplicial sets f : K◁ → X satisfying f |K = f . Similarly,
vertices of the coslice simplicial set Xf/ are morphisms of simplicial sets f : K▷ → X

satisfying f |K = f . Here K◁ and K▷ denote the left and right cone of K (Construction
4.3.3.26).

Notation 4.3.5.6 (Slicing over Vertices).0181 Let X be a simplicial set containing a vertex x,
and let fx : ∆0 → X be the map carrying the unique vertex of ∆0 to x. We will generally
abuse notation by not distinguishing between the vertex x and the morphism fx. For
example, we will denote the slice simplicial set X/fx

by X/x, and the coslice simplicial set
Xfx/ by Xx/.

Example 4.3.5.7.0182 Let F : K → C be a functor between categories, and let f = N•(F )
denote the induced morphism of simplicial sets from N•(K) to N•(C). For each n ≥ 0, we
have canonical bijections

{n-simplices of N•(C)/f} ≃ {Morphisms f : ∆n ⋆N•(K)→ N•(C) with f |N•(K) = f}
≃ {Morphisms f : N•([n]) ⋆N•(K)→ N•(C) with f |N•(K) = f}
≃ {Morphisms f : N•([n] ⋆K)→ N•(C) with f |N•(K) = f}
≃ {Functors F : [n] ⋆K → C with F |K = F}
≃ {Functors [n]→ C/F }
≃ {n-simplices of N•(C/F ) }.

Here the third bijection comes from Example 4.3.3.23, the fourth from Proposition 1.3.3.1,
and the fifth from Proposition 4.3.2.10. These bijections depend functorially on [n] ∈ ∆,
and therefore determine an isomorphism of simplicial sets N•(C)/f ≃ N•(C/F ). Similarly,
we have a canonical isomorphism N•(C)f/ ≃ N•(CF/). For a more general statement, see
Corollary 4.3.5.17.

Example 4.3.5.8.0183 Let C be a category containing an object X, which we also view as a
vertex of the simplicial set N•(C). Specializing Example 4.3.5.7 (and invoking Example
4.3.1.10), we obtain canonical isomorphisms

N•(C)/X ≃ N•(C/X) N•(C)X/ ≃ N•(CX/).

Example 4.3.5.9.0184 Let K be a simplicial set, let Y be a topological space, and let f : K →
Sing•(Y ) be a morphism of simplicial sets, which we will identify with a continuous function
F : |K| → Y . For each n ≥ 0, we have canonical bijections

{n-simplices of Sing•(Y )/f} ≃ {Morphisms f : ∆n ⋆ K → Sing•(Y ) with f |N•(K) = f}
≃ {Continuous maps F : |∆n ⋆ K| → Y with Y ||K| = f}
≃ {Continuous maps F : |∆n| ⋆ |K| → Y with F ||K| = F}
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Here the third bijection is provided by Proposition 4.3.4.11. Using the fact that these
bijections depend functorially on [n] ∈∆ and invoking the universal property |∆n| ⋆ |K| (see
Remark 4.3.4.3), we obtain an isomorphism of Sing•(Y )/f with the iterated fiber product

Sing•(Y )×Fun({0}×K,Sing•(Y )) Fun(∆1 ×K,Sing•(Y ))×Fun({1}×K,Sing•(Y )) {f}.

Example 4.3.5.10. 0185Let Y be a topological space equipped with a base point y. Let
P = {p : [0, 1]→ Y } denote the collection of all continuous functions from the unit interval
[0, 1] to Y , and let Py = {p ∈ P : p(1) = y} denote the subset of P consisting of those
continuous paths which end at the point y. We regard P as a topological space by equipping
it with the compact-open topology, so the singular simplicial set Sing•(P ) can be identified
with Fun(∆1,Sing•(Y )) (see Warning 2.4.2.18). Identifying y with a vertex of the singular
simplicial set Sing•(Y ), Example 4.3.5.9 supplies an isomorphism of simplicial sets

Sing•(Y )/y ≃ Sing•(P )×Sing•(Y ) {y} = Sing•(Py).

In particular, since the topological space Py is contractible, the simplicial set Sing•(Y )/y is
a contractible Kan complex (this is a special case of a general phenomenon: see Corollary
4.3.7.14).

Warning 4.3.5.11. 0187Recall that, if F : K → C is a functor between categories, then the
slice category C/F can be defined as the oriented fiber product C ×̃Fun(K,C){F} (see Remark
4.3.1.11). In the setting of simplicial sets, our definition is somewhat different. Nevertheless,
to any morphism of simplicial sets F : K → C, one can associate a comparison map

δ/F : C/F → C×Fun({0}×K,C) Fun(∆1 ×K, C)×Fun({1}×K,C) {F}

which we will refer to as the slice diagonal morphism (see Construction 4.6.4.13). This map
has the following features:

• When C is (the nerve of) an ordinary category, the morphism δ/F is an isomorphism
of simplicial sets.

• When C is an∞-category, the morphism δ/F is an equivalence of∞-categories (Theorem
4.6.4.17).

• When C = Sing•(X) is the singular simplicial set of a topological space X, the
morphism δ/F does not coincide with the isomorphism constructed in Example 4.3.5.9
(however, they are naturally homotopic).

• The morphism δ/F is usually not an isomorphism of simplicial sets (see Warning
4.3.3.33).

https://kerodon.net/tag/0185
https://kerodon.net/tag/0187


4.3. THE SLICE AND JOIN CONSTRUCTIONS 665

The slice simplicial sets of Construction 4.3.5.1 can be characterized by a universal
property.

Construction 4.3.5.12.0188 Let f : K → X be a morphism of simplicial sets. We define a
morphism of simplicial sets c : X/f ⋆ K → X as follows:

• The restriction of c to the simplicial subset X/f ⊆ X/f ⋆ K is equal to the projection
map X/f → X of Remark 4.3.5.2.

• The restriction of c to the simplicial subset K ⊆ X/f ⋆ K is equal to f .

• Let σ : ∆n → X/f ⋆ K be an n-simplex which does not belong to X/f or K, so that σ
factors (uniquely) as a composition

∆n ≃ ∆p+1+q ≃ ∆p ⋆∆q σ−⋆σ+−−−−→ X/f ⋆ K

for p + 1 + q = n (see Remark 4.3.3.15). Using the definition of the simplicial set
X/f , we can identify σ− with a morphism of simplicial sets f : ∆p ⋆ K → X satisfying
f |K = f . We then define c(σ) to be the n-simplex of X given by the composite map

∆n ≃ ∆p+1+q ≃ ∆p ⋆∆q id ⋆σ+−−−−→ ∆p ⋆ K
f−→ X.

We will refer to c as the slice contraction morphism. Applying a similar construction to the
opposite simplicial sets, we obtain a morphism c′ : K ⋆Xf/ → X which we will refer to as
the coslice contraction morphism.

Proposition 4.3.5.13.0189 Let f : K → X be a morphism of simplicial sets, and let c :
X/f ⋆ K → X be the slice contraction morphism of Construction 4.3.5.12. Then, for any
simplicial set Y , postcomposition with c induces a bijection

θY : HomSet∆(Y,X/f )→ {Morphisms f : Y ⋆ K → X satisfying f |K = f}

Similarly, postcomposition with the coslice contraction morphism c′ : K ⋆Xf/ → X induces
a bijection

θ′Y : HomSet∆(Y,Xf/)→ {Morphisms f : K ⋆ Y → X satisfying f |K = f}.

Proof. In the case where Y is a standard simplex, both assertions follow immediately from
the definition of the simplicial sets X/f and Xf/. Since every simplicial set can be realized as
a colimit of simplices (Remark 1.1.3.13), it will suffice to show that the constructions Y 7→ θY
and Y 7→ θ′Y carry colimits of simplicial sets to limits in the arrow category Fun([1],Set).
This follows from the observation that the functors

Set∆ → (Set∆)K/ Y 7→ Y ⋆ K, Y 7→ K ⋆ Y

preserve small colimits (see Remark 4.3.3.31).
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Corollary 4.3.5.14. 018ALet K be a simplicial set. Then the join functor

Set∆ → (Set∆)K/ Y 7→ Y ⋆ K

admits a right adjoint, given on objects by the slice construction (f : K → X) 7→ X/f .
Similarly, the join functor

Set∆ → (Set∆)K/ Y 7→ K ⋆ Y

admits a right adjoint, given on objects by the coslice construction (f : K → X) 7→ Xf/.

Example 4.3.5.15. 018BLet X be a simplicial set containing a vertex x. Let Y be a simplicial
set, and let v and v′ denote the cone points of Y ▷ and Y ◁, respectively. Then Proposition
4.3.5.13 supplies bijections

HomSet∆(Y,X/x) ≃ {Morphisms f : Y ▷ → X with f(v) = x}

HomSet∆(Y,Xx/) ≃ {Morphisms f : Y ◁ → X with f(v′) = x}.

Remark 4.3.5.16 (Slices of Coskeleta). 056YLet X and Y be simplicial sets. For every integer
n ≥ 0, Remark 4.3.3.30 supplies a pullback diagram of sets

HomSet∆(skn(Y ▷), X) //

��

HomSet∆(skn(Y ), X)

��
HomSet∆(skn−1(Y )▷, X) // HomSet∆(skn−1(Y ), X).

Restricting the left side of the diagram to morphisms which carry the cone point of Y ▷

to some fixed vertex x ∈ x and invoking the universal properties of Example 4.3.5.15 and
Remark 3.5.3.21, we obtain a pullback diagram of sets

HomSet∆(Y, coskn(X)/x) //

��

HomSet∆(Y, coskn(X))

��
HomSet∆(Y, coskn−1(X/x)) // HomSet∆(Y, coskn−1(X)).

This diagram depends functorially on Y , and therefore arises from a canonical isomorphism

coskn(X)/x
∼−→ coskn−1(X/x)×coskn−1(X) coskn(X).

Example 4.3.5.7 can be adapted to describe any slice or coslice of a simplicial set having
the form N•(C).
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Corollary 4.3.5.17.018C Let C be a category and let K be a simplicial set equipped with a
morphism f : K → N•(C). Let u : K → N•(K) be a morphism of simplicial sets which
exhibits K as a homotopy category of K (see Definition 1.3.6.1), so that f factors uniquely
as a composition K

u−→ N•(K) N•(F )−−−−→ N•(C) for some functor F : K → C. Then u induces
isomorphisms of simplicial sets

θ : N•(C/F ) ≃ N•(C)/N•(F ) → N•(C)/f θ′ : N•(CF/) ≃ N•(C)N•(F )/ → N•(C)f/.

Proof. We will prove that θ is an isomorphism; the proof for θ′ is similar. Fix an n-simplex
σ of N•(C)/f , which we identify with a morphism of simplicial sets f : ∆n ⋆ K → N•(C)
satisfying f |K = f . Let f0 = f |∆n . Using Proposition 4.3.5.13, we can identify f with
a morphism of simplicial sets g : K → N•(C)f0/

. We wish to show that σ can be lifted
uniquely to an n-simplex of N•(C)/N•(F ). Equivalently, we wish to show that g admits a
unique factorization

K
u−→ N•(K) g−→ N•(C)f0/

for which the composite map N•(K) g−→ N•(C)f0/
→ N•(C) is equal to N•(F ). This follows

our assumption that u exhibits K as a homotopy category of K, since the simplicial set
N•(C)f0/

is isomorphic to the nerve of a category (see Example 4.3.5.7).

Corollary 4.3.5.18.018D Let A and B be simplicial sets, and let u : A → N•(A) and v :
B → N•(B) be morphisms which exhibit A and B as the homotopy categories of A and B,
respectively. Then the composite map

A ⋆ B
u⋆v−−→ N•(A) ⋆N•(B) ≃ N•(A ⋆B)

exhibits A ⋆B as the homotopy category of A ⋆ B.

Proof. Let C be a category, and suppose we are given a map of simplicial sets f : A ⋆ B →
N•(C). Applying Corollary 4.3.5.17 to the morphism f |A, we deduce that f factors uniquely
as a composition

A ⋆ B
u⋆id−−→ N•(A) ⋆ B f ′−→ N•(C).

Similarly, f ′ factors uniquely as a composition

N•(A) ⋆ B id ⋆v−−−→ N•(A) ⋆N•(B) f ′′−→ N•(C).

Combining these observations (together with Example 4.3.3.23 and Proposition 1.3.3.1), we
conclude that f factors uniquely as a composition

A ⋆ B
u⋆v−−→ N•(A) ⋆N•(B) ≃ N•(A ⋆B) N•(F )−−−−→ N•(C)

for some functor F : A ⋆B → C.
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4.3.6 Slices of ∞-Categories

018ERecall that, if C is a category containing an object S, then the forgetful functors

CS/ → C C/S → C

are left and right covering maps, respectively (Remark 4.3.1.6). In this section, we will prove
an ∞-categorical counterpart of this assertion:

Proposition 4.3.6.1 (Joyal [32]). 018FLet K be a simplicial set, let C be an ∞-category, and let
f : K → C be a diagram. Then the projection map Cf/ → C is a left fibration of simplicial
sets, and the projection map C/f → C is a right fibration of simplicial sets. In particular,
the simplicial sets Cf/ and C/f are ∞-categories (see Remark 4.2.1.4).

Remark 4.3.6.2. 018GIn the special case where C is (the nerve of) an ordinary category,
Proposition 4.3.6.1 follows from Corollary 4.3.5.17; in fact, both of the simplicial sets Cf/
and C/f are (the nerves of) ordinary categories.

We begin with some elementary remarks.

Construction 4.3.6.3. 018HLet f : A ↪→ A′ and g : B ↪→ B′ be monomorphisms of simplicial
sets. Using Remark 4.3.3.16, we see that the induced maps

A ⋆ B′
f⋆idB′−−−−→ A′ ⋆ B′

idA′ ⋆g←−−−− A′ ⋆ B

are also monomorphisms. Moreover, the intersection of their images is the image of the
monomorphism (f ⋆ g) : A⋆B ↪→ A′ ⋆B′. We therefore obtain a monomorphism of simplicial
sets

(A ⋆ B′)
∐

(A⋆B)
(A′ ⋆ B) ↪→ A′ ⋆ B′,

which we will refer to as the pushout-join of f and g.

We will deduce Proposition 4.3.6.1 from the following property of Construction 4.3.6.3:

Proposition 4.3.6.4 (Joyal [32]). ] 018JLet f : A ↪→ A′ and g : B ↪→ B′ be monomorphisms of
simplicial sets. If f is right anodyne or g is left anodyne, then the pushout-join

(A ⋆ B′)
∐

(A⋆B)
(A′ ⋆ B) ↪→ A′ ⋆ B′

is an inner anodyne morphism of simplicial sets.

Example 4.3.6.5. 0235Let f : A ↪→ A′ be a right anodyne morphism of simplicial sets. Applying
Proposition 4.3.6.4 to the inclusion ∅ ↪→ ∆0, we deduce that the natural map A▷ ∐

AA
′ ↪→ A′▷

is inner anodyne. Similarly, if g : B ↪→ B′ is left anodyne, the induced map B′∐B B
◁ → B′◁

is inner anodyne.
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Corollary 4.3.6.6.02VK Let f : A ↪→ B be an inner anodyne morphism of simplicial sets. Then,
for every simplicial set K, the induced map g : A ⋆ K ↪→ B ⋆ K is also inner anodyne.

Proof. The morphism g factors as a composition

A ⋆ K
g′−→ B

∐
A

(A ⋆ K) g′′−→ B ⋆ K.

The morphism g′ is inner anodyne since it is a pushout of f , and the morphism g′′ is inner
anodyne by virtue of Proposition 4.3.6.4. It follows that g = g′′ ◦g′ is also inner anodyne.

Example 4.3.6.7.02VL Let f : A ↪→ B be an inner anodyne morphism of simplicial sets. Then
the inclusion maps f▷ : A▷ ↪→ B▷ and i◁ : A◁ ↪→ B◁ are inner anodyne.

Proposition 4.3.6.4 implies the following stronger version of Proposition 4.3.6.1:

Proposition 4.3.6.8.01BZ Let q : X → S be an inner fibration of simplicial sets, let f : K → X

be any morphism of simplicial sets, let K0 be a simplicial subset of K, and set f0 = f |K0.
Then the restriction map

X/f → X/f0 ×S/(q◦f0) S/(q◦f)

is a right fibration, and the restriction map

Xf/ → Xf0/ ×S(q◦f0)/
S(q◦f)/

is a left fibration.

Proof. We will prove the first assertion; the second follows by a similar argument. By
virtue of Proposition 4.2.4.5, it will suffice to show that for every right anodyne morphism
i : A ↪→ A′, every lifting problem

A

i

��

// X/f

��
A′ //

99

// X/f0 ×S/(q◦f0) S/(q◦f)

admits a solution. Unwinding the definitions, this is equivalent to solving an associated
lifting problem

(A ⋆ K) ∐
A⋆K0(A′ ⋆ K0) //

��

X

q

��
A′ ⋆ K

88

// S,
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where the left vertical morphism is the pushout-join of Construction 4.3.6.3. Proposition
4.3.6.4 guarantees that this morphism is inner anodyne, so that the desired extension exists
by virtue of our assumption that q is an inner fibration (Proposition 4.1.3.1).

Corollary 4.3.6.9. 01C0Let q : X → S be an inner fibration of simplicial sets and let f : K → X

be any morphism of simplicial sets. Then the restriction map

X/f → X ×S S/(q◦f)

is a right fibration, and the restriction map

Xf/ → X ×S S(q◦f)/

is a left fibration.

Proof. Apply Proposition 4.3.6.8 in the special case K0 = ∅.

Corollary 4.3.6.10. 01NSLet q : X → S be an inner fibration of simplicial sets and let f : K → X

be any morphism of simplicial sets. Then the induced maps

X/f → S/(q◦f) Xf/ → S(q◦f)/

are inner fibrations.

Corollary 4.3.6.11. 018KLet C be an ∞-category, let f : K → C be a morphism of simplicial
sets, and let f0 = f |K0 be the restriction of f to a simplicial subset K0 ⊆ K. Then the
restriction map C/f → C/f0 is a right fibration, and the restriction map Cf/ → Cf0/ is a left
fibration.

Proof. Apply Proposition 4.3.6.8 to the inner fibration q : C → ∆0.

Proof of Proposition 4.3.6.1. Apply Corollary 4.3.6.11 in the special case K0 = ∅.

Proposition 4.3.6.4 also yields the following:

Proposition 4.3.6.12. 01C1Let q : X → S be an inner fibration of simplicial sets, let f : K → X

be any morphism of simplicial sets, let K0 be a simplicial subset of K, and set f0 = f |K0 . If
the inclusion K0 ↪→ K is left anodyne, then the restriction map X/f → X/f0 ×S/(q◦f0) S/(q◦f)
is a trivial Kan fibration. If the inclusion K0 ↪→ K is right anodyne, then the restriction
map Xf/ → Xf0/ ×S(q◦f0)/

S(q◦f)/ is a trivial Kan fibration.
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Proof. We will prove the first assertion; the second follows by a similar argument. Assume
that the inclusion K0 ↪→ K is left anodyne. We wish to show that, for every monomorphism
of simplicial sets i : A ↪→ A′, every lifting problem

A

i

��

// X/f

��
A′ //

99

// X/f0 ×S/(q◦f0) S/(q◦f)

admits a solution. Unwinding the definitions, this is equivalent to solving an associated
lifting problem

(A ⋆ K) ∐
A⋆K0(A′ ⋆ K0) //

��

X

q

��
A′ ⋆ K

88

// S,

where the left vertical morphism is the pushout-join of Construction 4.3.6.3. Since the left
vertical map is inner anodyne (Proposition 4.3.6.4), the desired solution exists by virtue of
our assumption that q is an inner fibration (Proposition 4.1.3.1).

Corollary 4.3.6.13.018L Let C be an ∞-category, let f : K → C be a morphism of simplicial
sets, and let f0 = f |K0 be the restriction of f to a simplicial subset K0 ⊆ K. If the inclusion
K0 ↪→ K is left anodyne, then the restriction map C/f → C/f0 is a trivial Kan fibration. If
the inclusion K0 ↪→ K is right anodyne, then the restriction map Cf/ → Cf0/ is a trivial
Kan fibration.

Proof. Apply Proposition 4.3.6.12 to the inner fibration q : C → ∆0.

Example 4.3.6.14 (Composition Functors).04Q4 Let C be an∞-category and let f : X → Y be a
morphism in C, which we identify with a diagram ∆1 → C. The inclusions {0} ↪→ ∆1 ←↩ {1}
then induce restriction functors CX/

e0←− Cf/
e1−→ CY/. It follows from Corollary 4.3.6.13 that

e1 is a trivial Kan fibration, and therefore admits a section s : CY/ → Cf/ (which is unique
up to isomorphism). The composition e0 ◦ s can then be viewed as a functor from CY/ to
CX/, which we will refer to as precomposition with f . Concretely, this functor takes an object
g : Y → Z of the ∞-category CY/ to an object h : X → Z of the ∞-category CX/, which is
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characterized (up to isomorphism) by the requirement that there exists a 2-simplex

Y
g

��
X

f
??

h // Z,

so that h is a composition of f with g in the sense of Definition 1.4.4.1. Applying the same
construction in the opposite ∞-category Cop, we obtain a functor C/X → C/Y which we
will refer to as postcomposition with f ; concretely, it carries an object e : W → X of the
∞-category C/X to an object W → Y of C/Y which is a composition of e with f .

We now turn to the proof of Proposition 4.3.6.4.

Lemma 4.3.6.15 (Joyal [32]). 018NLet p, q ≥ 0 be nonnegative integers. Then:

• Assume p > 0. Then, for 0 ≤ i ≤ p, the pushout-join monomorphism

(Λpi ⋆∆q)
∐

(Λp
i ⋆∂∆q)

(∆p ⋆ ∂∆q) ↪→ ∆p ⋆∆q

of Construction 4.3.6.3 is isomorphic to the horn inclusion Λp+1+q
i ↪→ ∆p+1+q.

• Assume q > 0. Then, for 0 ≤ j ≤ q, the pushout-join monomorphism

(∂∆p ⋆∆q)
∐

(∂∆p ⋆Λq
j )

(∆p ⋆ Λqj) ↪→ ∆p ⋆∆q

of Construction 4.3.6.3 is isomorphic to the horn inclusion Λp+1+q
p+1+j ↪→ ∆p+1+q.

Proof. We will prove the first assertion; the second follows by symmetry. We begin by
observing that there is a unique isomorphism of simplicial sets u : ∆p ⋆ ∆q ≃ ∆p+1+q

(Example 4.3.3.23). Let σ be an n-simplex of the join ∆p ⋆∆q; we wish to show that u(σ)
belongs to the horn Λp+1+q

i if and only if σ belongs to the union of the simplicial subsets

Λpi ⋆∆q ⊆ ∆p ⋆∆q ⊇ ∆p ⋆ ∂∆q .

We consider three cases (see Remark 4.3.3.15):

• The simplex σ belongs to the simplicial subset ∆p ⊆ ∆p ⋆ ∆q. In this case, σ is
contained in ∆p ⋆ ∂∆q and u(σ) is contained in Λp+1+q

i .

• The simplex σ belongs to the simplicial subset ∆q ⊆ ∆p ⋆ ∆q. In this case, σ is
contained in Λpi ⋆∆q and u(σ) is contained in Λp+1+q

i (since p > 0).

https://kerodon.net/tag/018N
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• The simplex σ factors as a composition

∆n = ∆p′+1+q′ ≃ ∆p′ ⋆∆q′ σ−⋆σ+−−−−→ ∆p ⋆∆q.

Let us abuse notation by identifying σ− and σ+ with nondecreasing functions [p′]→ [p]
and [q′] → [q], and u(σ) with the nondecreasing function [n] → [p + 1 + q] given by
their join. In this case, σ fails to belong to the union (Λp

i ⋆∆q) ∪ (∆p ⋆ ∂∆q) if and
only if both of the following conditions are satisfied:

– The image of the nondecreasing function σ− : [p′]→ [p] contains [p] \ {i}.
– The nondecreasing function σ+ : [q′]→ [q] is surjective.

Together, these are equivalent to the assertion that the image of the nondecreasing
function u(σ) : [n]→ [p+ 1 + q] contains [p+ 1 + q] \ {i}: that is, it fails to belong to
the horn Λp+1+q

i ⊆ ∆p+1+q.

Proof of Proposition 4.3.6.4. For every pair of morphisms of simplicial sets f : A→ A′ and
g : B → B′, let

θf,g : (A ⋆ B′)
∐

(A⋆B)
(A′ ⋆ B)→ A′ ⋆ B′

denote their pushout join. We will show that, if f is right anodyne and g is a monomorphism,
then θf,g is inner anodyne (the analogous assertion for the case where g is left anodyne
follows by a similar argument). Let us first regard f as fixed, and let T be the collection
of all morphisms g of simplicial sets for which θf,g is inner anodyne. Then T is weakly
saturated (in the sense of Definition 1.5.4.12). We wish to prove that T contains every
monomorphism of simplicial sets. By virtue of Proposition 1.5.5.14, we are reduced to
proving that the morphism θf,g is inner anodyne in the special case where g is the boundary
inclusion ∂∆q ↪→ ∆q for some q ≥ 0.

Let us now regard g : ∂∆q ↪→ ∆q as fixed, and let S denote the collection of all morphisms
of simplicial sets for which θf,g is inner anodyne. To complete the proof, we must show
that S contains every right anodyne morphism of simplicial sets. As before, we note that S
is weakly saturated. It will therefore suffice to show that S contains every horn inclusion
Λp
i ↪→ ∆p for 0 < i ≤ p (see Variant 4.2.4.2). In other words, we are reduced to checking

that the pushout-join

θf,g : (Λpi ⋆∆q)
∐

(Λp
i ⋆∂∆q)

(∆p ⋆ ∂∆q) ↪→ ∆p ⋆∆q

is inner anodyne. This is clear, since θf,g can be identified with the inner horn inclusion
Λp+1+q
i ↪→ ∆p+1+q by virtue of Lemma 4.3.6.15.
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Using Lemma 4.3.6.15, we can also establish a converse to Proposition 4.3.6.1:

Corollary 4.3.6.16. 0236Let C be a simplicial set. The following conditions are equivalent:

(1) The simplicial set C is an ∞-category.

(2) For every vertex X of C, the projection map CX/ → C is a left fibration of simplicial
sets.

(3) For every vertex Y of C, the projection map C/Y → C is a right fibration of simplicial
sets.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are special cases of Proposition 4.3.6.1.
We will complete the proof by showing that (3) implies (1); the proof that (2) implies (1)
is similar. Assume that (3) is satisfied, and suppose that we are given a map σ0 : Λni → C,
where 0 < i < n; we wish to show that σ0 can be extended to an n-simplex σ of C. Setting
Y = σ0(n) and using the isomorphism Λni ≃ ∆n−1 ∐

Λn−1
i

(Λn−1
i )▷ supplied by Lemma 4.3.6.15,

we are reduced to solving a lifting problem of the form

Λn−1
i

//

��

C/Y

��
∆n−1

==

// C .

Since 0 < i ≤ n − 1, the desired solution exists by virtue of our assumption that the
projection map C/Y → C is a right fibration.

For future use, let us record a variant of Lemma 4.3.6.15:

Variant 4.3.6.17. 02BULet p and q be nonnegative integers. Then the pushout-join monomor-
phism

(∂∆p ⋆∆q)
∐

(∂∆p ⋆ ∂∆q)
(∆p ⋆ ∂∆q) ↪→ ∆p ⋆∆q

of Construction 4.3.6.3 is isomorphic to the boundary inclusion ∂∆p+1+q ↪→ ∆p+1+q.

Proof. We proceed as in the proof of Lemma 4.3.6.15. Let u : ∆p ⋆ ∆q ≃ ∆p+1+q be the
isomorphism supplied by Example 4.3.3.23, and let σ be an n-simplex of the join ∆p ⋆∆q.
We wish to show that u(σ) belongs to the boundary ∂∆p+1+q if and only if σ belongs to the
union of the simplicial subsets

∂∆p ⋆∆q ⊆ ∆p ⋆∆q ⊇ ∆p ⋆ ∂∆q .

We consider three cases (see Remark 4.3.3.15):
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• The simplex σ belongs to the simplicial subset ∆p ⊆ ∆p ⋆ ∆q. In this case, σ is
contained in ∆p ⋆ ∂∆q and u(σ) is contained in ∂∆p+1+q.

• The simplex σ belongs to the simplicial subset ∆q ⊆ ∆p ⋆ ∆q. In this case, σ is
contained in ∂∆p ⋆∆q and u(σ) is contained in ∂∆p+1+q.

• The simplex σ factors as a composition

∆n = ∆p′+1+q′ ≃ ∆p′ ⋆∆q′ σ−⋆σ+−−−−→ ∆p ⋆∆q.

In this case, σ belongs to the union (∂∆p ⋆∆q)∪ (∆p ⋆ ∂∆q) if and only if either σ− or
σ+ fails to be surjective at the level of vertices. This is equivalent to the requirement
that the map u(σ) : ∆n → ∆p+1+q fails to be surjective at the level of vertices: that is,
it is a simplex of the boundary ∂∆p+1+q.

4.3.7 Slices of Left and Right Fibrations

018P In this section, we collect some further applications of Lemma 4.3.6.15.

Proposition 4.3.7.1.018Q Let f : A ↪→ A′ and g : B ↪→ B′ be monomorphisms of simplicial
sets, and let

θf,g : (A ⋆ B′)
∐

(A⋆B)
(A′ ⋆ B) ↪→ A′ ⋆ B′

be the pushout-join of Construction 4.3.6.3. If f is anodyne, then θf,g is left anodyne. If g
is anodyne, then θf,g is right anodyne.

Proof. We will prove the first assertion; the proof of the second is similar. We proceed as in
the proof of Proposition 4.3.6.4. Let us first regard the anodyne morphism f as fixed, and
let T be the collection of all morphisms g of simplicial sets for which θf,g is left anodyne.
Then T weakly saturated (in the sense of Definition 1.5.4.12). We wish to prove that T
contains every monomorphism of simplicial sets. By virtue of Proposition 1.5.5.14, we are
reduced to proving that the morphism θf,g is left anodyne in the special case where g is the
boundary inclusion ∂∆q ↪→ ∆q for some q ≥ 0.

Let us now regard g : ∂∆q ↪→ ∆q as fixed, and let S denote the collection of all morphisms
of simplicial sets for which θf,g is left anodyne. To complete the proof, we must show that S
contains every anodyne morphism of simplicial sets. As before, we note that S is weakly
saturated. It will therefore suffice to show that S contains every horn inclusion Λp

i ↪→ ∆p

when p > 0 and 0 ≤ i ≤ p. In other words, we are reduced to checking that the pushout-join

θf,g : (Λpi ⋆∆q)
∐

(Λp
i ⋆∂∆q)

(∆p ⋆ ∂∆q) ↪→ ∆p ⋆∆q
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is left anodyne. This is clear, since θf,g can be identified with the horn inclusion Λp+1+q
i ↪→

∆p+1+q by virtue of Lemma 4.3.6.15.

Proposition 4.3.7.2. 018RLet f : K → X and q : X → S be morphisms of simplicial sets, let
K0 ⊆ K be a simplicial subset, and set f0 = f |K0. Then:

• If q is a left fibration, then the induced map

X/f → X/f0 ×S/(q◦f0) S/(q◦f)

is a Kan fibration.

• If q is a right fibration, then the induced map

Xf/ → Xf0/ ×S(q◦f0)/
S(q◦f)/

is a Kan fibration.

Proof. We will prove the first assertion; the proof of the second is similar. Assume that
q is a left fibration; we wish to show that the map X/f → X/f0 ×S/(q◦f0) S/(q◦f) is a Kan
fibration. Equivalently, we wish to show that every lifting problem

A //

��

X/f

��
A′ //

99

X/f0 ×S/(q◦f0) S/(q◦f)

admits a solution, provided that the left vertical map A→ A′ is anodyne. Unwinding the
definitions, we see that this can be rephrased as a lifting problem

(A ⋆ K) ∐
(A⋆K0)(A′ ⋆ K0) //

��

X

q

��
A′ ⋆ K //

88

S.

This problem admits a solution, since the vertical map on the left is left anodyne (Proposition
4.3.7.1) and q is a left fibration.

Corollary 4.3.7.3. 018SLet f : K → X and q : X → S be morphisms of simplicial sets. Then:
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• If q is a left fibration, then the induced map

X/f → X ×S S/(q◦f)

is a Kan fibration.

• If q is a right fibration, then the induced map

Xf/ → X ×S S(q◦f)/

is a Kan fibration.

Proof. Apply Proposition 4.3.7.2 in the special case K0 = ∅.

Corollary 4.3.7.4.018T Let X be a Kan complex, let f : K → X be a morphism of simplicial
sets, let K0 ⊆ K be a simplicial subset, and set f0 = f |K0. Then the restriction maps

X/f → X/f0 Xf/ → Xf0/

are Kan fibrations.

Proof. Apply Proposition 4.3.7.2 in the special case S = ∆0.

Corollary 4.3.7.5.018U Let X be a Kan complex and let f : K → X be a morphism of simplicial
sets. Then the projection maps

X/f → X Xf/ → X

are Kan fibrations. In particular, the simplicial sets X/f and Xf/ are Kan complexes.

Proof. Apply Corollary 4.3.7.4 in the special case K0 = ∅ (or Corollary 4.3.7.3 in the special
case S = ∆0).

Proposition 4.3.7.6.018V Let f : K → X and q : X → S be morphisms of simplicial sets, let
K0 ⊆ K be a simplicial subset, and set f0 = f |K0. Then:

• If q is a right fibration and the inclusion K0 ↪→ K is anodyne, then the induced map

X/f → X/f0 ×S/(q◦f0) S/(q◦f)

is a trivial Kan fibration.

• If q is a left fibration and the inclusion K0 ↪→ K is anodyne, then the induced map

Xf/ → Xf0/ ×S(q◦f0)/
S(q◦f)/

is a trivial Kan fibration.
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Proof. We will prove the first assertion; the proof of the second is similar. Assume that q is
a right fibration and that the inclusion K0 ↪→ K is anodyne. We wish to show that the map
X/f → X/f0 ×S/(q◦f0) S/(q◦f) is a trivial Kan fibration. Equivalently, we wish to show that
every lifting problem

A //

��

X/f

��
A′ //

99

X/f0 ×S/(q◦f0) S/(q◦f)

admits a solution, provided that the left vertical map A→ A′ is a monomorphism. Unwinding
the definitions, we see that this can be rephrased as a lifting problem

(A ⋆ K) ∐
(A⋆K0)(A′ ⋆ K0) //

��

X

q

��
A′ ⋆ K //

88

S.

This problem admits a solution, since the vertical map on the left is right anodyne (Proposi-
tion 4.3.7.1) and q is a right fibration.

Corollary 4.3.7.7. 018WLet X be a Kan complex, let f : K → X be a morphism of simplicial
sets, let K0 ⊆ K be a simplicial subset for which the inclusion K0 ↪→ K is anodyne, and set
f0 = f |K0. Then the restriction maps

X/f → X/f0 Xf/ → Xf0/

are trivial Kan fibrations.

Proof. Apply Proposition 4.3.7.6 in the special case S = ∆0.

We now record some variants of the preceding results.

Lemma 4.3.7.8. 0196Let f : A ↪→ B be a monomorphism of simplicial sets. Then the inclusion
f▷ : A▷ ↪→ B▷ is right anodyne, and the inclusion A◁ ↪→ B◁ is left anodyne.

Proof. We will prove the first assertion (the second follows by a similar argument). Let T be
the collection of all morphisms f of simplicial sets for which f▷ is right anodyne. We wish to
show that every monomorphism belongs to T . Since the collection T is weakly saturated, it
will suffice to show that every boundary inclusion f : ∂∆n ↪→ ∆n belongs to T (Proposition
1.5.5.14). In this case, we can identify f▷ with the with the horn inclusion Λn+1

n+1 ↪→ ∆n+1

(see Example 4.3.3.28).
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Lemma 4.3.7.8 immediately implies the following stronger assertion:
Proposition 4.3.7.9.0197 Let X and Y be simplicial sets. If X is weakly contractible and Y ′ is
a simplicial subset of Y , then the inclusion X ⋆ Y ′ ↪→ X ⋆ Y is left anodyne. If Y is weakly
contractible and X ′ is a simplicial subset of X, then the inclusion X ′ ⋆ Y ↪→ X ⋆ Y is right
anodyne.

Proof. We will prove the first assertion; the second follows by a similar argument. Fix a
vertex x ∈ X, so that the inclusion morphism ι : X ⋆ Y ′ ↪→ X ⋆ Y factors as a composition

X ⋆ Y ′
ι′−→ (X ⋆ Y ′)

∐
({x}⋆Y ′)

({x} ⋆ Y ) ι′′−→ X ⋆ Y.

The morphism ι′ is a pushout of the inclusion Y ′◁ ↪→ Y ◁, and is left anodyne by virtue of
Lemma 4.3.7.8. It will therefore suffice to show that ι′′ is left anodyne. This is a special case
of Proposition 4.3.7.1, since the inclusion map {x} ↪→ X is a weak homotopy equivalence (by
virtue of our assumption that X is weakly contractible) and therefore anodyne (by virtue of
Corollary 3.3.7.7).

Example 4.3.7.10.0198 Let X and Y be simplicial sets. If X is weakly contractible, then
Proposition 4.3.7.9 guarantees that the inclusion ιX : X ↪→ X ⋆ Y is left anodyne. If Y is
weakly contractible, then Proposition 4.3.7.9 guarantees that the inclusion ιY : Y ↪→ X ⋆ Y

is right anodyne.
Example 4.3.7.11.02LJ Let X be a simplicial set, and let v denote the cone point of the
simplicial set X▷. Then the inclusion {v} ↪→ X▷ is right anodyne. In particular, it is a weak
homotopy equivalence.
Proposition 4.3.7.12.0199 Let q : X → S and f : K → X be morphisms of simplicial sets.
Then:

• If q is a right fibration and K is weakly contractible, then the induced map X/f → S/(q◦f)
is a trivial Kan fibration.

• If q is a left fibration and K is weakly contractible, then the induced map Xf/ → S(q◦f)/
is a trivial Kan fibration.

Proof. We will prove the first assertion; the second follows by a similar argument. To show
that the morphism X/f → S/(q◦f) is a trivial Kan fibration, we must prove that every lifting
problem

∂∆n //

��

X/f

��
∆n //

==

S/q◦f
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admits a solution. Unwinding the definitions, we can rephrase this as a lifting problem

(∂∆n) ⋆ K //

��

X

q

��
(∆n) ⋆ K

;;

// S.

This lifting problem admits a solution, since q is assumed to be a right fibration and the left
vertical map is right anodyne (Proposition 4.3.7.9).

Corollary 4.3.7.13. 02LKLet q : X → S be a morphism of simplicial sets, and let x ∈ X be a
vertex having image s = q(x) in S. Then:

• If q is a right fibration, then the induced map X/x → S/s is a trivial Kan fibration.

• If q is a left fibration, then the induced map Xx/ → Ss/ is a trivial Kan fibration.

Corollary 4.3.7.14. 018YLet X be a Kan complex containing a vertex x. Then the simplicial
sets X/x and Xx/ are contractible Kan complexes.

Proof. Apply Corollary 4.3.7.13 in the special case S = ∆0.

Proposition 4.3.7.15. 018ZLet f : K → X and q : X → S be morphisms of simplicial sets, let
K0 ⊆ K be a simplicial subset, and set f0 = f |K0. If q is a trivial Kan fibration, then the
induced maps

X/f → X/f0 ×S/(q◦f0) S/(q◦f) Xf/ → Xf0/ ×S(q◦f0)/
S(q◦f)/

are also trivial Kan fibrations.

Proof. To show that the map X/f → X/f0 ×S/(q◦f0) S/(q◦f) is a trivial Kan fibration, we must
show that every lifting problem every lifting problem

A //

��

X/f

��
A′ //

99

X/f0 ×S/(q◦f0) S/(q◦f)
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admits a solution, provided that the left vertical map A→ A′ is a monomorphism. Unwinding
the definitions, we see that this can be rephrased as a lifting problem

(A ⋆ K) ∐
(A⋆K0)(A′ ⋆ K0) //

��

X

q

��
A′ ⋆ K //

88

S.

This problem admits a solution, since the vertical map on the left is a monomorphism
(Proposition 4.3.7.1) and q is a trivial Kan fibration.

Corollary 4.3.7.16.0190 Let q : X → S be a trivial Kan fibrations of simplicial sets and let
f : K → X be any morphism of simplicial sets. Then the induced maps

X/f → X ×S S/(q◦f) Xf/ → X ×S S(q◦f)/

are trivial Kan fibrations.

Proof. Apply Proposition 4.3.7.15 in the special case K0 = ∅.

Corollary 4.3.7.17.01NT Let q : X → S be a trivial Kan fibration of simplicial sets and let
f : K → X be any morphism of simplicial sets. Then the induced maps

X/f → S/(q◦f) Xf/ → S(q◦f)/

are trivial Kan fibrations.

Corollary 4.3.7.18.0191 Let X be a contractible Kan complex, let f : K → X be a morphism
of simplicial sets, let K0 be a simplicial subset of K, and set f0 = f |K0 . Then the restriction
maps

X/f → X/f0 Xf/ → Xf0/

are trivial Kan fibrations.

Proof. Apply Proposition 4.3.7.15 in the special case S = ∆0.

Corollary 4.3.7.19.0192 Let X be a contractible Kan complex and let f : K → X be a morphism
of simplicial sets. Then the projection maps

X/f → X Xf/ → X

are trivial Kan fibrations. In particular, X/f and Xf/ are also contractible Kan complexes.

Proof. Apply Corollary 4.3.7.16 in the special case S = ∆0 (or Corollary 4.3.7.18 in the
special case K0 = ∅).
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4.4 Isomorphisms and Isofibrations

01EMLet C be an ∞-category. Recall that a morphism u : X → Y in C is an isomorphism if
the homotopy class [u] is an isomorphism in the homotopy category hC (Definition 1.4.6.1).
Our goal in this section is to study the notion of isomorphism in more detail.

Our first goal is to show that the class of isomorphisms can be characterized by a lifting
property. Let u : X → Y be an isomorphism in an ∞-category C, and let f : X → Z be any
other morphism in C. Then the composition [f ] ◦ [u]−1 ∈ HomhC(Y,Z) can be written as
the homotopy class of some morphism g : Y → Z in C. The equality of homotopy classes
[f ] = [g] ◦ [u] is witnessed by some 2-simplex σ which we depict as a diagram

Y

g

  
X

u

??

f // Z.

Phrased differently, u and f determine a morphism of simplicial sets σ0 : Λ2
0 → C, and the

preceding argument shows that σ0 can be extended to a 2-simplex of C. In §4.4.2, we extend
this argument to simplices of higher dimension. Suppose that we are given an integer n ≥ 2
and a morphism of simplicial sets σ0 : Λni → C. If 0 < i < n, then σ0 can be extended to an
n-simplex of C by virtue of our assumption that C is an ∞-category. In the extreme cases
i = 0 and i = n, such an extension need not exist. However, we will show that it exists in
the case i = 0 when σ0 carries the initial edge N•({0 < 1}) ⊆ Λni to an isomorphism in C, or
in the case i = n when σ0 carries the final edge N•({n− 1 < n}) ⊆ Λni to an isomorphism in
C (Theorem 4.4.2.6).

Theorem 4.4.2.6 has a number of useful consequences. For example, it implies that
an ∞-category C is a Kan complex if and only if every morphism of C is an isomorphism
(Proposition 4.4.2.1). More generally, it implies that any ∞-category C contains a largest
Kan complex, which we will denote by C≃ and refer to as the core of C (Construction 1.3.5.4).
The construction C 7→ C≃ supplies a link between the theory of∞-categories and the classical
homotopy theory of Kan complexes, which will play an important role throughout this book.

Let F : C → D be an inner fibration of ∞-categories. Then, for every object D ∈ D,
the fiber CD = {D} ×D C is an ∞-category (Remark 4.1.1.6). Beware that, in general, this
construction behaves poorly with respect to isomorphisms. For example, if the fiber CD is
nonempty and D′ ∈ D is an object which is isomorphic to D, then the fiber CD′ could be
empty. One can rule out this sort of behavior by imposing an additional assumption on the
functor F . In §4.4.1, we introduce the notion of an isofibration of ∞-categories (Definition
4.4.1.4). Roughly speaking, an isofibration between ∞-categories is an inner fibration which
also satisfies a path lifting property for isomorphisms. This condition guarantees that passage
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to the fiber is a homotopy invariant operation. For example, if F : C → D is an isofibration
of ∞-categories, then it restricts to a Kan fibration of cores F≃ : C≃ → D≃ (Proposotion
4.4.3.7).

Let B be a simplicial set containing a simplicial subset A. Recall that, for every ∞-
category C, the restriction functor θ : Fun(B, C)→ Fun(A, C) is an inner fibration (Corollary
4.1.4.2). In §4.4.5, we prove that θ is an isofibration (Corollary 4.4.5.3; see Proposition
4.4.5.1 for a stronger relative statement). The proof is based on the following recognition
principle, which we establish in §4.4.4: if C is an ∞-category and u : F → G is a morphism
in an ∞-category of the form Fun(X, C), then u is an isomorphism in Fun(X, C) if and only
if, for every vertex x ∈ X, the induced map ux : F (x) → G(x) is an isomorphism in the
∞-category C (Theorem 4.4.4.4). In other words, if each ux admits a homotopy inverse
vx : G(x)→ F (x), then we can choose the morphisms {vx}x∈X (and homotopies witnessing
the identifications vx ◦ ux ≃ idF (x) and ux ◦ vx ≃ idG(x)) to depend functorially on x ∈ X.

4.4.1 Isofibrations of ∞-Categories

01ER Let us begin by reviewing a bit of classical category theory.

Definition 4.4.1.1.01EN Let F : C → D be a functor between categories. We say that F is an
isofibration if it satisfies the following condition:

(∗) For every object C ∈ C and every isomorphism u : D → F (C) in the category D, there
exists an isomorphism u : D → C in the category C satisfying F (u) = u.

Example 4.4.1.2.01EP Let F : C → D be a functor between categories. If F is a fibration in
groupoids (or an opfibration in groupoids), then F is an isofibration. For a more general
statement, see Example 4.4.1.11.

The notion of isofibration is self-dual:

Proposition 4.4.1.3.01EQ Let F : C → D be a functor between categories. Then F is an
isofibration if and only if the opposite functor F op : Cop → Dop is an isofibration.

Proof. Assume that F is an isofibration; we will show that F op is also an isofibration (the
reverse implication follows by the same argument). Fix an object C ∈ C and an isomorphism
u : F (C) → D in the category D. Since F is an isofibration, the inverse isomorphism
u−1 : D → F (C) can be lifted to an isomorphism v : D → C in the category C. Then
v−1 : C → D satisfies F (v−1) = u.

We now introduce an ∞-categorical counterpart of Definition 4.4.1.1.

Definition 4.4.1.4.01ES Let F : C → D be a functor between ∞-categories. We say that F
is an isofibration if it is an inner fibration (Definition 4.1.1.1) which satisfies the following
additional condition:
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(∗) For every object C ∈ C and every isomorphism u : D → F (C) in the category D, there
exists an isomorphism u : D → C in the category C satisfying F (u) = u.

Example 4.4.1.5. 01ETLet F : C → D be a functor between ordinary categories. Then F is an
isofibration (in the sense of Definition 4.4.1.1) if and only if the induced map of simplicial sets
N•(F ) : N•(C)→ N•(D) is an isofibration of∞-categories. This follows from the observation
that N•(F ) is automatically an inner fibration (see Proposition 4.1.1.10).

Example 4.4.1.6. 01GVLet C be an ∞-category and let D be an ordinary category. By virtue of
Proposition 4.1.1.10, every functor F : C → N•(D) is automatically an inner fibration. If
every isomorphism in D is an identity morphism, then F is also an isofibration. In particular,
every functor of ∞-categories C → ∆n is automatically an isofibration.

Proposition 4.4.1.7. 01EULet F : C → D be an inner fibration between ∞-categories. Then
F is an isofibration of ∞-categories (in the sense of Definition 4.4.1.4) if and only if the
induced functor of homotopy categories f : hC → hD is an isofibration of ordinary categories
(in the sense of Definition 4.4.1.1).

Proof. Assume first that F is an isofibration and let C ∈ C be an object, and let [u] : D →
F (C) be an isomorphism in the homotopy category hD, given by the homotopy class of some
morphism u : D → F (C) in the∞-category D. Then u is an isomorphism, so our assumption
that F is an isofibration guarantees that we can lift u to an isomorphism u : D → C in the
∞-category C. The homotopy class [u] is then an isomorphism in the homotopy category hC
satisfying f([u]) = [u]. Allowing C and [u] to vary, we conclude that f is an isofibration of
ordinary categories.

Now suppose that f is an isofibration, let C ∈ C be an object, and let u : D → F (C)
be an isomorphism in the ∞-category D. Then the homotopy class [u] : D → F (C) is an
isomorphism in the homotopy category hD. Invoking our assumption that f is an isofibration,
we conclude that there exists an isomorphism [v] : D → C in the homotopy category hC
satisfying f([v]) = [u]. Then [v] can be realized as the homotopy class of some morphism
v : D → C in the ∞-category C, which is automatically an isomorphism. The equation
f([v]) = [u] guarantees that there exists a homotopy from F (v) to u in the ∞-category D,
given by a 2-simplex σ :

F (C)

idF (C)

""
D

F (v)

>>

u // F (C).
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Since F is an inner fibration, it is weakly right orthogonal to the inclusion Λ2
1 ↪→ ∆2. We

can therefore lift σ to a 2-simplex σ :

C

idC

��
D

v

??

u // C.

in the ∞-category C. Since v and idC are isomorphisms, it follows that u is an isomorphism
(Remark 1.4.6.3). Allowing C and u to vary, we conclude that F is an isofibration of
∞-categories.

Corollary 4.4.1.8.01EV Let F : C → D be a functor between ∞-categories. Then F is an
isofibration if and only if the opposite functor F op : Cop → Dop is an isofibration.

Proof. Combine Proposition 4.4.1.7, Proposition 4.4.1.3, and Remark 4.1.1.3.

Corollary 4.4.1.9.056Z Let C be an ∞-category. Then the tautological map U : C → N•(hC) is
an isofibration of ∞-categories.

Proof. It follows from Proposition 4.1.1.10 that U is an inner fibration. Since U induces an
isomorphism of homotopy categories, Proposition 4.4.1.7 guarantees that U is an isofibration.

Remark 4.4.1.10.01GW Let F : C → D and G : D → E be isofibrations of ∞-categories. Then
the composition G ◦ F is also an isofibration of ∞-categories (for a more general statement,
see Remark 4.5.5.13).

Example 4.4.1.11.01EW Let F : C → D be a right fibration between ∞-categories. Then F is
an inner fibration (Remark 4.2.1.4), and any isomorphism u : D → F (C) can be lifted to a
morphism u : D → C in C, which is automatically an isomorphism by virtue of Proposition
4.4.2.11. It follows that F is an isofibration. Similarly, any left fibration of ∞-categories is
an isofibration. For a more general statement, see Corollary 5.6.7.5.

Example 4.4.1.12 (Replete Subcategories).01EX Let C be an ∞-category and let C′ ⊆ C be a
subcategory (Definition 4.1.2.2). The following conditions are equivalent:

(1) The inclusion functor C′ ↪→ C is an isofibration.

(2) If u : X → Y is an isomorphism in C and the object Y belongs to the subcategory C′,
then the isomorphism u also belongs to the subcategory C′ (and, in particular, the
object X also belongs to C′).
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(3) If u : X → Y is an isomorphism in C and the object X belongs to the subcategory C′,
then the isomorphism u also belongs to the subcategory C′ (and, in particular, the
object Y also belongs to C′).

If these conditions are satisfied, then we say that the subcategory C′ ⊆ C is replete.

Exercise 4.4.1.13. 01GXLet X be a Kan complex, and let Y ⊆ X be a simplicial subset. Show
that Y is a summand of X (Definition 1.2.1.1) if and only if it is a replete full subcategory
of X.

Example 4.4.1.14. 01EYLet C be an ∞-category, and let Isom(C) denote the full subcategory of
Fun(∆1, C) spanned by the isomorphisms in C. Then the subcategory Isom(C) ⊆ Fun(∆1, C)
is replete. Unwinding the definitions, this amounts to the observation that for every
commutative diagram

X
u //

v

��

Y

v′

��
X ′

u′ // Y ′

in the ∞-category C where u, v, and v′ are isomorphisms, the morphism u′ is also an
isomorphism. This follows immediately from the two-out-of-three property of Remark
1.4.6.3.

4.4.2 Isomorphisms and Lifting Properties

019CRecall that a morphism of simplicial sets X → S is a Kan fibration if and only if it is
both a left fibration and a right fibration (Example 4.2.1.5). In the special case S = ∆0,
either one of these conditions is individually sufficient.

Proposition 4.4.2.1 (Joyal [32]). 019DLet X be a simplicial set. The following conditions are
equivalent:

(a) The projection map X → ∆0 is a Kan fibration.

(b) The simplicial set X is a Kan complex.

(c) The simplicial set X is an ∞-category and the homotopy category hX is a groupoid.

(d) The simplicial set X is an ∞-category and every morphism in X is an isomorphism.

(e) The projection map X → ∆0 is a left fibration.

(f) The projection map X → ∆0 is a right fibration.
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Corollary 4.4.2.2 (Duskin [17]).02BV Let C be a 2-category. Then C is a 2-groupoid (in the
sense of Definition 2.2.8.24) if and only if the Duskin nerve ND

• (C) is a Kan complex.

Proof. The 2-category C is a 2-groupoid if and only if it is a (2, 1)-category and the homotopy
category hC is a groupoid (Remark 2.2.8.25). The first condition is equivalent to the
requirement that ND

• (C) is an ∞-category (Theorem 2.3.2.1). If this condition is satisfied,
then Corollary 2.3.4.6 supplies an isomorphism hC ≃ hND

• (C). The desired equivalence now
follows from Proposition 4.4.2.1.

Corollary 4.4.2.3.019E Let q : X → S be morphism of simplicial sets which is either a left or a
right fibration. Then, for every vertex s ∈ S, the fiber Xs = {s} ×S X is a Kan complex.

Proof. Combine Proposition 4.4.2.1 with Remark 4.2.1.8.

Corollary 4.4.2.4.01GY Suppose we are given a commutative diagram of simplicial sets

A
f //

i

��

X

q

��
B

g //

f

??

S,

where i is a monomorphism. Then:

• If q is either a left or right fibration, then the simplicial set FunA//S(B,X) of Con-
struction 3.1.3.7 is a Kan complex.

• If q is a left fibration and i is left anodyne, then the Kan complex FunA//S(B,X) is
contractible.

• If q is a right fibration and i is right anodyne, then the Kan complex FunA//S(B,X)
is contractible.

Proof. Without loss of generality, we may assume that q is a left fibration. By virtue of
Remark 3.1.3.11, the simplicial set FunA//S(B,X) can be identified with a fiber of the
restriction map

θ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S).

Proposition 4.2.5.1 asserts that θ is a left fibration of simplicial sets, so its fibers are
Kan complexes (Corollary 4.4.2.3). If i is left anodyne, then θ is a trivial Kan fibration
(Proposition 4.2.5.4), so its fibers are contractible Kan complexes.
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Corollary 4.4.2.5. 01GZLet q : X → S and g : B → S be morphisms of simplicial sets. If q
is either a left fibration or a right fibration, then the simplicial set Fun/S(B,X) is a Kan
complex.

Proof. Apply Corollary 4.4.2.4 in the special case A = ∅.

Our proof of Proposition 4.4.2.1 is based on the following characterization of isomorphisms
in an ∞-category C:

Theorem 4.4.2.6 (Joyal). 019FLet C be an ∞-category and let u : X → Y be a morphism of C.
The following conditions are equivalent:

(1) The morphism u is an isomorphism.

(2) Let n ≥ 2 and let σ0 : Λn0 → C be a morphism of simplicial sets for which the initial edge

∆1 ≃ N•({0 < 1}) ↪→ Λn0
σ0−→ C

is equal to u. Then σ0 can be extended to an n-simplex σ : ∆n → C.

(3) Let n ≥ 2 and let σ0 : Λnn → C be a morphism of simplicial sets for which the final edge

∆1 ≃ N•({n− 1 < n}) ↪→ Λnn
σ0−→ C

is equal to u. Then σ0 can be extended to an n-simplex σ : ∆n → C.

Proof of Proposition 4.4.2.1 from Theorem 4.4.2.6. Let X be a simplicial set. By definition,
the projection map X → ∆0 is a left fibration if and only if, for every pair of integers
0 ≤ i < n, every morphism of simplicial sets σ0 : Λni → X can be extended to an n-simplex
σ : ∆n → X. This condition is automatically satisfied when n = 1 (we can identify σ0 with
a vertex x ∈ X, and take σ to be the degenerate edge idx), and is satisfied for 0 < i < n if
and only if X is an ∞-category. Assuming that X is an ∞-category, it is satisfied for i = 0
if and only if every morphism in X is an isomorphism (by virtue of Theorem 4.4.2.6). This
proves the equivalence (d) ⇔ (e), and the equivalence (d) ⇔ (f) follows by applying the
same reasoning to the opposite simplicial set Xop. In particular, (e) and (f) are equivalent
to one another, and therefore equivalent to (a) (see Example 4.2.1.5). The equivalences
(a)⇔ (b) and (c)⇔ (d) are immediate from the definitions.

The proof of Theorem 4.4.2.6 will require some preliminaries.

Definition 4.4.2.7. 019GLet C and D be ∞-categories. We will say that a functor F : C → D is
conservative if it satisfies the following condition:

• Let u : X → Y be a morphism in C. If F (u) : F (X)→ F (Y ) is an isomorphism in the
∞-category D, then u is an isomorphism.
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Example 4.4.2.8.019H Let C be an ∞-category. Then the canonical map C → N•(hC) is
conservative.

Example 4.4.2.9.02QX Let D be an ∞-category, and let C ⊆ D be a replete subcategory
(Example 4.4.1.12). Then the inclusion map C ↪→ D is conservative. That is, if u : X → Y

is a morphism of C which is an isomorphism in D, then u is an isomorphism in C. To prove
this, we observe that if v : Y → X is a homotopy inverse of u in the ∞-category D, then the
morphism v also belongs to C (by virtue of our assumption that C is a replete subcategory
of D) and is also a homotopy inverse to u in C.

Remark 4.4.2.10.019J Let F : C → D and G : D → E be functors between ∞-categories, where
G is conservative. Then F is conservative if and only if the composition (G ◦ F ) : C → E is
conservative.

Proposition 4.4.2.11.019K Let F : C → D be a functor between ∞-categories. If F is a left or
a right fibration, then F is conservative.

Proof. Without loss of generality, we may assume that F is a left fibration. Let u : X → Y

be a morphism in C, and suppose that F (u) is an isomorphism in D. Let v : F (Y )→ F (X)
is a homotopy inverse to F (u), so that there exists a 2-simplex σ of D as depicted in the
following diagram:

F (Y )

v

""
F (X)

F (u)

<<

F (idX) // F (X).

Invoking our assumption that F is a left fibration, we can lift σ to a diagram

Y

v

��
X

u

??

idX // X

in the ∞-category C. This lift supplies a morphism v : Y → X and witnesses idX as a
composition of v with u, so that v is a left homotopy inverse to u. Moreover, the image
F (v) = v is an isomorphism in D. Repeating the preceding argument (with u : X → Y

replaced by v : Y → X), we deduce that there exists a morphism w : X → Y which is left
homotopy inverse to v. It follows that u and w are homotopic, so that v is a homotopy
inverse to u (Remark 1.4.6.6). In particular, u is an isomorphism.
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Corollary 4.4.2.12. 02BWLet F : C → D be a conservative functor of ∞-categories and let
q : K → C be a diagram in C. Then the induced functors

Fq/ : Cq/ → D(F◦q)/ F/q : C/q → D/(F◦q)

are also conservative.

Proof. We will show that the functor F/q is conservative; the conservativity of Fq/ follows
by a similar argument. Let π : C/q → C and π′ : D/(F◦q) → D denote the projection maps.
Then π and π′ are right fibrations of ∞-categories (Proposition 4.3.6.1), and therefore
conservative (Proposition 4.4.2.11). Since F is conservative, from Remark 4.4.2.10 that the
functor F ◦ π = π′ ◦ F/q is also conservative. Applying Remark 4.4.2.10 again, we conclude
that F/q is conservative.

Proposition 4.4.2.13. 01H0Let q : C → D be an inner fibration of ∞-categories, let u be an
isomorphism in C, let n ≥ 2 be an integer, and suppose we are given a lifting problem

Λnn
σ0 //

��

C

q

��
∆n

σ

>>

σ // D .

If the composite map
∆1 ≃ N•({n− 1 < n}) ↪→ Λnn

σ0−→ C

is equal to u, then there exists an n-simplex σ : ∆n → C rendering the diagram commutative.

Proof. Using Lemma 4.3.6.15, we can identify the horn Λnn with the pushout

(∆n−2 ⋆ {1})
∐

(∂∆n−2 ⋆{1})

(∂∆n−2 ⋆∆1) ⊆ ∆n−2 ⋆∆1 ≃ ∆n.

Set f = σ0|∆n−2 and f0 = σ0|∂∆n−2 , and let E denote the fiber product Cf0/×D(q◦f0)/
D(q◦f)/.

Note that there is an evident projection map θ : E → C, given by the composition

E θ′−→ Cf0/
θ′′−→ C .

The morphism θ′′ is a left fibration (Proposition 4.3.6.1), and the morphism θ′ is a pullback
of the restriction map D(q◦f)/ → D(q◦f0)/ and is therefore also a left fibration (Corollary
4.3.6.13). It follows that θ : E → C is a left fibration (Remark 4.2.1.11), and in particular E
is an ∞-category (Remark 4.1.1.9).
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Note that the restriction of σ0 to ∆n−2 ⋆ {1} can be identified with an object Y of the
coslice ∞-category Cf/. Let

ρ : Cf/ → Cf0/×D(q◦f0)/
D(q◦f)/ = E

be the left fibration of Proposition 4.3.6.8, and set Y = ρ(Y ) ∈ E . Then the restriction
σ0|∂∆n−2 ⋆∆1 and σ determine a morphism v : X → Y in the ∞-category E . Unwinding
the definitions, we see that choosing an n-simplex σ : ∆n → C satisfying the requirements
of Proposition 4.4.2.13 is equivalent to choosing a morphism v : X → Y in Cf/ satisfying
ρ(v) = v. Since ρ is a left fibration, it is an isofibration (Example 4.4.1.11). Consequently, to
prove the existence of v, it will suffice to show that v is an isomorphism in the ∞-category E .
Since θ is a left fibration, this follows from our assumption that u = θ(v) is an isomorphism
in the ∞-category C (Proposition 4.4.2.11).

Proof of Theorem 4.4.2.6. The implication (1)⇒ (3) is a special case of Proposition 4.4.2.13.
We will complete the proof by showing that (3)⇒ (1) (a similar argument shows that (1)
and (2) are equivalent). Let u : X → Y be a morphism in an ∞-category C, and consider
the map σ0 : Λ2

2 → C depicted in the diagram

X

u

  
Y

v

??

idY // Y.

If u satisfies condition (3), then we can complete σ0 to a 2-simplex σ of C, which witnesses
the morphism v = d2

2(σ) as a right homotopy inverse of u. The tuple (σ, s1
0(u), s1

1(u), •) then
determines a morphism of simplicial sets τ0 : Λ3

3 → C (see Proposition 1.2.4.7). Invoking
assumption (3) again, we can extend τ0 to a 3-simplex τ of C. The face d3

3(τ) then witnesses
that v is also a left homotopy inverse to u, so that u is an isomorphism as desired.

We close this section by recording another useful consequence of Proposition 4.4.2.13:

Proposition 4.4.2.14.01NU Let q : X → S be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism q is a trivial Kan fibration.

(2) The morphism q is a left fibration and, for every vertex s ∈ S, the fiber Xs = {s} ×S X
is a contractible Kan complex.

(3) The morphism q is a right fibration and, for every vertex s ∈ S, the fiber Xs = {s}×S X
is a contractible Kan complex.
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We will deduce Proposition 4.4.2.14 from the following more precise assertion:

Lemma 4.4.2.15. 01A7Let q : X → S be a left fibration of simplicial sets, let s ∈ S be a vertex
having the property that the Kan complex Xs = {s}×S X is contractible, and let σ : ∆n → S

be an n-simplex of S satisfying σ(n) = s. Then every lifting problem

∂∆n σ0 //

��

X

q

��
∆n σ //

σ

==

S

admits a solution.

Proof. When n = 0, the desired result follows from the fact that the fiber Xs is nonempty.
We may therefore assume without loss of generality that n > 0. Replacing q by the projection
map ∆n ×S X → ∆n, we may further reduce to the special case where S = ∆n and σ is the
identity map. In this case, our assumption that q is a left fibration guarantees that X is an
∞-category (Remark 4.1.1.9).

Let h : ∆1×∆n → ∆n be the morphism given on vertices by h(i, j) =

j if i = 0
n if i = 1.

Since

the inclusion {0} × ∂∆n ↪→ ∆1 × ∂∆n is left anodyne (Proposition 4.2.5.3), our assumption
that q is a left fibration guarantees the existence of a morphism h′ : ∆1×∂∆n → X satisfying
h′|{0}×∂∆n = σ0 and q ◦ h′ = h|∆1×∂∆n . We will complete the proof by showing that h′ can
be extended to a map h : ∆1×∆n → X satisfying q ◦ h = h (in this case, our original lifting
problem admits the solution σ = h|{0}×∆n).

Let Y (0) ⊂ Y (1) ⊂ Y (2) ⊂ · · · ⊂ Y (n+ 1) = ∆1 ×∆n denote the filtration constructed
in the proof of Lemma 3.1.2.12. Then Y (0) can be described as the pushout

(∆1 × ∂∆n)
∐

({1}×∂∆n)
({1} ×∆n).

Using our assumption that the fiber Xs is a contractible Kan complex, we see that h′ can
be extended to a morphism of simplicial sets h0 : Y (0)→ X satisfying q ◦ h0 = h|Y (0). We
claim that h0 can be extended to a compatible sequence of maps hi : Y (i)→ X satisfying
q ◦ hi = h|Y (i). To prove this, we recall that each Y (i+ 1) can be realized as a pushout of
the horn inclusion Λn+1

i+1 ↪→ ∆n+1, so that the construction of hi+1 from hi can be rephrased
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as a lifting problem
Λn+1
i+1

fi //

��

X

q

��
∆n+1 //

>>

S.

For 0 ≤ i < n, this lifting problem is automatically solvable by virtue of our assumption
that q is a left fibration. In the case i = n, the edge

∆1 ≃ N•({n, n+ 1}) ↪→ Λn+1
n+1

fi−→ X

is an edge of the Kan complex Xs, and is therefore an isomorphism in the ∞-category
X (Proposition 1.4.6.10). In this case, the existence of the desired extension follows from
Theorem 4.4.2.6. We complete the proof by taking h = hn+1.

Proof of Proposition 4.4.2.14. The implication (1) ⇒ (2) is immediate, and the converse
follows from Lemma 4.4.2.15. The equivalence (1)⇔ (3) follows by a similar argument.

4.4.3 The Core of an ∞-Category

01CZ Let C be a category. Recall that the core of C is the subcategory C≃ ⊆ C comprised of
all objects of C and all isomorphisms between them (Construction 1.3.5.4). In this section,
we generalize this construction to the setting of ∞-categories.

Construction 4.4.3.1.01D0 Let C be an ∞-category. We let C≃ denote the simplicial subset of
C comprised of those simplices σ : ∆n → C which carry each edge of ∆n to an isomorphism
in C. We will refer to C≃ as the core of C.

Remark 4.4.3.2.01D1 Let C be an ∞-category, let hC be its homotopy category, and let hC≃
denote the core of hC. Then the core C≃ ⊆ C fits into a pullback diagram of simplicial sets

C≃ //

��

C

��
N•(hC≃) // N•(hC).

Example 4.4.3.3.01D2 Let C be an ordinary category, and let C≃ denote its core (in the sense of
Construction 1.3.5.4). Then the core of the ∞-category N•(C) (in the sense of Construction
4.4.3.1) can be identified with the nerve of C≃. That is, we have a canonical isomorphism
N•(C)≃ ≃ N•(C≃).
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Example 4.4.3.4. 02BXLet C be a (2, 1)-category, so that the Duskin nerve ND
• (C) is an ∞-

category (Theorem 2.3.2.1). Then the core ND
• (C)≃ can be identified with the Duskin nerve

of the 2-groupoid C≃ (Construction 2.2.8.27). That is, we have a canonical isomorphism
ND
• (C)≃ ≃ ND

• (C≃).

Remark 4.4.3.5 (Functoriality). 01D3Let F : C → D be a functor of ∞-categories. Then
F carries the core C≃ into the core D≃ (see Remark 1.5.1.6), and therefore restricts to a
morphism of simplicial sets F≃ : C≃ → D≃.

Proposition 4.4.3.6. 01D4Let C be an ∞-category. Then the core C≃ is a replete subcategory
of C (Example 4.4.1.12): that is, the inclusion C≃ ↪→ C is an isofibration of ∞-categories

Proof. Combining Example 4.1.2.4, Remark 4.1.2.6, and Remark 4.4.3.2, we deduce that
the inclusion map C≃ ↪→ C is an inner fibration; in particular, C≃ is an ∞-category. The
repleteness is immediate from the definition (since C≃ contains every isomorphism in C).

Proposition 4.4.3.7. 01EZLet F : C → D be an isofibration of ∞-categories. Then the induced
map F≃ : C≃ → D≃ is a Kan fibration.

Proof. Fix integers n > 0 and 0 ≤ i ≤ n; we wish to show that every lifting problem

Λni
σ0 //

��

C≃

F≃

��
∆n σ //

σ

>>

D≃

admits a solution. In the case n = 1, this follows either from our definition of isofibration (in
the case i = 1) or from Corollary 4.4.1.8 (in the case i = 0). We may therefore assume that
n ≥ 2. We claim that σ0 can be extended to an n-simplex σ : ∆n → C satisfying F (σ) = σ.
If 0 < i < n, this follows from the fact that F is an inner fibration. The extremal cases i = 0
and i = n follow from Proposition 4.4.2.13 (applied to the inner fibration F : C → D and
its opposite F op : Cop → Dop). To complete the proof, it will suffice to show that σ carries
each edge of ∆n to an isomorphism in C. For n > 2, this is automatic (since the horn Λn

i

contains every edge of ∆n). In the case n = 2 it follows from the two-out-of-three property
for isomorphisms in C (Remark 1.4.6.3).

Corollary 4.4.3.8. 01NVLet q : C → D be a morphism of simplicial sets, where D is a Kan
complex. The following conditions are equivalent:

(1) The morphism q is a Kan fibration.

(2) The morphism q is a left fibration.
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(3) The morphism q is a right fibration.

(4) The morphism q is a conservative isofibration of ∞-categories.

Proof. The implications (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4) follow from Example 4.2.1.5,
Proposition 4.4.2.11, and Example 4.4.1.11 (and do not require the assumption that D is a
Kan complex). We will complete the proof by showing that (4)⇒ (1). Our assumption that
D is a Kan complex guarantees that every morphism in D is an isomorphism. Since q is
conservative, it follows that every morphism in C is an isomorphism. We can therefore identify
q with the induced map q≃ : C≃ → D≃, which is Kan fibration by virtue of Proposition
4.4.3.7.

Corollary 4.4.3.9.0237 Let q : C → D be a morphism of simplicial sets, where D is a Kan
complex. The following conditions are equivalent:

(1) The morphism q is a covering map.

(2) The morphism q is a left covering map.

(3) The morphism q is a right covering map.

Proof. Combine Corollaries 4.4.3.8 and 4.2.3.20.

Corollary 4.4.3.10.01NW Let F : X → Y be an isofibration between Kan complexes. Then F is
a Kan fibration.

Corollary 4.4.3.11.01H1 Let C be an ∞-category. Then the core C≃ is a Kan complex.

Proof. Apply Proposition 4.4.3.7 to the isofibration C → ∆0.

Exercise 4.4.3.12.01H2 Deduce Corollary 4.4.3.11 directly from the criterion of Proposition
4.4.2.1.

Corollary 4.4.3.13.04Q5 Let C be an ∞-category and let C0 ⊆ C be a replete subcategory. Then
the Kan complex C≃0 is a summand of the Kan complex C≃.

Proof. The assumption that C0 is replete guarantees that the inclusion map ι : C0 ⊆ C
is an isofibration (Example 4.4.1.12). Applying Proposition 4.4.3.7, we deduce that the
inclusion C≃0 ↪→ C≃ is a Kan fibration, so that C≃0 is a summand of C≃ by virtue of Example
3.1.1.4.

Corollary 4.4.3.14.01D6 Let C be an ∞-category and let u : X → Y be a morphism of C. The
following conditions are equivalent:

(1) The morphism u is an isomorphism.
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(2) There exists a Kan complex E, a morphism u : X → Y in E, and a functor F : E → C
satisfying F (u) = u.

(3) There exists a contractible Kan complex E, a morphism u : X → Y in E, and a functor
F : E → C satisfying F (u) = u.

Proof. If u is an isomorphism, then it belongs to the image of the inclusion functor C≃ ↪→ C.
Since the core C≃ is a Kan complex, this proves that (1)⇒ (2). Conversely, if we can write
u = F (u) for some functor F : E → C where E is a Kan complex, then Remark 1.5.1.6
guarantees that u is an isomorphism in C (since u is automatically an isomorphism in E , by
virtue of Proposition 1.4.6.10). This proves that (2)⇒ (1).

The implication (3)⇒ (2) is immediate. We will complete the proof by showing that (2)
implies (3). Let E be a Kan complex, let F : E → C be a functor, and let u be an edge of
E satisfying F (u) = u. Let us identify u with a morphism of simplicial sets ∆1 → E . By
virtue of Proposition 3.1.7.1, this morphism factors as a composition ∆1 v−→ E ′ q−→ E , where v
is anodyne and q is a Kan fibration. Since E is a Kan complex and q is a Kan fibration, the
simplicial set E ′ is a Kan complex (Remark 3.1.1.11). Because ∆1 is weakly contractible
and v is a weak homotopy equivalence, the Kan complex E ′ is contractible. We can then
write u = F ′(v) where F ′ = F ◦ q.

Corollary 4.4.3.15. 01H3Let C be an ∞-category containing objects X and Y . The following
conditions are equivalent:

(1) The objects X and Y are isomorphic.

(2) There exists a connected Kan complex E, a pair of vertices X,Y ∈ E, and a morphism
f : E → C satisfying f(X) = X and f(Y ) = Y .

(3) There exists a contractible Kan complex E, a pair of vertices X,Y ∈ E, and a morphism
f : E → C satisfying f(X) = X and f(Y ) = Y .

Notation 4.4.3.16. 01D7Let C be an ∞-category. We let π0(C≃) denote the set of connected
components of the Kan complex C≃. Note that π0(C≃) can be identified with the set of
isomorphism classes of objects of C (that is, the quotient of the set of objects of C by the
equivalence relation of isomorphism).

If C is an ∞-category, then the Kan complex C≃ can be characterized by a universal
property:

Proposition 4.4.3.17. 01D8Let C be an ∞-category and let X be a Kan complex. Then compo-
sition with the inclusion C≃ ↪→ C induces a bijection HomSet∆(X, C≃)→ HomSet∆(X, C).
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Proof. Let F : X → C be a morphism of simplicial sets. To show that F factors through the
core C≃ ⊆ C, we must show that for every edge u : x→ y of the Kan complex X, the image
F (u) is an isomorphism in C. This follows from Remark 1.5.1.6, since u is automatically an
isomorphism in the ∞-category X (Proposition 1.4.6.10).

Corollary 4.4.3.18.01D9 Let C be an ∞-category. Then the core C≃ is the largest Kan complex
which is contained in C.

Proof. Combine Corollary 4.4.3.11 with Proposition 4.4.3.17.

Corollary 4.4.3.19 (Pullbacks of Isofibrations).01H4 Suppose we are given a pullback diagram
of simplicial sets

C′ F //

q′

��

C

q

��
D′ F ′ // D,

where q is an isofibration of ∞-categories and D′ is an ∞-category. Then:

(1) The simplicial set C′ is an ∞-category.

(2) The diagram of Kan complexes

01H5 C′≃ //

q′≃

��

C≃

q≃

��
D′≃ // D≃

(4.3)

is a pullback square and a homotopy pullback square.

(3) A morphism u : X → Y in the ∞-category C′ is an isomorphism if and only if F (u) is
an isomorphism in the ∞-category C and q′(u) is an isomorphism in the ∞-category
D′.

(4) The morphism q′ is an isofibration of ∞-categories.

Proof. Since q is an isofibration, it is an inner fibration. It follows that the morphism q′ is
also an inner fibration (Remark 4.1.1.5). Since D′ is an ∞-category, the simplicial set C′ is
also an ∞-category (Remark 4.1.1.9). This proves (1).

Let E denote the fiber product C≃×D≃ D′≃, which we regard as a simplicial subset
of C′ = C ×D D′. It follows from Proposition 4.4.3.7 that q restricts to a Kan fibration
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q≃ : C≃ → D≃. The projection map E → D′≃ is a pullback of q≃, and is therefore also a
Kan fibration. Since D′≃ is a Kan complex (Corollary 4.4.3.11), it follows that E is a Kan
complex (Remark 3.1.1.11). Applying Corollary 4.4.3.18, we deduce that E is contained
in the core C′≃ ⊆ C′, which proves that the diagram (4.3) is a pullback square. Since q≃
is a Kan fibration, it is also a homotopy pullback square (Example 3.4.1.3). This proves
assertion (2), and assertion (3) is an immediate consequence.

To complete the proof of (4), it will suffice to show that the morphism q′ satisfies
condition (∗) of Definition 4.4.1.4. Let Y ′ be an object of C′ and let u′ : X ′ → q′(Y ′) be
an isomorphism in the ∞-category D′; we wish to show that u′ can be written as q′(u′) for
some isomorphism u′ : X ′ → Y ′ in the ∞-category C′. By virtue of (3), this is equivalent
to showing that F ′(u′) can be written as q(u) for some isomorphism u : X → F (Y ) in the
∞-category C, which follows from our assumption that q is an isofibration.

Corollary 4.4.3.20. 01H6Let q : C → D be an isofibration of∞-categories, and let CD = {D}×DC
be the fiber of q over an object D ∈ D. Then the canonical map (CD)≃ → {D}×D≃ C≃ is an
isomorphism. In other words, the inclusion functor CD ↪→ C is conservative.

Proof. Apply Corollary 4.4.3.19 in the special case D′ = {D}.

Corollary 4.4.3.21. 04HWLet q : C → D be a conservative isofibration of ∞-categories. Then,
for each object D ∈ D, the fiber CD = {D} ×D C is a Kan complex.

Proof. Since q is an inner fibration, the simplicial set CD is an ∞-category (Remark 4.1.1.6).
It will therefore suffice to show that every morphism f in CD is an isomorphism (Proposition
4.4.2.1). By virtue of Corollary 4.4.3.20, this is equivalent to the requirement that f is an
isomorphism in the ∞-category C. This follows from our assumption that q is conservative,
since q(f) = idD is an isomorphism in the ∞-category D.

We close this section by establishing a relative version of Proposition 4.4.3.17. Let
C be an ∞-category, and let X be an arbitrary simplicial set. Then the simplicial set
Fun(X, C) is an ∞-category (Theorem 1.5.3.7), and the simplicial set Fun(X, C≃) is a Kan
complex (Corollary 3.1.3.4). The inclusion C≃ ↪→ C induces a monomorphism of simplicial
sets Fun(X, C≃) ↪→ Fun(X, C), which automatically factors through the core Fun(X, C)≃
(Corollary 4.4.3.18).

Proposition 4.4.3.22. 01DALet C be an ∞-category and let X be a Kan complex. Then the
canonical map

θ : Fun(X, C≃) ↪→ Fun(X, C)≃

is an isomorphism of simplicial sets.
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Remark 4.4.3.23.01DB Proposition 4.4.3.17 can be regarded as a special case of Proposition
4.4.3.22: it is equivalent to the assertion that, for every∞-category C and every Kan complex
X, the canonical map Fun(X, C≃) ↪→ Fun(X, C)≃ is bijective on vertices.

Warning 4.4.3.24.01DC The conclusion of Proposition 4.4.3.22 generally does not hold if X is
not a Kan complex.

Proof of Proposition 4.4.3.22. Let σ : Y → Fun(X, C)≃ be a morphism of simplicial sets,
which we identify with a diagram F : X × Y → C. To show that σ factors through the
monomorphism θ, it will suffice to show that F factors through the core C≃ ⊆ C. Equivalently,
we wish to show that for every edge (u, v) : (x, y) → (x′, y′) in the product simplicial set
X × Y , the morphism F (u, v) : F (x, y)→ F (x′, y′) is an isomorphism in the ∞-category C.
Note that F (u, v) can be identified with a composition of morphisms

F (x, y) F (u,idy)−−−−−→ F (x′, y) F (idx′ ,v)−−−−−→ F (x′, y′)

in the ∞-category C. Since the collection of isomorphisms in C is closed under composition
(Remark 1.4.6.3), it will suffice to show that F (u, idy) and F (idx′ , v) are isomorphsms in C.
In the first case, this follows from Proposition 4.4.3.17 (applied to the morphism F |X×{y}),
since X is a Kan complex. In the second case, it follows from our assumption that σ factors
through the core Fun(X, C)≃ ⊆ Fun(X, C) (and therefore carries the edge v : y → y′ to an
isomorphism in the diagram ∞-category Fun(X, C)).

4.4.4 Natural Isomorphisms

01DF Recall that, if X is an arbitrary simplicial set and C is an∞-category, then the simplicial
set Fun(X, C) is also an∞-category (Theorem 1.5.3.7). In this section, we study isomorphisms
in ∞-categories of the form Fun(X, C).

Definition 4.4.4.1.01DG Let C be an ∞-category, let X be a simplicial set, and suppose we are
given a pair of diagrams f, f ′ : X → C. A natural transformation from f to f ′ is a morphism
u : f → f ′ in the ∞-category Fun(X, C). A natural isomorphism from f to f ′ is a natural
transformation u : f → f ′ which is an isomorphism in the ∞-category Fun(X, C) (Definition
1.4.6.1). We say that f and f ′ are naturally isomorphic if there exists a natural isomorphism
from f to f ′.

Remark 4.4.4.2.01DH In the situation of Definition 4.4.4.1, a natural transformation from f

to f ′ is simply a homotopy from f to f ′, in the sense of Definition 3.1.5.2: that is, a map
of simplicial sets h : ∆1 ×X → C satisfying h|{0}×X = f and h|{1}×X = f ′. However, the
terminology of Definition 4.4.4.1 is intended to signal a shift in emphasis. We will generally
reserve use of the term homotopy between diagrams f, f ′ : X → C for the case where C is a
Kan complex, and use the term natural transformation when C is a more general ∞-category.
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Example 4.4.4.3. 01DJLet C be an ordinary category, and suppose we are given a pair of
diagrams f, f ′ : X → N•(C). Then a natural transformation from f to f ′ can be identified
with a collection of morphisms {ux : f(x) → f ′(x)}x∈X with the following property: for
every edge e : x→ y of the simplicial set X, the diagram

f(x) ux //

f(e)

��

f ′(x)

f ′(e)

��
f(y)

uy // f ′(y)

commutes (in the category C).
In particular, if C and D are ordinary categories and we are given a pair of functors

f, f ′ : D → C, then giving a natural transformation from f to f ′ (in the sense of classical
category theory) is equivalent to giving a natural transformation from N•(f) : N•(D)→ N•(C)
to N•(f ′) : N•(D)→ N•(C).

Let C be an∞-category and let X be an arbitrary simplicial set. For every vertex x ∈ X,
evaluation at x determines a functor

evx : Fun(X, C)→ Fun({x}, C) ≃ C .

In particular, if u : f → f ′ is an isomorphism in the ∞-category Fun(X, C), then evx(u) :
f(x)→ f ′(x) is an isomorphism in the ∞-category C. Our goal in this section is to prove
the converse:

Theorem 4.4.4.4. 01DKLet C be an ∞-category, let f, f ′ : X → C be diagrams in C indexed by
a simplicial set X, and let u : f → f ′ be a natural transformation. Then u is a natural
isomorphism if and only if, for every vertex x ∈ X, the induced map evx(u) : f(x)→ f ′(x)
is an isomorphism in the ∞-category C.

Remark 4.4.4.5. 01DLLet C and D be ∞-categories and suppose we are given a pair of functors
F,G : C → D, which restrict to functors between their cores F≃, G≃ : C≃ → D≃ (see Remark
4.4.3.5). Let u be a natural transformation from F to G, which we identify with a map of
simplicial sets u : ∆1 × C → D. If u is a natural isomorphism, then it restricts to a map of
simplicial sets u0 : ∆1 × C≃ → D≃, which we can regard as a homotopy from F≃ to G≃. In
particular, if the functors F and G are naturally isomorphic, then the morphisms F≃ and
G≃ are homotopic.

Corollary 4.4.4.6. 01DMLet C be an ∞-category. Then the functor

(Set∆)op → Set∆ X 7→ Fun(X, C)≃
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preserves limits (that is, it carries colimits in the category of simplicial sets to limits of Kan
complexes).

The proof of Theorem 4.4.4.4 will use the following combinatorial assertion:

Lemma 4.4.4.7.01DN Let m ≥ 0 and n ≥ 2 be integers. Then there exists a sequence of simplicial
subsets

X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · ⊂ X(t) = ∆m ×∆n

with the following properties:

(1) The simplicial subset X(0) ⊆ ∆m ×∆n is the union of ∆m × Λn0 and ∂∆m×∆n.

(2) For each 0 < s ≤ t, there exist integers q ≥ 2 and 0 ≤ p < q and a pushout diagram of
simplicial sets

Λqp //

��

X(s− 1)

��
∆q σ // X(s).

Moreover, if p = 0, then the map σ : ∆q → X(s) ⊆ ∆m ×∆n satisfies σ(0) = (0, 0)
and σ(1) = (0, 1).

Proof. Let σ be a nondegenerate q-simplex of the product ∆m ×∆n, given by a chain

(i0, j0) < (i1, j1) < · · · < (iq, jq).

We will say that σ is free if the composite maps

∆q σ−→ ∆m ×∆n ↠ ∆m ∆q σ−→ ∆m ×∆n ↠ ∆n

are surjective and there exists an integer 0 ≤ p < q such that (ip, jp) = (p, 0) and
(ip+1, jp+1) = (p, 1). If this condition is satisfied, then the integer p is uniquely deter-
mined; we will refer to p as the index of σ and denote it by p(σ). We also denote the
dimension q of σ by q(σ).

Let {σ1, σ2, · · · , σt} be an enumeration of the collection of all free simplices of the product
∆m ×∆n. Without loss of generality, we may assume that that this enumeration satisfies
the following pair of conditions:

• For 1 ≤ s ≤ s′ ≤ t, we have q(σs) ≤ q(σs′).

• If 1 ≤ s ≤ s′ ≤ t are integers satisfying q(σs) = q(σs′), then p(σs) ≥ p(σs′).
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Let X(0) denote the union (∆m × Λn
0 ) ∪ (∂∆m×∆n) ⊆ ∆m ×∆n. For 0 < s ≤ t, we let

X(s) denote the smallest simplicial subset of ∆m ×∆n which contains X(0) together with
the simplices {σ1, σ2, . . . , σs}. We will show that the sequence

X(0) ⊂ X(1) ⊂ · · · ⊂ X(t)

satisfies the requirements of Lemma 4.4.4.7.
We first claim that X(t) = ∆m ×∆n. Let σ be an arbitrary nondegenerate q-simplex of

∆m ×∆n, which we will identify with a sequence

(i0, j0) < (i1, j1) < · · · < (iq, jq)

of elements of the partially ordered set [m]× [n]. We wish to show that σ is contained in
X(t). Without loss of generality, we may assume that the sequence (i0, i1, . . . , iq) contains
every element of the set [m] = {0 < 1 < · · · < m}. (otherwise, σ is contained in the
simplicial subset ∂∆m×∆n ⊆ X(0) ⊆ X(t)). Similarly, we may assume that that the
sequence (j0, j1, . . . , jq) contains every element of the set {1 < 2 < · · · < n} (otherwise, σ is
is contained in the simplicial subset ∆m × Λn0 ⊆ X(0) ⊆ X(t)). In particular, the sequence
σ contains (p, 1), for some integer 0 ≤ p ≤ n. Let us assume that p is chosen as small as
possible. In this case, there are two possibilities:

• The sequence σ also contains the pair (p, 0). In this case, σ is a free simplex of ∆m×∆n,
and therefore belongs to X(t).

• The sequence σ does not contain (p, 0), and therefore has the form

(0, 0) < (1, 0) < · · · < (p− 1, 0) < (p, 1) < (ip+1, jp+1) < · · · < (iq, jq).

We can then identify σ with the pth face of the (q+1)-simplex σ′ given by the sequence

(0, 0) < (1, 0) < · · · < (p− 1, 0) < (p, 0) < (p, 1) < (ip+1, jp+1) < · · · < (iq, jq).

The simplex σ′ is free and therefore belongs to X(t), so that σ belongs to X(t) as well.

We now complete the proof by verifying requirement (2) of Lemma 4.4.4.7. Fix an integer
0 < s ≤ t and let σ = σs be the corresponding free simplex of ∆m ×∆n. Let q = q(σ) be
the dimension of σ and let p = p(σ) be the index of σ, so that 0 ≤ p < q and σ has the form

(0, 0) < (1, 0) < · · · < (p, 0) < (p, 1) < (ip+2, jp+2) < · · · < (iq, jq).

By construction, the simplicial subset X(s) ⊆ ∆m ×∆n is the union of X(s− 1) with the
image of σ. Let K ⊆ ∆1 denote the inverse image σ−1X(s − 1). We will show that K is
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equal to the horn Λqp ⊆ ∆q, so that the pullback diagram of simplicial sets

K //

��

X(s− 1)

��
∆q σ // X(s)

is also a pushout square (Lemma 3.1.2.11).
We first show that the horn Λqp is contained in K. For this, it will suffice to show that

for every integer 0 ≤ p′ ≤ q satisfying p′ ≠ p, the face τ = dqp′(σ) is contained in X(s− 1).
We consider three cases:

• For p′ < p, the simplex τ is given by the sequence

(0, 0) < · · · < (p′ − 1, 0) < (p′ + 1, 0) < · · · < (p, 0) < (p, 1) < · · · < (iq, jq),

which is contained in the simplicial subset ∂∆m×∆n ⊆ X(0) ⊆ X(s− 1).

• For p′ = p+ 1, the simplex τ is given by the sequence

(0, 0) < (1, 0) < · · · < (p, 0) < (ip+2, jp+2) < · · · < (iq, jq).

If jp+2 ≥ 2, then τ belongs to the simplicial subset ∆m × Λn
0 ⊆ X(0) ⊆ X(s − 1).

Otherwise, we must have (ip+2, jp+2) = (p+ 1, 1), so that τ occurs as a face of the free
simplex σ′ given by the sequence

(0, 0) < (1, 0) < · · · < (p, 0) < (p+ 1, 0) < (p+ 1, 1) < · · · < (iq, jq),

which has dimension q and index p + 1. By construction, σ′ belongs to the set
{σ1, σ2, . . . , σs−1}, and is therefore contained in the simplicial subset X(s − 1) ⊆
∆m ×∆n.

• For p′ > p+ 1, the simplex τ is given by the sequence

(0, 0) < · · · < (p, 0) < (p, 1) < · · · < (ip′−1, jp′−1) < (ip′+1, jp′+1) < · · · < (iq, jq).

It follows that τ is either contained in the simplicial subset X(0) = (∆m × Λn
0 ) ∪

(∂∆m×∆n) or that it is a free simplex of ∆m ×∆n having dimension q − 1. In the
latter case, τ must belong to the set {σ1, . . . , σs−1}, and is therefore contained in the
simplicial subset X(s− 1) ⊆ ∆m ×∆n.
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To show that the inclusion Λqp ⊆ K is an equality, it will suffice to show that K does not
contain the pth face of ∆q. Let τ = dqp(σ) be the pth face of σ, given by the sequence

(0, 0) < (1, 0) < · · · < (p− 1, 0) < (p, 1) < (ip+1, jp+1) < · · · < (iq, jq).

We wish to show that τ is not contained in X(s− 1). Assume otherwise. Since τ is not con-
tained in X(0), we conclude that τ is contained in some free simplex σ′ ∈ {σ1, σ2, . . . , σs−1}.
Note that τ ̸= σ′ (since τ is not free), so we have inequalities

q − 1 = q(τ) < q(σ′) ≤ q(σ) = q.

It follows that σ′ is a free q-simplex of ∆m ×∆n which contains τ and is not equal to σ,
and is therefore necessarily given by the sequence

(0, 0) < (1, 0) < · · · < (p− 1, 0) < (p− 1, 1) < (p, 1) < (ip+1, jp+1) < · · · < (iq, jq).

We therefore have p(σ′) = p− 1 < p = p(σ), which contradicts our assumption regarding
the choice of enumeration {σ1, σ2, . . . , σt}.

Lemma 4.4.4.8. 01DPLet r : Y → S be an inner fibration of simplicial sets, let F : B → S be
any morphism of simplicial sets, let A be a simplicial subset of B, let n ≥ 2 be an integer.
Let π : B ×∆n → B be the projection map and suppose we are given a lifting problem

0239(A×∆n) ∐
(A×Λn

0 )(B × Λn0 ) F0 //

��

Y

r

��
B ×∆n F◦π //

F

88

S.

(4.4)

Assume that, for every vertex b ∈ B, the edge

∆1 ≃ {b} ×N•({0, 1}) ↪→ B × Λn0
F0−→ {F (b)} ×S Y

is an isomorphism in the ∞-category Yb = {F (b)} ×S X. Then the lifting problem (4.4)
admits a solution F : B ×∆n → Y .

Proof. Let P denote the collection of all pairs (K,FK), where K ⊆ B is a simplicial
subset containing A and FK : K × ∆n → Y is a morphism of simplicial sets satisfying
FK |A×∆n = F0|A×∆n , FK |K×Λn

0
= F0|K×Λn

0
, and r ◦ FK = (F ◦ π)|K×∆n . We regard P as

partially ordered set, where (K,FK) ≤ (K ′, FK′) if K ⊆ K ′ and FK = FK′ |K×∆n . The
partially ordered set P satisfies the hypotheses of Zorn’s lemma, and therefore has a maximal
element (Kmax, FKmax). We will complete the proof by showing that Kmax = B. Assume

https://kerodon.net/tag/01DP
https://kerodon.net/tag/0239
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otherwise. Then there exists some nondegenerate m-simplex τ : ∆m → B whose image is
not contained in Kmax. Choosing m as small as possible, we can assume that τ carries the
boundary ∂∆m into Kmax. Let K ′ ⊆ B be the union of Kmax with the image of τ , so that
we have a pushout diagram of simplicial sets

∂∆m

��

// Kmax

��
∆m // K ′.

We will complete the proof by showing that the lifting problem

(Kmax ×∆n) ∐
(Kmax×Λn

0 )(K ′ × Λn0 )
(FKmax ,F0|K′×Λn

0
)
//

��

Y

r

��
K ′ ×∆n //

55

S

admits a solution (contradicting the maximality of the pair (Kmax, FKmax)). To prove this,
we can replace the inclusion Kmax ↪→ K ′ by ∂∆m ↪→ ∆m. We are therefore reduced to
proving Lemma 4.4.4.8 in the special case where B = ∆m is a simplex and A = ∂∆m is its
boundary. Replacing r by the projection map ∆m ×S Y → ∆m, we may further assume that
S is an ∞-category.

Choose a sequence of simplicial subsets

X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · ⊂ X(t) = ∆m ×∆n

satisfying the requirements of Lemma 4.4.4.7, so that F0 can be identified with a morphism
X(0) → Y . We will show that, for 0 ≤ s ≤ t, there exists a morphism of simplicial
sets Fs : X(s) → Y satisfying Fs|X(0) = F0 and r ◦ Fs = (F ◦ π)|X(s) (taking s = t,
this will complete the proof of Lemma 4.4.4.8). We proceed by induction on s, the case
s = 0 being vacuous. Assume that s > 0 and that we have already constructed a morphism
Fs−1 : X(s−1)→ Y satisfying Fs−1|X(0) = F0 and r◦Fs−1 = (F ◦π)|X(s−1) By construction,
there exists integers q ≥ 2, 0 ≤ p < q, and a pushout diagram of simplicial sets

Λqp
σ0 //

��

X(s− 1)

��
∆q σ // X(s).
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Moreover, in the special case p = 0, we can assume that σ(0) = (0, 0) and σ(1) = (0, 1), so
that the composite map

∆1 ≃ N•({0 < 1}) ↪→ Λqp
σ0−→ X(s− 1) Fs−1−−−→ Y

corresponds to an isomorphism in Y . To construct the desired extension Fs : X(s)→ Y , it
will suffice to solve a lifting problem of the form

Λqp //

��

Y

r

��
∆q //

??

S.

In the case 0 < p < q, this lifting problem admits a solution by virtue of our assumption that
r is an inner fibration of simplicial sets. In the special case p = 0, it follows from Proposition
4.4.2.13.

Theorem 4.4.4.4 is a special case of the following more general assertion:

Proposition 4.4.4.9. 023ALet q : X → S be an inner fibration of simplicial sets, let F : B → S

be a morphism of simplicial sets, and let u : F → F ′ be a morphism in the ∞-category
Fun/S(B,X). The following conditions are equivalent:

(1) The morphism u is an isomorphism in the ∞-category Fun/S(B,X).

(2) For every vertex b ∈ B, the morphism ub : F (b) → F ′(b) is an isomorphism in the
∞-category Xb = {F (b)} ×S X.

Proof. For each vertex b ∈ B, evaluation at b determines a functor of ∞-categories
Fun/S(B,X)→ Xb. Consequently, the implication (1)⇒ (2) follows from Remark 1.5.1.6.
The converse implication follows by combining Lemma 4.4.4.8 (in the special case A = ∅)
with the criterion of Theorem 4.4.2.6.

Proof of Theorem 4.4.4.4. Apply Proposition 4.4.4.9 in the case S = ∆0.

4.4.5 Exponentiation for Isofibrations

01F0We now show that the formation of ∞-categories of functors behaves well with respect
to isofibrations.

https://kerodon.net/tag/023A
https://kerodon.net/tag/01F0
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Proposition 4.4.5.1.01F1 Let F : C → D be an isofibration of∞-categories, let B be a simplicial
set, and let A ⊆ B be a simplicial subset. Then the restriction map

F ′ : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D)

is an isofibration of ∞-categories.

Remark 4.4.5.2.01F2 Proposition 4.4.5.1 generalizes to isofibrations between arbitrary simplicial
sets: see Proposition 4.5.5.14.

We will give the proof of Proposition 4.4.5.1 at the end of this section.

Corollary 4.4.5.3.01F3 Let C be an ∞-category, let B be a simplicial set, and let A ⊆ B be
a simplicial subset. Then the restriction map Fun(B, C)→ Fun(A, C) is an isofibration of
∞-categories.

Proof. Apply Proposition 4.4.5.1 in the special case D = ∆0.

Corollary 4.4.5.4.01F4 Let C be an ∞-category, let B be a simplicial set, and let A ⊆ B be
a simplicial subset. Then the restriction functor Fun(B, C) → Fun(A, C) induces a Kan
fibration of simplicial sets Fun(B, C)≃ → Fun(A, C)≃.

Proof. Combine Corollary 4.4.5.3 with Proposition 4.4.3.7.

Corollary 4.4.5.5.02QY Let C be an ∞-category, and let Isom(C) denote the full subcategory of
Fun(∆1, C) spanned by the isomorphisms. Then the restriction map

Isom(C)→ Fun(∂∆1, C) ≃ C ×C (f : X → Y ) 7→ (X,Y )

is an isofibration of ∞-categories.

Proof. Combine Corollary 4.4.5.4 with Example 4.4.1.14.

Corollary 4.4.5.6.01H7 Let q : C → D be an isofibration of ∞-categories. For every simplicial
set B, the induced map Fun(B, C)→ Fun(B,D) is also an isofibration of ∞-categories.

Proof. Apply Proposition 4.4.5.1 in the special case A = ∅.

Corollary 4.4.5.7.02QZ Let q : C → D be an isofibration of ∞-categories. For every simplicial
set B, the induced map Fun(B, C)≃ → Fun(B,D)≃ is a Kan fibration of Kan complexes.

Proof. Combine Corollary 4.4.5.6 with Proposition 4.4.3.7.

The main ingredient needed in our proof of Proposition 4.4.5.1 is the following isomor-
phism extension result:

https://kerodon.net/tag/01F1
https://kerodon.net/tag/01F2
https://kerodon.net/tag/01F3
https://kerodon.net/tag/01F4
https://kerodon.net/tag/02QY
https://kerodon.net/tag/01H7
https://kerodon.net/tag/02QZ


708 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

Proposition 4.4.5.8. 01NXLet F : C → D be an inner fibration of ∞-categories, let B be a
simplicial set, let A ⊆ B be a simplicial subset which contains every vertex of B, and suppose
we are given a lifting problem

(∆1 ×A) ∐
({1}×A)({1} ×B) h0 //

��

C

F

��
∆1 ×B h //

h

88

D

with the following property:

(∗) For every simplex τ : ∆n → B which is not contained in A having final vertex b = τ(n),
the edge

∆1 ≃ ∆1 × {b} h0−→ C

is an isomorphism in C.

Then h0 can be extended to a diagram h : ∆1 ×B → C satisfying h = F ◦ h.

Proof. We proceed as in the proof of Lemma 4.4.4.8, with some minor modifications. Let P
denote the collection of all pairs (K,hK), where K ⊆ B is a simplicial subset containing A
and hK : ∆1 ×K → C is a morphism of simplicial sets satisfying

hK |∆1×A = h0|∆1×A hK |{1}×K = h0|{1}×K .

We regard P as partially ordered set, where (K,hK) ≤ (K ′, hK′) if K ⊆ K ′ and hK =
hK′ |∆1×K . The partially ordered set P satisfies the hypotheses of Zorn’s lemma, and
therefore has a maximal element (Kmax, hKmax). We will complete the proof by showing that
Kmax = B. Assume otherwise. Then there exists some nondegenerate n-simplex τ : ∆n → B

whose image is not contained in Kmax. Choosing n as small as possible, we can assume that
τ carries the boundary ∂∆n into Kmax. Note that, since A contains every vertex of B, we
must have n > 0. Let K ′ ⊆ B be the union of Kmax with the image of τ , so that we have a
pushout diagram of simplicial sets

∂∆n

��

// Kmax

��
∆n // K ′.

https://kerodon.net/tag/01NX
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We will complete the proof by showing that the lifting problem

(∆1 ×Kmax) ∐
({1}×Kmax)({1} ×K ′)

(hK ,h0|{1}×K′ ) //

��

C

��
∆1 ×K ′ //

55

∆0

admits a solution, where the dotted arrow carries each edge ∆1 × {x} to an isomorphism in
C (contradicting the maximality of the pair (Kmax, hKmax)). To prove this, we can replace
the inclusion Kmax ↪→ K ′ by ∂∆n ↪→ ∆n. We are therefore reduced to proving Lemma
4.4.4.8 in the special case where B = ∆n is a simplex and A = ∂∆n is its boundary.

Let

(∆1 × ∂∆n) ∪ ({1} ×∆n) = X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · ⊂ X(n+ 1) = ∆1 ×∆n

be the sequence of simplicial subsets appearing in the proof of Lemma 3.1.2.12, so that h0
can be identified with a morphism of simplicial sets from X(0) to C. We will show that, for
0 ≤ i ≤ n+1, there exists a morphism of simplicial sets hi : X(i)→ C satisfying hi|X(0) = h0
and F ◦ hi = h|X(i) (taking i = n+ 1, this will complete the proof of Proposition 4.4.5.8).
We proceed by induction on i, the case i = 0 being vacuous. Assume that i > 0 and that
we have already constructed a morphism hi−1 : X(i− 1)→ C satisfying hi−1|X(0) = h0 and
F ◦ hi−1 = h|X(i−1). By virtue of Lemma 3.1.2.12, we have a pushout diagram of simplicial
sets

Λn+1
i

σ0 //

��

X(i− 1)

��
∆n+1 σ // X(i).

Consequently, to prove the existence of hi, it suffices to solve the lifting problem

Λn+1
i

hi−1◦σ0 //

��

C

F

��
∆n+1 h◦σ //

==

D .

For 0 < i < n+ 1, the existence of the desired solution follows from our assumption that F
is an inner fibration. In the case i = n+ 1, the existence follows from Proposition 4.4.2.13,
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since the map σ : ∆n+1 → ∆1 ×∆n carries the final edge N•({n < n+ 1}) ⊆ ∆n+1 to the
edge ∆1 × {n} ⊆ ∆1 × ∆n, which h0 carries to an isomorphism in the ∞-category C by
virtue of assumption (∗).

Corollary 4.4.5.9. 01NYLet F : C → D be an isofibration of ∞-categories, let B be a simplicial
set, let A ⊆ B be a simplicial subset, and suppose we are given a lifting problem

(∆1 ×A) ∐
({1}×A)({1} ×B) h0 //

��

C

F

��
∆1 ×B h //

h

88

D

with the following properties:

• For every vertex a ∈ A, the edge

∆1 ≃ ∆1 × {a} h0−→ C

is an isomorphism in C.

• For every vertex b ∈ B, the edge

∆1 ≃ ∆1 × {b} h−→ D

is an isomorphism in D.

Then h0 can be extended to a diagram h : ∆1 ×B → C satisfying h = F ◦ h. Moreover, we
can arrange that for every vertex b ∈ B, the edge ∆1 ≃ ∆1 × {b} h−→ C is an isomorphism in
the ∞-category C (so that h can be regarded as an isomorphism in the diagram ∞-category
Fun(B, C), by virtue of Theorem 4.4.4.4).

Proof. Let A′ be the union of A with the 0-skeleton sk0(B), regarded as a simplicial subset
of B. For each vertex b ∈ B which does not belong to A, our assumption that F is an
isofibration allows us to choose an edge eb : ∆1 → C which is an isomorphism in the
∞-category C satisfying eb(1) = h0(1, b) and F ◦ eb = h|∆1×{b}. The morphism h0 and the
edges eb can then be amalgamated to a map h′0 : (∆1 × A′) ∐

({1}×A′)({1} ×B)→ C. The
desired result now follows by applying Proposition 4.4.5.8 to the commutative diagram

(∆1 ×A′) ∐
({1}×A′)({1} ×B)

h′0 //

��

C

F

��
∆1 ×B h // D .

https://kerodon.net/tag/01NY
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Specializing Corollary 4.4.5.9 to the case D = ∆0, we obtain the following:

Corollary 4.4.5.10.02BY Let C be an ∞-category, let Isom(C) ⊆ Fun(∆1, C) be the full subcate-
gory spanned by the isomorphisms, and let ev0, ev1 : Isom(C)→ C be the functors given by
evaluation at the vertices 0, 1 ∈ ∆1. Then the functors ev0 and ev1 are trivial Kan fibrations.

Proof of Proposition 4.4.5.1. Let F : C → D be an isofibration of ∞-categories, let B be a
simplicial set, and let A ⊆ B be a simplicial subset. We wish to show that the restriction
map

F ′ : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D)

is an isofibration of ∞-categories. We first note that the projection map

Fun(A, C)×Fun(A,D) Fun(B,D)→ Fun(A, C)

is a pullback of the inner fibration Fun(B,D) → Fun(A,D) (see Corollary 4.1.4.2). Since
Fun(A, C) is an∞-category (Theorem 1.5.3.7), it follows that Fun(A, C)×Fun(A,D) Fun(B,D)
is also an ∞-category (Remark 4.1.1.9). It follows from Proposition 4.1.4.1 that F ′ is an
inner fibration. It will therefore suffice to show that, for every object Y ∈ Fun(B, C), every
isomorphism u : X → F ′(Y ) in the ∞-category Fun(A, C)×Fun(A,D) Fun(B,D) can be lifted
to an isomorphism u : X → Y in the ∞-category Fun(B, C). This follows immediately from
Corollary 4.4.5.9.

Replacing Corollary 4.4.5.9 by Proposition 4.4.5.8 in the preceding argument, we obtain
the following:

Variant 4.4.5.11.01NZ Let F : C → D be an inner fibration of∞-categories, let B be a simplicial
set, and let A ⊆ B be a simplicial subset which contains every vertex of B. Then the induced
map

F ′ : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D)

is an isofibration of ∞-categories.

4.5 Equivalence

01DE Let C and D be categories. We say that a functor F : C → D is an isomorphism of
categories if there exists a functor G : D → C satisfying the identities G ◦ F = idC and
F ◦G = idD. This condition is somewhat unnatural, since it refers to equalities between
objects of the functor categories Fun(C, C) and Fun(D,D). For most purposes, it is better to
adopt a looser definition. We say that a functor F : C → D is an equivalence of categories

https://kerodon.net/tag/02BY
https://kerodon.net/tag/01NZ
https://kerodon.net/tag/01DE
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if there exists a functor G : D → C for which the composite functors G ◦ F and F ◦ G
are isomorphic to the identity functors idC and idD, respectively. In category theory, the
notion of equivalence between categories plays a much more central role than the notion of
isomorphism between categories, and virtually all important concepts are invariant under
equivalence.

In §4.5.1, we extend the notion of equivalence to the∞-categorical setting. If C and D are
∞-categories, we will say that a functor F : C → D is an equivalence of ∞-categories if there
exists a functor G : D → C for which the composite maps G◦F and F ◦G are isomorphic to idC
and idD, when viewed as objects of the ∞-categories Fun(C, C) and Fun(D,D), respectively
(Definition 4.5.1.10). Phrased differently, a functor F is an equivalence of ∞-categories if
it is an isomorphism when viewed as a morphism of the category hQCat, whose objects
are ∞-categories and whose morphisms are isomorphism classes of functors (Construction
4.5.1.1).

In the study of∞-categories, it can be technically convenient to work with simplicial sets
which do not satisfy the weak Kan extension condition. For example, it is often harmless
to replace the standard n-simplex ∆n by its spine Spine[n] ⊆ ∆n: for any ∞-category C,
the restriction map Fun(∆n, C)→ Fun(Spine[n], C) is a trivial Kan fibration (see Example
1.5.7.7). In §4.5.3, we formalize this observation by introducing the notion of categorical
equivalence between simplicial sets. By definition, a morphism of simplicial sets f : X → Y

is a categorical equivalence if, for every ∞-category C, the induced functor of ∞-categories
Fun(Y, C) → Fun(X, C) is bijective on isomorphism classes of objects (Definition 4.5.3.1).
If X and Y are ∞-categories, this reduces to the condition that f is an equivalence of
∞-categories in the sense of §4.5.1 (Example 4.5.3.3). However, we will encounter many
other examples of categorical equivalences between simplicial sets which are not∞-categories:
for example, every inner anodyne morphism of simplicial sets is a categorical equivalence
(Corollary 4.5.3.14).

Throughout this book, we will generally emphasize concepts which are invariant under
categorical equivalence. In practice, this requires us to take some care when manipulating
elementary constructions, such as fiber products. If F0 : C0 → C and F1 : C1 → C are functors
of ∞-categories, then the fiber product C0×C C1 (formed in the category of simplicial sets)
need not be an ∞-category. Moreover, the construction (F0, F1) 7→ C0×C C1 does not
preserve categorical equivalence in general. In §4.5.2, we remedy the situation by enlarging
the fiber product C0×C C1 to the homotopy fiber product C0×h

C C1, given by the formula

C0×h
C C1 = C0×Fun({0},C) Isom(C)×Fun({1},C) C1

(see Construction 4.5.2.1). The homotopy fiber product C0×h
C C1 is always an ∞-category

(Remark 4.5.2.2), and the construction (F0, F1) 7→ C0×h
C C1 is invariant under equivalence
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(Corollary 4.5.2.20). We will say that a commutative diagram of ∞-categories

032W C01 //

��

C0

��
C1 // C

(4.5)

is a categorical pullback square if it induces an equivalence of ∞-categories C01 → C0×h
C C1

(Definition 4.5.2.8). This is closely related to the notion of homotopy pullback diagram
introduced in §3.4.1:

• A commutative diagram of Kan complexes is a homotopy pullback square if and only
if it is a categorical pullback square (Proposition 4.5.2.10).

• The diagram of ∞-categories (4.5) is a categorical pullback square if and only if, for
every simplicial set X, the induced diagram of Kan complexes

Fun(X, C01)≃ //

��

Fun(X, C0)≃

��
Fun(X, C1)≃ // Fun(X, C)≃

is a homotopy pullback square (Proposition 4.5.2.14).

In §4.5.4 we study the dual notion of categorical pushout square (Definition 4.5.4.1), which
is an ∞-categorical counterpart of the theory of homotopy pushout squares developed in
§3.4.2.

Recall that every ∞-category C contains a largest Kan complex, which we denote
by C≃ and refer to as the core of C (Construction 4.4.3.1). The construction C 7→ C≃
can often be used to reformulate questions about ∞-categories in terms of the classical
homotopy theory of Kan complexes. It is not difficult to show that a functor of ∞-categories
F : C → D is an equivalence if and only if, for every simplicial set X, the induced map
Fun(X, C)≃ F◦−−→ Fun(X,D)≃ is a homotopy equivalence of Kan complexes (Proposition
4.5.1.22). In §4.5.7, we show that it suffices to verify this condition in the special case
X = ∆1 (Theorem 4.5.7.1). As an application, we show that the collection of categorical
equivalences is stable under the formation of filtered colimits (Corollary 4.5.7.2).

In §4.5.8, we study an important class of categorical equivalences emerging from the
theory of joins developed in §4.3. Recall that, if C and D are categories, then the join C ⋆D

https://kerodon.net/tag/032W


714 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

is isomorphic to the iterated pushout

C
∐

(C ×{0}×D)
(C ×[1]×D)

∐
(C ×{1}×D)

D,

formed in the category Cat of (small) categories (Remark 4.3.2.14). In the setting of ∞-
categories, the situation is more subtle (Warning 4.3.3.33). For any simplicial sets X and Y ,
there is a natural comparison map

cX,Y : X
∐

(X×{0}×Y )
(X ×∆1 × Y )

∐
(X×{1}×Y )

Y → X ⋆ Y

(Notation 4.5.8.3), which is almost never an isomorphism. Nevertheless, we show in §4.5.8
that cX,Y is always a categorical equivalence of simplicial sets (Theorem 4.5.8.8).

Let F : C → D be a functor of ∞-categories. Recall that F is an inner fibration if and
only if every lifting problem

01H8A

i

��

// C

F

��
B

??

// D

(4.6)

admits a solution, provided that the morphism i : A ↪→ B is inner anodyne (Proposition
4.1.3.1). In §4.5.5, we show that F is an isofibration if and only if the following stronger
condition holds: the lifting problem (4.6) admits a solution whenever the map i : A ↪→ B

is both a monomorphism and a categorical equivalence (Proposition 4.5.5.1). Using this
characterization, we extend the notion of isofibration to simplicial sets which are not
necessarily ∞-categories (Definition 4.5.5.5).

4.5.1 Equivalences of ∞-Categories

01DQThe collection of ∞-categories can be organized into a category, in which the morphisms
are given by isomorphism classes of functors.

Construction 4.5.1.1 (The Homotopy Category of ∞-Categories). 01DRWe define a category
hQCat as follows:

• The objects of hQCat are ∞-categories.

• If C and D are ∞-categories, then HomhQCat(C,D) = π0(Fun(C,D)≃) is the set of
isomorphism classes of objects of the ∞-category Fun(C,D) (or, equivalently, of the
homotopy category hFun(C,D)). If F : C → D is a functor, we denote its isomorphism
class by [F ] ∈ HomhQCat(C,D).
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• If C, D, and E are ∞-categories, then the composition law

◦ : HomhQCat(D, E )×HomhQCat(C ,D)→ HomhQCat(C , E )

is characterized by the formula [G] ◦ [F ] = [G ◦ F ].

We will refer to hQCat as the homotopy category of ∞-categories.

Remark 4.5.1.2.01DS We will later study a refinement of Construction 4.5.1.1. The collection of
(small) ∞-categories can itself be organized into a (large) ∞-category QC, whose homotopy
category can be identified with the ordinary category hQCat of Construction 4.5.1.1. See
Construction 5.5.4.1.

Remark 4.5.1.3.01P0 Let Cat denote the (strict) 2-category of categories (Example 2.2.0.4)
and let hCat denote its homotopy category (Construction 2.2.8.12). Then the construction
C 7→ N•(C) determines a fully faithful functor from hCat to the homotopy category hQCat
of Construction 4.5.1.1. This functor admits a left adjoint, which carries an ∞-category C
to its homotopy category hC.

Remark 4.5.1.4.01DT Let hKan denote the homotopy category of Kan complexes (Construction
3.1.5.10). Then we can regard hKan as a full subcategory of the ∞-category hQCat
(Construction 4.5.1.1), spanned by those∞-categories which are Kan complexes. This follows
from the observation that if Y is a Kan complex, then a pair of morphisms f, g : X → Y

are isomorphic as objects of the ∞-category Fun(X,Y ) if and only if they are homotopic
(Proposition 3.1.5.4).

The inclusion functor hKan ↪→ hQCat has both left and right adjoints.

Proposition 4.5.1.5.01DU Let C be an ∞-category and let C≃ denote its core (Construction
4.4.3.1). For every Kan complex X, composition with the inclusion map ι : C≃ ↪→ C induces
a bijection

HomhKan(X, C≃) = HomhQCat(X, C≃)→ HomhQCat(X, C).

Proof. By virtue of Proposition 4.4.3.22, postcomposition with ι induces an isomorphism
of Kan complexes Fun(X, C≃) → Fun(X, C)≃. Proposition 4.5.1.5 follows by passing to
connected components.

Corollary 4.5.1.6.01DV The inclusion functor hKan ↪→ hQCat of Remark 4.5.1.4 admits a
right adjoint, given on objects by the construction C 7→ C≃.

Remark 4.5.1.7.01DW The right adjoint hQCat→ hKan of Corollary 4.5.1.6 can be described
more explicitly as follows:

• To each ∞-category C, it associates the Kan complex C≃ of Construction 4.4.3.1.
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• To each morphism [F ] : C → D in the homotopy category hQCat (given by the
isomorphism class of a functor F : C → D), it associates the homotopy class [F≃] of
the underlying map of cores F≃ = F |C≃ (note that the homotopy class of F≃ depends
only on the isomorphism class of F , by virtue of Remark 4.4.4.5).

Proposition 4.5.1.8. 01DXThe inclusion functor hKan ↪→ hQCat of Remark 4.5.1.4 admits a
left adjoint.

Proof. Let C be an ∞-category. We wish to show that there exists a Kan complex X and a
morphism u : C → X with the following property: for every Kan complex Y , precomposition
with u induces a bijection

HomhKan(X,Y ) = HomhQCat(X,Y )→ HomhQCat(C, Y ).

Unwinding the definitions, we see that this is a reformulation of the requirement that u is a
weak homotopy equivalence of simplicial sets. The existence of u now follows from Corollary
3.1.7.2.

Remark 4.5.1.9. 01H9The left adjoint hQCat→ hKan of Proposition 4.5.1.8 admits a category-
theoretic interpretation: it carries an ∞-category C to the localization C[W−1] obtained by
formally inverting the collection W of all morphisms in C (see Proposition 6.3.1.20).

Definition 4.5.1.10. 01DYLet F : C → D be a functor of ∞-categories. We say that a functor
G : D → C is homotopy inverse to F if the isomorphism class [G] is an inverse to [F ] in the
homotopy category hQCat: that is, if G◦F and F ◦G are isomorphic to the identity functors
idC and idD as objects of the∞-categories Fun(C, C) and Fun(D,D), respectively. We will say
that F is an equivalence of ∞-categories if [F ] is an isomorphism in the homotopy category
hQCat: that is, if F admits a homotopy inverse G : D → C. We say that ∞-categories C
and D are equivalent if there exists an equivalence from C to D.

Example 4.5.1.11. 01E0Let C and D be ∞-categories, and let F : C → D be an isomorphism of
simplicial sets. Then F is an equivalence of∞-categories. In particular, for every∞-category
C, the identity functor idC is an equivalence of ∞-categories.

Example 4.5.1.12. 01E1Let F : C → D be a functor between categories. Then the induced map
N•(F ) : N•(C)→ N•(D) is an equivalence of ∞-categories if and only if F is an equivalence
of categories.

Example 4.5.1.13. 01E2Let f : X → Y be a morphism of Kan complexes. Then f is a homotopy
equivalence if and only if it is an equivalence of ∞-categories (see Remark 4.5.1.4). In this
case, a morphism g : Y → X is a homotopy inverse to f in the sense of Definition 4.5.1.10 if
and only if it is a homotopy inverse to f , in the sense of Definition 3.1.6.1.
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Warning 4.5.1.14.01E3 Let C and D be ∞-categories, and let F : C → D be a functor. If F is
an equivalence of ∞-categories (in the sense of Definition 4.5.1.10), then it is a homotopy
equivalence of simplicial sets (in the sense of Definition 3.1.6.1). More precisely, if G : D → C
is a homotopy inverse to the functor F (in the sense of Definition 4.5.1.10), then G is
also a simplicial homotopy inverse to F (in the sense of Definition 3.1.6.1). Beware that
the converse assertion is false in general. For example, the projection map ∆1 → ∆0 is
a homotopy equivalence of simplicial sets (with homotopy inverse given by the inclusion
∆0 ≃ {0} ↪→ ∆1), but not an equivalence of ∞-categories.

Remark 4.5.1.15.02R0 Let C and D be∞-categories, and let F,G : C → D be functors which are
isomorphic when regarded as objects of Fun(C,D). Then F is an equivalence of∞-categories
if and only if G is an equivalence of ∞-categories.

Remark 4.5.1.16.01HA Let X be an arbitrary simplicial set. Then the construction C 7→
Fun(X, C) determines a functor from the homotopy category hQCat to itself. In particular, if
F : C → D is an equivalence of ∞-categories, then the induced map Fun(X, C)→ Fun(X,D)
is also an equivalence of ∞-categories.

Remark 4.5.1.17.023B Let {Fi : Ci → Di}i∈I be a collection of functors between ∞-categories
indexed by a set I. If each Fi is an equivalence of ∞-categories, then the product functor∏
i∈I Ci →

∏
i∈I Di is also an equivalence of ∞-categories.

Remark 4.5.1.18 (Two-out-of-Three).01E5 Let F : C → D and G : D → E be functors between
∞-categories. If any two of the functors F , G, and G ◦ F is an equivalence of ∞-categories,
then so is the third. In particular, the collection of equivalences is closed under composition.

Remark 4.5.1.19.01E6 Let F : C → D be a functor between∞-categories. If F is an equivalence
of ∞-categories, then the induced map of cores F≃ : C≃ → D≃ is a homotopy equivalence of
Kan complexes. This follows from Corollary 4.5.1.6 (and Remark 4.5.1.7): if the isomorphism
class [F ] is an invertible morphism in the homotopy category hQCat, then the homotopy
class [F≃] is an invertible morphism in the homotopy category hKan.

Remark 4.5.1.20.01HB Let F : C → D be an equivalence of ∞-categories. Then the induced
functor hF : hC → hD is an equivalence of ordinary categories. In particular, a morphism
u in the ∞-category C is an isomorphism if and only if F (u) is an isomorphism in the
∞-category D.

Remark 4.5.1.21.01HC Let F : C → D be an equivalence of∞-categories. If D is a Kan complex,
then C is a Kan complex. To prove this, it suffices to show that every morphism u : X → Y

in C is an isomorphism (Proposition 4.4.2.1). By virtue of Remark 4.5.1.20, this is equivalent
to the assertion that F (u) : F (X)→ F (Y ) is an isomorphism in D, which is automatic when
D is a Kan complex (Proposition 1.4.6.10). Similarly, if C is a Kan complex, then D is a
Kan complex (this follows by applying the same argument to an inverse equivalence D → C).

https://kerodon.net/tag/01E3
https://kerodon.net/tag/02R0
https://kerodon.net/tag/01HA
https://kerodon.net/tag/023B
https://kerodon.net/tag/01E5
https://kerodon.net/tag/01E6
https://kerodon.net/tag/01HB
https://kerodon.net/tag/01HC


718 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

Proposition 4.5.1.22. 032XLet F : C → D be a functor of ∞-categories. The following
conditions are equivalent:

(1) The functor F is an equivalence of ∞-categories.

(2) For every simplicial set X, composition with F induces an equivalence of ∞-categories
Fun(X, C)→ Fun(X,D).

(3) For every simplicial set X, composition with F induces a homotopy equivalence of Kan
complexes Fun(X, C)≃ → Fun(X,D)≃.

(4) For every ∞-category B, composition with F induces a homotopy equivalence of Kan
complexes Fun(B, C)≃ → Fun(B,D)≃.

(5) For every∞-category B, composition with F induces a bijection of sets π0(Fun(B, C)≃)→
π0(Fun(B,D)≃).

Proof. The implication (1)⇒ (2) follows from Remark 4.5.1.16, the implication (2)⇒ (3)
from Remark 4.5.1.19, the implication (3)⇒ (4) is immediate, and the implication (4)⇒ (5)
follows from Remark 3.1.6.5, and the implication (5)⇒ (1) follows from Yoneda’s lemma
(applied to the homotopy category hQCat).

We close this section by introducing a refinement of Construction 4.5.1.1:

Construction 4.5.1.23 (The Homotopy 2-Category of ∞-Categories). 02BZWe define a strict
2-category h2QCat as follows:

• The objects of h2QCat are ∞-categories.

• If C and D are ∞-categories, then Homh2QCat(C,D) = hFun(C,D) is the homotopy
category of the functor ∞-category Fun(C,D).

• If C, D, and E are ∞-categories, then the composition law on h2QCat is given by

Homh2QCat(D, E)×Homh2QCat(C,D) = (hFun(D, E))× (hFun(C,D))
≃ h(Fun(D, E)× Fun(C,D))
◦−→ hFun(C, E)
= Homh2QCat(C, E).

We will refer to h2QCat as the homotopy 2-category of ∞-categories. We let h2QCat denote
the pith of h2QCat, in the sense of Construction 2.2.8.9; we will refer to h2QCat as the
homotopy (2, 1)-category of ∞-categories.

https://kerodon.net/tag/032X
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Remark 4.5.1.24.02C0 We can describe the strict 2-category h2QCat more informally as
follows:

• The objects of h2QCat are ∞-categories.

• The morphisms of h2QCat are functors F : C → D.

• If F0, F1 : C → D are functors between ∞-categories, then a 2-morphism F0 ⇒ F1 in
h2QCat is a homotopy class of natural transformations from F0 to F1.

The strict 2-category h2QCat can be described in a similar way, except that its 2-morphisms
are homotopy classes of natural isomorphisms (rather than general natural transformations).

Remark 4.5.1.25.02C1 The homotopy category hQCat of Construction 4.5.1.1 can be identified
with the homotopy category of the 2-category h2QCat (in the sense of Construction 2.2.8.12);
see Remark 2.4.6.18).

Remark 4.5.1.26.02C2 Let Cat denote the (strict) 2-category of categories (see Example 2.2.0.4).
The construction C 7→ N•(C) defines an isomorphism from Cat to the full subcategory of
h2QCat spanned by those objects of the form N•(C), where C is a (small) category.

Remark 4.5.1.27.02C3 Let h2Kan denote the homotopy 2-category of Kan complexes (Construc-
tion 3.1.5.13). Then h2Kan can be identified with the full subcategory of h2QCat spanned
by the Kan complexes. Since h2Kan is a (2, 1)-category, this subcategory is contained in the
pith h2QCat = Pith(h2QCat); we can therefore also view h2Kan as a full subcategory of
h2QCat.

4.5.2 Categorical Pullback Squares

032Y Recall that a commutative diagram of Kan complexes

X01 //

��

X0

q

��
X1 // X

is a homotopy pullback square if the induced map

X01 → X0 ×X X1 ↪→ X0 ×h
X X1

is a homotopy equivalence, where X0 ×h
X X1 is the homotopy fiber product of Construction

3.4.0.3 (see Corollary 3.4.1.6). In this section, we study an analogous condition in the setting
of ∞-categories. We begin with a variant of Construction 3.4.0.3.
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Construction 4.5.2.1 (The Homotopy Fiber Product of ∞-Categories). 032ZLet C be an
∞-category, and let Isom(C) ⊆ Fun(∆1, C) denote the full subcategory spanned by the
isomorphisms in C (Example 4.4.1.14). If C0 and C1 are∞-categories equipped with functors
F0 : C0 → C and F1 : C1 → C, we let C0×h

C C1 denote the iterated pullback

C0×Fun({0},C) Isom(C)×Fun({1},C) C1 .

We will refer to C0×h
C C1 as the homotopy fiber product of C0 with C1 over C. Note that the

diagonal map C → Isom(C) ⊆ Fun(∆1, C) induces a comparison map C0×C C1 ↪→ C0×h
C C1,

which is a monomorphism of simplicial sets.

Remark 4.5.2.2. 0330Let F0 : C0 → C and F1 : C1 → C be functors of ∞-categories. It follows
from Corollary 4.4.5.5 that the projection map C0×h

C C1 → C0×C1 is an isofibration. In
particular, the homotopy fiber product C0×h

C C1 is an ∞-category. By construction, the
objects of C0×h

C C1 can be identified with triples (C0, C1, e), where C0 is an object of C0, C1
is an object of C, and e : F0(C0)→ F1(C1) is an isomorphism in the ∞-category C.

Example 4.5.2.3. 0331Let F0 : C0 → C and F1 : C1 → C be functors of ∞-categories. If C is
a Kan complex, then every morphism in C is an isomorphism (Proposition 1.4.6.10): that
is, we have Isom(C) = Fun(∆1, C). It follows that the homotopy fiber product C0×h

C C1 of
Construction 4.5.2.1 coincides with the homotopy fiber product introduced in Construction
3.4.0.3.

Example 4.5.2.4. 04HXLet F0 : C0 → C and F1 : C1 → C be functors of ordinary categories.
Then the homotopy fiber product N•(C0)×h

N•(C) N•(C1) can be identified with the nerve of a
category C0×h

C C1, which can be described concretely as follows:

• The objects of C0×h
C C1 are triples (C0, C1, e), where C0 is an object of C0, C1 is an

object of C, and e : F0(C0)→ F1(C1) is an isomorphism in C.

• A morphism from (C0, C1, e) to (C ′0, C ′1, e′) is a pair (f0, f1), where f0 : C0 → C ′0 is a
morphism in the category C0, f1 : C1 → C ′1 is a morphism in the category C1, and the
diagram

C0
f0 //

e∼
��

C ′0

e′∼
��

C1
f1 // C ′1

commutes in the category C.

We will refer to C0×h
C C1 as the homotopy fiber product of C0 with C1 over C.
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Remark 4.5.2.5.0332 Let F0 : C0 → C and F1 : C1 → C be functors of ∞-categories. Then
there is a canonical isomorphism of simplicial sets

(C0×h
C C1)op ≃ Cop

1 ×
h
Cop Cop

0 .

Remark 4.5.2.6.0333 Let C be an ∞-category and let X be a simplicial set. Using Theorem
4.4.4.4, we see that the natural identification Fun(X,Fun(∆1, C)) ≃ Fun(∆1,Fun(X, C))
restricts to an isomorphism Fun(X, Isom(C)) ≃ Isom(Fun(X, C)). If F0 : C0 → C and
F1 : C1 → C are functors of ∞-categories, we obtain a canonical isomorphism

Fun(X, C0×h
C C1) ≃ Fun(X, C0)×h

Fun(X,C) Fun(X, C1).

Remark 4.5.2.7.0334 Let F0 : C0 → C and F1 : C1 → C be functors of ∞-categories. Applying
Corollary 4.4.3.19 to the pullback diagram

C0×h
C C1 //

��

Isom(C)

��
C0×C1 // C ×C,

we deduce that the diagram of cores

(C0×h
C C1)≃ //

��

Isom(C)≃

��
C≃0 ×C≃1 // C≃×C≃

is also a pullback square: that is, we have a canonical isomorphism of Kan complexes

(C0×h
C C1)≃ ≃ C≃0 ×h

C≃ C
≃
1 .

Definition 4.5.2.8.0335 A commutative diagram of ∞-categories

0336 C01 //

��

C0

��
C1 // C .

(4.7)
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is a categorical pullback square if the composite map

C01 → C0×C C1 ↪→ C0×h
C C1

is an equivalence of ∞-categories.

Remark 4.5.2.9. 0337Suppose we are given a categorical pullback diagram of ∞-categories

C01 //

��

C0

��
C1 // C .

Then, for every simplicial set X, the induced diagram

Fun(X, C01) //

��

Fun(X, C0)

��
Fun(X, C1) // Fun(X, C)

is also a categorical pullback square. This follows by combining Remarks 4.5.2.6 and 4.5.1.16.

Proposition 4.5.2.10. 0338A commutative diagram of Kan complexes

0339X01 //

��

X0

q

��
X1 // X

(4.8)

is a categorical pullback square if and only if it is a homotopy pullback square.

Proof. Combine Corollary 3.4.1.6 with Examples 4.5.2.3 and Example 4.5.1.13.

Variant 4.5.2.11. 046LSuppose we are given a commutative diagram of ∞-categories

046MC01 //

��

C0

q

��
C1 // C,

(4.9)
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where C is a Kan complex. If (4.9) is a categorical pullback square, then it is also a homotopy
pullback square.

Proof. By assumption, the induced map C01 → C0×h
C C1 is an equivalence of ∞-categories,

and therefore a weak homotopy equivalence of simplicial sets (Remark 4.5.3.4). The desired
result now follows from the criterion of Corollary 3.4.1.6.

In more general situations, the notions of homotopy pullback square and categorical
pullback square are distinct:

Exercise 4.5.2.12.033A Show that the diagram of ∞-categories

∅ //

��

{0}

��
{1} // ∆1

is a categorical pullback square which is not a homotopy pullback square.

Exercise 4.5.2.13.033B Show that the diagram of ∞-categories

{0} //

��

∆1

��
∆1 // ∆1

is a homotopy pullback square which is not a categorical pullback square.

Proposition 4.5.2.14.033C A commutative diagram of ∞-categories

033D C01 //

��

C0

��
C1 // C

(4.10)

is a categorical pullback square if and only if, for every simplicial set X, the diagram of Kan
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complexes
033EFun(X, C01)≃ //

��

Fun(X, C0)≃

��
Fun(X, C1)≃ // Fun(X, C)≃

(4.11)

is a homotopy pullback square.

Proof. By definition, the diagram (4.10) is a categorical pullback square if and only if the
induced map θ : C01 → C0×h

C C1 is an equivalence of ∞-categories. Using the criterion of
Proposition 4.5.1.22, we see that this is equivalent to the requirement that θ induces a
homotopy equivalence θX : Fun(X, C01)≃ → Fun(X, C0×h

C C1)≃ for every simplicial set X.
Using Remarks 4.5.2.6 and 4.5.2.7, we can identify θX with the map

Fun(X, C01)≃ → Fun(X, C0)≃ ×h
Fun(X,C)≃ Fun(X, C1)≃

determined by the commutative diagram (4.11). The desired result now follows from the
criterion of Corollary 3.4.1.6.

Remark 4.5.2.15. 033FIn the situation of Proposition 4.5.2.14, it suffices to verify that the
diagram (4.11) is a homotopy pullback square in the case where X is an ∞-category. In
fact, we will later see that it suffices to consider the case where X = ∆1 (Corollary 4.5.7.4).

We now apply Proposition 4.5.2.14 to deduce some formal properties of the notion of
categorical pullback square.

Proposition 4.5.2.16. 033GA commutative diagram of ∞-categories

C01 //

��

C0

��
C1 // C

is a categorical pullback square if and only if the induced diagram of opposite ∞-categories

Cop
01

//

��

Cop
0

��
Cop

1
// Cop

is a categorical pullback square.
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Proof. Combine Proposition 4.5.2.14 with Remark 3.4.1.7.

Proposition 4.5.2.17 (Symmetry).033H A commutative diagram of ∞-categories

C01 //

��

C0

��
C1 // C

is a categorical pullback square if and only if the transposed diagram

C01 //

��

C1

��
C0 // C

is a categorical pullback square.

Proof. Combine Propositions 4.5.2.14 and 3.4.1.9.

Proposition 4.5.2.18 (Transitivity).033J Suppose we are given a commutative diagram of
∞-categories

C //

��

C′

��

// C′′

��
D // D′ // D′′,

where the square on the right is a categorical pullback. Then the square on the left is a
categorical pullback if and only if the outer rectangle is a categorical pullback.

Proof. Combine Propositions 4.5.2.14 and 3.4.1.11.

Proposition 4.5.2.19 (Homotopy Invariance).033K Suppose we are given a commutative diagram
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of ∞-categories
C01

F01

!!

//

��

C0

��

F0

  
D01 //

��

D0

��

C1 //

F1

!!

C

F

  
D1 // D,

where F0, F1, and F are equivalences of ∞-categories. Then any two of the following
conditions imply the third:

(1) The back face
C01 //

��

C0

��
C1 // C

is a categorical pullback square.

(2) The front face
D01 //

��

D0

��
D1 // D

is a categorical pullback square.

(3) The functor F01 is an equivalence of ∞-categories.

Proof. Using Proposition 4.5.1.22, we see that (3) is equivalent to the following:

(3′) For every simplicial set X, the functor F01 induces a homotopy equivalence of Kan
complexes Fun(X, C01)≃ → Fun(X,D01)≃.
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The equivalences (1) ⇔ (2) ⇔ (3′) now follow by combining Proposition 4.5.2.14 with
Corollary 3.4.1.12.

Corollary 4.5.2.20.033L Suppose we are given a commutative diagram of ∞-categories

C0 //

��

C

��

C1oo

��
D0 // D Doo

where the vertical maps are equivalences of ∞-categories. Then the induced map C0×h
C C1 →

D0×h
D D1 is an equivalence of ∞-categories.

Proposition 4.5.2.21.033M Suppose we are given a commutative diagram of ∞-categories

033N C′ //

F ′

��

C

F

��
D′ // D .

(4.12)

where F is an equivalence of ∞-categories. Then (4.12) is a categorical pullback square if
and only if F ′ is an equivalence of ∞-categories.

Proof. Combine Proposition 4.5.1.22, Proposition 4.5.2.14, and Corollary 3.4.1.5.

Corollary 4.5.2.22.0570 Let F : C → D be a functor of ∞-categories and let

δ : C → C ×̃D D = C ×Fun({0},D) Fun(∆1,D)

be map induced by the diagonal embedding c : D ↪→ Fun(∆1,D). Then δ is fully faithful, and
its essential image is the homotopy fiber product C ×h

D D of Construction 4.5.2.1.

Proof. Let us identify the objects of C ×̃D D with triples (C,D, u), where C is an object of
C, D is an object of D, and u : F (C)→ D is a morphism in D. By definition, C ×h

D D is the
full subcategory of C ×̃D D spanned by those triples (C,D, u) where u is an isomorphism in
D. The functor δ is given on objects by the formula δ(C) = (C,F (C), idF (C)), and therefore
factors through C ×h

D D. To complete the proof, it will suffice to show that the functor
δ : C → C ×h

D D is an equivalence of ∞-categories. Equivalently, we wish to show that the
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diagram
C id //

F

��

C

F

��
D id // D

is a categorical pullback square, which is a special case of Proposition 4.5.2.21.

Corollary 4.5.2.23. 02VMLet f : K → D be a morphism of simplicial sets, where D is an
∞-category. Then f factors as a composition K

j−→ C U−→ D, where U is an isofibration of
∞-categories and j is both a monomorphism and a categorical equivalence.

Proof. Using Proposition 4.1.3.2, we can factor f as a composition K i−→ K F−→ D, where i is
inner anodyne and F is an inner fibration. Note that the simplicial set K is an ∞-category
(Remark 4.1.1.9), and that i is a categorical equivalence of simplicial sets (Corollary 4.5.3.14).
We may therefore replace f by F , and thereby reduce to the special case where K = K is
an ∞-category. Let C denote the homotopy fiber product K×h

D D. Then F factors as a
composition

K δ−→ K×h
D D

U−→ D,

where the diagonal embedding δ is an equivalence of ∞-categories (Corollary 4.5.2.22) and
U is an isofibration (see Remark 4.5.2.2).

Remark 4.5.2.24. 0479Let F : C → E be an inner fibration of∞-categories. Applying Corollary
4.5.2.23, we can factor F as a composition C F ′−→ D F ′′−−→ E , where F ′′ is an isofibration and
F ′ is an equivalence of ∞-categories. For each object E ∈ E , the equivalence F ′ restricts
to a functor F ′E : CE → DE . Beware that F ′E need not be an equivalence of ∞-categories.
However, it is always fully faithful: see Proposition 4.6.2.8.

Remark 4.5.2.25. 037YIn the situation of Corollary 4.5.2.23, it is not necessary to assume that
D is an ∞-category: every morphism of simplicial sets f : X → Z admits a factorization
X

f ′−→ Y
f ′′−→ Z, where f ′′ is an isofibration and f ′ both a monomorphism and a categorical

equivalence (Proposition [?]). However, the proof is somewhat more difficult.

Proposition 4.5.2.26. 033PSuppose we are given a commutative diagram of ∞-categories

033QC′ //

��

C

U

��
D′ // D,

(4.13)
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where U is an isofibration. Then (4.13) is a categorical pullback square if and only if the
induced map θ : C′ → C×D D′ is an equivalence of ∞-categories.

Proof. For every simplicial set X, Corollary 4.4.5.7 guarantees that the induced map
Fun(X, C)≃ → Fun(X,D)≃ is a Kan fibration. Combining Proposition 4.5.2.14 with Example
3.4.1.3, we see that (4.13) is a categorical pullback square if and only if it induces a homotopy
equivalence

ρX : Fun(X, C′)≃ → Fun(X, C)≃ ×Fun(X,D)≃ Fun(X,D′)≃,

for every simplicial set X. Using Corollary 4.4.3.19, we can identify ρX with the map
Fun(X, C′)≃ → Fun(X, C ×D D′)≃ given by postcomposition with θ. The desired result now
follows from the criterion of Proposition 4.5.1.22.

Corollary 4.5.2.27.033R Suppose we are given a pullback diagram of ∞-categories

033S C′ //

��

C

U

��
D′ // D .

(4.14)

If U is an isofibration, then (4.14) is a categorical pullback square.

Corollary 4.5.2.28.033T Let F0 : C0 → C and F1 : C1 → C be functors of ∞-categories. If either
F0 or F1 is an isofibration, then the comparison map

C0×C C1 ↪→ C0×h
C C1 (C0, C1) 7→ (C0, C1, id)

is an equivalence of ∞-categories.

Proof. This is a restatement of Corollary 4.5.2.27.

Corollary 4.5.2.29.01HJ Suppose we are given a pullback diagram of ∞-categories

C′ F ′ //

��

C

U

��
D′ F // D,

where U is an isofibration. If F is an equivalence of ∞-categories, then F ′ is also an
equivalence of ∞-categories.
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Proof. Combine Corollary 4.5.2.27 with Proposition 4.5.2.21.

Corollary 4.5.2.30. 03PMSuppose we are given a commutative diagram of ∞-categories

C0
U //

��

C

��

C1oo

��
D0

V // D D1,oo

where the vertical maps are equivalences of ∞-categories. If U and V are isofibrations, then
the induced map C0×C C1 → D0×D D1 is an equivalence of ∞-categories.

Proof. Combine Corollaries 4.5.2.20 and 4.5.2.28.

Corollary 4.5.2.31. 033USuppose we are given a categorical pullback square of ∞-categories

C̃

U

��

// D̃

V

��
C F // D,

where U and V are isofibrations. Let C ∈ C be an object having image D = F (C). Then the
induced map

C̃C = {C} ×C C̃ → {D} ×D D̃ = D̃D
is an equivalence of ∞-categories.

Proof. Apply Corollary 4.5.2.30 in the special case C1 = {C} and D1 = {D}.

Corollary 4.5.2.32. 01HKSuppose we are given a diagram of ∞-categories

C̃

U

��

F̃ // D̃

V

��
C F // D,

where U and V are isofibrations and the functors F and F̃ are equivalences of ∞-categories.
Let C ∈ C be an object having image D = F (C). Then the induced map

C̃C = {C} ×C C̃ → {D} ×D D̃ = D̃D

is an equivalence of ∞-categories.
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Proof. Combine Proposition 4.5.2.21 with Corollary 4.5.2.31.

Warning 4.5.2.33.01HL Suppose we are given a commutative diagram of Kan complexes

X ′
f ′ //

q′

��

X

q

��
S′

f // S,

where q and q′ are Kan fibrations and f is a homotopy equivalence. By virtue of Proposition
3.2.8.1, the following conditions are equivalent:
(1) The morphism f ′ is a homotopy equivalence of Kan complexes.

(2) For each vertex s′ ∈ S′ having image s = f(s′) ∈ S, the induced map of fibers X ′s′ → Xs

is a homotopy equivalence of Kan complexes.
Corollary 4.5.2.32 can be regarded as a generalization of the implication (1)⇒ (2), where
we allow ∞-categories in place of Kan complexes and isofibrations in place of Kan fibrations.
Beware that the implication (2) ⇒ (1) does not generalize. For example, we have a
commutative diagram of ∞-categories

∂∆1 //

��

∆1

id

��
∆1 id // ∆1,

where the vertical maps are isofibrations, the bottom horizontal map is an isomorphism, and
the upper horizontal map restricts to an isomorphism on each fiber, but is nevertheless not
an equivalence of ∞-categories.
Corollary 4.5.2.34.033V Let U : E → C be an isofibration of ∞-categories, let B → C be a dia-
gram, and let f : A→ B be a categorical equivalence of simplicial sets. Then precomposition
with f induces an equivalence of ∞-categories Fun/ C(B, E)→ Fun/ C(A, E).
Proof. Apply Corollary 4.5.2.32 to the commutative diagram

Fun(B, E) ◦f //

U◦

��

Fun(A, E)

U◦

��
Fun(B, C) ◦f // Fun(A, C);

https://kerodon.net/tag/01HL
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note that the vertical maps are isofibrations (Corollary 4.4.5.6) and the horizontal maps are
equivalences of ∞-categories (Proposition 4.5.3.8).

Corollary 4.5.2.35. 02C5Let F : C → D be an equivalence of ∞-categories, let A ⊆ B be
simplicial sets, and suppose we are given a diagram A→ C. Then postcomposition with F
induces an equivalence of ∞-categories FunA/(B, C)→ FunA/(B,D).
Proof. Apply Corollary 4.5.2.32 to the commutative diagram

Fun(B, C) F◦ //

��

Fun(B,D)

��
Fun(A, C) F◦ // Fun(A,D);

note that the vertical maps are isofibrations by virtue of Corollary 4.4.5.3 and the horizontal
maps are equivalences by virtue of Remark 4.5.1.16.

Remark 4.5.2.36 (Categorical Pullback Squares of Simplicial Sets). 033WSuppose we are given
a commutative diagram of simplicial sets

033XX01 //

��

X0

��
X1 // X.

(4.15)

Applying Proposition 4.1.3.2 repeatedly, we can enlarge 4.15 to a cubical diagram

X01 //

��

!!

X0

��

  
C01 //

��

C0

��

X1 //

!!

X

  
C1 // C,
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where the diagonal maps are inner anodyne and the front face

033Y C01 //

��

C0

��
C1 // C

(4.16)

is a diagram of ∞-categories. Let us say that that the diagram of simplicial sets (4.15) is a
categorical pullback square if the diagram of ∞-categories (4.16) is a categorical pullback
square, in the sense of Definition 4.5.2.8. Using Proposition 4.5.2.19, it is not difficult to
show that this condition depends only on the original diagram (for a more general statement,
see Proposition 7.5.5.13). Beware that this more general notion of categorical pullback
diagram can be badly behaved: for example, it does not satisfy the analogue of Proposition
4.5.2.26 (see Warning 4.5.5.12).

4.5.3 Categorical Equivalence

01E7 Recall that a morphism of simplicial sets f : X → Y is a weak homotopy equivalence
if, for every Kan complex Z, precomposition with f induces a bijection π0(Fun(Y,Z)) →
π0(Fun(X,Z)) (Definition 3.1.6.12). If this condition is satisfied, then one should regard
X and Y as indistinguishable from the perspective of classical homotopy theory. However,
from the ∞-categorical perspective, the relation of weak homotopy equivalence is somewhat
too coarse: it is possible for a functor of ∞-categories F : C → D to be a weak homotopy
equivalence (or even a homotopy equivalence) without being an equivalence of ∞-categories
(Warning 4.5.1.14). For this reason, it will be convenient to introduce a finer notion of
equivalence.

Definition 4.5.3.1.01E8 Let f : X → Y be a morphism of simplicial sets. We say that f is a
categorical equivalence if, for every∞-category C, the induced functor Fun(Y, C)→ Fun(X, C)
induces a bijection on isomorphism classes π0(Fun(Y, C)≃)→ π0(Fun(X, C)≃).

Example 4.5.3.2.01E9 Every isomorphism of simplicial sets is a categorical equivalence.

Example 4.5.3.3.01EA Let F : C → D be a functor of ∞-categories. Then F is a categorical
equivalence (in the sense of Definition 4.5.3.1) if and only if it is an equivalence of∞-categories
(in the sense of Definition 4.5.1.10). Both conditions are equivalent to the assertion that
for every ∞-category E , precomposition with F induces a bijection HomhQCat(D, E) →
HomhQCat(C, E).

Remark 4.5.3.4.01EB Let f : X → Y be a categorical equivalence of simplicial sets. Then f is
a weak homotopy equivalence (since every Kan complex is an ∞-category). Beware that the
converse is generally false.
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Remark 4.5.3.5 (Two-out-of-Three). 01EDLet f : X → Y and g : Y → Z be morphisms of
simplicial sets. If any two of the morphisms f , g, and g ◦ f is a categorical equivalence,
then so is the third. In particular, the collection of categorical equivalences is closed under
composition.

Remark 4.5.3.6. 02R1The collection of categorical equivalences is closed under retracts. That
is, if there exists a commutative diagram of simplicial sets

X //

f

��

X ′

f ′

��

// X

f

��
Y // Y ′ // Y

where the horizontal compositions are the identity and f ′ is a categorical equivalence, then
f is also a categorical equivalence.

Remark 4.5.3.7. 01EELet f : X → Y be a categorical equivalence of simplicial sets. Then, for
any simplicial set K, the induced map fK : X×K → Y ×K is also a categorical equivalence
of simplicial sets. To prove this, we must show that for every ∞-category C, the restriction
map θ : Fun(Y × K, C) → Fun(X × K, C) induces a bijection on isomorphism classes of
objects. This follows from our assumption that f is a categorical equivalence, since θ can be
identified with the map Fun(Y,Fun(K, C))→ Fun(X,Fun(K, C)) given by precomposition
with f .

Proposition 4.5.3.8. 01EFLet f : X → Y be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism f : X → Y is a categorical equivalence. That is, for every ∞-category C,
precomposition with f induces a bijection

π0(Fun(Y, C)≃)→ π0(Fun(X, C)≃).

(2) For every ∞-category C, precomposition with f induces a homotopy equivalence of Kan
complexes Fun(Y, C)≃ → Fun(X, C)≃.

(3) For every ∞-category C, precomposition with f induces an equivalence of ∞-categories
Fun(Y, C)→ Fun(X, C).

Proof. The implication (2)⇒ (1) follows from Remark 3.1.6.5, and the implication (3)⇒ (2)
follows from Remark 4.5.1.19. We will complete the proof by showing that (1) implies (3).
Assume that f is a categorical equivalence of simplicial sets, let C be an ∞-category, and let
f∗ : Fun(Y, C)→ Fun(X, C) denote the functor given by precomposition with f . We wish to
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show that [f∗] is an isomorphism in the homotopy category hQCat. For this, it will suffice
to show that for any ∞-category D, the induced map

θ : π0(Fun(D,Fun(Y, C))≃)→ π0(Fun(D,Fun(X, C))≃)

is bijective. We conclude by observing that θ can be identified with the map

π0(Fun(Y,Fun(D, C))≃)→ π0(Fun(X,Fun(D, C))≃)

given by precomposition with f .

Corollary 4.5.3.9.033Z Let C be an ∞-category, let K be a simplicial set, and let f, f ′ : K → C
be diagrams which are isomorphic (when viewed as objects of the ∞-category Fun(K, C)).
Then f is a categorical equivalence if and only if f ′ is a categorical equivalence.

Corollary 4.5.3.10.023C Let {fi : Xi → Yi}i∈I be a collection of categorical equivalences indexed
by a set I. Then the coproduct map

f :
∐
i∈I

Xi →
∐
i∈I

Yi

is also a categorical equivalence.

Proof. By virtue of Proposition 4.5.3.8, it will suffice to show that for every ∞-category C,
precomposition with f induces an equivalence of ∞-categories

F : Fun(
∐
i∈I

Yi, C)→ Fun(
∐
i∈I

Xi, C).

Note that F factors as a product of functors Fi : Fun(Yi, C)→ Fun(Xi, C), each of which is
induced by precomposition with fi. Since each fi is a categorical equivalence, Proposition
4.5.3.8 guarantees that each Fi is an equivalence of ∞-categories. Applying Remark 4.5.1.17,
we conclude that F is an equivalence of ∞-categories.

Proposition 4.5.3.11.01EG Let f : X → Y be a trivial Kan fibration of simplicial sets. Then f

is a categorical equivalence.

Proof. Let C be an ∞-category. We wish to show that precomposition with f induces a
bijection

f∗ : π0(Fun(Y, C)≃)→ π0(Fun(X, C)≃).

Let s : Y → X be a section of f (so that f ◦ s = idY ). Then precomposition with s induces
a function s∗ : π0(Fun(X, C)≃)→ π0(Fun(Y, C)≃) for which the composition s∗ ◦ f∗ is equal
to the identity on the set π0(Fun(Y, C)≃). We will complete the proof by showing that the
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composition f∗ ◦ s∗ is isomorphic to the identity on π0(Fun(X, C)≃). Fix a map of simplicial
sets g : X → C; we wish to show that g is isomorphic to the composite map

X
f−→ Y

s−→ X
g−→ C

as an object of the ∞-category Fun(X, C).
Since f is a trivial Kan fibration, the composition s ◦ f is fiberwise homotopic to the

identity map idX : that is, we can choose a morphism of simplicial sets h : ∆1 ×X → X

which is compatible with the projection to Y and which satisfies h|{0}×X = s ◦ f and
h|{1}×X = idX . The composition g ◦ h can then be regarded as a natural transformation
u : (g ◦ s ◦ f)→ g. We will complete the proof by showing that u is an isomorphism in the
∞-category Fun(X, C). By virtue of Theorem 4.4.4.4, it will suffice to prove that for each
vertex x ∈ X, the composite map

∆1 ≃ ∆1 × {x} ↪→ ∆1 ×X h−→ X
g−→ C

describes an invertible morphism in C. Setting y = f(x), we note that this composite
map factors through the (contractible) Kan complex Xy, so the desired result follows from
Proposition 1.4.6.10.

Corollary 4.5.3.12. 01EHLet C and D be ∞-categories, and let F : C → D be a trivial Kan
fibration. Then F is an equivalence of ∞-categories.

Proof. Combine Proposition 4.5.3.11 with Example 4.5.3.3.

Corollary 4.5.3.13. 02C4Let C be an ∞-category, and let Isom(C) denote the full subcategory
of Fun(∆1, C) spanned by the isomorphisms of C (Example 4.4.1.14). Then the diagonal
embedding

δ : C ↪→ Isom(C) C 7→ idC

is an equivalence of ∞-categories.

Proof. Let ev0 : Isom(C)→ C denote the evaluation map

Isom(C) ↪→ Fun(∆1, C)→ Fun({0}, C) ≃ C .

Then ev0 ◦δ is the identity functor idC. Corollary 4.4.5.10 guarantees that ev0 is a trivial
Kan fibration, and therefore an equivalence of ∞-categories (Corollary 4.5.3.12). Applying
the two-out-of-three property (Remark 4.5.1.18), we conclude that δ is also an equivalence
of ∞-categories.

Corollary 4.5.3.14. 01EJLet f : A ↪→ B be an inner anodyne morphism of simplicial sets. Then
f is a categorical equivalence.
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Proof. By virtue of Proposition 4.5.3.8, it will suffice to show that for every ∞-category
C, the restriction map f∗ : Fun(B, C)→ Fun(A, C) is an equivalence of ∞-categories. This
follows from Corollary 4.5.3.12, since f∗ is a trivial Kan fibration (Proposition 1.5.7.6).

Warning 4.5.3.15.01EK Let f : A→ B be a morphism of simplicial sets. By virtue of Corollary
3.3.7.7, the morphism f is anodyne if and only if it is both a monomorphism and a weak
homotopy equivalence. Beware that the analogous assertion for inner anodyne morphisms
is false. If f is inner anodyne, then it is both a monomorphism (Remark 1.5.6.5) and a
categorical equivalence (Corollary 4.5.3.14). However, the converse fails: a monomorphism
A ↪→ B which is a categorical equivalence need not be inner anodyne. For example, an inner
anodyne morphism of simplicial sets is automatically bijective on vertices (Exercise 1.5.6.6).
However, there can be other obstructions as well: see Example 4.5.3.16.

Example 4.5.3.16 ([8]).01HD Let X = ∆2 ∐
N•({1<2}) ∆0 be the simplicial set obtained from

the standard 2-simplex by collapsing the final edge to a point, which we represent by the
diagram

•

•

e′

??

e // •.

Then X has exactly two nondegenerate edges e, e′ : ∆1 → X, as indicated in the diagram.
We now make the following observations:

• There is a pushout diagram of simplicial sets

Λ2
1

//

��

∆2

��
∆1 e′ // X.

Consequently, the morphism e′ : ∆1 → X is inner anodyne, and therefore a categorical
equivalence (Corollary 4.5.3.14).

• There is a unique morphism of simplicial sets r : X → ∆1 satisfying r ◦ e′ = id∆1 ;
the composite map ∆2 ↠ X

r−→ ∆1 is given on vertices by 0 7→ 0, 1 7→ 1, and 2 7→ 1.
Since e′ is a categorical equivalence, it follows that r is also a categorical equivalence
(Remark 4.5.3.5).
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• The composite map ∆1 e−→ X
r−→ ∆1 is equal to the identity map id∆1 . Since r is a

categorical equivalence, it follows that e is also a categorical equivalence. Moreover, e
is also a monomorphism of simplicial sets which is bijective on vertices.

• The morphism e : ∆1 ↪→ X is an inner fibration. This follows from Remark 4.1.1.5,
since we have a pullback diagram of simplicial sets

Λ2
2

//

��

∆1

e

��
∆2 // X,

where the horizontal maps are surjective and the inclusion Λ2
2 ↪→ ∆2 is an inner

fibration (since can be realized as the nerve of a morphism between partially ordered
sets).

• The morphism e is not inner anodyne, since the lifting problem

∆1

e

��

id // ∆1

e

��
X

id //

>>

X

has no solution.

Remark 4.5.3.17 (Axioms for Categorical Equivalence). 01ELThe collection of categorical
equivalences of simplicial sets has the following properties:

(A) If C and D are ∞-categories, then a functor F : C → D is a categorical equivalence if
and only if it is an equivalence of ∞-categories (Example 4.5.3.3).

(B) Every inner anodyne morphism of simplicial sets is a categorical equivalence (Corollary
4.5.3.14).

(C) If f : X → Y and g : Y → Z have the property that two of the morphisms f , g, and
g ◦ f are categorical equivalences, then so is the third (Remark 4.5.3.5).

In fact, the collection of categorical equivalences is characterized by assertions (A), (B) and
(C). Let f : X → Y be a morphism of simplicial sets. Invoking Proposition 4.1.3.1 twice, we
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can construct a commutative diagram of simplicial sets

X
u //

f

��

C

F

��
Y

v // D,

where u and v are inner anodyne and C and D are ∞-categories. It follows from (A), (B)
and (C) that the morphism f is a categorical equivalence if and only if the functor F is an
equivalence of ∞-categories.

4.5.4 Categorical Pushout Squares

01F6 Recall that a commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

is a homotopy pushout square if, for every Kan complex X, the diagram of Kan complexes

Fun(A,X) Fun(A0, X)oo

Fun(A1, X)

OO

Fun(A01, X)

OO

oo

is a homotopy pullback square (Definition 3.4.2.1). In this section, we study a stronger
version of this condition.

Definition 4.5.4.1.01F7 A commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

https://kerodon.net/tag/01F6
https://kerodon.net/tag/01F7
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is a categorical pushout square if, for every ∞-category C, the diagram of Kan complexes

Fun(A, C)≃ Fun(A0, C)≃oo

Fun(A1, C)≃

OO

Fun(A01, C)≃

OO

oo

is a homotopy pullback square.

Remark 4.5.4.2. 01F8Every categorical pushout square of simplicial sets is also a homotopy
pushout square of simplicial sets (since every Kan complex X is an ∞-category which
satisfies Fun(K,X)≃ = Fun(K,X) for every simplicial set K).

Remark 4.5.4.3. 02VNSuppose we are given a categorical pushout square of simplicial sets

A //

��

A0

��
A1 // A01.

Then, for every simplicial set K, the induced diagram

A×K //

��

A0 ×K

��
A1 ×K // A01 ×K

is also a categorical pushout square. That is, for every ∞-category C, the diagram of Kan
complexes

Fun(A×K, C)≃ Fun(A0 ×K, C)≃oo

Fun(A1 ×K, C)≃

OO

Fun(A01 ×K, C)≃

OO

oo

is a homotopy pullback square. This follows by applying the requirement Definition 4.5.4.1
to the ∞-category Fun(K, C).

https://kerodon.net/tag/01F8
https://kerodon.net/tag/02VN
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Proposition 4.5.4.4.0340 A commutative diagram of simplicial sets

0341 A //

��

A0

��
A1 // A01

(4.17)

is a categorical pushout square if and only if it satisfies the following condition:

(∗) For every ∞-category C, the diagram of ∞-categories

0342 Fun(A, C) Fun(A0, C)oo

Fun(A1, C)

OO

Fun(A01, C)oo

OO

(4.18)

is a categorical pullback square.

Proof. Fix an ∞-category C. If the diagram of ∞-categories (4.18) is a categorical pullback
square, then the diagram of cores

Fun(A, C)≃ Fun(A0, C)≃oo

Fun(A1, C)≃

OO

Fun(A01, C)≃oo

OO

is a homotopy pullback square (Proposition 4.5.2.14). Allowing C to vary, we see that if (∗)
is satisfied, then (4.17) is a categorical pushout square. For the converse, assume that (4.17)
is a categorical pullback square. For every simplicial set X, the simplicial set Fun(X, C) is
an ∞-category (Theorem 1.5.3.7), so the diagram of Kan complexes

0343 Fun(A,Fun(X, C))≃ Fun(A0,Fun(X, C))≃oo

Fun(A1,Fun(X, C))≃

OO

Fun(A01,Fun(X, C))≃

OO

oo

(4.19)

https://kerodon.net/tag/0340
https://kerodon.net/tag/0341
https://kerodon.net/tag/0342
https://kerodon.net/tag/0343
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is a homotopy pullback square. Identifying (4.19) with the diagram

Fun(X,Fun(A, C))≃ Fun(X,Fun(A0, C))≃oo

Fun(X,Fun(A1, C))≃

OO

Fun(X,Fun(A01, C))≃

OO

oo

and allowing X to vary, we conclude that the diagram (4.18) is a categorical pullback square
(Proposition 4.5.2.14).

Corollary 4.5.4.5. 02VPSuppose we are given a categorical pushout square of simplicial sets

A //

��

B

��
A′ // B′,

where the horizontal maps are monomorphisms. Let C be an ∞-category. For every diagram
A′ → C, the restriction map FunA′/(B′, C)→ FunA/(B, C) is an equivalence of ∞-categories.

Proof. Proposition 4.5.4.4 guarantees that the diagram

Fun(B′, C) //

��

Fun(B, C)

��
Fun(A′, C) // Fun(A, C)

is a categorical pullback square, and Corollary 4.4.5.3 guarantees that the vertical maps are
isofibrations. The desired result now follows from Corollary 4.5.2.31.

Proposition 4.5.4.6. 0344A commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

https://kerodon.net/tag/02VP
https://kerodon.net/tag/0344
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is a categorical pushout square if and only if the induced diagram of opposite simplicial sets

Aop //

��

Aop
0

��
Aop

1
// Aop

01

is a categorical pushout square.

Proof. Apply Remark 3.4.1.7.

Proposition 4.5.4.7 (Symmetry).01F9 A commutative diagram of simplicial sets

A //

��

A0

��
A1 // A01

is a categorical pushout square if and only if the transposed diagram

A //

��

A1

��
A0 // A01

is a categorical pushout square.

Proof. Apply Proposition 3.4.1.9.

Proposition 4.5.4.8 (Transitivity).01FA Suppose we are given a commutative diagram of
simplicial sets

A //

��

B //

��

C

��
A′ // B′ // C ′,

where the left square is a categorical pushout. Then the right square is a categorical pushout
if and only if the outer rectangle is a categorical pushout.

https://kerodon.net/tag/01F9
https://kerodon.net/tag/01FA
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Proof. Apply Proposition 3.4.1.11.

Proposition 4.5.4.9 (Homotopy Invariance). 01FBSuppose we are given a commutative diagram
of simplicial sets

A //

��

w

&&

A0

��

w0

''
B //

��

B0

��

A1 //

w1

&&

A01
w01

''
B0 // B01,

where the morphisms w, w0, and w1 are categorical equivalences. Then any two of the
following three conditions imply the third:

(1) The back face
A //

��

A0

��
A1 // A01

is a categorical pushout square.

(2) The front face
B //

��

B0

��
B1 // B01

is a categorical pushout square.

(3) The morphism w01 is a categorical equivalence of simplicial sets.

Proof. Combine Corollary 3.4.1.12 with Proposition 4.5.3.8.

https://kerodon.net/tag/01FB
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Proposition 4.5.4.10.01FC Suppose we are given a commutative diagram of simplicial sets

01FD

A
f //

��

A0

��
A1

f ′ // A01

(4.20)

where f is a categorical equivalence. Then (4.20) is a categorical pushout square if and only
if f ′ is a categorical equivalence.

Proof. For every ∞-category C, we obtain a commutative diagram of simplicial sets

01FE

Fun(A, C)≃ Fun(A0, C)≃uoo

Fun(A1, C)≃

OO

Fun(A01, C)≃,u′oo

OO

(4.21)

where u is a homotopy equivalence of Kan complexes (Proposition 4.5.3.8). Applying
Corollary 3.4.1.5, we conclude that (4.21) is a homotopy pullback square if and only if u′ is
a homotopy equivalence of Kan complexes. Consequently, (4.20) is a categorical pushout
square if and only if, for every ∞-category C, the composition with f ′ induces a homotopy
equivalence Fun(A01, C)≃ → Fun(A1, C)≃. By virtue of Proposition 4.5.3.8, this is equivalent
to the requirement that f ′ is a categorical equivalence.

Proposition 4.5.4.11.01FF Suppose we are given a commutative diagram of simplicial sets

01FG A
f //

��

A0

��
A1 // A01,

(4.22)

where f is a monomorphism. Then (4.22) is a categorical pushout square if and only if the
induced map ρ : A0

∐
AA1 → A01 is a categorical equivalence of simplicial sets.

https://kerodon.net/tag/01FC
https://kerodon.net/tag/01FD
https://kerodon.net/tag/01FE
https://kerodon.net/tag/01FF
https://kerodon.net/tag/01FG
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Proof. For every ∞-category C, we obtain a commutative diagram of ∞-categories

01FH

Fun(A, C) Fun(A0, C)uoo

Fun(A1, C)

OO

Fun(A01, C),oo

OO

(4.23)

where u is an isofibration (Corollary 4.4.5.3). It follows that the diagram (4.23) is a categorical
pullback square if and only if the induced map

θC : Fun(A01, C)→ Fun(A0, C)×Fun(A,C) Fun(A1, C) ≃ Fun(A0
∐
A

A1, C)

is an equivalence of ∞-categories (Proposition 4.5.2.26). Using Proposition 4.5.4.4, we see
that this condition is satisfied for every ∞-category C if and only if (4.22) is a categorical
pushout square. The desired result now follows from Proposition 4.5.3.8.

Example 4.5.4.12. 01FJSuppose we are given a pushout diagram of simplicial sets

01FK

A
f //

��

A0

��
A1 // A01.

(4.24)

If f is a monomorphism, then (4.24) is also a categorical pushout square.

Remark 4.5.4.13. 01HESuppose we are given a pushout diagram of simplicial sets

A
f //

g

��

A0

g′

��
A1 // A01,

where f is a monomorphism. If g is a categorical equivalence, then g′ is also a categorical
equivalence. This follows by combining Example 4.5.4.12 with Proposition 4.5.4.10.

https://kerodon.net/tag/01FH
https://kerodon.net/tag/01FJ
https://kerodon.net/tag/01FK
https://kerodon.net/tag/01HE
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Corollary 4.5.4.14.0345 Suppose we are given a commutative diagram of simplicial sets

A0

��

A
f0oo f1 //

��

A1

��
B0 B

g0oo g1 // B1,

where f0 and g0 are monomorphisms and the vertical maps are categorical equivalences.
Then the induced map

A0
∐
A

A1 → B0
∐
B

B1

is a categorical equivalence.

Proof. Combine Example 4.5.4.12 with Proposition 4.5.4.9.

Corollary 4.5.4.15.01FL Let i : A → B and i′ : A′ → B′ be morphisms of simplicial sets.
Assume that i is a monomorphism and that either i or i′ is a categorical equivalence. Then
the induced map

(A×B′)
∐

(A×A′)
(B ×A′)→ B ×B′

is a categorical equivalence.

Proof. By virtue of Proposition 4.5.4.11, it will suffice to show that the diagram

01FM A×A′ //

��

B ×A′

��
A×B′ // B ×B′

(4.25)

is a categorical pushout square. This follows from the criterion of Proposition 4.5.4.10: if i
is a categorical equivalence, then the horizontal maps in the diagram (4.25) are categorical
equivalences (Remark 4.5.3.7). Similarly, if i′ is a categorical equivalence, then the vertical
maps in the diagram (4.25) are categorical equivalences.

4.5.5 Isofibrations of Simplicial Sets

01FU We now characterize isofibrations between ∞-categories by means of a lifting property.

Proposition 4.5.5.1.01FR Let F : C → D be a functor between ∞-categories. Then F is an
isofibration if and only if it satisfies the following condition:

https://kerodon.net/tag/0345
https://kerodon.net/tag/01FL
https://kerodon.net/tag/01FM
https://kerodon.net/tag/01FU
https://kerodon.net/tag/01FR
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(∗) Let B be a simplicial set and let A ⊆ B be a simplicial subset for which the inclusion
A ↪→ B is a categorical equivalence. Then every lifting problem

A

��

// C

F

��
B //

??

D

admits a solution.

We begin by proving a weak form of Proposition 4.5.5.1.

Lemma 4.5.5.2. 01FSLet C be an ∞-category, let B be a simplicial set, and let A ⊆ B be a
simplicial subset with the property that the inclusion A ↪→ B is a categorical equivalence.
Then every diagram f0 : A→ C can be extended to a diagram f : B → C.

Proof. By virtue of Corollary 4.4.5.4, the restriction map θ : Fun(B, C)≃ → Fun(A, C)≃ is
a Kan fibration. Since the inclusion A ↪→ B is a categorical equivalence, the map θ is a
homotopy equivalence of Kan complexes (Proposition 4.5.3.8). Invoking Proposition 3.3.7.6,
we conclude that θ is a trivial Kan fibration. In particular, it is surjective on vertices.

Lemma 4.5.5.3. 01FTLet C be an ∞-category, let B be a simplicial set, let A ⊆ B be a simplicial
subset, and suppose we are given a pair of diagrams f, g : B → C together with a natural
transformation u0 : f |A → f ′|A. If the inclusion A ↪→ B is a categorical equivalence, then u0
can be lifted to a natural transformation u : f → g. Moreover, if u0 is a natural isomorphism,
then u is automatically a natural isomorphism.

Proof. The existence of the natural transformation u follows by applying Lemma 4.5.5.2 to
the inclusion of simplicial sets

(∆1 ×A)
∐

(∂∆1×A)

(∂∆1×B) ↪→ ∆1 ×B,

which is a categorical equivalence by virtue of Corollary 4.5.4.15. We will complete the proof
by showing that if u0 is a natural isomorphism, then u is a natural isomorphism.

Let us identify u with a morphism of simplicial sets v : B → Fun(∆1, C), and let Isom(C)
denote the full subcategory of Fun(∆1, C) spanned by the isomorphisms in C. Since u0 is
a natural isomorphism, the restriction v|A factors through the full subcategory Isom(C).
Invoking Lemma 4.5.5.2, we conclude that v|A extends to a diagram v′ : B → Isom(C).
Since the inclusion A ↪→ B is a categorical equivalence, the equality v|A = v′|A guarantees
that v and v′ are isomorphic as objects of the ∞-category Fun(B,Fun(∆1, C)). Since the

https://kerodon.net/tag/01FS
https://kerodon.net/tag/01FT
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full subcategory Isom(C) ⊆ Fun(∆1, C) is replete (Example 4.4.1.14), we conclude that v
also factors through Isom(C), so that u is a natural isomorphism by virtue of Theorem
4.4.4.4.

Proof of Proposition 4.5.5.1. Let F : C → D be a functor of ∞-categories. Assume first
that F satisfies condition (∗) of Proposition 4.5.5.1; we will prove that F is an isofibration.
For 0 < i < n, the inner horn inclusion Λn

i ↪→ ∆n is a categorical equivalence (Corollary
4.5.3.14), so condition (∗) guarantees that F is an inner fibration. Fix an object C ∈ C
and an isomorphism u : D → F (C) in the ∞-category D; we wish to show that u can be
lifted to an isomorphism u : D → C in the ∞-category C. By virtue of Corollary 4.4.3.14,
we can assume that u = G(v) for some functor G : E → D, where E is a contractible Kan
complex and v : X → Y is a morphism in E . Since the inclusion {Y } ↪→ E is a categorical
equivalence (Example 4.5.1.13), condition (∗) guarantees the existence of a solution to the
lifting problem

{Y } Y 7→C //

��

C

F

��
E G //

G

==

D .

Then u = G(v) is an isomorphism of C having the desired property.
Now suppose that the functor F : C → D is an isofibration; we wish to show that

condition (∗) is satisfied. Let B be a simplicial set and A ⊆ B a simplicial subset for which
the inclusion A ↪→ B is a categorical equivalence. We wish to show that every lifting problem

A

��

f0 // C

F

��
B

f //

f

??

D

admits a solution. Invoking Lemma 4.5.5.2, we see that f0 can be extended to a morphism of
simplicial sets f ′ : B → C. Let f ′ denote the composition B

f ′−→ C F−→ D, so that f |A = f
′|A.

Invoking Lemma 4.5.5.3, we conclude that there exists an isomorphism u : f → f
′ in the

diagram ∞-category Fun(B,D) whose image in Fun(A,D) is the identity transformation
idf |A . Applying Corollary 4.4.5.9, we deduce that u can be lifted to an isomorphism
u : f → f ′ in the diagram ∞-category Fun(B, C) whose image in Fun(A, C) is the identity
transformation idf0 . The diagram f : B → C then satisfies f |A = f0 and F ◦ f = f , as
desired.
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Proposition 4.5.5.1 has a converse:

Proposition 4.5.5.4. 02R2Let i : A ↪→ B be a monomorphism of simplicial sets. Then i is a
categorical equivalence if and only if the following condition is satisfied:

(∗) Let F : C → D be an isofibration of ∞-categories. Then every lifting problem

A

��

// C

F

��
B //

??

D

has a solution.

Proof. Assume that condition (∗) is satisfied; we will show that the morphism i : A ↪→ B is
a categorical equivalence of simplicial sets (the converse follows from Proposition 4.5.5.1).
Fix an ∞-category E ; we wish to show that precomposition with i induces a bijection
θ : π0(Fun(B, E)≃)→ π0(Fun(A, E)≃). The surjectivity of θ follows by applying condition
(∗) to the isofibration E → ∆0, and the injectivity of θ follows by applying θ to the isofibration
Isom(E)→ E ×E of Corollary 4.4.5.5.

We now use the characterization of Proposition 4.5.5.1 to generalize the notion of
isofibration to arbitrary simplicial sets.

Definition 4.5.5.5. 01FVLet q : X → S be a morphism of simplicial sets. We will say that q is
an isofibration if it satisfies the following condition:

(∗) Let B be a simplicial set and let A ⊆ B be a simplicial subset for which the inclusion
A ↪→ B is a categorical equivalence. Then every lifting problem

A

��

// X

q

��
B //

??

S

admits a solution.

Remark 4.5.5.6. 01FWLet C and D be ∞-categories. We have now given two a priori different
definitions of an isofibration from C to D:

• According to Definition 4.4.1.4, an isofibration F : C → D is an inner fibration with
the property that every isomorphism u : D → F (C) in the ∞-category D can be lifted
to an isomorphism u : D → C in the ∞-category C.

https://kerodon.net/tag/02R2
https://kerodon.net/tag/01FV
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• According to Definition 4.5.5.5, an isofibration F : C → D is a morphism of simplicial
sets which has the right lifting property with respect to all monomorphisms A ↪→ B

which are categorical equivalences.

However, these definitions are equivalent: this is the content of Proposition 4.4.5.1.

Remark 4.5.5.7.01FX Let q : X → S be an isofibration of simplicial sets. Then q is an inner
fibration: that is, it has the right lifting property with respect to every horn inclusion
Λni ↪→ ∆n for 0 < i < n (such inclusions are categorical equivalences, by virtue of Corollary
4.5.3.14). In particular, for each vertex s ∈ S, the fiber Xs = {s} ×S X is an ∞-category
(Remark 4.1.1.6). Moreover, if S is an ∞-category, then X is also an ∞-category (Remark
4.1.1.9).

Example 4.5.5.8.01FY Let q : X → S be a Kan fibration of simplicial sets. Then q is an
isofibration. To prove this, we note that if a monomorphism of simplicial sets i : A ↪→ B

is a categorical equivalence, then it is a weak homotopy equivalence (Remark 4.5.3.4) and
therefore anodyne (Corollary 3.3.7.7), so that q has the right lifting property with respect
to i (Remark 3.1.2.7).

Remark 4.5.5.9.01FZ Let q : X → S be a morphism of simplicial sets. Then q is an isofibration
if and only if the opposite morphism qop : Xop → Sop is an isofibration.

Remark 4.5.5.10.01G0 The collection of isofibrations is closed under retracts. That is, given a
diagram of simplicial sets

X //

q

��

X ′

q′

��

// X

q

��
S // S′ // S

where both horizontal compositions are the identity, if q′ is an isofibration, then so is q.

Remark 4.5.5.11.01G1 The collection of isofibrations is closed under pullback. That is, given a
pullback diagram of simplicial sets

X ′

q′

��

// X

q

��
S′ // S

where q is an isofibration, the morphism q′ is also an isofibration.

https://kerodon.net/tag/01FX
https://kerodon.net/tag/01FY
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Warning 4.5.5.12. 01J1Suppose we are given a pullback diagram of simplicial sets

X ′

q′

��

f ′ // X

q

��
S′

f // S,

where q is an isofibration. If f is an equivalence of∞-categories, then f ′ is also an equivalence
of ∞-categories (Corollary 4.5.2.29). Beware that if f is merely assumed to be a categorical
equivalence of simplicial sets, then it is not necessarily true that f ′ is a categorical equivalence
of simplicial sets.

Remark 4.5.5.13. 01G2Let p : X → Y and q : Y → Z be isofibrations of simplicial sets. Then
the composite map (q ◦ p) : X → Z is an isofibration of simplicial sets.

We have the following generalization of Proposition 4.4.5.1:

Proposition 4.5.5.14. 01G3Let q : X → S be an isofibration of simplicial sets and let i : A ↪→ B

be a monomorphism of simplicial sets. Then the restriction map

q′ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S)

is also an isofibration of simplicial sets.

Proof. Let B′ be a simplicial set and let A′ ⊆ B′ be a simplicial subset for which the
inclusion A′ ↪→ B′ is a categorical equivalence. We wish to show that every lifting problem

A′

��

// Fun(B,X)

q′

��
B′ //

44

Fun(A,X)×Fun(A,S) Fun(B,S)

admits a solution. Unwinding the definitions, we are reduced to the problem of solving an
associated lifting problem

(A×B′) ∐
(A×A′)(B ×A′)

��

// X

q

��
B ×B′ //

44

S.

The left vertical map in this diagram is a categorical equivalence by virtue of Corollary
4.5.4.15, so the existence of the desired solution follows from our assumption that q is an
isofibration.

https://kerodon.net/tag/01J1
https://kerodon.net/tag/01G2
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Corollary 4.5.5.15.01G4 Let q : X → S be an isofibration of simplicial sets. For every simplicial
set B, the induced map Fun(B,X)→ Fun(B,S) is also an isofibration.

Proof. Apply Proposition 4.5.5.14 in the special case A = ∅.

Corollary 4.5.5.16.02VQ Let q : X → S be an isofibration of simplicial sets. Suppose we
are given a morphism of simplicial sets B → S and a simplicial subset A ⊆ B. Then the
restriction map θ : Fun/S(B,X)→ Fun/S(A,X) is an isofibration of ∞-categories.

Proof. The morphism θ is a pullback of the isofibration Fun(B,X)→ Fun(A,X)×Fun(A,S)
Fun(B,S) of Proposition 4.5.5.14, and is therefore also an isofibration (Remark 4.5.5.11).
We conclude by observing that since q is an inner fibration (Remark 4.5.5.7), the simplicial
sets Fun/S(B,X) and Fun/S(A,X) are ∞-categories (Proposition 4.1.4.6).

Remark 4.5.5.17.02VR Suppose we are given a lifting problem in the category of simplicial sets

02VS A
f //

i

��

X

q

��
B

f //

??

S,

(4.26)

where q is an isofibration and i is a monomorphism. It follows from Corollary 4.5.5.16 that,
if we regard the morphisms q, i, and f as fixed, then the existence of a solution to the lifting
problem (4.26) depends only on the isomorphism class of f as an object of the ∞-category
Fun/S(A,X).

Proposition 4.5.5.18.01G5 Let q : X → S be an isofibration of simplicial sets and let i : A ↪→ B

be a monomorphism of simplicial sets. If i is a categorical equivalence, then the restriction
map

q′ : Fun(B,X)→ Fun(A,X)×Fun(A,S) Fun(B,S)

is a trivial Kan fibration.

Proof. Let B′ be a simplicial set and let A′ ⊆ B′ be a simplicial subset. We wish to show
that every lifting problem

A′

��

// Fun(B,X)

q′

��
B′ //

44

Fun(A,X)×Fun(A,S) Fun(B,S)

https://kerodon.net/tag/01G4
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admits a solution. Unwinding the definitions, we are reduced to the problem of solving an
associated lifting problem

(A×B′) ∐
(A×A′)(B ×A′)

��

// X

q

��
B ×B′ //

44

S.

The left vertical map in this diagram is a categorical equivalence by virtue of Corollary
4.5.4.15, so the existence of the desired solution follows from our assumption that q is an
isofibration.

Corollary 4.5.5.19. 01G6Let C be an ∞-category and let i : A ↪→ B be a monomorphism of
simplicial sets. If i is a categorical equivalence, then the restriction functor Fun(B, C) →
Fun(A, C) is a trivial Kan fibration of simplicial sets.

Proof. Apply Proposition 4.5.5.18 in the special case S = ∆0.

Proposition 4.5.5.20. 01G7Let q : X → S be a morphism of simplicial sets. Then q is a trivial
Kan fibration if and only if it is both an isofibration and a categorical equivalence.

Proof. If q is a trivial Kan fibration, then it is an isofibration by virtue of Example 4.5.5.8
and a categorical equivalence by virtue of Proposition 4.5.3.11. Conversely, suppose that q
is both an isofibration and a categorical equivalence. Using Exercise 3.1.7.11, we can write
q as a composition X

q′−→ Y
q′′−→ S, where q′ is a monomorphism and q′′ is a trivial Kan

fibration. Then q′′ is a categorical equivalence (Proposition 4.5.3.11), so that q′ is also a
categorical equivalence (Remark 4.5.3.5). Invoking our assumption that q is an isofibration,
we conclude that the lifting problem

X
id //

q′

��

X

q

��
Y

r

88

q′′ // S

admits a solution. It follows that q is a retract of the morphism q′′, and is therefore also a
trivial Kan fibration.

4.5.6 Isofibrant Diagrams

0346Let C be a small category. Every diagram of simplicial sets F : C → Set∆ has a limit in
the category Set∆, given concretely by the formula

lim←−(F )(C)n = lim←−
C∈C

F (C)n;
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see Remark 1.1.0.8. Beware that, when using simplicial sets as a framework for higher
category theory, this operation is badly behaved in general:

• If each of the simplicial sets F (C) is an ∞-category, then the limit lim←−(F ) need not
be an ∞-category.

• If α : F → G be a natural transformation between functors F ,G : C → Set∆
which is a levelwise categorical equivalence (Definition 4.5.6.1), then the induced map
lim←−(α) : lim←−(F )→ lim←−(G ) need not be a categorical equivalence.

In this section, we will introduce the class of isofibrant diagrams F : C → Set∆ (Definition
4.5.6.3), and show that it does not suffer from these defects:

• If F : C → Set∆ is an isofibrant diagram of simplicial sets, then the limit lim←−(F ) is
an ∞-category (Corollary 4.5.6.13).

• If α : F → G is a levelwise categorical equivalence between isofibrant diagrams
F ,G : C → Set∆, then the induced map lim←−(α) : lim←−(F )→ lim←−(G ) is an equivalence
of ∞-categories (Corollary 4.5.6.17).

We begin by introducing some terminology.

Definition 4.5.6.1.0347 Let C be a category and let α : F → G be a natural transformation
between diagrams F ,G : C → Set∆. We say that α is a levelwise categorical equivalence if,
for every object C ∈ C, the induced map αC : F (C)→ G (C) is a categorical equivalence of
simplicial sets.

Remark 4.5.6.2.0348 Definition 4.5.6.1 is a special case of a general convention. If P is a
property of morphisms of simplicial sets and α : F → G is a natural transformation between
diagrams F ,G : C → Set∆, then we say that α has the property P levelwise if, for every
object C ∈ C, the morphism of simplicial sets αC : F (C)→ G (C) has the property P . For
example, we say that α is a levelwise weak homotopy equivalence if, for every object C ∈ C,
the morphism αC : F (C)→ G (C) is a weak homotopy equivalence of simplicial sets.

Definition 4.5.6.3.0349 Let C be a small category. We say that a diagram F : C → Set∆ is
isofibrant if it satisfies the following condition:

(∗) Let E : C → Set∆ be a functor and let E0 ⊆ E be a subfunctor for which the inclusion
E0 ↪→ E is a levelwise categorical equivalence. Then every natural transformation
α0 : E0 → F admits an extension α : E → F .

Example 4.5.6.4.034A Let C = {X} be a category having a single object and a single morphism.
Then a diagram F : C → Set∆ is determined by the simplicial set F (X). The diagram F

is isofibrant (in the sense of Definition 4.5.6.3) if and only if the simplicial set F (X) is an
∞-category.
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Remark 4.5.6.5. 034BLet C be a small category and F : C → Set∆ be an isofibrant diagram.
Then, for each object C ∈ C, the simplicial set F (C) is an∞-category. That is, for 0 < i < n,
every morphism of simplicial sets σ0 : Λn

i → F (C) can be extended to an n-simplex of
F (C). This follows by applying condition (∗) of Definition 4.5.6.3 to the functor

E : C → Set∆ E (D) = ∆n ×HomC(C,D),

together with the subfunctor E0 ⊆ E given by E0(D) = Λni ×HomC(C,D).

We now give some more interesting examples of isofibrant diagrams.

Proposition 4.5.6.6. 034DLet (Q,≤) be a well-founded partially ordered set (see Definition
4.7.1.1). Then a diagram of simplicial sets F : Qop → Set∆ is isofibrant if and only if, for
each element q ∈ Q, the map

θq : F (q)→ lim←−
p<q

F (p)

is an isofibration of simplicial sets.

Example 4.5.6.7 (Isofibrant Squares). 034FA square diagram of ∞-categories

E01
F ′1 //

F ′0

��

E0

F0

��
E1

F1 // E

is isofibrant (when regarded as a functor [1] × [1] → Set∆) if and only if it satisfies the
following conditions:

• The functors F0 : E0 → E and F1 : E1 → E are isofibrations of ∞-categories.

• The functor (F ′1, F ′0) : E01 → E0×E E1 is an isofibration of ∞-categories.

Example 4.5.6.8 (Isofibrant Towers). 034ELet F : Zop
≥0 → Set∆ be a diagram, which we identify

with a tower of simplicial sets

· · · → F (3)→ F (2)→ F (1)→ F (0).

Then F is isofibrant (in the sense of Definition 4.5.6.3) if and only if each of the simplicial
sets F (n) is an ∞-category and each of the transition functors F (n + 1) → F (n) is an
isofibration of ∞-categories.
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Example 4.5.6.9 (The Postnikov Tower).0571 Let X be a Kan complex. Then the tower of
fundamental n-groupoids

· · · → π≤3(X)→ π≤2(X)→ π≤1(X)→ π0(X)

is an isofibrant diagram of Kan complexes (Corollary 3.5.8.9).

Variant 4.5.6.10.0572 If X is a Kan complex, then the weakly coskeletal tower

· · · → cosk◦3(X)→ cosk◦2(X)→ cosk◦1(X)→ cosk◦0(X)

of Example 3.5.8.5 is an isofibrant diagram (Variant 3.5.8.10). Beware that the coskeletal
tower

· · · → cosk4(X)→ cosk3(X)→ cosk2(X)→ cosk1(X)

is generally not isofibrant (Warning 3.5.8.11).

Proof of Proposition 4.5.6.6. Suppose first that F : Qop → Set∆ is an isofibrant diagram.
We will show that, for each element q ∈ Q, the induced map θq : F (q) → lim←−p<q F (p)
is an isofibration of simplicial sets (for this step, we will not need to assume that Q is
well-founded). Fix a simplicial set B and a simplicial subset A ⊆ B for which the inclusion
map A ↪→ B is a categorical equivalence; we wish to show that every lifting problem

034G A

��

// F (q)

θq

��
B //

;;

lim←−p<q F (p)

(4.27)

admits a solution. Define B : Qop → Set∆ by the formula B(p) =
{
B if p ≤ q
∅ otherwise, and

let B0 ⊆ B be the subfunctor given by the formula

B0(p) =


B if p < q

A if p = q

∅ otherwise.

The lifting problem (4.27) can be identified with a natural transformation of functors
α0 : B0 → F . Since the inclusion B0 ↪→ B is a levelwise categorical equivalence and F is
isofibrant, we can extend α0 to a natural transformation α : B → F , which determines a
solution to the lifting problem (4.27).
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Now suppose that the partially ordered set (Q,≤) is well-founded and that for each
q ∈ Q, the morphism θq is an isofibration of simplicial sets. We wish to show that the
diagram F : C → Set∆ is isofibrant. Let E : C → Set∆ be a functor, let E0 ⊆ E be a
subfunctor for which the inclusion E0 ↪→ E is a levelwise categorical equivalence, and let
α0 : E0 → F be a natural transformation; we wish to show that α0 can be extended to a
natural transformation α : E → F .

For every downward-closed subset P ⊆ Q, let E P ⊆ E denote the subfunctor given

by E P (q) =
{

E (q) if q ∈ P
∅ otherwise, , and set E P

0 = E P ∩ E0. Let S denote the collection of

pairs (P, αP ), where P ⊆ Q is a downward-closed subset and αP : E P → F is a natural
transformation satisfying αP |E P

0
= α0|E P

0
. We regard S as a partially ordered set, where

(P, αP ) ≤ (P ′, αP ′) if P is contained in P ′ and αP is equal to the restriction αP
′ |E P . The

partially ordered set S satisfies the hypotheses of Zorn’s lemma, and therefore contains a
maximal element (P, αP ). To complete the proof, it will suffice to show that P = Q, so
that αP : E → F is an extension of α0. Assume otherwise. Since Q is well-founded, the
complement Q\P contains a minimal element q. Set P ′ = P ∪{q}. Since θq is an isofibration
of simplicial sets, the lifting problem

E0(q) α0 //

��

F (q)

θq

��
E (q) //

44

lim←−p<q E (p) αP
// lim←−p<q F (p)

admits a solution in the category of simplicial sets. This solution determines a natural
transformation αP

′ : E P ′ → F satisfying αP ′ |E P = αP and αP
′ |E P ′

0
= α0|E P ′

0
, contradicting

the maximality of the pair (P, αP ).

We now record some useful properties of isofibrant diagrams of simplicial sets. Fix a
small category C, and let us regard Fun(C, Set∆) as equipped with the simplicial enrichment
described in Example 2.4.2.2. For every simplicial set K, we let K denote the constant
functor C → Set∆ taking the value K.

Proposition 4.5.6.11. 034HLet C be a small category and let F : C → Set∆ be an isofibrant
diagram of simplicial sets. For every functor E : C → Set∆ and every subfunctor E0 ⊆ E ,
the restriction map

θ : HomFun(C,Set∆)(E ,F )• → HomFun(C,Set∆)(E0,F )•

is an isofibration of simplicial sets. If the inclusion E0 ↪→ E is a levelwise categorical
equivalence, then θ is a trival Kan fibration.
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Proof. Let B be a simplicial set and let A ⊆ B be a simplicial subset. We wish to show that
every lifting problem

034J A //

��

HomFun(C,Set∆)(E ,F )•

θ

��
B //

88

HomFun(C,Set∆)(E0,F )•

(4.28)

admits a solution, provided that either the inclusion map A ↪→ B is a categorical equivalence
or the inclusion E0 ↪→ E is a levelwise categorical equivalence. Unwinding the definitions,
we see that the diagram (4.28) determines a natural transformation

α0 : (A× E )
∐

(A×E0)
(B × E0)→ F ,

and that solutions to (4.28) can be identified with extensions of α0 to a natural transformation
α : B×E → F . By virtue of our assumption that F is isofibrant, we are reduced to proving
that the inclusion map

(A× E )
∐

(A×E0)
(B × E0) ↪→ B × E

is a levelwise categorical equivalence, which follows from Corollary 4.5.4.15.

Corollary 4.5.6.12.034K Let C be a small category and let E ,F : C → Set∆ be diagrams
of simplicial sets. If F is isofibrant, then the simplicial set HomFun(C,Set∆)(E ,F )• is an
∞-category.

Proof. Apply Proposition 4.5.6.11 in the special case E0 = ∅.

Corollary 4.5.6.13.034L Let C be a small category and let F : C → Set∆ be an isofibrant
diagram of simplicial sets. Then the limit lim←−(F ) is an ∞-category.

Proof. Apply Corollary 4.5.6.12 in the special case E = ∆0.

Proposition 4.5.6.14.034M Let C be a small category, let F : C → Set∆ be an isofibrant diagram,
and let α : E → E ′ be a natural transformation between diagrams E ,E ′ : C → Set∆. If α is
a levelwise categorical equivalence, then precomposition with α induces an equivalence of
∞-categories

HomFun(C,Set∆)(E ′,F )• → HomFun(C,Set∆)(E ,F )•.

Proof. Using Exercise 3.1.7.11, we can choose a contractible Kan complex X containing a
pair of vertices x, y ∈ X with x ̸= y. Evaluation at the vertices x and y determine trivial
Kan fibrations of ∞-categories

evx, evy : Fun(X,HomFun(C,Set∆)(E ,F )•)→ HomFun(C,Set∆)(E ,F )•.
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Form a pullback diagram

D T //

U

��

Fun(X,HomFun(C,Set∆)(E ,F )•)

evx

��
HomFun(C,Set∆)(E ′,F )• ◦α // HomFun(C,Set∆)(E ,F )•,

so that U is also a trivial Kan fibration and therefore an equivalence of ∞-categories. It will
therefore suffice to show that evx ◦T is an equivalence of∞-categories. Since the functors evx
and evy are isomorphic, this is equivalent to the requirement that evy ◦T is an equivalence of
∞-categories. In fact, the functor evy ◦T is a trivial Kan fibration: this follows by applying
Proposition 4.5.6.11 to the levelwise categorical equivalence

{y} × E ↪→ (X × E )
∐

({x}×E )
E ′.

Corollary 4.5.6.15. 034NLet C be a small category and let α : E → F be a levelwise categorical
equivalence of isofibrant diagrams E ,F : C → Set∆. Then α admits a homotopy inverse: that
is, there is a natural transformation β : F → E such that α◦β and β◦α are isomorphic to idF

and idE as objects of the ∞-categories HomFun(C,Set∆)(F ,F )• and HomFun(C,Set∆)(E ,E )•,
respectively.

Proof. Since E is isofibrant, Proposition 4.5.6.14 guarantees that the functor

HomFun(C,Set∆)(F ,E )• ◦α−→ HomFun(C,Set∆)(E ,E )•

is an equivalence of ∞-categories. In particular, there exists a natural transformation
β : F → E such that β ◦α is isomorphic to idE (when viewed as an object of the∞-category
HomFun(C,Set∆)(E ,E )•). To complete the proof, it will suffice to show that β is also a right
homotopy inverse to α: that is, the composition α ◦ β is isomorphic to idF (when viewed as
an object of the ∞-category HomFun(C,Set∆)(F ,F )•).

For each object C ∈ C, the functor βC : F (C)→ E (C) is a left homotopy inverse of the
functor αC : E (C)→ F (C). Since αC is an equivalence of ∞-categories, it follows that βC
is also an equivalence of ∞-categories. Allowing C to vary, we conclude that β is a levelwise
categorical equivalence. We can therefore repeat the preceding argument to obtain a natural
transformation γ : E → F such that γ ◦β is isomorphic to idF . We then have isomorphisms

α ≃ (γ ◦ β) ◦ α = γ ◦ (β ◦ α) ≃ γ

in the ∞-category HomFun(C,Set∆)(E ,F )•, so that α ◦ β is also isomorphic to idF .

https://kerodon.net/tag/034N
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Corollary 4.5.6.16.034P Let C be a small category, let E : C → Set∆ be a diagram of simplicial
sets, and let α : F → G be a levelwise categorical equivalence between diagrams F ,G :
C → Set∆. If F and G are isofibrant, then composition with α induces an equivalence of
∞-categories

HomFun(C,Set∆)(E ,F )• → HomFun(C,Set∆)(E ,G )•.

Corollary 4.5.6.17.034Q Let C be a small category, and let α : F → G be a levelwise categorical
equivalence between isofibrant diagrams F ,G : C → Set∆. Then the induced map lim←−(α) :
lim←−(F )→ lim←−(G ) is an equivalence of ∞-categories.

Proof. Apply Corollary 4.5.6.16 in the special case E = ∆0.

Example 4.5.6.18.034R Suppose we are given a commutative diagram of ∞-categories

· · · // C(3)

��

// C(2) //

��

C(1) //

��

C(0)

��
· · · // D(3) // D(2) // D(1) // D(0),

where the horizontal maps are isofibrations and the vertical maps are equivalences of ∞-
categories. Then the induced map lim←−C(n)→ lim←−D(n) is an equivalence of ∞-categories.
This follows by combining Example 4.5.6.8, Corollary 4.5.6.13, and Corollary 4.5.6.17.

Proposition 4.5.6.19.034S Let C be a small category and let F : C → Set∆ be an isofibrant
diagram. Suppose that, for every object C ∈ C, the simplicial set F (C) is a Kan complex.
Then, for every diagram E : C → Set∆, the simplicial set X = HomFun(C,Set∆)(E ,F )• is a
Kan complex.

Proof. By virtue of Corollary 4.5.6.12, the simplicial set X is an ∞-category. Define
F ∆1 : C → Set∆ by the formula F ∆1(C) = Fun(∆1,F (C)). Then F ∆1 is also an isofibrant
diagram. Moreover, our assumption that each F (C) is a Kan complex guarantees that the
diagonal embedding F ↪→ F ∆1 is a levelwise categorical equivalence. Applying Corollary
4.5.6.16, we deduce that the diagonal map X ↪→ Fun(∆1, X) is an equivalence of∞-categories.
In particular, every morphism of X is isomorphic (as an object of the∞-category Fun(∆1, X)
) to an identity morphism, and is therefore an isomorphism (Example 4.4.1.14). Applying
Proposition 4.4.2.1, we deduce that X is a Kan complex.

Corollary 4.5.6.20.034T Let C be a small category and let F : C → Set∆ be an isofibrant
diagram. Suppose that, for every object C ∈ C, the simplicial set F (C) is a Kan complex.
Then the simplicial set lim←−(F ) is a Kan complex.
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Proof. Apply Proposition 4.5.6.19 in the special case E = ∆0.

Corollary 4.5.6.21. 034ULet C be a small category, let F : C → Set∆ be an isofibrant diagram,
and define F≃ : C → Set∆ by the formula F≃(C) = F (C)≃. Then F≃ is also an isofibrant
diagram. Moreover, the inclusion map lim←−(F≃) ↪→ lim←−(F ) restricts to an isomorphism of
lim←−(F≃) with the core of the ∞-category lim←−(F ).

Proof. We first show that the diagram F≃ is isofibrant. Let E : C → Set∆ be a functor
and let E0 ⊆ E be a subfunctor for which the inclusion E0 ↪→ E is a levelwise categorical
equivalence. Suppose we are given a natural transformation α0 : E0 → F≃. Our assumption
that F is isofibrant guarantees that α0 can be extended to a natural transformation
α : E → F . We claim that α automatically factors through the functor F≃: that is, for
every object C ∈ C, the map αC : E (C)→ F (C) factors through the core of F (C). This
follows from the observation that the lifting problem

E0(C)

��

α0 // F (C)≃

��
E (C) α //

;;

F (C)

has a (unique) solution, since the inclusion F (C)≃ ↪→ F (C) is an isofibration (Proposition
4.4.3.6).

We now prove the second assertion. Let X denote the core of the ∞-category lim←−(F ).
For every object C ∈ C, the projection map lim←−(F ) → F (C) carries X into the core of
F (C). It follows that X is contained in the inverse limit lim←−(F≃). The reverse inclusion
follows from Corollary 4.4.3.18, since the simplicial set lim←−(F≃) is a Kan complex (Corollary
4.5.6.20).

Corollary 4.5.6.22. 0238Suppose we are given an inverse system of ∞-categories

· · · → C(3)→ C(2)→ C(1)→ C(0)

where each of the transition functors C(n) → C(n − 1) is an isofibration. Then the limit
C = lim←−n C(n) is an ∞-category, whose core C≃ is the inverse limit lim←−n C(n)≃. In other
words, a morphism of C is an isomorphism if and only if its image in each C(n) is an
isomorphism.

Proof. Combine Example 4.5.6.8, Corollary 4.5.6.13, and Corollary 4.5.6.21.
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4.5.7 Detecting Equivalences of ∞-Categories

01HF Let F : C → D be a functor between∞-categories. If F is an equivalence of∞-categories,
then the induced map F≃ : C≃ → D≃ is a homotopy equivalence of Kan complexes (Remark
4.5.1.19). The converse assertion is not true in general. For example, the inclusion map
C≃ ↪→ C induces an isomorphism on cores, but is never an equivalence of∞-categories unless
C is a Kan complex. However, we have the following slightly weaker result:

Theorem 4.5.7.1.01HG Let F : C → D be a functor of ∞-categories. Then F is an equivalence of
∞-categories if and only if the induced map of Kan complexes Fun(∆1, C)≃ → Fun(∆1,D)≃
is a homotopy equivalence.

Proof. For every simplicial set X, let θX : Fun(X, C)≃ → Fun(X,D)≃ denote the map given
by postcomposition with the functor F . Let us say that X is good if the morphism θX is a
homotopy equivalence. By virtue of Proposition 4.5.1.22, the functor F is an equivalence of
∞-categories if and only if every simplicial set X is good. In particular, if F is an equivalence
of∞-categories, then ∆1 is good. To prove the converse, we make the following observations:

(a) Let X be the colimit of a diagram of monomorphisms

X(0) ↪→ X(1) ↪→ X(2) ↪→ · · ·

We then obtain a commutative diagram of Kan complexes

Fun(X(0), C)≃

θX(0)

��

Fun(X(1), C)≃oo

θX(1)

��

Fun(X(2), C)≃oo

θX(2)

��

· · ·oo

Fun(X(0),D)≃ Fun(X(1),D)≃oo Fun(X(2),D)≃oo · · · ,oo

where the horizontal maps are Kan fibrations (Corollary 4.4.5.4). Moreover, the
induced map of inverse limits can be identified with the map θX : Fun(X, C)≃ →
Fun(X,D)≃ (Corollary 4.4.4.6). If each X(n) is good, then the vertical maps appearing
in the diagram are homotopy equivalences, so that θX is also a homotopy equivalence
(Example 4.5.6.18). It follows that X is also good.

(b) Let X be a simplicial set which is given as a coproduct ∐
αX(α) of a collection of

simplicial sets X(α). Then θX can be identified with the product of the maps θX(α)
(Corollary 4.4.4.6). Consequently, if each of the summands X(α) is good, then X is
also good (Remark 3.1.6.8).
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(c) Let u : X → Y be an inner anodyne morphism of simplicial sets. Then we have a
commutative diagram of Kan complexes

Fun(X, C)≃ //

��

Fun(Y, C)≃

��
Fun(X,D)≃ // Fun(Y,D)≃,

where the horizontal maps are homotopy equivalences (Proposition 4.5.3.8). It follows
that X is good if and only if Y is good.

(d) Suppose we are given a categorical pushout square of simplicial sets

X //

��

X ′

��
Y // Y ′.

If X, X ′, and Y are good, then Y ′ is also good (see Corollary 3.4.1.12).

(e) Let X be a retract of a simplicial set Y . If Y is good, then X is also good.

Now suppose that the simplicial set ∆1 is good. We will show that every simplicial set
X is good, so that F is an equivalence of ∞-categories by virtue of Proposition 4.5.1.22.
Writing X as the direct limit of its skeleta {skn(X)}n≥0 and using (a), we can reduce to
the case where X has dimension ≤ n for some integer n. We proceed by induction on n.
The case n = −1 is trivial (in this case, the simplicial set X is empty and the morphism
θX is an isomorphism). We may therefore assume that n ≥ 0. Let S be the collection of
nondegenerate n-simplices of X, so that Proposition 1.1.4.12 supplies a pushout diagram

∐
σ∈S

∂∆n //

��

∐
σ∈S

∆n

��
skn−1(X) // X.

Since the horizontal maps in this diagram are monomorphisms, it is also a categorical
pushout square (Example 4.5.4.12). Moreover, our inductive hypothesis guarantees that the
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simplicial sets skn−1(X) and ∐
σ∈S

∂∆n are good. Applying (d), we are reduced to showing

that the coproduct ∐
σ∈S

∆n is good. Using (b), we are reduced to showing that the standard

simplex ∆n is good. If n ≥ 2, then the inner horn inclusion Λn
1 ↪→ ∆n is a categorical

equivalence, so that the desired result follows from our inductive hypothesis together with
(c). We are therefore reduced to showing that the standard simplices ∆0 and ∆1 are good.
In the second case this follows from our assumption (4), and in the first case it follows from
(e) (since the 0-simplex ∆0 is a retract of ∆1).

Corollary 4.5.7.2.01HH Let W denote the full subcategory of Fun([1],Set∆) spanned by those
morphisms of simplicial sets f : X → Y which are categorical equivalences. Then W is
closed under the formation of filtered colimits in Fun([1], Set∆).

Proof. By virtue of Corollary 4.1.3.3, there exists a functor Q : Set∆ → Set∆ which commutes
with filtered colimits and a natural transformation of functors u : idSet∆ → Q with the
property that, for every simplicial set X, the simplicial set Q(X) is an ∞-category and
the morphism uX : X → Q(X) is inner anodyne. For every morphism of simplicial sets
f : X → Y , we have a commutative diagram

X
f //

uX

��

Y

uY

��
Q(X) Q(f) // Q(Y )

where the vertical maps are categorical equivalences (Corollary 4.5.3.14). It follows from
Remark 4.5.3.5 that f is a categorical equivalence if and only if the functor Q(f) is an
equivalence of ∞-categories. Using the criterion of Theorem 4.5.7.1, we see that f is a
categorical equivalence if and only if the induced map Fun(∆1, Q(X))≃ → Fun(∆1, Q(Y ))≃
is a homotopy equivalence of Kan complexes. The desired result now follows by observing
that the construction X 7→ Fun(∆1, Q(X))≃ commutes with filtered colimits, since the
collection of homotopy equivalences between Kan complexes is closed under filtered colimits
(Proposition 3.2.8.3).

Corollary 4.5.7.3.023D Suppose we are given a commutative diagram of simplicial sets

X
f //

��

Y

��
S

https://kerodon.net/tag/01HH
https://kerodon.net/tag/023D
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with the following property: for every simplex σ : ∆k → S, the induced map fσ : ∆k ×S X →
∆k ×S Y is a categorical equivalence of simplicial sets. Then f is a categorical equivalence
of simplicial sets.

Proof. We will prove the following stronger assertion: for every morphism of simplicial sets
S′ → S, the induced map

fS′ : S′ ×S X → S′ ×S Y

is a categorical equivalence of simplicial sets. By virtue of Corollary 4.5.7.2 (and Remark
1.1.4.4), we may assume without loss of generality that S′ has dimension ≤ k for some
integer k ≥ −1. We proceed by induction on k. In the case k = −1, the simplicial set
S′ is empty and there is nothing to prove. Assume therefore that k ≥ 0. Let S′′ denote
the (k − 1)-skeleton of S′ and let I be the set of nondegenerate d-simplices of S′, so that
Proposition 1.1.4.12 supplies a pushout diagram of simplicial sets

∐
i∈I

∂∆k //

��

∐
i∈I

∆k

��
S′′ // S′,

where the horizontal maps are monomorphisms. It follows that the front and back faces of
the diagram

( ∐
i∈I

∂∆k)×S X //

��

u

$$

∐
i∈I

(∆k ×S X)

��

v

$$∐
i∈I

(∂∆k×SY )

��

// ∐
i∈I

(∆k ×S Y )

��

S′′ ×S X //

fS′′

&&

S′ ×S X

fS′

%%
S′′ ×S Y // S′ ×S Y
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are categorical pushout squares (Proposition 4.5.4.11). Consequently, to show that fS′ is a
categorical equivalence, it will suffice to show that fS′′ , u, and v are categorical equivalences
(Proposition 4.5.4.9). In the first two cases, this follows from our inductive hypothesis. We
may therefore replace S′ by the coproduct ∐

i∈I ∆k, and thereby reduce to the case of a
coproduct of simplices. Using Corollary 4.5.3.10, we can further reduce to the case where
S′ ≃ ∆k is a standard simplex, in which case the desired result follows from our hypothesis
on f .

Corollary 4.5.7.4.034V A commutative diagram of ∞-categories

034W C01 //

��

C0

U

��
C1 // C .

(4.29)

is a categorical pullback square if and only if the induced diagram of Kan complexes

034X Fun(∆1, C01)≃ //

��

Fun(∆1, C0)≃

��
Fun(∆1, C1)≃ // Fun(∆1, C)≃

(4.30)

is a homotopy pullback square.

Proof. We proceed as in the proof of Proposition 4.5.2.14. By definition, the diagram (4.29)
is a categorical pullback square if and only if the induced map θ : C01 → C0×h

C C1 is an
equivalence of ∞-categories. Using the criterion of Theorem 4.5.7.1, we see that this is
equivalent to the requirement that θ induces a homotopy equivalence of Kan complexes
ρ : Fun(∆1, C01)≃ → Fun(∆1, C0×h

C C1)≃. Using Remarks 4.5.2.6 and 4.5.2.7, we can identify
ρ with the map

Fun(∆1, C01)≃ → Fun(∆1, C0)≃ ×h
Fun(∆1,C)≃ Fun(∆1, C1)≃

determined by the commutative diagram (4.30). The desired result now follows from the
criterion of Corollary 3.4.1.6.

4.5.8 Application: Universal Property of the Join

01HM

https://kerodon.net/tag/034V
https://kerodon.net/tag/034W
https://kerodon.net/tag/034X
https://kerodon.net/tag/01HM
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Let C and D be categories, and let C ⋆D denote their join (Definition 4.3.2.1). Proposition
4.3.2.13 (and Remark 4.3.2.14) supplies a pushout diagram of categories.

(C ×{0} × D) ∐(C ×{1} × D) //

��

C ×[1]×D

��
(C ×{0}) ∐({1} × D) // C ⋆D .

Passing to nerves, we obtain a commutative diagram of simplicial sets

(N•(C)× {0} ×N•(D)) ∐(N•(C)× {1} ×N•(D)) //

��

N•(C)×∆1 ×N•(D)

��
(N•(C)× {0})

∐({1} ×N•(D)) // N•(C) ⋆N•(D).

Beware that this diagram is generally not a pushout square. However, we will show in
this section that it is nevertheless a categorical pushout square, in the sense of Definition
4.5.4.1. Moreover, an analogous statement holds if we replace N•(C) and N•(D) by arbitrary
simplicial sets X and Y .

Construction 4.5.8.1. 01HNLet X and Y be simplicial sets, let πX : X × Y → X and πY :
X×Y → Y denote the projection maps, and let ιX : X ↪→ X⋆Y and ιY : Y ↪→ X⋆Y denote
the inclusion maps. Then there is a unique map of simplicial sets c : X ×∆1 × Y → X ⋆ Y

with the property that c|X×{0}×Y = ιX ◦ πX and c|X×{1}×Y = ιY ◦ πY . Concretely, if
σ = (σX , σ∆1 , σY ) is an n-simplex of the product X ×∆1 × Y , then c(σ) is the n-simplex of
X ⋆ Y given by the composition

∆n ≃ (σ−1
∆1{0}) ⋆ (σ−1

∆1{1})
σX⋆σY−−−−→ X ⋆ Y.

We will refer to c : X ×∆1 × Y → X ⋆ Y as the collapse map.

Proposition 4.5.8.2. 01HPLet X and Y be simplicial sets, and let c : X ×∆1 × Y → X ⋆ Y

denote the collapse map of Construction 4.5.8.1. Then the commutative diagram of simplicial
sets

01HQ(X × {0} × Y ) ∐(X × {1} × Y ) //

πX

∐
πY

��

X ×∆1 × Y

c

��
(X × {0}) ∐({1} × Y ) (ιX ,ιY ) // X ⋆ Y

(4.31)

is a categorical pushout square.

https://kerodon.net/tag/01HN
https://kerodon.net/tag/01HP
https://kerodon.net/tag/01HQ
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It will be convenient to state Proposition 4.5.8.2 in a slightly different form.

Notation 4.5.8.3 (The Blunt Join).01HR Let X and Y be simplicial sets. We let X ⋄ Y denote
the simplicial set given by the iterated pushout

X
∐

(X×{0}×Y )
(X ×∆1 × Y )

∐
(X×{1}×Y )

Y,

so that we have a pushout diagram of simplicial sets

X × ∂∆1×Y //

πX

∐
πY

��

X ×∆1 × Y

��
(X × {0}) ∐({1} × Y ) // X ⋄ Y.

We will refer X⋄Y as the blunt join of X and Y . The commutative diagram (4.31) determines
a morphism of simplicial sets cX,Y : X ⋄Y → X ⋆Y , which we will refer to as the comparison
map.

Example 4.5.8.4.01HS Let X and Y be simplicial sets. If X is empty, then the blunt join X ⋄Y
can be identified with Y . If Y is empty, then the blunt join X ⋄ Y can be identified with X.
In either case, the comparison map cX,Y : X ⋄ Y → X ⋆ Y is an isomorphism of simplicial
sets.

Exercise 4.5.8.5.02GG Let X and Y be simplicial sets. Show that the comparison map
cX,Y : X ⋄ Y → X ⋆ Y of Notation 4.5.8.3 is an epimorphism of simplicial sets: that is, it is
surjective at the level of n-simplices for each n ≥ 0.

Remark 4.5.8.6 (Functoriality).01HT The blunt join construction (X,Y ) 7→ X ⋄ Y determines
a functor ⋄ : Set∆×Set∆ → Set∆. Moreover:

• For fixed X, the functor

Set∆ → Set∆ Y 7→ X ⋄ Y

preserves monomorphisms, filtered colimits and pushout diagrams.

• For fixed Y , the functor

Set∆ → Set∆ X 7→ X ⋄ Y

preserves monomorphisms, filtered colimits, and pushout diagrams.

https://kerodon.net/tag/01HR
https://kerodon.net/tag/01HS
https://kerodon.net/tag/02GG
https://kerodon.net/tag/01HT
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Remark 4.5.8.7. 01HULet f : X → X ′ and g : Y → Y ′ be categorical equivalences of simplicial
sets. Then the induced map (f ⋄ g) : X ⋄ Y → X ′ ⋄ Y ′ is also a categorical equivalence. This
follows by applying Proposition 4.5.4.9 to the diagram

X × ∂∆1×Y //

��

''

X ×∆1 × Y

��

##
X ′ × ∂∆1×Y ′ //

��

X ′ ×∆1 × Y ′

��

(X × {0}) ∐({1} × Y ) //

''

X ⋄ Y

##
(X ′ × {0}) ∐({1} × Y ′) // X ′ ⋄ Y ′.

By virtue of Proposition 4.5.4.11, Proposition 4.5.8.2 can be restated as follows:

Theorem 4.5.8.8. 01HVLet X and Y be simplicial sets. Then the comparison map cX,Y :
X ⋄ Y → X ⋆ Y of Notation 4.5.8.3 is a categorical equivalence of simplicial sets.

Corollary 4.5.8.9. 01HWLet f : X → X ′ and g : Y → Y ′ be categorical equivalences of simplicial
sets. Then the induced map (f ⋆ g) : X ⋆ Y → X ′ ⋆ Y ′ is also a categorical equivalence of
simplicial sets.

Proof. We have a commutative diagram of simplicial sets

X ⋄ Y f⋄g //

cX,Y

��

X ′ ⋄ Y ′

cX′,Y ′

��
X ⋆ Y

f⋆g // X ′ ⋆ Y ′,

where f ⋄ g, cX,Y , and cX′,Y ′ are categorical equivalences (Remark 4.5.8.7 and Theorem
4.5.8.8). Invoking the two-out-of-three property (Remark 4.5.3.5), we conclude that f ⋆ g is
also a categorical equivalence.

The proof of Theorem 4.5.8.8 will require some preliminaries. We begin by reducing to
the special case where X = ∆1.

https://kerodon.net/tag/01HU
https://kerodon.net/tag/01HV
https://kerodon.net/tag/01HW
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Lemma 4.5.8.10.01HX Let Y be a simplicial set, and suppose that the comparison map c∆1,Y :
∆1⋄Y → ∆1⋆Y is a categorical equivalence. Then, for every simplicial set X, the comparison
map cX,Y : X ⋄ Y → X ⋆ Y is a categorical equivalence.

Proof. Throughout the proof, we regard the simplicial set Y as fixed. Let us say that a
simplicial set X is good if cX,Y is a categorical equivalence. We begin with some elementary
observations:

(a) The collection of good simplicial sets is closed under the formation of filtered colimits
(since the collection of categorical equivalences is closed under filtered colimits, by
virtue of Corollary 4.5.7.2).

(b) Suppose we are given a pushout diagram of simplicial sets

X
f //

��

X(0)

��
X(1) // X(01),

where f is a monomorphism. If X, X(0), and X(1) are good, then X(01) is good.
This follows by applying Proposition 4.5.4.9 to the commutative diagram

X ⋄ Y

cX,Y

$$

//

��

X(0) ⋄ Y

cX(0),Y

%%

��

X ⋆ Y //

��

X(0) ⋆ Y

��

X(1) ⋄ Y

cX(1),Y

$$

// X(01) ⋄ Y

cX(01),Y

%%
X(1) ⋆ Y // X(01) ⋆ Y,

noting that the front and back squares are categorical pushouts by virtue of Example
4.5.4.12.

https://kerodon.net/tag/01HX
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(c) Let f : X → X ′ be an inner anodyne morphism of simplicial sets. Then X is good if
and only if X ′ is good. To prove this, we observe that there is a commutative diagram
of simplicial sets

X ⋄ Y
cX,Y //

f⋄idY

��

X ⋆ Y

f⋆idY

��
X ′ ⋄ Y cY // X ′ ⋆ Y.

By the two-out-of-three property (Remark 4.5.3.5), it will suffice to show that the
morphisms f ⋄ idY and f ⋆ idY are categorical equivalences. In the first case, this
follows from Remark 4.5.8.7. For the second, we observe that f ⋆ idY is actually inner
anodyne, since it factors as a composition

X ⋆ Y
u−→ X ′

∐
X

(X ⋆ Y ) v−→ X ′ ⋆ Y,

where u is a pushout of f (hence inner anodyne because f is inner anodyne) and v is
inner anodyne by virtue of Proposition 4.3.6.4.

We wish to show that if the 1-simplex ∆1 is good, then every simplicial set X is good.
Writing X as the filtered colimit of its finite simplicial subsets (Remark 3.6.1.8), we can use
(a) to reduce to the case where X is finite. We now proceed by induction on the dimension
of X. If X = ∅, then cX,Y is an isomorphism (Example 4.5.8.4). Otherwise, the simplicial
set X has dimension n ≥ 0. We now proceed by induction on the number of nondegenerate
n-simplices of X. Using Proposition 1.1.4.12, we can choose a pushout diagram of simplicial
sets

∂∆n //

��

∆n

��
X ′ // X

where X ′ ⊆ X is a simplicial subset having one fewer nondegenerate n-simplex. It then
follows from our inductive hypothesis that ∂∆n and X ′ are good. By virtue of (b), it will
suffice to show that ∆n is good. This holds for n = 1 by assumption, and also for n = 0
because ∆0 is a retract of ∆1. We may therefore assume that n ≥ 2, so that the horn
inclusion Λn1 ↪→ ∆n is inner anodyne. Our inductive hypothesis guarantees that Λn1 is good,
so that ∆n is good by virtue of (c).

Lemma 4.5.8.11. 01HYThe comparison map c∆1,∆0 : ∆1 ⋄ ∆0 → ∆1 ⋆ ∆0 is a categorical
equivalence.

https://kerodon.net/tag/01HY
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Proof. Unwinding the definitions, we can identify the blunt join ∆1 ⋄∆0 with the simplicial
set (∆1 ×∆1) ∐

∆1×{1}∆0, which we represent informally by the diagram

• //

  ��

•

• // •.

Let X denote the simplicial set ∆2 ∐
N•({1<2}) ∆0 obtained from the standard 2-simplex

by collapsing the final edge to a point. We then have an inclusion map ι : X ↪→ ∆1 ⋄∆0

(corresponding to the triangle in the upper right of the preceding diagram), which fits into a
pushout diagram of simplicial sets

X
r //

��

∆1

u

��
∆1 ⋄∆0

c∆1,∆0
// ∆1 ⋆∆0;

here u classifies to the “long edge” of the 2-simplex ∆1 ⋆∆0 ≃ ∆2. Since the vertical maps
are monomorphisms and r is a categorical equivalence (see Example 4.5.3.16), it follows that
c∆1,∆0 is also a categorical equivalence (Remark 4.5.4.13).

Proposition 4.5.8.12.01HZ Let X be a simplicial set. Then the comparison map cX,∆0 :
X ⋄∆0 → X ⋆∆0 = X▷ is a categorical equivalence of simplicial sets.

Proof. Combine Lemmas 4.5.8.10 and 4.5.8.11.

Remark 4.5.8.13.023E We will later prove a generalization of Proposition 4.5.8.12; see Proposi-
tion 5.2.4.5.

Corollary 4.5.8.14.01J0 Let f : A ↪→ B be a right anodyne morphism of simplicial sets. Then
the induced map

θ : B
∐
A

(A ⋄∆0) ↪→ B ⋄∆0

is a categorical equivalence of simplicial sets.

Proof. Proposition 4.3.6.4 guarantees that the natural map B∐
AA

▷ ↪→ B▷ is inner anodyne,
and therefore a categorical equivalence (Corollary 4.5.3.14). Using Proposition 4.5.4.11, we

https://kerodon.net/tag/01HZ
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conclude that the diagram

A //

f

��

A▷

f▷

��
B // B▷

is categorical pushout square. It then follows from Theorem 4.5.8.8 and Proposition 4.5.4.9
that the equivalent diagram

A //

f

��

A ⋄∆0

f⋄id∆0

��
B // B ⋄∆0

is also categorical pushout square, so that θ is a categorical equivalence by virtue of
Proposition 4.5.4.11.

Proof of Theorem 4.5.8.8. Let X and Y be arbitrary simplicial sets; we wish to show that
the comparison map cX,Y : X ⋄Y → X ⋆Y is a categorical equivalence. By virtue of Lemma
4.5.8.10, we may assume without loss of generality that X = ∆1. Note that the map the
cX,Y fits into a commutative diagram of simplicial sets

X × Y //

��

(X ⋄∆0)× Y

��

cX,∆0×idY
// X▷ × Y

��
X // X ⋄ Y

cX,Y // X ⋆ Y.

Note that the morphism cX,∆0 × idY is a categorical equivalence by virtue of Proposition
4.5.8.12 and Remark 4.5.3.7. Consequently, to show that cX,Y is a categorical equivalence,
it will suffice to show that the square on the right is a categorical pushout (Proposition
4.5.4.10). Note that left part of the diagram is a pushout square in which the horizontal
maps are monomorphisms, hence also a categorical pushout square (Proposition 4.5.4.11).
We are therefore reduced to showing that the outer rectangle is a categorical pushout square
(Proposition 4.5.4.8).

Specializing now to the case X = ∆1, we wish to show that the lower part of the



4.5. EQUIVALENCE 775

commutative diagram
{1} × Y //

��

{1}▷ × Y

��
∆1 × Y //

��

(∆1)▷ × Y

��
∆1 // ∆1 ⋆ Y

is a categorical pushout square. We first claim that the upper square is a categorical pushout:
by virtue of Proposition 4.5.4.11, this is equivalent to the assertion that the induced map

θ : (∆1 × Y )
∐
{1}×Y

({1}▷ × Y )→ (∆1)▷ × Y

is a categorical equivalence. This follows from Remark 4.5.3.7, since θ factors as a product
of the identity map idY with the inner horn inclusion Λ2

1 ↪→ ∆2. To complete the proof,
it will suffice to show that the outer rectangle is a categorical pushout square. Using the
criterion of Proposition 4.5.4.11, we are reduced to showing that the map

ρ : ∆1 ∐
{1}×Y

({1}▷ × Y )→ ∆1 ⋆ Y

is a categorical equivalence. Unwinding the definitions, we can identify ρ with the composition

∆1 ∐
{1}

({1} ⋄ Y ) ρ′−→ ∆1 ∐
{1}

({1} ⋆ Y ) ρ′′−→ ∆1 ⋆ Y.

Here the map ρ′ is a categorical equivalence by virtue of Proposition 4.5.8.12 (together with
Remark 4.5.4.13), and the map ρ′′ is inner anodyne by virtue of Proposition 4.3.6.4.

4.5.9 Relative Exponentiation

02TM Let U : C → B be a morphism of simplicial sets. For every vertex B ∈ B, let CB =
{B} ×B C denote the corresponding fiber of U . If D is an ∞-category, then Theorem 1.5.3.7
guarantees that the simplicial set Fun(CB,D) is also an ∞-category. Our goal in this section
is to study the dependence of this construction on the vertex B ∈ B. We begin by introducing
a relative version of Construction 1.5.3.1.

https://kerodon.net/tag/02TM
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Construction 4.5.9.1. 046NLet U : C → B be a morphism of simplicial sets and let D be
another simplicial set. For every integer n ≥ 0, we let Fun(C /B,D)n denote the collection of
pairs (σ, f), where σ is an n-simplex of B and f : ∆n ×B C → D is a morphism of simplicial
sets. Note that every nondecreasing function α : [m]→ [n] induces a map

Fun(C /B,D)n → Fun(C /B,D)m (σ, f) 7→ (α∗(σ), f ′),

where f ′ denotes the composite map

∆m ×B C
α×id−−−→ ∆n ×B C

f−→ D .

This construction is compatible with composition, and therefore endows {Fun(C /B),D)n}n≥0
with the structure of a simplicial set Fun(C /B, E).

Note that the assignment (σ, f) 7→ σ determines a morphism of simplicial sets π :
Fun(C /B,D) → B. Moreover, there is an evaluation map ev : C ×B Fun(C /B, E) → D,
which carries an n-simplex (σ̃, (σ, f)) of the fiber product C ×B Fun(C /B, E) to the n-simplex
of D given by the composite map ∆n id×σ̃−−−→ ∆n ×B C

f−→ D.

Example 4.5.9.2. 02TTLet C and D be simplicial sets and let U : C → ∆0 denote the projection
map. Then the simplicial set Fun(C /∆0,D) of Construction 4.5.9.1 can be identified with
the simplicial set Fun(C,D) of Construction 1.5.3.1.

Example 4.5.9.3. 046PLet C and D be simplicial sets and let U : C → C be the identity
morphjism. Then the simplicial set Fun(C / C,D) of Construction 4.5.9.1 can be identified
with the product C ×D.

Example 4.5.9.4. 02TSLet U : C → B be a morphism of simplicial sets. Then the projection
map π : Fun(C /B,∆0)→ B is an isomorphism.

The direct image Fun(C /B,D) of Construction 4.5.9.1 can be characterized by a universal
mapping property:

Proposition 4.5.9.5. 02TPLet U : C → B be a morphism of simplicial sets and let D be a
simplicial set. For every morphism of simplicial sets B′ → B, postcomposition with the
evaluation map ev : C ×B Fun(C /B, E)→ D induces a bijection

Hom(Set∆)/B(B′,Fun(C /B,D))→ HomSet∆(C ×B B′,D).

Proof. Writing B′ as a colimit of simplices, we may reduce to the case where B′ = ∆n, so
that σ is an n-simplex of B. In this case, the desired result follows immediately from the
definition of the simplicial set Fun(C /B,D).

https://kerodon.net/tag/046N
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Remark 4.5.9.6.02TQ In the situation of Proposition 4.5.9.5, postcomposition with the evaluation
map ev : C ×B Fun(C /B,D)→ D induces an isomorphism of simplicial sets

Fun/B(B′,Fun(C /B,D)) ∼−→ Fun(C ×B B′,D).

The bijectivity of this map on n-simplices follows by applying Proposition 4.5.9.5 to the
product B′×∆n.

Remark 4.5.9.7.02TU Suppose we are given a pullback diagram of simplicial sets

C′ //

U ′

��

C

U

��
B′ // B .

For every simplicial setD, we have a canonical isomorphism of simplicial sets Fun(C′ /B′,D) ≃
B′×B Fun(C /B,D).

Remark 4.5.9.8.02TV Let U : C → B be a morphism of simplicial sets, let D be a simplicial
set, and let π : Fun(C /B,D)→ B be the projection map of Construction 4.5.9.1. For every
vertex B ∈ B, Remark 4.5.9.7 and Example 4.5.9.2 supply an isomorphism of simplicial sets

π−1{B} = {B} ×B Fun(C /B,D) ≃ Fun({B} ×B C,D).

Let U : C → B be a morphism of simplicial sets and let D be an ∞-category. It
follows from Remark 4.5.9.8 Theorem 1.5.3.7 that every fiber of the projection map π :
Fun(C /B,D)→ B is an ∞-category. Beware that π is generally not an inner fibration.

Exercise 4.5.9.9.02TW Let B = ∆2 be the standard 2-simplex and let C = N•({0 < 2}) be the
long edge of C. Show that Fun(C /B,∆1) is not an ∞-category.

To avoid the behavior described in Exercise 4.5.9.9, we need to impose an additional
condition on the morphism U : C → B.

Definition 4.5.9.10.02TX Let U : C → B be a morphism of simplicial sets. We will say that U
is exponentiable if it satisfies the following condition:

(∗) For every diagram of simplicial sets

C′′ F //

��

C′ //

��

C

U

��
B′′ F // B′ // B
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in which both squares are pullbacks, if F is a categorical equivalence, then F is also a
categorical equivalence.

Remark 4.5.9.11. 02TYWe will be primarily interested in the special case of Definition 4.5.9.10
where U is an inner fibration of simplicial sets. In this case, Definition 4.5.9.10 can be
considerably simplified: to show that an inner fibration of simplicial sets U : C → B is
exponentiable, it suffices to verify condition (∗) in the special case where F : B′′ → B′ is the
inner horn Λ2

1 ↪→ ∆2 (see Proposition [?]).

Remark 4.5.9.12. 02TZLet U : C → B and V : D → C be exponentiable morphisms of simplicial
sets. Then the composition (U ◦ V ) : D → B is also exponentiable.

Remark 4.5.9.13. 02U0Suppose we are given a pullback diagram of simplicial sets

C′

U ′

��

// C

U

��
B′ // B .

If U is exponentiable, then U ′ is also exponentiable.

Remark 4.5.9.14. 02U1The collection of exponentiable morphisms of simplicial sets is closed
under retracts. That is, if we are given a commutative diagram of simplicial sets

C //

U

��

C′

U ′

��

// C

U

��
B // B′ // B

where U ′ is exponentiable and both horizontal compositions are the identity, then U is also
exponentiable.

Example 4.5.9.15. 02U2Let C be any simplicial set. Then the projection map C → ∆0 is
exponentiable (this is a reformulation of Remark 4.5.3.7).

Example 4.5.9.16. 02U4The inclusion map N•({0 < 2}) ↪→ ∆2 is an isofibration of∞-categories
which is not exponentiable. Note that there is a pullback diagram of simplicial sets

{0}∐
{2} //

��

N•({0 < 2})

��
Λ2

1
// ∆2
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where the lower horizontal map is a categorical equivalence, but the upper horizontal map is
not.

The terminology of Definition 4.5.9.10 is motivated by the following:

Proposition 4.5.9.17.046Q Let U : C → B be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism U is exponentiable (Definition 4.5.9.10).

(2) For every isofibration of simplicial sets V : D → E, the induced map

Fun(C /B,D) V ◦−−→ Fun(C /B, E)

is also an isofibration of simplicial sets.

(3) For every isofibration of ∞-categories V : D → E, the induced map

Fun(C /B,D) V ◦−−→ Fun(C /B, E)

is also an isofibration.

Proof. We first show that (1) implies (2). Assume that U is exponentiable, let V : D → E
be an isofibration of simplicial sets, and let i : A ↪→ B be a monomorphism of simplicial sets
which is a categorical equivalence; we wish to show that every lifting problem

02U6 A

i

��

// Fun(C /B,D)

V ◦

��
B

;;

// Fun(C /B, E)

(4.32)

admits a solution. Note that the lower horizontal map determines a morphism of simplicial
sets B → B. Invoking the universal property of Proposition 4.5.9.5, we can rewrite (4.32) as
a lifting problem

02XZ A×B C

j

��

// D

V

��
B ×B C

<<

// E .

(4.33)

Because U is exponentiable, the left vertical map is a categorical equivalence of simplicial
sets. Our assumption that V is an isofibration then guarantees the existence of a solution.
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The implication (2) ⇒ (3) is immediate. We will complete the proof by showing that
(3) implies (1). Assume that condition (3) is satisfied and suppose that we are given a
commutative diagram of simplicial sets

C′′ F //

��

C′ //

��

C

U

��
B′′ F // B′ // B

where both squares are pullbacks and F is a categorical equivalence; we wish to show that F
is also a categorical equivalence. By virtue of Exercise 3.1.7.11, there exists a monomorphism
of simplicial sets ι : B′′ ↪→ Q, where Q is a contractible Kan complex. Replacing F by
the morphism (ι, F ) : B′′ ↪→ Q × B′ (and F by the morphism (ι, F ) : C′′ ↪→ Q × C′), we
can reduce to the case where F is a monomorphism of simplicial sets, so that F is also a
monomorphism of simplicial sets. To show that F is a categorical equivalence, it will suffice
to show that if V : D → E is an isofibration of ∞-categories, then every lifting problem

02U7C′′

F

��

// D

V

��
C′ //

??

E

(4.34)

admits a solution (Proposition 4.5.5.4). Invoking the universal property of direct images
(Proposition 4.5.9.5), we can rewrite (4.34) as a lifting problem

B′′

F

��

// Fun(C /B,D)

V ◦

��
B′ //

::

Fun(C /B, E).

Condition (3) guarantees that the right vertical map is an isofibration, so that the solution
exists by virtue of our assumption that F is a categorical equivalence.

Corollary 4.5.9.18. 02U8Let U : C → B be an exponentiable morphism of simplicial sets. For
every ∞-category D, the projection map π : Fun(C /B,D)→ B is an isofibration of simplicial
sets.

Proof. Apply Proposition 4.5.9.17 in the special case E = ∆0 (see Example 4.5.9.4).
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4.6 Morphism Spaces

01J3 Let C be an ∞-category containing a pair of objects X and Y . Recall that a morphism
from X to Y is an edge f of C satisfying d1

1(f) = X and d1
0(f) = Y (Definition 1.4.1.1).

Morphisms from X to Y can be identified with vertices of a simplicial set HomC(X,Y ),
given by the iterated fiber product

{X} ×Fun({0},C) Fun(∆1, C)×Fun({1},C) {Y }.

In §4.6.1, we show that the simplicial set HomC(X,Y ) is a Kan complex (Proposition
4.6.1.10), which we refer to as the space of morphisms from X to Y (Construction 4.6.1.1).

Let F : C → D be a functor of ∞-categories. We say that F is fully faithful if, for
every pair of objects X,Y ∈ C, the induced map HomC(X,Y )→ HomD(F (X), F (Y )) is a
homotopy equivalence of Kan complexes (Definition 4.6.2.1). We say that F is essentially
surjective if it induces a surjection π0(C≃) → π0(D≃) on isomorphism classes of objects.
In §4.6.2, we show that F is an equivalence of ∞-categories if and only if it is both fully
faithful and essentially surjective (Theorem 4.6.2.20). This is essentially a reformulation of
the criterion of Theorem 4.5.7.1. Nevertheless, it can be quite useful: the mapping spaces
HomC(X,Y ) are often more amenable to calculation than the Kan complex Fun(∆1, C)≃.

In practice, it is often useful to work with a variant of Construction 4.6.1.1. Let C be an
∞-category containing a pair of objects X and Y . We define simplicial sets HomL

C (X,Y )
and HomR

C (X,Y ) by the formulae

HomL
C (X,Y ) = CX/×C{Y } HomR

C (X,Y ) = {X} ×C C/Y .

We will refer to HomL
C (X,Y ) as the left-pinched space of morphisms from X to Y , and to

HomR
C (X,Y ) as the right-pinched space of morphisms from X to Y . These simplicial sets

are also Kan complexes, which can often be described very explicitly:

• Let C be a (2, 1)-category containing objects X and Y , and let ND
• (C) denote the

Duskin nerve of C (Construction 2.3.1.1). Then there are canonical isomorphisms of
simplicial sets

HomL
ND
• (C)(X,Y ) ≃ N•(HomC(X,Y )) ≃ HomR

ND
• (C)(X,Y )op;

see Example 4.6.5.13.

• Let C be a differential graded category containing objects X and Y , and let Ndg
• (C)

denote the differential graded nerve of C (Definition 2.5.3.7). Then there is a canonical
isomorphism of simplicial sets

HomL
Ndg
• (C)(X,Y ) ≃ K(HomC(X,Y )∗),

https://kerodon.net/tag/01J3
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where K(HomC(X,Y )∗) denotes the Eilenberg-MacLane space associated to the chain
complex HomC(X,Y )∗ (Example 4.6.5.15).

• Let C be a locally Kan simplicial category containing a pair of objects X and Y , and
let Nhc

• (C) denote the homotopy coherent nerve of C (Definition 2.4.3.5). Then there
are canonical homotopy equivalences

HomL
Nhc
• (C)(X,Y )← HomC(X,Y )• → HomR

Nhc
• (C)(X,Y )op;

see Theorem 4.6.8.5. This is a special case of a more general result (where the simplicial
set HomC(X,Y )• is assumed to be an ∞-category rather than a Kan complex), which
we prove in §4.6.8.

In §4.6.5, we construct comparison maps

ιLX,Y : HomL
C (X,Y ) ↪→ HomC(X,Y ) ιRX,Y : HomR

C (X,Y ) ↪→ HomC(X,Y ),

which we refer to as the pinch inclusion maps, and show that they are homotopy equivalences
of Kan complexes (Proposition 4.6.5.10). This follows from a more general statement
about the relationship between (co)slice ∞-categories and oriented fiber products (Theorem
4.6.4.17), which we formulate and prove in §4.6.4). Our proof will make use of a general
detection principle for natural isomorphisms of diagrams (Theorem 4.6.3.8), which we explain
in §4.6.3.

Let C be an ∞-category. In §4.6.9, we associate to every triple of objects X,Y, Z ∈ C a
morphism of Kan complexes

◦ : HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z),

which is well-defined up to homotopy (Construction 4.6.9.9). We show that this composition
law is unital and associative up to homotopy (Propositions 4.6.9.11 and 4.6.9.12), and
therefore determines an enrichment of the homotopy category hC over the homotopy category
of Kan complexes hKan (Construction 4.6.9.13 and Remark 4.6.9.14).

4.6.1 Morphism Spaces

01J4Let C be a category. To every pair of objects X,Y ∈ Ob(C), one can associate a set
HomC(X,Y ) of morphisms from X to Y . Our goal in this section is to explain a counterpart
of this construction in the setting of ∞-categories.

Construction 4.6.1.1. 01J5Let C be a simplicial set containing a pair of vertices X and Y . We
let HomC(X,Y ) denote the simplicial set given by the fiber product

{X} ×Fun({0},C) Fun(∆1, C)×Fun({1},C) {Y }.

https://kerodon.net/tag/01J4
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We will typically be interested in this construction only in the case where C is an∞-category;
if this condition is satisfied, we will refer to HomC(X,Y ) as the space of morphisms from X

to Y .

Remark 4.6.1.2.01J6 Let C be an ∞-category containing a pair of objects X and Y . Recall
that a morphism from X to Y is an edge e : ∆1 → C satisfying e(0) = X and e(1) = Y

(Definition 1.4.1.1). It follows that morphisms from X to Y can be identified with vertices
of the morphism space HomC(X,Y ) of Construction 4.6.1.1.

Variant 4.6.1.3 (Endomorphism Spaces).03X9 Let C be an ∞-category containing an object X.
We let EndC(X) denote the simplicial set

HomC(X,X) = {X} ×C Fun(∆1/ ∂∆1, C).

We will refer to EndC(X) as the space of endomorphisms of X. Note that vertices of the
simplicial set EndC(X) can be identified with endomorphisms of X, in the sense of Definition
1.4.1.5

Example 4.6.1.4.01J7 Let C be an ordinary category containing objects X and Y , which we will
identify with objects of the ∞-category N•(C). Then the morphism space HomN•(C)(X,Y )
of Construction 4.6.1.1 can be identified with the constant simplicial set having the value
HomC(X,Y ) (see Example 4.6.4.6). In particular, when X = Y we can identify the simplicial
set EndN•(C)(X) = HomN•(C)(X,X) with the endomorphism monoid EndC(X) of Example
1.3.2.2.

Example 4.6.1.5.01J8 Let X be a topological space containing a pair of points x and y, which
we regard as objects of the ∞-category Sing•(X). Then we have a canonical isomorphism of
Kan complexes

HomSing•(X)(x, y) ≃ Sing•(Px,y),

where Px,y denotes the topological space of continuous paths p : [0, 1] → X satisfying
p(0) = x and p(1) = y (equipped with the compact-open topology). Setting x = y, we obtain
an isomorphism EndSing•(X)(x) = Sing•(Ω(X)), where Ω(X) is the based loop space of X.
See Example 3.4.0.5.

Example 4.6.1.6.01J9 Let C and D be∞-categories, so that the join C ⋆D is also an∞-category
(Corollary 4.3.3.25). Then the morphism spaces in C ⋆D are described by the formula

HomC ⋆D(X,Y ) ≃



HomC(X,Y ) if X,Y ∈ C
HomD(X,Y ) if X,Y ∈ D
∆0 if X ∈ C, Y ∈ D
∅ if X ∈ D, Y ∈ C .
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Example 4.6.1.7. 01JALet C be a simplicial set containing vertices X and Y . Let K be a
simplicial set, and let X,Y : K → C be the constant maps taking the values X and Y ,
respectively. Then there is a canonical isomorphism of simplicial sets

HomFun(K,C)(X,Y ) ≃ Fun(K,HomC(X,Y )).

Remark 4.6.1.8. 01JBLet C be a simplicial set containing vertices X and Y , which we also
regard as vertices of the opposite simplicial set Cop. Then there is a canonical isomorphism
of simplicial sets HomCop(X,Y ) ≃ HomC(Y,X)op.

Remark 4.6.1.9. 034YLet {Ci}i∈I be a collection of ∞-categories having a product C = ∏
i∈I Ci.

Let X and Y be objects of C, which we identify with collections {Xi ∈ Ci}i∈I and {Yi ∈ Ci}i∈I ,
respectively. Then there is a canonical isomorphism of simplicial sets

HomC(X,Y ) ≃
∏
i∈I

HomCi(Xi, Yi).

Proposition 4.6.1.10. 01JCLet C be an ∞-category. For every pair of objects X,Y ∈ C, the
morphism space HomC(X,Y ) is a Kan complex.

Proposition 4.6.1.10 is a special case of the following more general assertion:

Proposition 4.6.1.11. 01P1Let C be an ∞-category, let B be a simplicial set, let A ⊆ B be a
simplicial subset which contains every vertex of B, and let f : A→ C be a diagram. Then
the fiber product Fun(B, C)×Fun(A,C) {f} is a Kan complex.

Proof. Corollary 4.4.5.3 guarantees the restriction map θ : Fun(B, C) → Fun(A, C) is an
isofibration, so that the fiber Fun(B, C)×Fun(A,C) {f} is an ∞-category. To show that it is a
Kan complex, it will suffice to show that every morphism u in Fun(B, C)×Fun(A,C) {f} is an
isomorphism (Proposition 4.4.2.1). By virtue of Corollary 4.4.3.20, this is equivalent to the
assertion that the image of u in the ∞-category Fun(B, C) is an isomorphism. This follows
from Theorem 4.4.4.4, since for every vertex b ∈ B, the evaluation functor

evb : Fun(B, C)→ Fun({b}, C) ≃ C

factors through Fun(A, C) and therefore carries u to the identity morphism idf(b).

Remark 4.6.1.12. 01JDLet C be an ∞-category containing a pair of morphisms f, g : X → Y

having the same source and target. Then f and g are homotopic (Definition 1.4.3.1) if and
only if they belong to the same connected component of the Kan complex HomC(X,Y ): this
follows from the characterization of Corollary 1.4.3.7. Consequently, we obtain a bijection
HomhC(X,Y ) ≃ π0(HomC(X,Y )).
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Example 4.6.1.13 (Loop Spaces).01JE Let (X,x) be a pointed Kan complex. The Kan complex
HomX(x, x) is often denoted by Ω(X) and referred to as the based loop space of X. Note
that it can be identified with the fiber over x of the evaluation map

q : {x} ×Fun({0},X) Fun(∆1, X)→ Fun({1}, X) = X.

By virtue of Example 3.1.7.10, this map is a Kan fibration whose domain is a contractible
Kan complex. It follows that the long exact sequence of Theorem 3.2.6.1 yields isomorphisms
πn(HomX(x, x), idx) ≃ πn+1(X,x) for n ≥ 0.

Remark 4.6.1.14 (Morphism Spaces in Homotopy Fiber Products).046R Let F0 : C0 → C
and F1 : C1 → C be functors of ∞-categories. Let X0, Y0 ∈ C0 and X1, Y1 ∈ C1 be objects
having the same images F0(X0) = X = F1(X1) and F0(Y0) = Y = F1(Y1) in C, so that
X01 = (X0, X1, idX) and Y01 = (Y0, Y1, idY ) can be viewed as objects of the homotopy fiber
product C01 = C0×h

C C1 (see Construction 4.5.2.1). Then the mapping space HomC01(X01, Y01)
can be identified with the homotopy fiber product of Kan complexes

HomC0(X0, Y0)×h
HomC(X,Y ) HomC1(X1, Y1).

It will sometimes be convenient to work with a relative version of Construction 4.6.1.1.

Construction 4.6.1.15.01P2 Let q : C → D be a morphism of simplicial sets, let X and Y be
vertices of C, and let e : q(X)→ q(Y ) be an edge of the simplicial set D. We let HomC(X,Y )e
denote the fiber product HomC(X,Y )×HomD(q(X),q(Y )) {e}, which we regard as a simplicial
subset of HomC(X,Y ).

Example 4.6.1.16.01P3 In the situation of Construction 4.6.1.15, suppose that the simplicial
HomD(q(X), q(Y )) is isomorphic to ∆0 (this condition is satisfied, for example, if D is the
nerve of a partially ordered set). Then the inclusion map HomC(X,Y )e ↪→ HomC(X,Y ) is
an isomorphism.

Example 4.6.1.17.01P4 Let q : C → D be a morphism of simplicial sets and let X and Y be
vertices of C having the same image D = q(X) = q(Y ) in D. Then we have a canonical
isomorphism of simplicial sets

HomC(X,Y )idD
≃ HomCD

(X,Y ),

where CD = {D} ×D C denotes the fiber of q over the vertex D.

Remark 4.6.1.18.01P5 Suppose we are given a pullback diagram of simplicial sets

C F //

q

��

C′

��
D F // D′ .

https://kerodon.net/tag/01JE
https://kerodon.net/tag/046R
https://kerodon.net/tag/01P2
https://kerodon.net/tag/01P3
https://kerodon.net/tag/01P4
https://kerodon.net/tag/01P5


786 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

Let X and Y be vertices of C, and let e : q(X)→ q(Y ) be an edge of the simplicial set D.
Then composition with F induces an isomorphism of simplicial sets

HomC(X,Y )e → HomC′(F (X), F (Y ))F (e).

Remark 4.6.1.19. 01P6Let q : C → D be a morphism of simplicial sets, let X and Y be vertices
of C, and let e : q(X)→ q(Y ) be an edge of D. Form a pullback diagram of simplicial sets

C′ //

��

C

q

��
∆1 e // D,

so that X lifts uniquely to a vertex X̃ ∈ C′ lying over the vertex 0 ∈ ∆1, and Y lifts uniquely
to a vertex Ỹ ∈ C′ lying over the vertex 1 ∈ ∆1. Remark 4.6.1.18 and Example 4.6.1.16
supply isomorphisms

HomC(X,Y )e ≃ HomC′(X̃, Ỹ )id∆1 = HomC′(X̃, Ỹ ).

Proposition 4.6.1.20. 01P7Let q : C → D be an inner fibration of simplicial sets, let X and Y be
vertices of C, and let e : q(X)→ q(Y ) be an edge of D. Then the simplicial set HomC(X,Y )e
is a Kan complex.

Proof. Form a pullback diagram of simplicial sets

C′ //

q′

��

C

q

��
∆1 e // D .

Since q is an inner fibration, the morphism q′ is also an inner fibration (Remark 4.1.1.5), so
that C′ is an ∞-category (Remark 4.1.1.9). Remark 4.6.1.19 then supplies an isomorphism
of HomC(X,Y )e with a simplicial set of the form HomC′(X̃, Ỹ ), which is a Kan complex by
virtue of Proposition 4.6.1.10.

In the special case where D is an ∞-category, we can prove a slightly stronger assertion:

Proposition 4.6.1.21. 01P8Let q : C → D be an inner fibration of ∞-categories and let X
and Y be objects of C. Then the induced map HomC(X,Y )→ HomD(q(X), q(Y )) is a Kan
fibration of simplicial sets.
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Remark 4.6.1.22.01P9 Let q : C → D be an inner fibration of ∞-categories, let X and Y be
objects of C, and let e : q(X) → q(Y ) be a morphism in D. By construction, we have a
pullback diagram of simplicial sets

01PA HomC(X,Y )e //

��

HomC(X,Y )

��
{e} // HomD(q(X), q(Y )).

(4.35)

It follows from Proposition 4.6.1.21 that the vertical maps in this diagram are Kan fibrations,
so that (4.35) is also a homotopy pullback square. Stated more informally, we have a
homotopy fiber sequence

HomC(X,Y )e → HomC(X,Y )→ HomD(q(X), q(Y )).

Proposition 4.6.1.21 is an immediate consequence of the following more general assertion:

Proposition 4.6.1.23.01PC Let q : C → D be an inner fibration of ∞-categories, let B be a
simplicial set, let A ⊆ B be a simplicial subset which contains every vertex of B, and let
f : A→ C be a diagram. Then the induced map

Fun(B, C)×Fun(A,C) {f} → Fun(B,D)×Fun(A,D) {q ◦ f}

is a Kan fibration of simplicial sets.

Proof. It follows from Proposition 4.6.1.10 that the simplicial sets Fun(B, C)×Fun(A,C) {f}
and Fun(B,D)×Fun(A,D) {q ◦ f} are Kan complexes. It will therefore suffice to show that θ
is an isofibration (Corollary 4.4.3.10). This follows from the observation that θ is a pullback
of the restriction map

Fun(B, C)→ Fun(B,D)×Fun(A,D) Fun(A, C),

which is an isofibration by virtue of Variant 4.4.5.11.

Proof of Proposition 4.6.1.21. Apply Proposition 4.6.1.23 in the special case B = ∆1 and
A = ∂∆1.

Exercise 4.6.1.24.01PB Let q : C → D be an isofibration of simplicial sets, and let X and
Y vertices of C. Show that the induced map HomC(X,Y ) → HomD(q(X), q(Y )) is a Kan
fibration.
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4.6.2 Fully Faithful and Essentially Surjective Functors

01JGLet C and D be categories. Recall that a functor F : C → D is an equivalence of categories
if and only if it satisfies the following pair of conditions:

(1) The functor F is fully faithful: that is, for every pair of objects X,Y ∈ C, the induced
map HomC(X,Y )→ HomD(F (X), F (Y )) is bijective.

(2) The functor F is essentially surjective: that is, for every object X ∈ D, there exists an
object Y ∈ C and an isomorphism X ≃ F (Y ) in the category D.

Our goal in this section is to give an analogous characterization of equivalences in
the setting of ∞-categories (Theorem 4.6.2.20). We begin by formulating ∞-categorical
analogues of conditions (1) and (2).

Definition 4.6.2.1. 01JHLet F : C → D be a functor of ∞-categories. We say that F is
fully faithful if, for every pair of objects X,Y ∈ C, the induced map of morphism spaces
HomC(X,Y )→ HomD(F (X), F (Y )) is a homotopy equivalence of Kan complexes.

Example 4.6.2.2. 01JJLet C be an ∞-category and let C′ ⊆ C be a full subcategory (Definition
4.1.2.15). Then the inclusion map ι : C′ ↪→ C is fully faithful. In fact, for every pair of
objects X,Y ∈ C′, the inclusion ι induces an isomorphism of simplicial sets HomC′(X,Y ) ≃
HomC(X,Y ).

Example 4.6.2.3. 01JKLet F : C → D be a functor between ordinary categories. Then F is fully
faithful if and only if the induced map N•(F ) : N•(C)→ N•(D) is fully faithful (in the sense
of Definition 4.6.2.1). Consequently, we can regard Definition 4.6.2.1 as a generalization of
the classical notion of fully faithful functor.

Remark 4.6.2.4. 01JLLet F : C → D be a functor between ∞-categories, so that F induces
a functor of homotopy categories f : hC → hD. If F is fully faithful, then f is also fully
faithful (see Remark 4.6.1.12). Beware that the converse is generally false.

Remark 4.6.2.5 (Transitivity). 01JMLet F : C → D and G : D → E be functors of ∞-categories,
where G is fully faithful. Then F is fully faithful if and only if G ◦ F is fully faithful. In
particular, the collection of fully faithful functors is closed under composition.

Remark 4.6.2.6. 046SSuppose we are given a commutative diagram of ∞-categories

046TC01 //

��

C0

��
C1 // C

(4.36)

Combining Remark 4.6.1.14 with Corollary 3.4.1.6, we see that the following conditions are
equivalent:
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(1) The diagram (4.36) induces a fully faithful functor from C01 to the homotopy fiber
product C0×h

C C1.

(2) For every object X01 ∈ C01 having images X0 ∈ C0, X1 ∈ C1, X ∈ C and every object
Y01 ∈ C01 having images Y0 ∈ C0, Y1 ∈ C1, Y ∈ C, the diagram of Kan complexes

HomC01(X01, Y01) //

��

HomC0(X0, Y1)

��
HomC1(X1, Y1) // HomC(X,Y )

is a homotopy pullback square.

In particular, if (4.36) is a categorical pullback diagram, then it satisfies condition (2).

Remark 4.6.2.7.046U Suppose we are given a categorical pullback diagram of ∞-categories

C F //

q

��

D

��
C′ F ′ // D′ .

If F ′ is fully faithful, then F is fully faithful (see Remark 4.6.2.6 and Corollary 3.4.1.5).

Proposition 4.6.2.8.01PD Suppose we are given a commutative diagram of ∞-categories

C F //

q

��

C′

q′

��
D F // D′ .

Assume that the functors q and q′ are inner fibrations and that the functors F and F are
fully faithful. Then, for every object D ∈ D, the induced functor FD : CD → C′F (D) is fully
faithful.

Proof. Let X and Y be objects of the ∞-category CD. We then have a cubical diagram of
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Kan complexes

HomCD
(X,Y ) //

��

%%

HomC(X,Y )

$$

��

HomC′
F

(D)(F (X), F (Y )) //

��

HomC′(F (X), F (Y ))

��

{idD} //

%%

HomD(D,D)

$$
{idF (D)} // HomD′(F (D), F (D)).

The front and back faces of this diagram are homotopy pullback squares (Remark 4.6.1.22),
the comparison maps

HomC(X,Y )→ HomD(F (X), F (Y )) HomD(D,D)→ HomD(F (D), F (D))

are homotopy equivalences by virtue of our assumptions that F and F are fully faithful, and
the map of singletons {idD} → {idF (D)} is an isomorphism. Applying Corollary 3.4.1.12,
we conclude that the comparison map HomCD

(X,Y ) → HomC′
F (D)

(F (X), F (Y )) is also a
homotopy equivalence.

Proposition 4.6.2.9. 01JNLet F : C → D be a fully faithful functor of ∞-categories. Then F is
conservative (Definition 4.4.2.7). That is, if u : X → Y is a morphism in C for which F (u)
is an isomorphism in the ∞-category D, then u is an isomorphism in the ∞-category C.

Proof. Let v : F (Y ) → F (X) be a homotopy inverse to F (u). Since F is fully faithful,
the natural map HomC(Y,X)→ HomD(F (Y ), F (X)) is a homotopy equivalence. We may
therefore assume without loss of generality that v = F (v), for some morphism v : Y → X

in the ∞-category C. Let v ◦ u be a composition of u and v in the ∞-category C. Since
F (u) is homotopy inverse to F (v), the morphism F (v ◦ u) is homotopic to idF (C) = F (idC).
Since the map HomC(X,X) → HomD(F (X), F (X)) is a homotopy equivalence, it follows
that v ◦u is homotopic to idC : that is, v is a left homotopy inverse to u. A similar argument
(with the roles of u and v reversed) shows that v is also a right homotopy inverse to u. It
follows that u is an isomorphism.

https://kerodon.net/tag/01JN
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Corollary 4.6.2.10.01JP Let F : C → D be a fully faithful functor of ∞-categories. Then the
induced map of cores C≃ → D≃ is also fully faithful.

Proof. Fix objects X,Y ∈ C≃. Our assumption that F is fully faithful guarantees that the
induced map θ : HomC(X,Y ) → HomD(F (X), F (Y )) is a homotopy equivalence of Kan
complexes. By virtue of Proposition 4.6.2.9, θ restricts to a homotopy equivalence from
the summand of HomC(X,Y ) spanned by the isomorphisms from X to Y to the summand
of HomD(F (X), F (Y )) spanned by the isomorphisms from F (X) to F (Y ). Unwinding
the definitions, we conclude that F≃ induces a homotopy equivalence HomC≃(X,Y ) →
HomD≃(F (X), F (Y )).

Definition 4.6.2.11.01JQ Let F : C → D be a functor of ∞-categories. The essential image of
F is the full subcategory of D spanned by those objects D ∈ D for which there exists an
object C ∈ C and an isomorphism F (C) ≃ D. We say that F is essentially surjective if its
essential image is the entire ∞-category D: that is, if the map of sets π0(C≃)→ π0(D≃) is
surjective.

Remark 4.6.2.12.01JR Let F : C → D be a functor of ∞-categories, and let D′ ⊆ D be the
essential image of F . Then D′ is a replete full subcategory of D, and F can be regarded as
an essentially surjective functor from C to D′. Moreover, the essential image D′ is uniquely
determined by these properties.

Remark 4.6.2.13.01JS Let F : C → D be a functor between∞-categories. Then F is essentially
surjective if and only if the induced functor of homotopy categories f : hC → hD is essentially
surjective (in the sense of classical category theory).

Remark 4.6.2.14.01JT Let F : C → D be a functor between∞-categories. Then F is essentially
surjective if and only if the induced map of Kan complexes F≃ : C≃ → D≃ is essentially
surjective.

Example 4.6.2.15.01JU Let F : C → D be a functor between ordinary categories. Then F is
essentially surjective if and only if the induced map N•(F ) : N•(C)→ N•(D) is an essentially
surjective functor of ∞-categories (in the sense of Definition 4.6.2.11).

Example 4.6.2.16.01JV Let f : X → Y be a morphism of Kan complexes. Then f is
essentially surjective (in the sense of Definition 4.6.2.11) if and only if the induced map
π0(f) : π0(X)→ π0(Y ) is a surjection.

Remark 4.6.2.17 (Transitivity).01JW Let F : C → D and G : D → E be functors of∞-categories.
If F and G are essentially surjective, then the composition G ◦ F is essentially surjective.
Conversely, if G ◦ F is essentially surjective, then G is essentially surjective.
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Remark 4.6.2.18. 0573Suppose we are given a categorical pullback diagram of ∞-categories

C′

F ′

����

C

F

��
D′ // D .

If F is essentially surjective, then F ′ is essentially surjective. This follows from Proposition
4.5.2.14 and Corollary 3.5.1.24.

Remark 4.6.2.19. 01PESuppose we are given a commutative diagram of ∞-categories

C F //

q

��

C′

q′

��
D F // D′

satisfying the following conditions:

(a) The functor q is an inner fibration and q′ is an isofibration.

(b) The functor F is essentially surjective.

(c) For each object D ∈ D, the induced functor FD : CD → C′F (D) is essentially surjective.

Then the functor F is essentially surjective. To prove this, consider an arbitrary object
Z ∈ C′. Assumption (b) guarantees that there exists an object D ∈ D and an isomorphism
u : F (D)→ q′(Z) in the ∞-category D′. Assumption (a) guarantees that we can lift u to an
isomorphism u : Y → Z in the ∞-category C′, where Y belongs to the fiber C′

F (D). Applying
(c), we can choose an object X ∈ CD and an isomorphism v : F (X)→ Y in the ∞-category
C′
F (D). It follows that Z is isomorphic to F (X) in the ∞-category C′.

Theorem 4.6.2.20. 01JXLet F : C → D be functor of ∞-categories. Then F is an equivalence
of ∞-categories if and only if it is fully faithful and essentially surjective.

We begin by considering the special case of Theorem 4.6.2.20 where C and D are Kan
complexes.

Lemma 4.6.2.21. 01JYLet f : X → Y be a morphism of Kan complexes which is fully faithful
and essentially surjective. Then f is a homotopy equivalence.
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Proof. Since f is essentially surjective, the underlying map of connected components π0(f) :
π0(X) → π0(Y ) is surjective. We claim that it is also injective. To prove this, suppose
that x and x′ are vertices of X such that f(x) and f(x′) belong to the same connected
component of Y . Then the morphism space HomY (f(x), f(x′)) is nonempty. Since f is fully
faithful, it induces a homotopy equivalence HomX(x, x′)→ HomY (f(x), f(x′)). It follows
that HomX(x, x′) is nonempty, so that x and x′ belong to the same connected component of
X. This completes the proof that π0(f) is a bijection.

By virtue of Whitehead’s theorem (Theorem 3.2.7.1), it will suffice to show that for every
vertex x ∈ X having image y = f(x) ∈ Y and every integer n ≥ 0, the induced map θ :
πn+1(X,x)→ πn+1(Y, y) is an isomorphism. Using Example 4.6.1.13, we can identify θ with
the natural map πn(HomX(x, x), idx)→ πn(HomY (y, y), idy), which is bijective by virtue of
our assumption that f induces a homotopy equivalence HomX(x, x)→ HomY (y, y).

Proof of Theorem 4.6.2.20. Assume first that F : C → D is an equivalence of ∞-categories.
Then F induces a homotopy equivalence of Kan complexes F≃ : C≃ → D≃ (Remark 4.5.1.19).
Passing to connected components, we conclude that the induced map π0(C≃)→ π0(D≃) is
bijective. In particular, F is essentially surjective. We have a commutative diagram of Kan
complexes

01JZ Fun(∆1, C)≃ θ //

��

Fun(∆1,D)≃

��
Fun(∂∆1, C)≃ θ0 // Fun(∂∆1,D)≃,

(4.37)

where the horizontal maps are homotopy equivalences (Theorem 4.5.7.1) and the vertical
maps are Kan fibrations (Corollary 4.4.5.4). Applying Proposition 3.2.8.1, we conclude that
for every vertex (X,Y ) ∈ Fun(∂∆1, C)≃, the induced map of fibers

HomC(X,Y ) = {(X,Y )} ×Fun(∂∆1,C)≃ Fun(∆1, C)≃

→ {(X,Y )} ×Fun(∂∆1,D)≃ Fun(∆1,D)≃

= HomD(F (X), F (Y ))

is a homotopy equivalence. It follows that F is fully faithful.
Now suppose that F : C → D is a functor of ∞-categories which is fully faithful and

essentially surjective. Using Corollary 4.6.2.10 and Remark 4.6.2.14, we see that the induced
map F≃ : C≃ → D≃ is also fully faithful and essentially surjective, and is therefore a
homotopy equivalence of Kan complexes (Lemma 4.6.2.21). It follows that the morphism θ0
in (4.37) is a homotopy equivalence of Kan complexes. Combining our assumption that F is
fully faithful with Proposition 3.2.8.1, we conclude that θ is also a homotopy equivalence.
Applying Theorem 4.5.7.1, we conclude that F is an equivalence of ∞-categories.
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Corollary 4.6.2.22. 01K0Let F : C → D be a functor of ∞-categories, and let D′ ⊆ D be the
essential image of F . Then F is fully faithful if and only if it induces an equivalence of
∞-categories C → D′.

Corollary 4.6.2.23. 04Q6Let F : C → D be a fully faithful functor of ∞-categories. Then, for
every simplicial set K, the induced map Fun(K, C) F◦−−→ Fun(K,D) is also fully faithful.

Proof. Using Corollary 4.6.2.22, we can replace C by its essential image and thereby reduce
to the case where F : C ↪→ D is the inclusion of a full subcategory. In this case, the induced
map Fun(K, C) F◦−−→ Fun(K,D) is also the inclusion of a full subcategory, and therefore
automatically fully faithful (Example 4.6.2.2).

Corollary 4.6.2.24. 01K1Let f : X → Y be a morphism of Kan complexes. Then f is fully
faithful (when regarded as a functor of ∞-categories) if and only if it induces a homotopy
equivalence from X to a summand of Y .

Proof. Combine Corollary 4.6.2.22 with Exercise 4.4.1.13.

4.6.3 Digression: Categorical Mapping Cylinders

01K2Let C be an ∞-category, and let f0, f1 : B → C be diagrams in C indexed by a simplicial
set B. Recall that f0 and f1 are naturally isomorphic if they are isomorphic as objects of the
diagram ∞-category Fun(B, C) (Definition 4.4.4.1). Our goal in this section is to establish a
detection criterion for natural isomorphisms.

Proposition 4.6.3.1. 01K3Let C be an ∞-category and let f0, f1 : B → C be a pair of diagrams.
The following conditions are equivalent:

(1) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
Fun(B, C).

(2) There exists a factorization of the fold map (idB, idB) : B∐
B → B as a composition

B
∐

B
(s0,s1)−−−−→ B

π−→ B,

where π is a categorical equivalence, and a diagram f : B → C satisfying f0 = f ◦ s0
and f1 = f ◦ s1.

(3) For every factorization of the fold map (idB, idB) : B∐
B → B as a composition

B
∐

B
(s0,s1)−−−−→ B

π−→ B,

where s0 and s1 have disjoint images, there exists a diagram f : B → C satisfying
f0 = f ◦ s0 and f1 = f ◦ s1.
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We will deduce Proposition 4.6.3.1 from a more general statement (Theorem 4.6.3.8),
which we prove at the end of this section.

Remark 4.6.3.2.01K4 Proposition 4.6.3.1 has an interpretation in the language of model
categories. Let us regard the category Set∆ of simplicial sets as equipped with the Joyal
model structure of Remark [?]. Conditions (2) and (3) of Proposition 4.6.3.1 are equivalent
to the requirement that the morphisms f0, f1 : B → C are homotopic with respect to the
Joyal model structure (in the sense of Definition [?]). Proposition 4.6.3.1 asserts that this
is equivalent to the requirement that f0 and f1 are naturally isomorphic (in the sense of
Definition 4.4.4.1).

Let us introduce a bit of terminology which is useful for exploiting Proposition 4.6.3.1.

Definition 4.6.3.3.01K5 Let i : A ↪→ B be a monomorphism of simplicial sets. A categorical
mapping cylinder for B relative to A is a simplicial set B equipped with a morphism
π : B → B together with a pair of sections s0, s1 : B → B having the following properties:

(1) The morphism π : B → B is a categorical equivalence of simplicial sets.

(2) The morphisms s0, s1 : B → B satisfy s0 ◦ i = s1 ◦ i, and the induced map (s0, s1) :
(B∐

AB)→ B is a monomorphism.

If these conditions are satisfied in the special case A = ∅, we will simply refer to B (together
with the morphisms π, s0, and s1) as a categorical mapping cylinder for B.

Remark 4.6.3.4.01K6 In the situation of Definition 4.6.3.3, condition (2) is equivalent to the
requirement that the diagram of simplicial sets

A
i //

i

��

B

s0

��
B

s1 // B

commutes and is a pullback square (note that the morphisms s0 and s1 are automatically
monomorphisms, since they are right inverse to the map π : B → B).

Remark 4.6.3.5.01K7 Let i : A ↪→ B be a monomorphism of simplicial sets, and let (idB, idB) :
(B∐

AB) → B be the fold map. Unwinding the definitions, we see that a categorical
mapping cylinder for B relative to A can be identified with a factorization of (idB, idB) as a
composition

B
∐
A

B
ι−→ B

π−→ B,
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where ι is a monomorphism of simplicial sets and π is a categorical equivalence. Such
factorizations always exist: by virtue of Exercise 3.1.7.11, we can even arrange that π
is a trivial Kan fibration of simplicial sets (hence a categorical equivalence by virtue of
Proposition 4.5.3.11).

Example 4.6.3.6. 01K8Let i : A ↪→ B be a monomorphism of simplicial sets, and let Q
be a contractible Kan complex containing vertices x0, x1 ∈ Q with x0 ̸= x1. Set B =
A

∐
(Q×A)(Q×B). The commutative diagram

Q×A //

��

Q×B

��
A

i // B

is a categorical pushout square (since the vertical maps are categorical equivalences), and
therefore induces a categorical equivalence π : B → B (Proposition 4.5.4.11). Let s0 : B → B

be the section of π given by the composition

B ≃ {x0} ×B ↪→ Q×B → B,

and define s1 : B → B similarly. Then the quadruple (B, π, s0, s1) is a categorical mapping
cylinder of B relative to A.

Corollary 4.6.3.7. 01K9Let C be an ∞-category, and let f0, f1 : B → C be a pair of diagrams
indexed by a simplicial set B. Let

(B
∐

B) (s0,s1)−−−−→ B
π−→ B

be a categorical mapping cylinder for B (Definition 4.6.3.3). The following conditions are
equivalent:

(a) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
Fun(B, C).

(b) There exists a diagram f : B → C satisfying f0 = f ◦ s0 and f1 = f ◦ s1.

In particular, condition (b) does not depend on the choice of categorical mapping cylinder.

Proof. The implication (a) ⇒ (b) follows from the implication (1) ⇒ (3) of Proposition
4.6.3.1, and the implication (b) ⇒ (a) from the implication (2) ⇒ (1) of Proposition
4.6.3.1.
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We will deduce Proposition 4.6.3.1 from a more general relative statement.

Theorem 4.6.3.8.01KA Let q : X → S be an isofibration of simplicial sets, let g : B → S be a
morphism of simplicial sets, and let f0, f1 : B → X be morphisms satisfying q◦f0 = g = q◦f1.
Let A ⊆ B be a simplicial subset satisfying f0|A = f1|A. The following conditions are
equivalent:

(1) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
FunA//S(B,X) (see Proposition 4.1.4.6).

(2) There exists a factorization of the fold map (idB, idB) : B∐
AB → B as a composition

B
∐
A

B
(s0,s1)−−−−→ B

π−→ B,

where π is a categorical equivalence and the lifting problem

B
∐
AB

(s0,s1)

��

(f0,f1) // X

q

��
B

g◦π //

f

<<

S

admits a solution.

(3) For every factorization of the fold map (idB, idB) : B∐
AB → B as a composition

B
∐
A

B
(s0,s1)−−−−→ B

π−→ B,

where the map (s0, s1) : B∐
AB → B is a monomorphism, the lifting problem

B
∐
AB

(s0,s1)

��

(f0,f1) // X

q

��
B

g◦π //

f

<<

S

admits a solution.

Proof. By virtue of Corollary 4.4.3.15, condition (1) is satisfied if and only if there exists a
morphism of simplicial sets u : Q→ FunA//S(B,X), where Q is a contractible Kan complex,
and a pair of vertices x0, x1 ∈ Q satisfying u(x0) = f0 and u(x1) = f1. Moreover, we may
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assume (modifying Q if necessary) that the vertices x0 and x1 are distinct. In this case, let
B = A

∐
(Q×A)(Q×B) and let

B
∐
A

B
(s0,s1)−−−−→ B

π−→ B

be the categorical mapping cylinder described in Example 4.6.3.6. Unwinding the definitions,
we see that morphisms u : Q→ FunA//S(B,X) satisfying u(x0) = f0 and u(x1) = f1 can be
identified with solutions to the lifting problem

B
∐
AB

(s0,s1)

��

(f0,f1) // X

q

��
B

g◦π //

<<

S.

This proves that (3)⇒ (1)⇒ (2).
We will complete the proof by showing that (2)⇒ (3). Assume that (2) is satisfied, so

that the fold map (idB, idB) : B∐
AB → B factors as a composition

B
∐
A

B
(s0,s1)−−−−→ B

π−→ B

where π is a categorical equivalence and there exists a morphism f : B → X for which the
diagram

B
∐
AB

(s0,s1)

��

(f0,f1) // X

q

��
B

g◦π //

f

<<

S

commutes. Using Exercise 3.1.7.11, we can factor π as a composition

B
j−→ B

′ π′−→ B,

where j is a monomorphism and π′ is a trivial Kan fibration. Then π′ is also a categorical
equivalence (Proposition 4.5.3.11), so the morphism j is a categorical equivalence (Remark
4.5.3.5). Our assumption that q is an isofibration guarantees that the lifting problem

B

j

��

f // X

q

��
B
′ g◦π′ //

f
′

??

S
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admits a solution f
′ : B′ → X.

We now show that condition (3) is satisfied. Suppose that we are given another factor-
ization of the fold map (idB, idB) : (idB, idB) : B∐

AB → B as a composition

B
∐
A

B
ι−→ B

′′ π′′−→ B,

where ι is a monomorphism. We wish to show that the lifting problem

B
∐
AB

ι

��

(f0,f1) // X

q

��
B
′′ g◦π′′ //

f
′′

<<

S

admits a solution f
′′ : B′′ → X. We first observe that the lifting problem

B
∐
AB

j◦(s0,s1) //

ι

��

B
′

π′

��
B
′′ π′′ //

v

==

B

admits a solution v : B′′ → B
′, since ι is a monomorphism and π′ is a trivial Kan fibration.

We now conclude the proof by setting f ′′ = f
′ ◦ v.

Corollary 4.6.3.9.01KB Let C be an ∞-category, let f0, f1 : B → C be a pair of diagrams indexed
by a simplicial set B, and let A ⊆ B be a simplicial subset satisfying f0|A = f1|A. The
following conditions are equivalent:

(1) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
FunA/(B, C).

(2) There exists a factorization of the fold map (idB, idB) : B∐
AB → B as a composition

B
∐
A

B
(s0,s1)−−−−→ B

π−→ B,

where π is a categorical equivalence, and a morphism f : B → C satisfying f0 = f ◦ s0
and f1 = f ◦ s1.
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(3) For every factorization of the fold map (idB, idB) : B∐
AB → B as a composition

B
∐
A

B
(s0,s1)−−−−→ B

π−→ B

where the map (s0, s1) : B∐
AB → B is a monomorphism, there exists a morphism

f : B → C satisfying f0 = f ◦ s0 and f1 = f ◦ s1.

Proof. Apply Theorem 4.6.3.8 in the special case where S = ∆0.

Proof of Proposition 4.6.3.1. Apply Corollary 4.6.3.9 in the special case A = ∅.

For later use, we record a relative version of Corollary 4.6.3.7.

Corollary 4.6.3.10. 01KCLet q : X → S be an isofibration of simplicial sets, let g : B → S be a
morphism of simplicial sets, and let f0, f1 : B → X be morphisms satisfying q◦f0 = g = q◦f1.
Let A be a simplicial subset of B satisfying f0|A = f1|A, and let

(B
∐
A

B) (s0,s1)−−−−→ B
π−→ B

be a categorical mapping cylinder of B relative to A. The following conditions are equivalent:

(a) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
FunA//S(B,X).

(b) The lifting problem

B
∐
AB

(s0,s1)

��

(f0,f1) // X

q

��
B

g◦π //

f

<<

S

admits a solution.

In particular, condition (b) does not depend on the choice of categorical mapping cylinder.

Proof. The implication (a)⇒ (b) follows from the implication (1)⇒ (3) of Theorem 4.6.3.8,
and the implication (b)⇒ (a) from the implication (2)⇒ (1) of Theorem 4.6.3.8.

Corollary 4.6.3.11. 01KDLet C be an ∞-category and let f0, f1 : B → C be a pair of diagrams
indexed by a simplicial set B. Let A be a simplicial subset of B satisfying f0|A = f1|A, and
let

(B
∐
A

B) (s0,s1)−−−−→ B
π−→ B

be a categorical mapping cylinder of B relative to A. The following conditions are equivalent:
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(a) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
FunA/(B, C).

(b) There exists a diagram f : B → C satisfying f0 = f ◦ s0 and f1 = f ◦ s1.

In particular, condition (b) does not depend on the choice of categorical mapping cylinder.

Proof. Apply Corollary 4.6.3.10 in the special case S = ∆0.

4.6.4 Oriented Fiber Products

01KE Let C, D, and E be categories. To every pair of functors F : C → E and G : D → E , one
can associate the oriented fiber product C ×̃E D, whose objects are triples (C,D, η) where C
is an object of C, D is an object of D, and η : F (C)→ G(D) is a morphism in the category
E (Notation 2.1.4.19). This construction has a counterpart in the setting of ∞-categories.

Definition 4.6.4.1 (The Oriented Fiber Product).01KF Let F : C → E and G : D → E be
morphisms of simplicial sets. We let C ×̃E D denote the simplicial set given by the iterated
fiber product

C ×Fun({0},E) Fun(∆1, E)×Fun({1},E) D .

We will refer to C ×̃E D as the oriented fiber product of C with D over E .

As our notation suggests, we will be primarily interested in the special case of Definition
4.6.4.1 where the simplicial sets C, D, and E are ∞-categories.

Proposition 4.6.4.2.01KG Let E be an ∞-category, and suppose we are given morphisms of
simplicial sets F : C → E and G : D → E. Then the projection map θ : C ×̃E D → C ×D is
an isofibration of simplicial sets.

Proof. By construction, we have a pullback diagram of simplicial sets

C ×̃E D //

θ

��

Fun(∆1, E)

θ0

��
C ×D // Fun(∂∆1, E).

Since E is an ∞-category, the restriction map θ0 is an isofibration of ∞-categories (Corollary
4.4.5.3). Invoking Remark 4.5.5.11, we conclude that θ is an isofibration of simplicial sets.

Corollary 4.6.4.3.01KH Let F : C → E and G : D → E be functors of ∞-categories. Then the
oriented fiber product C ×̃E D is also an ∞-category.
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Proof. By virtue of Proposition 4.6.4.2, the projection map C ×̃E D → C ×D is an isofibration.
Since C ×D is an ∞-category, it follows that C ×̃E D is also an ∞-category (Remark 4.5.5.7).

Remark 4.6.4.4 (Homotopy Invariance). 03PNSuppose we are given a commutative diagram of
∞-categories

C //

��

E

��

Doo

��
C′ // E ′ D′,oo

where the vertical maps are equivalences of ∞-categories. Then the induced map

C ×̃E D → C′ ×̃E ′ D′

is also an equivalence of ∞-categories. This follows by applying Corollary 4.5.2.30 to the
diagram

Fun(∆1, E) //

��

Fun(∂∆1, E)

��

C ×Doo

��
Fun(∆1, E ′) // Fun(∂∆1, E ′) C′×D′ .oo

Remark 4.6.4.5. 034ZLet F : C → E and G : D → E be functors of ∞-categories. Then we can
identify objects of the oriented fiber product C ×̃E D with triples (C,D, e), where C is an
object of C, D is an object of D, and e : F (C)→ G(D) is a morphism in the ∞-category E .
Note that the homotopy fiber product C ×h

E D of Construction 4.5.2.1 can be identified with
the full subcategory of C ×̃E D spanned by those triples (C,D, e) where the morphism e is
an isomorphism.

Example 4.6.4.6. 01KJLet F : C → E and G : D → E be functors between ordinary categories,
and let C ×̃E D denote the oriented fiber product of Notation 2.1.4.19. Since the nerve
construction is compatible with the formation of inverse limits and functor categories, we
have a canonical isomorphism of simplicial sets

N•(C ×̃E D) ≃ (N•(C) ×̃N•(E) N•(D)).

Consequently, Definition 4.6.4.1 can be viewed as a generalization of the classical oriented
fiber product.

Example 4.6.4.7. 02C6Let C and D be simplicial sets. Then the oriented fiber product C ×̃∆0 D
can be identified with the cartesian product C ×D.
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Remark 4.6.4.8.01KL Let F : C → E and G : D → E be morphisms of simplicial sets, and let
F op : Cop → Eop and Gop : Dop → Eop be the opposite morphisms. Then we have a canonical
isomorphism of simplicial sets

(C ×̃E D)op ≃ (Dop ×̃Eop Cop).

Remark 4.6.4.9.01KN Let F : K → C be a morphism of simplicial sets, which we identify
with a vertex of the simplicial set Fun(K, C). For any simplicial set J , we have canonical
isomorphisms

Fun(J, C ×̃Fun(K,C){F}) ≃ FunK/(J ⋄K, C) Fun(J, {F} ×̃Fun(K,C) C) ≃ FunK/(K ⋄ J, C),

where J ⋄K and K ⋄ J denote the blunt joins introduced in Notation 4.5.8.3. Restricting to
vertices, we obtain bijections

{Morphisms J → C ×̃Fun(K,C){F}} ≃ {Morphisms F : J ⋄K → C with F |K = F}

{Morphisms J → {F} ×̃Fun(K,C) C} ≃ {Morphisms F ′ : K ⋄ J → C with F
′|K = F}.

Example 4.6.4.10.01KP Let C be a simplicial set containing vertices X and Y , which we identify
with morphisms of simplicial sets X,Y : ∆0 → C. Then the simplicial set HomC(X,Y ) of
Construction 4.6.1.1 is the oriented fiber product {X} ×̃C{Y }.

The following result is a relative version of Proposition 4.6.1.10:

Proposition 4.6.4.11.01KQ Let C be an ∞-category containing an object X. Then the projection
map {X} ×̃C C → C is a left fibration and the projection map C ×̃C{X} → C is a right
fibration.

Proof. We will prove the second assertion; the first follows by a similar argument. Let
A ↪→ B be a right anodyne morphism of simplicial sets; we wish to show that every lifting
problem

A //

��

C ×̃C{X}

��
B //

<<

C

admits a solution. Unwinding the definitions, we are reduced to showing that a map of
simplicial sets

σ0 : B
∐
A

(A ⋄ {X})→ C
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can be extended to a map σ : B ⋄ {X} → C (see Notation 4.5.8.3). By virtue of Lemma
4.5.5.2, it will suffice to show that the inclusion map

ι : B
∐
A

(A ⋄ {X}) ↪→ B ⋄ {X}

is a categorical equivalence of simplicial sets, which follows from Corollary 4.5.8.14.

Corollary 4.6.4.12. 01KRLet D be an ∞-category containing an object X, and let F : C → D be
a morphism of simplicial sets. Then the projection map {X} ×̃D C → C is a left fibration,
and the projection map C ×̃D{X} → C is a right fibration.

Proof. Unwinding the definition, we have pullback diagrams

{X} ×̃D C //

��

{X} ×̃D D

��

C ×̃D{X} //

��

D ×̃D{X}

��
C F // D C F // D .

The desired result now follows by combining Proposition 4.6.4.11 with Remark 4.2.1.8.

If F : K → C is a functor between ordinary categories, then Remark 4.3.1.11 supplies
canonical isomorphisms

C/F ≃ C ×̃Fun(K,C){F} CF/ ≃ {F} ×̃Fun(K,C) C .

Our next goal is to establish a similar result in the setting of∞-categories. Here the situation
is a bit more subtle: if F : K → C is a diagram in an ∞-category C, then the simplicial sets
C/F and C ×̃Fun(K,C){F} are generally not isomorphic. However, we will show that they are
equivalent as ∞-categories.

Construction 4.6.4.13 (The Slice Diagonal Morphism). 02GHLet F : K → C be a morphism
of simplicial sets, and let c : C/F ⋄K → C/F ⋆K be the comparison morphism of Notation
4.5.8.3. By virtue of Remark 4.6.4.9, the composite map

C/F ⋄K
c−→ C/F ⋆K → C

determines a morphism of simplicial sets δ/F : C/F → C ×̃Fun(K,C){F}, which we will refer to
as the slice diagonal morphism. Similarly, the composition

K ⋄ CF/ → K ⋆ CF/ → C

determines a morphism of simplicial sets δF/ : CF/ → {F} ×̃Fun(K,C) C, which we will refer
as the coslice diagonal morphism.
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Remark 4.6.4.14.02GJ Let F : K → C be a morphism of simplicial sets. For every simplicial set
J , composition with the slice diagonal δ/F of Construction 4.6.4.13 determines a map of sets

HomSet∆(J, C/F )→ HomSet∆(J, C ×̃Fun(K,C){F}).

Under the bijection of Remark 4.6.4.9, this identifies with the map

Hom(Set∆)K/
(J ⋆ K, C)→ Hom(Set∆)K/

(J ⋄K, C)

given by precomposition with the comparison map cJ,K : J ⋄K ↠ J ⋆ K of Notation 4.5.8.3.

Remark 4.6.4.15.01KT Let F : K → C be a morphism of simplicial sets. Then the slice and
coslice diagonal morphisms

C/F → C ×̃Fun(K,C){F} CF/ → {F} ×̃Fun(K,C) C

are monomorphisms of simplicial sets. This follows from Remark 4.6.4.14, together with the
observation that for every simplicial set J , the comparison maps

cJ,K : J ⋄K ↠ J ⋆ K cK,J : K ⋄ J ↠ K ⋆ J

are epimorphisms (see Exercise 4.5.8.5)

Exercise 4.6.4.16.02GK Let f : K → C be a morphism of simplicial sets. Then f can be identified
with a vertex of the simplicial set Fun(K, C), which (to avoid confusion) we will temporarily
denote by F . Applying Construction 4.6.4.13 to the inclusion map {F} ↪→ Fun(K, C), we
obtain a monomorphism of simplicial sets Fun(K, C)/F ↪→ Fun(K, C) ×̃Fun(K,C){F}, which
induces a monomorphism

u : C ×Fun(K,C) Fun(K, C)/F ↪→ C ×̃Fun(K,C){F}.

Show that the slice diagonal morphism δ/f : C/f → C ×̃Fun(K,C){F} of Construction 4.6.4.13
factors (uniquely) through u. In particular, δ/f determines a morphism of simplicial sets
C/f → C×Fun(K,C) Fun(K, C)/F . Similarly, the coslice diagonal morphism δf/ induces a
morphism of simplicial sets Cf/ → Fun(K, C)F/ ×Fun(K,C) C.

We can now formulate our main result, which we prove at the end of this section.

Theorem 4.6.4.17.01KU Let C be an ∞-category and let F : K → C be a diagram. Then the
slice and coslice diagonal maps

δ/F : C/F ↪→ C ×̃Fun(K,C){F} δF/ : CF/ ↪→ {F} ×̃Fun(K,C) C

are equivalences of ∞-categories.
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Corollary 4.6.4.18. 02VTLet C be an ∞-category and let C ∈ C be an object. Then the slice
and coslice diagonal maps

δ/C : C/C ↪→ C ×̃C{C} δC/ : CC/ ↪→ {C} ×̃C C

are equivalences of ∞-categories.

Corollary 4.6.4.19. 02GLLet G : C → D be an equivalence of ∞-categories and let F : K → C
be a diagram in C. Then the induced functors

G′ : C/F → D/(G◦F ) G′′ : CF/ → D(G◦F )/

are equivalences of ∞-categories.

Proof. We will show that G′ is an equivalence of ∞-categories; the analogous statement for
G′′ follows by a similar argument. Note that we have a commutative diagram

C/F
G′ //

��

D/(G◦F )

��
C ×̃Fun(K,C){F}

G
′

// D ×̃Fun(K,D){G ◦ F},

where the vertical maps are equivalences of ∞-categories by virtue of Theorem 4.6.4.17. It
will therefore suffice to show that G′ is an equivalence of ∞-categories, which is a special
case of Remark 4.6.4.4.

Corollary 4.6.4.20. 02C8Let G : C → D be fully faithful functor of ∞-categories and let
F : K → C be a morphism of simplicial sets. Then the induced functors

G′ : C/F → D/(G◦F ) G′′ : CF/ → D(G◦F )/

are also fully faithful.

Proof. Let C′ ⊆ D be the essential image of G (Definition 4.6.2.11), so that G induces an
equivalence of ∞-categories C → C′ (Corollary 4.6.2.22). By virtue of Corollary 4.6.4.19, the
functors G′ and G′′ restrict to equivalences

C/F → C′/(G◦F ) CF/ → C′(G◦F )/

We may therefore replace C by C′ and thereby reduce to the case where G : C ↪→ D is the
inclusion of a full subcategory. In this case, the functors G′ and G′′ are also the inclusions
of full subcategories, hence fully faithful (Example 4.6.2.2).
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We now turn to the proof of Theorem 4.6.4.17. As we will see, it is essentially a
reformulation of Theorem 4.5.8.8.

Lemma 4.6.4.21.01KV Let C be an ∞-category, let F : K → C be a diagram indexed by
a simplicial set K. Suppose we are given a pair of diagrams e0, e1 : J → C/F indexed
by a simplicial set J , which we identify with diagrams F0, F1 : J ⋆ K → C satisfying
F0|K = F = F1|K . The following conditions are equivalent:

(1) The diagrams e0 and e1 are isomorphic when regarded as objects of the diagram ∞-
category Fun(J, C/F ).

(2) The diagrams F0 and F1 are isomorphic when regarded as objects of the ∞-category
FunK/(J ⋆ K, C).

Proof. Choose a categorical mapping cylinder

J
∐

J
(s0,s1)−−−−→ J

π−→ J

for the simplicial set J (Definition 4.6.3.3). Using Corollary 4.5.8.9, we deduce that the
resulting diagram

(J ⋆ K)
∐
K

(J ⋆ K)
(s′0,s′1)
−−−−→ J ⋆ K

π′−→ J ⋆ K

is a categorical mapping cylinder for the join J ⋆ K relative to K. Using the criterion of
Corollary 4.6.3.11, we see that (1) and (2) can be reformulated as follows:

(1′) There exists a diagram e : J → C/F satisfying e0 = e ◦ s0 and e1 = e ◦ s1.

(2′) There exists a diagram F
′ : J ⋆ K → C satisfying F0 = F ◦ s′0 and F1 = F ◦ s′1.

The equivalence of (1′) and (2′) follows immediately from the universal property of the slice
∞-category C/F .

Proof of Theorem 4.6.4.17. Let C be an∞-category and let F : K → C be a diagram, which
we regard as an object of the ∞-category Fun(K, C). We will show that the slice diagonal
morphism

δ/F : C/F ↪→ C ×̃Fun(K,C){F}

is an equivalence of ∞-categories; the corresponding assertion for the coslice diagonal
morphism follows by a similar argument. Fix a simplicial set J ; we wish to show that the
induced map of sets

θ : π0(Fun(J, C/F )≃)→ π0(Fun(J, C ×̃Fun(K,C){F})≃)

https://kerodon.net/tag/01KV
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is a bijection. Using Lemma 4.6.4.21 and Remark 4.6.4.14, we can identify θ with the map
of sets

π0(FunK/(J ⋆ K, C)≃)→ π0(FunK/(J ⋄K, C)≃)

induced by precomposition with the comparison map cJ,K : J ⋄ K ↠ J ⋆ K of Notation
4.5.8.3. It will therefore suffice to show that composition with cJ,K induces an equivalence
of ∞-categories FunK/(J ⋆ K, C) → FunK/(J ⋄K, C). This follows by applying Corollary
4.5.2.32 to the commutative diagram

Fun(J ⋆ K, C)
◦cJ,K //

��

Fun(J ⋄K, C)

��
Fun(K, C) Fun(K, C);

here the vertical maps are isofibrations (Corollary 4.4.5.3) and the upper horizontal map
is an equivalence of ∞-categories because the morphism cJ,K is a categorical equivalence
(Theorem 4.5.8.8).

4.6.5 Pinched Morphism Spaces

01KWLet C be an ∞-category. In §4.6.1, we associated to every pair of objects X,Y ∈ C
a Kan complex HomC(X,Y ), which we refer to as the space of morphisms from X to Y

(Construction 4.6.1.1). In this section, we discuss a variant of this construction which is
often more technically convenient to work with.

Construction 4.6.5.1. 01KXLet C be a simplicial set containing vertices X and Y . We let
HomL

C (X,Y ) denote the fiber product CX/×C{Y }, and we let HomR
C (X,Y ) denote the fiber

product {X} ×C C/Y . We will be primarily interested in these constructions in the situation
where C is an ∞-category. In this case, we refer to HomL

C (X,Y ) as the left-pinched space of
morphisms from X to Y and to HomR

C (X,Y ) as the right-pinched space of morphisms from
X to Y .

Remark 4.6.5.2. 01KYLet C be a simplicial set containing vertices X and Y . For every integer
n ≥ 0, one can identify n-simplices of the left-pinched morphism space HomL

C (X,Y ) with
(n+ 1)-simplices σ : ∆n+1 → C for which σ(0) = X and the face dn+1

0 (σ) is the constant map
∆n → {Y } ↪→ C. Similarly, one can identify n-simplices of the right-pinched morphism space
HomR

C (X,Y ) with (n + 1)-simplices σ′ : ∆n+1 → C for which σ(n + 1) = Y and the face
dn+1
n+1(σ) is the constant map ∆n → {X} ↪→ C. In particular, we have canonical bijections

{Vertices of HomL
C (X,Y )} ≃ {Edges f : X → Y in C} ≃ {Vertices of HomR

C (X,Y )}.

https://kerodon.net/tag/01KW
https://kerodon.net/tag/01KX
https://kerodon.net/tag/01KY


4.6. MORPHISM SPACES 809

Remark 4.6.5.3.01KZ Let C be a simplicial set containing vertices X and Y , which we also
regard as vertices of the opposite simplicial set Cop. Then we have canonical isomorphisms
of simplicial sets

HomL
Cop(X,Y ) ≃ HomR

C (Y,X)op HomR
Cop(X,Y ) ≃ HomL

C (Y,X)op.

Remark 4.6.5.4.0574 Let C be a simplicial set, let n ≥ 0 be an integer, and let coskn(C) denote
the n-coskeleton of C (Notation 3.5.3.18). For every pair of vertices X,Y ∈ C, Remark
4.3.5.16 supplies canonical isomorphisms

coskn(C)X/ ≃ coskn−1(CX/)×coskn−1(C) coskn(C)

coskn(C)/Y ≃ coskn−1(C/Y )×coskn−1(C) coskn(C).

Passing to fibers over the vertices Y and X, we obtain isomorphisms of pinched morphism
spaces

HomL
coskn(C)(X,Y ) ≃ coskn−1(HomL

C (X,Y )) HomR
coskn(C)(X,Y ) ≃ coskn−1(HomR

C (X,Y )).

In particular, if C is n-coskeletal, then the pinched morphism spaces HomL
C (X,Y ) and

HomR
C (X,Y ) are (n− 1)-coskeletal.

Proposition 4.6.5.5.01L0 Let C be an ∞-category. For every pair of objects X,Y ∈ C, the
pinched morphism spaces HomL

C (X,Y ) and HomR
C (X,Y ) are Kan complexes.

Proof. By virtue of Proposition 4.3.6.1, the projection map CX/ → C is a left fibration.
Applying Corollary 4.4.2.3, we deduce that the fiber HomL

C (X,Y ) = CX/×C{Y } is a Kan
complex. A similar argument shows that HomR

C (X,Y ) is a Kan complex.

Remark 4.6.5.6.01L1 Let C be an ∞-category containing a pair of morphisms f, g : X → Y

having the same source and target. Then the datum of an edge e : f → g in the left-pinched
morphism space HomL

C (X,Y ) is equivalent to the datum of a homotopy from f to g, in the
sense of Definition 1.4.3.1. In particular, f and g are homotopic if and only if they belong
to the same connected component of HomL

C (X,Y ). We therefore have a canonical bijection
HomhC(X,Y ) ≃ π0(HomL

C (X,Y )).

We now compare the pinched morphism spaces of Construction 4.6.5.1 with the morphism
spaces of Construction 4.6.1.1.

Construction 4.6.5.7.01L2 Let C be a simplicial set containing vertices X and Y , and let

δX/ : CX/ ↪→ {X} ×̃C C δ/Y : C/Y ↪→ C ×̃C{Y }
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be the coslice and slice diagonal morphisms of Construction 4.6.4.13. Restricting to the
fibers over the objects Y,X ∈ C, we obtain morphisms of Kan complexes

HomL
C (X,Y ) = CX/×C{Y } → {X} ×̃C{Y } = HomC(X,Y )

HomR
C (X,Y ) = {X} ×C C/Y → {X} ×̃C{Y } = HomC(X,Y ),

which we will denote by ιLX,Y and ιRX,Y , respectively. We will refer to ιLX,Y as the left-pinch
inclusion map and to ιRX,Y as the right-pinch inclusion map.

Remark 4.6.5.8. 01L3Let C be a simplicial set containing vertices X and Y . Then the pinch
inclusion maps

HomL
C (X,Y )

ιLX,Y−−−→ HomC(X,Y )
ιRX,Y←−−− HomR

C (X,Y )

are monomorphisms (see Remark 4.6.4.15).

Remark 4.6.5.9. 01L4Let C be an ∞-category containing objects X and Y . Then the pinch
inclusion maps

HomL
C (X,Y )

ιLX,Y−−−→ HomC(X,Y )
ιRX,Y←−−− HomR

C (X,Y )

are bijective on vertices: vertices of each simplicial set can be identified with morphisms
from X to Y in the∞-category C (Remarks 4.6.1.2 and 4.6.5.2). However, they are generally
not bijective on edges. Note that edges of the simplicial set HomC(X,Y ) can be identified
with diagrams

X
f //

idX

��

g

  

Y

idY

��

σ

τ

X
f ′ // Y

in the ∞-category C. Such a diagram belongs to the image of the left-pinch inclusion map
ιLX,Y if and only τ = s0(g) (so that the simplex τ is degenerate, f ′ = g, and the entire
diagram is determined by σ). Similarly, the diagram belongs to the image of the right-pinch
inclusion map ιRX,Y if and only if σ = s1(g) (so that the simplex σ is degenerate, f = g, and
the entire diagram is determined by τ).
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Proposition 4.6.5.10.01L5 Let C be an ∞-category. For every pair of objects X,Y ∈ C, the
pinch inclusion morphisms

HomL
C (X,Y )

ιLX,Y−−−→ HomC(X,Y )
ιRX,Y←−−− HomR

C (X,Y )

are homotopy equivalences of Kan complexes.

Proof. We will prove that the left-pinch inclusion morphism ιLX,Y is a homotopy equivalence;
the proof for the right-pinch inclusion morphism ιRX,Y is similar. Note that we have a
commutative diagram of ∞-categories

CX/ //

��

{X} ×̃C C

��
C id // C,

where the horizontal maps are equivalences of ∞-categories (Corollary 4.6.4.18) and the
vertical maps are left fibrations (Propositions 4.3.6.1 and 4.6.4.11), hence isofibrations
(Example 4.4.1.11). Applying Corollary 4.5.2.32, we deduce that the induced map of fibers

ιLX,Y : HomL
C (X,Y ) = (CX/)×C {Y } → {X} ×̃C{Y } = HomC(X,Y )

is an equivalence of ∞-categories, hence a homotopy equivalence of Kan complexes (Remark
4.5.1.4).

Corollary 4.6.5.11.01PX Let F : C → D be a functor between ∞-categories. The following
conditions are equivalent:

• The functor F is fully faithful. That is, for every pair of objects X,Y ∈ C, the functor F
induces a homotopy equivalence of Kan complexes HomC(X,Y )→ HomD(F (X), F (Y )).

• For every pair of objects X,Y ∈ C, the functor F induces a homotopy equivalence of
left-pinched morphism spaces HomL

C (X,Y )→ HomL
D(F (X), F (Y )).

• For every pair of objects X,Y ∈ C, the functor F induces a homotopy equivalence of
right-pinched morphism spaces HomR

C (X,Y )→ HomR
D(F (X), F (Y )).

Example 4.6.5.12.01L6 Let C be an ordinary category containing objects X and Y . Then the
slice and coslice diagonal morphisms

δX/ : N•(C)X/ → {X} ×̃N•(C) N•(C) δ/Y : N•(C)/Y → (N•(C) ×̃N•(C){Y }

are isomorphisms (see Remark 4.3.1.7). In particular, we can identify the pinched morphism
spaces HomL

N•(C)(X,Y ) and HomR
N•(C)(X,Y ) with the constant simplicial set HomN•(C)(X,Y )

associated to the usual morphism set HomC(X,Y ).
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Let C be an ∞-category containing a pair of objects X and Y . By virtue of Proposition
4.6.5.10, the pinched morphism spaces HomL

C (X,Y ) and HomR
C (X,Y ) of Construction 4.6.5.1

contain the same homotopy-theoretic information as the morphism space HomC(X,Y ) of
Construction 4.6.1.1. However, they package this information in a more efficient way: an
n-simplex of the Kan complex HomL

C (X,Y ) can be identified with a single (n+ 1)-simplex
of the ∞-category C (see Remark 4.6.5.2), but to specify an n-simplex of HomC(X,Y ) one
must supply n+ 1 different (n+ 1)-simplices of C (see Remark 4.6.5.9 for the case n = 1).

Example 4.6.5.13 (Pinched Morphism Spaces in the Duskin Nerve). 01L7Let C be a 2-category
(Definition 2.2.1.1). For each integer n ≥ 0, we can use Remark 2.3.1.8 to identify (n+ 1)-
simplices σ of the Duskin nerve ND

• (C) with the following data:

(0) A collection of objects {Zi}0≤i≤n+1 of the 2-category C.

(1) A collection of 1-morphisms {fj,i : Zi → Zj}0≤i≤j≤n+1 in the 2-category C, satisfying
fj,i = idZi when i = j.

(2) A collection of 2-morphisms {µk,j,i : fk,j ◦ fj,i ⇒ fk,i}0≤i≤j≤k≤n+1 in the 2-category C,
satisfying some additional constraints (see (b) and (c) of Proposition 2.3.1.9).

Fix a pair of objects X and Y . Then σ represents an n-simplex of the right pinched mor-
phism space HomR

ND
• (C)(X,Y ) if and only if the above data satisfies the following additional

conditions:

• For 0 ≤ i ≤ n, the object Zi is equal to X. For i = n+ 1, the object Zi is equal to Y .

• For 0 ≤ i ≤ j ≤ n, the 1-morphism fj,i is equal to the identity 1-morphism idX .

• For 0 ≤ i ≤ j ≤ k ≤ n, the 2-morphism µk,j,i is equal to the unit constraint
υ : idX ◦ idX ⇒ idX .

In this case, we can identify (1) with a collection of 1-morphisms {gi : X → Y }0≤i≤n given
by gi = fn+1,i, and (2) with a collection of 2-morphisms {νj,i : gj ⇒ gi}0≤i≤j≤n, where νj,i
is given by the composition

gj
∼=⇒ gj ◦ idX = fn+1,j ◦ fj,i

µn+1,j,i=====⇒ fn+1,i = gi.

Unwinding the definitions, condition (b) translates to the requirement that νj,i is an identity
2-morphism when i = j, and condition (c) translates to the identity νk,j ◦ νj,i = νk,i for
0 ≤ i ≤ j ≤ k ≤ n. In this case, we can identify the pair ({gi}0≤i≤n, {νj,i}0≤i≤j≤n) with a
functor [n] → HomC(X,Y )op. These identifications depends functorially on [n] ∈ ∆, and
therefore determine a canonical isomorphism of simplicial sets

HomR
ND
• (C)(X,Y ) ≃ N•(HomC(X,Y )op).
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Using similar reasoning, we obtain an isomorphism of simplicial sets

HomL
ND
• (C)(X,Y ) ≃ N•(HomC(X,Y )).

Example 4.6.5.14.01L8 Let X be a topological space containing a pair of points x and y,
which we regard as objects of the ∞-category Sing•(X). Using Example 4.3.5.9, we obtain
canonical isomorphisms of Kan complexes

HomL
Sing•(X)(x, y) ≃ Sing•(Px,y) ≃ HomR

Sing•(X)(x, y),

where Px,y denotes the topological space of continuous paths p : [0, 1]→ X satisfying p(0) = x

and p(1) = y (equipped with the compact-open topology). Combining this observation with
Example 4.6.1.5, we can identify the pinch inclusion maps ιLx,y and ιRx,y with monomorphisms
from the simplicial set Sing•(Px,y) to itself. Beware that these maps are not the identity
(though one can show that they are homotopic to the identity).

Example 4.6.5.15 (Pinched Morphism Spaces in the Differential Graded Nerve).01L9 Let
C be a differential graded category (Definition 2.5.2.1), let Ndg

• (C) denote the differential
graded nerve of C (Definition 2.5.3.7), and let X and Y be objects of C (which we also
view as objects of the ∞-category Ndg

• (C)), and let HomC(X,Y )∗ denote the chain complex
of morphisms from X to Y . For n ≥ 0, we can identify n-simplices of the left-pinched
morphism space HomL

Ndg
• (C)(X,Y ) with (n + 1)-simplices σ : ∆n+1 → Ndg

• (C) for which
σ(0) = X and dn+1

0 (σ) is the constant n-simplex with the value Y (Remark 4.6.5.2).
Concretely, such a simplex can be described as a datum I 7→ fI , defined for each subset
I = {i0 > i1 > i2 > · · · > ik > ik+1} ⊆ [n + 1] having at least two elements, with the
following properties:

(1) If ik+1 > 0, then fI is an element of the abelian group HomC(Y, Y )k, which is equal to
idY in the case k = 0 and vanishes for k > 0.

(2) If ik+1 = 0, then fI is an element of the abelian group HomC(X,Y )k which satisfies the
identity

∂fI =
k∑
a=1

(−1)a(f{i0>i1>···>ia} ◦ f{ia>···>ik+1} − fI\{ia}).

Note that, by virtue of (1), we can rewrite this identity as

01PY ∂fI =

0 if k = 0∑k
a=0(−1)a+1fI\{ia} if k > 0.

(4.38)

Let J = {j0 < j1 < · · · < jk} be a nonempty subset of [n]. For {fI} as above, define
gJ ∈ HomC(X,Y )k by the formula gJ = (−1)k(k−1)/2f{jk+1>jk−1+1>···>0}. We can then
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rewrite the identity (4.38) as

∂gJ =
k∑
b=0

(−1)bgJ\{jb}.

The construction J 7→ gJ can then be identified with a morphism from the normalized
chain complex N∗(∆n) of Construction 2.5.5.9 to the chain complex HomC(X,Y )•. This
identification depends functorially on n, and therefore determines an isomorphism of simplicial
sets

HomL
Ndg
• (C)(X,Y ) ≃ K(HomC(X,Y )∗),

where K(HomC(X,Y )∗) denotes the Eilenberg-MacLane space associated to the chain com-
plex HomC(X,Y )∗ (Construction 2.5.6.3). In particular, the left-pinched morphism space
HomL

Ndg
• (C)(X,Y ) has the structure of a simplicial abelian group.

4.6.6 Digression: Diagrams in Slice ∞-Categories

04HYFor some applications, it will be useful to combine the slice and coslice constructions
introduced in §4.3.

Notation 4.6.6.1. 04HZLet K−, K+, and C be simplicial sets, and suppose we are given a
morphism f± : K− ⋆K+ → C. Set f− = f±|K− and f+ = f±|K+ , and let π : C/f+ → C denote
the projection map. Then f± determines a morphism of simplicial sets f̃− : K− → C/f+ for
which the diagram

C/f+

π
  

K−
f̃−

<<

f− // C

is commutative. In this situation, we let Cf−/ /f+ denote the coslice simplicial set (C/f+)
f̃−/

.

Remark 4.6.6.2. 01NRIn the situation of Notation 4.6.6.1, we can also identify f± with a
morphism of simplicial sets f̃+ : K+ → Cf−/. Let Y be any simplicial set. Using Proposition
4.3.5.13 we see that the following data are equivalent:

(1) Morphisms from Y to (C/f+)f−/.

(2) Morphisms from Y to (Cf−/)/f+
.

(3) Morphisms f : K− ⋆ Y ⋆ K+ → C satisfying f |K−⋆K+ = f±.

It follows that the simplicial set Cf−/ /f+ = (C/f+)
f̃−/

can also be identified with the slice
simplicial set (Cf−/)/f̃+

.
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Warning 4.6.6.3.04J0 In the situation of Notation 4.6.6.1, the simplicial set Cf−/ /f+ depends
on the morphism f± : K− ⋆ K+ → C, and not only on the morphisms f− = f±|K− and
f+ = f±|K+ indicated in the notation.

In the situation of Notation 4.6.6.1, suppose that the simplicial set C is an ∞-category.
Applying Proposition 4.3.6.1 twice, we deduce that the simplicial set Cf−/ /f+ is also an
∞-category. We now exploit the relationship between slice constructions and oriented fiber
products (Theorem 4.6.4.17) to give an alternative description of Cf−/ /f+ .

Construction 4.6.6.4.04J1 Let f± : K− ⋆ K+ → C be a morphism of simplicial sets, and set
f− = f±|K− and f+ = f±|K+ . Let K be another simplicial set, set M = Fun(K, Cf−/ /f+).
Let ev : M × K → Cf−/ /f+ be the evaluation map, and let π− : M × K− → K− and
π+ : M ×K+ → K+ be given by projection onto the second factor. Then the composition

M × (K− ⋆ K ⋆ K+) → (M ×K−) ⋆ (M ×K) ⋆ (M ×K+)
π−⋆ev ⋆π+−−−−−−→ K− ⋆ Cf−/ /f+ ⋆K+

→ C

classifies a morphism of simplicial sets M → Fun(K− ⋆ K ⋆ K+, C), whose composition with
the restriction map Fun(K− ⋆ K ⋆ K+, C)→ Fun(K− ⋆ K+, C) is the constant map taking
the value f±. We therefore obtain a comparison map

θ : Fun(K, Cf−/ /f+)→ Fun(K− ⋆ K ⋆ K+, C)×Fun(K−⋆K+,C) {f±}.

Theorem 4.6.6.5.04J2 Let C be an ∞-category and let f± : K− ⋆ K+ → C be a diagram. Then,
for any simplicial set K, the comparison map

θ : Fun(K, Cf−/ /f+)→ Fun(K− ⋆ K ⋆ K+, C)×Fun(K−⋆K+,C) {f±}

of Construction 4.6.6.4 is an equivalence of ∞-categories.

Example 4.6.6.6.04J3 Let C be an∞-category and let f± : K−⋆K+ → C be a diagram. Applying
Theorem 4.6.6.5 in the special case K = ∆0, we obtain an equivalence of ∞-categories

Cf−/ /f+ → Fun(K− ⋆∆0 ⋆ K+, C)×Fun(K−⋆K+,C) {f±}.

We begin by proving Theorem 4.6.6.5 in the special case where K− is empty.

Lemma 4.6.6.7.04J4 Let C be an ∞-category and let f+ : K+ → C be a diagram. Then, for
every simplicial set K, the comparison map

θ : Fun(K, C/f+)→ Fun(K ⋆K+, C)×K+,C) {f+}

of Construction 4.6.6.4 is an equivalence of ∞-categories.
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Proof. Let c : K ⋄K+ → K ⋆K+ be as in Notation 4.5.8.3. We then have a commutative
diagram

Fun(K ⋆K+, C) ◦c //

��

Fun(K ⋄K+, C)

��
Fun(K+, C) Fun(K+, C)

where the vertical maps are isofibrations (Corollary 4.4.5.3). Since c is a categorical
equivalence of simplicial sets (Theorem 4.5.8.8), the upper horizontal map is an equivalence
of ∞-categories. Applying Corollary 4.5.2.32, we conclude that composition with c induces
an equivalence of ∞-categories

Fun(K ⋆K+, C)×Fun(K+,C) {f+}
θ′−→ Fun(K ⋄K+, C)×Fun(K+,C) {f+}
≃ Fun(K, C ×̃Fun(K+,C){f+}).

It will therefore suffice to show that θ′ ◦ θ is an equivalence of ∞-categories. We con-
clude by observing that θ′ ◦ θ is given by postcomposition with the slice diagonal C/f+ ↪→
C ×̃Fun(K+,C){f+}, which is an equivalence of∞-categories by virtue of Theorem 4.6.4.17.

Example 4.6.6.8. 04J5Let C be an ∞-category and let f+ : K+ → C be a diagram. Applying
Lemma 4.6.6.7 in the special case K = ∆0, we obtain an equivalence of ∞-categories
C/f+ → Fun(K◁

+, C)×Fun(K+,C) {f+}.

Proof of Theorem 4.6.6.5. Let C be an ∞-category and let f± : K− ⋆K+ → C be a diagram.
Set f− = f±|K− and f+ = f±|K+ , so that f± can be identified with a morphism f̃− : K− →
C/f+ . We then have a commutative diagram of simplicial sets

Fun(K, Cf−/ /f+) //

��

Fun(K− ⋆ K, C/f+) //

��

Fun(K− ⋆ K ⋆ K+, C)

��
{f̃−} // Fun(K−, C/f+) //

��

Fun(K− ⋆ K+, C)

��
{f+} // Fun(K+, C),

where the vertical maps are isofibrations (Corollary 4.4.5.3). It follows from Lemma 4.6.6.7
(and Proposition 4.5.2.26) that the lower right square and the outer right rectangle are
categorical pullback squares, so the upper right corner is also a categorical pullback square
(Proposition 4.5.2.18). Similarly, the dual of Lemma 4.6.6.7 guarantees that the upper left
corner is a categorical pullback square. Applying Proposition 4.5.2.18, we conclude that
the outer rectangle on the top of the diagram is a categorical pullback square, which is a
restatement of Theorem 4.6.6.5 (Proposition 4.5.2.26).

https://kerodon.net/tag/04J5
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Corollary 4.6.6.9.04J6 Let C be an ∞-category and let f± : K− ⋆ K+ → C be a diagram. Then,
for any inclusion of simplicial sets A ↪→ B, the diagram of ∞-categories

04J7 Fun(B, Cf−/ /f+) //

��

Fun(K− ⋆ B ⋆ K+, C)

��
Fun(A, Cf−/ /f+) // Fun(K− ⋆ A ⋆ K+, C)

(4.39)

is a categorical pullback square.

Proof. We can identify (4.39) with the upper half of a commutative diagram

Fun(B, Cf−/ /f+) //

��

Fun(K− ⋆ B ⋆ K+, C)

��
Fun(A, Cf−/ /f+) //

��

Fun(K− ⋆ A ⋆ K+, C)

��
{f±} // Fun(K− ⋆ K+, C).

By virtue of Proposition 4.5.2.18, it will suffice to show that the lower half and outer rectangle
of the diagram are categorical pullback squares, which follows from Theorem 4.6.6.5.

We conclude this section by recording a thematically related result, which characterizes
slices of functor ∞-categories (rather than functors into a slice ∞-category).

Variant 4.6.6.10.02GN Let C be an ∞-category and let f : K → C be a diagram, which we
identify with an object F of the ∞-category Fun(K, C). Then the functors

C/f → C×Fun(K,C) Fun(K, C)/F Cf/ → Fun(K, C)F/ ×Fun(K,C) C

of Exercise 4.6.4.16 are equivalences of ∞-categories.

Proof. We will show that the slice diagonal δ/f induces an equivalence of ∞-categories
C/f → C×Fun(K,C) Fun(K, C)/F ; the analogous assertion for coslice ∞-categories follows by
a similar argument. By virtue of Theorem 4.6.4.17, it will suffice to show that the inclusion
map

C ×Fun(K,C) Fun(K, C)/F ↪→ C ×̃Fun(K,C){F}

is an equivalence of∞-categories. By construction, this map fits into a commutative diagram
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of ∞-categories

C ×Fun(K,C) Fun(K, C)/F //

ι

��

Fun(K, C)/F

U

��
C ×̃Fun(K,C){F} //

��

Fun(K, C) ×̃Fun(K,C){F}

V

��
C // Fun(K, C),

where the upper square and lower square are both pullback diagrams. Note that the
morphisms V and V ◦ U are both right fibrations (Propositions 4.6.4.11 and 4.3.6.1), and
therefore isofibrations (Example 4.4.1.11). Using Propositions 4.5.2.26 and 4.5.2.18, we
see that the upper square is a categorical pullback. Theorem 4.6.4.17 guarantees that U
is an equivalence of ∞-categories, so that ι is an equivalence of ∞-categories by virtue of
Proposition 4.5.2.21.

4.6.7 Initial and Final Objects

02H6Let C be a category. Recall that an object Y ∈ C is initial if, for every object Z ∈ C,
there is a unique morphism from Y to Z. This definition has an obvious counterpart in the
setting of ∞-categories.

Definition 4.6.7.1. 02H7Let C be an ∞-category. We say that an object Y ∈ C is initial if, for
every object Z ∈ C, the morphism space HomC(Y, Z) is a contractible Kan complex. We say
that Y is final if, for every object X ∈ C, the morphism space HomC(X,Y ) is a contractible
Kan complex.

Remark 4.6.7.2. 02H8Let C be an ∞-category. Then an object Y ∈ C is initial if and only if it
is final when viewed as an object of the opposite ∞-category Cop.

Example 4.6.7.3. 02H9Let C be a category. An object Y ∈ C is initial if and only if it is initial
when viewed as an object of the ∞-category N•(C). Similarly, an object Y ∈ C is final if
and only if it is final when viewed as an object of the ∞-category N•(C).

Example 4.6.7.4. 02MWLet C andD be∞-categories, and let C ⋆D denote their join (Construction
4.3.3.13). Then C ⋆D is also an ∞-category (Corollary 4.3.3.25). It follows from Example
4.6.1.6 that if X is an initial object of C, then it is also initial when regarded as an object of
C ⋆D. Similarly, if Y is a final object of D, then it is also final when regarded as an object
of C ⋆D.
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Example 4.6.7.5.02MX Let C be an ∞-category. Then the cone point of the ∞-category C◁ is
an initial object. Similarly, the cone point of C▷ is a final object.

Remark 4.6.7.6.02HA In the formulation of Definition 4.6.7.1, we can replace the Kan complexes
HomC(X,Y ) and HomC(Y, Z) by their left-pinched variants HomL

C (X,Y ) and HomL
C (Y,Z),

or by their right-pinched variants HomR
C (X,Y ) and HomR

C (Y,Z) (see Proposition 4.6.5.10).

Example 4.6.7.7.02HB Let C be a locally Kan simplicial category, so that the homotopy coherent
nerve Nhc

• (C) is an ∞-category (Theorem 2.4.5.1). Combining Remark 4.6.7.6 with Theorem
4.6.8.5, we deduce the following:

• An object Y ∈ C is initial when viewed as an object of the ∞-category Nhc
• (C) if and

only if, for every object Z ∈ C, the Kan complex HomC(Y, Z)• is contractible.

• An object Y ∈ C final when viewed as an object of the ∞-category Nhc
• (C) if and only

if, for every object X ∈ C, the Kan complex HomC(X,Y )• is contractible.

Example 4.6.7.8.02HD Let C be a (2, 1)-category, so that the Duskin nerve ND
• (C) is an ∞-

category (Theorem 2.3.2.1). Combining Remark 4.6.7.6) with Example 4.6.5.13, we obtain
the following:

• An object Y ∈ C is initial when viewed as an object of the ∞-category ND
• (C) if and

only if, for every object Z ∈ C, the groupoid HomC(Y, Z) is contractible (that is, there
exists a 1-morphism from Y to Z and for every pair of morphisms f, g : X → Y , there
is a unique isomorphism γ : f ∼=⇒ g).

• An object Y ∈ C is final when viewed as an object of the ∞-category ND
• (C) if and

only if, for every object X ∈ C, the groupoid HomC(X,Y ) is contractible.

Proposition 4.6.7.9.02HE Let C be a differential graded category, so that the differential graded
nerve Ndg

• (C) is an ∞-category (Theorem 2.5.3.10). Let Y be an object of C. The following
conditions are equivalent:

(1) The object Y is initial when viewed as an object of the ∞-category Ndg
• (C).

(2) The object Y is final when viewed as an object of the ∞-category Ndg
• (C).

(3) The identity morphism idY : Y → Y is nullhomologous: that is, there exists a 1-chain
e ∈ HomC(Y, Y )1 satisfying ∂(e) = idY .
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Proof. We will show that (1)⇔ (3); the proof that (2)⇔ (3) is similar. If condition (1) is
satisfied, then there exists a 2-simplex of Ndg

• (C) with boundary as indicated in the diagram

Y

0

��
Y

0

??

idY // Y,

which we can identify with a 1-chain e ∈ HomC(Y, Y )1 satisfying ∂(e) = idY (see Example
2.5.3.4). Conversely, suppose that there exists e ∈ HomC(Y, Y )1 satisfying ∂(e) = idY . For
every object Z ∈ C, e determines a chain homotopy from the identity map id : HomC(Y,Z)∗ →
HomC(Y, Z)∗ to the zero map. It follows that the homology of chain complex HomC(Y,Z)∗
vanishes, so that the Eilenberg-MacLane space K(HomC(Y,Z)∗) of Construction 2.5.6.3 is
a contractible Kan complex. Example 4.6.5.15 supplies an isomorphism of Kan complexes
HomL

Ndg
•

(Y,Z) ≃ K(HomC(Y, Z)∗). Allowing Z to vary and invoking Remark 4.6.7.6, we
conclude that Y is an initial object of the ∞-category Ndg

• (C).

Proposition 4.6.7.10. 02HFLet C be an ∞-category and let Y be an object of C. Then:

(1) The object Y is initial if and only if the projection map CY/ → C is a trivial Kan fibration
of simplicial sets.

(2) The object Y is final if and only if the projection map C/Y → C is a trivial Kan fibration
of simplicial sets.

Proof. We will give the proof of (1); the proof of (2) is similar. Proposition 4.3.6.1 guarantees
that the projection map q : CY/ → C is a left fibration of simplicial sets. Applying Proposition
4.4.2.14, we see that q is a trivial Kan fibration if and only if, for each object Z ∈ C, the
left-pinched morphism space HomL

C (Y,Z) = CY/×C{Z} is a contractible Kan complex. By
virtue of Remark 4.6.7.6, this is equivalent to the assumption that Y is an initial object of
C.

Corollary 4.6.7.11. 02HJLet X be a Kan complex and let x ∈ X be a vertex. The following
conditions are equivalent:

(1) The vertex x is initial when viewed as an object of the ∞-category X.

(2) The vertex x is final when viewed as an object of the ∞-category X.

(3) The Kan complex X is contractible.

In particular, these conditions are independent of the choice of vertex x ∈ X.
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Proof. If the Kan complex X is contractible, then the projection map Xx/ → X is a trivial
Kan fibration (Corollary 4.3.7.19), so the object x ∈ X is initial by virtue of Proposition
4.6.7.10. Conversely, if the projection map Xx/ → X is a trivial Kan fibration, then it is a
homotopy equivalence (Proposition 3.1.6.10). Since the Kan complex Xx/ is contractible
(Corollary 4.3.7.14), it follows that X is contractible. This proves the equivalence of (1) and
(3); the equivalence of (2) and (3) follows by a similar argument.

Corollary 4.6.7.12.02HG Let C be an ∞-category, let f : K → C be a diagram, let U : C/f → C
be the projection map, and let Y be an initial object of C. Then:

(1) There exists an object Ỹ ∈ C/f satisfying U(Ỹ ) = Y .

(2) If Ỹ is any object of C/f satisfying U(Ỹ ) = Y , then Ỹ is an initial object of C/f .

Proof. Assertion (1) is equivalent to the statement that f can be lifted to a map f̃ : K → CY/.
This is clear, since the projection map CY/ → C is a trivial Kan fibration (Proposition 4.6.7.10).
To prove (2), fix an object Ỹ ∈ C/f satisfying U(Ỹ ) = Y . By virtue of Proposition 4.6.7.10,
it will suffice to show that the projection map (C/f )

Ỹ /
→ C/f is a trivial Kan fibration.

Equivalently, we wish to show that every lifting problem

02HH A //

��

(C/f )
Ỹ /

��
B //

==

C/f

(4.40)

admits a solution, provided that the left vertical map is a monomorphism. Unwinding the
definitions, we can rewrite (4.40) as a lifting problem

A ⋆ K //

��

CY/

��
B ⋆ K //

<<

C .

Our assumption that the object Y ∈ C is initial guarantees that this lifting problem has a
solution (Proposition 4.6.7.10).

Corollary 4.6.7.13.02HK Let C be an ∞-category. An object Y ∈ C is initial if and only if, for
every integer n ≥ 1 and every morphism of simplicial sets σ : ∂∆n → C satisfying σ(0) = Y ,
there exists an n-simplex σ : ∆n → C satisfying σ|∂∆n = σ.
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Proof. Let n be a positive integer. Using the isomorphism

∂∆n ≃ (∅ ⋆∆n−1)
∐

(∅⋆∂∆n−1)

(∆0 ⋆ ∂∆n−1)

supplied by Variant 4.3.6.17, we see that a morphism of simplicial sets σ : ∂∆n → C satisfying
σ(0) = Y can be identified with a commutative diagram

02HL∂∆n−1 //

��

CY/

��
∆n−1

==

// C,

(4.41)

and that an extension of σ to an n-simplex of C can be identified with a dotted arrow which
renders the diagram commutative. By virtue of Proposition 4.6.7.10, the object Y is initial
if and only if every lifting problem of the form (4.41) admits a solution: that is, if and only
if the projection map CY/ → C is a trivial Kan fibration of simplicial sets.

Let C be an ∞-category which contains an initial object X. This object is rarely unique:
every object Y ∈ C which is isomorphic to X is also initial (Corollary 4.6.7.15). However,
the object X is essentially unique in the following sense:

Corollary 4.6.7.14. 02HMLet C be an ∞-category and let Cinit ⊆ C be the full subcategory of C
spanned by the initial objects of C, and let Cfin ⊆ C be the full subcategory spanned by the
final objects of C. If C contains an initial object, then Cinit is a contractible Kan complex. If
C contains a final object, then Cfin is a contractible Kan complex.

Proof. Assume that C contains an initial object, we will show that Cinit is a contractible Kan
complex (the analogous assertion for final objects follows by a similar argument). Suppose
we are given a morphism of simplicial sets σ : ∂∆n → Cinit; we wish to show that σ can be
extended to a morphism σ : ∆n → Cinit. If n = 0, this follows from our assumption that C
contains an initial object. If n > 0, then we can regard σ as a morphism from ∂∆n to C
with the property that σ(i) ∈ C is initial for 0 ≤ i ≤ n. Setting i = 0, we conclude that σ
can be extended to a morphism σ : ∆n → C, which automatically factors through the full
subcategory Cinit ⊆ C.

Corollary 4.6.7.15. 02HNLet C be an ∞-category and let X be an initial object of C. Then an
object Y ∈ C is initial if and only if it is isomorphic to X.

Proof. If X and Y are initial objects of C, then they are contained in the contractible Kan
complex Cinit of Corollary 4.6.7.14 and are therefore isomorphic when viewed as objects of
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C. Conversely, suppose that X is initial and that there exists an isomorphism f : X → Y

in C; we wish to show that Y is also initial. Fix an object Z ∈ C; we wish to show that
the mapping space HomC(Y,Z) is contractible. Let us regard the homotopy category hC as
enriched over the homotopy category hKan of Kan complexes (see Construction 4.6.9.13).
Since f an isomorphism in C, its homotopy class [f ] is an isomorphism in the homotopy
category hC, so composition with [f ] induces an isomorphism HomC(Y,Z)→ HomC(X,Z)
in the category hKan. Since the Kan complex HomC(X,Z) is contractible, it follows that
HomC(Y,Z) is also contractible.

Notation 4.6.7.16.02HP Let C be an ∞-category. We will often use the symbol ∅C to denote
an initial object of C, provided that such an object exists. In this case, we will sometimes
abuse terminology by referring to ∅C as the initial object of C. This abuse is justified by
Corollary 4.6.7.14, which guarantees that ∅C is uniquely determined up to a contractible
space of choices (in particular, it is well-defined up to isomorphism). Similarly, we will often
use the symbol 1C to denote a final object of C, provided that such an object exists, and will
sometimes abuse terminology by referring to 1C as the final object of C. When it is unlikely
to cause confusion, we will sometimes omit the subscripts and denote the objects ∅C and 1C
by ∅ and 1, respectively.

Corollary 4.6.7.17.02HQ Let C be an ∞-category and let X be an object of C. Then:

(1) If X is initial as an object of the ∞-category C, then it is also initial when viewed as an
object of the homotopy category hC.

(2) If C has an initial object and X is initial as an object of the homotopy category hC, then
X is initial as an object of the ∞-category C.

Proof. Assertion (1) is immediate from the definition. To prove (2), assume that C has an
initial object Y . Then Y is also initial when viewed as an object of the homotopy category
hC. If X is an initial object of hC, then X and Y are isomorphic when viewed as objects of
hC, hence also when viewed as objects of the ∞-category C. Invoking Corollary 4.6.7.15, we
conclude that X is also an initial object of C.

Warning 4.6.7.18.02HR Let C be an ∞-category containing an object X which is initial as an
object of the homotopy category hC. Then X need not be initial when viewed as an object
of C. For example, if C is simply connected Kan complex, then every object X ∈ C is initial
when viewed as an object of the homotopy category hC = π≤1(C). However, X is initial as
an object of C only if C is contractible (Corollary 4.6.7.11).

Proposition 4.6.7.19.02HS Let F : C → D be a fully faithful functor of ∞-categories and let Y
be an object of C. Then:
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(1) If F (Y ) is an initial object of D, then Y is an initial object of C.

(2) If F (Y ) is a final object of D, then Y is a final object of C.

Proof. Let Z be an object of C. If F (Y ) is an initial object of the ∞-category D, then the
mapping space HomD(F (Y ), F (Z)) is a contractible Kan complex. Since F is fully faithful,
it follows that HomC(Y,Z) is also a contractible Kan complex. Allowing Z to vary, we
conclude that Y is an initial object of C. This proves (1); the proof of (2) is similar.

Corollary 4.6.7.20. 02HTLet F : C → D be an equivalence of ∞-categories, and let Y be an
object of C. Then:

(1) The object Y is initial if and only if F (Y ) is an initial object of D.

(2) The object Y is final if and only if F (Y ) is a final object of D.

Proof. We will prove (1); the proof of (2) is similar. Note that since F is an equivalence of
∞-categories, it is fully faithful (Theorem 4.6.2.20). If F (Y ) is an initial object of D, then
Proposition 4.6.7.19 guarantees that the object Y ∈ C is initial. To prove the converse, let
G : D → C be a homotopy inverse of the functor F . Then G ◦F is isomorphic to the identity
functor idC as an object of the functor∞-category Fun(C, C), so that (G◦F )(Y ) is isomorphic
to Y as an object of the ∞-category C. If Y is an initial object of C, then Corollary 4.6.7.15
guarantees that (G ◦ F )(Y ) is also an initial object of C. Since the equivalence G is fully
faithful (Theorem 4.6.2.20), Proposition 4.6.7.19 guarantees that F (Y ) is an initial object of
D.

Corollary 4.6.7.21. 02MYLet C and D be ∞-categories which are equivalent. Then:

• The ∞-category C has an initial object if and only if the ∞-category D has an initial
object.

• The ∞-category C has a final object if and only if the ∞-category D has a final object.

Proposition 4.6.7.22. 02J2Let C be an ∞-category and let f : X → Y be a morphism in C.
The following conditions are equivalent:

(1) The morphism f is an isomorphism from X to Y in the ∞-category C (Definition
1.4.6.1).

(2) The morphism f is final when regarded as an object of the slice ∞-category C/Y .

(2′) The morphism f is final when regarded as an object of the oriented fiber product C ×̃C{Y }.

(3) The morphism f is initial when regarded as an object of the coslice ∞-category CX/.

https://kerodon.net/tag/02HT
https://kerodon.net/tag/02MY
https://kerodon.net/tag/02J2


4.6. MORPHISM SPACES 825

(3′) The morphism f is initial when regarded as an object of the oriented fiber product
{X} ×̃C C.

Proof. The equivalences (2) ⇔ (2′) and (3) ⇔ (3′) follow from Corollaries 4.6.4.18 and
4.6.7.20. We will complete the proof by showing that (1)⇔ (3); the equivalence (1)⇔ (2)
follows by applying the same argument in the ∞-category Cop. By virtue of Corollary
4.6.7.13, condition (3) is equivalent to the requirement that the restriction map Cf/ → CX/
is a trivial Kan fibration: that is, every lifting problem

02J3 ∂∆n //

��

Cf/

��
∆n

==

// CX/

(4.42)

admits a solution. Using the isomorphism of simplicial sets

(∆1 ⋆ ∂∆n)
∐

{0}⋆∂∆n

({0} ⋆∆n) ≃ Λn+2
0

supplied by Lemma 4.3.6.15, we can identify (4.42) with a lifting problem

Λn+2
0

σ0 //

��

C

��
∆n+2

σ

==

// ∆0,

where σ0 carries the initial edge ∆1 ≃ N•({0 < 1}) ⊆ Λn+2
0 to the morphism f . The

equivalence (1)⇔ (3) now follows from the criterion of Theorem 4.4.2.6.

Corollary 4.6.7.23.02J4 Let C be an ∞-category and let Y be an object of C. Then:

(1) The object Y is final if and only if the projection map F : C/Y → C admits a section G

satisfying G(Y ) = idY .

(2) The object Y is initial if and only if the projection map F ′ : CY/ → C admits a section
G′ satisfying G′(Y ) = idY .

Proof. We will prove (1); the proof of (2) is similar. If Y is a final object, then the projection
map F : C/Y → C is a trivial Kan fibration (Proposition 4.6.7.10), so the construction
Y 7→ idY can be extended to a section of F . Conversely, suppose that F admits a section
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G : C → C/Y satisfying G(Y ) = idY . Let X be an object of C: we wish to show that the
Kan complex HomC(X,Y ) is contractible. The functors G and F induce morphisms of Kan
complexes

HomC(X,Y ) G−→ HomC/Y
(G(X), idY ) F−→ HomC(X,Y ),

whose composition is the identity. In particular, the Kan complex HomC(X,Y ) is a
retract of HomC/Y

(G(X), idY ). It will therefore suffice to show that the Kan complex
HomC/Y

(G(X), idY ) is contractible. This is clear, since idY is a final object of the slice
∞-category C/Y (Proposition 4.6.7.22).

Corollary 4.6.7.24. 02J5Let C be an ∞-category and let Y be an object of C. The following
conditions are equivalent:

(1) The object Y ∈ C is final.

(2) There exists a functor F : C▷ → C satisfying F |C = idC and for which the composition

∆1 ≃ {Y }▷ ↪→ C▷ F−→ C

is the identity morphism idY (in particular, F carries the cone point of C▷ to the object
Y ).

(3) The inclusion map {Y } ↪→ C is right anodyne.

Proof. The equivalence (1) ⇔ (2) is a reformulation of Corollary 4.6.7.23. We next show
that (2) implies (3). If condition (2) is satisfied, then we have a commutative diagram of
simplicial sets

{Y } //

��

{Y }▷ //

��

{Y }

��
C // C▷ F // C

where the horizontal compositions are the identity. Since the inclusion {Y }▷ ↪→ C▷ is right
anodyne (Lemma 4.3.7.8), it follows that the inclusion {Y } ↪→ C is also right anodyne.

We now complete the proof by showing that (3) implies (2). Suppose that the inclusion
{Y } ↪→ C is right anodyne; we wish to show that there exists a functor F : C▷ → C satisfying
F |C = idC and F |{Y }▷ = idY . For this, it will suffice to show that the inclusion map

C
∐
{Y }
{Y }▷ ↪→ C▷

is inner anodyne, which is a special case of Proposition 4.3.6.4.

https://kerodon.net/tag/02J5
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Corollary 4.6.7.25.02P2 Let C be an ∞-category which has either an initial object or a final
object. Then C is weakly contractible.

Proof. We will assume that C has a final object Y ; the case where C has an initial object
follows by a similar argument. Corollary 4.6.7.24 implies that the inclusion map {Y } ↪→ C is
right anodyne. In particular, it is anodyne and therefore a weak homotopy equivalence.

4.6.8 Morphism Spaces in the Homotopy Coherent Nerve

01LA Let C be a simplicial category and let Nhc
• (C) denote the homotopy coherent nerve of C

(Definition 2.4.3.5). Suppose that C is locally Kan, so that the simplicial set Nhc
• (C) is an

∞-category (Theorem 2.4.5.1). Our goal in this section is to describe the morphism spaces
in the ∞-category Nhc

• (C). Our main result (Theorem 4.6.8.5) implies that, for every pair of
objects X,Y ∈ C, there is a canonical homotopy equivalence

HomC(X,Y )• → HomNhc
• (C)(X,Y ),

where HomC(X,Y )• denotes the Kan complex of morphisms from X to Y in C, and
HomNhc

• (C)(X,Y ) is given by Construction 4.6.1.1.

Notation 4.6.8.1.01LB Let K be a simplicial set. We define a simplicial category E [K] as
follows:

• The category E [K] has exactly two objects, which we will denote by x and y.

• The morphism spaces in E [K] are given by the formulae

HomE[K](x, x)• = {idx} HomK(y, y)• = {idy}

HomE[K](x, y)• = K HomK(y, x)• = ∅.

Remark 4.6.8.2.01LC The simplicial category E [K] is characterized by the following universal
property: if C is any simplicial category containing a pair of objects X and Y , then the
natural map

{Simplicial functors F : E [K]→ C with F (x) = X and F (y) = Y }

��
HomSet∆(K,HomC(X,Y )•)

is a bijection (see Proposition 2.4.5.9).
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Construction 4.6.8.3. 01LDFix an integer n ≥ 0, let [n] denote the linearly ordered set
{0 < 1 < · · · < n}, and let {x} ⋆ [n] denote the linearly ordered set obtained from [n] by
adjoining a new least element x. Let Path[{x} ⋆ [n]]• denote the simplicial path category of
Notation 2.4.3.1. We define a simplicial functor π : Path[{x} ⋆ [n]]• → E [∆n] as follows:

• On objects, the functor π is given by the formula

π(i) =

x if i = x

y if 0 ≤ i ≤ n.

• For 0 ≤ m ≤ n, the morphism of simplicial sets

HomPath[{x}⋆[n]](x,m)• → HomE[∆n](x, y)• = ∆n

is given by the map of partially ordered sets

{Subsets S = {x < i0 < · · · < ik = m} ⊆ {x} ⋆ [n]}op → [n] S 7→ i0.

Let C be a simplicial category containing a pair of objects X and Y . Then every
n-simplex σ ∈ HomC(X,Y )n determines a simplicial functor Fσ : E [∆n] → C, given on
objects by Fσ(x) = X and Fσ(y) = Y . The composition Fσ ◦ π is a simplicial functor from
Path[{x} ⋆ [n]]• to C, which (by Proposition 2.4.4.15) we can view as a map of simplicial
sets fσ : {x} ⋆ ∆n → Nhc

• (C). By construction, fσ carries x to X, and the restriction
fσ|N•({0<1<···<n}) is the constant map taking the value Y . We can therefore identify fσ
with an n-simplex θ(σ) of the left-pinched morphism space HomL

Nhc
• (C)(X,Y ) introduced in

Construction 4.6.5.1 (see Remark 4.6.5.2). The construction σ 7→ θ(σ) depends functorially
on the object [n] ∈∆, and therefore determines a map of simplicial sets

θ : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y ),

which we will refer to as the comparison map.

Exercise 4.6.8.4. 01PZLet C be a differential graded category containing a pair of objects X
and Y , and let C∆ denote the associated simplicial category (Construction 2.5.9.2). Show
that the isomorphism K(HomC(X,Y )∗) ∼−→ HomL

Ndg
• (C)(X,Y ) of Example 4.6.5.15 factors as

a composition

K(HomC(X,Y )∗) = HomC∆(X,Y )• θ−→ HomL
Nhc
• (C∆)(X,Y ) ρ−→ HomL

Ndg
• (C)(X,Y ),

where θ is the comparison map of Construction 4.6.8.3 and ρ is induced by the trivial Kan
fibration Z : Nhc

• (C∆)→ Ndg
• (C) of Proposition 2.5.9.10. Beware that θ and ρ are generally

not isomorphisms.
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Our comparison result can now be formulated as follows:

Theorem 4.6.8.5.01LE Let C be a locally Kan simplicial category containing a pair of objects
X,Y ∈ C. Then the comparison map

θ : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y )

of Construction 4.6.8.3 is a homotopy equivalence of Kan complexes.

Remark 4.6.8.6.01LF Let C be a locally Kan simplicial category containing a pair of objects
X,Y ∈ C. Combining Theorem 4.6.8.5 with Proposition 4.6.5.10, we obtain a homotopy
equivalence of Kan complexes HomC(X,Y )• → HomNhc

• (C)(X,Y ), given by composing the
comparison map θ of Construction 4.6.8.3 with the left-pinch inclusion map of Construction
4.6.5.7.

Before giving the proof of Theorem 4.6.8.5, let us outline some applications.

Definition 4.6.8.7.01Q0 Let C and D be simplicial categories and let F : C → D be a simplicial
functor.

• We say that F is weakly fully faithful if, for every pair of objects X,Y ∈ Ob(C), the
induced map HomC(X,Y )• → HomD(F (X), F (Y ))• is a weak homotopy equivalence
of simplicial sets.

• We say that F is weakly essentially surjective if the induced functor of homotopy
categories hF : hC → hD is essentially surjective (that is, every object of D is
homotopy equivalent to an object of the form F (X), for some X ∈ Ob(C)).

• We say that F is a weak equivalence of simplicial categories if it is weakly fully faithful
and weakly essentially surjective.

Corollary 4.6.8.8.01Q1 Let C and D be locally Kan simplicial categories, let F : C → D be a
simplicial functor, and let Nhc

• (F ) : Nhc
• (C)→ Nhc

• (D) be the induced functor of ∞-categories.
Then:

(1) The functor Nhc
• (F ) is fully faithful (in the sense of Definition 4.6.2.1) if and only if the

simplicial functor F is weakly fully faithful (in the sense of Definition 4.6.8.7).

(2) The functor Nhc
• (F ) is essentially surjective (in the sense of Definition 4.6.2.11) if

and only if the simplicial functor F is weakly essentially surjective (in the sense of
Definition 4.6.8.7).

(3) The functor Nhc
• (F ) is an equivalence of∞-categories (in the sense of Definition 4.5.1.10)

if and only if F is a weak equivalence of simplicial categories (in the sense of Definition
4.6.8.7).
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Proof. For every pair of objects X,Y ∈ Ob(C), we have a commutative diagram of simplicial
sets

HomC(X,Y )• F //

��

HomD(F (X), F (Y ))•

��
HomNhc

• (C)(X,Y ) Nhc
• (F ) // HomNhc

• (D)(F (X), F (Y )),

where the vertical maps are the homotopy equivalences supplied by Remark 4.6.8.6. It
follows that the upper horizontal map is a homotopy equivalence if and only if the lower
horizontal map is a homotopy equivalence. This proves (1). Assertion (2) follows from
Proposition 2.4.6.9. Assertion (3) follows by combining (1) and (2) with the criterion of
Theorem 4.6.2.20.

Theorem 4.6.8.5 is an immediate consequence of the following more general result:

Theorem 4.6.8.9. 01LGLet C be a simplicial category containing a pair of objects X and Y ,
and suppose that the simplicial set HomC(X,Y )• is an ∞-category. Then the left-pinched
morphism space HomL

Nhc
• (C)(X,Y ) is also an ∞-category, and the comparison map

θ : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y )

of Construction 4.6.8.3 is an equivalence of ∞-categories.

Remark 4.6.8.10. 01LHLet C be a simplicial category containing a pair of objects X and Y , and
suppose that the simplicial set HomC(X,Y )• is an ∞-category. Applying Theorem 4.6.8.9 to
the opposite simplicial category Cop (and using Remark 4.6.5.3), we obtain an equivalence
of ∞-categories

θ′ : HomC(X,Y )op
• → HomR

Nhc
• (C)(X,Y ),

which can be described explicitly using a variant of Construction 4.6.8.3.

The remainder of this section is devoted to the proof of Theorem 4.6.8.9.

Construction 4.6.8.11. 01LJLet K be a simplicial set. We let Σ(K) denote the pushout
({x} ⋆ K) ∐

K{y} (this is a model for the unreduced suspension of K). Let Path[Σ(K)]•
denote the simplicial path category of Σ(K) (Notation 2.4.4.2). Then Path[Σ(K)]• has
exactly two objects, which we denote by x and y. We let Φ(K) denote the simplicial set
HomPath[Σ(K)](x, y)•.

Example 4.6.8.12. 01LKIf K = ∆0, then the suspension Σ(K) can be identified with ∆1. In this
case, the simplicial path category Path[Σ(K)]• can be identified with the ordinary category
[1], and the simplicial set Φ(K) is isomorphic to ∆0.
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Remark 4.6.8.13.01LL Let K be a simplicial set, and let D be another simplicial set containing
vertices X and Y . Unwinding the definitions, we have a canonical bijection

{Morphisms K → HomL
D(X,Y )}

∼

��
{Morphisms F : Σ(K)→ D with F (x) = X and F (y) = Y }.

Remark 4.6.8.14.01LM Let K be a simplicial set. Note that, for n > 0, every nondegenerate
simplex σ : ∆n → Σ(K) satisfies σ(0) = x and σ(n) = y. Using Theorem 2.4.4.10, we see
that for each m ≥ 0, Path[Σ(K)]m can be identified with the path category of a directed
graph Gm with vertex set Vert(Gm) = {x, y}, where each edge of Gm has source x and
target y. These path categories are easy to describe: they satisfy

HomPath[Gm](x, x) = {idx} HomPath[Gm](y, y) = {idy}

HomPath[Gm](x, y) = Edge(Gm) HomPath[Gm](y, x) = ∅.

Allowing m to vary, we conclude that the simplicial category Path[Σ(K)]• satisfies

HomPath[Σ(K)](x, x)• = {idx} HomPath[Σ(K)](y, x)• = ∅ HomPath[Σ(K)](y, y)• = {idy}.

That is, Path[Σ(K)]• can be identified with the simplicial category E [Φ(X)] of Notation
4.6.8.1. Moreover, we can identify m-simplices of Φ(X) with elements of the set E(Σ(K),m)
defined in Notation 2.4.4.9.

Remark 4.6.8.15.01LN Let u : K → K ′ be a monomorphism of simplicial sets. Then the
induced map Φ(u) : Φ(K)→ Φ(K ′) is also a monomorphism (this follows immediately from
the description given in Remark 4.6.8.14).

Lemma 4.6.8.16.01LP Let K be a simplicial set and let C be a simplicial category containing
objects X and Y . Then the natural map

{Functors F : Path[Σ(K)]• → C with F (x) = X and F (y) = Y }

��
{Morphisms Φ(K)→ HomC(X,Y )•}

is a bijection.
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Proof. Combine Remarks 4.6.8.2 and 4.6.8.14.

Combining Remark 4.6.8.13 with Lemma 4.6.8.16 and invoking the universal property of
simplicial path categories, we obtain the following:

Corollary 4.6.8.17. 01LQLet K be a simplicial set and let C be a simplicial category containing
objects X and Y . Then we have a canonical bijection

{Morphisms K → HomL
Nhc
• (C)(X,Y )} ≃ {Morphisms Φ(K)→ HomC(X,Y )•}.

Remark 4.6.8.18. 03LKIt follows from Corollary 4.6.8.17 that the left-pinched morphism space
HomL

Nhc
• (C)(X,Y ) depends only on the simplicial set HomC(X,Y )•, and not on any other

features of the simplicial category C. In particular, there is a canonical isomorphism

HomL
Nhc
• (C)(X,Y )→ HomL

Nhc
• (Set∆)(∆

0,HomC(X,Y )•).

Corollary 4.6.8.19. 01LRLet A and B be simplicial sets, and let E [B] be the simplicial category
of Notation 4.6.8.1. Then we have a canonical bijection

{Morphisms A→ HomL
Nhc
• (E[B])(x, y)} ≃ {Morphisms Φ(A)→ B}.

Proof. Apply Corollary 4.6.8.17 in the special case C = E [B].

Corollary 4.6.8.20. 01LSThe functor

Set∆ → Set∆ B 7→ HomL
Nhc
• (E[B])(x, y)

has a left adjoint, given by the functor A 7→ Φ(A) of Construction 4.6.8.11.

Remark 4.6.8.21. 01LTThe adjunction of Corollary 4.6.8.20 has an interpretation in the
framework of Proposition 1.2.3.15. Let Q• denote the cosimplicial object of Set∆ given by
the construction [n] 7→ Φ(∆n). For every simplicial set B, Corollary 4.6.8.19 supplies a
canonical isomorphism of simplicial sets

HomL
Nhc
• (E[B])(x, y) ≃ SingQ• (B),

where SingQ• (B) is the simplicial set defined in Variant 1.2.2.8. It follows that Φ can be
identified with the generalized geometric realization functor K 7→ |K|Q of Proposition
1.2.3.15.

Corollary 4.6.8.22. 01LUThe functor Φ : Set∆ → Set∆ of Construction 4.6.8.11 preserves
colimits.
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Construction 4.6.8.23.01LV Let K be a simplicial set, let E [K] be the simplicial category of
Notation 4.6.8.1, and let

θ : K = HomE[K](x, y)• → HomL
Nhc
• (E[K])(x, y)

be the comparison map of Construction 4.6.8.3. We let ρK : Φ(K)→ K denote the image of
θ under the bijection of Corollary 4.6.8.19.

We will deduce Theorem 4.6.8.9 from the following result, which we prove at the end of
this section:

Proposition 4.6.8.24.01LW Let K be a simplicial set. Then the morphism ρK : Φ(K)→ K of
Construction 4.6.8.23 is a categorical equivalence of simplicial sets.

Corollary 4.6.8.25.01LX Let u : K → K ′ be a categorical equivalence of simplicial sets. Then
the induced map Φ(u) : Φ(K)→ Φ(K ′) is also a categorial equivalence of simplicial sets.

Proof. We have a commutative diagram

Φ(K) Φ(u) //

ρK

��

Φ(K ′)

ρK′

��
K

u // K ′

where u is a categorical equivalence by hypothesis and the vertical maps are categorical
equivalences by Proposition 4.6.8.24. Using Remark 4.5.3.5, we conclude that Φ(u) is a
categorical equivalence as well.

Corollary 4.6.8.26.01LY Let C be a simplicial category containing a pair of objects X and Y ,
and assume that the simplicial set HomC(X,Y )• is an ∞-category. Then the simplicial set
HomL

Nhc
• (C)(X,Y ) is also an ∞-category.

Proof. Let i : A ↪→ B be an inner anodyne morphism of simplicial sets. We wish to show
that every lifting problem

A //

i

��

HomL
Nhc
• (C)(X,Y )

��
B //

::

∆0
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admits a solution. By virtue of Corollary 4.6.8.17, we can rephrase this as a lifting problem

Φ(A) //

Φ(i)

��

HomC(X,Y )•

��
Φ(B) //

::

∆0.

Note that Φ(i) is a monomorphism (Remark 4.6.8.15) and a categorical equivalence (Corollary
4.6.8.25), so the desired result follows from Lemma 4.5.5.2.

Corollary 4.6.8.27. 01LZLet C be a simplicial category containing a pair of objects X and
Y , and assume that the simplicial set HomC(X,Y )• is an ∞-category. Let K be another
simplicial set, and suppose we are given a pair of morphisms f0, f1 : K → HomL

Nhc
• (C)(X,Y ),

which correspond (under the bijection of Corollary 4.6.8.17) to diagrams f ′0, f ′1 : Φ(K)→
HomC(X,Y )•. The following conditions are equivalent:

(1) The diagrams f0 and f1 are isomorphic when regarded as objects of the ∞-category
Fun(K,HomL

Nhc
• (C)(X,Y )).

(2) The diagrams f ′0 and f ′1 are isomorphic when regarded as objects of the ∞-category
Fun(Φ(K),HomC(X,Y )•).

Proof. Choose a categorical mapping cylinder

K
∐

K
(s0,s1)−−−−→ K

π−→ K

for the simplicial set K (Definition 4.6.3.3). Using Remark 4.6.8.15, Corollary 4.6.8.22, and
Corollary 4.6.8.25, we conclude that the induced diagram

Φ(K)
∐

Φ(K) (Φ(s0),Φ(s1))−−−−−−−−→ Φ(K) Φ(π)−−−→ Φ(K)

exhibits Φ(K) as a categorical mapping cylinder of K. Using Corollary 4.6.3.7, we see that
(1) and (2) are equivalent to the following:

(1′) There exists a diagram f : K → HomL
Nhc
• (C)(X,Y ) satisfying f0 = f ◦ s0 and f1 = f ◦ s1.

(2′) There exists a diagram f
′ : Φ(K) → HomC(X,Y )• satisfying f ′0 = f

′ ◦ Φ(s0) and
f ′1 = f

′ ◦ Φ(s1).

The equivalence of (1′) and (2′) follows from Corollary 4.6.8.17.

https://kerodon.net/tag/01LZ
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Proof of Theorem 4.6.8.9. Let C be a simplicial category containing a pair of objects X,Y ∈
C for which the simplicial set HomC(X,Y )• is an ∞-category. Applying Corollary 4.6.8.26,
we deduce that the left-pinched morphism space HomL

Nhc
• (C)(X,Y ) is also an ∞-category.

We wish to show that the comparison map

θ : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y )

of Construction 4.6.8.3 is an equivalence of ∞-categories. To prove this, it will suffice to
show that for every simplicial set K, postcomposition with θ induces a bijection

θK : π0(Fun(K,HomC(X,Y )•)≃)→ π0(Fun(K,HomL
Nhc
• (C)(X,Y ))≃).

By virtue of Corollary 4.6.8.27, we can identify π0(Fun(K,HomL
Nhc
• (C)(X,Y ))≃) with the set

π0(Fun(Φ(K),HomC(X,Y )•)≃). Under this identification, θK corresponds to the map

π0(Fun(K,HomC(X,Y )•)≃)→ π0(Fun(Φ(K),HomC(X,Y )•)≃)

given by precomposition with the map ρK : Φ(K) → K of Construction 4.6.8.23, which
is bijective by virtue of the fact that ρK is a categorical equivalence of simplicial sets
(Proposition 4.6.8.24).

We now turn to the proof of Proposition 4.6.8.24. Our strategy is to use formal arguments
to reduce to the case where the simplicial set K is a standard simplex, which can be analyzed
explicitly.

Example 4.6.8.28.01M0 Let m and n be nonnegative integers. By virtue of Remark 4.6.8.14,
we can identify m-simplices of the simplicial set Φ(∆n) with the set E(Σ(∆n),m) defined
in Notation 2.4.4.9. By definition, the elements of E(Σ(∆n),m) are given by pairs (σ,−→I ),
where σ : ∆k → Σ(∆n) is a nondegenerate simplex of dimension k > 0 and −→I = (I0 ⊇ I1 ⊇
· · · ⊇ Im) is a chain of subsets of [k] satisfying I0 = [k] and Im = {0, k}.

For each k > 0, there is a canonical bijection

{Subsets S ⊆ [n] of cardinality k} ≃ {Nondegenerate k-Simplices of Σ(∆n)},

which carries a subset S to the k-simplex σS given by the composite map

∆k ≃ {x} ⋆N•(S) ↪→ {x} ⋆∆n ↠ Σ(∆n).

For every such subset S, let ιS : N•(S) ↪→ ∆k be the inclusion map. Then the construction

(σS ,
−→
I ) 7→ (σ−1

S (I0) ⊇ σ−1
S (I1) ⊇ · · · ⊇ σ−1

S (Im))

induces a bijection from E(Σ(∆n),m) to the collection of chains −→S = (S0 ⊇ S1 ⊇ · · · ⊇ Sm)
of subsets of [n] which satisfy the following pair of conditions:

https://kerodon.net/tag/01M0
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(a) The set Sm contains exactly one element.

(b) For 0 ≤ i ≤ m, the unique element of Sm is the largest element of Si.

Let us henceforth use this bijection to identify m-simplices of Φ(∆n) with chains −→S satisfying
(a) and (b). In these terms, the face and degeneracy operators for the simplicial set
Φ(∆n) = Φ(∆n)• can be described explicitly as follows:

• For 0 ≤ i ≤ m, the degeneracy operator smi : Φ(∆n)m → Φ(∆n)m+1 is given by

smi (S0 ⊇ · · · ⊇ Sm) = (S0 ⊇ · · · ⊇ Si−1 ⊇ Si ⊇ Si ⊇ Si+1 ⊇ · · · ⊇ Sm)

• For 0 ≤ i < m, the face operator dmi : Φ(∆n)m → Φ(∆n)m−1 is given by the
construction

dmi (S0 ⊇ · · · ⊇ Sm) = (S0 ⊇ · · · ⊇ Si−1 ⊇ Si+1 ⊇ · · · ⊇ Sm).

• For m > 0, the face operator dmm : Φ(∆n)m → Φ(∆n)m−1 is given by

dmm(S0 ⊇ · · · ⊇ Sm) = (S′0 ⊇ S′1 ⊇ · · · ⊇ S′m−1),

where S′i = {j ∈ Si : j ≤ min(Sm−1)}.

See Remark 2.4.4.17.

Construction 4.6.8.29. 01M1Let m and n be nonnegative integers. Suppose we are given
an m-simplex of Φ(∆n), which we identify with a chain of subsets −→S = (S0 ⊇ · · · ⊇ Sm)
satisfying conditions (a) and (b) of Example 4.6.8.28. Let τ : [m]→ [1] be a nondecreasing
function. Let −→S ′ = (S′0 ⊇ · · · ⊇ S′m) be the chain of subsets of [n+ 1] given by the formula

S′i =


{s+ 1 : s ∈ Si} if τ(i) = 1
{0} if τ(m) = 0
{0} ∪ {s+ 1 : s ∈ Si} otherwise.

The construction (−→S , τ) 7→ −→S ′ is compatible with the formation of face and degeneracy
operators, and therefore determines a morphism of simplicial sets π : Φ(∆n)×∆1 → Φ(∆n+1).

Lemma 4.6.8.30. 01M2Let n ≥ 0 be an integer, and let π : Φ(∆n) × ∆1 → Φ(∆n+1) be the
morphism of simplicial sets defined in Construction 4.6.8.29. Then π fits into a pushout
diagram of simplicial sets

Φ(∆n)× {0} //

��

Φ(∆n)×∆1

π

��
∆0 // Φ(∆n+1).

https://kerodon.net/tag/01M1
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Remark 4.6.8.31.01M3 It follows from Lemma 4.6.8.30 that the morphism π of Construction
4.6.8.29 induces an isomorphism of simplicial sets ∆0 ⋄ Φ(∆n)→ Φ(∆n+1), where ⋄ denotes
the blunt join of Notation 4.5.8.3.

Proof of Lemma 4.6.8.30. Fix an integer m ≥ 0. By construction, the restriction π|Φ(∆n)×{0}
is the constant map which carries each m-simplex of Φ(∆n) to the element of Φ(∆n+1) given
by the constant chain −→S 0 = ({0} ⊆ {0} ⊆ · · · ⊆ {0}). To complete the proof, we must show
that for each m ≥ 0, the map π induces a bijection

Φ(∆n)m × {Nondecreasing functions τ : [m]→ [1] with τ(m) = 1}

��

Φ(∆n+1)m \ {
−→
S 0}

.

The inverse bijection can be described explicitly as follows: it carries an m-simplex (S′0 ⊇
· · · ⊇ S′m) ̸= −→S 0 of Φ(∆n+1) to the pair (−→S , τ), where −→S = (S0 ⊇ · · · ⊇ Sm) is the m-simplex
of Φ(∆n) given by

Si = {s− 1 : s ∈ S′i, s > 0} τ(i) =

0 if 0 ∈ S′i
1 if 0 /∈ S′i.

Proof of Proposition 4.6.8.24. Let K be a simplicial set. We wish to show that the map
ρK : Φ(K)→ K of Construction 4.6.8.23 is a categorical equivalence of simplicial sets. Using
Corollary 4.6.8.22, we can write ρK as a filtered colimit of morphisms ρKα : Φ(Kα)→ Kα,
where Kα ranges over the collection of all finite simplicial subsets of K (Remark 3.6.1.8).
Since the collection of categorical equivalences is closed under the formation of filtered
colimits (Corollary 4.5.7.2), it will suffice to show that each ρKα is a categorical equivalence.
We may therefore replace K by Kα and thereby reduce to the case where the simplicial set
K is finite.

Since K is a finite simplicial set, it has dimension ≤ n for some integer n ≥ −1. We
proceed by induction on n. If n = −1, then both K and Φ(K) are empty, and there is
nothing to prove. We may therefore assume that n ≥ 0 and that ρK′ is a categorical
equivalence for every simplicial set K ′ of dimension < n. We now proceed by induction on
the number m of nondegenerate n-simplices of K. If m = 0, then K has dimension ≤ n− 1
and the desired result holds by virtue of our inductive hypothesis. We may therefore assume
that K has at least one nondegenerate n-simplex σ : ∆n → K. Using Proposition 1.1.4.12,

https://kerodon.net/tag/01M3
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we see that there is a pushout diagram of simplicial sets

∂∆n //

��

∆n

σ

��
K ′ // K,

where S′ is a simplicial set of dimension ≤ n with exactly (m−1)-nondegenerate m-simplices.
We then have a commutative diagram of simplicial sets

Φ(∂∆n) //

��

ρ∂∆n

##

Φ(∆n)

��

ρ∆n

""
∂∆n //

��

∆n

��

Φ(K ′) //

ρK′

##

Φ(K)

ρK

""
K ′ // K

where the front and back faces are pushout squares (Corollary 4.6.8.22) in which the horizontal
maps are monomorphisms (Remark 4.6.8.15), and are therefore categorical pushout squares
(Example 4.5.4.12). Our inductive hypotheses guarantees that the maps ρK′ and ρ∂∆n are
categorical equivalences. Consequently, to show that ρK is a categorical equivalence, it will
suffice to show that ρ∆n is a categorical equivalence (Proposition 4.5.4.9). We may therefore
replace K by ∆n and thereby reduce to the case where K is a standard simplex.

If n = 0, then the map ρ∆n : Φ(∆n)→ ∆n is an isomorphism (Example 4.6.8.12). We
may therefore assume without loss of generality that n > 0, so that Lemma 4.6.8.30 supplies
an isomorphism of simplicial sets Φ(∆n) ≃ ∆0 ⋄ Φ(∆n−1). Using this isomorphism, we can
identify ρ∆n with the composite map

∆0 ⋄ Φ(∆n−1)
id ⋄ρ∆n−1−−−−−−→ ∆0 ⋄∆n−1 c−→ ∆0 ⋆∆n−1 ≃ ∆n,

where c is the comparison map of Notation 4.5.8.3 (to check this, it suffices to observe that
they agree on vertices). Our inductive hypothesis guarantees that ρ∆n−1 is a categorical
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equivalence of simplicial sets, so that the induced map ∆0 ⋄ Φ(∆n−1)
id ⋄ρ∆n−1−−−−−−→ ∆0 ⋄∆n−1

is also a categorical equivalence by virtue of Remark 4.5.8.7. We are therefore reduced to
showing that c is a categorical equivalence, which is a special case of Proposition 4.5.8.12.

4.6.9 Composition of Morphisms

01PF Let C be an ordinary category. For every triple of objects X,Y, Z ∈ Ob(C), the composi-
tion of morphisms in C determines a map

◦ : HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z).

Our goal in this section is to construct an analogous operation in the ∞-categorical setting.
Here the situation is more subtle: as we saw in §1.4.4, a pair of morphisms f : X → Y and
g : Y → Z in an ∞-category C generally do not have a unique composition. Nevertheless, we
will show that the mapping spaces of Construction 4.6.1.1 can be endowed with a composition
law which is well-defined up to homotopy (and even up to a contractible space of choices).
To describe this composition law, it will be convenient to introduce a generalization of
Construction 4.6.1.1.

Notation 4.6.9.1.01PG Let C be a simplicial set containing a (nonempty) finite sequence of
vertices X0, X1, . . . , Xn. We let HomC(X0, X1, · · · , Xn) denote the simplicial set given by
the fiber product

Fun(∆n, C)×Fun({0,1,··· ,n},C) {(X0, X1, · · · , Xn)}.

Example 4.6.9.2.01PH Let C be a simplicial set containing vertices X0 and X1. Then the sim-
plicial set HomC(X0, X1) of Notation 4.6.9.1 agrees with the morphism space HomC(X0, X1)
of Construction 4.6.1.1. In particular, if C is an ∞-category, then HomC(X0, X1) is a Kan
complex (Proposition 4.6.1.10).

Example 4.6.9.3.01PJ Let C be a simplicial set and let X0 be a vertex of C. Then the simplicial
set HomC(X0) of Notation 4.6.9.1 is isomorphic to ∆0.

Let C be a simplicial set containing a sequence of vertices X0, X1, . . . , Xn. For every
pair of integers 0 ≤ i < j ≤ n, precomposition with the edge ∆1 ≃ N•({i < j}) ↪→ ∆n

determines a restriction map HomC(X0, X1, · · · , Xn)→ HomC(Xi, Xj).

Proposition 4.6.9.4.01PK Let q : C → D be an inner fibration of simplicial sets, and let
X0, X1, . . . , Xn be vertices of C having images X0, X1, . . . , Xn ∈ D. Then the restriction
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map
HomC(X0, · · · , Xn)

θ

��
HomD(X0, · · · , Xn)×∏n

i=1 HomD(Xi−1,Xi)
∏n
i=1 HomC(Xi−1, Xi)

is a trivial Kan fibration of simplicial sets.

Proof. Let Spine[n] denote the spine of the standard n-simplex ∆n (see Example 1.5.7.7).
Unwinding the definitions, we see that θ is a pullback of the restriction map

θ′ : Fun(∆n, C)→ Fun(Spine[n], C)×Fun(Spine[n],D) Fun(∆n,D).

Since q is an inner fibration and the inclusion Spine[n] ↪→ ∆n is inner anodyne (Example
1.5.7.7), the morphism θ′ is a trivial Kan fibration (Proposition 4.1.4.4).

Corollary 4.6.9.5. 01PLLet C be an ∞-category containing objects X0, X1, . . . , Xn. Then the
restriction map

HomC(X0, X1, · · · , Xn)→
n∏
i=1

HomC(Xi−1, Xi)

is a trivial Kan fibration of simplicial sets.

Example 4.6.9.6. 01PMLet C be an ordinary category containing objects X0, X1, . . . , Xn, which
we also regard as objects of the ∞-category N•(C). Then the restriction map

θ : HomN•(C)(X0, X1, · · · , Xn)→
n∏
i=1

HomN•(C)(Xi−1, Xi)

is an isomorphism of (discrete) simplicial sets.

Remark 4.6.9.7. 01PNIt follows from Corollary 4.6.9.5 that the construction

(X0, X1, · · · , Xn) 7→ HomC(X0, X1, · · · , Xn)

endows the collection of objects of C with the structure of a Segal category (see Definition
[?]). We will return to this point in §[?].

Corollary 4.6.9.8. 01PPLet C be an ∞-category. For every sequence of objects X0, X1, · · · , Xn ∈
C, the simplicial set HomC(X0, X1, · · · , Xn) is a Kan complex.

Proof. Combine Corollary 4.6.9.5 with Proposition 4.6.1.10.
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Construction 4.6.9.9.01PQ Let C be an ∞-category containing objects X, Y , and Z. By virtue
of Corollary 4.6.9.5, the restriction map

θ : HomC(X,Y, Z)→ HomC(Y,Z)×HomC(X,Y )

is a trivial Kan fibration, so its homotopy class [θ] is an isomorphism in the homotopy
category hKan. We let

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z)

denote the morphism in hKan obtained by composing [θ]−1 with (the homotopy class of)
the restriction map HomC(X,Y, Z)→ HomC(X,Z). We will refer to ◦ as the composition
law on the ∞-category C.

Remark 4.6.9.10.01PR Let C be an ∞-category containing objects X, Y , and Z. Then the
composition law

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z)

of Construction 4.6.9.9 induces a map of sets

π0(HomC(Y,Z))× π0(HomC(X,Y ))→ π0(HomC(X,Z)).

Concretely, this map is given by the construction ([g], [f ]) 7→ [h], where h is a composition
of f and g in the sense of Definition 1.4.4.1.

Proposition 4.6.9.11 (Unitality).01PS Let C be an ∞-category containing a pair of objects X
and Y . Then:

(1) The composition

HomC(X,Y ) ≃ HomC(X,Y )× {idX} ↪→ HomC(X,Y )×HomC(X,X) ◦−→ HomC(X,Y )

is equal to the identity (in the homotopy category of Kan complexes hKan).

(2) The composition

HomC(X,Y ) ≃ {idY } ×HomC(X,Y ) ↪→ HomC(Y, Y )×HomC(X,Y ) ◦−→ HomC(X,Y )

is equal to the identity (in the homotopy category of Kan complexes hKan).

Proof. There is a diagram of Kan complexes

HomC(X,X, Y )

((��
HomC(X,Y ) id×{idX} //

66

HomC(X,Y )×HomC(X,X) ◦ // HomC(X,Y ),

https://kerodon.net/tag/01PQ
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where the left diagonal arrow is induced by the map σ0
1 : [2]→ [1] of Construction 1.1.2.1

and the right diagonal arrow is induced by the map δ1
2 : [1]→ [2] of Construction 1.1.1.4.

Here the solid arrows are well-defined as morphisms of simplicial sets, while the dotted arrow
is well-defined only as a morphism in the homotopy category hKan. We now observe that
the triangle on the left is strictly commutative, the triangle on the right commutes up to
homotopy (by the construction of the composition law ◦). Assertion (1) follows from the
observation that the composition of the diagonal arrows is the identity on the Kan complex
HomC(X,Y ) (since σ0

1 ◦ δ1
2 is the identity on the object [1] ∈∆). Assertion (2) follows by a

similar argument.

Proposition 4.6.9.12 (Associativity). 01PTLet C be an ∞-category containing objects W , X,
Y , and Z. Then the diagram

01PUHomC(Y, Z)×HomC(X,Y )×HomC(W,X) ◦ //

◦

��

HomC(X,Z)×HomC(W,X)

◦

��
HomC(Y,Z)×HomC(W,Y ) ◦ // HomC(W,Z)

(4.43)

commutes (in the homotopy category of Kan complexes hKan).

Proof. By virtue of Corollary 4.6.9.5, (4.43) is isomorphic to the diagram of restriction maps

HomC(W,X, Y, Z) //

��

HomC(W,X,Z)

��
HomC(W,Y,Z) // HomC(W,Z),

which commutes in the category of simplicial sets (and therefore also in the homotopy
category hKan).

Construction 4.6.9.13 (The Enriched Homotopy Category). 01PVLet hKan denote the homo-
topy category of Kan complexes, which we endow with the monoidal structure given by
cartesian products. To every ∞-category C, we define an hKan-enriched category hC as
follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y ∈ C, the Kan complex HomhC(X,Y ) is the morphism
space HomC(X,Y ) of Construction 4.6.1.1.

https://kerodon.net/tag/01PT
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• For every object X ∈ C, the unit map ∆0 → HomhC(X,X) is the homotopy class of
the inclusion {idX} ↪→ HomC(X,X).

• For every triple of objects X,Y, Z ∈ C, the composition law

◦ : HomhC(Y, Z)×HomhC(X,Y )→ HomhC(X,Z)

is given by Construction 4.6.9.9.

Note that this definition satisfies the axiomatics of Definition 2.1.7.1 by virtue of Propositions
4.6.9.11 and 4.6.9.12 We will refer to hC as the enriched homotopy category of the∞-category
C.

Remark 4.6.9.14.01PW Let C be an ∞-category and let hC denote the enriched homotopy
category of C. Then hC has an underlying category (Example 2.1.7.5), which we will also
denote by hC. Concretely, this category can be described as follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y ∈ C, we have

HomhC(X,Y ) = HomhKan(∆0,HomhC(X,Y )) ≃ π0(HomC(X,Y )).

In other words, HomhC(X,Y ) can be identified with the set of homotopy classes of
morphisms from X to Y in the ∞-category C.

By virtue of Remark 4.6.9.10, the composition of morphisms in the category hC agrees with
the composition law of Construction 1.4.5.1. In other words, we can identify hC with the
homotopy category constructed in §1.4.5.

Notation 4.6.9.15.01TP Let C be an ∞-category containing objects X, Y , and Z. For every
morphism f : X → Y in C, the composition law of Construction 4.6.9.9 restricts to a
morphism of Kan complexes

HomC(Y, Z) ≃ HomC(Y, Z)× {f} ↪→ HomC(Y, Z)×HomC(X,Y ) ◦−→ HomC(X,Z),

which is well-defined up to homotopy. Note that this morphism depends only on the
homotopy class [f ] of the morphism f . We will denote this map by HomC(Y, Z) ◦[f ]−−→
HomC(X,Z) and refer to it as precomposition with f . Similarly, for every morphism g :
Y → Z, the composition law of Remark 4.6.9.10 determines a homotopy class of morphisms
HomC(X,Y ) [g]◦−−→ HomC(X,Z), which we will refer to as postcomposition with g.

To describe the precomposition morphism of Notation 4.6.9.15 concretely, it is convenient
to replace the morphism spaces HomC(X,Z) and HomC(Y,Z) by their right-pinched variants
HomR

C (X,Z) = CX/×C{Z} and HomR
C (Y,Z) = CY/×C{Z}, respectively (see Construction

4.6.5.1).

https://kerodon.net/tag/01PW
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Proposition 4.6.9.16. 02LLLet C be an ∞-category and let f : X → Y be a morphism of C.
For every object Z ∈ C, the diagram of Kan complexes

CY/×C{Z}

ιRY,Z∼

��

Cf/×C{Z}∼
oo // CX/×C{Z}

ιRX,Z∼

��
HomC(Y, Z) ◦[f ] // HomC(X,Z)

commutes up to homotopy, where the vertical maps are the right-pinch inclusion morphisms
of Construction 4.6.5.7.

Remark 4.6.9.17. 02LMIn the situation of Proposition 4.6.9.16, the morphisms

ιRY,Z : CY/×C{Z} → HomC(Y,Z) ιRX,Z : CX/×C{Z} → HomC(X,Z)

are homotopy equivalences, by virtue of Proposition 4.6.5.10. Moreover, the restriction map
Cf/×C{Z} → CY/×C{Z} is a trivial Kan fibration (Corollary 4.3.6.13). Consequently, the
precomposition map HomC(Y, Z) ◦[f ]−−→ HomC(X,Z) is characterized (up to homotopy) by
the conclusion of Proposition 4.6.9.16.

Proof of Proposition 4.6.9.16. It will suffice to show that there exists a morphism of Kan
complexes

ιRX,Y,Z : Cf/×C{Z} → {f} ×HomC(X,Y ) HomC(X,Y, Z)

for which the diagram

CY/×C{Z}

ιRY,Z

��

Cf/×C{Z}oo

ιRX,Y,Z

��

// CX/×C{Z}

ιRX,Z

��
HomC(Y,Z) {f} ×HomC(Y,Z) HomC(X,Y, Z)oo // HomC(X,Z)

commutes (in the category of simplicial sets).
We first observe that there is a unique morphism of simplicial sets e : ∆2×Cf/ → ∆1⋆Cf/

with the property that e|∆1×Cf/
is given by projection onto the first factor, and e|{2}×Cf/

is
given by projection onto the second factor. Note that the composite map

∆2 × Cf/
e−→ ∆1 ⋆ Cf/ → C

can be identified with a morphism of simplicial sets e′ : Cf/ → Fun(∆2, C). Unwinding the
definition, we see that e′ restricts to a morphism of simplicial subsets

ιRX,Y,Z : Cf/×C{Z} → {f} ×HomC(X,Y ) HomC(X,Y, Z) ⊆ Fun(∆2, C)

https://kerodon.net/tag/02LL
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having the desired properties.

Corollary 4.6.9.18.02R3 Let C be an ∞-category and let f : X → Y and g : X → Z be
morphisms of C, which we identify with objects of the coslice ∞-category CX/. Then the
morphism space HomCX/

(f, g) can be identified with the homotopy fiber of the composition

map HomC(Y,Z) ◦[f ]−−→ HomC(X,Z) over the vertex g ∈ HomC(X,Z).

Proof. Using Proposition 4.6.9.16, we can replace the composition map HomC(Y, Z) ◦[f ]−−→
HomC(X,Z) with the restriction map θ : Cf/×C{Z} → CX/×C{Z}. The morphism θ is
a left fibration (Corollary 4.3.6.11). Since the left-pinched morphism space CX/×C{Z} =
HomL

C (X,Z) is a Kan complex (Proposition 4.6.5.5), it follows that θ is a Kan fibration (Corol-
lary 4.4.3.8). In particular, the homotopy fiber of the composition map HomC(Y,Z) ◦[f ]−−→
HomC(X,Z) over the vertex g can be identified with the fiber

θ−1{g} ≃ Cf/×CX/
{g} = HomL

CX/
(f, g),

which is homotopy equivalent to HomCX/
(f, g) by virtue of Proposition 4.6.5.10.

Let C be a locally Kan simplicial category, so that the homotopy coherent nerve Nhc
• (C) is

an ∞-category (Theorem 2.4.5.1). In this case, the composition law of Construction 4.6.9.9
has a direct description:

Proposition 4.6.9.19.02LN Let C be a locally Kan simplicial category. For every pair of objects
X,Y ∈ C, let θX,Y : HomC(X,Y )• → HomNhc

•
(X,Y ) denote the homotopy equivalence of

Kan complexes supplied by Remark 4.6.8.6. Then, for every triple of objects X,Y, Z ∈ C,
the diagram

HomC(Y,Z)• ×HomC(X,Y )•

[θY,Z×θX,Y ]∼

��

◦ // HomC(X,Z)•

[θX,Z ]∼

��
HomNhc

• (C)(Y,Z)×HomNhc
• (C)(X,Y ) ◦ // HomNhc

• (C)(X,Z)

commutes in the homotopy category hKan; here the lower horizontal map is the composition
law of Construction 4.6.9.9.

Proof. We will show that there exists a morphism of Kan complexes

θX,Y,Z : HomC(Y,Z)• ×HomC(X,Y )• → HomNhc
• (C)(X,Y, Z)

https://kerodon.net/tag/02R3
https://kerodon.net/tag/02LN


846 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

for which the diagram

HomC(Y,Z)• ×HomC(X,Y )•

θY,Z×θX,Y

��

◦ //

θX,Y,Z

((

HomC(X,Z)•

θX,Z

��
HomNhc

• (C)(Y, Z)×HomNhc
• (C)(X,Y ) HomNhc

• (C)(X,Y, Z)oo // HomNhc
• (C)(X,Z)

is commutative.
Fix an integer n ≥ 0. Let E denote the simplicial category with object set Ob(E) =

{x, y, z} and morphism spaces given by

HomE(x, x)• = {idx} HomE(y, y)• = {idy} HomE(z, z)• = {idz}

HomE(y, x)• = ∅ HomE(z, x)• = ∅ HomE(z, y)• = ∅

HomE(x, y)• = ∆n HomE(y, z)• = ∆n,

where the composition law HomE(y, z)• × HomE(x, y)• → HomE(x, z)• is an isomorphism
(so that HomE(x, z)• can be identified with the product ∆n ×∆n). Note that there is a
unique simplicial functor F : Path[∆2 ×∆n]• → E satisfying the following conditions:

• On objects, the functor F is given by the formula

F (i, j) =


x if i = 0
y if i = 1
z if i = 2.

• Let (i, j) and (i′, j′) be vertices of ∆2 ×∆n satisfying i < i′ and j ≤ j′, so that there
is a unique indecomposable morphism u from (i, j) to (i′, j′) in the path category
Path[∆2 × ∆n] (given by the chain {(i, j) < (i′, j′)}). If i = 0 and i′ = 1, then
F (u) is the vertex j′ of ∆n = HomE(x, y)•. If i = 1 and i′ = 2, then F (u) is the
vertex j′ of ∆n = HomE(y, z)•. If i = 0 and i′ = 2, then F (u) is the vertex (j′, j′) of
∆n ×∆n = HomE(x, z)•.

Let σ and τ be n-simplices of the Kan complexes HomC(Y, Z)• and HomC(X,Y )•,
respectively. Then there is a unique simplicial functor Gσ,τ : E → C satisfying the following
conditions:

• On objects, the functor Gσ,τ is given by Gσ,τ (x) = X, Gσ,τ (y) = Y , and Gσ,τ (z) = Z.

• The induced map ∆n = HomE(x, y)• → HomC(X,Y )• is the n-simplex τ .
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• The induced map ∆n = HomE(y, z)• → HomC(Y, Z)• is the n-simplex σ.

The composite simplicial functor

Path[∆2 ×∆n]• F−→ E Gσ,τ−−−→ C

determines a morphism from ∆2×∆n to the homotopy coherent nerve Nhc
• (C), which can be

identified with an n-simplex θX,Y,Z(σ, τ) of the Kan complex HomC(X,Y, Z)•. Allowing n to
vary, the construction (σ, τ) 7→ θX,Y,Z(σ, τ) determines a morphism of simplicial sets θX,Y,Z :
HomC(Y,Z)• ×HomC(X,Y )• → HomNhc

• (C)(X,Y, Z) having the desired properties.

Corollary 4.6.9.20.02LP Let C be a locally Kan simplicial category, and let U : hC → hNhc
• (C)

be the isomorphism of homotopy categories supplied by Proposition 2.4.6.9. Then the
homotopy equivalences HomC(X,Y )• → HomNhc

•
(X,Y ) of Remark 4.6.8.6 promote U to an

isomorphism of hKan-enriched categories. Here hC is endowed with the hKan-enrichment
of Remark 3.1.5.12 and hNhc

• (C) is endowed with the hKan-enrichment of Construction
4.6.9.13.

Let C be a differential graded category. For every pair of objects X,Y ∈ C, we let
HomC(X,Y )∗ denote the chain complex of morphisms from X to Y and K(HomC(X,Y )∗)
the associated Eilenberg-MacLane space (Construction 2.5.6.3). In what follows, let us write

ρY,X : K(HomC(X,Y )∗) ↪→ HomNdg
• (C)(X,Y )

for the composition of the isomorphism K(HomC(X,Y )∗) ≃ HomL
Ndg
• (C)(X,Y ) of Exam-

ple 4.6.5.15 with the pinch inclusion morphism HomL
Ndg
• (C)(X,Y ) ↪→ HomNdg

• (C)(X,Y ) of
Construction 4.6.5.7. We then have the following:

Proposition 4.6.9.21.03E0 Let C be a differential graded category containing objects X, Y , and
Z, so that the composition law

◦ : HomC(Y,Z)∗ ⊗HomC(X,Y )∗ → HomC(X,Z)∗

induces a bilinear map of simplicial abelian groups

µ : K(HomC(Y, Z)∗)×K(HomC(X,Y )∗)→ K(HomC(X,Z)∗)

(see Proposition 2.5.9.1). Then the diagram of Kan complexes

03E1 K(HomC(Y,Z)∗)×K(HomC(X,Y )∗)
µ //

ρZ,Y ×ρY,X

��

K(HomC(X,Z)∗)
ρZ,X

��
HomNdg

• (C)(Y,Z) // HomNdg
• (C)(X,Y ) // HomNdg

• (C)(X,Z)
(4.44)

https://kerodon.net/tag/02LP
https://kerodon.net/tag/03E0
https://kerodon.net/tag/03E1


848 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

commutes up to homotopy, where the bottom horizontal map is the composition law of
Construction 4.6.9.9.

Remark 4.6.9.22. 03E2In the situation of Proposition 4.6.9.21, the morphisms ρY,X , ρZ,Y , and
ρZ,X are homotopy equivalences (Proposition 4.6.5.10). Consequently, Proposition 4.6.9.21
determines the composition law on the hKan-enriched homotopy category of Ndg

• (C).

Proof of Proposition 4.6.9.21. Let C∆ denote the underlying simplicial category of the dif-
ferential graded category C (Construction 2.5.9.2). By virtue of Exercise 4.6.8.4, we can
identify (4.44) with the outer rectangle of a larger diagram

K(HomC(Y, Z)∗)×K(HomC(X,Y )∗)
µ //

��

K(HomC(X,Z)∗)

��
HomNhc

• (C∆)(Y, Z)×HomNhc
• (C∆)(X,Y ) //

��

HomNhc
• (C∆)(X,Z)

��
HomNdg

• (C)(Y, Z) // HomNdg
• (C)(X,Y ) // HomNdg

• (C)(X,Z),

where middle horizontal map is given by the composition law of the ∞-category Nhc
• (C∆).

We now observe that the upper square commutes up to homotopy by virtue of Proposition
4.6.9.19, and the lower square commutes up to homotopy by the functoriality of Construction
4.6.9.9.

4.7 Size Conditions on ∞-Categories

03PPRecall that a small category C consists of the following data:

• A set Ob(C), whose elements are referred to as objects of C.

• For every pair of objects X,Y ∈ C, a set HomC(X,Y ), whose elements are referred to
as morphisms from X to Y .

• For every triple of objects X,Y, Z ∈ C, a composition law

◦ : HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z)

which is required to be unital and associative.

This definition treats categories as algebraic objects akin to groups (though somewhat more
general), which is perfectly adequate for many purposes. However, it is often useful to apply
the theory to categories which are not small, such as the category of sets C = Set. In this
case, Ob(C) is the collection of all sets, and must be treated with a bit of care to avoid
paradoxes.

https://kerodon.net/tag/03E2
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Example 4.7.0.1.03PQ When speaking informally, it is common to say that the category Set
has all limits and colimits. A more precise statement is that the category Set has all small
limits and colimits; that is, every diagram F : J → Set indexed by a small category J has a
limit and colimit. Here the size restriction on J cannot be omitted. For example, if {Sj}j∈J
is a collection of sets indexed by another set J , then it is permissible to form the coproduct∐
j∈JSj . However, it is not permissible to form the coproduct ∐

S∈Ob(Set)S of all sets.

In the setting of higher category theory, one encounters similar issues. In §1.4, we defined
an ∞-category to be a simplicial set C• which satisfies a filling condition for inner horns
(Definition 1.4.0.1). By analogy with the discussion above, we might be better to refer to
such objects as small ∞-categories. However, we will often want to apply the ideas developed
in this book to ∞-categories C• which are not small, because the collections n-simplices
Cn are “too big” to be sets (this situation arises, for example, if C• is the nerve of a large
category). For the most part, we will ignore the set-theoretic issues which are raised by
allowing such objects into our discourse. However, this is not always possible: as Example
4.7.0.1 illustrates, it is sometimes important to track the distinction between “large” and
“small.”

The first goal of this section is to introduce some language for quantifying the sizes of
category-theoretic objects. Let κ be an infinite cardinal. We will say that a set is κ-small if
its cardinality is strictly smaller than κ (Definition 4.7.3.1). We will say that a simplicial set
S is κ-small if the collection of nondegenerate simplices of S is κ-small (Definition 4.7.4.1).
We summarize the basic properties of κ-small sets and simplicial sets in §4.7.3 and §4.7.4,
respectively. Beware that κ-smallness is not a homotopy invariant condition: that is, it is
possible for a κ-small ∞-category to be equivalent to an ∞-category which is not κ-small.
In §4.7.5, we address this point by introducing the notion of essential smallness. If κ is an
uncountable cardinal, we say that an∞-category C is essentially κ-small if it is equivalent to
a κ-small ∞-category (Definition 4.7.5.1). One can formulate this condition also in the case
κ = ℵ0, but it is poorly behaved: it is very rare for finite simplicial sets to be ∞-categories
(see Warning 4.7.5.6).

The second goal of this section is to provide a concrete criterion which can be used
to test if an ∞-category is essentially κ-small. For simplicity, let us assume that κ is an
(uncountable) regular cardinal. We say that an ∞-category C is locally κ-small if, for every
pair of objects C,D ∈ C, the Kan complex HomC(C,D) is essentially κ-small (Definition
4.7.8.1). In §4.7.8, we show that C is essentially κ-small if and only if it locally κ-small and
the set of isomorphism classes π0(C≃) is κ-small (Proposition 4.7.8.7). We are therefore
reduced to the problem of testing essential κ-smallness of Kan complexes. In §4.7.7, we
address this problem by showing that a Kan complex X is essentially κ-small if and only
if the set π0(X) is κ-small and the homotopy groups {πn(X,x)}n>0 are κ-small for every
vertex x ∈ X (Proposition 4.7.7.1).

https://kerodon.net/tag/03PQ
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The proofs of Propositions 4.7.8.7 and 4.7.7.1 will use a common strategy. In both cases,
the hard part is to show that if C is an ∞-category for which certain homotopy-invariant
quantities are bounded in size, then C is equivalent to an ∞-category C0 for which the
collection of simplices is bounded in size. We will prove this using the theory of minimal
models. We say that an ∞-category C0 is minimal if the datum of a simplex σ : ∆n → C is
determined by its homotopy class relative to the boundary ∂∆n (see Definition 4.7.6.4). In
§4.7.6, we will prove the following:

• For every ∞-category C, there exists an equivalence of ∞-categories C0 → C, where
C0 is minimal (Proposition 4.7.6.15). Moreover, C0 is uniquely determined up to
isomorphism (Corollary 4.7.6.14).

• If C0 is a minimal ∞-category, then every equivalence of ∞-categories C0 → C is a
monomorphism of simplicial sets (Lemma 4.7.6.11). Consequently, C0 is essentially
κ-small if and only if it is κ-small (Corollary 4.7.6.12).

Remark 4.7.0.2. 03PRThroughout this section, we will need some elementary properties of
cardinals and cardinal arithmetic. For the reader’s convenience, we briefly review the
set-theoretic prerequisites in §4.7.1 and §4.7.2.

Remark 4.7.0.3. 03PSThe notion of minimal ∞-category was introduced by Joyal in [30]. In
the setting of Kan complexes, the theory of minimal models is much older (see [2]).

Remark 4.7.0.4. 03PTLet κ be an uncountable regular cardinal. We will see later that the
essentially κ-small ∞-categories admit a more intrinsic characterization: they are precisely
the κ-compact objects of the ∞-category QC of ∞-categories (see Proposition [?]).

Remark 4.7.0.5. 03PUThroughout this book, we will make reference to a dichotomy between
“small” and “large” mathematical objects. We will generally take a somewhat informal view
of this dichotomy, taking care only to avoid maneuvers which are obviously illegitimate (see
Example 4.7.0.1). However, the reader who wishes to adopt a more scrupulous approach
could proceed (within the framework of Zermelo-Fraenkel set theory) as follows:

• Assume the existence of an uncountable strongly inaccessible cardinal κ (see Definition
4.7.3.20).

• Declare that an ∞-category C is small (essentially small, locally small) if it is κ-
small (essentially κ-small, locally κ-small), and apply similar conventions to other
mathematical objects of interest (such as sets and categories).

4.7.1 Ordinals and Well-Orderings

03PVIn this section, we review some standard facts about ordinals and well-ordered sets.
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Definition 4.7.1.1.034C Let (S,≤) be a partially ordered set. We say that (S,≤) is well-founded
if every nonempty subset S0 ⊆ S contains a minimal element: that is, an element s ∈ S0 for
which the set {t ∈ S0 : t < s} is empty.

Exercise 4.7.1.2.03PW Let (S,≤) be a partially ordered set. Show that the following conditions
are equivalent:

(1) The partial order ≤ is well-founded: that is, every nonempty subset of S contains a
minimal element.

(2) The set S does not contain an infinite descending sequence s0 > s1 > s2 > · · · .

Example 4.7.1.3.03PX Every finite partially ordered set (S,≤) is well-founded.

Example 4.7.1.4.03PY Let S be any set, and let ≤ be the discrete partial ordering of S: that
is, we have s ≤ t if and only if s = t. Then (S,≤) is well-founded.

Remark 4.7.1.5.03PZ Let (S,≤) be a well-founded partially ordered set. Then every subset
S0 ⊆ S is also well-founded (when endowed with the partial order given by the restriction of
≤).

Definition 4.7.1.6.03Q0 Let (S,≤) be a linearly ordered set. We say that (S,≤) is well-ordered
if it is well-founded when regarded as a partially ordered set: that is, if every nonempty
subset S0 ⊆ S contains a smallest element. In this case, we will refer to the relation ≤ as a
well-ordering of the set S.

Definition 4.7.1.7 (Ordinals).03Q1 An ordinal is an isomorphism class of well-ordered sets. If
(S,≤) is a well-ordered set, then its isomorphism class is an ordinal which we will refer to as
the order type of S.

Notation 4.7.1.8.03Q2 We will typically use lower-case Greek letters to denote ordinals.

Example 4.7.1.9 (Finite Ordinals).03Q3 Let n be a nonnegative integer. Up to isomorphism,
there is a unique linearly ordered set S having exactly n elements, which we can identify with
the set {0 < 1 < · · · < n− 1}. We will abuse notation by identifying n with the order type
of the linearly ordered set S. By means of this convention, we can view every nonnegative
integer as an ordinal. We say that an ordinal α is finite it arises in this way (that is, if it is
the order type of a finite linearly ordered set), and infinite if it does not.

Example 4.7.1.10.03Q4 The set of nonnegative integers Z≥0 = {0 < 1 < 2 < · · · } is well-ordered
(with respect to its usual ordering). Its order type is an infinite ordinal, which we denote by
ω.
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By definition, well-ordered sets (S,≤) and (T,≤) have the same order type if there is
an order-preserving bijection f : S ∼−→ T . We will show in a moment that in this case,
the bijection f is uniquely determined (Corollary 4.7.1.16). First, let us introduce a bit of
additional terminology.

Definition 4.7.1.11. 03Q5Let (S,≤) be a linearly ordered set. We say that a subset S0 ⊆ S is
an initial segment if it is closed downwards: that is, for every pair of elements s ≤ s′ of S, if
s′ is contained in S0, then s is also contained in S0. If (T,≤) is another linearly ordered set,
we say that a function f : S ↪→ T is an initial segment embedding if it is an isomorphism (of
linearly ordered sets) from S to an initial segment of T .

Example 4.7.1.12. 03Q6Let (S,≤) be a linearly ordered set. Then the identity morphism
idS : S ∼−→ S is an initial segment embedding.

Remark 4.7.1.13 (Transitivity). 03Q7Let (R,≤), (S,≤), and (T,≤) be linearly ordered sets.
Suppose that f : R ↪→ S and g : S ↪→ T are initial segment embeddings. Then the
composition (g ◦ f) : R ↪→ T is also an initial segment embedding.

Proposition 4.7.1.14. 03Q8Let (S,≤) and (T,≤) be linearly ordered sets, and let f, f ′ : S ↪→ T

be strictly increasing functions. Suppose that S is well-ordered and that f is an initial
segment embedding. Then, for each s ∈ S, we have f(s) ≤ f ′(s).

Proof. Set S0 = {s ∈ S : f ′(s) < f(s)}. We wish to show that S0 is empty. Assume
otherwise. Since S is well-ordered, there is a least element s ∈ S0. Since f is an initial
segment embedding, the inequality f ′(s) < f(s) implies that we can write f ′(s) = f(t)
for some t < s. Then t /∈ S0, so we must have f(t) ≤ f ′(t). It follows that f ′(s) ≤ f ′(t),
contradicting our assumption that the function f ′ is strictly increasing.

Corollary 4.7.1.15 (Rigidity). 03Q9Let (S,≤) and (T,≤) be linearly ordered sets, and let
f, f ′ : S ↪→ T be initial segment embeddings. If S is well-ordered, then f = f ′.

Corollary 4.7.1.16. 03QALet (S,≤) and (T,≤) be well-ordered sets. If there exists an order-
preserving bijection f : S ∼−→ T , then f is unique.

Corollary 4.7.1.17. 03QBLet (S,≤) and (T,≤) be well-ordered sets. Then one of the following
conditions is satisfied:

(1) There exists an initial segment embedding f : S ↪→ T .

(2) There exists an initial segment embedding g : T ↪→ S.

Proof. For each element s ∈ S, let S≤s denote the initial segment {s′ ∈ S : s′ ≤ s}. Let
S0 ⊆ S denote the collection of elements s ∈ S for which there exists an initial segment
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embedding f≤s : S≤s ↪→ T . Note that, if this condition is satisfied, then the morphism
f≤s is uniquely determined (Corollary 4.7.1.15). Moreover, if s′ ≤ s, then composite map
S≤s′ ⊆ S≤s

f≤s−−→ T is also an initial segment embedding; it follows that s′ belongs to S0, and
f |≤s′ is the restriction of f |≤s to S≤s′ . Consequently, the construction s 7→ fs(s) determines
a function f : S0 → T , which is an isomorphism of S0 with an initial segment T0 ⊆ T . If
S0 = S, then f is an initial segment embedding from S to T . If T0 = T , then g = f−1 is an
initial segment embedding from T to S. Assume that neither of these conditions is satisfied:
that is, the sets S \S0 and T \T0 are both nonempty. Let s be a least element of S \S0, and
let t be a least element of T \ T0. Then f extends uniquely to an initial segment embedding

f≤s : S≤s = S0 ∪ {s}
∼−→ T0 ∪ {t} ⊆ T s 7→ t.

The existence of f≤s shows that s belongs to S0, which is a contradiction.

Remark 4.7.1.18.03QC In the situation of Corollary 4.7.1.17, suppose that conditions (1) and (2)
are both satisfied: that is, there exist initial segment embeddings f : S ↪→ T and g : T ↪→ S.
Then g ◦ f is an initial segment embedding of S into itself, and therefore coincides with
idS (Corollary 4.7.1.16). The same argument shows that f ◦ g = idT , so that f and g are
mutually inverse bijections. In particular, S and T have the same order type.

Definition 4.7.1.19.03QD Let α and β be ordinals, given by the order types of well-ordered sets
(S,≤) and (T,≤). We write α ≤ β if there exists an initial segment embedding from (S,≤)
to (T,≤) (note that this condition depends only on the order types of S and T ).

Proposition 4.7.1.20.03QE The relation ≤ of Definition 4.7.1.19 determines a linear ordering
on the collection of ordinals.

Proof. The reflexivity of the relation ≤ follows from Example 4.7.1.12, and the transitivity
follows from Remark 4.7.1.13. Let α and β be ordinals, which we identify with the order
types of well-ordered sets (S,≤) and (T,≤), respectively. Invoking Corollary 4.7.1.17, we
deduce that α ≤ β or β ≤ α. Moreover, if both conditions are satisfied, then Remark 4.7.1.18
shows that α = β.

Remark 4.7.1.21.03QF Let (S,≤) and (T,≤) be well-ordered sets. The following conditions are
equivalent:

(1) There exists an initial segment embedding f : S ↪→ T .

(2) There exists a strictly increasing function f : S ↪→ T .

The implication (1) ⇒ (2) is immediate from the definitions. To prove the converse, let
f : S ↪→ T be a strictly increasing function, and suppose that there is no initial segment
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embedding from S to T . Invoking Corollary 4.7.1.17, we deduce that there is an initial
segment embedding g : T ↪→ S. The composition (g ◦ f) : S ↪→ S is strictly increasing, and
therefore satisfies (g ◦ f)(s) ≥ s for each s ∈ S (Proposition 4.7.1.14). Since the image of
g is an initial segment S0 ⊆ S, we must have S0 = S. It follows that g−1 : S ∼−→ T is an
isomorphism of linearly ordered sets, contradicting our assumption.

We now show that, for every ordinal α, there is a preferred candidate for a well-ordered
set of order type α: namely, the collection Ord<α of ordinals smaller than α.

Proposition 4.7.1.22. 03QGLet (S,≤) be a well-ordered set, and let α denote its order type.
Then there is a unique order-preserving bijection S → Ord<α, which carries each element
s ∈ S to the order type of the well-ordered set S<s = {s′ ∈ S : s′ < s}.

Proof. We will prove existence; uniqueness then follows from Corollary 4.7.1.16. For each
s ∈ S, let αs denote the order type of the set S<s (which is well-ordered, by virtue of Remark
4.7.1.5). Note that, since there is an initial segment embedding S<s ↪→ S which is not
bijective, we must have αs < α (Remark 4.7.1.18). Consequently, the construction s 7→ αs
determines a function S → Ord<α. If s < t in S, then there is an initial segment embedding
from S<s to S<t which is not bijective, so that αs < αt (again by Remark 4.7.1.18). To
complete the proof, it will suffice to show that the function s 7→ αs is surjective. Let β be
an ordinal which is strictly smaller than α. Then β is the order type of some initial segment
S0 ⊊ S. Since S is well-ordered, the set S \ S0 has a smallest element s. It follows that
S0 = S<s, so that β = αs.

Corollary 4.7.1.23. 03QHFor every ordinal α, Ord<α is a well-ordered set of order type α.

Corollary 4.7.1.24. 03QJLet S be any nonempty collection of ordinals. Then S has a least
element.

Proof. Choose an ordinal α ∈ S. If α is a least element of S, then we are done. Otherwise,
we can replace S by the nonempty subset S<α = {β ∈ S : β < α}. Note that S<α is a
nonempty subset of Ord<α, and therefore has a smallest element by virtue of Corollary
4.7.1.23.

Warning 4.7.1.25 (The Burali-Forti Paradox). 03QKOne can informally summarize Corollary
4.7.1.24 by saying that the collection Ord of all ordinals is well-ordered (with respect to the
order relation of Definition 4.7.1.19). Beware that one must treat this statement with some
care to avoid paradoxes. The proof of Proposition 4.7.1.22 shows that the order type of Ord
is strictly larger than α, for each ordinal α ∈ Ord. This paradox has a standard remedy: we
regard the collection Ord as “too large” to form a set (so that its order type is not regarded
as an ordinal).
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Definition 4.7.1.26.03QL Let (S,≤) and (T,≤) be linearly ordered sets. We say that a function
f : S → T is cofinal if it is nondecreasing and, for every element t ∈ T , there exists an
element s ∈ S satisfying f(s) ≥ t.

Proposition 4.7.1.27.03QM Let (T,≤) be a linearly ordered set. There exists a well-ordered
subset S ⊆ T for which the inclusion map S ↪→ T is cofinal.

Proof. Let {Sq}q∈Q be the collection of all well-ordered subsets of T . We regard Q as a
partially ordered set, where q ≤ q′ if the set Sq is an initial segment of Sq′ . This partial
ordering satisfies the hypotheses of Zorn’s lemma, and therefore contains a maximal element
Smax. To complete the proof, it will suffice to show that the inclusion Smax ↪→ T is cofinal.
Assume otherwise: then there exists an element t ∈ T satisfying s < t for each s ∈ Smax.
Then Smax is an initial segment of the well-ordered subset Smax ∪ {t} ⊆ T , contradicting
the maximality of Smax.

Definition 4.7.1.28 (Cofinality).03QN Let (T,≤) be a linearly ordered set. We let cf(T ) denote
the smallest ordinal α for which there exists a well-ordered set (S,≤) of order type α and a
cofinal function f : S → T . We refer to cf(T ) as the cofinality of the linearly ordered set T .

If β is an ordinal, let cf(β) denote the cofinality cf(T ), where (T,≤) is any well-ordered
set of order type β. We refer to cf(β) as the cofinality of β.

Remark 4.7.1.29.03QP For any linearly ordered set (T,≤), the identity map id : T → T is cofinal.
Consequently, if T is well-ordered set of order type α, then we have cf(α) = cf(T ) ≤ α.
Beware that the inequality is often strict.

Example 4.7.1.30.03QQ Let (T,≤) be a linearly ordered set. Then cf(T ) = 0 if and only if T is
empty.

Example 4.7.1.31.03QR Let (T,≤) be a nonempty linearly ordered set. The following conditions
are equivalent:

• The cofinality cf(T ) is a positive integer.

• The cofinality cf(T ) is equal to 1.

• The linearly ordered set T contains a largest element.

Example 4.7.1.32.03QS Let (T,≤) be a linearly ordered set. Then the cofinality cf(T ) is equal
to ω if and only if T contains an unbounded increasing sequence {t0 < t1 < t2 < · · · }.

Proposition 4.7.1.33.03QT Let (T,≤) be a linearly ordered set. Then the cofinality cf(T ) is the
smallest ordinal α with the following property:
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(∗) There exists a well-ordered set (S,≤) of order type α and a function f : S → T which is
unbounded (that is, every element t ∈ T satisfies t ≤ f(s) for some s ∈ S). Here we
do not require f to be nondecreasing.

Proof. It is clear that the cofinality cf(T ) satisfies condition (∗). For the converse, assume
that (S,≤) is a well-ordered set of order type α and that f : S → T is an unbounded
function. Let us say that an element s ∈ S is good if, for every element s′ < s of S, we
have f(s′) < f(s). Let S0 be the collection of good elements of S, and set f0 = f |S0 . By
construction, the function f0 is strictly increasing. Moreover, the order type of S0 is ≤ α

(Remark 4.7.1.21). To complete the proof, it will suffice to show that f0 : S0 ↪→ T is
cofinal. Fix an element t ∈ T , and set S≥t = {s ∈ S : t ≤ f(s)}. We wish to show that the
intersection S≥t ∩ S0 is nonempty. We first observe that S≥t is nonempty (by virtue of our
assumption that f is unbounded). Since (S,≤) is well-ordered, the set S≥t contains a least
element s. We claim that s belongs to S0. Assume otherwise: then there exists some s′ < s

satisfying f(s′) ≥ f(s). It follows that s′ belongs to S≥t, contradicting the minimality of
s.

We conclude this section by observing that well-orderings exist in abundance.

Theorem 4.7.1.34 (The Well-Ordering Theorem). 03QUEvery set S admits a well-ordering.

By virtue of Example 4.7.1.4, Theorem 4.7.1.34 is a special case of the following more
refined result:

Proposition 4.7.1.35. 03QVLet (S,⪯) be a well-founded partially ordered set. Then there exists
a well-ordering ≤ on S which refines ⪯ in the following sense: for every pair of elements
s, t ∈ S satisfying s ⪯ t, we also have s ≤ t.

Proof. Let Q denote the set of ordered pairs (T,≤T ), where T is a subset of S which is
closed downward with respect to ⪯ and ≤T is a well-ordering of T which refines ⪯. We
regard Q as a partially ordered set, where (T,≤T ) ≤ (T ′,≤T ′) if T is an initial segment of
T ′ (with respect to the ordering ≤T ′), and the ordering ≤T coincides with the restriction of
≤T ′ . The partially ordered set Q satisfies the hypotheses of Zorn’s lemma, and therefore
contains a maximal element (Tmax,≤Tmax). To complete the proof, it will suffice to show that
Tmax = S. Suppose otherwise. Then the set S \ Tmax is nonempty, and therefore contains
an element s which is minimal with respect to the ordering ⪯. Set T ′ = Tmax ∪ {s}, and
extend ≤Tmax to a linear ordering ≤T ′ of T ′ by declaring s to be a largest element. Then
(T ′,≤T ′) is an element of Q, contradicting the maximality of the pair (Tmax,≤Tmax).

4.7.2 Cardinals and Cardinality

03QW
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Let S and T be sets. We say that S and T have the same cardinality if there exists a
bijection S ∼−→ T . This is an equivalence relation on the collection of sets, whose equivalence
classes are called cardinals. Following a standard convention in set theory, it will be
convenient to view a cardinal as a special type of ordinal.

Definition 4.7.2.1.03QX Let S be a set. We let |S| denote the smallest ordinal α for which
there exists a well-ordering of S having order type α. We will refer to |S| as the cardinality
of the set S. A cardinal is an ordinal κ which has the form |S|, for some set S.

Remark 4.7.2.2.03QY Let S be a set, and let A be the collection of all ordinals which arise as
the order types of well-orderings on S. The collection A is nonempty (Theorem 4.7.1.34),
and therefore contains a smallest element (Corollary 4.7.1.24). It follows that the cardinality
|S| is well-defined.

Proposition 4.7.2.3.03QZ Let S and T be sets. Then |S| ≤ |T | if and only if there exists a
monomorphism f : S ↪→ T .

Proof. Choose well-orderings (S,≤S) and (T,≤T ) having order types |S| and |T |, respectively.
If |S| ≤ |T |, then there is an isomorphism of (S,≤S) with an initial segment of (T,≤T ); this
isomorphism in particular gives a monomorphism of sets S ↪→ T . For the converse, suppose
that there exists a monomorphism f : S ↪→ T . Then there is a unique linear ordering ≤′S on
the set S for which f defines a strictly increasing function (S,≤′S)→ (T,≤T ). Then ≤′S is a
well-ordering (Remark 4.7.1.5); let α denote its order type. We then have |S| ≤ α ≤ |T |,
where the second inequality follows from Remark 4.7.1.21.

Corollary 4.7.2.4.03R0 Let S and T be sets. Then S and T have the same cardinality if and
only if there exists a bijection S

∼−→ T .

Proof. Choose well-orderings (S,≤S) and (T,≤T ) having order types |S| and |T |, respectively.
If |S| = |T |, then there is an isomorphism of linearly ordered sets (S,≤S) ≃ (T,≤T ), and
therefore a bijection S

∼−→ T . The converse follows from Proposition 4.7.2.3.

Corollary 4.7.2.5.03R1 Let (S,≤) be a well-ordered set of order type α. Then the cardinality
κ = |S| is the largest cardinal which satisfies κ ≤ α.

Proof. The inequality κ ≤ α follows immediately from the definition of |S|. Let λ be another
cardinal satisfying λ ≤ α. Then λ is the order type of an initial segment S0 ⊆ S, so we have
λ = |S0| ≤ |S| = κ.

Remark 4.7.2.6.03R2 Let κ be an ordinal. The following conditions are equivalent:

(1) The ordinal κ is a cardinal. That is, there exists a set S such that κ = |S|.

(2) For every well-ordered set (S,≤) of order type κ, we have κ = |S|.
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(3) The set of ordinals Ord<κ has cardinality κ.

See Corollary 4.7.1.23.

Example 4.7.2.7 (Finite Cardinals). 03R3Let n be a nonnegative integer. Then a set S has
cardinality n (in the sense of Definition 4.7.2.1) if and only if it has exactly n elements: that
is, there exists a bijection S ≃ {0 < 1 < · · · < n− 1}. In particular, n is a cardinal. We will
say that a cardinal κ is finite if it arises in this way (that is, if it is the cardinality of a finite
set); otherwise, we say that κ is infinite.

Proposition 4.7.2.8 (Cantor’s Diagonal Argument). 03R4Let S be a set, and let P (S) denote
the collection of all subsets of S. Then |S| < |P (S)|.

Proof. The construction s 7→ {s} determines an injection from S to P (S), which shows that
|S| ≤ |P (S)|. To show that the inequality is strict, it suffices to observe that no function
f : S → P (S) can be surjective, since the set T = {s ∈ S : s /∈ f(s)} is an element of P (S)
which does not belong to the image of f .

Remark 4.7.2.9. 03R5The collection of cardinals is well-ordered. That is, if S is any nonempty
collection of cardinals, then S contains a smallest element (see Corollary 4.7.1.24).

Example 4.7.2.10 (The First Infinite Cardinal). 03R6We let ℵ0 denote the smallest infinite
cardinal. Alternatively, ℵ0 can be defined as the ordinal ω of Example 4.7.1.10 (the order
type of the linearly ordered set {0 < 1 < 2 < · · · }). A set S has cardinality ℵ0 if and only if
it is countably infinite.

Example 4.7.2.11 (Successor Cardinals). 03R7Let κ be a cardinal. Proposition 4.7.2.8 implies
that there exists another cardinal λ such that κ < λ. By virtue of Remark 4.7.2.9, there is a
smallest cardinal with this property. We denote this cardinal by κ+ and refer to it as the
successor of κ.

Example 4.7.2.12 (The First Uncountable Cardinal). 03R8We say that a cardinal κ is un-
countable if it is strictly larger than ℵ0. By virtue of Remark 4.7.2.9, there is a smallest
uncountable cardinal, which we denote by ℵ1. In other words, ℵ1 is the successor cardinal
ℵ+

0 .

Remark 4.7.2.13 (The Continuum Hypothesis). 03R9Let R be the set of real numbers. Then
|R| is an uncountable cardinal (it is also the cardinality of the power set P (Z)). The
continuum hypothesis is the assertion that |R| coincides with the smallest uncountable
cardinal ℵ1. This was a central question in the early days of set theory (and first of Hilbert’s
celebrated list of problems for the mathematics of the 20th century). It is now known to be
neither provable nor disprovable from the axioms of Zermelo-Fraenkel set theory (assuming
that they are consistent), thanks to the work of Gödel ([26]) and Cohen ([9], [10]).
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Proposition 4.7.2.14.03RA Let (T,≤) be a linearly ordered set and let κ = cf(T ) be its cofinality
(Definition 4.7.1.28). Then κ is a cardinal.

Proof. Choose a well-ordered set (S,≤) of order type κ and a cofinal function f : S → T . If
κ is not a cardinal, then we can choose another well-ordering ≤′ of S having order type α < κ.
Applying Proposition 4.7.1.33, we obtain cf(T ) ≤ α < κ, which is a contradiction.

4.7.3 Small Sets

03RB We now introduce some terminology which will be useful for measuring the sizes of
various mathematical objects.

Definition 4.7.3.1.03RC Let κ be a cardinal. We say that a set S is κ-small if the cardinality
|S| is strictly smaller than κ.

Example 4.7.3.2.03RD Let ℵ0 denote the first infinite cardinal (Example 4.7.2.10). Then a set
S is ℵ0-small if and only if it is finite.

Example 4.7.3.3.03RE Let ℵ1 denote the first uncountable cardinal (Example 4.7.2.12). Then
a set S is ℵ1-small if and only if it is countable.

Remark 4.7.3.4.03RF Let κ be a cardinal and let T be a κ-small set. Then:

• Any subset of T is also κ-small (see Proposition 4.7.2.3).

• The set T is λ-small for every cardinal λ ≥ κ.

• For every surjective morphism of sets T ↠ S, the set S is also κ-small.

Proposition 4.7.3.5.03RG Let κ be an infinite cardinal. Then the collection of κ-small sets is
closed under finite products.

Proof. We first note that the collection of finite sets is closed under finite products. It will
therefore suffice to show that, for every infinite cardinal λ, the following condition is satisfied:

(∗λ) If S and T are sets of cardinality ≤ λ, then the product S × T has cardinality ≤ λ.

By virtue of Remark 4.7.2.9, we may assume that condition (∗µ) is satisfied for every cardinal
µ < λ. Without loss of generality, we may assume that S = Ord<λ = T , where Ord<λ denotes
the collection of ordinals smaller than λ. Given a pair of elements (α, β), (α′, β′) ∈ S × T ,
let us write (α′, β′) ⪯ (α, β) if either max(α′, β′) < max(α, β), or max(α′, β′) = max(α, β)
and α′ < α, or max(α′, β′) = max(α, β) and α′ = α and β′ ≤ β. The relation ⪯ defines a
well-ordering of the set S × T . To prove (∗λ), it will suffice to show this well ordering has
order type ≤ λ. Assume otherwise. Then there exists an element (α, β) ∈ S × T such that
λ is the order type of the initial segment K = {(α′, β′) ∈ S × T : (α′, β′) ≺ (α, β)}. Note
that K is a subset of the product Ord≤γ and Ord≤γ , where γ = max(α, β). Our inductive
hypothesis guarantees that K has cardinality < λ, contradicting Corollary 4.7.2.5.
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Corollary 4.7.3.6. 03RHLet κ be an infinite cardinal. Then the collection of κ-small sets is
closed under finite coproducts.

Proof. Let {Si}i∈I be a finite collection of κ-small sets. Then the disjoint union ∐
i∈ISi

can be identified with a subset of the product ∏
i∈I(Si

∐
{i}), which is κ-small by virtue of

Proposition 4.7.3.5.

We will need the following generalization of Corollary 4.7.3.6:

Proposition 4.7.3.7. 03RJLet κ and λ be cardinals, where λ is infinite. The following conditions
are equivalent:

(1) The cardinal κ is strictly smaller than the cofinality cf(λ) (see Definition 4.7.1.28).

(2) Let {Ts}s∈S be a collection of λ-small sets indexed by a set S of cardinality ≤ κ. Then
the coproduct

∐
s∈STs is λ-small.

Proof. Assume first that condition (1) is satisfied. Let {Ts}s∈S be a collection of λ-small
sets indexed by a set S of cardinality ≤ κ; we wish to show that the coproduct T = ∐

s∈STs
is λ-small. Using Theorem 4.7.1.34, we can choose a well-ordering ≤S on the set S, and a
well-ordering ≤s on the set Ts for each s ∈ S. For elements t ∈ Ts and t′ ∈ Ts′ , write t ≤T t′
if either s <S s′, or s = s′ and t ≤s t′. Then ≤T is a well-ordering of the set T . If T is not
λ-small, then it has an initial segment of order type λ. Passing to subsets, we may assume
without loss of generality that T itself has order type λ. Moreover, we may assume without
loss of generality that each of the sets Ts is nonempty, and therefore contains a smallest
element ts. We consider two cases:

• Suppose that S contains a largest element s. In this case, we can write T as the disjoint
union of the initial segment T ′ = ∐

s′<sTs′ with the set Ts. Since Ts is nonempty, T ′
has order type smaller than λ, and is therefore λ-small. Applying Corollary 4.7.3.6,
we deduce that T = T ′

∐
Ts is also λ-small.

• Suppose that S does not have a largest element. In this case, the construction
(s ∈ S) 7→ (ts ∈ T ) is a cofinal function from S to T . It follows that the order
type of (S,≤S) is greater than or equal to the cofinality cf(T ) = cf(λ), contradicting
assumption (1).

We now prove the reverse implication. Assume that condition (2) is satisfied. Choose a
well-ordering (S,≤S) of order type cf(λ) and a cofinal map f : S → Ord<λ. If κ ≥ cf(λ),
then condition (2) implies that the disjoint union ∐

s∈SOrd<f(s) is λ-small. Since f is cofinal,
the tautological map ∐

s∈SOrd<f(s) → Ord<λ is surjective. It follows that Ord<λ is λ-small,
which is a contradiction.
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Corollary 4.7.3.8.03RK Let λ be an infinite cardinal. Then κ = cf(λ) is the smallest cardinal
for which there exists a set S of cardinality κ and a collection of λ-small sets {Ts}s∈S, where
the coproduct

∐
s∈STs is not λ-small.

Proof. Proposition 4.7.2.14 guarantees that κ is a cardinal. The characterization is a
restatement of Proposition 4.7.3.7.

Corollary 4.7.3.9.03RL Let λ be an infinite cardinal and let κ = cf(λ) be its cofinality. Suppose
we are given a collection of λ-small sets {Ts}s∈S. If the index set S is κ-small, then coproduct∐
s∈STs is λ-small.

Definition 4.7.3.10 (Regular Cardinals).03RM Let κ be a cardinal. We say that κ is regular if it
is infinite and cf(κ) = κ. Here cf(κ) denotes the cofinality of κ (Definition 4.7.1.28). We say
that κ is singular if it is infinite but not regular.

Remark 4.7.3.11.03RN Let κ be an infinite cardinal. Then κ is regular if and only if the collection
of κ-small sets is closed under κ-small coproducts (this is a special case of Corollary 4.7.3.8).

Example 4.7.3.12.03RP Let ℵ0 denote the first infinite cardinal (Example 4.7.2.10). Then ℵ0 is
regular: that is, the collection of finite sets is closed under finite coproducts.

Example 4.7.3.13 (Successor Cardinals).03RQ Let κ be an infinite cardinal and let κ+ be its
successor (Example 4.7.2.11). Then a set S is κ+-small if and only if it has cardinality
≤ κ. It follows that κ+ is a regular cardinal. That is, if {Ts}s∈S is a collection of sets of
cardinality ≤ κ indexed by a set S of cardinality ≤ κ, then the disjoint union ∐

s∈STs also
has cardinality ≤ κ. To prove this, choose a collection of monomorphisms {is : Ts ↪→ T}s∈S ,
where T is a set of cardinality κ. We then obtain a monomorphism∐

s∈S
Ts ↪→ S × T (x ∈ Ts) 7→ (s, is(x)),

where the set S × T has cardinality ≤ κ by virtue of Proposition 4.7.3.5.

Example 4.7.3.14.03RR Let ℵ1 denote the first uncountable cardinal (Example 4.7.2.12). Then
ℵ1 is regular: that is, the collection of countable sets is closed under the formation of
countable disjoint unions. This is a special case of Example 4.7.3.13, since ℵ1 = ℵ+

0 .

Example 4.7.3.15.03RS Let (T,≤) be a nonempty linearly ordered set with no largest element.
Then the cofinality κ = cf(T ) is a regular cardinal. To see this, choose a well-ordered set
(S,≤) of order type κ and a cofinal function f : S → T . Proposition 4.7.2.14 guarantees that
κ is a cardinal, and Example 4.7.1.31 shows that κ is infinite. If it is not regular, then there
exists a cofinal map g : R→ S, where (R,≤) is a well-ordered set of order type α < κ. This
contradicts the definition of κ = cf(T ), since the composite map (f ◦ g) : R→ T is cofinal.
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It will be convenient to introduce the following bit of nonstandard terminology:

Definition 4.7.3.16. 03RTLet λ be an infinite cardinal. We let ecf(λ) denote the least cardinal
κ with the following property: there exists a set S of cardinality κ and a collection of λ-small
sets {Ts}s∈S for which the product ∏

s∈STs is not λ-small. We will refer to ecf(λ) as the
exponential cofinality of λ.

Remark 4.7.3.17. 03RULet λ be an infinite cardinal. Then the exponential cofinality ecf(λ)
satisfies ℵ0 ≤ ecf(λ) ≤ cf(λ). In particular, we have ecf(λ) ≤ λ. The inequality ℵ0 ≤ ecf(λ)
is a reformulation of the fact that the collection of λ-small sets is closed under finite products
(Proposition 4.7.3.5). To prove the other inequality, choose a set S of cardinality cf(λ) and
a collection of λ-small sets {Ts}s∈S for which the coproduct T = ∐

s∈STs is not λ-small. We
now observe that T can be identified with a subset of the product ∏

s∈S(Ts
∐
{s}). Since

each of the sets Ts
∐
{s} is also λ-small, we obtain ecf(λ) ≤ cf(λ).

Remark 4.7.3.18. 03RVLet κ and λ be infinite cardinals. Then κ ≤ ecf(λ) if and only if the
following condition is satisfied: for every collection of λ-small sets {Ts}s∈S indexed by a
κ-small set S, the product ∏

s∈STs is also λ-small.

Remark 4.7.3.19. 03UQLet κ be an infinite cardinal. Then there are arbitrarily large regular
cardinals λ satisfying ecf(λ) > κ. To see this, it will suffice (by enlarging κ) to show that
there exists some regular cardinal λ of exponential cofinality ≥ κ. Let S be a set of cardinality
κ and let 2κ denote the cardinality of the power set P (S) = {S0 : S0 ⊆ S}. Proposition
4.7.3.5 implies that the product S × S also has cardinality κ, so that P (S × S) ≃ ∏

s∈SP (S)
also has cardinality 2κ. It follows that the collection of sets of cardinality ≤ 2κ is closed
under the formation of products indexed by sets of cardinality ≤ κ, so that λ = (2κ)+ has
exponential cofinality > κ.

Definition 4.7.3.20. 03RWLet κ be an infinite cardinal. We say that κ is strongly inaccessible
if κ = ecf(κ). In other words, κ is strongly inaccessible if the collection of κ-small sets is
closed under the formation of κ-small products.

Example 4.7.3.21. 03RXLet ℵ0 be the least infinite cardinal. Then ℵ0 is strongly inaccessible.
That is, the collection of finite sets is closed under finite products.

Remark 4.7.3.22. 03RYLet κ be a strongly inaccessible cardinal. Then κ is regular: this follows
immediately from the inequality ecf(κ) ≤ cf(κ) of Remark 4.7.3.17.

Warning 4.7.3.23. 03RZThe existence of uncountable strongly inaccessible cardinals cannot
be proven from the axioms of Zermelo-Fraenkel set theory (assuming those axioms are
consistent).

Proposition 4.7.3.24. 03S0Let λ be an infinite cardinal and let κ = ecf(λ) be the exponential
cofinality of λ. Then κ is a regular cardinal.
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Proof. Suppose that κ is not regular: that is, there is a collection of κ-small sets {Ts}s∈S
indexed by a κ-small set S such that T = ∐

s∈STs has cardinality ≥ κ. Choose a collection
of λ-small sets {Ut}t∈T for which the product U = ∏

t∈TUt is not λ-small. For each s ∈ S,
let Us denote the product ∏

t∈Ts
Ut. Since Ts is ecf(λ)-small, the set Us is λ-small. Since S is

also ecf(λ)-small, it follows that U ≃ ∏
s∈SUs is also λ-small, which is a contradiction.

4.7.4 Small Simplicial Sets

03S1 Definition 4.7.3.1 has a counterpart in the setting of simplicial sets.

Definition 4.7.4.1.03S2 Let κ be an infinite cardinal. We say that a simplicial set S is κ-small
if the collection of nondegenerate simplices of S is κ-small.

Remark 4.7.4.2.03S3 In the situation of Definition 4.7.4.1, the dimension of the simplices
under consideration is not fixed. That is, a simplicial set S• is κ-small if and only if the
disjoint union ∐

m≥0S
nd
m is a κ-small set, where Snd

m ⊆ Sm denotes the set of nondegenerate
m-simplices of S•.

Remark 4.7.4.3.03S4 Let κ be an infinite cardinal. Then a simplicial set S is κ-small if and
only if the opposite simplicial set Sop is κ-small.

Example 4.7.4.4.03S5 A simplicial set S is ℵ0-small (in the sense of Definition 4.7.4.1) if and
only if it is finite (Definition 3.6.1.1).

Remark 4.7.4.5 (Coproducts).03S6 Let κ be an infinite cardinal and let {Si}i∈I be a collection
of κ-small simplicial sets. Suppose that the cardinality of the index set I is smaller than
the cofinality cf(κ). Then the coproduct ∐

i∈ISi is also κ-small (see Corollary 4.7.3.9). In
particular:

• The collection of κ-small simplicial sets is closed under finite coproducts.

• If κ is regular, then the collection of κ-small simplicial sets is closed under κ-small
coproducts.

Remark 4.7.4.6 (Colimits).03S7 Let κ be an infinite cardinal and let {Si}i∈I be a diagram of
simplicial sets indexed by a category I. Suppose that the set of objects Ob(I) has cardinality
smaller than the cofinality of κ. Then the colimit lim−→i∈I Si is also κ-small (since it can be
realized as a quotient of the coproduct ∐

Si, which is κ-small by virtue of Remark 4.7.4.5).

Remark 4.7.4.7.03S8 Let S be a simplicial set. Then there is a least infinite cardinal κ for
which S is κ-small. If S is finite, then κ = ℵ0. If S is not finite, then κ = λ+, where λ is the
cardinality of the set of all nondegenerate simplices of S. In particular, κ is always a regular
cardinal.
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Remark 4.7.4.8. 03S9Let κ be an infinite cardinal and let T be a κ-small simplicial set. Then:

• Every simplicial subset of T is κ-small.

• The simplicial set T is λ-small for each λ ≥ κ.

• For every epimorphism of simplicial sets T ↠ S, the simplicial set S is also κ-small.

See Remark 4.7.3.4.

Proposition 4.7.4.9. 03SALet κ be an infinite cardinal and S• be a simplicial set. Assume
that the cofinality of κ is larger than ℵ0 (this condition is satisfied, for example, if κ is
uncountable and regular). The following conditions are equivalent:

(1) The simplicial set S• is κ-small.

(2) For every integer n ≥ 0, the set Sn is κ-small.

(3) For every finite simplicial set K, the set HomSet∆(K,S•) is κ-small.

Proof. We first show that (1) implies (2). Assume that S• is κ-small and let n ≥ 0 be an
integer. For each integer m ≥ 0, let Snd

m denote the set of nondegenerate m-simplices of S•.
Using Proposition 1.1.3.8, we can identify Sn with the coproduct ∐

α:[n]↠[m]S
nd
m , where α

ranges over all surjective maps of linearly ordered sets [n] ↠ [m]. Our assumption that S• is
κ-small guarantees that each of the sets Snd

m is κ-small, so that Sn is also κ-small (Corollary
4.7.3.6).

We now show that (2) implies (1). Assume that, for each n ≥ 0, the set Sn is κ-small.
Since κ has cofinality > ℵ0 it follows that the coproduct ∐

n≥0Sn is also κ-small. In particular,
the coproduct ∐

n≥0S
nd
n is κ-small: that is, the simplicial set S• is κ-small.

The implication (3)⇒ (2) is immediate from the definition. We will complete the proof
by showing that (2) ⇒ (3). Assume that, for each n ≥ 0, the set Sn is κ-small, and let
K be a finite simplicial set. By virtue of Proposition 3.6.1.7, there exists an epimorphism
f : K ′ ↠ K, where K ′ = ∐

i∈I∆ni is a disjoint union of finitely many standard simplices.
Then precomposition with f induces a monomorphism

HomSet∆(K,S•) ↪→ HomSet∆(K ′, S•) ≃
∏

i∈I
Sni .

Since the collection of κ-small sets is closed under finite products and passage to subsets
(Proposition 4.7.3.5 and Remark 4.7.3.4), it follows that the set HomSet∆(K,S•) is also
κ-small.

Warning 4.7.4.10. 03SBThe implications (1)⇒ (2)⇔ (3) of Proposition 4.7.4.9 are valid for an
arbitrary infinite cardinal κ. However, the implication (2)⇒ (1) is false if κ has countable
cofinality (for example, if κ = ℵ0).
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Corollary 4.7.4.11.03SC Let κ be an infinite cardinal. Then the collection of κ-small simplicial
sets is closed under finite products.

Proof. Let {Si}i∈I be a collection of κ-small simplicial sets indexed by a finite set I; we
wish to show that the product S = ∏

i∈ISi is κ-small. Without loss of generality, we may
assume that κ is the least infinite cardinal for which each of the simplicial sets Si is κ-small.
Then κ is regular (Remark 4.7.4.7). If κ = ℵ0, then the desired result follows from Remark
3.6.1.6. We may therefore assume that κ is uncountable. In this case, the desired result
follows from the criterion of Proposition 4.7.4.9, since the collection of κ-small sets is closed
under finite products (Proposition 4.7.3.5).

Corollary 4.7.4.12.03SD Let κ be an uncountable cardinal, let S be a κ-small simplicial set,
and let K be a finite simplicial set. Then the simplicial set Fun(K,S) is κ-small.

Proof. Without loss of generality, we may assume that κ is the least uncountable car-
dinal for which S is κ-small. In particular, κ is regular (Remark 4.7.4.7). By virtue
of Proposition 4.7.4.9, it will suffice to show that for every finite simplicial set L, the set
HomSet∆(L,Fun(K,S)) ≃ HomSet∆(K×L, S) is κ-small. This is a special case of Proposition
4.7.4.9, since the simplicial set K × L is finite (Remark 3.6.1.6).

Warning 4.7.4.13.03SE The assertion of Corollary 4.7.4.12 is false in the case κ = ℵ0. That is,
if K and S are finite simplicial sets, then the simplicial set Fun(K,S) need not be finite.

We close by recording stronger forms of Corollaries 4.7.4.11 abnd 4.7.4.12.

Corollary 4.7.4.14.03SF Let λ be an infinite cardinal and let κ = ecf(λ) be its exponential
cofinality (Definition 4.7.3.16). Then the collection of λ-small simplicial sets is closed under
κ-small products.

Proof. Let {Si}i∈I be a collection of λ-small simplicial sets indexed by a κ-small set I; we
wish to show that the product S = ∏

i∈ISi is λ-small. If κ = ℵ0, this follows from Corollary
4.7.4.11. We may therefore assume that κ is uncountable. Then the cofinality cf(λ) is
also uncountable (Remark 4.7.3.17). The desired result now follows from the criterion of
Proposition 4.7.4.9, since the collection of λ-small sets is closed under κ-small products.

Corollary 4.7.4.15.03SG Let λ be an uncountable cardinal and let κ = ecf(λ) be its exponential
cofinality. If S is a λ-small simplicial set and K be a κ-small simplicial set. Then Fun(K,S)
is λ-small.

Proof. Since K is κ-small, we can choose an epimorphism of simplicial sets ∐
i∈I∆ni ↠ K,

where I is a κ-small set. It follows that Fun(K,S) can be identified with a simplicial subset of
the product ∏

i∈I Fun(∆ni , S). Corollary 4.7.4.12 guarantees that each factor Fun(∆ni , S) is
λ-small, so that the product ∏

i∈I Fun(∆ni , S) is λ-small by virtue of Corollary 4.7.4.14.
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4.7.5 Essential Smallness

03SHLet κ be an infinite cardinal. Beware that the condition that a simplicial set is κ-small
is not invariant under categorical equivalence. For this reason, it is useful to consider the
following variant of Definition 4.7.4.1:

Definition 4.7.5.1. 03SJLet κ be an uncountable cardinal. We will say that a simplicial set C
is essentially κ-small if there exists a categorical equivalence of simplicial sets C → D, where
D is a κ-small ∞-category.

Remark 4.7.5.2. 03SKLet κ be an uncountable cardinal, and let F : C → D be a categorical
equivalence of simplicial sets. Then C is essentially κ-small if and only if D is essentially
κ-small.

Remark 4.7.5.3. 03SLLet κ be an uncountable cardinal. Then a simplicial set C is essentially
κ-small if and only if the opposite simplicial set Cop is essentially κ-small. See Remark
4.7.4.3.

Variant 4.7.5.4. 03SMLet C be a simplicial set. We say that C is essentially small if there exists
a categorical equivalence C → D, where D is a small ∞-category.

Proposition 4.7.5.5. 03SNLet κ be an uncountable cardinal and let C be a κ-small simplicial set.
Then there exists an inner anodyne morphism C ↪→ D, where D is a κ-small ∞-category. In
particular, C is essentially κ-small.

Proof. Without loss of generality, we may assume that κ is the least uncountable cardinal
for which C is κ-small, so that κ is regular (Remark 4.7.4.7). We proceed as in the proof
of Proposition 4.1.3.2. We will construct D as the colimit of a diagram of inner anodyne
morphisms

C = C(0) ↪→ C(1) ↪→ C(2) ↪→ C(3) ↪→ · · ·

where each transition map fits into a pushout diagram

∐
s∈S(n) Λns

is

��

{us}s∈S(n) // C(n)

��∐
s∈S(n) ∆ns // C(n+ 1);

here the coproducts are indexed by the collection {us : Λns
is
→ C(n)}s∈S(n) of all inner horns

in the simplicial set C(n). Note that if the simplicial set C(n) is κ-small, then the set S(n)
is also κ-small (Proposition 4.7.4.9), so that C(n+ 1) is also κ-small. Since κ is regular and
uncountable, it follows that the colimit C = lim−→C(n) is κ-small (Remark 4.7.4.6).
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Warning 4.7.5.6.03SP The statement of Proposition 4.7.5.5 is false in the case κ = ℵ0. If S is a
finite simplicial set, we generally cannot choose a categorical equivalence f : S → D, where
D is an ∞-category which is also a finite simplicial set. For example, take S = ∆2/ ∂∆2, so
that the geometric realization |S| is homeomorphic to a sphere of dimension 2. Since every
edge of S is degenerate, the homotopy category hS is a groupoid. Consequently, if f is a
categorical equivalence from S to an ∞-category D, then D is a Kan complex (Proposition
4.4.2.1), which is homotopy equivalent to the singular simplicial set Sing•(|S|) (Theorem
3.6.4.1). It follows that π2(D) is an infinite cyclic group (generated by the homotopy class
[f ]), so that the Kan complex D must contain infinitely many 2-simplices.

Remark 4.7.5.7 (Coproducts).03SQ Let κ be an uncountable cardinal and let {Ci}i∈I be a
collection of essentially κ-small simplicial sets. Suppose that the cardinality of the index set
I is smaller than the cofinality cf(κ). Then the coproduct ∐

i∈I Ci is also essentially κ-small.
This follows by combining Remark 4.7.4.5 with Corollary 4.5.3.10. In particular:

• The collection of essentially κ-small simplicial sets is closed under finite coproducts.

• If κ is regular, then the collection of essentially κ-small simplicial sets is closed under
κ-small coproducts.

Remark 4.7.5.8 (Products).03SR Let κ be an uncountable cardinal and let {Ci}i∈I be a finite
collection of simplicial sets which are essentially κ-small. Then the product ∏

i∈I Ci is
essentially κ-small. This follows by combining Corollary 4.7.4.14, since the collection of
categorical equivalences is stable under the formation of finite products (Remark 4.5.3.7).

Variant 4.7.5.9.03SS Let κ be an uncountable cardinal and let {Ci}i∈I be a collection of
essentially κ-small ∞-categories. Suppose that the cardinality of the index set I has smaller
than the exponential cofinality ecf(κ). Then the product ∏

i∈I Ci is also essentially κ-small.
This follows by combining Corollary 4.7.4.14 with Remark 4.5.1.17.

Remark 4.7.5.10.03ST Let λ be an uncountable cardinal, let C be an ∞-category which is
essentially λ-small, and let K be a simplicial set. Suppose that K is κ-small, where κ = ecf(λ)
is the exponential cofinality of λ. Then the ∞-category Fun(K, C) is essentially λ-small. To
prove this, we can use Remark 4.5.1.16 to reduce to the case where C is λ-small, in which
case it follows from Corollary 4.7.4.12. Moreover, if κ is uncountable, then it suffices to
assume that K is essentially κ-small.

Proposition 4.7.5.11.03SU Let κ be an uncountable cardinal and let C be an ∞-category which
is essentially κ-small. Then any replete subcategory C0 ⊆ C is also essentially κ-small.

Proof. Choose an equivalence of ∞-categories F : D → C, where D is κ-small. Then the
inverse image D0 = F−1(C0) is κ-small (Remark 4.7.4.8), and the functor F restricts to an
equivalence of ∞-categories D0 → C0 (Corollary 4.5.2.29).
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Corollary 4.7.5.12. 03SVLet κ be an uncountable cardinal and let C be an ∞-category which is
essentially κ-small. Then the core C≃ is an essentially κ-small Kan complex.

Proof. Since C≃ is a replete subcategory of C (Proposition 4.4.3.6), this is a special case of
Proposition 4.7.5.11.

Corollary 4.7.5.13. 03SWLet κ be an uncountable cardinal and let C be an ∞-category which is
essentially κ-small. Then any full subcategory C0 ⊆ C is essentially κ-small.

Proof. Let C1 ⊆ C be the full subcategory spanned by those objects X ∈ C which are
isomorphic to an object of C0. Proposition 4.7.5.11 guarantees that C1 is essentially κ-small.
Since the inclusion C0 ↪→ C1 is an equivalence of ∞-categories, it follows that C0 is also
essentially κ-small (Remark 4.7.5.2).

Proposition 4.7.5.14. 03SXLet F0 : C0 → C and F1 : C1 → C be functors of ∞-categories and
let κ be an uncountable cardinal. If C0, C1, and C are essentially κ-small, then the oriented
fiber product C0 ×̃C C1 is also essentially κ-small.

Proof. Choose equivalences of ∞-categories

D0 → C0 C → D D1 → C1,

where D0, D1, and D are κ-small. By virtue of Remark 4.6.4.4, the induced maps

C0 ×̃C C1 ← D0 ×̃C D1 → D0 ×̃D D1

are equivalences of ∞-categories. It will therefore suffice to show that the ∞-category
D0 ×̃D D1 is κ-small. This follows from Corollaries 4.7.4.12 and 4.7.4.11, since D0 ×̃D D1
can be identified with a simplicial subset of the product D0×Fun(∆1,D)×D1.

Corollary 4.7.5.15. 03SYLet F0 : C0 → C and F1 : C1 → C be functors of ∞-categories and let
κ be an uncountable cardinal. If C0, C1, and C are essentially κ-small, then the homotopy
fiber product C0×h

C C1 is essentially κ-small.

Proof. Since C0×h
C C1 is a full subcategory of the oriented fiber product C0 ×̃C C1, this follows

from Proposition 4.7.5.14 and Corollary 4.7.5.13.

Corollary 4.7.5.16. 03SZLet κ be an uncountable cardinal and suppose we are given a categorical
pullback diagram of ∞-categories

03T0C01 //

��

C0

��
C1 // C .

(4.45)
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If C0, C, and C1 are essentially κ-small, then C01 is essentially κ-small.

Proof. Combine Remark 4.7.5.2 with Corollary 4.7.5.15.

Corollary 4.7.5.17.04J8 Let λ be an uncountable cardinal, let C be an ∞-category which is
essentially λ-small, and let K be a simplicial set. Suppose that K is κ-small, where κ = ecf(λ)
is the exponential cofinality of λ. Then, for any diagram f : K → C, the ∞-categories Cf/
and C/f are essentially λ-small. Moreover, if κ is uncountable, then it suffices to assume
that K is essentially κ-small.

Proof. We will show that the ∞-category C/f is essentially λ-small; the corresponding
assertion for Cf/ follows by a similar argument. Theorem 4.6.4.17 supplies an equivalence
of ∞-categories C/f ↪→ C ×̃Fun(K,C){f}. By virtue of Proposition 4.7.5.14, it will suffice to
show that Fun(K, C) is essentially λ-small, which follows from Remark 4.7.5.10.

Example 4.7.5.18.04J9 Let λ be an uncountable cardinal and let C be an ∞-category which
is essentially λ-small. Then, for every object X ∈ C, the ∞-categories C/X and CX/ are
essentially λ-small.

4.7.6 Minimal ∞-Categories

03T1 Let κ be an uncountable cardinal. An ∞-category D is essentially κ-small if and only
if there exists an equivalence C → D, where C is a κ-small ∞-category. Our goal in this
section is to show that, if this condition is satisfied, then there is a preferred choice for the
∞-category C which is characterized (up to noncanonical isomorphism) by the requirement
that it is minimal. We will need some terminology.

Definition 4.7.6.1.0575 Let C be an ∞-category, let B be a simplicial set, and let A ⊆ B be a
simplicial subset. Suppose we are given a pair of diagrams f0, f1 : B → C. An isomorphism
of f0 with f1 relative to A is an isomorphism u : f0 → f1 in the ∞-category Fun(B, C) for
which the image of u in Fun(A, C) is an identity morphism. We say that f0 is isomorphic to
f1 relative to A if there exists an isomorphism of f0 with f1 relative to A.

Remark 4.7.6.2.0576 In the situation of Definition 4.7.6.1, two diagrams f0, f1 : B → C are
isomorphic relative to A if and only if they satisfy the following pair of conditions:

• The diagrams f0 and f1 have the same restriction to A: that is, we have f0|A = f = f1|A
for some diagram f : A→ C.

• The diagrams f0 and f1 are isomorphic when viewed as objects of the ∞-category
Fun(B, C)×Fun(A,C) {f}.
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Remark 4.7.6.3. 0577Let C be an ∞-category, let f0, f1 : B → C be a pair of diagrams, and
let A ⊆ B be a simplicial subset. If f0 and f1 are isomorphic relative to A (in the sense of
Definition 4.7.6.1), then they are homotopic relative to A (in the sense of Definition 3.2.1.1).
The converse holds if the restriction functor Fun(B, C) → Fun(A, C) is conservative. In
particular, the converse holds if C is a Kan complex, or if A contains every vertex of B.

Definition 4.7.6.4. 03T2Let C be an ∞-category and let n ≥ 0 be an integer. We say that C is
minimal in dimension n if it satisfies the following condition:

(∗n) Let σ0, σ1 : ∆n → C be n-simplices of C. If σ0 is isomorphic to σ1 relative to ∂∆n, then
σ0 = σ1.

We say that C is minimal if it is minimal in dimension n for every integer n.

Example 4.7.6.5. 03T3Let C be an ∞-category. Then C is minimal in dimension 0 if and only
if, for every pair of isomorphic objects X,Y ∈ C, we have X = Y .

Example 4.7.6.6. 03T4Let C be an ∞-category. Then C is minimal in dimension 1 if and only
if, for every pair of objects X,Y ∈ C and every pair of morphisms f, g : X → Y which are
homotopic, we have f = g (see Corollary 1.4.3.7).

Exercise 4.7.6.7. 03T5Let C be a category. Show that the nerve N•(C) is minimal in dimension n
for every integer n > 0 (see Proposition 4.8.3.1 for a more general statement). Consequently,
the∞-category N•(C) is minimal if and only if, for every pair of isomorphic objects X,Y ∈ C,
we have X = Y .

Remark 4.7.6.8. 03T6Let C be a minimal ∞-category, and let C0 ⊆ C be a simplicial subset. If
C0 is an ∞-category, then it is also minimal.

Remark 4.7.6.9. 03T7Let {Ci}i∈I be a collection of minimal ∞-categories. Then the product∏
i∈I Ci and the coproduct ∐

i∈I Ci are also minimal ∞-categories.

Warning 4.7.6.10. 03T8The collection of minimal ∞-categories has poor closure properties:

• If C is a minimal ∞-category and K is a simplicial set, then the ∞-category Fun(K, C)
need not be minimal (even in the case K = ∆1).

• If C is a minimal ∞-category and q : K → C is a diagram, then the ∞-categories C/q
and Cq/ need not be minimal (even in the case K = ∆0).

• If C is a minimal ∞-category and D is equivalent to C, then D need not be minimal.

The goal of this section is to show that every ∞-category D admits a minimal model:
that is, a minimal ∞-category C equipped with an equivalence F : C → D. Moreover, the
∞-category C is uniquely determined up to isomorphism (Corollary 4.7.6.16). Our first step
is to show that, in this case, the functor F is automatically a monomorphism.
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Lemma 4.7.6.11.03T9 Let F : C → D be an equivalence of ∞-categories. If C is minimal, then
F is a monomorphism of simplicial sets.

Proof. Let σ, σ′ : ∆n → C be n-simplices of C satisfying F (σ) = F (σ′); we wish to show that
σ = σ′. Our proof proceeds by induction on n. Set τ = F (σ) = F (σ′) and σ0 = σ|∂∆n , so
that our inductive hypothesis guarantees that σ0 = σ′|∂∆n .

Fix a functor G : D → C which is homotopy inverse to F , so that there exists a 2-simplex

idC id //

α

""

idC

G ◦ F

β

<<

in the ∞-category Fun(C, C), where α and β are (mutually inverse) isomorphisms. Precom-
posing with the morphism σ0 : ∂∆n → C, we obtain a 2-simplex

03TA σ0
id //

α(σ0)

##

σ0

(G ◦ F )(σ0)

β(σ0)

;;

(4.46)

in the ∞-category Fun(∂∆n, C). Since C is an ∞-category, Theorem 1.5.6.1 guarantees that
we can lift (4.46) to a 2-simplex

σ
γ //

α(σ)

  

σ′

G(τ).

β(σ′)

==

in the ∞-category Fun(∆n, C). By construction, γ is an isomorphism relative to ∂∆n.
Invoking our assumption that C is minimal, we deduce that σ = σ′.

Corollary 4.7.6.12.03TB Let C be a minimal ∞-category and let κ be an uncountable cardinal.
Then C is essentially κ-small if and only if it is κ-small.

Proof. Suppose that C is essentially κ-small. Then there exists an equivalence of∞-categories
F : C → D, where D is κ-small. Since C is minimal, the functor F is a monomorphism of
simplicial sets (Lemma 4.7.6.11), so that C is also κ-small (Remark 4.7.4.8).
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Proposition 4.7.6.13 (Uniqueness). 03TCLet F : C → D be an equivalence of ∞-categories. If
C and D are minimal, then F is an isomorphism of simplicial sets.

Proof. Let G : D → C be a homotopy inverse to F . It follows from Lemma 4.7.6.11 that
F and G are monomorphisms of simplicial sets. We will complete the proof by showing
that the composite map (F ◦G) : D → D is an epimorphism of simplicial sets (so that, in
particular, F is an epimorphism). Let σ be an n-simplex of D; we wish to show that σ
belongs to the image of F ◦G. The proof proceeds by induction on n. Set σ0 = σ|∂∆n ; our
inductive hypothesis then guarantees that we can write σ0 = (F ◦G)(τ0) for some morphism
τ0 : ∂∆n → D.

Choose a 2-simplex

F ◦G

α

""

idF◦G // F ◦G

idD

β

<<

in the ∞-category Fun(D,D), where α and β are isomorphisms. Precomposing with τ0 :
∂∆n → D, we obtain a 2-simplex

03TDσ0

α(τ0)

  

id // σ0

τ0

β(τ0)

>>

(4.47)

in the∞-category Fun(∂∆n,D). Using Corollary 4.4.5.9, we can lift α(τ0) to an isomorphism
α̃ : σ → τ in the ∞-category Fun(∆n,D). Since D is an ∞-category, Theorem 1.5.6.1
guarantees that we can lift (4.47) to a 2-simplex

σ
γ //

α̃

��

(F ◦G)(τ)

τ.

β(τ)

;;

in the ∞-category Fun(∆n,D). By construction, γ is an isomorphism relative to ∂∆n. Our
assumption that D is minimal then guarantees that σ = (F ◦G)(τ) belongs to the image of
F ◦G.
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Corollary 4.7.6.14.03TE Let C and D be minimal ∞-categories. Then C and D are equivalent
if and only if they are isomorphic.

We now prove the existence of minimal models.

Proposition 4.7.6.15 (Existence).03TF Let D be an∞-category. Then there exists an equivalence
of ∞-categories F : C → D, where C is minimal.

Corollary 4.7.6.16.03TG The construction

{Minimal ∞-Categories}/Isomorphism→ {∞-Categories}/Equivalence

is a bijection.

Proof. Injectivity is a restatement of Corollary 4.7.6.14, and surjectivity follows from Propo-
sition 4.7.6.15.

Corollary 4.7.6.17.03TH Let C be a simplicial set. Then there is a least uncountable cardinal κ
for which C is essentially κ-small. Moreover, κ is always a successor cardinal.

Proof. By virtue of Proposition 4.7.6.15, we may assume that C is a minimal ∞-category. In
this case, the desired result follows by combining Corollary 4.7.6.12 with Remark 4.7.4.7.

Proof of Proposition 4.7.6.15. Let D be an∞-category. If σ and σ′ are n-simplices of D, we
write σ ∼ σ′ if they are isomorphic relative to ∂∆n. Note that, if this condition is satisfied,
then we must have σ|∂∆n = σ′|∂∆n . In particular, if σ and σ′ are both degenerate, we must
have σ = σ′. Let R(n) denote a collection of n-simplices of D which contains all degenerate
n-simplices, and contains exactly one element of every ∼-class. We let C ⊆ D denote the
simplicial subset consisting of all simplices τ : ∆m → D having the property that, for every
morphism of linearly ordered sets α : [n]→ [m], the n-simplex ∆n → ∆m τ−→ D belongs to
R(n) (by construction, it suffices to check this in the case where α is injective). To complete
the proof, it will suffice to establish the following:

(1) The simplicial set C is an ∞-category.

(2) The ∞-category C is minimal.

(3) The inclusion map C ↪→ D is an equivalence of ∞-categories.

We begin by proving (1). Suppose we are given integers 0 < i < n and a morphism
of simplicial sets σ0 : Λn

i → C; we wish to show that σ0 can be extended to an n-simplex
σ of C. Since D is an ∞-category, we can extend σ0 to an n-simplex σ′′ : ∆n → D. Let
σ′′ = dni (σ′′) denote the ith face of σ′′. Then there is a unique element σ′ ∈ R(n − 1)
satisfying σ′ ∼ σ′′. Choose an isomorphism α : σ′ → σ′′ in the ∞-category Fun(∆n−1,D)
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whose image in Fun(∂∆n−1,D) is an identity morphism. Then α can be lifted uniquely to an
isomorphism α̃ : σ̃′ → σ′′|∂∆n relative to the horn Λni . Applying Proposition 4.4.5.8, we can
lift α̃ to an isomorphism α : σ′ → σ′′ in the ∞-category Fun(∆n,D). By construction, the
restriction σ′|∂∆n factors through C. Let σ be the unique n-simplex of D which belongs to
R(n) and satisfies σ ∼ σ′. Then σ is an n-simplex of C satisfying σ|Λn

i
= σ′|Λn

i
= σ′′|Λn

i
= σ0.

This completes the proof of (1).
We now prove (2). Let σ and σ′ be n-simplices of C which are isomorphic relative to

∂∆n. Then, when regarded as n-simplices of D, we have σ ∼ σ′. Since σ and σ′ both belong
to R(n), we conclude that σ = σ′.

To prove (3), we will show that C is a deformation retract of D; that is, there exists a
functor H : ∆1 ×D → D satisfying the following conditions:

(i) The restriction H|{0}×D is the identity functor idD.

(ii) The restriction H|{1}×D factors through C.

(iii) The restriction H|∆1×C coincides with the projection map

∆1 × C → C ⊆ D .

(iv) For each object D ∈ D, the restriction H|∆1×{D} is an isomorphism in D.

Note that these conditions guarantee that the functor H|{1}×D : D → C is a homotopy
inverse to the inclusion map C ↪→ D.

Let Q denote the set of pairs (S,HS), where S ⊆ D is a simplicial subset which contains
C and HS : ∆1 × S → D is a morphism of simplicial sets which satisfies the analogues of
conditions (i) through (iv). We regard Q as a partially ordered set, where (S,HS) ≤ (S′, HS′)
if S ⊆ S′ and HS = HS′ |∆1×S . This partially ordered set satisfies the hypotheses of Zorn’s
lemma, and therefore contains a maximal element (Smax, Hmax). To complete the proof,
it will suffice to show that Smax = D. Assume otherwise. Then there is some n-simplex
τ : ∆n → D which is not contained in Smax. Choose n as small as possible, so that τ0 = τ |∂∆n

factors through Smax. Then the composite map

∆1 × ∂∆n id×τ0−−−−→ ∆1 × Smax
Hmax−−−→ D

can be viewed as an isomorphism α0 : τ0 → τ ′0 in the ∞-category Fun(∂∆n,D), where τ ′0
belongs to Fun(∂∆n, C). Using Proposition 4.4.5.8, we can lift α0 to an isomorphism τ → τ ′

in the ∞-category Fun(∆n,D). Let τ ′′ be the unique n-simplex of D which belongs to R(n)
and satisfies τ ′ ∼ τ ′′. Then there exists an isomorphism β : τ ′ → τ ′′ in the ∞-category
Fun(∆n,D) whose image in Fun(∂∆n,D) is an identity morphism. Using Theorem 1.5.6.1,
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we can lift the degenerate 2-simplex

τ ′0

id

��
τ0

α0

??

α0 // τ ′0

of Fun(∂∆n,D) to a 2-simplex

τ ′

β

��
τ

α

??

γ // τ ′′

in the ∞-category Fun(∆n,D). Let S denote the simplicial subset of D given by the union
of Smax with the image of τ . Then Hmax extends uniquely to a morphism HS : ∆1 × S → D
for which the composite map

∆1 ×∆n id×τ−−−→ ∆1 × S HS−−→ D

coincides with γ. By construction, the pair (S,HS) is an element of Q satisfying (S,HS) >
(Smax, Hmax), contradicting the maximality of (Smax, Hmax).

4.7.7 Small Kan Complexes

03TJ In the setting of Kan complexes, essential κ-smallness can be tested at the level of
homotopy groups.

Proposition 4.7.7.1.03TK Let X be a Kan complex and let κ be an uncountable regular cardinal.
Then X is essentially κ-small if and only if it satisfies the following pair of conditions:

(1) The set π0(X) is κ-small.

(2) For each vertex x ∈ X and each integer n > 0, the homotopy group πn(X,x) is κ-small.

Proof. By virtue of Proposition 4.7.6.15, we may assume without loss of generality that
the Kan complex X is minimal. If X is essentially κ-small, then it is κ-small (Corollary
4.7.6.12), so that conditions (1) and (2) follow immediately from the definitions. Conversely,
suppose that (1) and (2) are satisfied; we wish to show that X is κ-small. By virtue of
Proposition 4.7.4.9, it will suffice to show that the collection of n-simplices of X is κ-small,
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for each n ≥ 0. Our proof proceeds by induction on n. Using our inductive hypothesis
(together with Remark 4.7.3.4 and Proposition 4.7.3.5), we see that the set HomSet∆(∂∆n, X)
is κ-small. Since κ is regular, it will suffice to show that each fiber of the restriction map
HomSet∆(∆n, X)→ HomSet∆(∂∆n, X) is κ-small.

Set E = Fun(∆n, X) and B = Fun(∂∆n, X), so that the inclusion map ∂∆n ↪→ ∆n

induces a Kan fibration q : E → B (Corollary 3.1.3.3) For each vertex b ∈ B, let Eb denote
the fiber {b} ×B E; we wish to show that the set of vertices of Eb is κ-small. Since the Kan
complex X is minimal, each vertex of Eb belongs to a different connected component. It will
therefore suffice to show that the set π0(Eb) is κ-small. If n = 0, this follows from condition
(1). Let us therefore assume that n > 0, and identify b with a morphism of simplicial sets
∂∆n → X. If this morphism is not nullhomotopic, then the Kan complex Eb is empty
and there is nothing to prove. We may therefore assume that there is a homotopy from
b to a constant map b′ : ∂∆n → {x} ↪→ X. In this case, Proposition 5.2.2.18 supplies a
homotopy equivalence of Eb with Eb′ . We are therefore reduced to proving that the set
π0(Eb′) ≃ πn(X,x) is κ-small, which follows from condition (2).

Corollary 4.7.7.2. 03TLLet κ be an uncountable regular cardinal and let f : X → Y be a Kan
fibration between Kan complexes, where Y is essentially κ-small. The following conditions
are equivalent:

(a) The Kan complex X is essentially κ-small.

(b) For each vertex y ∈ Y , the fiber Xy = {y} ×Y X is essentially κ-small.

Proof. The implication (a)⇒ (b) follows from Corollary 4.7.5.16 (and does not require the
regularity of κ). Assume that condition (b) is satisfied; we will show that X satisfies the
criteria of Proposition 4.7.7.1:

(1) Let y be a vertex of Y and let [y] denote its image in π0(Y ). Since f is a Kan fibration,
the tautological map π0(Xy) → {[y]} ×π0(Y ) π0(X) is a surjection. Assumption (b)
guarantees that π0(Xy) is κ-small, so that the fiber {[y]} ×π0(Y ) π0(X) is also κ-small.
Since π0(Y ) is κ-small, the regularity of κ guarantees that π0(X) is also κ-small.

(2) Fix a vertex x ∈ X having image y = f(x), and let n > 0 be a positive integer. For each
integer n > 0, Proposition 3.2.6.2 supplies an exact sequence of groups

πn(Xy, x)→ πn(X,x) πn(f)−−−→ πn(Y, y).

Consequently, every nonempty fiber of the group homomorphism πn(f) carries a
transitive action of the κ-small group πn(Xy, x), and is therefore κ-small. Since the
group πn(Y, y) is κ-small, the regularity of κ guarantees that πn(X,x) is κ-small.
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Exercise 4.7.7.3.03TM Let κ be an uncountable regular cardinal and let f : X → Y be Kan
fibration between Kan complexes. Suppose that X is essentially κ-small, that each fiber
Xy = {y} ×Y X is essentially κ-small, and that the morphism π0(f) : π0(X) → π0(Y ) is
surjective. Show that Y is also essentially κ-small.

4.7.8 Local Smallness

03TN In mathematical practice, it is very common to encounter categories C which are not
small but are nonetheless locally small: that is, for every pair of objects X,Y ∈ C, the set
HomC(X,Y ) is small. We now consider a quantitative counterpart of this condition in the
∞-categorical setting.

Definition 4.7.8.1.03TP Let κ be an uncountable cardinal. We say that an ∞-category C
is locally κ-small if, for every pair of objects X,Y ∈ C, the Kan complex HomC(X,Y ) is
essentially κ-small.

Example 4.7.8.2.03TQ Let κ be an uncountable cardinal and let C be a category. Then the
∞-category N•(C) is locally κ-small if and only if, for every pair of objects X,Y ∈ C, the set
HomC(X,Y ) is κ-small.

Example 4.7.8.3.03TR Let κ be an uncountable regular cardinal and let X be a Kan complex.
Then X is locally κ-small if and only if, for every vertex x ∈ X and every integer n > 0, the
homotopy group πn(X,x) is κ-small.

Example 4.7.8.4.03TS Let κ be an uncountable cardinal and let C be an ∞-category which is
essentially κ-small. Then C is locally κ-small: that is, for every pair of objects X,Y ∈ C,
the Kan complex HomC(X,Y ) is essentially κ-small. This is a special case of Proposition
4.7.5.14, since HomC(X,Y ) can be identified with the oriented fiber product {X} ×̃C{Y }.

Remark 4.7.8.5 (Homotopy Invariance).03TT Let κ be an uncountable cardinal and let F : C →
D be an equivalence of ∞-categories. Then C is locally κ-small if and only if D is locally
κ-small.

Variant 4.7.8.6.03TU Let C be an ∞-category. We say that C is locally small if, for every pair of
objects X,Y ∈ C, the Kan complex HomC(X,Y ) is essentially small (that is, it is homotopy
equivalent to to a small Kan complex: see Variant 4.7.5.4).

Proposition 4.7.8.7.03TW Let κ be an uncountable regular cardinal and let C be an ∞-category.
The following conditions are equivalent:

(1) The ∞-category C is essentially κ-small.
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(2) The ∞-category C is locally κ-small and the set of isomorphism classes π0(C≃) is κ-small.

(3) The Kan complex Fun(∆1, C)≃ is essentially κ-small.

(4) For every finite simplicial set K, the Kan complex Fun(K, C)≃ is essentially κ-small.

(5) For every integer n ≥ 0, the set π0(Fun(∆n, C)≃) is κ-small. Moreover, for every map
b : ∂∆n → C, the fundamental group π1(Fun(∂∆n, C)≃, b) is κ-small.

Proof. The implication (1)⇒ (2) follows from Example 4.7.8.4. We next show that (2)⇒ (3).
Assume that condition (2) is satisfied; we wish to show that the Kan complex Fun(∆1, C)≃
is essentially κ-small. Corollary 4.4.5.4 implies that the restriction map

θ : Fun(∆1, C)≃ → Fun(∂∆1, C)≃ ≃ C≃×C≃

is a Kan fibration. Moreover, for each vertex (X,Y ) ∈ C≃×C≃, the fiber θ−1{(X,Y )} can
be identified with the morphism space HomC(X,Y ), which is essentially κ-small by virtue
of (2). Using Corollary 4.7.7.2 (and Remark 4.7.5.8), we are reduced to proving that the
Kan complex C≃ is essentially κ-small. Fix a vertex X ∈ C≃. For n ≥ 2, Example 4.6.1.13
supplies an isomorphism πn(C≃, X) ≃ πn−1(HomC(X,X), idX), so that the homotopy group
πn(C≃, X) is essentially small by virtue of assumption (2). Similarly, the fundamental
group π1(C≃, X) can be identified with the subset of π0(HomC(X,X)) spanned by the
homotopy classes of isomorphisms, which is also κ-small. Since π0(C≃) is κ-small by virtue of
assumption (2), Proposition 4.7.7.1 implies that the Kan complex C≃ is essentially κ-small.

We now show that (3) implies (4). Assume that the Kan complex Fun(∆1, C)≃ is
essentially κ-small and let K be a finite simplicial set; we wish to show that Fun(K, C)≃ is
also essentially κ-small. We proceed by induction on the dimension n of K and the number
of nondegenerate n-simplices of K. If K is empty, there is nothing to prove. Otherwise,
there exists a pushout square of simplicial sets

∂∆n //

��

∆n

��
K ′ // K.

Since the horizontal maps are monomorphisms, this diagram is also a categorical pushout
square (Example 4.5.4.12) and therefore induces a homotopy pullback diagram of Kan
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complexes
Fun(∂∆n, C)≃ Fun(∆n, C)≃oo

Fun(K ′, C)≃

OO

Fun(K, C)≃oo

OO

Our inductive hypothesis guarantees that Fun(∂∆n, C)≃ and Fun(K ′, C)≃ are essentially
κ-small. It will therefore suffice to show that the Kan complex Fun(∆n, C)≃ is essentially
κ-small (Corollary 4.7.5.16). If n = 1, this follows from assumption (3). If n ≥ 2, then the
inclusion map Λn

1 ↪→ ∆n induces a homotopy equivalence Fun(∆n, C)≃ → Fun(Λn
1 , C)≃, so

that the desired result again follows from our inductive hypothesis. It will therefore suffice
to treat the case n = 0: that is, to show that the Kan complex C≃ is essentially κ-small.
This follows from Corollary 4.7.5.13, since C≃ is homotopy equivalent to the summand
Isom(C)≃ ⊆ Fun(∆1, C)≃ (see Corollary 4.4.5.10).

The implication (4)⇒ (5) follows from Proposition 4.7.7.1. We will complete the proof
by showing that (5) implies (1). Assume that condition (5) is satisfied; we will show that C is
essentially κ-small. We now proceed as in the proof of Proposition 4.7.7.1. Using Proposition
4.7.6.15, we can reduce to the case where C is minimal. In this case, we wish to show that
C is κ-small. By virtue of Proposition 4.7.4.9, it will suffice to show that the collection of
n-simplices of C is κ-small, for each n ≥ 0. Our proof proceeds by induction on n. Using our
inductive hypothesis (together with Remark 4.7.3.4 and Proposition 4.7.3.5), we see that
the set HomSet∆(∂∆n, C) is κ-small. Since κ is regular, it will suffice to show that each fiber
of the restriction map HomSet∆(∆n, C)→ HomSet∆(∂∆n, C) is κ-small.

Set E = Fun(∆n, C)≃ and B = Fun(∂∆n, C)≃, so that the inclusion map ∂∆n ↪→ ∆n

induces a Kan fibration q : E → B (Corollary 4.4.5.4). Fix a vertex b ∈ B and set
Eb = {b}×B E; we wish to show that the set of vertices of Eb is κ-small. Since C is minimal,
each vertex of Eb belongs to a different connected component. It will therefore suffice to
show that the set of connected components π0(Eb) is κ-small. Assumption (5) guarantees
that the set π0(E) is κ-small. Moreover Corollary 3.2.6.5 shows that every nonempty fiber
of the map π0(Eb)→ π0(E) is equipped with a transitive action of the fundamental group
π1(B, b), which is also κ-small. Since κ is regular, it follows that the set π0(Eb) is also
κ-small, as desired.

Corollary 4.7.8.8.03UR Let κ be an infinite cardinal, let λ be an uncountable cardinal of
exponential cofinality ≥ κ (Definition 4.7.3.16), and let C be an ∞-category which is locally
λ-small. Then, for every κ-small simplicial set K, the ∞-category Fun(K, C) is locally
λ-small. Moreover, if κ is uncountable, then it suffices to assume that K is essentially
κ-small.
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Proof. Let F, F ′ : K → C be diagrams; we wish to show that the morphism space
HomFun(K,C)(F, F ′) is essentially λ-small. Let C0 ⊆ C be the full subcategory spanned
by the essential images of F and F ′. Proposition 4.7.8.7 guarantees that C0 is essentially
λ-small. It will therefore suffice to show that Fun(K, C0) is locally λ-small, which follows
immediately from Remark 4.7.5.10.

Corollary 4.7.8.9. 03USLet C and D be ∞-categories. If C is essentially small and D is locally
small, then the ∞-category Fun(C,D) is locally small.

Variant 4.7.8.10. 04JALet λ be an uncountable cardinal, let C be an∞-category which is locally
λ-small, and let K be a simplicial set. Suppose that K is κ-small, where κ = ecf(λ) is the
exponential cofinality of λ. Then, for any diagram f : K → C, the ∞-categories Cf/ and
C/f are locally λ-small. Moreover, if κ is uncountable, then it suffices to assume that K is
essentially κ-small.

Proof. We will show that the slice ∞-category C/f is locally λ-small; the analogous assertion
for Cf/ follows by a similar argument. Fix a pair of objects X,Y ∈ C/f ; we wish to show
that the morphism space HomC/f

(X,Y ) is essentially λ-small. Let C′ be the smallest full
subcategory of C which contains f(K) together with the images of X and Y . Replacing C
by C′, we can reduce to the case where C is essentially κ-small. In this case, the ∞-category
C/f is essentially λ-small (Corollary 4.7.5.17), so the desired result follows from Example
4.7.8.4.

Example 4.7.8.11. 04JBLet λ be an uncountable cardinal and let C be an ∞-category which is
locally λ-small. Then, for every object X ∈ C, the ∞-categories C/X and CX/ are locally
λ-small.

4.7.9 Small Fibrations

047AIt will sometimes be convenient to work with a relative version of Definition 4.7.5.1.

Definition 4.7.9.1. 047BLet U : E → C be an inner fibration of simplicial sets and let κ be
an uncountable regular cardinal. We say that U is essentially κ-small if, for every simplex
σ : ∆n → C, the ∞-category ∆n×C E is essentially κ-small. We say that U is locally κ-small
if, for every simplex σ : ∆n → C, the ∞-category ∆n ×C E is locally κ-small.

Variant 4.7.9.2. 047CLet U : E → C be an inner fibration of simplicial sets. We say that U is
essentially small if, for every simplex σ : ∆n → C, the ∞-category ∆n ×C E is essentially
small. We say that U is locally small if, for every n-simplex σ : ∆n → C, the ∞-category
∆n ×C E is locally small.
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Remark 4.7.9.3.047D Let κ be an uncountable regular cardinal and suppose we are given a
pullback diagram of simplicial sets

E ′

U ′

��

// E

U
��

C′ // C,

where U and U ′ are inner fibrations. If U is essentially κ-small, then U ′ is essentially κ-small.
If U is locally κ-small, then U ′ is locally κ-small.

Remark 4.7.9.4.047E Let U : E → C be an inner fibration of simplicial sets and let κ be an
uncountable regular cardinal. Then U is essentially κ-small if and only if it is locally κ-small
and, for each vertex C ∈ C, the set of isomorphism classes π0(E≃C) is κ-small. See Proposition
4.7.8.7.

Proposition 4.7.9.5.047F Let κ be an uncountable regular cardinal, let C be an ∞-category
which is locally κ-small, and let U : E → C be an inner fibration. The following conditions
are equivalent:

(1) The inner fibration U is locally κ-small.

(2) For every edge ∆1 → C, the ∞-category ∆1 ×C E is locally κ-small.

(3) The ∞-category E is locally κ-small.

Proof. The implication (1)⇒ (2) is immediate from the definitions. Assume next that (2) is
satisfied; we will prove (3). Let X and Y be objects of E , and set X = U(X) and Y = U(Y ).
We wish to show that the Kan complex HomE(X,Y ) is essentially κ-small. By virtue of
Proposition 4.6.1.21, the functor U induces a Kan fibration θ : HomE(X,Y )→ HomC(X,Y ).
Our assumption that C is locally κ-small guarantees that the Kan complex HomC(X,Y )
is essentially κ-small. By virtue of Corollary 4.7.7.2, it will suffice to show that for every
morphism e : X → Y in C, the Kan complex HomE(X,Y )e = {e} ×HomC(X,Y ) HomE(X,Y )
is essentially κ-small. This follows immediately from assumption (2).

We now complete the proof by showing that (3) implies (1). Assume that E is locally
κ-small and choose a simplex σ : ∆n → C; we will show that the ∞-category Eσ = ∆n ×C E
is locally κ-small. Fix a pair of objects X̃, Ỹ ∈ Eσ; we wish to show that the Kan complex
HomEσ (X̃, Ỹ ) is essentially κ-small. Let X and Y denote the images of X̃ and Ỹ in the
∞-category E , and set X = U(X) and Y = U(Y ) as above. If the Kan complex HomEσ (X̃, Ỹ )
is nonempty, then it can be identified with a fiber of the Kan fibration θ : HomE(X,Y )→
HomC(X,Y ), which is essentially κ-small by virtue of Corollary 4.7.7.2.
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Corollary 4.7.9.6. 047GLet κ be an uncountable regular cardinal and let C be an ∞-category
which is essentially κ-small, and let U : E → C be an inner fibration. If the ∞-category E
is essentially κ-small, then then U is essentially κ-small. The converse holds if U is an
isofibration.

Proof. Assume first that E is essentially κ-small. Applying Proposition 4.7.9.5, we deduce
that U is locally κ-small. It will therefore suffice to show that, for each object C ∈ C, the
∞-category EC = {C}×C E is essentially κ-small (Remark 4.7.9.4). Using Corollary 4.5.2.23,
we can factor U as a composition E ι−→ E ′ U ′−→ C, where U ′ is an isofibration and ι is an
equivalence of ∞-categories. Then E ′ is essentially κ-small, so Corollary 4.7.5.16 guarantees
that the fiber E ′C is essentially κ-small. Remark 4.5.2.24 guarantees that the map of fibers
EC → E ′C is fully faithful, so EC is also essentially κ-small (Corollary 4.7.5.13).

Now suppose that U is an isofibration which is essentially κ-small; we wish to show that
the ∞-category E is essentially κ-small. Proposition 4.7.9.5 guarantees that U is locally
κ-small. It will therefore suffice to show that the set of isomorphism classes π0(E≃) is κ-small.
In fact, we will show that the core E≃ is an essentially κ-small Kan complex. This is a
special case of Corollary 4.7.7.2, since U induces a Kan fibration U≃ : E≃ → C≃ whose fibers
are essentially κ-small (see Proposition 4.4.3.7).

Warning 4.7.9.7. 047HIf U : E → C is not assumed to be an isofibration, then the converse
assertion of Corollary 4.7.9.6 does not necessarily hold. For example, suppose that C = N•(C0)
is the nerve of an essentially κ-small category C0, and let E = sk0(C) be the constant
simplicial set associated to the collection of objects of C0. Then the inclusion map E ↪→ C is
an essentially κ-small inner fibration (which is usually not an isofibration). However, the
∞-category E is essentially κ-small if and only if the set of objects of C0 is κ-small.

Corollary 4.7.9.8. 047JLet κ be an uncountable regular cardinal. Then an ∞-category C
is locally κ-small (in the sense of Definition 4.7.8.1) if and only if the inner fibration
U : C → ∆0 is locally κ-small (in the sense of Definition 4.7.9.1). Similarly, C is essentially
κ-small (in the sense of Definition 4.7.5.1) if and only if U is essentially κ-small.

Corollary 4.7.9.9 (Transitivity of Local Smallness). 047KLet V : E → D and U : D → C be
inner fibrations of simplicial sets, let κ be an uncountable regular cardinal, and suppose that
U is locally κ-small. Then V is locally κ-small if and only if U ◦ V is locally κ-small.

Proof. Suppose first that V is locally κ-small. Choose an n-simplex σ : ∆n → C; we wish to
show that the ∞-category ∆n ×C E is locally κ-small. This follows by applying Proposition
4.7.9.5 to the inner fibration of ∞-categories (id×V ) : ∆n ×C E → ∆n ×C D, which is locally
κ-small by virtue of Remark 4.7.9.3.

Now suppose that U ◦ V is locally κ-small, and choose an n-simplex σ̃ : ∆n → D; we
wish to show that the fiber product ∆n ×D E is locally κ-small. To prove this, we are free
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to replace D and E by ∆n ×C D and ∆n ×C E , respectively, and thereby reduce to the case
where C = ∆n is a locally κ-small ∞-category. In this case, our assumptions on U and U ◦V
guarantee that the ∞-categories D and E are also locally κ-small (Proposition 4.7.9.5), so
that V is automatically locally κ-small (by Proposition 4.7.9.5 again).

Variant 4.7.9.10 (Transitivity of Essential Smallness).047L Let V : E → D and U : D → C be
inner fibrations of simplicial sets, let κ be an uncountable regular cardinal, and suppose that
U is essentially κ-small. Then:

• If V is an essentially κ-small isofibration, then U ◦ V is essentially κ-small.

• If U ◦ V is essentially κ-small, then V is essentially κ-small.

Proof. We proceed as in the proof of Corollary 4.7.9.9. Assume first that V is an essentially
κ-small isofibration, and choose an n-simplex σ : ∆n → C; we wish to show that the
∞-category ∆n ×C E is essentially κ-small. This follows by applying Corollary 4.7.9.6 to the
isofibration of ∞-categories (id×V ) : ∆n ×C E → ∆n ×C D, which is essentially κ-small by
virtue of Remark 4.7.9.3.

Now suppose that U ◦ V is essentially κ-small, and choose an n-simplex σ̃ : ∆n → D; we
wish to show that the fiber product ∆n×D E is essentially κ-small. To prove this, we are free
to replace D and E by ∆n ×C D and ∆n ×C E , respectively, and thereby reduce to the case
where C = ∆n. In particular, we may assume that C is an essentially κ-small ∞-category
and that the functors U and U ◦ V are isofibrations (Example 4.4.1.6). Applying Corollary
4.7.9.6, we deduce that the ∞-categories D and E are essentially κ-small, so that V is also
automatically essentially κ-small (by Corollary 4.7.9.6 again).

Corollary 4.7.9.11.047M Let κ be an uncountable regular cardinal and let U : E → C be an inner
fibration of ∞-categories. Then U is locally κ-small if and only if, for every edge ∆1 → C,
the ∞-category ∆1 ×C E is locally κ-small.

Proof. The “only if” direction is immediate from the definitions. To prove the converse, we
may assume without loss of generality that C = ∆n is a standard simplex, in which case the
desired result follows from Proposition 4.7.9.5.

Corollary 4.7.9.12.047N Let κ be an uncountable regular cardinal and let U : E → C be an
inner fibration of ∞-categories. Then U is essentially κ-small if and only if, for every edge
∆1 → C, the ∞-category ∆1 ×C E is essentially κ-small.

Proof. Combine Corollary 4.7.9.11 with Remark 4.7.9.4.

Warning 4.7.9.13.03TY Let U : E → C be an inner fibration of ∞-categories. If U is essentially
κ-small, then the ∞-category EC = {C} ×C E is essentially κ-small for each object C ∈ C.
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Beware that the converse is false in general. For example, let S be a set and let E be the
category containing a pair of objects X and Y , with morphisms given by

HomE(X,X) = {idX} HomE(Y, Y ) = {idY }

HomE(X,Y ) = S HomE(Y,X) = ∅.
Then there is a unique isofibration U : N•(E) → ∆1 satisfying U(X) = 0 and U(Y ) = 1.
The fibers U−1{0} and U−1{1} are isomorphic to ∆0 (and are therefore essentially κ-small
for every uncountable cardinal κ). However, the ∞-category N•(E) is essentially κ-small if
and only if the set S is κ-small.

4.8 Truncations in Higher Category Theory

0578Recall that a simplicial set C is an ∞-category if, for every pair of integers 0 < i < m,
every inner horn σ0 : Λmi → C can be extended to an m-simplex of C (Definition 1.4.0.1). In
this case, C is (isomorphic to the nerve of) an ordinary category if and only if the extension
σ is always unique (Proposition 1.3.4.1). More generally, we say that C is an (n, 1)-category
if the extension σ is unique whenever m > n (Definition 4.8.1.1). In §4.8.1, we summarize
the formal properties of this definition and give some basic examples.

Beware that the notion of (n, 1)-category is not homotopy-invariant: that is, if C and D
are equivalent∞-categories and D is an (n, 1)-category, then C need not be an (n, 1)-category.
We can therefore ask the following:

Question 4.8.0.1. 0579Let C be an ∞-category. Under what conditions does there exists an
equivalence of ∞-categories C → D, where D is an (n, 1)-category?

We partially address Question 4.8.0.1 in §4.8.2 by introducing the notion of a locally
truncated ∞-category. If m is an integer, we say that an ∞-category C is locally m-truncated
if, for every pair of objects X,Y ∈ C, the morphism space HomC(X,Y ) is m-truncated
(Definition 4.8.2.1). It is easy to see that every (n, 1)-category is locally (n− 1)-truncated
(Example 4.8.2.2). Conversely, if C is a locally (n − 1)-truncated ∞ category, then there
exists an equivalence C → D, where D is an (n, 1)-category. We will give two proofs of this
result:

• In §4.8.3, we show that a locally (n− 1)-truncated ∞-category C is an (n, 1)-category
if and only if it is minimal in dimensions ≥ n (Proposition 4.8.3.1). In particular, if D
is a minimal model of C, then D is an (n, 1)-category.

• In §4.8.4, we associate to every ∞-category C an (n, 1)-category h≤n(C), which we
call the homotopy n-category of C (Construction 4.8.4.9). The homotopy n-category
h≤n(C) is equipped with a comparison functor C → h≤n(C), which is an equivalence if
and only if C is locally (n− 1)-truncated (Corollary 4.8.4.16).
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Let C and D be ordinary categories. Recall that a functor F : C → D is an equivalence
of categories if and only if it satisfies the following three conditions:

• The functor F is essentially surjective: that is, every object of D is isomorphic to
F (X), for some objects X ∈ C.

• The functor F is full: that is, for every pair of objects X,Y ∈ C, the function
FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )) is surjective.

• The functor F is faithful: that is, for every pair of objects X,Y ∈ C, the function FX,Y
is injective.

Exercise 4.8.0.2.057A Let F : C → D be a functor between categories. Show that F is faithful
if and only if, for every diagram σ :

Y

g

��
X

f

??

h // Z

in the category C, if F (σ) is a commutative diagram in D, then σ is also commutative.

To emphasize the parallels between the preceding conditions, it is convenient to reformu-
late them using the language of simplicial sets. To simplify the discussion, let us assume
that the functor F : C → D is an isofibration (Definition 4.4.1.1). In this case:

(0) The functor F is essentially surjective if and only if it is surjective on objects: that is,
every lifting problem

∂∆0 //

��

N•(C)

N•(F )

��
∆0 //

<<

N•(D)
admits a solution.

(1) The functor F is full if and only if every lifting problem

∂∆1 //

��

N•(C)

N•(F )

��
∆1 //

<<

N•(D)
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admits a solution.

(2) The functor F is faithful if and only if every lifting problem

∂∆2 //

��

N•(C)

N•(F )

��
∆2 //

<<

N•(D).

These conditions have a counterpart in the setting of ∞-categories:

Definition 4.8.0.3 (Preliminary). 057BLet F : C → D be an isofibration ∞-categories and let
m ≥ 0 be an integer. We say that F is m-full if every lifting problem

∂∆m //

��

C

F

��
∆m //

==

D

admits a solution.

In §4.8.5, we extend Definition 4.8.0.3 to the case where F is an arbitrary functor of
∞-categories (see Definition 4.8.5.10 for a homotopy-invariant formulation, and Proposition
4.8.5.29 for a comparison with Definition 4.8.0.3).

Example 4.8.0.4. 057CLet F0 : C0 → D0 be a functor of ordinary categories and let F :
N•(C0)→ N•(D0) denote the induced of ∞-categories. Then:

• The functor F is 0-full if and only if F0 is essentially surjective.

• The functor F is 1-full if and only if F0 is full.

• The functor F is 2-full if and only if F0 is faithful.

• For m ≥ 3, the functor F is automatically m-full (see Exercise 1.3.1.5).

Fix an integer n. We will say that a functor of ∞-categories F : C → D is essentially
n-categorical if it is m-full for every nonnegative integer m ≥ n+ 2 (Definition 4.8.6.1). In
§4.8.6, we will see that this condition has many familiar specializations:
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• A functor of ∞-categories F : C → D is essentially (−1)-categorical if and only if it
is fully faithful, and essentially (−2)-categorical if and only if it is an equivalence of
∞-categories. See Remark 4.8.5.11.

• Let C be an∞-category and let n ≥ −1. Then the projection map C → ∆0 is essentially
n-categorical if and only if C is locally (n− 1)-truncated: that is, if and only if C is
equivalent to an (n, 1)-category. See Example 4.8.6.4.

• If C and D are Kan complexes, then a functor F : C → D is essentially n-categorical if
and only if it is n-truncated, in the sense of Definition 3.5.9.1. See Example 4.8.6.3.

In §4.8.7, we introduce a dual version of this condition. We will say that a functor of ∞-
categories F : C → D is categorically n-connective if it is m-full for every integer 0 ≤ m ≤ n
(Definition 4.8.7.1). Roughly speaking, this condition asserts that, up to equivalence, the
∞-category D can be be built from C using only simplices of dimension strictly larger than n
(see Corollary 4.8.7.16 for a precise formulation). In the special case where C and D are Kan
complexes, this recovers the theory of relative connectivity developed in §3.5.1 (Example
4.8.7.3). As with the usual notion of connectivity, it can sometimes be useful to extend the
notion of categorical connectivity to morphisms of between simplicial sets which are not
∞-categories; we consider this extension in §4.8.9 (Definition 4.8.9.2).

Let F : C → D be a functor of ∞-categories and let n be an integer. In §4.8.8, we show
that F admits a factorization

C F ′−→ D′ G−→ D,

where F ′ is categorically (n + 1)-connective and G is essentially n-categorical (Theorem
4.8.8.3). Moreover, this factorization is unique up to equivalence (Remark 4.8.8.8). In the
special case where D = ∆0, this can be achieved by taking D′ to be the homotopy n-category
h≤n(C) constructed in §4.8.4 (Example 4.8.8.7). More generally, if F is an inner fibration of
∞-categories, we will show that the system of ∞-categories {h≤n(CD)}D∈D can be realized
as the fibers of an inner fibration G : h≤n(C /D)→ D which realizes the desired factorization
(Construction 4.8.8.10).

4.8.1 (n, 1)-Categories

057D Recall that a simplicial set C is (isomorphic to) the nerve of a category if and only if, for
every pair of integers 0 < i < m, the restriction map

HomSet∆(∆m, C)→ HomSet∆(Λmi , C)

is a bijection. In this section, we study a hierarchy of weaker filling conditions.

Definition 4.8.1.1.057E Let n be a positive integer. We say that a simplicial set C is an
(n, 1)-category if it satisfies the following condition for every pair of integers 0 < i < m:
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(∗) Every morphism of simplicial sets σ0 : Λmi → C can be extended to an m-simplex σ of C.
Moreover, if m > n, then σ is unique.

Remark 4.8.1.2. 057FLet n be a positive integer and let C be a simplicial set. If C is an
(n, 1)-category, then it is an ∞-category. Conversely, if C is an ∞-category, then it is an
(n, 1)-category if and only if, for every pair of integers 0 < i < m with m > n, the restriction
map HomSet∆(∆m, C)→ HomSet∆(Λmi , C) is injective.

Example 4.8.1.3. 057GAn ∞-category C is a (1, 1)-category if and only if it is isomorphic to
N•(C0), for some category C0. By virtue of Proposition 4.8.1.7, this is a restatement of
Proposition 1.3.4.1. Note that in this case, the category C0 is well-defined up to unique
isomorphism (Proposition 1.3.3.1).

Example 4.8.1.4. 057HLet C be a 2-category, and suppose that every 2-morphism in C is an
isomorphism. Then the Duskin nerve ND

• (C) is a (2, 1)-category, in the sense of Definition
4.8.1.8. This follows by combining Propositions 4.8.1.7 and 2.3.3.1.

Warning 4.8.1.5. 057JWe have now given several a priori different definitions for the notion of
(2, 1)-category:

(1) According to Definition 2.2.8.5, a (2, 1)-category is a 2-category C in which every
2-morphism is an isomorphism.

(2) According to Definition 4.8.1.8 (or Definition 4.8.1.1), a (2, 1)-category is a simplicial
set which satisfies some additional conditions.

However, these definitions are compatible with one another. If C is a (2, 1)-category in the
sense of (1), then the Duskin nerve ND

• (C) is a (2, 1)-category in the sense of (2) (Example
4.8.1.4). We will later see that the converse is also true: every (2, 1)-category in the sense (2)
is isomorphic to the Duskin nerve ND

• (C), where C is a 2-category in which every 2-morphism
is an isomorphism (in this case, Theorem 2.3.4.1 guarantees that C is unique up to non-strict
isomorphism). See Proposition [?].

Exercise 4.8.1.6. 057KLet n be a positive integer and let C be a differential graded category
which satisfies the following condition:

• For every pair of objects X,Y ∈ C, the chain complex HomC(X,Y )∗ is concentrated in
degrees < n: that is, the abelian groups HomC(X,Y )m vanish for m ≥ n.

Show that the differential graded nerve Ndg
• (C) is an (n, 1)-category (see the proof of Theorem

2.5.3.10).

It will be useful to work with a reformulation of Definition 4.8.1.1. Recall that:
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• A simplicial set C is weakly n-coskeletal if the restriction map

HomSet∆(∆m, C)→ HomSet∆(∂∆m, C)

is a bijection for m ≥ n+ 2 and an injection for m = n+ 1 (Definition 3.5.4.1).

• An ∞-category C is minimal in dimension n if, whenever σ and τ are n-simplices of C
which are isomorphic relative to ∂∆n, then σ = τ (Definition 4.7.6.4).

Proposition 4.8.1.7.057L Let C be an ∞-category and let n be a positive integer. Then C is an
(n, 1)-category (in the sense of Definition 4.8.1.1) if and only if it is weakly n-coskeletal and
minimal in dimension n.

Proof. We proceed as in the proof of Proposition 3.5.5.12. Assume first that C is an
(n, 1)-category. Then, for any integer m > n, the composition of the restriction maps

HomSet∆(∆m, C) θm−−→ HomSet∆(∂∆m, C)→ HomSet∆(Λm1 , C)

is a bijection. In particular, θm is an injection. To show that C is weakly n-coskeletal, it
will suffice to show that θm is surjective for m ≥ n+ 2. Fix a morphism σ0 : ∂∆m → C; we
wish to show that σ0 can be extended to an m-simplex of C. Since C is an (n, 1)-category,
there is a unique m-simplex σ of C satisfying σ|Λm

1
= σ0|Λm

1
. We complete the argument by

observing that σ|∂∆m = σ0, by virtue of the injectivity of the map θm−1.
We next show that if C is an (n, 1)-category, then it is minimal in dimension n. Let

σ0, σ1 : ∆n → C be n-simplices of C and let h : ∆1×∆n → C be a natural isomorphism from
σ0 = h|{0}×∆n to σ1 = h|{1}×∆n whose restriction to ∆1×∂∆n factors through ∂∆n; we wish
to show that σ0 = σ1. For 0 ≤ i ≤ n, let αi : [n+ 1]→ [1]× [n] denote the nondecreasing
function given by the formula

αi(j) =

(0, j) if j ≤ i
(1, j − 1) if j > i,

and let τi denote the (n+ 1)-simplex of C given by the composition

∆n+1 αi−→ ∆1 ×∆n h−→ C .

Let ρi, ρ′i : ∆n → C be the n-simplices of X given by ρi = dn+1
i (τi) and ρ′i = dn+1

i+1 (τi); by
construction, we have

σ0 = ρ′n ρn = ρ′n−1 · · · ρ1 = ρ′0 ρ0 = σ1.

We will complete the proof by showing that ρi = ρ′i for 0 ≤ i ≤ n. We will treat the case
i > 0 (the case i < n follows by a similar argument). Using our assumption that h is constant
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along the boundary ∂∆n, we see that the degenerate (n+ 1)-simplex sni (ρi) coincides with τi
on the horn Λn+1

i ⊂ ∆n+1. Since C is an (n, 1)-category, it follows that τi = sni (ρi). Applying
the face operator dn+1

i+1 , we obtain ρi = ρ′i.
We now prove the converse. Assume that C is a weakly n-coskeletal ∞-category which is

minimal in dimension n; we will show that it is an (n, 1)-category. Fix a pair of integers
0 < i < m with m > n and a pair of m-simplices τ0, τ1 : ∆m → X which coincide on
the horn Λm

i ⊂ ∆m; we wish to show that τ0 = τ1. Since C is weakly n-coskeletal, it will
suffice to prove that τ0 and τ1 coincide on the boundary ∂∆m: that is, to show that the
(m − 1)-simplices σ0 = dmi (τ0) and σ1 = dmi (τ1) coincide. Note that σ0 and σ1 have the
same restriction to the boundary ∂∆m−1. Consequently, if m ≥ n + 2, the desired result
follows from our assumption that C is weakly n-coskeletal. We may therefore assume that
m = n + 1. Since C is minimal in dimension n, it will suffice to show that there is an
isomorphism from σ0 to σ1 (in the ∞-category Fun(∆n, C)) whose image in Fun(∂∆n, C) is
an identity morphism. In fact, we will prove a stronger claim: there is an isomorphism from
τ0 to τ1 in the ∞-category Fun(∆m, C) whose image in Fun(Λmi , C) is an identity morphism.
This follows from the observation that the restriction map Fun(∆m, C)→ Fun(Λmi , C) is a
trivial Kan fibration; see Proposition 1.5.7.6.

Motivated by Proposition 4.8.1.7, we introduce a generalization of Definition 4.8.1.1.

Definition 4.8.1.8. 057MLet n be an integer. We say that a simplicial set C is an (n, 1)-category
if it is an ∞-category which is weakly n-coskeletal and (if n ≥ 0) minimal in dimension n.

For n > 0, Definitions 4.8.1.8 and 4.8.1.1 are equivalent: this is the content of Proposition
4.8.1.7. The advantage of Definition 4.8.1.8 is that it also makes sense for n ≤ 0. However,
for n < 0 it is rather trivial:

Example 4.8.1.9. 057NA simplicial set C is a (−1, 1)-category if and only if it is either empty
or isomorphic to ∆0. See Example 3.5.4.4.

Example 4.8.1.10. 057PFor n ≤ −2, a simplicial set C is an (n, 1)-category if and only it is
isomorphic to ∆0. See Example 3.5.4.3.

Example 4.8.1.11. 057QLet X be a Kan complex and let n ≥ 0 be an integer. Then X is an
n-groupoid (in the sense of Definition 3.5.5.1) if and only if it is an (n, 1)-category (in the
sense of Definition 4.8.1.8). This is a reformulation of Proposition 3.5.5.12.

Remark 4.8.1.12 (Monotonicity). 057RLet C be an (m, 1)-category for some integer m. Then
C is an (n, 1)-category for every integer n ≥ m.

Remark 4.8.1.13 (Symmetry). 057SLet n be an integer and let C be an (n, 1)-category. Then
the opposite simplicial set Cop is also an (n, 1)-category.
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Remark 4.8.1.14.057T Let n be an integer and let {Cj}j∈J be a collection of (n, 1)-categories.
Then the product C = ∏

j∈J Cj is also an (n, 1)-category.

Proposition 4.8.1.15.057U A simplicial set C is a (0, 1)-category if and only if there exists an
isomorphism C ≃ N•(Q), for some partially ordered set (Q,≤).

Proof. By virtue of Remark 4.8.1.12, we may assume without loss of generality that C is
a (1, 1)-category: that is, it is isomorphic to N•(C0), for some category C0 (see Example
4.8.1.3). In this case, C is a (0, 1)-category if and only if it satisfies the following additional
conditions:

(0) The ∞-category C is minimal in dimension 0: that is, if X and Y are isomorphic objects
of C0, then X = Y .

(1) The restriction map HomSet∆(∆1, C)→ HomSet∆(∂∆1, C) is injective: that is, for every
pair of objects X,Y ∈ C0, there is at most one morphism from X to Y .

(2) The restriction map HomSet∆(∆2, C) → HomSet∆(∂∆2, C) is bijective: that is, every
diagram

Y

g

��
X

f

??

h // Z

in the category C0 is automatically commutative.

Note that conditions (1) and (2) are equivalent to one another: they both assert that C0 can
be recovered from the set of objects Q = Ob(C), endowed with the reflexive and transitive
relation ≤Q defined by

(X ≤Q Y )⇔ HomC0(X,Y ) ̸= ∅.

In this case, condition (0) is satisfied if and only if the relation ≤Q is also antisymmetric:
that is, the relation ≤Q is a partial ordering of Q.

Remark 4.8.1.16.057V Let C be an ∞-category and let C0 ⊆ C be a simplicial subset which
is also an ∞-category. If C is an (n, 1)-category for some integer n ≥ −1, then C0 is also
an (n, 1)-category. For n ≥ 1, this follows from Remark 4.8.1.2. The case n = 0 follows
from Proposition 4.8.1.15 (since any subcategory of a partially ordered set is also a partially
ordered set), and the case n = −1 is trivial (see Example 4.8.1.9).

Example 4.8.1.17.057W Let n ≥ 0 and let C be an (n, 1)-category. Then the core C≃ is an
n-groupoid. This follows by combining Remark 4.8.1.16 with Example 4.8.1.11.
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Remark 4.8.1.18. 057XLet {Cj}j∈J be a diagram of simplicial sets having limit C = lim←−j∈J Cj
and let n be an integer. If each Cj is an (n, 1)-category and C is an ∞-category, then C is
also an (n, 1)-category. For n ≤ −2, this is trivial (Example 4.8.1.10). The case n ≥ −1
follows from Remarks 4.8.1.14 and 4.8.1.16, since C can be identified with a simplicial subset
of the product ∏

j∈J Cj .

Proposition 4.8.1.19. 057YLet n be a positive integer and let C be an (n, 1)-category. Then, for
every pair of objects X,Y ∈ C, the pinched morphism spaces HomL

C (X,Y ) and HomR
C (X,Y )

are (n− 1)-groupoids.

Proof. We will show that the right-pinched morphism space HomR
C (X,Y ) is an (n − 1)-

groupoid; the analogous statement for the left-pinched morphism space HomL
C (X,Y ) follows

by a similar argument. If n = 1, then C can be identified with the nerve of an ordinary
category C0 (Example 4.8.1.3) and the desired result follows from Example 4.6.5.12. We
may therefore assume that n > 1. Since HomR

C (X,Y ) is a Kan complex, it will suffice to
show that it is an (n− 1, 1)-category (Example 4.8.1.11). Let m ≥ n and let σ0 and σ1 be
m-simplices of HomR

C (X,Y ) which satisfy σ0|Λm
i

= σ1|Λm
i

for some 0 < i < m; we wish to
show that σ0 = σ1. Let us identify σ0 and σ1 with morphisms τ0, τ1 : ∆m+1 → C which
carry the simplicial subset ∆m ⊂ ∆m+1 to the object X and the final vertex of ∆m+1 to
the object Y . Our assumptions then guarantee that τ0 and τ1 have the same restriction to
Λm+1
i . Since C is an (n, 1)-category, it follows that τ0 = τ1.

Corollary 4.8.1.20. 057ZLet n be an integer and let C be an (n, 1)-category. Then, for every
pair of objects X,Y ∈ C, the Kan complex HomC(X,Y ) is (n− 1)-truncated.

Proof. For n ≤ −1, there is nothing to prove (see Examples 4.8.1.10 and 4.8.1.9). The
case n = 0 follows from Proposition 4.8.1.15. We may therefore assume n > 0. By
virtue of Proposition 4.6.5.10, it will suffice to show that the pinched morphism space
K = HomL

C (X,Y ) is (n − 1)-truncated. This follows from Example 3.5.7.2, since K is an
(n− 1)-groupoid (Proposition 4.8.1.19).

Warning 4.8.1.21. 0580Let n ≥ 1 be an integer and let C be an (n, 1)-category. For every pair
of objects X,Y ∈ C, Corollary 4.8.1.20 guarantees that the morphism space HomC(X,Y ) is
(n− 1)-truncated, and is therefore homotopy equivalent to an (n− 1)-groupoid (for example,
it is homotopy equivalent to the pinched morphism spaces HomL

C (X,Y ) and HomR
C (X,Y )).

Beware that, for n ≥ 2, the Kan complex HomC(X,Y ) itself is generally not an (n − 1)-
groupoid. For example, this usually fails in the case where C = ND

• (C0) arises as the Duskin
nerve of a 2-category C0: see Remark 8.1.8.8. However, the Kan complex HomC(X,Y ) is
always weakly (n− 1)-coskeletal: see Corollary 4.8.3.5.
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Proposition 4.8.1.22 (Exponentation for (n, 1)-Categories).0581 Let n be an integer and let C
be an (n, 1)-category. Then, for any simplicial set K, the simplicial set Fun(K, C) is also an
(n, 1)-category.

Proof. It follows from Theorem 1.5.3.7 that Fun(K, C) is an ∞-category. Since C is weakly
n-coskeletal, the ∞-category Fun(K, C) is also weakly n-coskeletal (Corollary 3.5.4.13). To
complete the proof, it will suffice to show that if n ≥ 0, then Fun(K, C) is minimal in
dimension n (Proposition 4.8.1.7). Suppose we are given a pair of n-simplices σ0, σ1 : ∆n →
Fun(K, C) and an isomorphism σ0

∼−→ σ1 whose restriction to ∂∆n is an identity morphism;
we wish to show that σ0 = σ1. Let us identify σ0 and σ1 with diagrams f0, f1 : ∆n×K → C.
Since C is weakly n-coskeletal, it will suffice to show that f0 and f1 coincide on m-simplices
τ = (τ ′, τ ′′) of ∆n ×K for m ≤ n. If τ ′ factors through the boundary ∂∆n, this follows
immediately from the equality σ0|∂∆n = σ1|∂∆n . We may therefore assume without loss
of generality that m = n and that τ ′ : ∆m → ∆n is the identity map. In this case, our
assumption guarantees that there is an isomorphism of f0(τ) with f1(τ) whose image in
Fun(∂∆n, C) is an identity morphism. The equality f0(τ) = f1(τ) now follows from the fact
that C is minimal in dimension n (Proposition 4.8.1.7).

Corollary 4.8.1.23.0582 Let n be an integer and let F0 : C0 → C and F1 : C1 → C be functors
of (n, 1)-categories. Then the oriented fiber product C0 ×̃C C1 and the homotopy fiber product
C0×h

C C1 are also (n, 1)-categories.

Proof. By definition, the oriented fiber product C0 ×̃C C1 can be realized as an iterated fiber
product

C0×Fun({0},C) Fun(∆1, C)×Fun({1},C) C1,

which is an (n, 1)-category by virtue of Propositions 4.8.1.22 and Remark 4.8.1.18. The
homotopy fiber product C0×h

C C1 is a full subcategory of C0 ×̃C C1, which coincides with
C0 ×̃C C1 for n ≤ −1. Applying Remark 4.8.1.16, we see that it is also an (n, 1)-category.

4.8.2 Locally Truncated ∞-Categories

0583 We now formulate a homotopy-invariant counterpart of Definition 4.8.1.8.

Definition 4.8.2.1.0584 Let C be an ∞-category and let n be an integer. We say that C is
locally n-truncated if, for every pair of objects X,Y ∈ C, the Kan complex HomC(X,Y ) is
n-truncated (see Definition 3.5.7.1).

Example 4.8.2.2.0585 Let n be an integer. Then every (n, 1)-category is locally (n−1)-truncated
(Corollary 4.8.1.20). In particular:

• If Q is a partially ordered set, then the nerve N•(Q) is locally (−1)-truncated ∞-
category (Proposition 4.8.1.15).
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• If C is an ordinary category, then the nerve N•(C) is a locally 0-truncated ∞-category
(Example 4.8.1.3).

• If C is a 2-category in which every 2-morphism is an isomorphism, then the Duskin
nerve ND

• (C) is a locally 1-truncated ∞-category (Example 4.8.1.4).

Remark 4.8.2.3. 0586Let F : C → D be a fully faithful functor of ∞-categories. If D is
locally n-truncated, then C is locally n-truncated. The converse holds if F is an equivalence
of ∞-categories. In particular, if ∞-categories C and D are equivalent, then C is locally
n-truncated if and only if D is locally n-truncated.

Let C be an ∞-category. Combining Example 4.8.2.2 with Remark 4.8.2.3, we see for C
to be equivalent to an (n, 1)-category, it is necessary for C to be locally (n− 1)-truncated. In
§4.8.3, we will prove that this condition is also sufficient, provided that n ≥ −1 (Corollary
4.8.3.3).

Example 4.8.2.4. 0587Let n ≥ −1 be an integer and let X be a Kan complex. Then X is
n-truncated (in the sense of Definition 3.5.7.1) if and only if it is locally (n− 1)-truncated
when regarded as an ∞-category (in the sense of Definition 4.8.2.1). This is reformulation
of Example 3.5.9.18. See Corollary 4.8.3.11 for a more general statement.

Remark 4.8.2.5. 0588Let C be an ∞-category containing a pair of objects X,Y ∈ C. For every
integer n, the following conditions are equivalent:

• The morphism space HomC(X,Y ) is n-truncated.

• The left-pinched morphism space HomL
C (X,Y ) is n-truncated.

• The right-pinched morphism space HomR
C (X,Y ) is n-truncated.

This follows from Corollary 3.5.7.12, since the pinch inclusion maps

HomL
C (X,Y ) ↪→ HomC(X,Y )←↩ HomR

C (X,Y )

are homotopy equivalences (Proposition 4.6.5.10).

Proposition 4.8.2.6. 0589Let C be a locally Kan simplicial category. For every integer n, the
following conditions are equivalent:

• The homotopy coherent nerve Nhc
• (C) is locally n-truncated.

• For every pair of objects X,Y ∈ C, the Kan complex HomC(X,Y )• is n-truncated.

Proof. For every pair of objects X,Y ∈ C, Theorem 4.6.8.5 supplies a homotopy equivalence
from HomC(X,Y )• to the pinched morphism space HomL

Nhc
• (C)(X,Y ). The desired result

now follows from Remark 4.8.2.5.
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Variant 4.8.2.7.058A Let C be a differential graded category. For every integer n ≥ −1, the
following conditions are equivalent:

• The differential graded nerve Ndg
• (C) is locally n-truncated.

• For every pair of objects X,Y ∈ C, the chain complex HomC(X,Y )∗ is homologically
n-truncated: that is, the homology groups Hm(HomC(X,Y )∗) vanish for m > n.

Proof. For every pair of objects X,Y ∈ C, Example 4.6.5.15 supplies an isomorphism
from of the Eilenberg-MacLane space K(HomC(X,Y )∗) with the pinched morphism space
HomL

Ndg
• (C)(X,Y ). The result now follows by combining Remark 4.8.2.5 with the criterion of

Example 3.5.7.10.

Example 4.8.2.2 admits a slight generalization:

Proposition 4.8.2.8.058B Let C be an ∞-category and let n be an integer. If C is an n-coskeletal
simplicial set (Definition 3.5.3.1), then it is locally (n− 2)-truncated.

Proof. For every pair of objects X,Y ∈ C, our assumption that C is n-coskeletal guarantees
that the pinched morphism space HomL

C (X,Y ) is (n − 1)-coskeletal (Remark 4.6.5.4). In
particular, it is (n− 2)-truncated (Example 3.5.7.2). The desired result now follows from
Remark 4.8.2.5.

Our next goal is to show that every ∞-category C admits an optimal approximation by
a locally n-truncated ∞-category.

Definition 4.8.2.9.058C Let F : C → D be a functor of ∞-categories and let n be an integer.
We say that F exhibits D as a local n-truncation of C if the following conditions are satisfied:

(1) The functor F is essentially surjective (Definition 4.6.2.11).

(2) For every pair of objects X,Y ∈ C, the induced map of Kan complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

exhibits HomD(F (X), F (Y )) as an n-truncation of HomC(X,Y ), in the sense of Defi-
nition 3.5.7.19.

Remark 4.8.2.10.058D Let F : C → D be a functor of ∞-categories and let n be an integer.
Suppose that F exhibits D as a local n-truncation of C. Then D is locally n-truncated: that
is, for every pair of objects X,Y ∈ D, the morphism space HomD(X,Y ) is n-truncated. To
prove this, we can use the essential surjectivity of F to reduce to the case where X = F (X)
and Y = F (Y ) for some objects X,Y ∈ C. In this case, the assertion follows from the
observation that HomD(X,Y ) is an n-truncation of HomC(X,Y ).
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Conversely, if D is locally n-truncated, then F exhibits D as a local n-truncation of C if
and only if it is essentially surjective and satisfies the following weaker version of condition
(2):

(2′) For every pair of objects X,Y ∈ C, the map of Kan complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is (n+ 1)-connective.

Example 4.8.2.11. 058ELet C be an ∞-category and let hC be its homotopy category. Then
the tautological map C → N•(hC) exhibits N•(hC) as a local 0-truncation of C.

Remark 4.8.2.12. 058FLet F : C → D and G : D → E be functors of ∞-categories, where F
exhibits D as a local n-truncation of C. Then (G ◦ F ) : C → E exhibits E as an n-truncation
of C if and only if G is an equivalence of ∞-categories.

Proposition 4.8.2.13. 058GLet C be an ∞-category, let n ≥ 0 be an integer, and let coskn(C)
denote the n-coskeleton of C (Notation 3.5.3.18). Then:

(1) The simplicial set coskn(C) is an ∞-category.

(2) The tautological map C → coskn(C) exhibits coskn(C) as a local (n− 2)-truncation of C.

Proof. We first prove (1). We proceed as in the proof of Proposition 3.5.3.23. Fix integers
0 < i < m and a morphism of simplicial sets σ0 : Λm

i → coskn(C); we wish to show that
σ0 can be extended to an m-simplex of coskn(C). Using Remark 3.5.3.21, we can identify
σ0 with a morphism of simplicial sets f0 : skn(Λm

i ) → C; we wish to show that f0 can be
extended to the n-skeleton of ∆m. If n < m − 1, then skn(Λm

i ) = skn(∆m) and there is
nothing to prove. We may therefore assume that n ≥ m− 1, so that skn(Λmi ) = Λmi . In this
case, our assumption that C is an ∞-category guarantees that f0 can be extended to an
n-simplex of C.

We now prove (2). By construction, the tautological map F : C → coskn(C) is bijective
on objects, and therefore essentially surjective. By virtue of Proposition 4.6.5.10, it will
suffice to show that for every pair of objects X,Y ∈ C, the induced map of pinched morphism
spaces

θ : HomL
C (X,Y )→ HomL

coskn(C)(X,Y )

exhibits HomL
coskn(C)(X,Y ) as an (n−2)-truncation of HomL

C (X,Y ). This is a special case of
Example 3.5.7.23, since θ exhibits HomL

coskn(C)(X,Y ) as an (n−1)-coskeleton of HomL
C (X,Y )

(Remark 4.6.5.4).
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Proposition 4.8.2.14.058H Let n be an integer and let F : C → D be a functor of ∞-categories
which exhibits D as a local n-truncation of C. Then C is locally n-truncated if and only if F
is an equivalence of ∞-categories.

Proof. By assumption, F is essentially surjective. It follows from Theorem 4.6.2.20 that
F is an equivalence of ∞-categories if and only if, for every pair of objects X,Y ∈ C, the
induced map of Kan complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is a homotopy equivalence. Since FX,Y exhibits HomD(F (X), F (Y )) as an n-truncation of
HomC(X,Y ), this is equivalent to the requirement that HomC(X,Y ) is n-truncated.

Corollary 4.8.2.15.058J Let C be an ∞-category and let hC denote its homotopy category. The
following conditions are equivalent:

(1) The ∞-category C is locally 0-truncated.

(2) The comparison map C → N•(hC) is an equivalence of ∞-categories.

(3) The comparison map C → N•(hC) is a trivial Kan fibration.

(4) The ∞-category C is equivalent to (the nerve of) an ordinary category.

Proof. The implication (1)⇒ (2) follows from Example 4.8.2.11 and Proposition 4.8.2.14.
Since the comparison map C → N•(C) is an isofibration (Corollary 4.4.1.9), the equivalence
(2) ⇔ (3) follows from Proposition 4.5.5.20. The implication (2) ⇒ (4) is clear, and the
implication (4)⇒ (1) follows from Example 4.8.2.2.

Exercise 4.8.2.16.058K Show that an ∞-category C is locally (−1)-truncated if and only if
there is an equivalence of ∞-categories u : C → N•(Q), for some partially ordered set Q. In
this case, the morphism u is automatically a trivial Kan fibration (see Example 4.4.1.6 and
Proposition 4.5.5.20).

Corollary 4.8.2.17.058L Let C be an ∞-category and let n ≥ 0 be an integer. The following
conditions are equivalent:

(1) The ∞-category C is locally (n− 2)-truncated.

(2) The tautological map C → coskn(C) is an equivalence of ∞-categories.

(3) There exists an n-coskeletal ∞-category D which is equivalent to C.

Proof. The implication (1) ⇒ (2) follows from Propositions 4.8.2.13 and 4.8.2.14. The
implication (2) ⇒ (3) is clear (since coskn(C) is an ∞-category), and the implication
(3)⇒ (1) follows from Proposition 4.8.2.8 (together with Remark 4.8.2.3).
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Local n-truncations can be characterized by a universal mapping property:

Proposition 4.8.2.18. 058MLet n be an integer and let F : C → D be a functor of ∞-categories,
where D is locally n-truncated. The following conditions are equivalent:

(1) The functor F exhibits D as a local n-truncation of C, in the sense of Definition 4.8.2.9.

(2) For every locally n-truncated∞-category E, precomposition with F induces an equivalence
of ∞-categories Fun(D, C)→ Fun(C, E).

(3) For every locally n-truncated ∞-category E, precomposition with F induces a bijection

π0(Fun(D, E)≃)→ π0(Fun(C, E)≃).

Proof. Without loss of generality we may assume that n ≥ −2. We first show that (1) implies
(2). By virtue of Corollary 4.8.2.17, we can assume without loss of generality that D and E are
(n+2)-coskeletal. In this case, F factors (uniquely) as a composition C F ′−→ coskn+2(C) F ′′−−→ D,
where F ′ exhibits coskn+2(C) as a local n-truncation of C (Proposition 4.8.2.13). Applying
Remark 4.8.2.12, we see that F ′′ is an equivalence of∞-categories. We may therefore replace
D by coskn+2(C) and thereby reduce to the case where F exhibits D as an (n+ 2)-coskeleton
of C. In this case, Proposition 3.5.3.17 guarantees that the precomposition functor

Fun(D, E) ◦F−−→ Fun(C, E)

is an isomorphism of simplicial sets (and therefore an equivalence of ∞-categories).
The implication (2)⇒ (3) follows immediately from the definitions. We will complete

the proof by showing that (3) implies (1). As before, we may assume that D = coskn+2(D)
is (n+ 2)-coskeletal from Proposition 4.5.1.22, so that F factors (uniquely) as a composition
C F ′−→ coskn+2(C) F ′′−−→ D; we wish to show that the homotopy class [F ′′] is an isomorphism
in the homotopy category hQCat. Since coskn+2(C) and D are locally n-truncated, it will
suffice to show that for every locally n-truncated ∞-category E , the horizontal map in the
diagram

π0(Fun(D, E)≃) //

''

π0(Fun(coskn+2(C), E)≃)

vv
π0(Fun(C, E)≃)

is a bijection. This is clear, since the vertical maps are bijections.
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Let hQCat denote the homotopy category of ∞-categories (Construction 4.5.1.1). For
every integer n ≥ −1, we let hQCat≤n denote the full subcategory of hQCat spanned by
the those ∞-categories C which are locally (n− 1)-truncated. We then have the following:

Corollary 4.8.2.19.058N Let n ≥ −1 be an integer. Then the inclusion functor hQCat≤n ↪→
hQCat admits a left adjoint, given on objects by the construction C 7→ coskn+1(C).

4.8.3 Minimality Conditions

058P Let C be an ∞-category and let n be an integer. We then have the following implications
(see Proposition 4.8.2.8):

C is an (n, 1)-category

��
C is weakly n-coskeletal

��
C is (n+ 1)-coskeletal

��
C is locally (n− 1)-truncated.

Beware that, in general, none of these implications is reversible. However, the failure of
reversibility can be measured using the minimality conditions introduced in §4.7.6.

Proposition 4.8.3.1.058Q Let n be an integer and let C be an ∞-category. Assume that, if
n ≤ −2, then C is nonempty. Then:

(1) The ∞-category C is (n+ 1)-coskeletal if and only if it is locally (n− 1)-truncated and
minimal in dimensions ≥ n+ 2 (see Definition 4.7.6.4).

(2) The ∞-category C is weakly n-coskeletal if and only if it is locally (n− 1)-truncated and
minimal in dimensions ≥ n+ 1.

(3) The ∞-category C is an (n, 1)-category if and only if it is locally (n− 1)-truncated and
minimal in dimensions ≥ n.

We will give the proof of Proposition 4.8.3.1 at the end of this section. First, let us
collect some consequences.
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Corollary 4.8.3.2. 058RLet C be a minimal ∞-category and let n ≥ −1 be an integer. Then C
is an (n, 1)-category if and only if it is locally (n− 1)-truncated.

Corollary 4.8.3.3. 058SLet C be an ∞-category and let n ≥ −1 be an integer. Then C is locally
(n− 1)-truncated if and only if it is equivalent to an (n, 1)-category.

Proof. Combine Proposition 4.7.6.15 with Corollary 4.8.3.2.

Corollary 4.8.3.4. 058TLet n be an integer and let C be an ∞-category which is weakly (n− 1)-
coskeletal. Then C is an (n, 1)-category.

Corollary 4.8.3.5. 058ULet n be an integer and let C be an (n, 1)-category. Then, for every
pair of objects X,Y ∈ C, the morphism space HomC(X,Y ) is weakly (n− 1)-coskeletal.

Proof. For n < 0, the result is trivial (see Example 4.8.1.9). We will therefore assume
that n ≥ 0. It follows from Corollary 4.8.1.23 that the morphism space HomC(X,Y ) =
{X} ×̃C{Y } is also (n, 1)-category; in particular, it is minimal in dimensions ≥ n. Since
HomC(X,Y ) is (n−1)-truncated (Corollary 4.8.1.20), it is locally (n−2)-truncated (Example
4.8.2.4). Applying Proposition 4.8.3.1, we conclude that HomC(X,Y ) is weakly (n − 1)-
coskeletal.

Our proof of Proposition 4.8.3.1 will make use of some auxiliary results of independent
interest. Recall that, if C is a simplicial set, then the weak n-coskeleton cosk◦n(C) is the
simplicial subset of coskn(C) given by the image of the tautological map coskn+1(C) →
coskn(C) (see Notation 3.5.4.19).

Proposition 4.8.3.6. 058VLet C be an ∞-category, let n be an integer, and let cosk◦n(C) denote
the weak n-coskeleton of C. Then:

(1) The simplicial set cosk◦n(C) is an ∞-category.

(2) The tautological map F : C → cosk◦n(C) is an inner fibration of ∞-categories.

(3) If n ≥ −1, the functor F exhibits exhibits cosk◦n(C) as a local (n− 1)-truncation of C.

(4) If n ̸= 0, then F is an isofibration of ∞-categories.

Proof. For n < 0, the weak coskeleton cosk◦n(C) is either empty (if n = −1 and C is empty)
or isomorphic to ∆0; in either case, assertions (1) through (4) are clear. We may therefore
assume that n ≥ 0. The map F factors as a composition

C F ′−→ coskn+1(C) F ′′−−→ cosk◦n(C),

where F ′′ is a trivial Kan fibration (Proposition 3.5.4.22). Since coskn+1(C) is an∞-category
(Proposition 4.8.2.13), assertion (1) follows from Proposition 1.5.5.11.
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To prove (2), we proceed as in Proposition 3.5.4.26. Suppose we are given a pair of
integers 0 < i < m; we wish to show that every lifting problem

058W Λmi
σ0 //

��

C

F

��
∆m

σ

<<

σ // cosk◦n(C)

(4.48)

admits a solution. We consider two cases:

• If m ≤ n+ 1, then we can choose an m-simplex σ of C satisfying F (σ) = σ. Since F
is bijective on simplices of dimension ≤ n, the commutativity of the diagram (4.48)
guarantees that σ|Λm

i
= σ0.

• If m ≥ n+ 2, then our assumption that C is an ∞-category guarantees that σ0 can
be extended to an m-simplex σ of X. The commutativity of the diagram (4.48) then
guarantees that F (σ) and σ have the same restriction to the horn Λm

i ⊂ ∆m. In
particular, they have the same restriction to the n-skeleton of ∆m, so F (σ) = σ.

Since F ′′ is an equivalence of∞-categories, assertion (3) follows by combining Proposition
4.8.2.13 with Remark 4.8.2.12. It remains to prove (4). Let Y be an object of C and suppose
we are given an isomorphism morphism u : X → Y in the ∞-category cosk◦n(C). If n ≥ 1,
then F is bijective on vertices and edges; it follows that we can write u = F (u) for a
unique morphism u : X → Y in C. To complete the proof, it will suffice to show that
u is an isomorphism. Equivalently, we wish to show that the homotopy class [u] is an
isomorphism in the homotopy category hC. This is clear: the nerve N•(hC) is weakly 1-
coskeletal (Example 3.5.4.6), so the tautological map C → N•(hC) factors (uniquely) through
cosk◦n(C) (Proposition 3.5.4.18).

Warning 4.8.3.7.058X . The functor F : C → cosk◦n(C) is generally not an isofibration in the
case n = 0.

Warning 4.8.3.8.058Y In the situation of Proposition 4.8.3.6, the map C → coskn+1(C) is
generally not an inner fibration.

Corollary 4.8.3.9.058Z Let C be an ∞-category and let n ≥ −2 be an integer. Then C is locally
n-truncated if and only if the tautological map F : C → cosk◦n+1(C) is a trivial Kan fibration.

Proof. It follows from Proposition 4.8.3.6 that F exhibits cosk◦n+1(C) as a local n-truncation
of C. Applying Proposition 4.8.2.14, we see that C is locally n-truncated if and only if F is
an equivalence of ∞-categories. We wish to show that if this condition is satisfied, then F
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is a trivial Kan fibration. By virtue of Proposition 4.5.5.20, it will suffice to show that F
is an isofibration. For n ̸= −1, this is automatic (Proposition 4.8.3.6). We will therefore
assume that n = −1. Using Proposition 4.8.3.6, we see that F is an inner fibration. Fix a
morphism u : X → Y in the ∞-category cosk◦0(C). Then there are unique objects X,Y ∈ C
satisfying X = F (X) and Y = F (Y ). Choose a morphism u : X → Y satisfying F (u) = u.
To complete the proof, it will suffice to show that if u is an isomorphism in cosk◦0(C), then u
is an isomorphism in C. Let v : Y → X be a homotopy inverse to u. Then we can write
v = F (v) for some morphism v : Y → X of C. Since the mapping space HomC(X,X) is
either empty or contractible, the composition v ◦ u is automatically homotopic to idX : that
is v is a left homotopy inverse to u. A similar argument shows that v is right homotopy
inverse to u, so that u is an isomorphism as desired.

Corollary 4.8.3.10. 0590Let C be an ∞-category and let n ≥ 0 be an integer. The following
conditions are equivalent:

(1) For every morphism f : X → Y of C, the set πn(HomC(X,Y ), f) consists of a single
element.

(2) Every diagram ∂∆n+2 → C can be extended to an (n+ 2)-simplex of C.

Proof. By virtue of Proposition 4.8.2.13, we can replace C by coskn+2(C) and thereby reduce
to the case where the ∞-category C is (n+ 2)-coskeletal. In this case, the ∞-category C is
locally n-truncated (Proposition 4.8.2.8), and satisfies condition (1) if and only if it is locally
(n− 1)-truncated. Applying Corollary 4.8.3.9, we see that (1) is equivalent to the following:

(1′) The tautological map C → cosk◦n(C) is a trivial Kan fibration.

The equivalence of (1′) and (2) now follows from Corollary 3.5.4.24.

Corollary 4.8.3.11. 0591Let C be an ∞-category and let n ≥ −2 be an integer. Then C is
locally n-truncated if and only if the restriction map

HomSet∆(∆m, C)→ HomSet∆(∂∆m, C)

is surjective for every integer m ≥ n+ 3.

Proposition 4.8.3.12. 0592Let C be an ∞-category and let m > 0 be an integer. Then the
restriction map

θm : HomSet∆(∆m, C)→ HomSet∆(∂∆m, C)

is injective if and only if the following conditions are satisfied:

(1) The ∞-category C is minimal in dimension m.
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(2) The restriction map θm+1 is surjective.

Remark 4.8.3.13.0593 In the case m = 0, the formulation of Proposition 4.8.3.12 requires a
slight modification. The restriction map θ0 is injective if and only if C satisfies the following
pair of conditions:

(1) The ∞-category C is minimal in dimension 0: that is, if X and Y are isomorphic objects
of C, then X = Y .

(2′) For every pair of objects X,Y ∈ C, there exists an isomorphism from X to Y .

Note that condition (2′) is stronger than condition (2) of Proposition 4.8.3.12, which demands
only that there exists a morphism from X to Y .

Proof of Proposition 4.8.3.12. Let C be an integer and let m > 0 be an integer. It follows
immediately from the definitions that, if the restriction map

θm : HomSet∆(∆m, C)→ HomSet∆(∂∆m, C)

is injective, then C is minimal in dimension m. We claim that, if this condition is satisfied,
then θm+1 is surjective: that is, every morphism τ0 : ∂∆m+1 → C can be extended to an
(m+ 1)-simplex of C. Fix an integer 0 < i < m+ 1. Our assumption that C is an ∞-category
guarantees that we can choose an (m+ 1)-simplex τ of C satisfying τ |Λm+1

i
= τ0|Λm+1

i
. In

particular, τ and τ0 have the same restriction to the (m− 1)-skeleton of ∆m+1. Invoking
the injectivity of θm, we conclude that τ |∂∆m+1 = τ0.

We now prove the converse. Assume that C is minimal in dimension m and that θm+1 is
surjective; we wish to show that θm is injective. Let σ0 and σ1 be m-simplices of C which
have the same restriction to ∂∆m; we wish to show that σ0 = σ1. Let

X(0) ⊂ X(1) ⊂ · · · ⊂ X(m) ⊂ X(m+ 1) = ∆1 ×∆m

be the filtration of Lemma 3.1.2.12, so that X(0) = (∆1 × ∂∆m) ∪ ({1} × ∆m) and the
inclusion map X(i) ↪→ X(i+ 1) is inner anodyne for 0 ≤ i < m. There is a unique morphism
of simplicial sets h0 : X(0) → C such that h0|{1}×∆m coincides with σ1, and h0|∆1×∂∆m

factors through the projection map ∆1 × ∂∆m ↠ ∂∆m. Since C is an ∞-category, we
can extend h0 to a diagram hm : X(m) → C. Invoking the surjectivity of θm+1, we see
that hm can be extended to a morphism h : ∆1 ×∆m → C satisfying h|{0}×∆m = σ0. By
construction, h is an isomorphism from σ0 to σ1 in the ∞-category Fun(∆m, C) whose image
in Fun(∂∆m, C) is an identity morphism. Since C is minimal in dimension m, it follows that
σ0 = σ1.

Proof of Proposition 4.8.3.1. Let C be an ∞-category and let n be an integer. For every
integer m ≥ 0, we let θm : HomSet∆(∆m, C) → HomSet∆(∂∆m, C) denote the restriction
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map. By virtue of Corollary 4.8.3.11, the map θm is surjective for m ≥ n+ 2 if and only
if C is locally (n− 1)-truncated (and nonempty if n ≤ −2). Assume that these equivalent
conditions are satisfied. Then:

(1) The ∞-category C is (n + 1)-coskeletal if and only if θm is injective for m ≥ n + 2.
By virtue of Proposition 4.8.3.12 (and Remark 4.8.3.13), this is equivalent to the
requirement that C is minimal in dimensions ≥ n+ 2.

(2) The ∞-category C is weakly n-coskeletal if and only if θm is injective for m ≥ n + 1.
By virtue of Proposition 4.8.3.12 (and Remark 4.8.3.13), this is equivalent to the
requirement that C is minimal in dimensions ≥ n+ 1.

(3) The ∞-category C is an (n, 1)-category if and only if C is minimal in dimensions ≥ n.
This follows immediately from (2) (see Definition 4.8.1.8).

We conclude this section by recording another consequence of Proposition 4.8.3.12.

Corollary 4.8.3.14. 0594Let X be a Kan complex and let n be a nonnegative integer. The
following conditions are equivalent:

(a) The Kan complex X is n-reduced: that is, it has a single m-simplex for each 0 ≤ m ≤ n
(Definition 3.5.2.8).

(b) The Kan complex X is (n+ 1)-connective and minimal in dimensions ≤ n.

Proof. Without loss of generality, we may assume that X is nonempty (otherwise, neither
(a) nor (b) is satisfied). In this case, X is n-reduced if and only if the restriction map
θm : HomSet∆(∆m, C) → HomSet∆(∂∆m, C) is injective for each m ≤ n. Corollary 4.8.3.14
now follows by combining Proposition 4.8.3.12 (and Remark 4.8.3.13) with the criterion of
Proposition 3.5.1.12.

Corollary 4.8.3.15. 0595Let X be a minimal Kan complex and let n ≥ 0 be an integer. Then
X is n-reduced if and only if it is (n+ 1)-connective.

4.8.4 Higher Homotopy Categories

0596Let C be an∞-category. In §1.4.5, we constructed the homotopy category hC, and showed
that it is characterized (up to isomorphism) by the following universal property: for any
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category D, there is a bijection

{Functors of ordinary categories hC → D}

∼

��
{Functors of ∞-categories C → N•(D)}.

This motivates the following:

Definition 4.8.4.1.0597 Let F : C → C′ be a functor of ∞-categories and let n be an integer.
We say that F exhibits C′ as a homotopy n-category of C if the following conditions are
satisfied:

(1) The ∞-category C′ is an (n, 1)-category (Definition 4.8.1.8).

(2) For every (n, 1)-category D, precomposition with F induces a bijection

{Functors of (n, 1)-categories C′ → D}

∼

��
{Functors of ∞-categories C → D}.

Notation 4.8.4.2.0598 Let n be a nonnegative integer. We will see in a moment that for every
∞-category C, there exists a functor F : C → C′ which exhibits C′ as a homotopy n-category
of C (Corollary 4.8.4.16). It follows immediately from the definition that the simplicial set C′
is unique up to (canonical) isomorphism and depends functorially on C. To emphasize this
dependence, we will often denote C′ by h≤n(C) and refer to it as the homotopy n-category of
C. For a more explicit description of h≤n(C) (at least for n > 0), see Construction 4.8.4.9
(and Proposition 4.8.4.15).

Example 4.8.4.3.0599 Let C be an ∞-category and let hC denote its homotopy category
(Definition 1.4.5.3). Then the comparison map F : C → N•(hC) of Construction 1.4.5.6
exhibits N•(hC) as a homotopy 1-category of C, in the sense of Definition 4.8.4.1. This is a
reformulation of Proposition 1.4.5.7 (see Example 4.8.1.3). Stated more informally, there
is a canonical isomorphism of simplicial sets h≤1 (C) ≃ N•(hC). We will sometimes abuse
notation by identifying the homotopy 1-category h≤1 (C) with the ordinary category hC.

Exercise 4.8.4.4.059A Let C be an ∞-category, and let Q = π0(C≃) denote the collection
of isomorphism classes of objects of C. For each object X ∈ C, let [X] ∈ Q denote its
isomorphism class. Show that:
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• There is a partial ordering ≤Q on the set Q, where [X] ≤Q [Y ] if and only if there
exists a morphism from X to Y in the ∞-category C.

• There is a unique functor F : C → N•(Q) which carries each object X ∈ C to the
isomorphism class [X] ∈ Q.

• The functor F exhibits N•(Q) as a homotopy 0-category of C, in the sense of Definition
4.8.4.1.

Example 4.8.4.5. 059BLet C be an ∞-category. Then:

• For every integer n ≤ −2, the unique functor F : C → ∆0 exhibits ∆0 as a homotopy
n-category of C.

• If C is nonempty, then F also exhibits ∆0 as a homotopy (−1)-category of C.

• If C is empty, then the identity map id : C → ∅ exhibits the empty simplicial set as a
homotopy (−1)-category of C.

Example 4.8.4.6. 059CLet X be a Kan complex, let n be a nonnegative integer, and let π≤n(X)
denote the fundamental n-groupoid of X (Notation 3.5.6.6). Then the tautological map
u : X → π≤n(X) exhibits π≤n(X) as a homotopy n-category of X, in the sense of Definition
4.8.4.1. Since π≤n(X) is an (n, 1)-category (Example 4.8.1.11), it will suffice that for
every (n, 1)-category D, precomposition with u induces a bijection HomSet∆(π≤n(X),D)→
HomSet∆(X,D). By virtue of Proposition 4.4.3.17, we can replace D by its core D≃, and
thereby reduce to the case where D is an n-groupoid (Example 4.8.1.17). In this case, the
desired result follows from the universal property of Proposition 3.5.6.5.

In the situation of Notation 4.8.4.2, the homotopy n-category h≤n(C) automatically
satisfies a stronger universal property:

Proposition 4.8.4.7. 059DLet F : C → C′ be a functor of ∞-categories and let n be an integer.
The following conditions are equivalent:

(1) For every (n, 1)-category D, precomposition with F induces a bijection of sets

HomSet∆(C′,D)→ HomSet∆(C,D).

(2) For every (n, 1)-category D, precomposition with F induces an isomorphism of ∞-
categories

Fun(C′,D)→ Fun(C,D).
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Proof. Assume that (1) is satisfied; we will prove (2) (the reverse implication follows immedi-
ately from the definitions). Let D be an (n, 1)-category; we wish to show that precomposition
with F induces an isomorphism of simplicial sets from Fun(C′,D) to Fun(C,D). Equivalently,
we wish to show that for every simplicial set K, the induced map

HomSet∆(K,Fun(C′,D))→ HomSet∆(K,Fun(C,D)).

This follows by applying condition (1) to the simplicial set Fun(K,D), which is an (n, 1)-
category by virtue of Proposition 4.8.1.22.

Corollary 4.8.4.8.059E Let n ≥ −1 be an integer and let F : C → C′ be a functor of∞-categories
which exhibits C′ as a homotopy n-category of C (Definition 4.8.4.1). Then F exhibits C′ as
a local (n− 1)-truncation of C (Definition 4.8.2.9).

Proof. Since C′ is an (n, 1)-category, it is locally (n − 1)-truncated (Example 4.8.2.2).
It will therefore suffice to show that, for every locally (n − 1)-truncated ∞-category D,
precomposition with F induces an equivalence of ∞-categories θ : Fun(C′,D)→ Fun(C,D)
(Proposition 4.8.2.18). By virtue of Corollary 4.8.3.3, we may assume that D is an (n, 1)-
category. In this case, Proposition 4.8.4.7 guarantees that θ is an isomorphism of simplicial
sets.

Our next goal is to show that every ∞-category C admits a homotopy n-category, for
every integer n. For n ≤ 0, this follows from Exercise 4.8.4.4 and Example 4.8.4.5. To
handle the case n > 0, we will use a generalization of Construction 3.5.6.10.

Construction 4.8.4.9.059F Let C be an∞-category, let n be a positive integer, and let cosk◦n(C)
denote the weak n-coskeleton of C (Notation 3.5.4.19). For every integer m ≥ 0, we will
identify m-simplices of cosk◦n(C) with diagrams σ : skn(∆m)→ C which can be extended to
the (n+1)-skeleton of ∆m (Remark 3.5.4.21). Given two such morphisms σ, σ′ : skn(∆m)→ C,
we write σ ∼m σ′ if σ and σ′ are isomorphic relative to skn−1(∆m) (Definition 4.7.6.1). The
construction

([m] ∈∆op) 7→ HomSet∆(∆m, cosk◦n(C))/ ∼m

determines a simplicial set, which we will denote by h≤n(C). By construction, it is equipped
with an epimorphism of simplicial sets cosk◦n(C) ↠ h≤n(C), which determines a comparison
map C → h≤n(C).

Remark 4.8.4.10.059G In the situation of Construction 4.8.4.9, the relation σ ∼m σ′ implies
that σ = σ′ whenever m < n. It follows that the tautological map C → h≤n(C) is bijective
on simplices of dimension < n, and surjective on simplices of dimension n.
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Proposition 4.8.4.11. 059HLet C be an ∞-category, let n be a positive integer, and let h≤n(C) be
the simplicial set of Construction 4.8.4.9. Then, for every simplicial set A, the comparison
map

θ : HomSet∆(A, cosk◦n(C))→ HomSet∆(A,h≤n(C))

is surjective. Moreover, if f0, f1 : A → cosk◦n(C) are morphisms of simplicial sets which
correspond to diagrams u0, u1 : skn(A)→ C, then θ(f0) = θ(f1) if and only if u0 and u1 are
isomorphic relative to skn−1(A).

Proof. We proceed as in the proof of Proposition 3.5.6.12. Fix a morphism of simplicial
sets g : A→ h≤n(C). Using Remark 4.8.4.10 (and Proposition 1.1.4.12), we see that g|skn(A)
can be lifted to a morphism of simplicial sets u : skn(A) → C. We will show that u
can be extended to the (n + 1)-skeleton of A (and is therefore classified by a morphism
f : A→ cosk◦n(C) satisfying θ(f) = g; see Remark 3.5.4.21). By virtue of Proposition 1.1.4.12,
this is equivalent to the assertion that for every (n+ 1)-simplex σ of A having restriction
σ0 = σ|∂∆n+1 , the composition (g ◦ σ0) : ∂∆n+1 → C can be extended to an (n+ 1)-simplex
of C. Choose a lift of g(σ) to an (n+ 1)-simplex of cosk◦n(C), which we can identify with a
diagram τ0 : ∂∆n+1 → C which admits an extension τ : ∆n+1 → C. By construction, g ◦ σ0
and τ0 coincide after composing with the comparison map C → h≤n(C). Using Proposition
1.1.4.12 again, we see that g ◦σ0 and τ0 are isomorphic relative to skn−1(∆n+1). The desired
result now follows from Corollary 4.4.5.3. This completes the proof that θ is surjective.

Now suppose that we are given a pair of morphisms f0, f1 : A → cosk◦n(C) satisfying
θ(f0) = θ(f1). We wish to show that the associated maps u0, u1 : skn(A)→ C are isomorphic
relative to skn−1(A) (the converse is immediate from the definitions). Using Remark 4.8.4.10,
we deduce that u0 and u1 coincide on skn−1(A). By virtue of Proposition 1.1.4.12, we are
reduced to showing that for every nondegenerate n-simplex σ of A, the compositions u0 ◦ σ
and u1 ◦ σ are isomorphic relative to ∂∆n. This follows from our assumption that the maps
θ(f0), θ(f1) : A→ h≤n(C) coincide on the simplex σ.

Remark 4.8.4.12. 059JLet C be an ∞-category, let n be a positive integer, and let A be a
simplicial set. Stated more informally, Proposition 4.8.4.11 asserts that HomSet∆(A, h≤n(C))
can be viewed as a subquotient of the set HomSet∆(skn(A), C):

• A diagram u : skn(A)→ C determines a morphism from A to h≤n(C) if and only if u
can be extended to the (n+ 1)-skeleton of A.

• Two diagrams u0, u1 : skn(A)→ C determine the same morphism A to h≤n(C) if and
only if they are isomorphic relative to the (n− 1)-skeleton of A.

Compare with Remark 3.5.6.13.

Corollary 4.8.4.13. 059KLet C be an ∞-category and let n be a positive integer. Then the
comparison map cosk◦n(C) ↠ h≤n(C) of Construction 4.8.4.9 is a trivial Kan fibration.
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Proof. Fix an integer m ≥ 0; we wish to show that every lifting problem

059L ∂∆m

��

σ0 // cosk◦n(C)

q

��
∆m

;;

σ // h≤n(C)

(4.49)

admits a solution.
Let σ be any m-simplex of cosk◦n(C) satisfying q(σ) = σ. By virtue of Remark 4.8.4.10, the

commutativity of the diagram (4.49) guarantees that σ0 and σ coincide on the (n−1)-skeleton
of ∂∆m. Consequently, if m ≤ n, then σ is a solution to the the lifting problem (4.49). We
will therefore assume that m > n. In this case, the boundary ∂∆m contains the n-skeleton of
∆m. It will therefore suffice to show that σ0 can be extended to an m-simplex σ′ of cosk◦n(C):
the commutativity of the diagram (4.49) guarantees that any such extension satisfies the
identity q(σ′) = σ (Proposition 4.8.4.11). If m ≥ n+ 2, then the existence of σ′ is automatic
(since cosk◦n(C) is (n+ 1)-coskeletal). It will therefore suffice to treat the case m = n+ 1. In
this case, we can identify σ0 with a diagram τ0 : ∂∆n+1 → C, and we wish to show that τ0
can be extended to an (n+ 1)-simplex of C. Note that σ|∂∆n+1 determines another diagram
τ1 : ∂∆n+1 → C. Moreover, the commutativity of the diagram (4.49) guarantees that τ0 and
τ1 are isomorphic relative to skn−1(∆n+1) (Proposition 4.8.4.11). Using Corollary 4.4.5.3,
we are reduced to showing that τ1 can be extended to an (n+ 1)-simplex of C, which follows
from the existence of σ.

Corollary 4.8.4.14.059M Let C be an ∞-category and let n be a positive integer. Then the
simplicial set h≤n(C) of Construction 4.8.4.9 is an (n, 1)-category.

Proof. By virtue of Proposition 4.8.3.6, the weak n-coskeleton cosk◦n(C) is an ∞-category.
Combining Corollary 4.8.4.13 with Proposition 1.5.5.11, we conclude that h≤n(C) is also an
∞-category. To complete the proof, it will suffice to show that if σ and τ are m-simplices
of h≤n(C) for some m > n which satisfy σ|Λm

i
= τ |Λm

i
for some 0 < i < m, then σ = τ .

Choose maps σ̃, τ̃ : skn(∆m) → C representing σ and τ . Using Proposition 4.8.4.11, we
can choose an isomorphism α from σ̃|skn(Λm

i ) to τ̃ |skn(Λm
i ) whose image in Fun(skn−1(Λmi ), C)

is an identity morphism. If m ≥ n + 2, then α is also an isomorphism from σ̃|skn(∆m) to
τ̃ |skn(∆m), so that σ = τ as desired. In the case m = n + 1, the morphisms σ̃ and τ̃ can
be extended to diagrams σ, τ : ∆n+1 → C. Using Proposition 1.5.7.6, we can extend α to
an isomorphism of σ with τ . Restricting to the n-skeleton of ∆m, we again conclude that
σ = τ .

Proposition 4.8.4.15.059N Let C be an ∞-category and let n be a positive integer. Then
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the comparison map C → h≤n(C) of Construction 4.8.4.9 exhibits h≤n(C) as a homotopy
n-category of C.

Proof. By virtue of Corollary 4.8.4.14, it will suffice to show that for every (n, 1)-category
D, the composite map

HomSet∆(h≤n(C),D) θ−→ HomSet∆(cosk◦n(C),D) θ′−→ HomSet∆(C,D)

is a bijection. Since D is weakly n-coskeletal, the map θ′ is a bijection. By construction,
h≤n(C) is a quotient of the weak coskeleton cosk◦n(C), so θ is an injection. We will complete
the proof by showing that θ is also a surjection: that is, every diagram F : cosk◦n(C)→ D
factors through h≤n(C). Let σ and σ′ be m-simplices of cosk◦n(C) satisfying σ ∼m σ′ (see
Construction 4.8.4.9); we wish to show that F (σ) = F (σ′). This follows from the observation
that D is minimal in dimension n (Proposition 4.8.1.7).

Corollary 4.8.4.16. 059PLet C be an ∞-category. For every integer n, there exists a functor
F : C → h≤n(C) which exhibits h≤n(C) as a homotopy n-category of C. Moreover:

(1) The functor F is bijective on m-simplices for m < n.

(2) The functor F factors (uniquely) as a composition C F ′−→ cosk◦n(C) F ′′−−→ h≤n(C), where F ′

is the inner fibration of Proposition 4.8.3.6.

(3) The functor F ′′ is a trivial Kan fibration.

(4) If n ≥ −1, the functor F exhibits h≤n(C) as a local (n−1)-truncation of C. In particular,
C is locally (n− 1)-truncated if and only if F is an equivalence of ∞-categories.

(5) The functor F is an isofibration.

Proof. The existence of F follows from Example 4.8.4.5 (in the case n < 0), Exercise 4.8.4.4
(in the case n = 0), and Proposition 4.8.4.15 (in the case n > 0). Assertion (1) is vacuous for
n ≤ 0, and follows from Construction 4.8.4.9 for n > 0. Since h≤n(C) is an (n, 1)-category,
it is weakly n-coskeletal, so that assertion (2) follows from Proposition 3.5.4.18.

We next prove (3). For n < 0, the morphism F ′′ is an isomorphism (see Example 4.8.4.5)
and there is nothing to prove. For n > 0, the desired result follows from Corollary 4.8.4.13.
We may therefore assume that n = 0. We wish to show that every lifting problem

∂∆m //

��

cosk◦n(C)

F ′′

��
∆m //

;;

C′
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admits a solution. For m ≥ 2, this is automatic (since cosk◦n(C) and C′ are both 1-coskeletal).
The cases m = 0 and m = 1 follow immediately from the construction of h≤n(C) given in
Exercise 4.8.4.4.

Assertion (4) follows by combining (3) with Proposition 4.8.3.6. We now prove (5). For
n ̸= 0, the morphism F ′ is an isofibration (Proposition 4.8.3.6), so the desired result follows
from (3). In the case n = 0, h≤n(C) is isomorphic to the nerve of a partially ordered set, so
the result is automatic (Example 4.4.1.6).

Corollary 4.8.4.17.059Q Let C be an∞-category, let n be an integer, and let A ⊆ B be simplicial
sets. If B has dimension ≤ n+ 1, then every lifting problem

A

��

// C

��
B //

==

h≤n(C)

has a solution. If B has dimension ≤ n− 1, then the solution is unique.

Remark 4.8.4.18.059R Let n be an integer. Then, for every collection of ∞-categories {Ci}i∈I ,
the canonical map

h≤n(
∏
i∈I
Ci)→

∏
i∈I

h≤n(Ci)

is an isomorphism. This follows by inspecting the explicit descriptions supplied by Construc-
tion 4.8.4.9 (for the case n > 0), Exercise 4.8.4.4 (for the case n = 0) and Example 4.8.4.5
(for the case n < 0).

Remark 4.8.4.19.059S Let C be an ∞-category and let C0 ⊆ C be a full subcategory. Then,
for every integer n ≥ −1, the homotopy category h≤n(C0 ) can be identified with the full
subcategory of h≤n(C) spanned by the images of objects which belong C0.

Proposition 4.8.4.20.059T Let n be an integer and suppose we are given a pullback diagram of
∞-categories

C01
G0 //

G1

��

C0

F0

��
C1

F1 // C .
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If C is an (n, 1)-category, then the diagram

h≤n(C01 ) //

��

h≤n(C0 )

��
h≤n(C1 ) // h≤n(C)

is also a pullback square.

Proof. If n ≤ 0, then we can identify C01 with the full subcategory of C0×C1 spanned by
those objects (C0, C1) satisfying F0(C0) = F1(C1). In this case, the desired result follows
by combining Remarks 4.8.4.18 and 4.8.4.19. We may therefore assume without loss of
generality that n > 0. Fix a simplicial set A; we wish to show that the tautological map

θ : HomSet∆(A, h≤n(C01 ))→ HomSet∆(A,h≤n(C0 ))×HomSet∆ (A,h≤n(C))HomSet∆(A,h≤n(C1 )).

is a monomorphism. We first show that θ is injective. Suppose we are given a pair of maps
u, u′ : A→ h≤n(C01 ) satisfying θ(u) = θ(u′); we wish to show that u = u′. Using Remark
4.8.4.12, we can choose representatives of u and u′ by morphisms ũ, ũ′ : skn(A)→ C01. Our
assumption that θ(u) = θ(u′) guarantees that there are natural isomorphisms

α0 : G0 ◦ ũ→ G0 ◦ ũ′ α1 : G1 ◦ ũ→ G1 ◦ ũ′

which are the identity when restricted to skn−1(A). It follows from the proof of Proposition
4.8.1.7 shows that α0 and α1 have the same image in Fun(skn(A), C). We can therefore
identify the pair (α0, α1) with an isomorphism from ũ to ũ′ (which is the identity when
restricted to skn−1(A)), which proves that u = u′.

We now prove that θ is surjective. Choose an element (u0, u1) of the fiber product
HomSet∆(A,h≤n(C0 ))×HomSet∆ (A,h≤n(C)) HomSet∆(A,h≤n(C1 )). Using Remark 4.8.4.12, we
can choose representatives of u0 and u1 by morphisms ũ0 : skn+1(A) → C0 and ũ1 :
skn+1(A) → C1. Since C is an (n, 1)-category, the tautological map C → h≤n(C) is an
isomorphism. It follows that F0 ◦ ũ0 coincides with F1 ◦ ũ1, so that the pair (ũ0, ũ1)
determines a morphism ũ : skn+1(A) → C. This represents a morphism u : A → h≤n(C)
satisfying θ(u) = (u0, u1).

4.8.5 Full and Faithful Functors

059ULet F : C → D be a functor of ∞-categories. Recall that F is fully faithful if, for every
pair of objects X,Y ∈ C, the map of morphism spaces

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))
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is a homotopy equivalence (Definition 4.6.2.1). It is sometimes convenient to break this into
two separate conditions:

Definition 4.8.5.1 (Full Functors).059V Let F : C → D be a functor of ∞-categories. We say
that F is full if, for every pair of objects X,Y ∈ C, the induced map

HomC(X,Y )→ HomD(F (X), F (Y ))

is surjective on connected components.

Definition 4.8.5.2 (Faithful Functors).059W Let F : C → D be a functor of ∞-categories. We
say that F is faithful if, for every pair of objects X,Y ∈ C, the induced map

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is a homotopy equivalence from HomC(X,Y ) to a summand of HomD(F (X), F (Y )).

Remark 4.8.5.3.059X Let F : C → D be a functor of ∞-categories. Then F is fully faithful
(in the sense of Definition 4.6.2.1) if and only if it is both full and faithful (in the sense of
Definitions 4.8.5.1 and 4.8.5.2).

Example 4.8.5.4.059Y Let F : C → D be a functor between categories. Then the functor of
∞-categories N•(F ) : N•(C)→ N•(D) is full (in the sense of Definition 4.8.5.1) if and only
if the functor F is full (in the usual category-theoretic sense). Similarly, N•(F ) is faithful
(in the sense of Definition 4.8.5.2) if and only if F is faithful. Consequently, we can view
Definitions 4.8.5.1 and Definition 4.8.5.2 as generalizations of their classical counterparts.

Remark 4.8.5.5.059Z Let F : C → D be a functor of ∞-categories. Then F is full (in the sense
of Definition 4.8.5.1) if and only if the induced functor of homotopy categories hF : hC → hD
is full (in the usual category-theoretic sense).

Remark 4.8.5.6.05A0 Let F : C → D and G : D → E be functors of ∞-categories. If G ◦ F is
full and F is essentially surjective, then G is also full.

Exercise 4.8.5.7.05A1 Let f : X → Y be a morphism of Kan complexes. Show that f is full (in
the sense of Definition 4.8.5.1) if and only if it satisfies the following pair of conditions:

(a) The map of connected components π0(f) : π0(X)→ π0(Y ) is injective.

(b) For every vertex x ∈ X having image y = f(x), the map of fundamental groups
π1(f) : π1(X,x)→ π1(Y, y) is surjective.

The counterpart of Remark 4.8.5.5 for faithful functors is slightly more involved.
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Proposition 4.8.5.8. 05A2Let F : C → D be a functor of ∞-categories. Then F is faithful if
and only if it satisfies the following pair of conditions:

(1) The induced functor of homotopy categories hF : hC → hD is faithful.

(2) The diagram of ∞-categories

05A3C

F

��

// N•(hC)

N•(hF)

��
D // N•(hD)

(4.50)

is a categorical pullback square.

Remark 4.8.5.9. 05A4In the situation of Proposition 4.8.5.8, the comparison map D → N•(hD)
is automatically an isofibration (Corollary 4.4.1.9). By virtue of Proposition 4.5.2.26,
condition (2) is equivalent to the following:

(2′) The functor F induces an equivalence of ∞-categories F ′ : C → N•(hC)×N•(hD) D.

Note that the functor F ′ is bijective on objects, and therefore essentially surjective. Using
Theorem 4.6.2.20, we can reformulate (2′) as follows:

(2′′) For every pair of objects X,Y ∈ C, the functor F induces a homotopy equivalence

HomC(X,Y )→ π0(HomC(X,Y ))×π0(HomD(F (X),F (Y ))) HomD(F (X), F (Y )).

Proof of Proposition 4.8.5.8. By definition, a functor F : C → D is faithful if and only if, for
every pair of objects X,Y ∈ C, the induced map FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))
induces a homotopy equivalence from HomC(X,Y ) to a summand of HomD(F (X), F (Y )).
This is equivalent to the following pair of assertions:

(1X,Y ) The map of sets π0(FX,Y ) : π0(HomC(X,Y ))→ π0(HomD(F (X), F (Y ))) is injective.

(2X,Y ) The map of Kan complexes

HomC(X,Y )→ π0(HomC(X,Y ))×π0(HomD(F (X),F (Y )) HomD(F (X), F (Y ))

is a homotopy equivalence.

The desired result now follows by allowing the objects X and Y to vary (and applying
Remark 4.8.5.9).
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Note the asymmetry between Remark 4.8.5.5 and Proposition 4.8.5.8: in the higher-
categorical setting, fullness is a relatively weak condition which can be tested at the level of
homotopy categories, but faithfulness is not. It will therefore be useful to further analyze
Definition 4.8.5.2.

Definition 4.8.5.10.05A5 Let F : C → D be a functor of ∞-categories. Then:

• We say that F is 0-full if it is essentially surjective: that is, every object of D is
isomorphic to F (X), for some object X ∈ C (Definition 4.6.2.11).

• We say that F is 1-full if it is full: that is, for objects X,Y ∈ C having images
X = F (X) and Y = F (Y ) in D, the map

π0(HomC(X,Y ))→ π0(HomD(X,Y ))

is surjective (Definition 4.8.5.1).

• For n ≥ 2, we say that F is n-full if, for every morphism u : X → Y in the ∞-category
C having image u : X → Y in D, the induced map

πm(HomC(X,Y ), u)→ πm(HomD(X,Y ), u)

is injective for m = n− 2 and surjective for m = n− 1.

Remark 4.8.5.11.05A6 Let F : C → D be a functor of ∞-categories. Then:

• The functor F is faithful if and only if it is n-full for each n ≥ 2 (see Example 3.5.9.3).

• The functor F is fully faithful if and only if it is n-full for each n ≥ 1 (see Remark
4.8.5.3).

• The functor F is an equivalence of ∞-categories if and only if it is n-full for each n ≥ 0
(see Theorem 4.6.2.20).

Example 4.8.5.12.05A7 Let n ≥ −2 be an integer and let F : C → D be a functor of ∞-
categories which exhibits D as a local n-truncation of D (see Definition 4.8.2.9). Then F is
m-full for m ≤ n+ 2. In particular, for any ∞-category C, the canonical maps

C → coskn+2(C) C → cosk◦n+1(C) C → h≤n+1 (C)

are m-full for m ≤ n+ 2.

Remark 4.8.5.13.05A8 Let C be an ∞-category and let n ≥ −2 be an integer. Then C is locally
n-truncated if and only if the projection map C → ∆0 is m-full for all m ≥ n+ 3.
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Remark 4.8.5.14 (Symmetry). 05A9Let F : C → D be a functor of ∞-categories and let n ≥ 0
be an integer. Then F is n-full if and only the opposite functor F op : Cop → Dop is n-full.

Remark 4.8.5.15 (Composition). 05AALet F : C → D and G : D → E be functors of ∞-
categories and let n ≥ 0 be an integer. If F and G are n-full, then the composite functor
G ◦ F is n-full.

Remark 4.8.5.16 (Change of Target). 05ABLet F : C → D and G : D → E be functors of
∞-categories, where G is fully faithful. For n ≥ 1, the functor F is n-full if and only if the
composite functor G ◦ F is n-full. If G is an equivalence of ∞-categories, then this is also
true when n = 0.

Remark 4.8.5.17 (Isomorphism Invariance). 05ACLet F0, F1 : C → D be functors of∞-categories
which are isomorphic (as objects of the ∞-category Fun(C,D)). Then F0 is n-full if and only
if F1 is n-full. To see this, let Isom(D) denote the full subcategory of Fun(∆1,D) spanned by
the isomorphisms (Example 4.4.1.14), so that the evaluation functors ev0, ev1 : Isom(D)→ D
are equivalences of ∞-categories (Corollary 4.4.5.10). The assumption that F0 and F1 are
isomorphic guarantees that there exists a functor F : C → Isom(D) satisfying F0 = ev0 ◦F
and F1 = ev1 ◦F . Using Remark 4.8.5.16, we see that F0 is n-full if and only if F is n-full.
Similarly, F1 is n-full if and only if F is n-full.

Remark 4.8.5.18 (Change of Source). 05ADLet F : C → D and G : D → E be functors of
∞-categories and let n ≥ 0 be an integer. If F is an equivalence of ∞-categories, then G is
n-full if and only if G ◦F is n-full. The “only if” direction follows immediately from Remark
4.8.5.15. For the converse, suppose that G ◦ F is n-full, and let F−1 : D → C be a homotopy
inverse to F . Then F−1 is an equivalence of ∞-categories; in particular, it is n-full (Remark
4.8.5.11). Applying Remark 4.8.5.15, we conclude that the composition G ◦ F ◦ F−1 is also
n-full. This composition is isomorphic to G, so G is n-full as well (Remark 4.8.5.17).

Remark 4.8.5.19. 05AELet F : C → D be a functor of ∞-categories and let u : X → Y be a
morphism of C having image u : X → Y in D. For each integer n, the requirement that the
map

πn(HomC(X,Y ), u)→ πn(HomD(X,Y ), u)

is injective or surjective depends only on the isomorphism class of u (as an object of the
∞-category Fun(∆1, C)).

In the setting of Kan complexes, Definition 4.8.5.10 can be simplified:

Proposition 4.8.5.20. 05AFLet f : X → Y be a morphism of Kan complexes. Then:

(a) The morphism f is 0-full (in the sense of Definition 4.8.5.10) if and only if the induced
map π0(f) : π0(X)→ π0(Y ) is surjective.
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(b) For n ≥ 1, the morphism f is n-full if and only if, for every vertex x ∈ X having image
y = f(x), the induced map πm(f) : πm(X,x) → πm(Y, y) is injective for m = n − 1
and surjective for m = n.

Proof. Assertion (a) is immediate from the definitions. We will prove (b). The case n = 1
follows from Exercise 4.8.5.7. Let us therefore assume that n ≥ 2. By definition, f is n-full
if and only if, for every edge u : x→ x′ of X having image v : y → y′ in Y , the induced map

πm−1(HomX(x, x′), u)→ πm−1(HomY (y, y′), v)

is injective for m = n− 1 and surjective for m = n. By virtue of Remark 4.8.5.19, it suffices
to check this in the special case where u = idx is a degenerate edge of X. Assertion (b) now
follows from isomorphisms

πm−1(HomX(x, x), idx) ≃ πm(X,x) πm−1(HomY (y, y), idy) ≃ πm(Y, y)

of Example 4.6.1.13.

Remark 4.8.5.21.05AG In the situation of Proposition 4.8.5.20, suppose that f is a Kan fibration.
Then assertions (a) and (b) can be reformulated as follows:

(a′) The Kan fibration f is 0-full if and only if, for each vertex y ∈ Y , the fiber Xy = {y}×YX
is nonempty.

(b′) For n ≥ 1, the Kan fibration f is n-full if and only if, for every vertex x ∈ X having
image y = f(x), the set πn−1(Xy, x) consists of a single element.

See Corollary 3.2.6.8 (and Variant 3.2.6.9 for the case n = 1).

Corollary 4.8.5.22.05AH Let F : C → D be a functor of ∞-categories and let n ≥ 1. Then F is
n-full if and only if, for every pair of objects X,Y ∈ C, the induced map of morphism spaces

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is (n− 1)-full.

Remark 4.8.5.23.05AJ Stated more informally, Corollary 4.8.5.22 asserts that a functor F :
C → D is n-full if it is surjective up to homotopy on n-morphisms (having fixed source and
target). For an alternative formulation of this heuristic, see Proposition 4.8.5.29 below.

Corollary 4.8.5.24.05AK Let f : X → Y be a morphism of Kan complexes and let n be an
integer. Then:

• The morphism f is n-connective (in the sense of Definition 3.5.1.13) if and only if it
is m-full for every nonnegative integer m ≤ n.
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• The morphism f is n-truncated (in the sense of Definition 3.5.9.1) if and only if it is
m-full for every nonnegative integer m ≥ n+ 2.

Corollary 4.8.5.25. 05ALLet F : C → D be an inner fibration of ∞-categories and let n ≥ 2
be an integer. Then F is n-full if and only if, for every morphism u : X → Y of C having
image u : X → Y in D, the set πn−2(HomC(X,Y )u, u) consists of a single element. Here
HomC(X,Y )u denotes the fiber {u} ×HomD(X,Y ) HomC(X,Y ).

Proof. By virtue of Corollary 4.8.5.22, the functor F is n-full if and only if, for every pair of
objects X,Y ∈ C, the map of Kan complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is (n− 1)-full. Since F is an inner fibration, FX,Y is a Kan fibration (Proposition 4.6.1.21).
The desired result now follows from Remark 4.8.5.21.

Variant 4.8.5.26. 05AMLet F : C → D be an inner fibration of ∞-categories. Then F is full if
and only if, for every pair of objects X,Y ∈ C, the induced map

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is surjective on vertices.

Proposition 4.8.5.27. 05ANLet F : C → D be an inner fibration of ∞-categories and let n ≥ 1
be an integer. The following conditions are equivalent:

(1) The functor F is n-full.

(2) For every pullback diagram of ∞-categories

C′ //

F ′

��

C

F

��
D′ // D,

the functor F ′ is n-full.

(3) For every pullback diagram of ∞-categories

C′ //

F ′

��

C

F

��
∆1 // D,

the functor F ′ is n-full.
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Proof. For n ≥ 2, this follows from the criterion of Corollary 4.8.5.25. For n = 1, it follows
from the criterion of Variant 4.8.5.26.

Corollary 4.8.5.28.05AP Let n ≥ 0 be an integer, and suppose we are given a categorical pullback
diagram of ∞-categories

05AQ C′

F ′

��

// C

F

��
D′ G // D .

(4.51)

If F is n-full, then F ′ is n-full. The converse holds if G is full and essentially surjective.

Proof. The case n = 0 follows from Remark 4.6.2.18. We will therefore assume that n ≥ 1.
Using Corollary 4.5.2.23, we can reduce to the case where F and G are isofibrations. In this
case, our assumption that (4.51) is a categorical pullback square guarantees that the induced
map C′ → D′×D C is an equivalence of ∞-categories (Proposition 4.5.2.26). Using Remark
4.8.5.18, C′ by the fiber product D′×D C and thereby reduce to the case where the diagram
(4.51) is a pullback square. Note that, if the functor G is full and essentially surjective, then
every morphism of D can be lifted to a morphism of D′. The desired result now follows from
the criterion of Proposition 4.8.5.27.

Proposition 4.8.5.29.05AR Let F : C → D be an inner fibration of ∞-categories and let n ≥ 1
be an integer. Then F is n-full if and only if every lifting problem

∂∆n //

��

C

F

��
∆n

==

// D

admits a solution. If F is an isofibration, then this is also true in the case n = 0.

Proof. The case n = 0 reduces to the observation that an isofibration is essentially surjective
if and only if it is surjective on objects. The case n = 1 is a reformulation of Variant 4.8.5.26.
We may therefore assume without loss of generality that n ≥ 2. Using Proposition 4.8.5.27,
we can reduce to the case where D = ∆m is a standard simplex. In this case, the functor F
is n-full if and only if, for every morphism u : X → Y of C, the set πn−2(HomC(X,Y ), u)
consists of a single element (Corollary 4.8.5.25). The desired result now follows from Corollary
4.8.3.10.

For later use, we record a few variants of Remark 4.8.5.15.

https://kerodon.net/tag/05AP
https://kerodon.net/tag/05AQ
https://kerodon.net/tag/05AR


920 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

Proposition 4.8.5.30. 05ASLet F : C → D and G : D → E be functors of ∞-categories and let
n ≥ 1. If G ◦ F is n-full and G is (n+ 1)-full, then F is n-full.

Proof. We first treat the case n = 1. Fix a pair of objects X,Y ∈ C having images X
and Y in D. We wish to show that every morphism u : X → Y is homotopic to F (v), for
some morphism v : X → Y in C. Our assumption that (G ◦ F ) is 1-full guarantees that
we can choose v such that (G ◦ F )(v) is homotopic to G(u). Since G is 2-full, the map
π0(HomD(X,Y ))→ π0(HomE(G(X), G(Y )) is injective, so that F (v) is homotopic to u as
desired.

We now treat the case n ≥ 2. Without loss of generality, we may assume that F and G

are inner fibrations. Using Proposition 4.8.5.27, we can further reduce to the case where E
is a standard simplex. Fix a morphism u : X → Y of C having image u : X → Y in D. We
wish to show that the map

θm : πm(HomC(X,Y ), u)→ πm(HomD(X,Y ), u)

is injective for m = n− 2 and surjective for m = n− 1. This is clear: our assumption that
G ◦ F is n-full guarantees that the set πn−2(HomC(X,Y ), u) consists of a single element
(so θn−2 is automatically injective), and our assumption that G is (n+ 1)-full guarantees
that the set πn−1(HomD(X,Y ), u) consists of a single element (so that θn−1 is automatically
surjective).

Exercise 4.8.5.31. 05ATLet F : C → D and G : D → E be functors of ∞-categories where G is
full and conservative. Show that if G ◦ F is essentially surjective, then F is also essentially
surjective. Beware that the hypothesis that G is conservative cannot be omitted.

Proposition 4.8.5.32. 05AULet F : C → D and G : D → E be functors of ∞-categories and let
n ≥ 2. Assume that G ◦F is n-full and that F is essentially surjective, full, and (n− 1)-full.
Then G is n-full.

Remark 4.8.5.33. 05AVFor n = 0 and n = 1, we have stronger versions of Proposition 4.8.5.32:

• If G ◦ F is 0-full, then G is 0-full (this is a restatement of Remark 4.6.2.17).

• If G ◦ F is 1-full and F is 0-full, then G is 1-full (this is a restatement of Remark
4.8.5.6).

Proof of Proposition 4.8.5.32. Without loss of generality, we may assume that F and G are
inner fibrations. Using Proposition 4.8.5.27, we can reduce to the case where E is a standard
simplex. In this case, we must show that for every morphism u : X → Y of D, the set
πn−2(HomD(X,Y ), u) consists of a single element. Since F is full and essentially surjective,
we can assume without loss of generality that u = F (u) for some morphism u : X → Y in
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the ∞-category C. In this case, our assumption that F is (n− 1)-full guarantees that the
map

πn−2(HomC(X,Y ), u)→ πn−2(HomD(X,Y ), u)

is surjective. It will therefore suffice to show that the set πn−2(HomC(X,Y ), u) consists of a
single element, which follows from our assumption that G ◦ F is n-full.

4.8.6 Essentially Categorical Functors

05AW Let C be an ∞-category and let n be an integer. Combining Corollary 4.8.3.3 with
Remark 4.8.5.13, we see that the following conditions are equivalent:

• The ∞-category C is equivalent to an (n, 1)-category.

• The projection map C → ∆0 is m-full for m ≥ n+ 2.

This motivates the following:

Definition 4.8.6.1.05AX Let F : C → D be a functor of ∞-categories and let n be an integer.
We say that F is essentially n-categorical if it is m-full for m ≥ n+ 2.

Example 4.8.6.2.05AY Let F : C → D be a functor of ∞-categories. Then:

• The functor F is essentially 0-categorical if and only if it is faithful.

• The functor F is essentially (−1)-categorical if and only if it is fully faithful.

• The functor F is essentially (−2)-categorical if and only if it is an equivalence of
∞-categories. In this case, F is also essentially n-categorical for any n ≤ −2.

This is a restatement of Remark 4.8.5.11.

Example 4.8.6.3.05AZ Let f : X → Y be a morphism of Kan complexes and let n be an integer.
Then f is essentially n-categorical (in the sense of Definition 4.8.6.1) if and only if it is
n-truncated (in the sense of Definition 3.5.9.1). See Corollary 4.8.5.24.

Example 4.8.6.4.05B0 Let C be an∞-category and let n be an integer. The following conditions
are equivalent:

(1) The projection map C → ∆0 is essentially n-categorical.

(2) The ∞-category C is locally (n− 1)-truncated. Moreover, if n ≤ −2, then C is nonempty.

(3) The ∞-category C is equivalent to an (n, 1)-category.

(4) For m ≥ n+ 2, every morphism ∂∆m → C can be extended to an m-simplex of E .
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The equivalence (1) ⇔ (2) follows from Remark 4.8.5.13, the equivalence (2) ⇔ (3) from
Corollary 4.8.3.3, and the equivalence (2)⇔ (4) from Corollary 4.8.3.11.

Remark 4.8.6.5 (Symmetry). 05B1Let F : C → D be a functor of ∞-categories and let
n be an integer. Then F is essentially n-categorical if and only if the opposite functor
F op : Cop → Dop is essentially n-categorical. See Remark 4.8.5.14.

Remark 4.8.6.6 (Monotonicity). 05B2Let F : C → D be a functor of ∞-categories and let
m ≤ n be integers. If F is essentially m-categorical, then it is essentially n-categorical.

Remark 4.8.6.7 (Transitivity). 05B3Let F : C → D and G : D → E be functors of ∞-categories
and let n be an integer. Then:

(a) If F and G are essentially n-categorical, then the composite functor G ◦ F is essentially
n-categorical.

(b) If G ◦ F is essentially n-categorical and G is essentially (n+ 1)-categorical, then F is
essentially n-categorical.

(c) If G ◦ F is essentially n-categorical and F is essentially (n − 1)-categorical, full, and
essentially surjective, then G is essentially n-categorical.

Assertion (a) follows from Remark 4.8.5.15, assertion (b) from Proposition 4.8.5.30 (together
with Exercise 4.8.5.31 in the case n ≤ −2), and assertion (c) follows from Proposition 4.8.5.32
(together with Remark 4.5.1.18 in the case n ≤ −2).

Remark 4.8.6.8. 05B4Let F : C → D and G : D → E be functors of ∞-categories and let n be
an integer. Suppose that G is essentially n-categorical. Then F is essentially n-categorical if
and only if G ◦ F is essentially n-categorical. This follows by combining Remarks 4.8.6.6
and 4.8.6.7.

Example 4.8.6.9. 05B5Let F : C → D be a functor of ∞-categories and let n ≥ −1 be an
integer. Suppose that D is locally (n− 1)-truncated. Then F is essentially n-categorical if
and only if C is also locally (n− 1)-truncated. This follows by applying Remark 4.8.6.8 in
the special case E = ∆0 (see Example 4.8.6.4).

Remark 4.8.6.10 (Homotopy Invariance). 05B6Let F : C → D and G : D → E be functors of
∞-categories and let n be an integer. If F is an equivalence of ∞-categories, then G ◦ F is
essentially n-categorical if and only if G is essentially n-categorical. If G is an equivalence of
∞-categories, then G◦F is essentially n-categorical if and only if F is essentially n-categorical.
Both assertions are special cases of Remark 4.8.6.7.

Remark 4.8.6.11 (Isomorphism Invariance). 05B7Let F0, F1 : C → D be functors of∞-categories
which are isomorphic (when regarded as objects of the ∞-category Fun(C,D)). Then F0 is
essentially n-categorical if and only if F1 is essentially n-categorical. See Remark 4.8.5.17.
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Remark 4.8.6.12.05B8 Let F : C → D be a functor of ∞-categories and let n ≥ −1. Then F is
essentially n-categorical if and only if, for every pair of objects X,Y ∈ C, the map of Kan
complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is (n− 1)-truncated. This follows by combining Example 4.8.6.3 with Corollary 4.8.5.22.

Remark 4.8.6.13.05B9 Let F : C → D be an inner fibration of ∞-categories. For n ≥ 0, F
is essentially n-categorical if and only if the diagonal map δ : C → C ×D C is essentially
(n− 1)-categorical. This follows by combining Remark 4.8.6.12 with Corollary 3.5.9.17, since
F induces a Kan fibration HomC(X,Y ) → HomD(F (X), F (Y )) for every pair of objects
X,Y ∈ C (Proposition 4.6.1.21).

Warning 4.8.6.14.05BA Remark 4.8.6.13 is generally false in the case n = −1, even if we
assume that F is an isofibration. For example, let D be an ∞-category and let C ⊆ D be
a subcategory. Then the inclusion map F : C → D is an inner fibration (which is even
an isofibration, if C is a replete subcategory of D). The diagonal δ : C → C ×D C is an
isomorphism of simplicial sets, and therefore an equivalence of ∞-categories. However, F
need not be fully faithful.

Variant 4.8.6.15.05BB Let F : C → D be a functor of ∞-categories. For n ≥ 0, the functor F is
essentially n-categorical if and only if the composite map

C ↪→ C×D C ↪→ C×h
D C

is essentially (n− 1)-categorical. To prove this, we can use Corollaries 4.5.2.23 and 4.5.2.20
to reduce to the situation where F is an isofibration. In this case, the desired result is a
reformulation of Remark 4.8.6.13 (see Corollary 4.5.2.28).

Remark 4.8.6.16.05BC Let n be an integer and suppose we are given a categorical pullback
diagram of ∞-categories

C′

F ′

��

// C

F

��
D′ G // D .

If F is essentially n-categorical, then F ′ is essentially n-categorical. The converse holds if G
is full and essentially surjective. See Corollary 4.8.5.28.

Proposition 4.8.6.17.05BD Let F : C → D be an inner fibration of ∞-categories and let n ≥ 0
be an integer. The following conditions are equivalent:
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(1) The functor F is essentially n-categorical.

(2) For every pullback diagram of ∞-categories

C′ //

F ′

��

C

F

��
D′ // D,

the functor F ′ is essentially n-categorical.

(3) For every pullback diagram of ∞-categories

C′ //

F ′

��

C

F

��
D′ // D,

where D′ is locally (n−1)-truncated, the ∞-category C′ is also locally (n−1)-truncated.

(4) For every pullback diagram of ∞-categories

C′ //

��

C

F

��
∆1 // D,

the ∞-category C′ is locally (n− 1)-truncated.

Proof. Combine Proposition 4.8.5.27 with the criterion of Example 4.8.6.9.

Warning 4.8.6.18. 05BELet F : C → D be an inner fibration of ∞-categories and let n ≥ −1 be
an integer. If F is essentially n-categorical, then each fiber CD = {D} ×D C of F is a locally
(n− 1)-truncated ∞-category. Beware that the converse is false in general, even if F is an
isofibration. However, it holds under additional assumptions: see Variant 5.1.5.17.

Proposition 4.8.6.19. 05BFLet F : C → D be an inner fibration of ∞-categories and let n ≥ −1
be an integer. The following conditions are equivalent:

(1) The functor F is essentially n-categorical.
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(2) For every integer m ≥ n+ 2, every lifting problem

∂∆m //

��

C

F

��
∆m

==

// D

admits a solution.

(3) For every simplicial set B and every simplicial subset A ⊆ B which contains the (n+ 1)-
skeleton of B, every lifting problem

A //

��

C

F

��
B

??

// D

admits a solution.

Proof. The equivalence (1) ⇔ (2) follows from Proposition 4.8.5.29. The implication
(3)⇒ (2) is immediate, and the reverse implication follows from Proposition 1.1.4.12.

Corollary 4.8.6.20.05BG Let F : C → D be a functor of ∞-categories, let B be a simplicial
set, and let A ⊆ B be a simplicial subset. If F is essentially n-categorical, then the induced
functor F ′ : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D) is also essentially n-categorical.

Proof. If n ≤ −2, then F is an equivalence of ∞-categories; it then follows from Corollary
4.5.2.30 that F ′ is also an equivalence of ∞-categories. We may therefore assume that
n ≥ −1. Using Proposition 3.1.7.1, we can reduce to the case where F is an inner fibration,
so that F ′ is also an inner fibration (Proposition 4.1.4.1). By virtue of Proposition 4.8.6.19,
it will suffice to show that for every simplicial set B′ and every simplicial subset A′ ⊆ B′

which contains the (n+ 1)-skeleton of B, every lifting problem

05BH A′ //

��

Fun(B, C)

F ′

��
B′

77

// Fun(A, C)×Fun(A,D) Fun(B,D)

(4.52)
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Unwinding the definitions, we can rewrite (4.52) as a lifting problem

(A×B′) ∐
(A×A′)(B ×A′) //

��

C

F

��
B ×B′

88

// D .

The existence of a solution now follows from Proposition 4.8.6.19, since F is essentially
n-categorical and (A×B′) ∐

(A×A′)(B ×A′) contains the (n+ 1)-skeleton of B ×B′.

Corollary 4.8.6.21. 05BJLet F : C → D be a functor of ∞-categories, let B be a simplicial
set, and let n be an integer. If F is essentially n-categorical, then the induced functor
Fun(B, C)→ Fun(B,D) is also essentially n-categorical.

Proof. Apply Corollary 4.8.6.20 in the special case A = ∅.

Corollary 4.8.6.22. 05BKLet n ≥ −1 be an integer and let F : C → D be an essentially n-
categorical inner fibration of ∞-categories. Then, for every diagram B → D, the ∞-category
Fun/D(B, C) is locally (n− 1)-truncated.

Proof. It follows from Corollary 4.1.4.2 that F induces an inner fibration F ′ : Fun(B, C)→
Fun(B,D), and from Corollary 4.8.6.21 that F ′ is essentially n-categorical. In particular,
every fiber of F is locally (n− 1)-truncated.

We now study a special class of essentially n-categorical functors.

Definition 4.8.6.23. 05BLLet n be a positive integer. We say that a morphism of simplicial
sets F : C → D is an n-categorical inner fibration if it satisfies the following condition:

(∗) For every pair of integers 0 < i < m, every lifting problem

Λmi //

��

C

F

��
∆m //

>>

D

admits a solution. Moreover, if m > n, then the solution is unique.

It will sometimes be useful to extend Definition 4.8.6.23 to allow n to be an arbitrary
integer.
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Variant 4.8.6.24.05BM Let F : C → D be a morphism of simplicial sets.

• We say that U is a 0-categorical inner fibration if, for every morphism ∆m → D, the
fiber product ∆m ×D C is isomorphic to the nerve of a partially ordered set.

• We say that F is a (−1)-categorical inner fibration if it induces an isomorphism from
C to a full simplicial subset of D (Definition 4.1.2.15).

• For n ≤ −2, we say that F is an n-categorical inner fibration if it is an isomorphsm of
simplicial sets.

Example 4.8.6.25.05BN Let C be a simplicial set and let F : C → ∆0 be the projection map.
Then F is an n-categorical inner fibration if and only if C is an (n, 1)-category.

Example 4.8.6.26.05BP Let F : C → D be a morphism of simplicial sets. Then F is a 1-
categorical inner fibration (Definition 4.8.6.23) if and only if it is an inner covering map
(Definition 4.1.5.1).

Remark 4.8.6.27.05BQ Let m ≤ n be integers. If F : C → D is an m-categorical inner fibration,
then it is also an n-categorical inner fibration (see Remark 4.8.1.12). In particular, F is an
inner fibration.

Remark 4.8.6.28.05BR Suppose we are given a pullback diagram of simplicial sets

C′ //

F ′

��

C

F

��
D′ // D .

If F is an n-categorical inner fibration, then F ′ is also an n-categorical inner fibration.

Remark 4.8.6.29.05BS Let F : C → D be a morphism of simplicial sets. It follows from Example
4.8.6.25 and Remark 4.8.6.28 that if F is an n-categorical inner fibration, then the fiber
CD = {D} ×D C is an (n, 1)-category for each vertex D ∈ D. Beware that the converse is
generally false.

Remark 4.8.6.30 (Symmetry).05BT Let n be an integer and let F : C → D be an n-categorical
inner fibration of simplicial sets. Then the opposite map F op : Cop → Dop is also an
n-categorical inner fibration.

Proposition 4.8.6.31.05BU Let n be an integer, let D be an (n, 1)-category, and let F : C → D
be an inner fibration of ∞-categories. Then F is n-categorical if and only if C is an
(n, 1)-category.
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Proof. For n ̸= 0, the desired result follows from immediately from the definitions. Let us
therefore assume that n = 0, so that D is isomorphic to the nerve of a partially ordered
set. If C is also isomorphic to the nerve of a partially ordered set, then any fiber product
∆m×D C has the same property (since the formation of nerves commutes with fiber products).
Conversely, suppose that F is a 0-categorical inner fibration. In this case, we claim that C
satisfies the criteria of *** snip ***

(a) The simplicial set C is a (1, 1)-category: this follows by applying Proposition 4.8.6.31 in
the case n = 1.

(b) Let u, u′ : X → Y be morphisms in C having the same source and target; we wish to show
that f = f ′. Our assumption that D is a (0, 1)-category guarantees that F (u) = F (u′).
The desired result now follows from the observation that the fiber product ∆1 ×D C is
a (0, 1)-category.

(c) Let X and Y be isomorphic objects of C; we wish to show that X = Y . Fix morphisms
u : X → Y and v : Y → X. Since D is a (1, 0)-category, we have F (u) = idD = F (v)
for some object D ∈ D. In this case, we can regard u and v as morphisms of the
∞-category CD = {D} ×D C. Our assumption that F is a 0-categorical inner fibration
guarantees that CD is a (0, 1)-category, so that X = Y .

Remark 4.8.6.32. 05BVLet F : C → D be a morphism of simplicial sets and let n be an integer.
Then F is an n-categorical inner fibration if and only if, for every pullback diagram of
simplicial sets

C′ //

F ′

��

C

F

��
∆m // D,

the projection map F ′ is an n-categorical inner fibration. For n ≥ 0, this is equivalent to
the requirement that C′ is an (n, 1)-category (Proposition 4.8.6.31).

Corollary 4.8.6.33 (Transitivity). 05BWLet n be an integer and let F : C → D and G : D → E
be inner fibrations of simplicial sets, where G is n-categorical. Then F is n-categorical if
and only if G ◦ F is n-categorical.

Proof. For n < 0, this follows immediately from the definitions. We may therefore assume
that n ≥ 0. Using Remark 4.8.6.32, we can reduce to the case where E = ∆m is a standard
simplex. In this case, our assumption on G guarantees that D is an (n, 1)-category. We
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wish to show that C is an (n, 1)-category if and only if the inner fibration F is n-categorical,
which follows from Proposition 4.8.6.31.

Proposition 4.8.6.34.05BX Let n be an integer and let F : C → D be an n-categorical inner
fibration of ∞-categories. Then F is essentially n-categorical.

For a partial converse, see Corollary 4.8.8.23.

Proof of Proposition 4.8.6.34. If n = −2, then F is an isomorphism of simplicial sets and
therefore an equivalence of ∞-categories (Example 4.5.1.11). If n = −1, then F is an
isomorphism from C onto a full subcategory of D, and therefore fully faithful (Example
4.6.2.2). We may therefore assume without loss of generality that n ≥ 0. By virtue of
Proposition 4.8.6.17, we may assume without loss of generality that D is a standard simplex;
in this case, we wish to show that C is locally (n− 1)-truncated. This follows from Example
4.8.2.2, since C is an (n, 1)-category (Proposition 4.8.6.31).

4.8.7 Categorically Connective Functors

05BY Let F : C → D be a functor of ∞-categories and let n be an integer. Recall that F is
essentially (n − 1)-categorical if it is m-full for every nonnegative integer m > n. In this
section, we study a dual version of this condition.

Definition 4.8.7.1.05BZ Let F : C → D be a functor of ∞-categories and let n be an integer.
We say that F is categorically n-connective if it is m-full for every nonnegative integer m ≤ n
(see Definition 4.8.5.10).

Example 4.8.7.2.05C0 For small values of n, we can make Definition 4.8.7.1 more concrete:

• A functor F : C → D is categorically 1-connective if and only if it is full and essentially
surjective.

• A functor F : C → D is categorically 0-connective if and only if it is essentially
surjective.

• For n < 0, every functor F : C → D is categorically n-connective.

Example 4.8.7.3.05C1 Let f : X → Y be a morphism of Kan complexes and let n be an integer.
Then f is categorically n-connective (in the sense of Definition 4.8.7.1) if and only if it is
n-connective (in the sense of Definition 3.5.1.13). See Corollary 4.8.5.24.

Warning 4.8.7.4.05C2 Let F : C → D be a functor of ∞-categories and let n be an integer.
If F is categorically n-connective, then it is an n-connective morphism of simplicial sets
(Corollary 4.8.7.17). Beware that the converse is false in general. For example, the projection
map ∆1 ↠ ∆0 is a homotopy equivalence (and therefore n-connective for every integer n)
which is not categorically 2-connective.
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Remark 4.8.7.5. 05C3Let F : C → D be a functor of ∞-categories and let n be an integer.
Then F is categorically n-connective if and only if it satisfies the following pair of conditions:

• The functor F is locally (n− 1)-connective. That is, for every pair of objects X,Y ∈ C,
the map of Kan complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is (n− 1)-connective.

• If n ≥ 0, then F is essentially surjective.

See Corollary 4.8.5.22.

Remark 4.8.7.6 (Symmetry). 05C4Let F : C → D be a functor of ∞-categories and let n
be an integer. Then F is categorically n-connective if and only if the opposite functor
F op : Cop → Dop is categorically n-connective.

Remark 4.8.7.7 (Monotonicity). 05C5Let F : C → D be a functor of ∞-categories and let
m ≤ n be integers. If F is categorically n-connective, then it is categorically m-connective.

Remark 4.8.7.8. 05C6Let F : C → D be a functor of ∞-categories. Then F is an equivalence of
∞-categories if and only if it is categorically n-connective for every integer n. See Remark
4.8.5.11.

Remark 4.8.7.9. 05C7Let F : C → D be a functor of ∞-categories. It follows from Remark
4.8.7.5 that if F is categorically (n + 1)-connective, then the induced map of homotopy
n-categories h≤n(C) → h≤n(D) is an equivalence. In particular, if F is categorically 2-
connective, then it induces an equivalence of homotopy categories hC → hD.

Remark 4.8.7.10. 05C8Let F : C → D be a functor of ∞-categories. Then:

• If F is categorically 1-connective and C is a Kan complex, then D is also a Kan
complex.

• If F is categorically 2-connective, then C is a Kan complex if and only if D is a Kan
complex.

Remark 4.8.7.11. 05C9Let n be an integer, and suppose we are given a categorical pullback
diagram of ∞-categories

C′

F ′

��

// C

F

��
D′ G // D .
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If F is categorically n-connective, then F ′ is categorically n-connective. The converse holds
if G is full and essentially surjective. See Corollary 4.8.5.28.

Proposition 4.8.7.12 (Transitivity).05CA Let F : C → D and G : D → E be functors of
∞-categories and let n be an integer. Then:

(1) If F and G are categorically n-connective, then the composite functor G◦F is categorically
n-connective.

(2) If G ◦ F is categorically n-connective, G is categorically (n+ 1)-connective, and n ≥ 1,
then F is categorically n-connective.

(3) If G ◦ F is categorically n-connective and F is categorically (n− 1)-connective, then G

is categorically n-connective.

Proof. Assertions (1) and (3) follow by combining Remark 4.8.5.15 with Proposition 4.8.5.32
(supplemented by Remark 4.8.5.33), respectively. It will therefore suffice to prove (2).
Assume that n ≥ 1, that G ◦ F is categorically n-connective, and that G is categorically
(n+ 1)-connective; we wish to prove that F is categorically n-connective: that is, that F is
m-full for m ≤ n. If m > 0, this follows from Proposition 4.8.5.30. It will therefore suffice
to treat the case m = 0: that is, to show that F is essentially surjective. This follows from
the essential surjectivity of G ◦ F , since G induces an equivalence of homotopy categories
(Remark 4.8.7.9).

Proposition 4.8.7.13.05CB Let F : C → D be a functor of ∞-categories and let n ≥ 0 be an
integer. Suppose that F is bijective on simplices of dimension < n and surjective on simplices
of dimension n. Then F is categorically n-connective.

Proof. Note that F is automatically essentially surjective (since it is surjective on objects).
By virtue of Remark 4.8.7.5, it will suffice to show that for every pair of objects X,Y ∈ C,
the map of Kan complexes

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y ))

is (n− 1)-connective. This follows from Corollary 3.5.2.2, since FX,Y is bijective on simplices
of dimension < n− 1 and surjective on simplices of dimension n.

In the case where F is an isofibration, Definition 4.8.7.1 can be reformulated as a lifting
property.

Proposition 4.8.7.14.05CC Let F : C → D be an isofibration of ∞-categories and let n be an
integer. The following conditions are equivalent:

(1) The functor F is categorically n-connective.
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(2) For every integer 0 ≤ m ≤ n, every lifting problem

∂∆m //

��

C

F

��
∆m

==

// D

admits a solution.

(3) For every simplicial set B of dimension ≤ n and every simplicial subset A ⊆ B, every
lifting problem

A //

��

C

F

��
B

??

// D
admits a solution.

Proof. The equivalence (1) ⇔ (2) follows from Proposition 4.8.5.29. The implication
(3)⇒ (2) is immediate, and the reverse implication follows from Proposition 1.1.4.12.

We now prove a partial converse to Proposition 4.8.7.13:

Proposition 4.8.7.15. 05CDLet F : C → D be an isofibration of ∞-categories and let n be an
integer. The following conditions are equivalent:

(1) The functor F is categorically n-connective.

(2) The functor F factors as a composition

C F ′−→ D′ U−→ D,

where F ′ is a monomorphism which is bijective on m-simplices for m ≤ n, and U is a
trivial Kan fibration.

(3) The functor U factors as a composition

C F ′−→ D′ U−→ D,

where F ′ is bijective on m-simplices for m < n, surjective on n-simplices, and U is
categorically n-connective.
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Proof. We proceed as in the proof of Corollary 3.5.2.4. The implication (2)⇒ (3) is clear, and
the implication (3)⇒ (1) follows from Propositions 4.8.7.12 and 4.8.7.13. We will complete
the proof by showing that (1) implies (2). Assume that F is categorically n-connective.
Using a variant of Exercise 3.1.7.11, we can choose a factorization of F as a composition
C F ′−→ D′ U−→ D with the following properties;

(a) For every integer m > n, every lifting problem

∂∆m //

��

D′

U

��
∆m //

==

D

admits a solution.

(b) The morphism F ′ can be realized as a transfinite pushout of inclusion maps ∂∆m ↪→ ∆m

for m > n.

It follows immediately from (b) that F is a monomorphism which is bijective on simplices of
dimension ≤ n. We will complete the proof by showing that U is a trivial Kan fibration:
that is, every lifting problem

05CE ∂∆m //

��

D′

U

��
∆m //

==

D

(4.53)

admits a solution. For m > n, this follows from (b). For m ≤ n, we can identify (4.53) with
a lifting problem

∂∆m //

��

C

F

��
∆m //

==

D,

which admits a solution by virtue of our assumption that F is a categorically n-connective
isofibration (Proposition 4.8.7.14).

Corollary 4.8.7.16.05CF Let F : C → D be a functor of ∞-categories and let n be an integer.
Then F is categorically n-connective if and only if it factors as a composition

C E−→ C′ F
′
−→ D′ G−→ D

https://kerodon.net/tag/05CE
https://kerodon.net/tag/05CF


934 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

where E and G are equivalences of ∞-categories and F ′ is bijective on simplices of dimension
≤ n. Moreover, we can arrange that E and F ′ are monomorphisms and that G is a trivial
Kan fibration.

Proof. Combine Proposition 4.8.7.15 with Corollary 4.5.2.23.

Corollary 4.8.7.17. 05CGLet F : C → D be a functor of ∞-categories. If F is categorically
n-connective, then it is n-connective.

Proof. Using Corollary 4.8.7.16 (and Remark 4.5.3.4), we can reduce to the case where F
is bijective on simplices of dimension ≤ n. In this case, the desired result follows from
Corollary 3.5.2.2.

Corollary 4.8.7.18. 05CHLet n be an integer and let F : A → B and G : C → D be functors
of ∞-categories. Suppose that F is categorically n-connective and that G is essentially
(n− 1)-categorical. Then the diagram of ∞-categories

05CJFun(B, C) ◦F //

G◦

��

Fun(A, C)

G◦

��
Fun(B,D) ◦F // Fun(A,D)

(4.54)

is a categorical pullback square.

For a partial converse, see Proposition 4.8.9.1.

Remark 4.8.7.19. 05CKIn the situation of Corollary 4.8.7.18, suppose that one of the following
additional conditions is satisfied:

(a) The functor F is a monomorphism of simplicial sets.

(b) The functor G is an isofibration.

Condition (a) guarantees that the horizontal maps in the diagram (4.54) are isofibrations
(Corollary 4.4.5.3) and condition (b) guarantees that the vertical maps are isofibrations
(Corollary 4.4.5.6). In either case, the conclusion of Corollary 4.8.7.18 is equivalent to the
requirement that the functor

V : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D)

is an equivalence of ∞-categories (Proposition 4.5.2.26). If conditions (a) and (b) are both
satisfied, then G is an isofibration of ∞-categories (Proposition 4.4.5.1). In this case, the
conclusion of Corollary 4.8.7.18 is equivalent to the requirement that G is a trivial Kan
fibration (Proposition 4.5.5.20).
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Proof of Corollary 4.8.7.18. Using Corollary 4.8.7.16 we can reduce to the case where F is
a monomorphism which is bijective on simplices of dimension ≤ n. The desired result now
follows from Corollary 4.8.6.20 (and Remark 4.8.7.19).

Proposition 4.8.7.20.05CL Let m and n be nonnegative integers and let F : C → D be a
categorically (m + n)-connective functor of ∞-categories. Let B be a simplicial set of
dimension ≤ m, and let A ⊆ B be a simplicial subset. Then the induced functor

G : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D)

is categorically n-connective.

Proof. We proceed as in the proof of Proposition 3.5.2.11. Using Corollary 4.5.2.23 (and
Corollary 4.5.2.30), we can reduce to the case where F is an isofibration. In this case, G is
also an isofibration (Proposition 4.4.5.1). By virtue of Proposition 4.8.7.14, it will suffice to
show that if B′ is a simplicial set of dimension ≤ n and A′ ⊆ B′ is a simplicial subset, then
every lifting problem

05CM A′ //

��

Fun(B, C)

G

��
B′ //

77

Fun(A, C)×Fun(A,D) Fun(B,D)

(4.55)

admits a solution. Unwinding the definitions, we can rewrite (4.55) as a lifting problem

(A×B′) ∐
(A×A′)(B ×A′) //

��

C

F

��
B ×B′ //

88

D .

Since the simplicial set B×B′ has dimension ≤ m+n (Proposition 1.1.3.6), the existence of a
solution follows from our assumption that F is categorically (m+n)-connective (Proposition
4.8.7.14).

Corollary 4.8.7.21.05CN Let m and n be nonnegative integers, let B be a simplicial set of
dimension ≤ m, and let F : C → D be functor of ∞-categories which is categorically (m+n)-
connective. Then the induced map Fun(B, C)→ Fun(B,D) is categorically n-connective.

Proof. Applying Proposition 4.8.7.20 in the special case A = ∅.

https://kerodon.net/tag/05CL
https://kerodon.net/tag/05CM
https://kerodon.net/tag/05CN


936 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

4.8.8 Relative Higher Homotopy Categories

05CPLet F : C → D be a functor between categories. Recall that the essential image of F is
the full subcategory D′ ⊆ D spanned by those objects which are isomorphic to F (X), for
some object X ∈ C. The functor F then factors as a composition

C → D0 ↪→ D,

where the functor on the left is essentially surjective and the functor on the right is fully
faithful. It is sometimes useful to consider a different factorization.

Proposition 4.8.8.1. 05CQLet F : C → D be a functor between categories. Then F factors as a
composition

C F ′−→ D′ G−→ D

where G is faithful and F ′ is both full and essentially surjective.

Proof. We construct the category D′ as follows:

• The objects of D′ are the objects of C. To avoid confusion, for each object X ∈ C, we
write X for the corresponding object of D′.

• For every pair of objects X,Y ∈ C, we take HomD′(X,Y ) to be image of the map
FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )). To avoid confusion, if u : F (X)→ F (Y )
is a morphism of D which belongs to the image of FX,Y , we write u : X → Y for the
corresponding morphism of D′.

• For every pair of objects X,Y, Z ∈ C, the composition law

◦ : HomD′(Y , Z)×HomD′(X,Y )→ HomD′(X,Z)

is the restriction of the composition law HomD(F (Y ), F (Z))×HomD(F (X), F (Y ))→
HomD(F (X), F (Z)) for the category D: that is, it satisfies the formula v ◦ u = v ◦ u.

Let F ′ : C → D′ be the functor which carries each object X ∈ C to the object X ∈ D′, and
each morphism u : X → Y of C to the morphism F (u) : X → Y of D′. Let G : D′ → D be
the functor which carries each object X ∈ D′ to the object F (X) ∈ D, and each morphism
u : X → Y of D′ to the morphism u : F (X)→ F (Y ) of D. Then the functor G is faithful,
the functor F ′ is full and essentially surjective, and the composition G◦F ′ is equal to F .

Exercise 4.8.8.2 (Uniqueness). 05CRLet F : C → D be a functor between categories. The proof
of Proposition 4.8.8.1 constructs a factorization

C F ′−→ D′ G−→ D

where G is faithful and F ′ is both full and bijective on objects. Show that these properties
characterize the category D′ up to (unique) isomorphism.
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Our goal in this section is to prove the following ∞-categorical generalization of Proposi-
tion 4.8.8.1:

Theorem 4.8.8.3.05CS Let F : C → D be a functor of ∞-categories and let n be an integer.
Then F admits a factorization C F ′−→ D′ G−→ D with the following properties:

• The functor G is essentially n-categorical: that is, it is m-full for m ≥ n+ 2.

• The functor F ′ is categorically (n+ 1)-connective: that is, it is m-full for m ≤ n+ 1.

Example 4.8.8.4.05CT For n ≤ −2, Theorem 4.8.8.3 asserts that every functor of ∞-categories
F : C → D admits a factorization C F ′−→ D′ G−→ D, where the functor G is an equivalence of
∞-categories. This is trivial: we can take D′ = D and G to be the identity functor.

Example 4.8.8.5.05CU When n = −1, Theorem 4.8.8.3 asserts that every functor of∞-categories
F : C → D admits a factorization C F ′−→ D′ G−→ D, where the functor G is fully faithful and
the functor F ′ is essentially surjective. For example, we can take D′ ⊆ D to be the essential
image of the functor F , and G : D′ ↪→ D to be the inclusion map. See Remark 4.6.2.12.

Example 4.8.8.6.05CV When n = 0, Theorem 4.8.8.3 asserts that every functor of ∞-categories
F : C → D admits a factorization C F ′−→ D′ G−→ D, where the functor G is faithful and the
functor F ′ is both full and essentially surjective. When C and D are (nerves of) ordinary
categories, this follows from Proposition 4.8.8.1. To handle the general case, we can use (the
proof of) Proposition 4.8.8.1 to factor the functor hF as a composition hC

F ′0−→ D′0
G0−−→ hD

where G0 is a faithful functor and F ′0 is a full functor which is essentially surjective (or even
bijective on objects). To prove Theorem 4.8.8.3, we can take D′ to be the fiber product
N•(D′0)×N•(hD) D, and G : D′ → D to be the functor given by projection onto the second
factor (which is faithful by virtue of Proposition 4.8.5.8).

Example 4.8.8.7.05CW Let C be an ∞-category and let n be an integer. Then the projection
map C → ∆0 factors as a composition

C F ′−→ h≤n(C) G−→ ∆0,

where h≤n(C) is the homotopy n-category constructed in §4.8.4. This factorization satisfies
the requirements of Theorem 4.8.8.3: the functor G is essentially n-categorical because h≤n(C)
is an (n, 1)-category (Example 4.8.6.4), and the functor F ′ is categorically (n+ 1)-connective
by Example 4.8.5.12.

Remark 4.8.8.8 (Uniqueness).05CX Let F : C → D be a functor of ∞-categories. Then, for
every integer n, the factorization of Theorem 4.8.8.3 is well-defined up to equivalence. More
precisely, if the functor F admits two factorizations

C
F ′0−→ D′0

G0−−→ D C
F ′1−→ D′1

G1−−→ D

https://kerodon.net/tag/05CS
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where the functors F ′0 and F ′1 are essentially n-categorical, and the functors G0 are G1 are
categorically (n+ 1)-connective, then we can find a commutative diagram

C
F ′0 // D′0

G0 // D

C // D′01

∼

OO

∼

��

// D

C
F ′1 // D′1

G1 // D

where the vertical maps are equivalences of∞-categories. To prove this, we can use Corollary
4.5.2.23 to reduce to the case where F ′0 is a monomorphism of simplicial sets and G1 is
an isofibration. In this case, Corollary 4.8.7.18 (and Remark 4.8.7.19) guarantee that the
functors F ′0 and G1 induce a trivial Kan fibration

Fun(D′0,D′1)→ Fun(C,D′1)×Fun(C,D) Fun(D′0,D).

In particular, this map is surjective on vertices, so the lifting problem

C
F ′1 //

F ′0

��

D′1

G1

��
D′0

G0 //

??

D

has a solution. A choice of solution determines a commutative diagram

C
F ′0 // D′0

G0 //

H

��

D

C
F ′1 // D′1

G1 // D .

It follows from Proposition 4.8.7.12 that the functor H is categorically (n+ 1)-connective,
and from Remark 4.8.6.7 that H is essentially n-categorical. Applying Remark 4.8.5.11, we
conclude that H is an equivalence of ∞-categories.
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Corollary 4.8.8.9.05CY Let f : X → Z be a morphism of Kan complexes and let n be an

integer. Then f factors as a composition X
f ′−→ Y

f ′′−→ Z, where f ′′ is n-truncated and f ′ is
(n+ 1)-connective.

Proof. Using Theorem 4.8.8.3, we can factor f as a composition f ′′ ◦ f ′, where f ′′ : C → Z

is an essentially n-categorical functor of ∞-categories and f ′ : X → C is categorically
(n + 1)-connective. If n ≤ −1, then f ′′ induces an equivalence from C to a summand of
Z, so that C is a Kan complex. If n ≥ 0, Remark 4.8.7.10 guarantees that C is a Kan
complex. Setting Y = C, we observe that f ′′ is n-truncated (Example 4.8.6.3) and f ′ is
(n+ 1)-connective (Example 4.8.7.3).

We will prove Theorem 4.8.8.3 in general by reducing to the special case studied in
Example 4.8.8.7. For this, we will need a relative version of the construction C 7→ h≤n(C)
introduced in §4.8.4.

Construction 4.8.8.10 (Relative Homotopy n-Categories).05CZ Let F : C → D be an inner
fibration of simplicial sets and let n ≥ 0 be an integer. For every m-simplex σ of D, let Cσ
denote the fiber product ∆m ×D C. We let h≤n(C /D)m denote the collection of pairs (σ, τ),
where σ is an m-simplex of D and τ is a section of the projection map

h≤n(Cσ)→ h≤n(∆m) ≃ ∆m.

If f : [m′] → [m] is a nondecreasing function, we let f∗ : h≤n(C /D)m → h≤n(C /D)m′
denote the map given by f∗(σ, τ) = (σ′, τ ′), where σ′ is the composite map ∆m′ f−→ ∆m σ−→ D
and τ ′ is given by the composition

∆m′ ≃ ∆m′ ×∆m ∆m

(id,τ)−−−→ ∆m′ ×∆m h≤n(Cσ)
≃ h≤n(∆m′ ×∆m Cσ)
≃ h≤n(Cσ′),

where the second isomorphism is provided by Proposition 4.8.4.20. By means of this
construction, we can view the assignment [m] 7→ h≤n(C /D)m as a simplicial set, which we
will denote by h≤n(C /D). Note that the construction (σ, τ) 7→ σ determines a comparison
map of simplicial sets G : h≤n(C /D)→ D.

It will be useful to extend this construction to the case where n < 0. If n = −1, we define
h≤n(C /D) to be the full simplicial subset of D whose vertices belong to the image of F , and
we take G : h≤n(C /D) ↪→ D to be the inclusion map. If n ≤ −2, we define h≤n(C /D) to be
the simplicial set D, and G to be the identity morphism idD.

https://kerodon.net/tag/05CY
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Example 4.8.8.11. 05D0Let F : C → D be an inner fibration of ∞-categories and let n be an
integer. Then there is a comparison map from the simplicial set h≤n(C /D) to the homotopy
n-category h≤n(C). For n ≥ 0, this map carries an m-simplex (σ, τ) of h≤n(C /D) to the
m-simplex of h≤n(C) given by the composite map

∆m τ−→ h≤n(Cσ)→ h≤n(C).

If D is an (n, 1)-category, then this comparison map is an isomorphism (Proposition 4.8.4.20).

Example 4.8.8.12. 05D1Let C be an ∞-category, so that the projection map F : C → ∆0 is an
inner fibration. Since ∆0 is an (n, 1)-category, Example 4.8.8.11 supplies an isomorphism of
simplicial sets h≤n(C /∆0 ) ≃ h≤n(C).

Remark 4.8.8.13 (Base Change). 05D2Suppose we are given a pullback diagram of simplicial
sets

C′

��

// C

��
D′ // D,

where the vertical maps are inner fibrations. Then, for every integer n, the simplicial set
h≤n(C′ /D′) can be identified with the fiber product D′×D h≤n(C /D). In particular, for
every vertex D ∈ D, we have a canonical isomorphism

{D} ×D h≤n(C /D) ≃ h≤n({D} ×D C).

Proposition 4.8.8.14. 05D3Let F : C → D be an inner fibration of simplicial sets and let n be
an integer. Then the comparison map G : h≤n(C /D)→ D of Construction 4.8.8.10 is an
n-categorical inner fibration (see Definition 4.8.6.23).

Proof. For n < 0, this is immediate from the construction. We may therefore assume
without loss of generality that n ≥ 0. Using Remarks 4.8.6.32 and 4.8.8.13, we can reduce
to the case where D = ∆m is a standard simplex. In particular, D is an (n, 1)-category. In
this case, Example 4.8.8.11 guarantees that the simplicial set h≤n(C /D) ≃ h≤n(D) is an
(n, 1)-category. The desired result now follows from Proposition 4.8.6.31.

Remark 4.8.8.15. 05D4Let F : C → D be an inner fibration of simplicial sets and let n be an
integer. Then the comparison map G : h≤n(C /D)→ D of Construction 4.8.8.10 fits into a

https://kerodon.net/tag/05D0
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commutative diagram

h≤n(C /D)

G

##
C

F ′

;;

F // D .
For n ≥ 0, the morphism F ′ carries each m-simplex of C to the m-simplex (F (σ), τ) of
h≤n(C /D), where τ is the composite map

∆m (id,σ)−−−→ ∆m ×D C = Cσ → h≤n(Cσ).

The simplicial set h≤n(C /D) of Construction 4.8.8.10 can be characterized by a universal
mapping property:

Proposition 4.8.8.16.05D5 Let F : C → D be an inner fibration of simplicial sets and let n be
an integer. Then, for every n-categorical inner fibration D′ → D, the comparison map of
Remark 4.8.8.15 induces an isomorphism of simplicial sets

θ : Fun/D(h≤n(C /D),D′)→ Fun/D(C,D′).

Proof. We may assume without loss of generality that n ≥ 0 (otherwise, the result follows
immediately from the construction). For every morphism of simplicial sets K → D, Remark
4.8.8.15 determines a comparison map

θK : Fun/D(K ×D h≤n(C /D),D′)→ Fun/D(K ×D C,D′).

We will prove that each θK is an isomorphism of simplicial sets; Proposition 4.8.8.16
then follows by taking K = D. Note that the construction K 7→ θK carries colimits (in
the category of simplicial sets with a morphism to D) to limits (in the arrow category
Fun([1], Set∆)). By virtue of Remark 1.1.3.13, we can assume without loss of generality that
K is a standard simplex. Replacing F by the projection map K ×D C → K and D′ by the
fiber product K ×C D′, we are reduced to proving Proposition 4.8.8.16 in the special case
where D is a standard simplex: in particular, it is an (n, 1)-category. In this case, D′ is also
an (n, 1)-category (Proposition 4.8.6.31), and we can identify h≤n(C /D) with the homotopy
n-category of C (Example 4.8.8.11). Applying Proposition 4.8.4.7, we see that the horizontal
maps in the commutative diagram

Fun(h≤n(C /D),D′) //

��

Fun(C,D′)

��
Fun(h≤n(C /D),D) // Fun(C,D)

https://kerodon.net/tag/05D5
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are isomorphisms. The desired result now follows by passing to fibers of the vertical maps.

Remark 4.8.8.17. 05D6Let F : C → D be an inner fibration of simplicial sets, let n be an
integer, and let A ⊆ B be simplicial sets. If B has dimension ≤ n + 1, then every lifting
problem

A

��

// C

F ′

��
B //

;;

h≤n(C /D)

has a solution. Moreover, if B has dimension ≤ n− 1, then the solution is unique. To prove
this, we can assume without loss of generality that B = ∆m is a standard simplex for some
m ≤ n+ 1, and that A = ∂∆m is its boundary (see Proposition 1.1.4.12). The case n ≤ −2
is vacuous, and the case n = −1 is immediate from the definition. We may therefore assume
that n ≥ 0. Replacing F by the projection map ∆m ×D C → ∆m, we can reduce to the
case where D is a standard simplex, so that U ′ identifies h≤n(C /D) with the homotopy
n-category h≤n(C) (Example 4.8.8.11). In this case, the desired result follows from Corollary
4.8.4.17.

Proposition 4.8.8.18. 05D7Let F : C → D be an inner fibration of simplicial sets and let n be
an integer. Then the comparison map F ′ : C → h≤n(C /D) of Remark 4.8.8.15 is an inner
fibration.

Proof. Without loss of generality, we may assume that n ≥ 0. Using Remarks 4.1.1.13 and
4.8.8.13, we can reduce to the case where D = ∆m is a standard simplex. In this case, F ′
identifies with the tautological map C → h≤n(C) (Example 4.8.8.11), so the desired result
follows from Corollary 4.8.4.16.

Corollary 4.8.8.19. 05D8Let F : C → D be an inner fibration of ∞-categories and let n be
an integer. Then the simplicial set h≤n(C /D) is an ∞-category. Moreover, the functor
F ′ : C → h≤n(C /D) of Remark 4.8.8.15 is categorically (n+ 1)-connective.

Proof. Since D is an ∞-category and the comparison map G : h≤n(C /D)→ D is an inner
fibration (Proposition 4.8.8.14), the simplicial set h≤n(C /D) is also an ∞-category (Remark
4.1.1.9). Fix an integer m ≤ n+1; we wish to show that the functor F ′ is m-full. For n = −2,
there is nothing to prove. If n = −1, then U ′ is surjective on objects (by construction)
and therefore essentially surjective. We may therefore assume without loss of generality
that n ≥ 0. Since U ′ is an inner fibration (Proposition 4.8.8.18), it will suffice to show
that for every morphism ∆1 → h≤n(E / C), the projection map ∆1 ×h≤n(E / C) E → ∆1 is
m-full (Proposition 4.8.5.27. Using Remark 4.8.8.13, we can replace F by the projection
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map ∆1×D C → ∆1, and thereby reduce to the situation where D = ∆1 is an (n, 1)-category.
In this case, the functor F ′ exhibits h≤n(C /D) as a homotopy n-category of C (Example
4.8.8.11), so the desired result follows from Example 4.8.5.12.

Proof of Theorem 4.8.8.3. Let F : C → D be a functor of ∞-categories and let n be an
integer. We wish to show that F factors as a composition G ◦ F ′, where G is essentially
n-categorical and F ′ is categorically (n+ 1)-connective. Using Proposition 4.1.3.2, we can
reduce to the case where F is an inner fibration. In this case, the factorization

C F ′−→ h≤n(C /D) G−→ C

of Remark 4.8.8.15 has the desired properties: Proposition 4.8.8.14 guarantees that G is an n-
categorical inner fibration (and is therefore essentially n-categorical, by virtue of Proposition
4.8.6.34), and Corollary 4.8.8.19 guarantees that F ′ is categorically (n+ 1)-connective.

Warning 4.8.8.20.05D9 Let F : C → D be an inner fibration of ∞-categories. In the case n = 0,
our proof of Theorem 4.8.8.3 shows that F factors as a composition

E F ′−→ h≤0 (C /D) G−→ D,

where F ′ is fully faithful and essentially surjective, and G is a 0-categorical inner fibration
(in particular, G is faithful). Beware that generally does not coincide with the factorization
constructed in Example 4.8.8.6. If u : X → Y is an isomorphism in the ∞-category C having
the property that F (u) is an identity morphism in D, then the functor F ′ carries X and Y

to the same object of h≤0 (C /D). Consequently, the functor F ′ is generally not bijective on
objects.

A related phenomenon occurs in the case n = −1. By construction, h≤−1 (C /D) is the
full subcategory of D spanned by objects of the form F (X), where X is an object of C. If the
inner fibration U is not an isofibration, this subcategory might be smaller than the essential
image of F .

We close this section with a few additional observations about Construction 4.8.8.10.

Proposition 4.8.8.21.05DA Let F : C → D be an inner fibration of simplicial sets, let n be an
integer, and let G : h≤n(C /D)→ D be the comparison map of Construction 4.8.8.10. Then:

(1) If F is a left fibration, then G is a left fibration.

(2) If F is a right fibration, then G is a right fibration.

(3) If F is a Kan fibration, then G is a Kan fibration.

(4) If F is an isofibration of ∞-categories, then G is an isofibration of ∞-categories.

https://kerodon.net/tag/05D9
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Proof. We first prove (1). Assume that F is a left fibration, and suppose we are given
integers 0 ≤ i < n; we wish to show that every lifting problem

05DBΛmi
σ0 //

��

h≤n(C /D)

G

��
∆m

σ

;;

σ // D

(4.56)

admits a solution. If m ≤ n + 2, then σ0 can be lifted to a morphism Λm
i → C (Remark

4.8.8.17), so the desired result follows from our assumption that F is a left fibration. We
may therefore assume that m ≥ n+ 3. If n = −2, then G is an isomorphism and there is
nothing to prove. If n = −1, then G identifies h≤n(C /D) with a full simplicial subset of D,
and the desired result follows from the observation that Λm

i contains every vertex of ∆m.
We may therefore assume that n ≥ 0. Replacing F by the projection map ∆m ×D C → ∆m,
we can reduce to the case where D = ∆m is a standard simplex. In this case, h≤n(C /D) is
an (n, 1)-category (Example 4.8.8.11). In particular, it is an (n+ 1)-coskeletal simplicial set,
so the lifting problem (4.56) has a unique solution (since Λmi contains the (n+ 1)-skeleton of
∆m).

Assertion (2) follows by applying (1) to the opposite inner fibration Uop : Cop → Dop.
Assertion (3) follows by combining (1) and (2) with Example 4.2.1.5. It remains to prove
(4). Fix an object Y ∈ h≤n(C /D) and an isomorphism e : X → V (Y ) in the ∞-category
D; we wish to show that e can be lifted to an isomorphism e : X → Y of h≤n(C /D). If
n ≤ −2, then G is an isomorphism and the result is obvious. Otherwise, the comparison map
F ′ : C → h≤n(C /D) is surjective on vertices, so we can choose an object Ỹ ∈ C satisfying
F ′(Ỹ ) = Y . If F is an isofibration, then there exists an isomorphism ẽ : X̃ → Ỹ of C
satisfying F (ẽ) = e. It follows that e = F ′(ẽ) is an isomorphism in h≤n(C /D) satisfying
G(e) = e.

Proposition 4.8.8.22. 05DCLet F : C → D be an inner fibration of ∞-categories and let n be
an integer. The following conditions are equivalent:

(1) The functor F is essentially n-categorical.

(2) The comparison map F ′ : C → h≤n(C /D) of Remark 4.8.8.15 is an equivalence of
∞-categories.

Proof. It follows from Proposition 4.8.8.14 (and Proposition 4.8.6.34) that the comparison
map G : h≤n(C /D)→ D is essentially n-categorical. By virtue of Remark 4.8.6.8, we can
replace (1) by the following condition:

https://kerodon.net/tag/05DB
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(1′) The functor F ′ is essentially n-categorical: that is, it is m-full for m ≥ n+ 2.

Since F ′ is also m-full for m ≤ n+ 1 (Corollary 4.8.8.19), the equivalence (1′)⇔ (2) follows
from Remark 4.8.5.11.

Corollary 4.8.8.23.05DD Let F : C → D be a functor of ∞-categories. For every integer n, the
following conditions are equivalent:

(1) The functor F is essentially n-categorical.

(2) The functor F factors as a composition C F ′−→ D′ G−→ D, where F ′ is an equivalence of
∞-categories and G is an n-categorical isofibration.

Proof. The implication (2)⇒ (1) follows from Proposition 4.8.6.34 (together with Remark
4.8.5.18). To prove the converse, we may assume without loss of generality that F is an
isofibration (Corollary 4.5.2.23). In this case, the factorization C F ′−→ h≤n(C /D) G−→ D of
Remark 4.8.8.15 has the desired properties: Proposition 4.8.8.22 guarantees that F ′ is an
equivalence of ∞-categories, Proposition 4.8.8.21 guarantees that G is an isofibration, and
Proposition 4.8.8.14 guarantees that G is n-categorical.

Proposition 4.8.8.24.05DE Let n be an integer, and suppose we are given a commutative
diagram of ∞-categories

C F //

��

D

��
E

where the vertical maps are inner fibrations. If F is categorically (n+ 1)-connective, then it
induces an equivalence of ∞-categories F ′ : h≤n(C / E)→ h≤n(D / E).

Proof. We have a commutative diagram of ∞-categories

C F //

��

D

��
h≤n(C / E) F ′ // h≤n(D / E).

Here F is categorically (n+ 1)-connective by assumption, and the vertical maps are categor-
ically (n+ 1)-connective by virtue of Corollary 4.8.8.19. Applying Proposition 4.8.7.12, we

https://kerodon.net/tag/05DD
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see that the functor F ′ is also categorically (n+ 1)-connective. We also have a commutative
diagram

h≤n(C / E) F ′ //

##

h≤n(D / E)

{{
E ,

where the vertical maps are essentially n-categorical (Proposition 4.8.8.14). Using Remark
4.8.6.8, we see that F ′ is also essentially n-categorical. Using Remark 4.8.5.11, we see that
F ′ is an equivalence of ∞-categories.

Corollary 4.8.8.25. 05DFLet F : C → D be an inner fibration of ∞-categories and let n be an
integer. The following conditions are equivalent:

(1) The comparison map G : h≤n(C /D)→ D is an equivalence of ∞-categories.

(2) The functor F is categorically (n+ 1)-connective.

Proof. The implication (1)⇒ (2) follows from Proposition 4.8.8.14 and Remark 4.8.5.16. The
reverse implication follows by applying Proposition 4.8.8.24 in the special case E = D.

4.8.9 Categorically Connective Morphisms of Simplicial Sets

05DGUsing Theorem 4.8.8.3, we can give an alternative characterization of categorical connec-
tivity.

Proposition 4.8.9.1. 05DHLet F : A → B be a functor of ∞-categories and let n be an integer.
The following conditions are equivalent:

(1) The functor F is categorically n-connective (Definition 4.8.7.1).

(2) For every essentially (n− 1)-categorical functor of ∞-categories U : C → D, the diagram

Fun(B, C) ◦F //

U◦

��

Fun(A, C)

U◦

��
Fun(B,D) ◦F // Fun(A,D)

is a categorical pullback square.
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(3) For every (n− 1)-categorical isofibration U : C → B, precomposition with F induces an
equivalence of ∞-categories

θC : Fun/B(B, C)→ Fun/B(A, C).

Proof. The implication (1) ⇒ (2) is a restatement of Corollary 4.8.7.18, and the impli-
cation (2) ⇒ (3) follows from Corollary 4.5.2.32. To show that (3) implies (1), we may
assume without loss of generality that F is an isofibration. Then the comparison map
G : h≤n−1 (()A /B)→ B (n− 1)-categorical isofibration (Propositions 4.8.8.14 and 4.8.8.21).
If U : C → B is another (n−1)-categorical isofibration, then we can use Proposition 4.8.8.16 to
identify θC with the map with the functor Fun/B(B,B′)→ Fun/B(h≤n−1 (A /B), C) given by
precomposition with G. If condition (3) is satisfied, then G is an equivalence of∞-categories,
so that F is categorically n-connective by virtue of Corollary 4.8.8.25.

Motivated by Proposition 4.8.9.1, we introduce a generalization of Definition 4.8.7.1.

Definition 4.8.9.2.05DJ Let f : A→ B be a morphism of simplicial sets and let n be an integer.
We say that f is categorically n-connective if, for every essentially (n− 1)-categorical functor
of ∞-categories U : C → D, the diagram

Fun(B, C) ◦f //

U◦

��

Fun(A, C)

U◦

��
Fun(B,D) ◦f // Fun(A,D)

is a categorical pullback square.

Remark 4.8.9.3.05DK In the situation of Definition 4.8.9.2, we can assume without loss of
generality that the functor U : C → D is an isofibration (see Corollary 4.5.2.23). Replacing
C by the simplicial set h≤n−1 (C /D), we can further arrange that the isofibration U is
(n− 1)-categorical (Proposition 4.8.8.22).

Remark 4.8.9.4.05DL Let n be an integer. The notion of categorical n-connectivity is completely
determined by the following two properties:

(1) If F : A → B is a functor of ∞-categories, then it is categorically n-connective in the
sense of Definition 4.8.9.2 if and only if it is categorically n-connective in the sense
of Definition 4.8.7.1: that is, F is m-full for every nonnegative integer m ≤ n (see
Proposition 4.8.9.1).
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(2) Suppose we are given a commutative diagram of simplicial sets

A //

f
��

A′

f ′

��
B // B′,

where the horizontal maps are categorical equivalences. Then f is categorically n-
connective if and only if f ′ is categorically n-connective. See Proposition 4.5.2.19.

If f : A → B is any morphism of simplicial sets, then we can use Proposition 4.1.3.2 to
choose a commutative diagram

A

f
��

// A

F
��

B // B
where the horizontal maps are categorical equivalences and F is a functor of ∞-categories.
Combining (1) and (2), we see that f is categorically n-connective if and only if the functor
F is m-full for m ≤ n.

Remark 4.8.9.5. 05DMLet f : A → B be a morphism of simplicial sets. If f is categorically
n-connective, then it is n-connective. This follows from Remark 4.8.9.4 and Corollary
4.8.7.17. Beware that the converse is false in general (Warning 4.8.7.4).

Remark 4.8.9.6 (Transitivity). 05DNLet f : A→ B and g : B → C be morphisms of simplicial
sets and let n be an integer.

(1) Suppose that f and g are categorically n-connective. Then g ◦ f is categorically n-
connective.

(2) Suppose that g ◦ f is categorically n-connective, g is categorically (n+ 1)-connective,
and n ≥ 1. Then f is categorically n-connective.

(3) Suppose that g ◦ f is categorically n-connective and that f is categorically (n − 1)-
connective. Then g is categorically n-connective.

To prove these assertions, we can use Remark 4.8.9.4 to reduce to the case where A, B, and
C are ∞-categories, in which case the result follows from Proposition 4.8.7.12

Proposition 4.8.9.7. 05DPSuppose we are given a categorical pushout square of simplicial sets

05DQA

f

��

// A′

f ′

��
B // B′,

(4.57)

https://kerodon.net/tag/05DM
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where f is categorically n-connective. Then f ′ is also categorically n-connective.

Proof. Let U : C → D be an essentialy (n − 1)-categorical functor of ∞-categories, and
consider the cubical diagram

Fun(B′, C)

%%

//

��

Fun(B, C)

%%

��

Fun(B′,D) //

��

Fun(B,D)

��

Fun(A′, C) //

%%

Fun(A, C)

%%
Fun(A′,D) // Fun(A,D).

Our assumption that f is categorically n-connective guarantees that the right face is a
categorical pullback square, and our assumption on (4.57) guarantees that the front and
back faces are categorical pullback squares. Applying Proposition 4.5.2.18, we conclude that
the left face is also a categorical pullback square.

Proposition 4.8.9.8.05DR Let f : A ↪→ B be a monomorphism of simplicial sets and let n be an
integer. The following conditions are equivalent:

(1) The morphism f is categorically n-connective.

(2) For every essentially (n−1)-categorical functor of∞-categories U : C → D, the restriction
map

V : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D)

is an equivalence of ∞-categories.

(3) For every essentially (n − 1)-categorical isofibration of ∞-categories U : C → D, the
functor V is a trivial Kan fibration.

https://kerodon.net/tag/05DR


950 CHAPTER 4. THE HOMOTOPY THEORY OF ∞-CATEGORIES

(3) Every lifting problem
A

��

// C

U

��
B

??

// D
admits a solution, provided that U is an essentially (n− 1)-categorical isofibration of
∞-categories.

Proof. The equivalences (1) ⇔ (2) ⇔ (3) follow from Remarks 4.8.7.19 and 4.8.9.3, and
the implication (3)⇒ (4). is immediate. We will complete the proof by showing that (4)
implies (3). Assume that condition (4) is satisfied, and let U : C → D be an essentially
(n− 1)-categorical isofibration of ∞-categories. We wish to show that, for every simplicial
set B′ and every simplicial subset A′ ⊆ B′, every lifting problem

05DSA′ //

��

Fun(B, C)

V

��
B′

77

// Fun(A, C)×Fun(A,D) Fun(B,D)

(4.58)

admits a solution. Unwinding the definitions, we can rewrite (4.58) as a lifting problem

A //

f

��

Fun(B′, C)

V ′

��
B

77

// Fun(A′, C)×Fun(A′,D) Fun(B′,D).

The existence of a solution follows from (4), since V ′ is also an essentially (n− 1)-categorical
isofibration of ∞-categories (Corollary 4.8.6.20 and Proposition 4.4.5.1).

Example 4.8.9.9. 05DTLet B be a simplicial set and let A ⊆ B be a simplicial subset which
contains the n-skeleton of B. Then the inclusion map A ↪→ B is categorically n-connective.
In particular, for every simplicial set B, the inclusion map skn(B) ↪→ B is categorically
n-connective.

Proposition 4.8.9.10. 05DULet n ≥ 0 be an integer and let f : A → B be a morphism of
simplicial sets which is bijective on simplices of dimension < n and surjective on n-simplices.
Then f is categorically n-connective.

https://kerodon.net/tag/05DS
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Proof. Using Proposition 1.1.4.12, we can choose a simplicial subset A′ ⊆ skn(A) which
contains the (n− 1)-skeleton of A, such that f restricts to an isomorphism of A′ with the
n-skeleton of B. It follows from Example 4.8.9.9 f |A′ is categorically n-connective, and that
the inclusion map A′ ↪→ A is categorically (n− 1)-connective. Applying Remark 4.8.9.6, we
deduce that f is categorically n-connective.



Chapter 5

Fibrations of ∞-Categories

01J2Let Ab denote the category of abelian groups. For every commutative ring A, we let
ModA(Ab) denote the category of A-modules. Every homomorphism of commutative rings
u : A→ B determines a functor

Tu : ModA(Ab)→ ModB(Ab) Tu(M) = B ⊗AM,

which we will refer to as extension of scalars along u. One can summarize the situation infor-
mally by saying that there is a functor from commutative rings to (large) categories, which
carries each commutative ring A to the category ModA(Ab) and each ring homomorphism
u : A→ B to the functor Tu. However, we encounter the following subtleties:

(1) Let u : A → B and v : B → C be homomorphisms of commutative rings. Then the
diagram of categories

ModB(Ab)

Tv

%%
ModA(Ab)

Tu

99

Tvu //ModC(Ab)

might not be strictly commutative. If M is an A-module, one cannot reasonably expect
C ⊗AM to be identical to the iterated tensor product C ⊗B (B ⊗AM). Instead, there
is a canonical isomorphism

µv,u(M) : C ⊗B (B ⊗AM) ≃ C ⊗AM,

which depends functorially on M , so that the collection {µv,u(M)}M∈ModA(Ab) can be
viewed as an isomorphism of functors µv,u : Tv ◦ Tu ≃ Tvu.

952
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(2) Let A be a commutative ring, and let idA : A → A be the identity map. Then the
extension of scalars functor TidA

: ModA(Ab)→ ModA(Ab) might not be equal to the
identity functor idModA(Ab). However, there is a natural isomorphism ϵA : idModA(Ab) ≃
TidA

, which carries each A-module M to the A-module isomorphism

M ≃ A⊗M x 7→ 1⊗ x.

Let Cat denote the ordinary category whose objects are categories (which, for the moment,
we do not require to be small) and whose morphisms are functors. Because of the technical
issues outlined above, the construction A 7→ ModA(Ab) cannot be viewed as a functor from
the category of commutative rings to the category Cat. However, this can be remedied using
the language of 2-categories. Recall that Cat can be realized as the underlying category
of a (strict) 2-category Cat (Example 2.2.0.4). The construction A 7→ ModA(Ab) can be
promoted to a functor of 2-categories

Mod• : {Commutative rings} → Cat,

whose composition and identity constraints are given by the natural isomorphisms µv,u :
Tv ◦ Tu ≃ Tvu and ϵA : idModA(Ab) ≃ TidA

described in (1) and (2) (see Definition 2.2.4.5).
It is often more convenient to encode the functoriality of the construction A 7→ ModA(Ab)

in a different way. Let C be an ordinary category. To every functor of 2-categories F : C →
Cat, one can associate a new category

∫
CF , called the category of elements of F (Definition

5.6.1.1). By definition, objects of the category
∫
CF are given by pairs (C,X), where C is

an object of the category C and X is an object of the category F (C). The construction
(C,X) 7→ C determines a forgetful functor U :

∫
CF → C, whose fiber over an object C ∈ C

can be identified with the category F (C). Moreover, the functor F can be recovered (up to
isomorphism) from the category

∫
CF together with the functor U .

Passage from the data of the functor F to its category of elements
∫
CF has several

advantages. It can be somewhat cumbersome to specify a functor of 2-categories F : C → Cat
explicitly: one must give not only the values of F on objects and morphisms of C, but also
the composition and identity constraints of the functor F (see Definition 2.2.4.5). The same
information is encoded implicitly in the composition law for morphisms in the category of
elements

∫
CF , in a way that is often easier to access in practice. For example, suppose that

C is the category of commutative rings and that F is the functor A 7→ ModA(Ab) described
above. By definition, the functor F carries each ring homomorphism u : A → B to the
extension of scalars functor

Tu : ModA(Ab)→ ModB(Ab) Tu(M) = B ⊗AM.

Note that the construction of this functor requires certain choices, since the tensor prod-
uct B ⊗A M is well-defined only up to (canonical) isomorphism. However, the category
Mod(Ab) =

∫
CF has a more direct description which does not depend on these choices:
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• The objects of Mod(Ab) are pairs (A,M), where A is a commutative ring and M is
an A-module.

• A morphism from (A,M) to (B,N) in the category Mod(Ab) is a pair (u, f), where u :
A→ B is a homomorphism of commutative rings and f : M → N is a homomorphism
of A-modules.

To characterize those categories which can be obtained as a category of elements
∫
CF ,

it will be convenient to introduce some terminology.

Definition 5.0.0.1. 01RFLet U : E → C be a functor between categories and let f : X → Y be a
morphism in the category E .

• We say that f is U -cartesian if, for every object W ∈ E , the diagram of sets

HomE(W,X) f◦ //

U

��

HomE(W,Y )

U

��
HomC(U(W ), U(X)) U(f)◦ // HomC(U(W ), U(Y ))

is a pullback square.

• We say that f is U -cocartesian if, for every object Z ∈ E , the diagram of sets

HomE(Y,Z) ◦f //

U

��

HomE(X,Z)

U

��
HomC(U(Y ), U(Z)) ◦U(f) // HomC(U(X), U(Z))

is a pullback square.

Example 5.0.0.2. 01RKLet Mod(Ab) be the category defined above and let CAlg(Ab) denote
the category of commutative rings, so that the construction (A,M) 7→ A determines a
forgetful functor U : Mod(Ab)→ CAlg(Ab). Then:

• A morphism (u, f) : (A,M)→ (B,N) in the category Mod(Ab) is U -cartesian if and
only if the underlying A-module homomorphism f : M → N is an isomorphism (so
that the A-module M is obtained from the B-module N by restriction of scalars along
the ring homomorphism u).

https://kerodon.net/tag/01RF
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• A morphism (u, f) : (A,M) → (B,N) in the category Mod(Ab) is U -cocartesian if
and only if the underlying A-module homomorphism f : M → N induces a B-module
isomorphism B ⊗AM ≃ N (so that the B-module N is obtained from the A-module
M by extension of scalars along the ring homomorphism u).

Definition 5.0.0.3.01RN Let U : E → C be a functor between categories. We say that U is a
cartesian fibration if it satisfies the following condition:

• For every object Y of the category E and every morphism f : X → U(Y ) in the
category C, there exists a pair (X, f) where X is an object of E satisfying U(X) = X

and f : X → Y is a U -cartesian morphism of E satisfying U(f) = f .

We say that U is a cocartesian fibration if it satisfies the following dual condition:

• For every object X of the category E and every morphism f : U(X) → Y in the
category C, there exists a pair (Y, f) where Y is an object of E satisfying U(Y ) = Y

and f : X → Y is a U -cocartesian morphism of E satisfying U(f) = f .

Warning 5.0.0.4.01Q6 The terminology of Definition 5.0.0.3 is not standard. Many authors use
the term fibration or Grothendieck fibration for what we refer to as a cartesian fibration of
categories, and use the term opfibration or Grothendieck opfibration for what we refer to as a
cocartesian fibration of categories. Our motivation is to be consistent with the terminology
we will use for the analogous definitions in the ∞-categorical setting (see §5.1), where it is
important to distinguish between several different notions of fibration.

Example 5.0.0.5.01RQ Let Mod(Ab) be the category described in Example 5.0.0.2. Then the
forgetful functor U : Mod(Ab)→ CAlg(Ab) is both a cartesian fibration and a cocartesian
fibration.

Exercise 5.0.0.6.023F Let U : E → C be a functor between categories. Show that the following
conditions are equivalent:

• The functor U is a fibration in groupoids (Definition 4.2.2.1).

• The functor U is a cartesian fibration and every morphism of E is U -cartesian.

• The functor U is a cartesian fibration and, for every object C ∈ C, the fiber EC =
{C} ×C E is a groupoid.

For a more general statement, see Proposition 5.1.4.14.

Let U : E → C be a functor between categories. A classical theorem of Grothendieck
([27]) asserts that U is a cocartesian fibration if E can be realized as the category of elements
of Cat-valued functor on C: that is, if and only if there exists a functor of 2-categories

https://kerodon.net/tag/01RN
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F : C → Cat and an isomorphism of categories E ≃
∫
CF which carries U to the forgetful

functor
∫
CF → C (Corollary 5.6.5.19). Moreover, the functor F is uniquely determined up

to isomorphism. Fixing the category C, the category of elements construction supplies a
dictionary

023G{Functors F : C → Cat} ≃ {Cocartesian fibrations U : E → C}, (5.1)

which is the starting point for the theory of fibered categories.
The goal of chapter is to introduce an∞-categorical generalization of the correspondence

(5.1). We begin in §5.1 by developing an ∞-categorical counterpart of the theory of
(co)cartesian fibrations. Let U : E → C be a morphism of simplicial sets. We say that an
edge e of E is U -cocartesian if every lifting problem

Λn0
σ0 //

��

E

U
��

∆n //

>>

C

admits a solution, provided that n ≥ 2 and the restriction σ0|∆1 is equal to e (Definition
5.1.1.1). We will be primarily interested in the situation where U is an inner fibration of
∞-categories; in this case, we show that an edge e ∈ E is U -cocartesian if and only if it
satisfies a homotopy-theoretic counterpart of Definition 5.0.0.1 (Proposition 5.1.2.1). We
say that a morphism of simplicial sets U : E → C is a cocartesian fibration if it is an inner
fibration having the property that, for every vertex X ∈ E and every edge e : U(X)→ Y ,
there exists a U -cocartesian edge e : X → Y satisfying U(e) = e (Definition 5.1.4.1). This
can be regarded as a generalization of Definition 5.0.0.3: a functor of ordinary categories
U : E → C is a cocartesian fibration if and only if the induced map N•(U) : N•(E)→ N•(C)
is a cocartesian fibration of simplicial sets (Example 5.1.4.2). It also generalizes the notion
of left fibration introduced in §4.2: a morphism of simplicial sets U : E → C is a left fibration
if and only if it is a cocartesian fibration and every edge of E is U -cocartesian (Proposition
5.1.4.14).

The remainder of this section is devoted to the problem of classifying cocartesian fibrations
U : E → C, where C is a fixed ∞-category. For each object C ∈ C, let EC = {C}×C E denote
the corresponding fiber of U . We can then ask the following:

Question 5.0.0.7. 0350What additional data is needed to reconstruct the ∞-category E from
the collection of ∞-categories {EC}C∈C?

In §5.2, we give a partial answer to Question 5.0.0.7. Let f : C → D be a morphism in
the ∞-category C. For each object X ∈ EC , our assumption that U is a cocartesian fibration
guarantees that we can lift f to a U -cocartesian morphism f̃ : X → Y of E . We will see

https://kerodon.net/tag/023G
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that the construction X 7→ Y can be upgraded to a functor of ∞-categories f! : EC → ED,
which we will refer to as the functor of covariant transport along f (Definition 5.2.2.4). The
construction of the functor f! requires some auxiliary choices, but its isomorphism class
[f!] is uniquely determined (Proposition 5.2.2.8). Moreover, the construction f 7→ f! is
compatible with composition (Proposition 5.2.5.1), and therefore determines a functor of
ordinary categories

hTrE / C : hC → hQCat C 7→ EC ;

here hQCat denotes the homotopy category of ∞-categories (Construction 4.5.1.1). We
will refer to hTrE / C as the homotopy transport representation of the cocartesian fibration U
(Construction 5.2.5.2).

In some cases, the homotopy transport representation hTrE / C provides an answer to
Question 5.0.0.7:

• If U : E → C is a left covering map of simplicial sets, then we can regard hTrE / C as a
functor from the homotopy category hC to the category of sets. In this case, we can
reconstruct E (up to isomorphism) as the fiber product

C ×N•(Set) N•(Set∗),

where Set∗ denotes the category of pointed sets (Proposition 5.2.7.2). It follows that
the the construction E 7→ hTrE / C defines an equivalence of categories

{Left covering maps U : E → C} ≃ Fun(hC, Set),

which we regard as a generalization of the classical theory of covering spaces (Corollary
5.2.7.3).

• Suppose that C = ∆1 is the standard 1-simplex. In this case, the homotopy transport
representation hTrE / C records the data of the ∞-categories E0 and E1, together with
(the isomorphism class of) the covariant transport functor F : E0 → E1 associated to
the nondegenerate edge of C. From this data, one can reconstruct the ∞-category E
up to equivalence. More precisely, we show that E is categorically equivalent to the
mapping cylinder (∆1 × E0)∐({1}×E0) E1; see Corollary 5.2.4.2.

In general, the homotopy transport representation of a cocartesian fibration U : E → C
does not contain enough information to reconstruct the∞-category E , even up to equivalence.
The essence of the problem is that the functor hTrE / C encodes only the isomorphism classes
of the covariant transport functors associated to the morphisms of C. To address Question
5.0.0.7, it is necessary to consider a refinement of hTrE / C which witnesses the functoriality
of the construction C 7→ EC before passing to the homotopy category hQCat. In §5.3, we
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specialize to the situation where C = N•(C0) is (the nerve of) an ordinary category C0.
In this case, we associate to each cocartesian fibration U : E → C a functor of ordinary
categories sTrE / C0 : C0 → QCat, which we refer to as the strict transport representation of C
(Construction 5.3.1.5). The strict transport representation is a refinement of the homotopy
transport representation: more precisely, there is a canonical isomorphism of hTrE / C with
the composite functor

hC ≃ C0
sTrE / C0−−−−−→ QCat ↠ hQCat

(Corollary 5.3.1.8). Moreover, we show that this refinement provides an answer to Question
5.0.0.7: according to Theorem 5.3.5.6, the construction E 7→ sTrE / C0 induces a bijection

{Cocartesian Fibrations E → C}/Equivalence

��
{Functors C0 → QCat}/Levelwise Equivalence.

Moreover, the inverse bijection admits an explicit description: it carries (the equivalence
class of) a functor F : C0 → QCat to (the equivalence class of) a cocartesian fibration
NF
• (C0) → N•(C0). Here NF

• (C0) is an ∞-category which we refer to as the F -weighted
nerve of C0 (Definition 5.3.3.1).

Let U : E → C be a cocartesian fibration of∞-categories. In general, it is not reasonable to
expect that the homotopy transport representation hTrE / C : hC → hQCat can be promoted
to a strictly commutative diagram in the category of simplicial sets. In other words, hTrE / C
generally cannot be lifted to a morphism from C to the nerve N•(QCat). To address Question
5.0.0.7 in complete generality, we will instead contemplate homotopy coherent refinements
of hTrE / C, given by morphisms from C to the homotopy coherent nerve Nhc

• (QCat). Here
we regard QCat as a locally Kan simplicial category, with morphism spaces given by
HomQCat(D,D′) = Fun(D,D′)≃. The homotopy coherent nerve Nhc

• (QCat) is then an ∞-
category which we will denote by QC and refer to as the ∞-category of small ∞-categories
(Construction 5.5.4.1). In §5.5, we study several variants of this construction. In particular,
we introduce an ∞-category QCObj whose objects are pairs (D, X), where D is a small ∞-
category and X is an object of D, and whose morphisms are pairs (F, u) : (D, X)→ (D′, X ′)
where F : D → D′ is a functor of ∞-categories and u : F (X) → X ′ is a morphism in D′
(Definition 5.5.6.10).

The construction (D, X) 7→ D determines a forgetful functor V : QCObj → QC, which is a
cocartesian fibration of∞-categories (Proposition 5.5.6.11). In §5.0.0.7, we address Question
5.0.0.7 in general by showing that V is a universal cocartesian fibration. For any functor of
∞-categories F : C → QC, we let

∫
CF denote the fiber product C ×QC QCObj. We will refer
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to
∫
CF as the ∞-category of elements of F (Definition 5.6.2.4); by construction, its objects

are pairs (C,X) where C is an object of C and X is an object of the ∞-category F (C).
Note that projection onto the first factor determines a forgetful functor U :

∫
CF → C, which

is a cocartesian fibration of ∞-categories (since it is a pullback of the cocartesian fibration
V ). Our main result is that the construction F 7→

∫
CF induces a bijection from the set of

isomorphism classes in Fun(C,QC) to the set of equivalence classes of ∞-categories equipped
with a cocartesian fibration to C (Theorem 5.6.0.2). In particular, every cocartesian fibration
U : E → C fits into a categorical pullback square

E

U
��

// QCObj

��
C

TrE / C // QC,

where the functor TrE / C : C → QC is uniquely determined up to isomorphism. The functor
TrE / C is an ∞-categorical refinement of the homotopy transport representation hTrE / C
(Remark 5.6.5.15), which we will refer to as the covariant transport representation of U
(Definition 5.6.5.1).

Remark 5.0.0.8.0158 The classical theory of fibered categories was introduced by Grothendieck
in [27] (Exposé 6).

5.1 Cartesian Fibrations

01T1 The goal in this section is to extend the theory of (co)cartesian fibrations to the setting of
∞-categories. The first step is to introduce an ∞-categorical analogue of Definition 5.0.0.1.
Let U : E → C be a functor between categories, and let f : X → Y be a morphism in E .
By definition, f is U -cartesian if and only if, for every morphism h : W → Y in E , every
commutative diagram

U(X)

U(f)

""
U(W )

g

<<

U(h) // U(Y )

https://kerodon.net/tag/0158
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in the category C can be lifted uniquely to a commutative diagram

X

f

��
W

g

>>

h // Y

in the category E . Equivalently, the morphism f is U -cartesian if and only if every lifting
problem

01T2

Λ2
2

σ0 //

��

N•(E)

N•(U)

��
∆2 //

σ

==

N•(C)

(5.2)

has a unique solution, assuming that σ0 carries the “final edge” N•({1 < 2}) ⊆ Λ2
2 to the

morphism f .
In the ∞-categorical setting, it is unreasonable to ask for the lifting problem (5.2) to

admit a unique solution. Instead, we should require that the collection of possible choices
for σ are, in some sense, parametrized by a contractible space. In §5.1.1, we formalize this
idea by considering analogues of (5.2) for higher-dimensional simplices. If U : E → C is an
arbitrary morphism of simplicial sets, we will say that an edge f of E is U -cartesian if every
lifting problem

Λnn
σ0 //

��

E

U

��
∆n //

σ

??

C

admits a solution, provided that n ≥ 2 and σ0 carries the “final edge” N•({n− 1 < n}) ⊆ Λnn
to f (Definition 5.1.1.1). In the special case where E and C are the nerves of ordinary
categories, this reduces to the classical definition of cartesian morphism (Corollary 5.1.2.2).

The definition of U -cartesian edge makes sense for any morphism of simplicial sets
U : E → C. However, it has poor formal properties in general. We will be primarily
interested in the case where E and C are ∞-categories and U is an inner fibration. Assume
that these conditions are satisfied and let f : X → Y be a morphism of E , having image
f : X → Y in D. For every object W ∈ E having image X = U(X) ∈ C, composition with

https://kerodon.net/tag/01T2
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the homotopy class [f ] determines a commutative diagram

HomE(W,X) [f ]◦ //

��

HomE(W,Y )

��
HomC(W,X) [f ]◦ // HomC(W,Y )

in the homotopy category hKan, which (after suitable modifications on the left hand side)
can be lifted to a commutative diagram in the category of simplicial sets. In §5.1.2, we show
that f is U -cartesian if and only if, for every object W ∈ E , the resulting lift is a homotopy
pullback diagram of Kan complexes (Proposition 5.1.2.1). This has a number of pleasant
consequences: for example, it implies that the collection of U -cartesian morphisms is closed
under composition (for a stronger statement, see Corollary 5.1.2.4).

Suppose we are given a pullback diagram of simplicial sets

E ′

U ′

��

F // E

U

��
C′ // C,

and let f be an edge of E ′. It follows immediately from the definitions that if F (f) is
U -cartesian, then f is U ′-cartesian (Remark 5.1.1.11). The converse holds when U is a
cartesian fibration (Remark 5.1.4.6), but is false in general. In §5.1.3, we address this point
by introducing the more general notion of a locally U-cartesian edge of a simplicial set E
equipped with a map U : E → C (Definition 5.1.3.1).

Let U : E → C be an inner fibration of simplicial sets. In §5.1.4 we study the situation
where E has “sufficiently many” U -cartesian edges in the following sense: for every vertex
Y ∈ E , every edge f : X → U(Y ) of C can be lifted to a U -cartesian edge f : X → Y of C.
If this condition is satisfied, we say that U is a cartesian fibration of simplicial sets. This
definition has the following features:

• A functor of ordinary categories U : E → C is a cartesian fibration (in the sense of
Definition 5.0.0.3) if and only if the induced functor of ∞-categories N•(U) : N•(E)→
N•(C) is a cartesian fibration (Example 5.1.4.2).

• Every right fibration of simplicial sets U : E → C is a cartesian fibration. Conversely, a
cartesian fibration U : E → C is a right fibration if and only if every fiber of U is a
Kan complex (Proposition 5.1.4.14).
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• The collection of cartesian fibrations is closed under the formation of pullbacks (Remark
5.1.4.6) and composition (Proposition 5.1.4.13).

• Let U : E → C be a cartesian fibration of simplicial sets and let f : K → E be any
morphism of simplicial sets. Then the induced maps E/f → C/(U◦f) and Ef/ → C(U◦f)/
are cartesian fibrations (Propositions 5.1.4.17 and 5.1.4.19).

Suppose we are given a commutative diagram of ∞-categories

C F //

U

��

D

V

��
E ,

where U and V are isofibrations. Recall that, if F is an equivalence of∞-categories, then the
induced map of fibers FE : CE → DE is also an equivalence of ∞-categories for every object
E ∈ E (Corollary 4.5.2.32). The converse is false in general (Warning 4.5.2.33). Nevertheless,
in §5.1.6 we show that the converse is true if we assume that U is a cartesian fibration and
that F carries U -cartesian morphisms of C to V -cartesian morphisms of D (Theorem 5.1.6.1).
In §5.1.7, we prove a counterpart of this result in the case where E is not assumed to be an
∞-category (Proposition 5.1.7.14): in this case, C and D need not be ∞-categories, but it
is still possible to show that F is an equivalence of inner fibrations over E (see Definition
5.1.7.1).

Remark 5.1.0.1. 01T3The entirety of the preceding discussion can be dualized. If U : E → C
is a morphism of simplicial sets, we will say that an edge f of E is U-cocartesian if it is
Uop-cartesian when viewed as an edge of the opposite simplicial set Eop. We say that U
is a cocartesian fibration if the opposite functor Uop : Eop → Cop is a cartesian fibration.
For the sake of brevity, we will sometimes state our results only for cartesian fibrations (in
which case there is always a counterpart for cocartesian fibrations, which can be obtained
by passing to opposite simplicial sets).

5.1.1 Cartesian Edges of Simplicial Sets

01T4Our first goal is to adapt Definition 5.0.0.1 to the setting of ∞-categories.

https://kerodon.net/tag/01T3
https://kerodon.net/tag/01T4
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Definition 5.1.1.1.01T5 Let q : X → S be a morphism of simplicial sets, and let e be an edge
of X. We say that e is q-cartesian if every lifting problem

Λnn
σ0 //

��

X

q

��
∆n σ //

>>

S

admits a solution, provided that n ≥ 2 and the composite map

∆1 ≃ N•({n− 1 < n}) ↪→ Λnn
σ0−→ X

corresponds to the edge e.
We say that e is q-cocartesian if every lifting problem

Λn0
σ0 //

��

X

q

��
∆n σ //

>>

S

admits a solution, provided that n ≥ 2 and the composite map

∆1 ≃ N•({0 < 1}) ↪→ Λn0
σ0−→ X

corresponds to the edge e.

Remark 5.1.1.2.01T6 Let q : X → S be a morphism of simplicial sets and let qop : Xop → Sop be
the opposite morphism. Then an edge e of X is q-cartesian if and only if it is qop-cocartesian
(where we identify e with an edge of the opposite simplicial set Xop).

Example 5.1.1.3.01T7 Let q : X → S be a right fibration of simplicial sets. Then every edge of
X is q-cartesian. Similarly, if q : X → S is a left fibration of simplicial sets, then every edge
of X is q-cocartesian.

Example 5.1.1.4.01T8 Let C be an ∞-category, let q : C → ∆0 be the projection map, and let
e : X → Y be a morphism in C. The following conditions are equivalent:

• The morphism e is an isomorphism.

• The morphism e is q-cartesian.

• The morphism e is q-cocartesian.

https://kerodon.net/tag/01T5
https://kerodon.net/tag/01T6
https://kerodon.net/tag/01T7
https://kerodon.net/tag/01T8


964 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

This is a restatement of Theorem 4.4.2.6.

Example 5.1.1.5. 01T9Let q : X → S be a morphism of simplicial sets which restricts to an
isomorphism from X to a full simplicial subset of S (see Definition 4.1.2.15). Then every
edge of X is both q-cartesian and q-cocartesian.

Remark 5.1.1.6. 01TALet p : X → Y and q : Y → Z be morphisms of simplicial sets, and let e
be an edge of the simplicial set X. If e is p-cartesian and p(e) is a q-cartesian edge of Y ,
then e is (q ◦ p)-cartesian. For a partial converse, see Corollary 5.1.2.6.

Remark 5.1.1.7. 02R4Let q : X → S be a morphism of simplicial sets, let X ′ ⊆ X be a full
simplicial subset, and let q′ = q|X′ . If e is an edge of X ′ which is q-cartesian when viewed
as an edge of X, then it it is q′-cartesian. This follows by combining Remark 5.1.1.6 with
Example 5.1.1.5.

Proposition 5.1.1.8. 01TBLet q : C → D be an inner fibration of∞-categories and let e : X → Y

be a morphism in C. The following conditions are equivalent:

(1) The morphism e is an isomorphism in C.

(2) The morphism e is q-cartesian and q(e) is an isomorphism in D.

(3) The morphism e is q-cocartesian and q(e) is an isomorphism in D.

Proof. We will prove the equivalence (1) ⇔ (2); the proof of the equivalence (1) ⇔ (3) is
similar. The implication (1)⇒ (2) follows from Proposition 4.4.2.13 and Remark 1.5.1.6.
To prove the converse, let p : D → ∆0 denote the projection map. If q(e) is an isomorphism
in C, then it is p-cartesian (Example 5.1.1.4). If, in addition, the morphism e is q-cartesian,
then it is also (p ◦ q)-cartesian (Remark 5.1.1.6) and is therefore an isomorphism in the
∞-category C (Example 5.1.1.4).

Corollary 5.1.1.9. 01TCLet q : C → D be an inner fibration of ∞-categories. For every object
X ∈ C, the identity morphism idX : X → X is q-cartesian and q-cocartesian.

Corollary 5.1.1.10. 023HLet q : C → D be an inner fibration of ∞-categories, where D is a Kan
complex, and let e : X → Y be a morphism of C. The following conditions are equivalent:

(1) The morphism e is an isomorphism in C.

(2) The morphism e is q-cartesian.

(3) The morphism e is q-cocartesian.

Proof. Combine Propositions 5.1.1.8 and 1.4.6.10.

https://kerodon.net/tag/01T9
https://kerodon.net/tag/01TA
https://kerodon.net/tag/02R4
https://kerodon.net/tag/01TB
https://kerodon.net/tag/01TC
https://kerodon.net/tag/023H
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Remark 5.1.1.11.01TD Suppose we are given a pullback diagram of simplicial sets

X ′

q′

��

f // X

q

��
S′ // S.

Let e′ be an edge of the simplicial set X ′, having image e = f(e′) in X. If e is q-cartesian,
then e′ is q′-cartesian. Similarly, if e is q-cocartesian, then e′ is q′-cocartesian.

Remark 5.1.1.12.01TE Let q : X → S be a morphism of simplicial sets and let e be an edge of
the simplicial set X. The following conditions are equivalent:

• The edge e is q-cartesian.

• For every pullback diagram of simplicial sets

X ′

q′

��

f // X

q

��
S′ // S,

and every edge e′ of X ′ satisfying f(e′) = e, the edge e′ is q′-cartesian.

• For every pullback diagram of simplicial sets

X ′

q′

��

f // X

q

��
∆n // S

and every edge e′ of X ′ satisfying f(e′) = e, the edge e′ is q′-cartesian.

Proposition 5.1.1.13.01TF Let q : X → S be a morphism simplicial sets and let e : x→ y be
an edge of X. Then:

• The edge e is q-cartesian if and only if the natural map

X/e → X/y ×S/q(y) S/q(e)

is a trivial Kan fibration of simplicial sets.

https://kerodon.net/tag/01TD
https://kerodon.net/tag/01TE
https://kerodon.net/tag/01TF
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• The edge e is q-cocartesian if and only if the natural map

Xe/ → Xx/ ×Sq(x)/
Sq(e)/

is a trivial Kan fibration of simplicial sets.

Proof. We will prove the first assertion; the proof of the second is similar. By definition,
the natural map X/e → X/y ×S/q(y) S/q(e) is a trivial Kan fibration if and only if, for every
integer n ≥ 0, every lifting problem

∂∆n //

��

X/e

��
∆n

99

// X/y ×S/q(y) S/q(e)

admits a solution. By virtue of Lemma 4.3.6.15, this is equivalent to the datum of a lifting
problem

Λn+2
n+2

σ0 //

��

X

��
∆n+2

>>

// S,

where σ0 carries the final edge N•({n+ 1 < n+ 2}) ⊆ Λn+2
n+2 to e.

Corollary 5.1.1.14. 01TGLet q : X → S and f : K → X be morphisms of simplicial sets, and let
q′ : Xf/ → S(q◦f)/ be the morphism induced by q. Let e : x→ y be an edge of the simplicial
set Xf/, and let e : x→ y be its image in X. If e is q-cartesian, then e is q′-cartesian.

Proof. Since e is q-cartesian, the restriction map

θ : X/e → X/y ×S/q(y) S/q(e)

is a trivial Kan fibration (Proposition 5.1.1.13). We wish to show that the restriction map

θ : (Xf/)/e → (Xf/)/y ×(S(q◦f)/)/q′(y)
(S(q◦f)/)/q′(e).

is also a trivial Kan fibration. We can identify e with a morphism of simplicial sets
f : K → X/e, and θ with the induced map

(X/e)f/ → (X/y ×S/q(y) S/q(e))(θ◦f)/.

The desired result now follows from Corollary 4.3.7.17.

https://kerodon.net/tag/01TG
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Corollary 5.1.1.15.01TH Let q : X → S be a morphism of simplicial sets and let e : x→ y be
an edge of X. The following conditions are equivalent:

(1) The edge e is q-cartesian.

(2) Let f : B → X be a morphism of simplicial sets, let A be a simplicial subset of B,
and let Y denote the fiber product Xf |A/ ×S(q◦f |A)/

S(q◦f)/, so that the restriction map

Xf/ → X factors as a composition Xf/
θ−→ Y

ρ−→ X. Then every lifting problem

{1} //

��

Xf/

θ

��
∆1 e′ //

>>

Y

admits a solution, provided that ρ(e′) = e.

Proof. For a fixed simplicial set B with a simplicial subset A ⊆ B, condition (2) is equivalent
to the requirement that every lifting problem

A //

��

X/e

��
B //

::

X/y ×S/q(y) S/q(e)

admits a solution. This condition is satisfied for every inclusion of simplicial sets A ⊆ B if
and only if the map X/e → X/y ×S/q(y) S/q(e) is a trivial Kan fibration: that is, if and only if
e is q-cartesian (Proposition 5.1.1.13).

Remark 5.1.1.16.01TJ In the situation of Corollary 5.1.1.15, it is sufficient to verify condition
(2) in the special case where B = ∆n is a standard simplex and A = ∂∆n is its boundary.

5.1.2 Cartesian Morphisms of ∞-Categories

01TK Let q : C → D be a functor between ordinary categories and let g : Y → Z be a morphism
in C having image g : Y → Z in D. Recall that g is q-cartesian if, for every object X ∈ C

https://kerodon.net/tag/01TH
https://kerodon.net/tag/01TJ
https://kerodon.net/tag/01TK
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having image X = q(X) in D, the diagram of sets

HomC(X,Y ) g◦ //

��

HomC(X,Z)

��
HomD(X,Y ) g◦ // HomD(X,Z)

is a pullback square (Definition 5.0.0.1). Our goal in this section is to give an analogous
characterization of cartesian morphisms in the setting of ∞-categories.

We now encounter a slight complication: if X, Y , and Z are objects of an ∞-category C
and g : Y → Z is a morphism, then the composition map HomC(X,Y ) g◦−→ HomC(X,Z) is
only well-defined up to homotopy. We can circumvent this difficulty using the Kan complex
HomC(X,Y, Z) of Notation 4.6.9.1. By virtue of Corollary 4.6.9.5, the restriction map
HomC(X,Y, Z) → HomC(X,Y ) × HomC(Y, Z) is a trivial Kan fibration of simplicial sets,
and therefore induces a homotopy equivalence HomC(X,Y, Z)×HomC(Y,Z){g} → HomC(X,Y ).
Moreover, the “long edge” of ∆2 determines a map of Kan complexes

HomC(X,Y, Z)×HomC(Y,Z) {g} ↪→ HomC(X,Y, Z)→ HomC(X,Z),

which we can regard as a surrogate for the composition map HomC(X,Y ) g◦−→ HomC(X,Z).
This construction depends functorially on C in the following sense: if q : C → D is a functor
of ∞-categories carrying X to X ∈ D and g to g : Y → Z, then it induces a commutative
diagram of Kan complexes

HomC(X,Y, Z)×HomC(Y,Z) {g} //

��

HomC(X,Z)

��
HomD(X,Y , Z)×HomD(Y ,Z) {g} // HomD(X,Z),

where the vertical maps are determined by q and the horizontal maps are given by restriction.
We can now state our main result, which we will prove at the end of this section:

Proposition 5.1.2.1. 01TLLet q : C → D be an inner fibration of ∞-categories and let g : Y → Z

be a morphism in C having image g : Y → Z in D. Then g is q-cartesian if and only if, for

https://kerodon.net/tag/01TL
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every object X ∈ C having image X = q(X) in D, the diagram of Kan complexes

01TM HomC(X,Y, Z)×HomC(Y,Z) {g} //

��

HomC(X,Z)

��
HomD(X,Y , Z)×HomD(Y ,Z) {g} // HomD(X,Z)

(5.3)

is a homotopy pullback square.

Corollary 5.1.2.2.01TN Let q : C → D be a functor between categories, and let N•(q) : N•(C)→
N•(D) be the induced morphism of simplicial sets. Let g : Y → Z be a morphism in the
category C. Then g is q-cartesian (in the sense of Definition 5.0.0.1) if and only if it is
N•(q)-cartesian (when regarded as an edge of the simplicial set N•(C)).

Proof. Combine Proposition 5.1.2.1 with Example 4.6.9.6.

Corollary 5.1.2.3.01TQ Let Q be a partially ordered set, let q : C → N•(Q) be an inner fibration
of ∞-categories, and let g : Y → Z be a morphism in C. Then g is q-cartesian if and only if,
for every object X ∈ C satisfying q(X) ≤ q(Y ), the map

HomC(X,Y ) [g]◦−−→ HomC(X,Z)

of Notation 4.6.9.15 is an isomorphism in the homotopy category hKan.

Proof. By virtue of Proposition 5.1.2.1, the morphism g is q-cartesian if and only if, for each
object X ∈ C, the diagram of Kan complexes

01TR HomC(X,Y, Z)×HomC(Y,Z) {g}
θX //

��

HomC(X,Z)

��
HomN•(Q)(q(X), q(Y ), q(Z))×HomN•(Q)(q(Y ),q(Z)) {q(g)} // HomN•(Q)(q(X), q(Z))

(5.4)
is a homotopy pullback square. If q(X) ≰ q(Y ), then the Kan complexes on the left side of
the diagram (5.4) are empty, so this condition is vacuous. If q(X) ≤ q(Y ), then the Kan
complexes on the lower half of the diagram are isomorphic to ∆0, so that (5.4) is a homotopy
pullback square if and only if θX is a homotopy equivalence (Corollary 3.4.1.5). We conclude

https://kerodon.net/tag/01TM
https://kerodon.net/tag/01TN
https://kerodon.net/tag/01TQ
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by observing that, in the homotopy category hKan, we have a commutative diagram

HomC(X,Y, Z)×HomC(Y,Z) {g} //

θX

((

HomC(X,Y )

[g]◦

xx
HomC(X,Z),

where the horizontal map is an isomorphism (Corollary 4.6.9.5).

Corollary 5.1.2.4. 01TSLet q : C → D be an inner fibration of ∞-categories and let σ : ∆2 → C
be a 2-simplex of C, which we will depict as a diagram

Y

g

  
X

f

??

h // Z.

• Suppose that g is q-cartesian. Then f is q-cartesian if and only if h is q-cartesian.

• Suppose that f is q-cocartesian. Then g is q-cocartesian if and only if h is q-cocartesian.

Proof. We will prove the first assertion; the second follows by a similar argument. For every
simplex τ of the ∞-category C, let τ denote its image q(τ) in the ∞-category D. By virtue
of Proposition 5.1.2.1, it will suffice to show that for every object W ∈ C, the following
conditions are equivalent:

(a) The commutative diagram of Kan complexes

HomC(W,X, Y )×HomC(X,Y ) {f} //

��

HomC(W,Y )

��
HomD(W,X, Y )×HomD(X,Y ) {f} // HomD(W,Y )

is a homotopy pullback square.

https://kerodon.net/tag/01TS
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(b) The commutative diagram of Kan complexes

HomC(W,X,Z)×HomC(X,Z) {h} //

��

HomC(W,Z)

��
HomD(W,X,Z)×HomD(X,Z) {h} // HomD(W,Z)

is a homotopy pullback square.

By virtue of Corollaries 4.6.9.5 and 3.4.1.12, these conditions can be reformulated as follows:

(a′) The commutative diagram of Kan complexes

HomC(W,X, Y, Z)×HomC(X,Y,Z) {σ} //

��

HomC(W,Y,Z)×HomC(Y,Z) {g}

��
HomD(W,X, Y , Z)×HomD(X,Y ,Z) {σ} // HomD(W,Y ,Z)×HomD(Y ,Z) {g}

is a homotopy pullback square.

(b′) The commutative diagram of Kan complexes

HomC(W,X, Y, Z)×HomC(X,Y,Z) {σ} //

��

HomC(W,Z)

��
HomD(W,X, Y , Z)×HomD(X,Y ,Z) {σ} // HomD(W,Z)

is a homotopy pullback square.

The equivalence of (a′) and (b′) follows by applying Proposition 3.4.1.11 to the commutative
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diagram of Kan complexes

HomC(W,X, Y, Z)×HomC(X,Y,Z) {σ} //

��

HomD(W,X, Y , Z)×HomD(X,Y ,Z)) {σ}

��
HomC(W,Y,Z)×HomC(Y,Z) {g}

��

// HomD(W,Y ,Z)×HomD(Y ,Z) {g}

��
HomC(W,Z) // HomD(W,Z),

noting that the lower half of the diagram is a homotopy pullback square by virtue of our
assumption that g is q-cartesian (Proposition 5.1.2.1).

Corollary 5.1.2.5. 01TTLet q : C → D be an inner fibration of ∞-categories, and let f : X → Y

and f ′ : X ′ → Y ′ be morphisms of C which are isomorphic as objects of the ∞-category
Fun(∆1, C). Then f is q-cartesian if and only if f ′ is q-cartesian. Similarly, f is q-cocartesian
if and only if f ′ is q-cocartesian.

Proof. Our assumption that f is isomorphic to f ′ in Fun(∆1, C) guarantees that there exists
a commutative diagram

X

e

��

f // Y

e′

��
X ′

f ′ // Y ′,

where e and e′ are isomorphisms (and therefore q-cartesian by virtue of Proposition 5.1.1.8).
The desired result now follows from Corollary 5.1.2.4.

Using Proposition 5.1.2.1, we deduce the following stronger version of Remark 5.1.1.6:

Corollary 5.1.2.6 (Transitivity). 01TULet p : C → D and q : D → E be inner fibrations of
simplicial sets, and let e : Y → Z be an edge of the simplicial set C.

• Assume that p(e) is a q-cartesian edge of D. Then e is p-cartesian if and only if it is
(q ◦ p)-cartesian.

• Assume that p(e) is a q-cocartesian edge of D. Then e is p-cocartesian if and only if it
is (q ◦ p)-cocartesian.

https://kerodon.net/tag/01TT
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Proof. We will prove the first assertion; the second follows by a similar argument. Using
Remark 5.1.1.12, we can reduce to the case where E is an ∞-category (or even a simplex), so
that C and D are also ∞-categories (Remark 4.1.1.9). Fix an object X ∈ C, and set r = q ◦ p.
We have a commutative diagram of Kan complexes

HomC(X,Y, Z)×HomC(Y,Z) {e} //

��

HomC(X,Z)

��
HomD(p(X), p(Y ), p(Z))×HomC(p(Y ),p(Z)) {q(e)} //

��

HomD(p(X), p(Z))

��
HomE(r(X), r(Y ), r(Z))×HomE(r(Y ),r(Z)) {r(e)} // HomE(r(X), r(Z)).

If p(e) is a q-cartesian morphism of D, then the bottom square is a homotopy pullback
(Proposition 5.1.2.1). Invoking Proposition 3.4.1.11, we deduce that the upper square is a
homotopy pullback if and only if the outer rectangle is a homotopy pullback. Allowing X
to vary and invoking Proposition 5.1.2.1, we conclude that e is p-cartesian if and only if is
r-cartesian.

Proof of Proposition 5.1.2.1. Let q : C → D be an inner fibration of ∞-categories, and let
g : Y → Z be a morphism in the∞-category C having image g : Y → Z in the∞-category D.
By virtue of Proposition 5.1.1.13, the morphism g is q-cartesian if and only if the restriction
map

θ : C/g → C/Z ×D/Z
D/g

is a trivial Kan fibration of simplicial sets. Since q is an inner fibration, the morphism θ is a
right fibration (Proposition 4.3.6.8). For each object X ∈ C, θ restricts to a right fibration
of simplicial sets

θX : {X} ×C C/g → {X} ×C C/Z ×D/Z
D/g .

Note that if θ is a trivial Kan fibration, then so is θX . Conversely, if each θX is a trivial
Kan fibration, then every fiber of θ is a contractible Kan complex, so that θ is a trivial Kan
fibration by virtue of Proposition 4.4.2.14. To complete the proof, it will suffice to show
that θX is a trivial Kan fibration if and only if the diagram (5.3) appearing in the statement
of Proposition 5.1.2.1 is a homotopy pullback square.

For the remainder of the proof, let us regard the object X ∈ C as fixed, and set X = q(X).



974 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

We then have a commutative diagram of simplicial sets

01TV{X} ×C C/g //

��

{X} ×C C/Z

ρ

��
{X} ×D D/g // {X} ×D D/Z .

(5.5)

Corollary 4.3.6.11 guarantees that the restriction maps

C/g → C/Z → C D/g → D/Z → D

are right fibrations, so that each of the simplicial sets appearing in the diagram (5.5) is a
Kan complex. The morphism ρ is a pullback of the restriction map C/Z → C×D D/Z , and is
therefore a right fibration by virtue of Proposition 4.3.6.8. Applying Corollary 4.4.3.8, we
deduce that ρ is a Kan fibration. The projection map

{X} ×C C/Z ×D/Z
D/g → {X} ×D D/g

is a pullback of ρ, and therefore also a Kan fibration. In particular, the target of the right
fibration θX is a Kan complex, so that θX is a Kan fibration (Corollary 4.4.3.8). It follows
that θX is a trivial Kan fibration if and only if is a homotopy equivalence (Proposition
3.3.7.6): that is, if and only if the diagram (5.5) is a homotopy pullback square.

Let σ be an n-simplex of the simplicial set {X} ×C C/g. Then we can identify σ with a
morphism of simplicial sets uσ : ∆n ⋆∆1 → C such that uσ|∆n is the constant map taking
the value X and uσ|∆1 = g. Let π : ∆n × ∆2 → ∆n ⋆ ∆1 ≃ ∆n+2 be the map given on
vertices by the formula

π(i, j) =


i if j = 0
n+ 1 if j = 1
n+ 2 if j = 2.

The composition uσ ◦ π : ∆n × ∆2 → C can then be regarded as an n-simplex σ′ of the
simplicial set HomC(X,Y, Z)×HomC(Y,Z) {g}. The construction σ 7→ σ′ depends functorially
on [n] ∈∆, and therefore determines a morphism of Kan complexes

ιRX,g : {X} ×C C/g → HomC(X,Y, Z)×HomC(Y,Z) {g}.

https://kerodon.net/tag/01TV
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Note that the morphism ιX,g fits into a commutative diagram

{X} ×C C/g

��

ιRX,g // HomC(X,Y, Z)×HomC(Y,Z) {g}

��
{X} ×C C/Y

ιRX,Y // HomC(X,Y ),

where the left vertical map is a pullback of the restriction morphism C/g → C/Y (and therefore
a trivial Kan fibration by virtue of Corollary 4.3.6.13), the right vertical map is a pullback
of the restriction morphism HomC(X,Y, Z)→ HomC(X,Y )×HomC(Y, Z) (and therefore a
trivial Kan fibration by virtue of Corollary 4.6.9.5), and ιRX,Y : HomR

C (X,Y ) ↪→ HomC(X,Y )
is the right-pinch inclusion map of Construction 4.6.5.7 (which is a homotopy equivalence of
Kan complexes by virtue of Proposition 4.6.5.10). It follows that ιRX,g is also a homotopy
equivalence of Kan complexes. Applying the same construction to the ∞-category D, we
obtain a homotopy equivalence

ιR
X,g

: {X} ×D D/g → HomD(X,Y , Z)×HomD(Y ,Z) {g}.

We have a commutative diagram of Kan complexes

{X} ×C C/g //

��

ιRX,g

&&

{X} ×C C/Z

��

ιRX,Z

!!
HomC(X,Y, Z)×HomC(Y,Z) {g} //

��

HomC(X,Z)

��

{X} ×D D/g //

ιR
X,g

&&

{X} ×D D/Z

ιR
X,Z

!!
HomD(X,Y , Z)×HomD(Y ,Z) {g} // HomD(X,Z),

where the right-pinch inclusion maps ιRX,Z and ιR
X,Z

are homotopy equivalences (Proposition
4.6.5.10). Applying Corollary 3.4.1.12, we conclude that the front face (5.3) is a homotopy
pullback square if and only if the back face (5.5) is a homotopy pullback square: that is, if
and only if θX is a trivial Kan fibration.
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5.1.3 Locally Cartesian Edges

01TWIt will often be convenient to consider a variant of Definition 5.1.1.1.

Definition 5.1.3.1. 01TXLet q : X → S be a morphism of simplicial sets and let e be an edge of
X having image e = q(e) in S. Form a pullback diagram of simplicial sets

Xe
//

q′

��

X

q

��
∆1 e // S,

so that e lifts uniquely to an edge ẽ of Xe having nondegenerate image in ∆1. We say that
e is locally q-cartesian if ẽ is a q′-cartesian edge of the simplicial set Xe. We say that e is
locally q-cocartesian if ẽ is a q′-cocartesian edge of the simplicial set Xe.

Remark 5.1.3.2. 01TYLet q : X → S be a morphism of simplicial sets and qop : Xop → Sop be
the opposite morphism. Then an edge e of X is locally q-cartesian if and only if it is locally
qop-cocartesian.

Remark 5.1.3.3. 01U0Let q : X → S be a morphism of simplicial sets. Then every q-cartesian
edge of X is locally q-cartesian, and every q-cocartesian edge of X is locally q-cocartesian
(see Remark 5.1.1.11).

Remark 5.1.3.4. 01U1Let q : X → S be a morphism of simplicial sets and let e : x→ y be an
edge of X. Suppose that S is isomorphic to a left cone K◁ and that q carries the vertex
x ∈ X to the cone point of K◁. Then e is q-cartesian if and only if it is locally q-cartesian.
Similarly, if S is isomorphic to a right cone L▷ and q carries the vertex y ∈ X to the cone
point of L▷, then e is q-cocartesian if and only if it is locally q-cocartesian.

Remark 5.1.3.5. 01U2Suppose we are given a pullback diagram of simplicial sets

X ′

q′

��

f // X

q

��
S′ // S.

Let e′ be an edge of the simplicial set X ′, having image e = f(e′) in X. Then e is locally
q-cartesian if and only if e′ is locally q′-cartesian. Similarly, e is locally q-cocartesian if and
only if e′ is locally q′-cocartesian.

https://kerodon.net/tag/01TW
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Example 5.1.3.6.01U3 Let q : X → S be a morphism of simplicial sets and let e be an edge of
X such that q(e) = ids is a degenerate edge of S. Suppose that the fiber Xs = {s} ×S X
is an ∞-category (this condition is satisfied, for example, if q is an inner fibration). The
following conditions are equivalent:

• The edge e is locally q-cartesian.

• The edge e is locally q-cocartesian.

• The edge e is an isomorphism in the ∞-category Xs.

To prove this, we can use Remark 5.1.3.5 to reduce to the situation where S = {s} consists
of a single vertex. In this case, the edge e is locally q-cartesian if and only if it is q-cartesian,
and locally q-cocartesian if and only if it is q-cocartesian (Remark 5.1.3.4). The desired
result now follows from Example 5.1.1.4.

Proposition 5.1.3.7.01U4 Let q : X → S be an inner fibration of simplicial sets and let
σ : ∆2 → X be a 2-simplex of X, which we will depict as a diagram

y

g

��
x

f

??

h // z.

• Suppose that g is q-cartesian. Then f is locally q-cartesian if and only if h is locally
q-cartesian.

• Suppose that f is q-cocartesian. Then g is locally q-cocartesian if and only if h is
locally q-cocartesian.

Proof. We will prove the first assertion; the proof of the second is similar. Using Remarks
5.1.1.11 and 5.1.3.5, we can replace q by the projection map ∆2 ×S X → ∆2, and thereby
reduce to the case where S = ∆2 and q(σ) is the identity morphism id∆2 . In this case, both
X and S are ∞-categories and the morphisms f and h are locally q-cartesian if and only
if they are q-cartesian (Remark 5.1.3.4). The desired result now follows from Corollary
5.1.2.4.

Remark 5.1.3.8 (Uniqueness of Locally Cartesian Lifts).01U5 Let q : X → S be an inner
fibration of simplicial sets and let g : y → z be a locally q-cartesian edge of X. Suppose
that h : x → z is another edge of X satisfying q(h) = q(g). Set s = q(x) = q(y), and let

https://kerodon.net/tag/01U3
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Xs = {s} ×S X denote the fiber of q over the vertex s. Our assumption that g is locally
q-cartesian then guarantees that we can choose a 2-simplex σ of X satisfying

d2
0(σ) = g d2

1(σ) = h q(σ) = s1
0(q(g)),

which we display informally as a diagram

y

g

��
x

f

??

h // z;

here f = d2
2(σ) is a morphism in the ∞-category Xs. In this case, the following conditions

are equivalent:

(1) The morphism f is an isomorphism in the ∞-category Xs.

(2) The morphism h is locally q-cartesian.

To see this, we can replace q by the projection map ∆1 ×S X → ∆1, and thereby reduce
to the case where g and h are both lifts of the unique nondegenerate edge of S = ∆1. In
this case, the morphism g is q-cartesian, and (1) is equivalent to the assertion that f is
locally q-cartesian (Example 5.1.3.6). The equivalence of (1) and (2) is now a special case of
Proposition 5.1.3.7.

Corollary 5.1.3.9. 01U6Let q : X → S be an inner fibration of simplicial sets, let z be a vertex
of X, and let e : s → q(z) be an edge of S. Suppose that there exists a q-cartesian edge
g : y → z of X satisfying q(g) = e. Then any locally q-cartesian edge h : x→ z satisfying
q(h) = e is q-cartesian.

Proof. By virtue of Remark 5.1.1.12, we may assume without loss of generality that S is
an ∞-category (or even a simplex). Applying Remark 5.1.3.8, we deduce that there is a
2-simplex of X as depicted in the diagram

y

g

��
x

f

??

h // z,

where f is an isomorphism in the ∞-category X. Then f is also q-cartesian (Proposition
5.1.1.8), so Corollary 5.1.2.4 guarantees that h is q-cartesian.

https://kerodon.net/tag/01U6
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We now record an analogue of Proposition 5.1.2.1 for detecting locally cartesian edges.

Notation 5.1.3.10.01U7 Let q : X → S be an inner fibration of simplicial sets, let y and z

be vertices of X having images s = q(y) and t = q(z), and let e : s → t be an edge of
S. Recall that the relative morphism space HomX(y, z)e is defined to be the fiber product
HomX(y, z)×HomS(s,t) {e} (Construction 4.6.1.15).

Let x be another vertex of X satisfying q(x) = s, and let σ denote the image of e under
the degeneracy operator HomS(s, t)→ HomS(s, s, t) (see Notation 4.6.9.1). It follows from
Proposition 4.6.9.4 (and Example 4.6.1.17) that restriction along the inclusion Λ2

1 ↪→ ∆2

induces a trivial Kan fibration of simplicial sets

θ : HomX(x, y, z)×HomS(s,s,t) {σ} → HomX(y, z)e ×HomXs(x, y),

where Xy denotes the ∞-category given by the fiber {y} ×S X. In particular, the homo-
topy class [θ] is an isomorphism in the homotopy category hKan. Combining the inverse
isomorphism [θ]−1 with the restriction map HomX(x, y, z)×HomS(s,s,t) {σ} → HomX(x, z)e,
we obtain a composition law

◦ : HomX(y, z)e ×HomXs(x, y)→ HomX(x, z)e.

If e : y → z is an edge of X satisfying q(e) = e, then the restriction of this composition law to
{e}×HomXs(x, y) determines a morphism of Kan complexes HomXs(x, y) [e]◦−−→ HomX(x, z)e,
which is well-defined up to homotopy.

Proposition 5.1.3.11.01U8 Let q : X → S be an inner fibration of simplicial sets, and let
e : y → z be an edge of the simplicial set X having image e : s→ t in S. Then e is locally
q-cartesian if and only if, for every object x of the ∞-category Xs, the composition map

HomXs(x, y) [e]◦−−→ HomX(x, z)e

of Notation 5.1.3.10 is an isomorphism in the homotopy category hKan.

Proof. Without loss of generality, we can replace q : X → S by the projection map
X ×S ∆1 → ∆1 and thereby reduce to the case where S = ∆1 and e is the unique
nondegenerate edge of ∆1. In this case, the edge e is locally q-cartesian if and only if it is
q-cartesian, and the desired result is a special case of Corollary 5.1.2.3.

5.1.4 Cartesian Fibrations

01U9 We now introduce an ∞-categorical counterpart of Definition 5.0.0.3.

Definition 5.1.4.1.01UA Let q : X → S be a morphism of simplicial sets. We say that q is a
cartesian fibration if the following conditions are satisfied:

https://kerodon.net/tag/01U7
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(1) The morphism q is an inner fibration.

(2) For every edge e : s → t of the simplicial set S and every vertex z ∈ X satisfying
q(z) = t, there exists a q-cartesian edge e : y → z of X satisfying q(e) = e.

We say that q is a cocartesian fibration if it satisfies condition (1) together with the following
dual version of (2):

(2′) For every edge e : s → t of the simplicial set S and every vertex y ∈ X satisfying
q(y) = s, there exists a q-cocartesian edge e : y → z of X satisfying q(e) = e.

Example 5.1.4.2. 01UBLet q : C → D be a functor between ordinary categories. Then q is a
cartesian fibration (in the sense of Definition 5.0.0.3) if and only if the induced morphism
of simplicial sets N•(q) : N•(C)→ N•(D) is a cartesian fibration (in the sense of Definition
5.1.4.1). Similarly, q is a cocartesian fibration if and only if N•(q) is a cocartesian fibration
of simplicial sets. See Corollary 5.1.2.2.

Example 5.1.4.3. 01UCLet X be a simplicial set and let q : X → ∆0 denote the projection map.
The following conditions are equivalent:

• The simplicial set X is an ∞-category.

• The morphism q is a cartesian fibration.

• The morphism q is a cocartesian fibration.

Remark 5.1.4.4. 01UDLet q : X → S be a morphism of simplicial sets. Then q is a cartesian
fibration if and only if the opposite morphism qop : Xop → Sop is a cocartesian fibration.

Remark 5.1.4.5. 01UELet q : X → S be an inner fibration of simplicial sets and let e be an edge
of X. If q is a cartesian fibration, then e is q-cartesian if and only if it is locally q-cartesian
(see Corollary 5.1.3.9). Similarly, if q is a cocartesian fibration, then e is q-cocartesian if and
only if it is locally q-cocartesian.

Remark 5.1.4.6. 01UFSuppose we are given a pullback diagram of simplicial sets

X ′
f //

q′

��

X

q

��
S′ // S.

If q is a cartesian fibration, then q′ is also a cartesian fibration. Moreover, an edge e′ of X ′
is q′-cartesian if and only if e = f(e′) is a q-cartesian edge of X (this follows from Remarks

https://kerodon.net/tag/01UB
https://kerodon.net/tag/01UC
https://kerodon.net/tag/01UD
https://kerodon.net/tag/01UE
https://kerodon.net/tag/01UF


5.1. CARTESIAN FIBRATIONS 981

5.1.4.5 and 5.1.3.5). Similarly, if q is a cocartesian fibration, then q′ is also a cocartesian
fibration (and an edge e′ of X ′ is q′-cocartesian if and only if e = f(e′) is a q-cocartesian
edge of X).

Proposition 5.1.4.7.023J Let q : X → S be a morphism of simplicial sets. Then q is a cartesian
fibration if and only if, for every simplex σ : ∆n → S, the projection map qσ : ∆n×SX → ∆n

is a cartesian fibration.

Proof. If q is a cartesian fibration, then Remark 5.1.4.6 guarantees that every pullback of
q is a cartesian fibration. Conversely, suppose that for every n-simplex σ : ∆n → S, the
projection map qσ : ∆n ×S X → ∆n is a cartesian fibration. Applying this assumption in
the case n = 1, we conclude that for every vertex y ∈ X and every edge e : x → q(y) of
S, there exists a locally q-cartesian edge e : x→ y satisfying q(e) = e. Moreover, Remark
4.1.1.13 guarantees that q is an inner fibration. It will therefore suffice to show that every
locally q-cartesian edge e of X is q-cartesian. By virtue of Remark 5.1.1.12, it suffices to
verify the analogous assertion for each of the projection maps qσ : ∆n ×S X → ∆n, which
follows from Remark 5.1.4.5 (since qσ is assumed to be a cartesian fibration).

Proposition 5.1.4.8.01UG Let q : C → D be a cartesian fibration of ∞-categories. Then q is an
isofibration.

Proof. Suppose we are given an object Y ∈ C and an isomorphism e : X → q(Y ) in the
∞-category D. We wish to show that there exists an isomorphism e : X → Y in the
∞-category C satisfying q(e) = e. Our assumption that q is a cartesian fibration guarantees
that we can write e = q(e), where e : X → Y is a q-cartesian morphism of C. Since e = q(e)
is an isomorphism, Proposition 5.1.1.8 guarantees that e is an isomorphism.

Remark 5.1.4.9.01UH In the statement of Proposition 5.1.4.8, the hypothesis that C and D are
∞-categories is superfluous: we will later show that every cartesian fibration of simplicial
sets is an isofibration (Corollary 5.6.7.5).

Corollary 5.1.4.10.023K Let q : X → S be a morphism of simplicial sets, where S is a Kan
complex. The following conditions are equivalent:

(1) The morphism q is an isofibration.

(2) The morphism q is a cartesian fibration.

(3) The morphism q is a cocartesian fibration.

Proof. We will prove the equivalence (1) ⇔ (2); the equivalence (1) ⇔ (3) follows by a
similar argument. The implication (2) ⇒ (1) is a special case of Proposition 5.1.4.8. For
the converse, suppose that q is an isofibration. Then q is an inner fibration. To complete
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the proof, we must show that for every vertex y ∈ X and every edge e : x → q(y) of S,
we can write e = q(e) for some q-cartesian edge e of X. Since S is a Kan complex, e
is an isomorphism (Proposition 1.4.6.10). Our assumption that q is an isofibration then
guarantees that we can write e = q(e) for some isomorphism e : x→ y of X. The edge e is
automatically q-cartesian by virtue of Corollary 5.1.1.10.

Proposition 5.1.4.11. 01UJLet q : X → S be a cartesian fibration of simplicial sets and let e be
an edge of X such that q(e) = ids is a degenerate edge of S. Then e is q-cartesian if and
only if it is an isomorphism in the ∞-category Xs = {s} ×S X.

Proof. Combine Example 5.1.3.6 with Remark 5.1.4.5.

Proposition 5.1.4.12. 01UKLet q : X → S be a cartesian fibration of simplicial sets and let
σ : ∆2 → X be a 2-simplex of X, which we will depict as a diagram

y

g

��
x

f

??

h // z.

Suppose that g is q-cartesian. Then f is q-cartesian if and only if h is q-cartesian.

Proof. Combine Proposition 5.1.3.7 with Remark 5.1.4.5.

Proposition 5.1.4.13. 01ULLet p : X → Y and q : Y → Z be cartesian fibrations of simplicial
sets. Then:

• The composite morphism (q ◦ p) : X → Z is a cartesian fibration of simplicial sets.

• An edge e of X is (q ◦p)-cartesian if and only if e is p-cartesian and p(e) is q-cartesian.

Proof. It follows from Remark 4.1.1.8 that q ◦ p is an inner fibration. Let us say that an
edge e of X is special if e is p-cartesian and p(e) is q-cartesian. Remark 5.1.1.6 guarantees
that every special edge of X is (q ◦ p)-cartesian. Consequently, to prove the first assertion,
it will suffice to verify the following:

(∗) For every edge e : z′ → z of Z and every vertex x ∈ X satisfying z = (q ◦ p)(x), there
exists a special edge e : x′ → x of X satisfying e = (q ◦ p)(e).

To prove (∗), set y = p(x). Using our assumption that q is a cartesian fibration, we can
choose a q-cartesian edge ẽ : y′ → y of the simplicial set Y satisfying q(ẽ) = e. Using our
assumption that p is a cartesian fibration, we can choose a p-cartesian edge e : x′ → x of X
satisfying p(e) = ẽ. Then e is a special edge of X satisfying (q ◦ p)(e) = q(ẽ) = e.
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To complete the proof, it will suffice to show that every (q ◦ p)-cartesian edge f : x′′ → x

of X is special. Let f : z′′ → z be the image of f under (q ◦ p) : X → Z. Using (∗), we can
choose a special edge e : x′ → x satisfying (q ◦ p)(e) = f . Since e is (q ◦ p)-cartesian, we can
choose a 2-simplex σ of X satisfying

d2
0(σ) = e d2

1(σ) = f (q ◦ p)(σ) = s1
0(e).

Set g = d2
2(σ), so that we can view σ informally as a diagram

x′

e

��
x′′

g

??

f // x.

Set y′ = p(x′) ∈ Y and z′ = q(y′) ∈ Z. Since f is (q ◦ p)-cartesian, the edge g is
an isomorphism in the ∞-category Xz′ (Remark 5.1.3.8). Then g is p′-cartesian, where
p′ : Xz′ → Yz′ is the projection map (Proposition 5.1.1.8). Applying Remark 5.1.3.5, we
conclude that g is locally p-cartesian. Since p is a cartesian fibration, it follows that g
is p-cartesian (Remark 5.1.4.5). Invoking Proposition 5.1.4.12, we deduce that f is also
p-cartesian. Since p(g) is an isomorphism in the∞-category Yz′ , it is q-cartesian (Proposition
5.1.4.11). Applying Proposition 5.1.4.12, we conclude that p(f) is also q-cartesian.

Recall that an ∞-category C is a Kan complex if and only if every morphism in C is an
isomorphism (Proposition 4.4.2.1). We now establish a relative version of this assertion:

Proposition 5.1.4.14.01UM Let q : X → S be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism q is a right fibration.

(2) The morphism q is a cartesian fibration and every edge of X is q-cartesian.

(3) The morphism q is a cartesian fibration and, for every vertex s ∈ S, the fiber Xs =
{s} ×S X is a Kan complex.

Proof. The equivalence (1) ⇔ (2) is immediate from the definitions. The implication
(2) ⇒ (3) follows from Propositions 5.1.4.11 and 4.4.2.1. We will complete the proof by
showing that (3) implies (2). Assume that q is a cartesian fibration and that each fiber of q
is a Kan complex. Let h : x → z be an edge of X; we wish to show that h is q-cartesian.
Since q is a cartesian fibration, we can choose a q-cartesian edge g : y → z of X satisfying
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q(g) = q(h). The assumption that g is q-cartesian then guarantees the existence of a
2-simplex σ of X satisfying

d2
0(σ) = g d2

1(σ) = h q(σ) = s1
0(q(h)),

as depicted in the diagram

y

g

��
x

f

??

h // z.

Set s = q(x), so that f is a morphism in the ∞-category Xs = {s} ×S X. Since Xs is a
Kan complex, f is an isomorphism (Proposition 1.4.6.10). Applying Remark 5.1.3.8 and
Corollary 5.1.3.9, we deduce that h is q-cartesian.

Recall that every ∞-category C has an underlying Kan complex C≃, obtained by dis-
carding the noninvertible morphisms of C (Construction 4.4.3.1). Using Proposition 5.1.4.14,
we can establish a relative version of this result.

Corollary 5.1.4.15. 01UNLet q : X → S be a cartesian fibration of simplicial sets, and let
X ′ ⊆ X be the simplicial subset spanned by those simplices σ : ∆n → X which carry each
edge of ∆n to a q-cartesian edge of X. Then the morphism q|X′ : X ′ → S is a right fibration
of simplicial sets.

Proof. Choose integers 0 < i ≤ n; we wish to show that every lifting problem

Λni
σ0 //

��

X ′

q|X′

��
∆n

σ

>>

σ // S

admits a solution. In the special case i = n = 1, this follows immediately from our assumption
that q is a cartesian fibration. Assume therefore that n ≥ 2. We first show that σ0 can be
extended to an n-simplex σ : ∆n → X satisfying q ◦ σ = σ. For i < n, this follows from the
assumption that q is an inner fibration. For i = n, it follows from the assumption that the
edge

∆1 ≃ N•({n− 1 < n}) ↪→ Λni
σ0−→ X ′ ↪→ X

is q-cartesian. We now complete the proof by showing that σ factors through the simplicial
subset X ′; that is, it carries each edge of ∆n to a q-cartesian edge of X. For n ≥ 3, this
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is immediate (since every edge of ∆n is contained in Λn
i ). The case n = 2 follows from

Proposition 5.1.4.12.

Proposition 5.1.4.16.02R5 Let q : X → S be a cartesian fibration of simplicial sets, and let
X ′ ⊆ X be a full simplicial subset with the following property:

(∗) For every vertex y ∈ X ′ and every edge e : x→ q(y) in S, there exists a vertex x ∈ X ′

and a q-cartesian edge e : x→ y of X satisfying q(e) = e.

Then q′ = q|X′ is a cartesian fibration from X ′ to S. Moreover, an edge e of X ′ is q′-cartesian
if and only if it is q-cartesian.

Proof. Since the inclusion map X ′ ↪→ X is an inner fibration (see Definition 4.1.2.15), the
restriction q|X′ is also an inner fibration. Remark 5.1.1.7 guarantees that every edge of
X ′ which is q-cartesian is also q′-cartesian, so that (∗) immediately guarantees that q′ is a
cartesian fibration. To complete the proof, we must show that if e : x→ z is a q′-cartesian
edge of X ′, then e is q-cartesian when viewed as an edge of X. Applying (∗), we can choose
a q-cartesian edge e′ : y → z satisfying q(e′) = q(e), where y belongs to X ′. Then e′ is also
q′-cartesian, so Remark 5.1.3.8 guarantees that there exists a 2-simplex

y

e′

��
x

u

??

// z

of X ′, where u is an isomorphism in the ∞-category {q(x)} ×S X ′. It follows that u is also
an isomorphism in the ∞-category {q(x)} ×S X, and is therefore q-cartesian (Proposition
5.1.4.11). Applying Proposition 5.1.4.12, we see that the edge e is also q-cartesian.

We now study the behavior of cartesian fibrations with respect to the slice and coslice
constructions of §4.3.

Proposition 5.1.4.17.01UP Let q : X → S be a cartesian fibration of simplicial sets and let
f : K → X be any morphism of simplicial sets. Then:

(1) The induced map q′ : X/f → S/(q◦f) is a cartesian fibration of simplicial sets.

(2) An edge e of X/f is q′-cartesian if and only if its image in X is q-cartesian.

Proof. The morphism q′ factors as a composition

X/f
u−→ X ×S S/(q◦f)

v−→ S/(q◦f).

https://kerodon.net/tag/02R5
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Since q is an inner fibration, the morphism u is a right fibration (Proposition 4.3.6.8).
In particular, u is a cartesian fibration and every edge of X/f is u-cartesian (Proposition
5.1.4.14). The morphism v is a pullback of q, and is therefore a cartesian fibration (Remark
5.1.4.6). Moreover, an edge of X ×S S/(q◦f) is v-cartesian if and only if its image in X is
q-cartesian. Assertions (1) and (2) now follow from Proposition 5.1.4.13.

Lemma 5.1.4.18. 01UQLet q : X → S be an inner fibration of simplicial sets, let f : B → X be
a morphism of simplicial sets, let A be a simplicial subset of B, and let

q′ : Xf/ → Xf |A/ ×S(q◦f |A)/
S(q◦f)/

be the induced map. Let e be an edge of the simplicial set Xf/, and let e be its image in X.
If e is q-cartesian, then e is q′-cartesian.

Proof. Let q′′ : Xf |A/ ×S(q◦f |A)/
S(q◦f)/ → S(q◦f)/ be the projection map onto the second

factor. Then q′′ is a pullback of the map u : Xf |A/ → S(q◦f |A)/, and is therefore an inner
fibration (Corollary 4.3.6.10). By virtue of Corollary 5.1.1.14, the edge e is (q′′ ◦ q′)-cartesian
and the image of e in XfA/ is u-cartesian. It follows from Remark 5.1.1.11 that q′(e) is
q′′-cartesian, so that e is q′-cartesian by virtue of Corollary 5.1.2.6.

Proposition 5.1.4.19. 01URLet q : X → S be a cartesian fibration of simplicial sets and let
f : K → X be any morphism of simplicial sets. Then:

(1) The induced map q′ : Xf/ → S(q◦f)/ is a cartesian fibration of simplicial sets.

(2) An edge e of Xf/ is q′-cartesian if and only if its image in X is q-cartesian.

Proof. The morphism q′ factors as a composition

Xf/
u−→ X ×S S(q◦f)/

v−→ S(q◦f)/,

where v is a pullback of q and is therefore a cartesian fibration by virtue of Remark 5.1.4.6.
The morphism u is a left fibration (Proposition 4.3.6.8), and therefore an inner fibration. It
follows that q′ is an inner fibration (Remark 4.1.1.8).

Let us say that an edge e of Xf/ is special if its image in X is q-cartesian. If this
condition is satisfied, then u(e) is v-cartesian (Remark 5.1.4.6) and e is u-cartesian (Lemma
5.1.4.18), so that e is q′-cartesian by virtue of Remark 5.1.1.6. This proves the “if” direction
of assertion (2).

To prove (1), it will suffice to show that for every vertex y of the simplicial set Xf/ and
every edge e : x → q′(y) of the simplicial set S(q◦f)/, there exists a special edge e : x → y

of Xf/ satisfying q′(e) = e. Since v is a cartesian fibration, we can choose a v-cartesian
edge ẽ : x̃ → u(y) of the simplicial set X ×S S(q◦f)/. In this case, the image ẽ in X is

https://kerodon.net/tag/01UQ
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q-cartesian (Remark 5.1.4.6). Corollary 5.1.1.15 then guarantees that there exists an edge
e : x → y of Xf/ satisfying u(e) = ẽ. The edge e is automatically special and satisfies
q′(e) = (v ◦ u)(e) = v(ẽ) = e, as desired.

To complete the proof of (2), it will suffice to show that every q′-cartesian edge e : x→ z

of Xf/ is special. It follows from the preceding argument that there exists a special edge
e′ : y → z satisfying q′(e′) = q′(e), which is also q′-cartesian. Applying Remark 5.1.3.8, we
can choose a 2-simplex σ of Xf/ as indicated in the diagram

y

e′

��
x

e′′

??

e // z,

where e′′ is an isomorphism in the ∞-category {q′(x)} ×S(q◦f)/
Xf/. Using Proposition

5.1.4.11, we deduce that the image of e′′ in X is q-cartesian. Applying Proposition 5.1.4.12,
we conclude the image of e in X is also q-cartesian, as desired.

Proposition 5.1.4.20.02VV Suppose we are given a commutative diagram of simplicial sets

X0
F0 //

U0

  

X

U

��

X1

U1

~~

F1oo

S

satisfying the following conditions:

• The morphisms U0 and U1 are cartesian fibrations.

• The morphism F0 carries U0-cartesian edges of X0 to U -cartesian edges of X.

• The morphism F1 carries U1-cartesian edges of X1 to U -cartesian edges of X.

• The morphism F1 is an isofibration.

Then the induced map U01 : X0 ×X X1 → S is also a cartesian fibration. Moreover, an
edge e = (e0, e1) of X0 ×X X1 is U01-cartesian if and only if e0 is U0-cartesian and e1 is
U1-cartesian.

Proof. Let π : X0 ×X X1 → X0 and π′ : X0 ×X X1 → X1 be the projection maps. Since
F1 is an isofibration, π is also an isofibration. In particular, π is an inner fibration, so the

https://kerodon.net/tag/02VV
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composition U01 = U0 ◦ π is also an inner fibration. Let us say that an edge e = (e0, e1)
of X0 ×X X1 is special if e0 is U0-cartesian and e1 is U1-cartesian. The second assumption
guarantees that e is π-cartesian (Remark 5.1.1.11) and the first guarantees that π(e) is
U0-cartesian. Applying Corollary 5.1.2.4, we deduce that every special edge of X0 ×X X1 is
U01-cartesian.

To prove that U01 is a cartesian fibration, it will suffice to show that for every vertex
x = (x0, x1) of X0 ×X X1 and every edge e : s → U01(x) in S, there exists a special edge
e : y → x of X0×X X1 satisfying U01(e) = e. Since U0 is a cartesian fibration, we can choose
a U0-cartesian edge e0 : y0 → x0 of X0 satisfying U0(e0) = e. Similarly, we can choose a
U1-cartesian edge e1 : y1 → x1 of X1 satisfying U1(e1) = e. We now observe that F0(e0)
and F1(e1) are U -cartesian edges of X having the same target and the same image in the
simplicial set S. Applying Remark 5.1.3.8, we can choose a 2-simplex σ of X as indicated in
the diagram

F1(y1)

F1(e1)

##
F0(y0)

v

;;

F0(e0) // F1(x1),

where v is an isomorphism in the ∞-category Xs = {s}×S X. Our assumption that F1 is an
isofibration guarantees that we can lift v to an isomorphism ṽ : y′1 → y1 in the ∞-category
{s}×SX1. Since F1 is an inner fibration, we can lift σ to a 2-simplex σ̃ of X1 with boundary
indicated in the diagram

y1

e1

  
y′1

ṽ

??

e′1 // x1.

It follows from Propositions 5.1.4.11 and 5.1.4.12 that e′1 is a U1-cartesian edge of X1, so that
e = (e0, e

′
1) is a special edge of X0×X X1 with target x = (x0, x1) which satisfies U01(e) = e.

To complete the proof of Proposition 5.1.4.20, it will suffice to show that if f : z → x is a
U01-cartesian edge of the fiber product X0×XX1, then f is special. Set s = U01(z). Applying
the above argument, we can choose a special edge e : y → x satisfying U01(e) = U01(f).
Using Remark 5.1.3.8, we can choose a 2-simplex τ of X0 ×X X1 with boundary indicated
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in the diagram

y

e

��
z

v

??

f // x,

where v is an isomorphism in the ∞-category {s} ×S (X0 ×X X1). Applying Propositions
5.1.4.11 and 5.1.4.12 to the 2-simplices π(τ) and π′(τ), we conclude that the edges π(f) and
π′(f) are U0-cartesian and U1-cartesian, as desired.

As an application of Proposition 5.1.4.20, we record a generalization of Proposition
5.1.4.19 which will be useful later.

Corollary 5.1.4.21.03LL Suppose we are given a commutative diagram of simplicial sets

X ′

q′

  

u // X

q

��
S

where q and q′ are cartesian fibrations and the morphism u carries q′-cartesian edges of
X ′ to q-cartesian edges of X. Let f : K → X be a morphism of simplicial sets. Then q′

induces a cartesian fibration q̃′ : X ′ ×X Xf/ → S(q◦f)/. Moreover, an edge of X ′ ×X Xf/ is
q̃′-cartesian if and only if its image in X ′ is q′-cartesian.

Proof. Let ũ : X ′×S S(q◦f)/ → X ×S S(q◦f)/ denote the pullback of u, let q̃ : X ×S S(q◦f)/ →
S(q◦f)/ be given by projection onto the second factor, and let v : Xf/ → X ×S S(q◦f)/ be the
left fibration of Proposition 4.3.6.8. Note that q̃ is a pullback of q, and therefore a cartesian
fibration (Remark 5.1.4.6). Moreover, an edge of X ×S S(q◦f)/ is q̃-cartesian if and only if its
image in X is q-cartesian. Similarly, the composite map q̃ ◦ ũ is a pullback of q′. It follows
that q̃ ◦ ũ is a cartesian fibration, and that an edge of X ′×S S(q◦f)/ is (q̃ ◦ ũ)-cartesian if and
only if its image in X ′ is q′-cartesian. Applying Proposition 5.1.4.19, we deduce that the
composition q̃ ◦ v is a cartesian fibration, and that an edge of Xf/ is (q̃ ◦ v)-cartesian if and
only if its image in X is q-cartesian. The desired result now follows by applying Proposition

https://kerodon.net/tag/03LL
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5.1.4.20 to the diagram

X ′ ×S S(q◦f)/
ũ //

&&

X ×S S(q◦f)/

π

��

Xf/

zz

voo

S(q◦f)/.

5.1.5 Locally Cartesian Fibrations

01UWIt will sometimes be convenient to consider a generalization of Definition 5.1.4.1

Definition 5.1.5.1. 01UXLet q : X → S be a morphism of simplicial sets. We say that q is a
locally cartesian fibration if the following conditions are satisfied:

(1) The morphism q is an inner fibration.

(2) For every edge e : s → t of the simplicial set S and every vertex z ∈ X satisfying
q(z) = t, there exists a locally q-cartesian edge e : y → z of X satisfying q(e) = e.

We say that q is a locally cocartesian fibration if it satisfies condition (1) together with the
following dual version of (2):

(2′) For every edge e : s → t of the simplicial set S and every vertex y ∈ X satisfying
q(y) = s, there exists a locally q-cocartesian edge e : y → z of X satisfying q(e) = e.

Example 5.1.5.2. 01UYLet q : X → S be a morphism of simplicial sets. If q is a cartesian
fibration, then it is a locally cartesian fibration. If q is a cocartesian fibration, then it is a
locally cocartesian fibration.

Exercise 5.1.5.3. 01S3Let Q be a partially ordered set, let Chain[Q] denote the collection of all
finite nonempty linearly ordered subsets of Q (Notation 3.3.2.1), and let Max : Chain[Q]→ Q

be the map which carries each element S ∈ Chain[Q] to the largest element of S.

• Show that the induced map of nerves N•(Max) : N•(Chain[Q])→ N•(Q) is a locally
cocartesian fibration.

• Show that, if Q = [n] for n ≥ 2, the functor N•(Max) : N•(Chain[Q])→ N•(Q) is not
a cocartesian fibration.

https://kerodon.net/tag/01UW
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Remark 5.1.5.4.01V0 Let q : X → S be a morphism of simplicial sets. Then q is a locally
cartesian fibration if and only if the opposite morphism qop : Xop → Sop is a locally
cocartesian fibration.

Remark 5.1.5.5.01V1 Suppose we are given a pullback diagram of simplicial sets

X ′ //

q′

��

X

q

��
S′ // S.

If q is a locally cartesian fibration, then q′ is also a locally cartesian fibration (see Remark
5.1.1.11). If q is a locally cocartesian fibration, then q′ is also a locally cocartesian fibration.

Remark 5.1.5.6.01V2 Let q : X → S be an inner fibration of simplicial sets. The following
conditions are equivalent:

• The morphism q is a locally cartesian fibration.

• For every pullback diagram
X ′

q′

��

// X

��
∆1 // S,

the morphism q′ is a locally cartesian fibration.

• For every pullback diagram
X ′

q′

��

// X

��
∆1 // S,

the morphism q′ is a cartesian fibration.

Remark 5.1.5.7.01V3 Let p : X → Y and q : Y → Z be morphisms of simplicial sets. If p is
a cartesian fibration and q is a locally cartesian fibration, then the composition q ◦ p is a
locally cartesian fibration. Moreover, an edge e of X is locally (q ◦ p)-cartesian if and only if
it is p-cartesian and p(e) is locally q-cartesian of Y . To prove this, we can assume without
loss of generality that S = ∆1. In this case, q is a cartesian fibration (Remark 5.1.5.6), so
the desired result follows from Proposition 5.1.4.13.

https://kerodon.net/tag/01V0
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Warning 5.1.5.8. 01V4The collection of locally (co)cartesian fibrations is not closed under
composition.

Proposition 5.1.5.9. 01V5Let q : C → D be a locally cartesian fibration of simplicial sets and
let g : Y → Z be an edge of C. The following conditions are equivalent:

(1) The edge g is q-cartesian.

(2) For every 2-simplex σ
Y

g

��
X

f

??

h // Z

of C, the edge f is locally q-cartesian if and only if the edge h is locally q-cartesian.

(3) For every 2-simplex σ
Y

g

��
X

f

??

h // Z

of C, if f is locally q-cartesian, then h is locally q-cartesian.

Proof. The implication (1)⇒ (2) follows from Corollary 5.1.2.6 (and does not require the
assumption that q is a locally cartesian fibration), and the implication (2)⇒ (3) is immediate.
We will complete the proof by showing that (3)⇒ (1). Using Remarks 5.1.1.12 and 5.1.3.5,
we can reduce to the case where D = ∆n is a simplex. By virtue of Corollary 5.1.2.3, it will
suffice to show that for each object X ∈ C satisfying q(X) ≤ q(Y ), the composition map

HomC(X,Y ) [g]◦−−→ HomC(X,Z)

of Notation 4.6.9.15 is an isomorphism in the homotopy category hKan. Since q is a locally
cartesian fibration, we can choose a locally q-cartesian morphism f : X → Y satisfying
q(W ) = q(X). Using the fact that C is an ∞-category, we can choose a 2-simplex σ of C
satisfying d2

0(σ) = g and d2
2(σ) = f . Set h = d2

1(σ), so that we have a commutative diagram

Y

g

��
X

f

??

h // Z

https://kerodon.net/tag/01V4
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in the ∞-category C. If assumption (3) is satisfied, then h is also a locally q-cartesian
morphism of C. Invoking Proposition 4.6.9.12, we conclude that the diagram

HomC(X,Y )

[g]◦

&&
HomC(X,X) [h]◦ //

[f ]◦

88

HomC(X,Z)

commutes (in the homotopy category hKan). Since f and h are locally q-cartesian, the
horizontal and left diagonal map in this diagram are isomorphisms (in the homotopy category
hKan), so the right diagonal map is an isomorphism as well.

Corollary 5.1.5.10.01V6 Let q : X → S be a locally cartesian fibration of simplicial sets. The
following conditions are equivalent:

(1) The morphism q is a cartesian fibration.

(2) Every locally q-cartesian edge of X is q-cartesian.

(3) For every 2-simplex σ:
y

g

��
x

f

??

h // z

of the simplicial set X, if f and g are locally q-cartesian, then h is locally q-cartesian.

Proof. The implication (1)⇒ (2) follows from Remark 5.1.4.5, the implication (2)⇒ (1) is
immediate, and the equivalence (2)⇔ (3) follows from Proposition 5.1.5.9.

Corollary 5.1.5.11.01V7 Let p : X → S be an inner fibration of simplicial sets. Then p is a
cartesian fibration if and only if every pullback X ×S ∆n → ∆n is a cartesian fibration for
n ≤ 2.

Corollary 5.1.5.12.046V Let q : X → S be a locally cartesian fibration of simplicial sets. The
following conditions are equivalent:

(1) The morphism q is a right fibration.

(2) For every vertex s ∈ S, the fiber Xs = {s} ×S X is a Kan complex.

(3) Every edge of X is locally q-cartesian.

https://kerodon.net/tag/01V6
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(4) Every edge of X is q-cartesian.

Proof. The implication (1)⇒ (2) follows from Corollary 4.4.2.3. To show that (2)⇒ (3), we
may assume without loss of generality that S = ∆1. In this case, q is a cartesian fibration
(Remark 5.1.5.6), so the desired result follows from Proposition 5.1.4.14. The implication
(3)⇒ (4) follows from Corollary 5.1.5.10. If condition (4) is satisfied, then q is a cartesian
fibration (Corollary 5.1.5.10), so that (1) follows from Proposition 5.1.4.14.

Proposition 5.1.5.13. 01V8Let q : X → S be a locally cartesian fibration of simplicial sets and
let f : K → X be any morphism of simplicial sets. Then:

(1) The induced map q′ : X/f → S/(q◦f) is a locally cartesian fibration of simplicial sets.

(2) An edge e of X/f is locally q′-cartesian if and only if its image in X is locally q-cartesian.

Proof. As in the proof of Proposition 5.1.4.17, we factor q′ as a composition

X/f
u−→ X ×S S/(q◦f)

v−→ S/(q◦f),

where u is a cartesian fibration and every edge of X/f is u-cartesian (Proposition 5.1.4.14).
The morphism v is a pullback of q, and is therefore a locally cartesian fibration (Remark
5.1.5.5). Moreover, an edge of X ×S S/(q◦f) is locally v-cartesian if and only if its image in
X is locally q-cartesian (Remark 5.1.3.5). Assertions (1) and (2) now follow from Remark
5.1.5.7.

Proposition 5.1.5.14. 047PLet κ be an uncountable regular cardinal and let q : X → S be
a locally cartesian fibration of simplicial sets. Then q is locally κ-small (in the sense of
Definition 4.7.9.1) if and only if, for every vertex s ∈ S, the ∞-category Xs = {s} ×S X is
locally κ-small.

Proof. Assume that, for every vertex s ∈ S, the ∞-category Xs is locally κ-small; we will
show that q is locally κ-small (the reverse implication is immediate from the definitions). By
virtue of Corollary 4.7.9.11, we may assume without loss of generality that S = ∆1. In this
case, q is a cartesian fibration and we wish to show that X is locally κ-small. Fix a pair of
objects x, z ∈ X; we wish to show that the Kan complex HomX(x, z) is essentially κ-small.
We may assume without loss of generality that q(x) ≤ q(z) (otherwise, the Kan complex
HomX(x, z) is empty). If q(x) = q(z), then the desired result follows from our hypothesis.
It will therefore suffice to treat the case where q(x) = 0 and q(z) = 1. Since q is a locally
cartesian fibration, we can choose a q-cartesian morphism f : y → z of X, where q(y) = 0.
In this case, composition with the homotopy class [f ] induces a homotopy equivalence of
Kan complexes HomX(x, y)→ HomX(x, z) (Corollary 5.1.2.3), so the desired result follows
from the local κ-smallness of the ∞-category X0.

https://kerodon.net/tag/01V8
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Corollary 5.1.5.15.047Q Let κ be an uncountable regular cardinal and let q : X → S be a locally
cartesian fibration of simplicial sets. Then q is essentially κ-small if and only if, for every
vertex s ∈ S, the ∞-category Xs = {s} ×S X is essentially κ-small.

Proof. Combine Proposition 5.1.5.14 with Remark 4.7.9.4.

Corollary 5.1.5.16.05DV Let κ be an uncountable regular cardinal and let U : E → C be a locally
cartesian fibration of ∞-categories. Suppose that C is essentially κ-small. The following
conditions are equivalent:

(1) The ∞-category E is essentially κ-small.

(2) For every vertex C ∈ C, the ∞-category EC = {C} ×C E is essentially κ-small.

Proof. Combine Corollaries 5.1.5.15 and 4.7.9.6.

Variant 5.1.5.17.05DW Let U : E → C be a locally cartesian fibration of ∞-categories and
let n ≥ −1 be an integer. Then U is essentially n-categorical (in the sense of Definition
4.8.6.1) if and only if, for each object C ∈ C, the ∞-category EC = {C} ×C E is locally
(n− 1)-truncated (in the sense of Definition 4.8.2.1).

Proof. We proceed as in the proof of Proposition 5.1.5.14. Assume that, for each object
C ∈ C, the ∞-category EC is locally (n− 1)-truncated; we will show that the functor U is
essentially n-categorical (the reverse implication follows from Proposition 4.8.6.17, and does
not require the assumption that U is locally cartesian). By virtue of Proposition 4.8.5.27, we
may assume without loss of generality that C = ∆1. Fix a pair of objects X,Z ∈ E ; we wish
to show that the map of Kan complexes HomE(X,Z)→ HomC(U(X), U(Z)) is n-truncated.
We may assume that U(X) ≤ U(Z) (otherwise, both Kan complexes are empty and there is
nothing to prove); in this case, we wish to show that the morphism space HomE(X,Z) is
n-truncated (Example 3.5.9.4). If U(X) = U(Z), then the desired result follows from our
hypothesis on the fibers of U . It will therefore suffice to treat the case where U(X) = 0 and
U(Z) = 1. Since U is a locally cartesian fibration, we can choose a U -cartesian morphism
f : Y → Z of E satisfying U(Y ) = 0. In this case, composition with the homotopy calss [f ]
induces a homotopy equivalence of Kan complexes HomE(X,Y )→ HomE(X,Z) (Corollary
5.1.2.3). It will therefore suffice to show that the Kan complex HomE(X,Y ) is n-truncated,
which follows from our assumption that the fiber E0 = U−1{0} is locally n-truncated.

Corollary 5.1.5.18.05DX Let U : E → C be a right fibration of ∞-categories and let n ≥ −2 be
an integer. Then U is locally n-truncated if and only if, for every object C ∈ C, the Kan
complex EC is (n+ 1)-truncated.

Proof. Combine Variant 5.1.5.17 with Example 4.8.2.4.
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One advantage the theory of locally cartesian fibrations holds over the theory of cartesian
fibrations is the following “fiberwise” existence criterion:

Proposition 5.1.5.19. 01V9Suppose we are given a commutative diagram of simplicial sets

X

p

��

r // Y

q

��
S

satisfying the following conditions:

(1) The maps p and q are locally cartesian fibrations, and r is an inner fibration.

(2) The map r carries locally p-cartesian edges of X to locally q-cartesian edges of Y .

(3) For every vertex s of S, the induced map rs : Xs → Ys is a locally cartesian fibration.

Then r is a locally cartesian fibration.

Warning 5.1.5.20. 01VAThe analogue of Proposition 5.1.5.19 for cartesian fibrations is false.

Proof of Proposition 5.1.5.19. Choose a vertex z ∈ X and an edge h : x → r(z) of the
simplicial set Y . We wish to prove that there exists a locally r-cartesian edge h : x → z

satisfying r(h) = h. Since p is a locally cartesian fibration, we can choose a locally p-
cartesian edge g : y → z satisfying p(g) = q(h). Assumption (2) guarantees that r(g) is
locally q-cartesian, so we can choose a 2-simplex σ of Y satisfying

d2
0(σ) = r(g) d2

1(σ) = h q(σ) = s1
0(q(h)),

as indicated in the diagram

r(y)

r(g)

!!
x

f

??

h // r(z).

Set s = q(x), so that f can be regarded as an edge of the simplicial set Ys. Invoking
assumption (3), we conclude that there exists a locally rs-cartesian edge f : x → y of Xs

satisfying r(f) = f . Since r is an inner fibration, we can choose a 2-simplex σ of X satisfying

d2
0(σ) = g d2

2(σ) = f r(σ) = σ,

https://kerodon.net/tag/01V9
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as depicted in the diagram

y

g

��
x

f

??

h // z.

We will complete the proof by showing that h is locally r-cartesian. To prove this, we can
replace X and Y by their pullbacks along the edge ∆1 q(h)−−→ S, and thereby reduce to the
case S = ∆1. In this case, the morphisms p and q are cartesian fibration (Remark 5.1.5.6),
so that g is p-cartesian and r(g) is q-cartesian (Remark 5.1.4.5). Applying Corollary 5.1.2.6,
we conclude that g is r-cartesian. It follows from Remark 5.1.3.5 that f is locally r-cartesian,
so that h is locally r-cartesian by virtue of Proposition 5.1.3.7.

5.1.6 Fiberwise Equivalence

023L Let D be an∞-category. Our primary goal in this section is to show that, when studying
∞-categories C equipped with a cartesian fibration C → D, equivalence can be detected
fiberwise. More precisely, we have the following result:

Theorem 5.1.6.1.023M Suppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′

where U is a cartesian fibration of ∞-categories, U ′ is an isofibration of ∞-categories, and
F is an equivalence of ∞-categories. Then the functor F is an equivalence of ∞-categories
if and only if it satisfies the following conditions:

(1) For every object D ∈ D having image D′ = F (D) in D′, the induced functor

FD : CD = {D} ×D C → {D′} ×D′ C′ = C′D′

is an equivalence of ∞-categories.

(2) The functor F carries U -cartesian morphisms of C to U ′-cartesian morphisms of C′.

Moreover, if these conditions are satisfied, then U ′ is also a cartesian fibration of∞-categories.

https://kerodon.net/tag/023L
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We will give the proof of Theorem 5.1.6.1 at the end of this section. First, let us collect
some of its consequences.
Corollary 5.1.6.2. 023NSuppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′ .

Assume that U and U ′ are isofibrations of ∞-categories and that F and F are equivalences
of ∞-categories. Then:

• The functor U is a cartesian fibration if and only if U ′ is a cartesian fibration.

• The functor U is a cocartesian fibration if and only if U ′ is a cocartesian fibration.

Proof. We will prove the first assertion; the second follows by a similar argument. It follows
from Theorem 5.1.6.1 that if U is a cartesian fibration, then U ′ is also a cartesian fibration.
To prove the converse, choose functors G′ : C′ → C and G : D′ → D which are homotopy
inverse to the equivalences F and F , respectively. We then have isomorphisms

U ◦G′ ◦ F ≃ U ≃ G ◦ F ◦ U = G ◦ U ′ ◦ F

in the functor ∞-category Fun(C,D). Since F is an equivalence of ∞-categories, it follows
that there exists an isomorphism α : U ◦G′ → G ◦ U ′ in the functor ∞-category Fun(C′,D).
Using our assumption that U is an isofibration, we can lift α to an isomorphism of functors
α : G′ → G (Proposition 4.4.5.8). Applying Theorem 5.1.6.1 to the commutative diagram

C′ G //

U ′

��

C

U

��
D′ G // D,

we conclude that if U ′ is a cartesian fibration, then U is also a cartesian fibration.

Corollary 5.1.6.3. 023PSuppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′ .

https://kerodon.net/tag/023N
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Assume that U and U ′ are isofibrations of ∞-categories and that F and F are equivalences
of ∞-categories. Then:

• The functor U is a right fibration if and only if U ′ is a right fibration.

• The functor U is a left fibration if and only if U ′ is a left fibration.

Proof. We will prove the first assertion; the second follows by a similar argument. Assume
first that U ′ is a right fibration of∞-categories. Then U ′ is a cartesian fibration (Proposition
5.1.4.14), so Corollary 5.1.6.2 implies that U is a cartesian fibration. To prove that U is a
right fibration, it will suffice to show that for every object D ∈ D, the fiber CD = {D}×D C is
a Kan complex (Proposition 5.1.4.14). This follows from Remark 4.5.1.21, since the functor
F induces an equivalence of ∞-categories FD : CD → C′F (D) (Corollary 4.5.2.32).

We now prove the reverse implication. Arguing as in the proof of Corollary 5.1.6.2, we
can construct a commutative diagram

C′ G //

U ′

��

C

U

��
D′ G // D,

where G and G are homotopy inverses of the equivalences F and F , respectively. It then
follows from the preceding argument that if U is a right fibration of ∞-categories, then U ′

is also a right fibration of ∞-categories.

Corollary 5.1.6.4.01VE Suppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′ .

where U and U ′ are right fibrations and the functor F is an equivalence of ∞-categories.
Then F is an equivalence of ∞-categories if and only if, for every object D ∈ D having image
D′ = F (D) ∈ D′, the induced map of fibers FD : CD → C′D′ is a homotopy equivalence of
Kan complexes.

The proof of Theorem 5.1.6.1 will require some preliminaries. Our first step is to show
that if U : C → D is an isofibration of ∞-categories, then the collection of U -cartesian
morphisms of C is invariant under categorical equivalence.

https://kerodon.net/tag/01VE
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Lemma 5.1.6.5. 023QSuppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′,

where the functors U and U ′ are inner fibrations and the functors F and F are fully faithful.
Let g : Y → Z be a morphism in C. If F (g) is a U ′-cartesian morphism of C′, then g is a
U -cartesian morphism of C.

Proof. By virtue of Proposition 5.1.2.1, it will suffice to show that for every object X ∈ C,
the diagram of Kan complexes

02R6HomC(X,Y, Z)×HomC(Y,Z) {g} //

��

HomC(X,Z)

��
HomD(U(X), U(Y ), U(Z))×HomD(U(Y ),U(Z)) {U(g)} // HomD(U(X), U(Z))

(5.6)
is a homotopy pullback square. Set X ′ = F (X), Y ′ = F (Y ), Z ′ = F (Z), and g′ = F (g).
Since the functors F and F are fully faithful, (5.6) is homotopy equivalent to the diagram

02R7HomC′(X ′, Y ′, Z ′)×HomC(Y ′,Z′) {g′} //

��

HomC′(X ′, Z ′)

��
HomD′(U ′(X ′), U ′(Y ′), U ′(Z ′))×HomD′ (U ′(Y ),U ′(Z)) {U ′(g′)} // HomD′(U ′(X ′), U ′(Z ′)).

(5.7)
Our assumption that g′ is U ′-cartesian guarantees that (5.7) is a homotopy pullback square
of Kan complexes (Proposition 5.1.2.1), so that (5.6) is also a homotopy pullback square
(Corollary 3.4.1.12).
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Proposition 5.1.6.6.023R Suppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′,

where the functors U and U ′ are isofibrations and the functors F and F are equivalences of
∞-categories. Let g : Y → Z be a morphism in C. Then g is U -cartesian if and only if F (g)
is U ′-cartesian.

Proof. It follows from Lemma 5.1.6.5 that if F (g) is U ′-cartesian, then g is U -cartesian. For
the converse, suppose that g is U -cartesian. Arguing as in the proof of Corollary 5.1.6.2, we
can construct a commutative diagram

C′ G //

U ′

��

C

U

��
D′ G // D,

where G and G are homotopy inverses of the equivalences F and F , respectively. Then
G(F (g)) is isomorphic to g as an object of the arrow ∞-category Fun(∆1, C). Invoking
Corollary 5.1.2.5, we conclude that G(F (g)) is U -cartesian, so that F (g) is U ′-cartesian by
virtue of Lemma 5.1.6.5.

Proposition 5.1.6.7.01VB Suppose we are given a commutative diagram of ∞-categories

C F //

q

��

C′

q′

��
D F // D′ .

Assume that:

(1) The functors q and q′ are inner fibrations.

(2) The inner fibration q is a cartesian fibration and the functor F carries q-cartesian
morphisms of C to locally q′-cartesian morphisms of C′.

https://kerodon.net/tag/023R
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(3) The functor F : D → D′ is fully faithful.

Then F is fully faithful if and only if, for every object D ∈ D having image D′ = F (D) ∈ D′,
the induced map of fibers FD : CD → C′D′ is fully faithful.

Proof. The “only if” direction follows from Proposition 4.6.2.8. For the converse, assume
that each of the functors FD is fully faithful; we will show that F is fully faithful. Let X
and Z be objects of C having images X,Z ∈ D; we wish to show that the upper horizontal
map in the diagram of Kan complexes

HomC(X,Z) //

��

HomC′(F (X), F (Z))

��
HomD(X,Z) // HomD′(F (X), F (Z))

is a homotopy equivalence. Since q and q′ are inner fibrations, the vertical maps are Kan
fibrations (Proposition 4.6.1.21). Assumption (3) guarantees that the lower horizontal map
is a homotopy equivalence. By virtue of Proposition 3.2.8.1, it will suffice to show that for
every morphism e : X → Z in D, the induced map of fibers

θ : HomC(X,Z)e → HomC′(F (X), F (Z))F (e)

is a homotopy equivalence.
Let [θ] denote the homotopy class of θ, regarded as a morphism in the homotopy category

hKan. Since q is a cartesian fibration, there exists a q-cartesian morphism g : Y → Z of C
satisfying q(g) = e. We then have a commutative diagram

HomC
X

(X,Y )

[g]◦

��

// HomC′
F (X)

(F (X), F (Y ))

[F (g)]◦

��
HomC(X,Z)e

[θ] // HomC′(F (X), F (Z))F (e)

in hKan, where the vertical maps are given by the composition law of Notation 5.1.3.10.
Assumption (2) guarantees that F (g) is locally q′-cartesian, so that the vertical maps in this
diagram are isomorphisms in hKan (Proposition 5.1.3.11). It will therefore suffice to show
that the functor FX induces a homotopy equivalence of mapping spaces HomC

X
(X,Y )→

HomC′
F (X)

(F (X), F (Y )), which follows from our assumption that FX is fully faithful.
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Remark 5.1.6.8.023S In the situation of Proposition 5.1.6.7, we can replace (2) with the
following a priori weaker assumption:

(2′) For every object Z ∈ C and every morphism u : Y → q(Z) in D, there exists a q-cartesian
u : Y → Z of C satisfying q(u) = u and for which F (u) is locally q′-cartesian.

Assume that (2) is satisfied and let v : X → Z be any q-cartesian morphism in C; we wish to
show that F (v) is locally q′-cartesian. To prove this, we can assume without loss of generality
that D = ∆1 = D′ and that F is the identity map. Using (2′), we can choose another
q-cartesian morphism u : Y → Z satisfying q(u) = q(v) for which F (u) is q′-cartesian.
Applying Remark 5.1.3.8, we see that v can be obtained as a composition of u with an
isomorphism in the ∞-category C. Then F (v) can be obtained as the composition of F (u)
with an isomorphism in the∞-category C′, and is therefore q-cartesian by virtue of Corollary
5.1.2.4 (and Proposition 5.1.1.8).

Proof of Theorem 5.1.6.1. Suppose we are given a commutative diagram of ∞-categories

C F //

U

��

C′

U ′

��
D F // D′

where U is a cartesian fibration of ∞-categories, U ′ is an isofibration of ∞-categories, and
F is an equivalence of ∞-categories. If F satisfies conditions (1) and (2) of Theorem 5.1.6.1,
then it is fully faithful (Proposition 5.1.6.7) and essentially surjective (Remark 4.6.2.19),
hence an equivalence of ∞-categories by virtue of Theorem 4.6.2.20. Conversely, if F is an
equivalence of ∞-categories, then it satisfies conditions (1) and (2) by virtue of Corollary
4.5.2.32 and Proposition 5.1.6.7, respectively. To complete the proof, we must show that if
these conditions are satisfied, then U ′ is also a cartesian fibration of ∞-categories.

Let Z ′ be an object of C′ and let g′ : Y ′ → U ′(Z ′) be a morphism in D′; we wish to
show that g′ can be lifted to a U ′-cartesian morphism Y ′ → Z ′ in C′. Since F is essentially
surjective, we can choose an object Z ∈ C and an isomorphism v : F (Z) → Z ′ in the
∞-category C′. Since F is essentially surjective, we can choose an object Y ∈ D and an
isomorphism u : F (Y )→ Y

′ in the ∞-category D′. Since F is fully faithful at the level of

https://kerodon.net/tag/023S
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homotopy categories, we can choose a morphism g : Y → U(Z) in D for which the diagram

F (Y ) F (g) //

u

��

F (U(Z))

U ′(v)

��

Y
′ g′ // Z

′
,

commutes in the homotopy category hD′, and can therefore be lifted to a commutative
diagram σ in ∞-category D′ (see Exercise 1.5.2.10). Using our assumption that U is a
cartesian fibration, we can lift g to a U -cartesian morphism g : Y → Z of C. Since U ′ is an
isofibration, Corollary 4.4.5.9 guarantees that we can lift σ to a commutative diagram σ :

F (Y ) F (g) //

��

F (Z)

v

��
Y ′

g′ // Z ′

in the ∞-category C′, where the vertical maps are isomorphisms. To complete the proof, it
will suffice to show that the morphism g′ is U ′-cartesian. This follows from Corollary 5.1.2.5,
since the morphism F (g) is U ′-cartesian (Proposition 5.1.6.6).

5.1.7 Equivalence of Inner Fibrations

0280Let C and D be ∞-categories. Recall that a functor F : C → D is an equivalence of
∞-categories if there exists a functor G : D → C such that G◦F and F ◦G are isomorphic to
idC and idD as objects of the∞-categories Fun(C, C) and Fun(D,D), respectively (Definition
4.5.1.10). In this section, we study a relative version of this notion, where C and D are
simplicial sets equipped with inner fibrations U : C → E and V : D → E over the same base
simplicial set E (which need not be an ∞-category). Recall that, in this case, the simplicial
set

Fun/ E(C,D) = {U} ×Fun(C,E) Fun(C,D)

is also an ∞-category (Corollary 4.1.4.8).

https://kerodon.net/tag/0280
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Definition 5.1.7.1.0281 Suppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
E ,

where U and V are inner fibrations. Let G : D → C be a morphism of simplicial sets. We
say that G is a homotopy inverse of F relative to E if the following conditions are satisfied:

• The composition U ◦G is equal to V : that is, the diagram

C

U

��

DGoo

V

��
E

is commutative.

• The composite morphisms G ◦ Fand F ◦G are isomorphic to idC and idD as objects of
the ∞-categories Fun/ E(C, C) and Fun/ E(D,D), respectively.

We say that F is an equivalence of inner fibrations over E if there exists a morphism of
simplicial sets G : D → C which is a homotopy inverse of F relative to E . We say that inner
fibrations U : C → E and V : D → E are equivalent if there exists a morphism of simplicial
sets F : C → D which is an equivalence of inner fibrations over E (so that, in particular, we
have U = V ◦ F ).

Example 5.1.7.2.0282 Let C and D be ∞-categories, so that the projection maps U : C → ∆0

and V : D → ∆0 are inner fibrations. Then a functor F : C → D is an equivalence of
∞-categories if and only if it is an equivalence of inner fibrations over ∆0. In particular, the
inner fibrations U and V are equivalent (in the sense of Definition 5.1.7.1) if and only if the
∞-categories C and D are equivalent (in the sense of Definition 4.5.1.10).

Remark 5.1.7.3 (Two-out-of-Three).0283 Suppose we are given a commutative diagram of
simplicial sets

C

��

F // C′

��

F ′ // C′′

��
E ,

https://kerodon.net/tag/0281
https://kerodon.net/tag/0282
https://kerodon.net/tag/0283


1006 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

where the vertical maps are inner fibrations. If any two of the morphisms F , F ′, and F ′ ◦ F
are equivalences of inner fibrations over E , then so is the third. In particular, the collection
of equivalences of inner fibrations over E is closed under composition.

Remark 5.1.7.4 (Functoriality). 0284Let U : C → E and V : D → E be inner fibrations
of simplicial sets, and let F : C → D be an equivalence of inner fibrations over E . For
every morphism of simplicial sets E ′ → E , the induced map F ′ : E ′×E C → E ′×E D is an
equivalence of inner fibrations over E ′. In particular, for every object E ∈ E , the induced
map FE : {E} ×E C → {E} ×E D is an equivalence of ∞-categories.

Proposition 5.1.7.5. 0285Suppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

~~
E .

Then:

(1) If U and V are inner fibrations and F is an equivalence of inner fibrations over E, then
F is a categorical equivalence of simplicial sets.

(2) If U and V are isofibrations and F is a categorical equivalence of simplicial sets, then it
is an equivalence of inner fibrations over E.

Proof. We first prove (1). Assume that U and V are inner fibration and that F is an
equivalence of inner fibrations over E . We wish to show that F is a categorical equivalence of
simplicial sets. Fix an ∞-category K, and let θF : π0(Fun(D,K)≃)→ π0(Fun(C,K)≃) be the
map given by precomposition with F . We wish to show that θF is a bijection. Let G : D → C
be a homotopy inverse of F relative to E , so that precomposition with G determines a map
θG : π0(Fun(D,K)≃)→ π0(Fun(C,K)≃). We claim that θG is an inverse of θF . We will show
that θG is a left inverse of θF ; a similar argument will show that θG is a right inverse of
θF . Fix a morphism H : C → K; we wish to show that H is isomorphic to H ◦G ◦ F as an
object of the ∞-category Fun(C,K). This is clear, since postcomposition with H determines
a functor of ∞-categories Fun/ E(C, C)→ Fun(C,K).

We now prove (2). Let Q be a contractible Kan complex containing a pair of distinct
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vertices x and y, and form a pushout diagram of simplicial sets

{x} × C F //

��

D

��
Q× C //M .

Since the vertical maps are monomorphisms, this diagram is also a categorical pushout
square (Proposition 4.5.4.11). In particular, if F is a categorical equivalence, then the map
Q× C →M is also a categorical equivalence (Proposition 4.5.4.10). Since Q is contractible,
the inclusion {y}×C ↪→ Q×C is a categorical equivalence (Remark 4.5.3.7), so the inclusion
{y} × C ↪→ M is also a categorical equivalence. If U is an isofibration, then the lifting
problem

{y} × C id //

��

C

U

��
M //

<<

E
admits a solution, which we can identify with a pair of morphisms G : D → C and
u : Q → Fun/ E(C, C) satisfying u(x) = G ◦ F and u(y) = idC. It follows that G ◦ F is
isomorphic to idC as an object of the ∞-category Fun/ E(C, C).

Repeating the above argument with F replaced by G, we conclude that there exists a
morphism H : C → D in (Set∆)/S such that H ◦G is isomorphic to idD as an object of the
∞-category Fun/ E(D,D). Then F and H are both isomorphic to H ◦G ◦ F as objects of
the ∞-category Fun/ E(C,D), and are therefore isomorphic to each other. We may therefore
assume without loss of generality that H = F , so that G is a homotopy inverse of F relative
to E . In particular, F is an equivalence of inner fibrations over E .

Warning 5.1.7.6.0286 Assertion (2) of Proposition 5.1.7.5 need not be true if U and V are only
assumed to be inner fibrations. For example, let E be an ∞-category and let E ′ ⊆ E be a
full subcategory for which the inclusion map ι : E ′ ↪→ E is an equivalence. Then we have a
commutative diagram of ∞-categories

E ′ ι //

ι

��

E

id

��
E ,
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where the vertical maps are inner fibrations. However, ι is not an equivalence of inner
fibrations over E unless E ′ = E .

Example 5.1.7.7. 02LQLet C be an ∞-category and let F : K → C be a diagram. It follows
from Theorem 4.6.4.17 and Proposition 5.1.7.5 that the slice and coslice diagonal morphisms

δ/F : C/F ↪→ C ×̃Fun(K,C){F} δF/ : CF/ ↪→ {F} ×̃Fun(K,C) C

are equivalences of right and left fibrations over C, respectively. In particular, for every
morphism of simplicial sets D → C, the induced maps

D×C C/F ↪→ D ×̃Fun(K,C){F} D×C CF/ ↪→ {F} ×̃Fun(K,C)D

are equivalences of inner fibrations over D (Remark 5.1.7.4); in particular, they are categorical
equivalences of simplicial sets (Proposition 5.1.7.5).

Corollary 5.1.7.8. 0287Suppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
E ,

where U and V are inner fibrations and E = ∆n is a standard simplex. Then F is an
equivalence of inner fibrations over E if and only if it an equivalence of ∞-categories.

Proof. Our assumption that E = ∆n is a standard simplex guarantees that the inner
fibrations U and V are isofibrations (Example 4.4.1.6), so the desired result follows from
Proposition 5.1.7.5.

Proposition 5.1.7.9. 0288Suppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
E ,

where U and V are inner fibrations. The following conditions are equivalent:

(1) For every morphism of simplicial sets B → E, postcomposition with F induces a homotopy
equivalence of Kan complexes Fun/ E(B, C)≃ → Fun/ E(B,D)≃.
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(2) For every morphism of simplicial sets B → E, postcomposition with F induces an
equivalence of ∞-categories Fun/ E(B, C)→ Fun/ E(B,D).

(3) The morphism F is an equivalence of inner fibrations over E.

(4) For every simplex σ : ∆n → E, the induced map Fσ : ∆n ×E C → ∆n ×E D is an
equivalence of ∞-categories.

Proof. We first show that (1) implies (2). Assume that (1) is satisfied and let B → E
be a morphism of simplicial sets; we wish to show that the induced map Fun/ E(B, C) →
Fun/ E(B,D) is an equivalence of ∞-categories. By virtue of Theorem 4.5.7.1, it will suffice
to show that for every simplicial set A, the induced map

Fun(B′,Fun/ E(B, C))≃ → Fun(B′,Fun/ E(B,D))≃

is a homotopy equivalence of Kan complexes. This follows by applying (1) to the composite
map B′ ×B → B → E .

We now prove that (2) implies (3). Assume that condition (2) is satisfied. Setting B = D,
we deduce that composition with F induces an equivalence of ∞-categories Fun/ E(D, C)→
Fun/ E(D,D). In particular, there exists a morphism G : D → C in (Set∆)/ E such that F ◦G
is isomorphic to idD as an object of the ∞-category Fun/ E(D,D). It follows that F ◦G ◦ F
is isomorphic to F as an object of the ∞-category Fun/ E(C,D). Applying condition (2) in
the case B = C, we see that postcomposition with F induces an equivalence of ∞-categories
Fun/ E(C, C)→ Fun/ E(C,D), so that G ◦ F is isomorphic to idC as an object of Fun/ E(C, C).
It follows that G is a homotopy inverse of F relative to E . In particular, F is an equivalence
of inner fibrations over E .

The implication (3)⇒ (4) follows by combining Remark 5.1.7.4 with Corollary 5.1.7.8.
We will complete the proof by showing that (4) implies (1). Assume that condition (4)
is satisfied, and let B be a simplicial set equipped with a morphism B → E . We wish
to show that composition with F induces a homotopy equivalence of Kan complexes θB :
Fun/ E(B, C)≃ → Fun/ E(B,D)≃. Assume first that the simplicial set B has dimension ≤ n,
for some integer n ≥ −1. Our proof proceeds by induction on n. If n = −1, then B is empty
and there is nothing to prove. We may therefore assume without loss of generality that
n ≥ 0. Let A be the (n− 1)-skeleton of B. Our inductive hypothesis guarantees that θA is a
homotopy equivalence. By virtue of Proposition 3.2.8.1, it will suffice to verify the following:

(∗) The restriction maps

Fun/ E(B, C)→ Fun/ E(A, C) Fun/ E(B,D)→ Fun/ E(A,D)

are isofibrations of ∞-categories, and therefore induce Kan fibrations

Fun/ E(B, C)≃ → Fun/ E(A, C)≃ Fun/ E(B,D)≃ → Fun/ E(A,D)≃;
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see Proposition 4.4.3.7.

(∗′) For every object T ∈ Fun/ E(A, C), the induced map of fibers

{T} ×Fun/ E(A,C) Fun/ E(B, C)→ {F ◦ T} ×Fun/ E(A,D) Fun/ E(B,D)

is an equivalence of ∞-categories, and therefore induces a homotopy equivalence of
Kan complexes

{T} ×Fun/ E(A,C)≃ Fun/ E(B, C)≃ → {F ◦ T} ×Fun/ E(A,D)≃ Fun/ E(B,D)≃

(see Remark 4.5.1.19).

Let J denote the set of all nondegenerate n-simplices of B. Proposition 1.1.4.12 supplies a
pushout diagram of simplicial sets∐

σ∈J ∂∆n //

��

∐
σ∈J ∆n

��
A // B.

Consequently, to verify (∗) and (∗′), we can assume without loss of generality that B = ∆n

is a standard simplex and that A = ∂∆n is its boundary. Replacing C and D by the fiber
products ∆n ×E C and ∆n ×E D, we can reduce further to the case where E = ∆n is a
standard simplex. Applying Example 4.4.1.6, we deduce that U and V are isofibrations, so
that assertion (∗) follows from Proposition 4.4.5.1. Invoking assumption (4), we deduce that
F is an equivalence of ∞-categories, and therefore induces equivalences

Fun(A, C)→ Fun(A,D) Fun(B, C)→ Fun(B,D).

Assertion (∗′) now follows from Corollary 4.5.2.32.
We now treat the case where B is a general simplicial set. For each n ≥ 0, let skn(B)

denote the n-skeleton of B (Construction 1.1.4.1). Using (∗) and Corollary 4.5.6.22, we see
that θB can be realized as the inverse limit of a tower

· · · // Fun/S(sk2(B), X)≃

θsk2(B)

��

// Fun/S(sk1(B), X)≃

θsk1(B)

��

// Fun/S(sk0(B), X)≃

θsk0(B)

��
· · · // Fun/S(sk2(B), X ′)≃ // Fun/S(sk1(B), X ′)≃ // Fun/S(sk0(B), X ′)≃,

where each of the transition maps is a Kan fibration. The preceding arguments show that
each of the vertical maps θskn(B) is a homotopy equivalence of Kan complexes. Invoking
Example 4.5.6.18, we deduce that θB is a homotopy equivalence of Kan complexes.
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Let F : C → D be a morphism of simplicial sets. Then F determines a pullback functor
F ∗ : (Set∆)/D → (Set∆)/ C , given on objects by the formula F ∗(D̃) = C ×DD̃.

Proposition 5.1.7.10.028E Let V : D̃ → D be an isofibration of ∞-categories, let C be a
simplicial set, and let F,G : C → D be morphisms of simplicial sets which are isomorphic
when viewed as objects of the ∞-category Fun(C,D). Then the isofibrations F ∗(D̃)→ C and
G∗(D̃)→ C are equivalent (in the sense of Definition 5.1.7.1).

Warning 5.1.7.11.028F The conclusion of Proposition 5.1.7.10 does not necessarily hold if
V : D̃ → D is assumed only to be an inner fibration of simplicial sets. See Warning 5.1.7.6.

Proof of Proposition 5.1.7.10. Since F and G are isomorphic as objects of Fun(C,D), there
exists a contractible Kan complex X containing vertices f and g and a functor H : X →
Fun(C,D) satisfying H(f) = F and H(g) = G. Let us identify H with a morphism of
simplicial sets X × C → D, and let C̃ denote the fiber product (X × C)×D D̃. We will show
that the inclusion maps

F ∗(D̃) = {f} ×X C̃ ↪→ C̃ ←↩ {g} ×X C̃ = G∗(D̃)

are equivalences of inner fibrations over C. To prove this, we may assume without loss of
generality that C = ∆n is a standard simplex (Proposition 5.1.7.9); in this case, we wish to
show that both inclusion maps are equivalences of ∞-categories (Corollary 5.1.7.8). This
follows by applying Corollary 4.5.2.29 to the diagram of pullback squares

F ∗(D̃) //

��

C̃

��

G∗(D̃)oo

��
{f} × C // X × C {g} × C;oo

here the vertical maps are isofibrations (since they are pullbacks of V ) and the lower horizontal
maps are equivalences of ∞-categories (since X is a contractible Kan complex).

We now study properties of inner fibrations that are invariant under equivalence.

Lemma 5.1.7.12.0289 Let U : D → E be an isofibration of simplicial sets and F : C ↪→ D be a
monomorphism of simplicial sets. The following conditions are equivalent:

(1) The restriction (U ◦ F ) : C → E is an inner fibration and F is an equivalence of inner
fibrations over E.

(2) There exists a morphism G : D → C in (Set∆)/ E satisfying G ◦ F = idC and an isomor-
phism u : idD → F ◦G in the ∞-category Fun/ E(D,D) whose image in Fun/ E(C,D)
is the identity morphism idF : F → F ◦G ◦ F = F .

https://kerodon.net/tag/028E
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Proof. We first show that (2) implies (1). Suppose that there exists a morphism G : D → C
satisfying G ◦ F = idC . Then F and G exhibit C as a retract of D in the category (Set∆)/ E .
Since U : D → E is an isofibration, it follows that (U ◦F ) : C → E is an isofibration (Remark
4.5.5.10). In particular, U ◦ F is an inner fibration (Remark 4.5.5.7). If there exists an
isomorphism u : idD → F ◦G in the ∞-category Fun/ E(D,D), then G is a homotopy inverse
of F relative to E , so that F is an equivalence of inner fibrations over E .

We now show that (1) implies (2). Assume that U ◦ F is an inner fibration and that
F is an equivalence of inner fibrations over E . Let G′ : D → C be a homotopy inverse of
F relative to E , so that there exists an isomorphism e : idC → G′ ◦ F in the ∞-category
Fun/ E(C, C). Applying Proposition 4.4.5.8, we can lift e to an isomorphism ẽ : G → G′

in the ∞-category Fun/ E(D, C), where G : D → C satisfies G ◦ F = idC. Note that F is
a categorical equivalence of simplicial sets (Proposition 5.1.7.5), and therefore induces a
categorical equivalence

(∆1 × C)
∐

(∂∆1×C)
(∂∆1×D) ↪→ ∆1 ×D .

Since U is an isofibration, every lifting problem

(∆1 × C)∐(∂∆1×C)(∂∆1×D) //

��

D

U

��
∆1 ×D //

77

E

admits a solution. In particular, there exists a morphism u : idD → F ◦G in the ∞-category
Fun/ E(D,D) whose image in Fun/ E(C,D) is the identity map idF . We will complete the
proof by showing that u is an isomorphism in the ∞-category Fun/ E(D,D). Using the
criterion of Proposition 4.4.4.9, we are reduced to checking that, for each vertex D ∈ D
having image E = U(D) ∈ E , the induced map uD : D → (F ◦G)(D) is an isomorphism in
the ∞-category DE = {E} ×E D. This is clear, since D is isomorphic (in the ∞-category
DE) to an object of the form F (C) for C ∈ CE , and the morphism uF (C) is equal to the
identity idF (C).

Proposition 5.1.7.13. 028ALet U : C → E and V : D → E be inner fibrations of simplicial sets
which are equivalent to one another. Then:

(1) The morphism U is an isofibration if and only if V is an isofibration.

(2) The morphism U is a cartesian fibration if and only if V is a cartesian fibration.

(3) The morphism U is a right fibration if and only if V is a right fibration.

https://kerodon.net/tag/028A
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(4) The morphism U is a cocartesian fibration if and only if V is a cocartesian fibration.

(5) The morphism U is a left fibration if and only if V is a left fibration.

(6) The morphism U is a Kan fibration if and only if V is a Kan fibration.

Proof. Let F : C → D be an equivalence of inner fibrations over E . We first prove (1).
Assume that V is an isofibration; we will show that U is also an isofibration. Choose a
monomorphism of simplicial sets C ↪→ Q, where Q is a contractible Kan complex (Exercise
3.1.7.11). Replacing D by the product D×Q, we can assume that F is a monomorphism of
simplicial sets. In this case, Lemma 5.1.7.12 guarantees that F exhibits C as a retract of D
in the category (Set∆)/ E , so that U is an isofibration by virtue of Remark 4.5.5.10.

To prove (2), we may assume without loss of generality that E = ∆n is a standard
simplex (Proposition 5.1.4.7). In this case, U and V are isofibrations (Example 4.4.1.6) and
F is an equivalence of ∞-categories (Corollary 5.1.7.8). It follows from Corollary 5.1.6.2
that U is a cartesian fibration if and only if V is a cartesian fibration.

To prove (3), suppose that U is a right fibration; we will show that V is a right fibration.
It follows from (2) that V is a cartesian fibration. It will therefore suffice to show that,
for each vertex E ∈ E , the ∞-category {E} ×E D is a Kan complex (Proposition 5.1.4.14).
By virtue of Remark 5.1.7.4, the morphism F induces an equivalence of ∞-categories
FE : {E}×E C → {E}×E D. It will therefore suffice to show that {E}×E C is a Kan complex
(Remark 4.5.1.21), which follows from our assumption that U is a right fibration.

Assertions (4) and (5) follow by similar arguments. Assertion (6) follows by combining
(3) and (5) (see Example 4.2.1.5).

Proposition 5.1.7.14.028B Suppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
E ,

where U and V are cartesian fibrations. Then F is an equivalence of inner fibrations over E
if and only if the following conditions are satisfied:

(1) For every vertex E ∈ E, the induced map FE : {E} ×E C → {E} ×E D is an equivalence
of ∞-categories.

(2) The morphism F carries U -cartesian edges of C to V -cartesian edges of D.

https://kerodon.net/tag/028B
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Proof. By virtue of Proposition 5.1.7.9, we may assume without loss of generality that
E = ∆n is a standard simplex, so that F is an equivalence of inner fibrations over E if
and only if it is an equivalence of ∞-categories (Corollary 5.1.7.8). Since U and V are
isofibrations (Example 4.4.1.6), the desired result follows from Theorem 5.1.6.1.

Corollary 5.1.7.15. 028CSuppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
E ,

where U and V are right fibrations. Then F is an equivalence of inner fibrations if and
only if, for every vertex E ∈ E, the induced map FE : {E} ×E C → {E} ×E D is a homotopy
equivalence of Kan complexes.

Proof. Combine Proposition 5.1.7.14 with Proposition 5.1.4.14.

5.2 Covariant Transport

019ALet X → S be a covering map of topological spaces. For every point s ∈ S, the fiber
Xs = {s}×SX is equipped with an action of the fundamental group π1(S, s). More generally,
the construction s 7→ Xs determines a functor from the fundamental groupoid π≤1(S) to
the category of sets, which will refer to as the monodromy representation of the covering
map X → S (see Example 5.2.0.5 below).

It will be convenient to place monodromy in a more general context. Recall that if
X → S is a covering map of topological spaces, then the induced map Sing•(X)→ Sing•(S)
is a covering map of simplicial sets (Proposition 3.1.4.9). In particular, it is a left covering
map of simplicial sets (Definition 4.2.3.8).

Construction 5.2.0.1 (Covariant Transport for Left Covering Maps). 027SLet U : E → C be a
left covering map of simplicial sets. For each vertex C ∈ C, the fiber EC = {C} ×C E is a
discrete simplicial set, which we will identify with its underlying set of vertices (Remark
4.2.3.17). If C̃ is a vertex of EC and f : C → D is an edge of C, then our assumption that U
is a left covering map guarantees that there is a unique edge f̃ : C̃ → f!(C̃) of E satisfying
U(f̃) = f . The construction C̃ 7→ f!(C̃) then determines a function f! : EC → ED, which we
will refer to as covariant transport along f .

Example 5.2.0.2. 0351In the situation of Construction 5.2.0.1, suppose that e = idC is a
degenerate edge of C. Then the covariant transport function e! : EC → EC is the identity
function.

https://kerodon.net/tag/028C
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Proposition 5.2.0.3.0352 Let U : E → C be a left covering map of simplicial sets. Then there
is a unique functor

hTrE / C : hC → Set
with the following properties:

• For each vertex C ∈ C, we have hTrE / C(C) = EC .

• Let f : C → D be an edge of C, and let [f ] denote the corresponding morphism
in the homotopy category hC. Then hTrE / C([f ]) is the covariant transport function
f! : EC → ED of Construction 5.2.0.1.

Proof. By virtue of Example 5.2.0.2 (and the proof of Proposition 1.3.6.4), it will suffice to
show that if σ is a 2-simplex σ of C as indicated in the diagram

D

g

��
C

f

??

h // E,

then the covariant transport function h! : EC → EE is equal to the composition g! ◦ f!. Fix a
vertex X ∈ EC . By construction, there is an edge f̃ : X → f!(X) satisfying U(f̃) = f and
an edge h̃ : X → h!(X) satisfying U(h̃) = h. Since U is a left covering map, we can lift σ
(uniquely) to a 2-simplex of E with boundary indicated in the diagram

f!(X)

g̃

""
X

f̃

==

h̃ // h!(X).

The edge g̃ then satisfies U(g̃) = g, and therefore witnesses the identity g!(f!(X)) =
h!(X).

Definition 5.2.0.4.0353 Let U : E → C be a left covering morphism of simplicial sets and let
hTrE / C : hC → Set be the functor of Proposition 5.2.0.3. We will refer to hTrE / C as the
homotopy transport representation of U .

Example 5.2.0.5 (The Monodromy Representation).027T Let f : X → S be a covering map of
topological spaces. Applying Proposition 5.2.0.3 to the induced map Sing•(X)→ Sing•(S),
we obtain a functor from the fundamental groupoid π≤1(S) to the category of sets, which
we will denote by hTrX/S : π≤1(S)→ Set and refer to as the monodromy representation of
f . Concretely, it is given on objects by the formula hTrX/S(s) = {s} ×S X.

https://kerodon.net/tag/0352
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Example 5.2.0.6. 0354Let Set∗ denote the category of pointed sets, so that the forgetful
functor Set∗ → Set induces a left covering morphism of simplicial sets N•(Set∗)→ N•(Set)
(Example 4.2.3.3). Then the homotopy transport functor hTrN•(Set∗)/N•(Set) is isomorphic
to the identity functor idSet : Set→ Set.

Our first goal in this section is to generalize the definition of the homotopy transport
representation hTrE / C to the case where U : E → C is a cocartesian fibration of simplicial sets.
In §5.2.2, we associate to each edge f : C → D of the simplicial set C a functor of∞-categories
f! : EC → ED, which we refer to as the covariant transport functor associated to f (Definition
5.2.2.4). Unlike the covariant transport function of Construction 5.2.0.1, the functor f! is
not uniquely determined: it is well-defined only up to isomorphism (Proposition 5.2.2.8). To
construct it (and to establish its uniqueness up to isomorphism), we will exploit the fact that
postcomposition with U induces a cocartesian fibration Fun(EC , E)→ Fun(EC , C), which we
prove in §5.2.1 (see Theorem 5.2.1.1).

In §5.2.5, we study the behavior of covariant transport with respect to composition.
Suppose we are given a 2-simplex σ of the simplicial set C, which we view as a commutative
diagram

D

g

  
C

f

??

h // E.

In this case, we will show that there is an isomorphism of covariant transport functors
h! ≃ g! ◦ f! (Proposition 5.2.5.1). As a consequence, we can regard the construction C 7→ EC
as a functor from the homotopy category hC to the homotopy category hQCat of Construction
4.5.1.1, which we denote by hTrE / C : hC → hQCat and refer to as the homotopy transport
representation of the cocartesian fibration U (Construction 5.2.5.2).

The remainder of this section is devoted to the following:

Question 5.2.0.7. 023VLet C be a simplicial set and let F : hC → hQCat be a functor. Can F

be obtained as the homotopy transport representation of a cocartesian fibration U : E → C?

The answer to Question 5.2.0.7 is “no” in general. However, there are two important
special cases where the answer is “yes”:

• In §5.2.7, we show that any set-valued functor hC → Set can be realized as the
homotopy transport representation of a cocartesian fibration U : E → C. Moreover, we
can arrange that U is a left covering map. In this case, the simplicial set E is uniquely
determined up to isomorphism (Corollary 5.2.7.3) and can be described explicitly using
the classical category of elements construction, which we review in §5.2.6.

https://kerodon.net/tag/0354
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• Every functor of ∞-categories E0 → E1 can be realized as the covariant transport
functor associated to a cocartesian fibration U : E → ∆1: that is, Question 5.2.0.7 has
an affirmative answer in the case C = ∆1 (see Proposition 5.2.3.15). We prove this in
§5.2.3 using an explicit construction which generalizes the join operation on simplicial
sets (Construction 5.2.3.1). In §5.2.4, we show that the ∞-category E is determined
uniquely up to equivalence (see Remark 5.2.4.3).

We will eventually give a complete answer to Question 5.2.0.7: a functor between ordinary
categories F : hC → hQCat is (isomorphic to) the homotopy transport representation of a
cocartesian fibration U : E → C if and only if it can be promoted to a diagram F̃ : C → QC
(Remark 5.6.5.15), where QC denotes the ∞-category of small ∞-categories (Construction
5.5.4.1). In §5.2.8, we prove a preliminary result in this direction by showing that if C is
an ∞-category, then the homotopy transport representation of any cocartesian fibration
U : E → C can always be promoted to an enriched functor, where we regard hC and QCat
as enriched over the homotopy category of Kan complexes hKan (Construction 5.2.8.9).

Remark 5.2.0.8.023X In the preceding discussion, we have confined our attention to the case of
cocartesian fibrations U : E → C. Of course, all of our results have counterparts for cartesian
fibrations, which can be obtained from passing to opposite ∞-categories.

5.2.1 Exponentiation for Cartesian Fibrations

01VF In this section, we study the behavior of (co)cartesian fibrations with respect to the
formation of functor ∞-categories. Our main result can be stated as follows:

Theorem 5.2.1.1.01VG Let q : X → S be a morphism of simplicial sets, let B be a simplicial
set, and let q′ : Fun(B,X)→ Fun(B,S) be the morphism given by postcomposition with q.
Then:

(1) If q is a cartesian fibration of simplicial sets, then q′ is also a cartesian fibration of
simplicial sets.

(2) Assume that q is a cartesian fibration, and let e be an edge of the simplicial set Fun(B,X).
Then e is q′-cartesian if and only if, for every vertex b ∈ B, the evaluation map
evb : Fun(B,X)→ Fun({b}, X) ≃ X carries e to a q-cartesian edge of X.

(1′) If q is a cocartesian fibration of simplicial sets, then q′ is also a cocartesian fibration of
simplicial sets.

(2′) Assume that q is a cocartesian fibration, and let e be an edge of the simplicial set
Fun(B,X). Then e is q′-cocartesian if and only if, for every vertex b ∈ B, the
evaluation map evb : Fun(B,X)→ Fun({b}, X) ≃ X carries e to a q-cocartesian edge
of X.

https://kerodon.net/tag/023X
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Remark 5.2.1.2. 01VHLet C be an ∞-category, so that the projection map q : C → ∆0 is a
cartesian fibration (Example 5.1.4.3). In this case, part (1) of Theorem 5.2.1.1 is equivalent
to the assertion that for every simplicial set B, the simplicial set Fun(B, C) is also an
∞-category (Theorem 1.5.3.7). By virtue of Proposition 5.1.4.11, part (2) is equivalent to
the assertion that a morphism of Fun(B, C) is an isomorphism if and only if, for every vertex
b ∈ B, its image under the evaluation functor evb : Fun(B, C)→ C is an isomorphism in C
(Theorem 4.4.4.4).

The proof of Theorem 5.2.1.1 will require some preliminaries. Let q : X → S be an inner
fibration of simplicial sets. By definition, q is a cartesian fibration if and only if for every
vertex z ∈ X and every edge e : s→ q(z) of S, there exists a q-cartesian edge e : y → z in
X satisfying q(e) = e. To prove Theorem 5.2.1.1, we need to show that the edge e can be
chosen to depend functorially on z.

Proposition 5.2.1.3. 01VKLet q : X → S be an inner fibration of simplicial sets and let
Y ⊆ Fun(∆1, X) be the full simplicial subset of Fun(∆1, X) spanned by those edges e :
∆1 → X which are q-cartesian (see Definition 4.1.2.17). Let θ : Y → Fun(∆1, S)×Fun({1},S)
Fun({1}, X) denote the restriction map, and let Z ⊆ Fun(∆1, S)×Fun({1},S) Fun({1}, X) be
the full simplicial subset spanned by those vertices which belong to the image of θ. Then
θ : Y → Z is a trivial Kan fibration of simplicial sets.

Remark 5.2.1.4. 043CIn the situation of Proposition 5.2.1.3, the simplicial set Z coincides with
Fun(∆1, S)×Fun({1},S) Fun({1}, X) if and only if q is a cartesian fibration. If this condition
is satisfied, then Proposition 5.2.1.3 asserts that θ : Y → Fun(∆1, S)×Fun({1},S) Fun({1}, X)
is a trivial Kan fibration.

Proof of Proposition 5.2.1.3. Let n > 0 be an integer; we wish to show that every lifting
problem of the form

01VL∂∆n //

��

Y

θ

��
∆n //// Fun(∆1, S)×Fun({1},S) Fun({1}, X)

(5.8)

admits a solution. Unwinding the definitions, we can rephrase (5.8) as a lifting problem

(∆1 × ∂∆n)∐({1}×∂∆n)({1} ×∆n) h0 //

��

X

q

��
∆1 ×∆n h //

h

66

S,
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where the morphism h0 has the property that h0|∆1×{i} is a q-cartesian edge of X for
0 ≤ i ≤ n. Let

(∆1 × ∂∆n) ∪ ({1} ×∆n) = Y (0) ⊂ Y (1) ⊂ X(2) ⊂ · · · ⊂ Y (n+ 1) = ∆1 ×∆n

be the sequence of simplicial subsets appearing in the proof of Lemma 3.1.2.12, so that h0
can be identified with a morphism of simplicial sets from Y (0) to X. We will show that,
for 0 ≤ j ≤ n + 1, there exists a morphism of simplicial sets hj : Y (j) → X satisfying
hj |Y (0) = h0 and q ◦hj = h|Y (j) (taking j = n+ 1, this will complete the proof of Proposition
5.2.1.3). We proceed by induction on j, the case j = 0 being vacuous. Assume that j > 0 and
that we have already constructed a morphism hj−1 : Y (j− 1)→ X satisfying hj−1|Y (0) = h0
and q ◦ hj−1 = h|Y (j−1). By virtue of Lemma 3.1.2.12, we have a pushout diagram of
simplicial sets

Λn+1
j

σ0 //

��

Y (j − 1)

��
∆n+1 σ // Y (j).

Consequently, to prove the existence of hi, it suffices to solve the lifting problem

Λn+1
j

hj−1◦σ0 //

��

X

q

��
∆n+1 h◦σ //

>>

S.

For 0 < j < n+ 1, the existence of the desired solution follows from our assumption that
q is an inner fibration. In the case j = n+ 1, the existence follows from the fact that the
composite map

∆1 ≃ N•({n < n+ 1}) ↪→ Λn+1
j

σ0−→ Y (n) hn−→ X

is the edge of X given by the restriction h0|∆1×{n}, and is therefore q-cartesian.

Lemma 5.2.1.5.01VM Let q : X → S be an inner fibration of simplicial sets, let B be a simplicial
set, and let q′ : Fun(B,X)→ Fun(B,S) be the map given by postcomposition with q (so that
q′ is also an inner fibration; see Corollary 4.1.4.3). Let e be an edge of the simplicial set
Fun(B,X).

(1) Suppose that, for every vertex b ∈ B, the evaluation map

evb : Fun(B,X)→ Fun({b}, X) ≃ X

https://kerodon.net/tag/01VM
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carries e to a q-cartesian edge of X. Then e is q′-cartesian.

(2) Suppose that, for every vertex b ∈ B, the evaluation map

evb : Fun(B,X)→ Fun({b}, X) ≃ X

carries e to a q-cocartesian edge of X. Then e is q′-cocartesian.

Proof. We will give a proof of (2); assertion (1) follows by a similar argument. We proceed
as in the proof of Lemma 4.4.4.8. Suppose we are given an integer n ≥ 2; we wish to show
that every lifting problem

Λn0
σ0 //

��

Fun(B,X)

q′

��
∆n

σ

;;

σ // Fun(B,S)

admits a solution, provided that the composite map

∆1 ≃ N•({0 < 1}) ↪→ Λn0
σ0−→ Fun(B,X)

is the edge e. Unwinding the definitions, we can rewrite this as a lifting problem

B × Λn0
F0 //

��

X

q

��
B ×∆n F //

F

<<

S.

Let P denote the collection of all pairs (A,FA), where A ⊆ B is a simplicial subset and
FA : A×∆n → X is a morphism of simplicial sets satisfying

FA|A×Λn
0

= F0|A×Λn
0

q ◦ FA = F |A×∆n

We regard P as partially ordered set, where (A,FA) ≤ (A′, FA′) if A ⊆ A′ and FA = FA′ |A×∆n .
The partially ordered set P satisfies the hypotheses of Zorn’s lemma, and therefore has a
maximal element (Amax, FAmax). We will complete the proof by showing that Amax = B.
Assume otherwise. Then there exists some nondegenerate m-simplex τ : ∆m → B whose
image is not contained in Amax. Choosing m as small as possible, we can assume that τ
carries the boundary ∂∆m into Amax. Let A′ ⊆ B be the union of Amax with the image of
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τ , so that we have a pushout diagram of simplicial sets

∂∆m

��

// Amax

��
∆m // A′.

We will complete the proof by showing that the lifting problem

(Amax ×∆n)∐(Amax×Λn
0 )(A′ × Λn0 )

(FAmax ,F0|A′×Λn
0

)
//

��

X

q

��
A′ ×∆n //

55

S

admits a solution (contradicting the maximality of the pair (Amax, FAmax)).
Choose a sequence of simplicial subsets

Y (0) ⊂ Y (1) ⊂ Y (2) ⊂ · · · ⊂ Y (t) = ∆m ×∆n

satisfying the requirements of Lemma 4.4.4.7, so that FAmax determines a map of simplicial
sets G0 : Y (0)→ X. We will show that, for 0 ≤ s ≤ t, there exists a morphism of simplicial
sets Gs : Y (s) → X satisfying Gs|Y (0) = G0 and q ◦ Gs = F |Y (s) (in the case s = t, this
will complete the proof of Lemma 5.2.1.5). We proceed by induction on s, the case s = 0
being vacuous. Assume that s > 0 and that we have already constructed a morphism
Gs−1 : Y (s− 1)→ X satisfying Gs−1|Y (0) = F0 and q ◦Gs−1 = F |Y (s−1). By construction,
there exist integers ℓ ≥ 2, 0 ≤ k < ℓ and a pushout diagram of simplicial sets

Λℓk
τ0 //

��

Y (s− 1)

��
∆ℓ τ // Y (s).

Moreover, in the special case k = 0, we can assume that τ(0) = (0, 0) and τ(1) = (0, 1), so
that the composite map

∆1 ≃ N•({0 < 1}) ↪→ Λℓk
σ0−→ Y (s− 1) Gs−1−−−→ X
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corresponds to a q-cocartesian edge e′ of X. To construct the desired extension Fs, it suffices
to solve the lifting problem

Λℓk
Gs−1◦τ0 //

��

X

q

��
∆ℓ F◦τ //

??

S.

For 0 < k < ℓ, the existence of the desired solution follows from our assumption that q is an
inner fibration; when k = 0, it follows from the fact that e′ is q-cocartesian.

Proof of Theorem 5.2.1.1. Assume that q : X → S is a cartesian fibration of simplicial
sets (the case where q is a cocartesian fibration can be handled by a similar argument).
Let B be any simplicial set and let q′ : Fun(B,X) → Fun(B,S) be the map given by
postcomposition with q. Then q′ is an inner fibration (Corollary 4.1.4.3). Let us say that an
edge e of the simplicial set Fun(B,X) is special if, for every vertex b ∈ B, the evaluation
map evb : Fun(B,X) → Fun({b}, X) ≃ X carries e to a q-cartesian edge of X. By virtue
of Lemma 5.2.1.5, every special edge of Fun(B,X) is q′-cartesian. Moreover, Proposition
5.2.1.3 guarantees that for every vertex z ∈ Fun(B,X) and every edge e : y → q′(z) of
Fun(B,S), there exists a special edge e : y → z of Fun(B,X) satisfying q′(e) = e. It follows
that q′ is a cartesian fibration.

To complete the proof, it will suffice to show that every q′-cartesian edge e : x→ z of
the simplicial set Fun(B,X) is special. By virtue of the preceding argument, there exists
a special edge e′ : y → z of Fun(B,X) satisfying q′(e′) = q′(e), which is also q′-cartesian.
Applying Remark 5.1.3.8, we can choose a 2-simplex σ of Fun(B,X) as indicated in the
diagram

y

e′

��
x

e′′

??

e // z,

where e′′ is an isomorphism in the ∞-category {q′(x)} ×Fun(B,S) Fun(B,X). For each vertex
b ∈ B, the evaluation functor evb carries σ to a 2-simplex

evb(y)

evb(e′)

""
evb(x)

evb(x′′)

<<

evb(e) // evb(z)
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in the simplicial set X. Since e′ is special, the edge evb(e′) is q-cartesian. The edge evb(e′′)
is an isomorphism in a fiber of q, and is therfefore also q-cartesian (Proposition 5.1.4.11).
Applying Proposition 5.1.4.12, we deduce that evb(e) is q-cartesian. Allowing the vertex b
to vary, we conclude that e is a special edge of Fun(B,X), as desired.

5.2.2 Covariant Transport Functors

019M Let U : E → C be a cocartesian fibration between categories (Definition 5.0.0.3) and let
f : C → D be a morphism in the category C. If X is an object of the fiber EC = {C} ×C E ,
then our assumption that U is a cocartesian fibration guarantees that we can choose an object
f!(X) of the fiber ED = {D} ×C E together with a U -cocartesian morphism f̃X : X → f!(X)
satisfying U(f̃X) = f . In this case, we can view the construction X 7→ f!(X) as a functor
from the category EC to the category ED:

Proposition 5.2.2.1.01SA Let U : E → C be a cocartesian fibration of categories and let
f : C → D be a morphism of C. For each object X ∈ EC , let f̃X be a U-cocartesian
morphism of E having source X and satisfying U(f̃X) = f . Then there is a unique functor
f! : EC → ED with the following properties:

• For each object X ∈ EC , the object f!(X) ∈ ED is the target of the morphism f̃X .

• The construction X 7→ f̃X determines a natural transformation from the inclusion
functor EC → E to the functor f! : EC → ED ⊆ E.

Proof. For each object X ∈ EC , let f!(X) denote the target of the morphism f̃X . Let
u : X → Y be a morphism in the category EC . Invoking our assumption that f̃X is U -
cocartesian, we see that there is a unique morphism f!(u) : f!(X) → f!(Y ) for which the
diagram

01SB X

u

��

f̃X // f!(X)

f!(u)

��
Y

f̃Y // f!(Y )

(5.9)

is commutative (in the category E). Note that if v : Y → Z is another morphism in the
category EC , then the calculation

f!(v) ◦ f!(u) ◦ f̃X = f!(v) ◦ f̃Y ◦ u = f̃Z ◦ v ◦ u

shows that f!(v ◦ u) = f!(v) ◦ f!(u). Similarly, for each object X ∈ EC , the calculation
f̃X ◦ idf!(X) = f̃X = idX ◦f̃X shows that f!(idX) = idf!(X). We can therefore regard f! as a

https://kerodon.net/tag/019M
https://kerodon.net/tag/01SA
https://kerodon.net/tag/01SB
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functor from the category EC to ED, and the commutativity of (5.9) guarantees that the
construction X 7→ f̃X determines a natural transformation from the inclusion EC ↪→ E to
the functor f!.

Construction 5.2.2.2. 023TLet U : E → C be a cocartesian fibration of categories, let f : C → D

be a morphism of the category C, and let f! : EC → ED be the functor of Proposition 5.2.2.1.
We will refer to f! as the functor of covariant transport along f .

Warning 5.2.2.3. 01SCIn the situation of Construction 5.2.2.2, the covariant transport functor
f! : EC → ED depends not only on the cocartesian fibration U : E → C and the morphism
f : C → D, but also on the system of U -cocartesian lifts {f̃X : X → f!(X)}X∈EC

. A different
system of cocartesian lifts {f̃ ′X : X → f ′! (X)}X∈EC

will give rise to a different covariant
transport functor f ′! : EC → ED. However, there is a canonical isomorphism of functors
α : f! ≃ f ′! , which is uniquely determined by the requirement that for every object X ∈ EC ,
the diagram

f!(X)

αX

∼

""
X

f̃X

==

f̃ ′X // f ′! (X)

is commutative.

We now apply the results of §5.2.1 to extend Construction 5.2.2.2 to the ∞-categorical
setting.

Definition 5.2.2.4. 019NLet U : E → C be an inner fibration of simplicial sets, let f : C → D be
an edge of C, and let EC = {C}×C E and ED = {D}×C E denote the corresponding fibers of
U . We will say that a functor F : EC → ED is given by covariant transport along f if there
exists a morphism of simplicial sets F̃ : ∆1 × EC → E satisfying the following conditions:

(1) The diagram of simplicial sets

∆1 × EC F̃ //

��

E

U

��
∆1 f // C

commutes.

https://kerodon.net/tag/023T
https://kerodon.net/tag/01SC
https://kerodon.net/tag/019N
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(2) The restriction F̃ |{0}×EC
is the identity map idEC

, and the restriction F̃ |{1}×EC
is equal

to F .

(3) For every object X of the ∞-category EC , the composite map

∆1 × {X} ↪→ ∆1 × EC
F̃−→ E

is a locally U -cocartesian edge of the simplicial set E .

If these conditions are satisfied, we say that the morphism F̃ witnesses F as given by
covariant transport along f .

Example 5.2.2.5.019P Let U : E → C be an inner fibration of simplicial sets and let C be a
vertex of C. Then the projection map

∆1 × EC ↠ EC ↪→ E

exhibits the identity functor idEC
as given by covariant transport along the degenerate edge

idC . See Example 5.1.3.6.

Example 5.2.2.6.0355 Let U : E → C be a left covering map of simplicial sets. Then, for every
edge f : C → D in C, there is a unique functor EC → ED given by covariant transport
along f , which can be identified with the covariant transport function given by Construction
5.2.0.1.

Example 5.2.2.7.01VR Let U : E → C be a cocartesian fibration between ordinary categories,
let f : C → D be a morphism in C, and choose a collection of U -cocartesian morphisms
{f̃X : X → f!(X)}X∈EC

satisfying U(f̃X) = f . According to Proposition 5.2.2.1, there
is a unique functor f! : EC → ED for which the construction X 7→ f̃X determines a
natural transformation of functors f̃ : idEC

→ f!. Passing to nerves, we obtain a natural
transformation idN•(EC) → N•(f!), which exhibits the functor

N•(f!) : N•(EC)→ N•(ED)

as given by covariant transport along f (regarded as an edge of the simplicial set N•(C)).
Stated more informally, the covariant transport construction for cocartesian fibrations of

ordinary categories (see Construction 5.2.2.2) can be regarded as a special case Definition
5.2.2.4.

Proposition 5.2.2.8.01VS Let U : E → C be a cocartesian fibration of simplicial sets and let
f : C → D be an edge of C. Then:

• There exists a functor F : EC → ED which is given by covariant transport along f .

https://kerodon.net/tag/019P
https://kerodon.net/tag/0355
https://kerodon.net/tag/01VR
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• An arbitrary functor F ′ : EC → ED is given by covariant transport along f if and only
if it is isomorphic to F (as an object of the ∞-category Fun(EC , ED)).

Notation 5.2.2.9. 023YLet U : E → C be a cocartesian fibration of simplicial sets and let
f : C → D be an edge of the simplicial set C. Applying Proposition 5.2.2.8, we conclude that
the collection of functors EC → ED which are given by covariant transport along f comprise
a single isomorphism class in the ∞-category Fun(EC , ED). We will denote this isomorphism
class by [f!], which we regard as an element of the set π0(Fun(EC , ED)≃). We will often use
the notation f! to denote a particular choice of representative of this isomorphism class: that
is, a particular choice of functor EC → ED which is given by covariant transport along f .

We now explain how to deduce Proposition 5.2.2.8 from Theorem 5.2.1.1. For this
purpose, it will be convenient to introduce a bit more terminology.

Definition 5.2.2.10. 02R8Let U : E → C be a cocartesian fibration of simplicial sets. Let K
be another simplicial set, let H : ∆1 ×K → E be a morphism. We will say that H is a
U-cocartesian lift of H = U ◦H if, for every vertex x ∈ K, the restriction H|∆1×{x} is a
U -cocartesian edge of E .

Remark 5.2.2.11. 02R9In the situation of Definition 5.2.2.10, we can identify H and H with
edges of the simplicial sets Fun(K, E) and Fun(K, C), respectively. Then H is a U -cocartesian
lift of H if and only if it is U ′-cocartesian, where U ′ : Fun(K, E) → Fun(K, C) is given by
postcomposition with U . (see Theorem 5.2.1.1).

Example 5.2.2.12. 02RALet U : E → C be a cocartesian fibration of simplicial sets, let f : C → D

be an edge of C, let EC = {C} ×C E and ED = {D} ×C E denote the corresponding fibers of
U . Suppose we are given a commutative diagram of simplicial sets

∆1 × EC F̃ //

��

E

U

��
∆1 f // C,

where the restriction F̃ |{0}×EC
is the identity map from EC to itself, and set F = F̃ |{1}×EC

∈
Fun(EC , ED). Then F̃ witnesses F as given by covariant transport along f (in the sense of
Definition 5.2.2.4) if and only if it is a U -cocartesian lift of U ◦ F̃ (in the sense of Definition
5.2.2.10).

Lemma 5.2.2.13. 02RBLet U : E → C be a cocartesian fibration of simplicial sets, let K be a

https://kerodon.net/tag/023Y
https://kerodon.net/tag/02R8
https://kerodon.net/tag/02R9
https://kerodon.net/tag/02RA
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simplicial set, and suppose we are given a lifting problem

02RC {0} ×K H0 //

��

E

U

��
∆1 ×K H //

H

<<

C .

(5.10)

Then:

(1) The lifting problem (5.10) admits a solution H : ∆1 ×K → E which is a U -cocartesian
lift of H.

(2) Let F be any object of the ∞-category Fun/ C({1} × K, E). Then F is isomorphic to
H|{1}×K (as an object of Fun/ C({1} ×K, E)) if and only if F = H ′|{1}×K , where H ′

is another U -cocartesian lift of H which solves the lifting problem (5.10).

Proof. By virtue of Remark 5.2.2.11 (and Theorem 5.2.1.1), we can replace U by the induced
map Fun(K, E)→ Fun(K, C) and thereby reduce to the case where K = ∆0. In this case,
assertion (1) follows immediately from our assumption that U is a cocartesian fibration, and
assertion (2) follows from Remark 5.1.3.8.

Proof of Proposition 5.2.2.8. Apply Lemma 5.2.2.13 in the special case where K is the
∞-category EC , H0 : K → E is the inclusion map, and H is the composite map ∆1 ×K →
∆1 f−→ C (see Example 5.2.2.12).

We also have a dual version of Definition 5.2.2.4:

Definition 5.2.2.14.01VN Let U : E → C be an inner fibration of simplicial sets, let C and D

be vertices of C, and let f : C → D be an edge of C. We say that a functor F : ED → EC
is given by contravariant transport along f if there exists a morphism of simplicial sets
F̃ : ∆1 × ED → E satisfying the following conditions:

(1) The diagram of simplicial sets

∆1 × ED F̃ //

��

E

U

��
∆1 f // C

commutes.

https://kerodon.net/tag/02RC
https://kerodon.net/tag/01VN
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(2) The restriction F̃ |{1}×ED
is equal to the identity map idED

, and the restriction F̃ |{0}×ED

is equal to F .

(3) For every object Y of the ∞-category ED, the composite map

∆1 × {Y } ↪→ ∆1 × ED
F̃−→ E

is a locally U -cartesian edge of the simplicial set E .

If these conditions are satisfied, we say that the morphism F̃ witnesses F as given by
contravariant transport along f .

Remark 5.2.2.15. 019WLet U : E → C be an inner fibration of simplicial sets and let f : C → D

be an edge of C. Then a functor F : EC → ED is given by covariant transport along f if
and only if the opposite functor F op : Eop

C → E
op
D is given by contravariant transport along f

with respect to the cartesian fibration Uop : Eop → Cop.

Proposition 5.2.2.8 has a counterpart for cartesian fibrations:

Proposition 5.2.2.16. 019XLet U : E → C be a cartesian fibration of simplicial sets and let
f : C → D be an edge of C. Then:

• There exists a functor F : ED → EC which is given by contravariant transport along f .

• An arbitrary functor F ′ : ED → EC is given by contravariant transport along f if and
only if it is isomorphic to F (as an object of the ∞-category Fun(ED, EC)).

Notation 5.2.2.17. 019YLet U : E → C be a cartesian fibration of simplicial sets and let
f : C → D be an edge of the simplicial set C. It follows from Proposition 5.2.2.16 that the
collection of functors ED → EC which are given by contravariant transport along f comprise
a single isomorphism class in the ∞-category Fun(ED, EC). We will denote this isomorphism
class by [f∗], which we regard as an element of the set π0(Fun(ED, EC)≃). We will often use
the notation f∗ to denote a particular choice of representative of this isomorphism class:
that is, a particular choice of functor ED → EC which is given by contravariant transport
along f .

For Kan fibrations, there is a close relationship between covariant and contravariant
transport:

Proposition 5.2.2.18. 01A1Let U : E → C be a Kan fibration of simplicial sets and let
f : C → D be an edge of C. Then the covariant and contravariant transport morphisms [f!] ∈
HomhKan(EC , ED) and [f∗] ∈ HomhKan(ED, EC) are inverse to one another (as morphisms
in the homotopy category hKan).

https://kerodon.net/tag/019W
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Proof. Choose morphisms of Kan complexes f! : EC → ED and f∗ : ED → EC representing
the homotopy classes [f!] and [f∗], respectively. We will show that f∗ ◦ f! is homotopic
to the identity morphism idEC

; a similar argument will show that f! ◦ f∗ is homotopic to
idED

. Let D denote the fiber product Fun(EC , E) ×Fun(EC ,C) C, and let π : D → C be the
projection map onto the second factor. Since U is a Kan fibration, it follows from Corollary
3.1.3.2 that π is also a Kan fibration. Let f̃ : ∆1 × EC → E be a morphism witnessing f! as
given by covariant transport along f . Then f̃ determines an edge h of the simplicial set D
satisfying π(h) = f . Let f̃ ′ : ∆1 × ED → E be a morphism which witnesses f∗ as given by
contravariant transport along f , so that the composite morphism

∆1 × EC
id×f!−−−→ ∆1 × ED

f̃ ′−→ E

determines an edge h′ of the simplicial set D satisfying π(h′) = f . The edges h and h′

have the same target (the vertex of D corresponding to the morphism f!). Invoking our
assumption that π is a Kan fibration, we deduce that there exists a 2-simplex σ of D
satisfying d2

0(σ) = h′, d2
1(σ) = h, and π(σ) = s1

0(f); we can represent σ as a diagram

f∗ ◦ f!

h′

!!
idEC

v

<<

h // f!.

We now observe that the edge v = d2
2(σ) of D can be identified with a map of simplicial sets

V : ∆1 × EC → EC which is a homotopy from idEC
= V |{0}×EC

to f∗ ◦ f! = V |{1}×EC
.

We close this section by establishing a converse to Proposition 5.2.2.18:

Theorem 5.2.2.19.01A2 Let U : E → C be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism U is a Kan fibration.

(2) The morphism U is a left fibration and, for every edge f : C → D of the simplicial set C,
the covariant transport morphism [f!] : EC → ED is an isomorphism in the homotopy
category hKan.

(3) The morphism U is a right fibration and, for every edge f : C → D of the simplicial
set C, the contravariant transport morphism [f∗] : ED → EC is an isomorphism in the
homotopy category hKan.

https://kerodon.net/tag/01A2
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Proof. We will show that (1)⇔ (2); the proof of the equivalence (1)⇔ (3) is similar. The
implication (1)⇒ (2) is immediate from Proposition 5.2.2.18. For the converse, assume that
U : E → C is a left fibration of simplicial sets and that, for every edge f : C → D of C, the
covariant transport morphism [f!] is an isomorphism in the homotopy category hKan. We
wish to show that U is a Kan fibration. By virtue of Example 4.2.1.5, it will suffice to show
that U is a right fibration. By Proposition 4.2.6.1, this is equivalent to the assertion that
the induced map

θ : Fun(∆1, E)→ Fun({1}, E)×Fun({1},C) Fun(∆1, C)

is a trivial Kan fibration. Note that our assumption that U is a left fibration guarantees
that θ is also a left fibration (Proposition 4.2.5.1).

Fix an edge f : C → D of the simplicial set C and let Fun(∆1, E)f denote the fiber
Fun(∆1, E) ×Fun(∆1,C) {f}. Then evaluation at the vertex 1 ∈ ∆1 induces a morphism
θf : Fun(∆1, E)f → ED. Note that θf is a pullback of θ, and is therefore also a left fibration.
Since ED is a Kan complex (Corollary 4.4.2.3), Corollary 4.4.3.8 guarantees that θf is a Kan
fibration (so Fun(∆1, C)f is also a Kan complex). Evaluation at the vertex 0 ∈ ∆1 induces
another morphism of simplicial sets u : Fun(∆1, E)f → EC . Since U is a left fibration, the
morphism u is a trivial Kan fibration. By construction, the homotopy class [f!] can be
represented by the morphism of Kan complexes given by the composition

EC
v−→ Fun(∆1, E)f

θf−→ ED,

where v is a section of u (and therefore a homotopy equivalence). Consequently, our
assumption that [f!] is an isomorphism in hKan guarantees that θf is a homotopy equivalence
of Kan complexes (Remark 3.1.6.16). Applying Proposition 3.2.7.2, we deduce that the
fibers of θf are contractible Kan complexes. Since every fiber of θ can also be viewed as
a fiber of θf for some edge f of the simplicial set C, it follows that the fibers of θ are also
contractible Kan complexes. Invoking Proposition 4.4.2.14, we conclude that θ is a trivial
Kan fibration, as desired.

Corollary 5.2.2.20. 0240Let U : E → C be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism U is a covering map (Definition 3.1.4.1).

(2) The morphism U is a left covering map (Definition 4.2.3.8) and, for every edge f : C → D

of the simplicial set C, the covariant transport functor f! : EC → ED is a bijection.

(3) The morphism U is a right covering map (Definition 4.2.3.8) and, for every edge
f : C → D of the simplicial set C, the contravariant transport morphism f∗ : ED → EC
is a bijection.

Proof. Combine Theorem 5.2.2.19 with Corollary 4.2.3.20.

https://kerodon.net/tag/0240
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5.2.3 Example: The Relative Join

0241 Let F : C → D be a functor of ∞-categories. Our goal in this section is to show that
F is given by covariant transport, in the sense of Definition 5.2.2.4. More precisely, we
will show that there exists a cocartesian fibration of ∞-categories M→ ∆1 equipped with
isomorphisms C ≃ {0} ×∆1 M and D = {1} ×∆1 M carrying F to a functor

{0} ×∆1 M→ {1} ×∆1 M

which is given by covariant transport along the nondegenerate edge of ∆1 (Proposition
5.2.3.15). We will prove this by an explicit construction, using a generalization of the join
operation studied in §4.3. (in §5.2.4, we will show that the ∞-category M is determined up
to equivalence by the functor F : C → D (see Corollary 5.2.4.2 and Remark 5.2.4.3).

Construction 5.2.3.1 (The Relative Join).0242 Let E be a simplicial set. By virtue of Remark
4.3.3.21, there is a unique morphism of simplicial sets ρ : ∆1 × E → E ⋆ E for which the
diagram

{0} × E //

idE

��

∆1 × E

ρ

��

{1} × Eoo

idE

��
E ⋆ ∅ // E ⋆ E ∅ ⋆ Eoo

is commutative.
Let F : C → E and G : D → E be morphisms of simplicial sets. We let C ⋆E D denote the

fiber product (C ⋆D)×(E ⋆ E) (∆1 × E), so that we have a pullback diagram

C ⋆E D //

��

C ⋆D

��
∆1 × E ρ // E ⋆ E .

We will refer to C ⋆E D as the join of C and D relative to E .

Remark 5.2.3.2.0243 Let F : C → E and G : D → E be morphisms of simplicial sets, and let K
be a simplicial set. By virtue of Remark 4.3.3.21, morphisms from K to the relative join
C ⋆E D are given by maps π : K → ∆1 together with commutative diagrams

{0} ×∆1 K

��

// K

��

{1} ×∆1 K

��

oo

C F // E D .Goo

https://kerodon.net/tag/0241
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Remark 5.2.3.3. 0244Let F : C → E and G : D → E be morphisms of simplicial sets. Then the
inclusion maps C ↪→ C ⋆D ←↩ D lift uniquely to monomorphisms

ιC : C ↪→ C ⋆E D ιD : D ↪→ C ⋆E D,

which fit into a commutative diagram

C ιC //

��

C ⋆E D

��

DιDoo

��
{0} // ∆1 {1}oo

in which both squares are pullbacks. In the future, we will often abuse notation by identifying
C and D with their images under the monomorphisms ιC and ιD, respectively (which are full
simplicial subsets of the relative join C ⋆E D).

Example 5.2.3.4. 0245Let F : C → E and G : D → E be morphisms of simplicial sets. If D is
empty, then the inclusion map ιC : C ↪→ C ⋆E D is an isomorphism of simplicial sets. If C is
empty, then the inclusion map ιD : D ↪→ C ⋆E D is an isomorphism of simplicial sets.

Example 5.2.3.5. 0246Let C and D be simplicial sets, so that we have unique morphisms
F : C → ∆0 and G : D → ∆0. Then the relative join C ⋆∆0 D agrees with the join C ⋆D
introduced in Construction 4.3.3.13.

Example 5.2.3.6. 0247Let E be a simplicial set. Then the relative join E ⋆E E is isomorphic to
∆1 × E .

Example 5.2.3.7. 0248Let E be a simplicial set equipped with a morphism π : E → ∆1, and set
C = {0} ×∆1 E and D = {1} ×∆1 E . Then the relative join C ⋆E D is isomorphic to E .

Example 5.2.3.8. 0249Let F : C → E and G : D → E be functors between categories. Then the
relative join N•(C) ⋆N•(E) N•(D) can be identified with the nerve of the category

C ⋆E D = (C ⋆D)×(E ⋆ E) ([1]× E),

which can be described more concretely as follows:

• The set of objects Ob(C ⋆E D) is the disjoint union of Ob(C) with Ob(D).

• For every pair of objects X,Y ∈ Ob(C ⋆E D), we have

HomC ⋆E D(X,Y ) =



HomC(X,Y ) if X,Y ∈ Ob(C)
HomD(X,Y ) if X,Y ∈ Ob(D)
HomE(F (X), G(Y )) if X ∈ Ob(C), Y ∈ Ob(D)
∅ if X ∈ Ob(D), Y ∈ Ob(C).

https://kerodon.net/tag/0244
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Remark 5.2.3.9 (Base Change).024A Suppose we are given a commutative diagram of simplicial
sets

C′ //

��

E ′

��

D′oo

��
C // E D,oo

where both squares are pullbacks. Then the induced diagram

C′ ⋆E ′ D′ //

��

E ′

��
C ⋆E D // E

is also a pullback square.

Remark 5.2.3.10.024B Let G : D → E be a fixed morphism of simplicial sets. Then the
construction

(F : C → E) 7→ C ⋆E D

carries colimits in the category (Set∆)/ E to colimits in the category (Set∆)D /. In particular,
the construction C 7→ (C ⋆E D) commutes with filtered colimits and carries pushout diagrams
to pushout diagrams.

The relative join C ⋆E D of Construction 5.2.3.1 is defined for arbitrary diagrams of
simplicial sets C F−→ E G←− D. However, as our notation suggests, we will be primarily
interested in the special case where C, D, and E are ∞-categories. In this case, we have the
following generalization of Corollary 4.3.3.25:

Proposition 5.2.3.11.024C Let F : C → E and G : D → E be functors of ∞-categories. Then
the relative join C ⋆E D is an ∞-category.

Lemma 5.2.3.12.024D Let U : E → E ′ be an inner fibration of simplicial sets. Then the induced
map

∆1 × E = E ⋆E E → E ⋆E ′ E

is also an inner fibration of simplicial sets.

https://kerodon.net/tag/024A
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Proof. Suppose we are given integers 0 < i < n; we wish to show that every lifting problem

02REΛni
σ0 //

��

∆1 × E

��
∆n

σ

<<

σ // E ⋆E ′ E

(5.11)

admits a solution. Let α denote the composite map

∆n σ−→ E ⋆E ′ E → ∆0 ⋆∆0 ∆0 ≃ ∆1.

If α is a constant morphism, then the existence of σ is immediate. We may therefore assume
without loss of generality that α is not constant. Write σ0 = (α0, τ0), where α0 = α|Λn

i

and τ0 : Λn
i → E is a morphism of simplicial sets, and let τ denote the composite map

∆n σ−→ E ⋆E ′ E → E ′. Since U is an inner fibration, the lifting problem

Λni
τ0 //

��

E

U

��
∆n τ //

τ

>>

E ′

admits a solution. We now observe that the pair σ = (α, τ) can be regarded as an n-simplex
of ∆1 × E which solves the lifting problem (5.11).

Lemma 5.2.3.13. 02RFSuppose we are given a commutative diagram of simplicial sets

C //

U

��

E

W

��

D

V

��

oo

C′ // E ′ D′oo

in which the vertical morphisms are inner fibrations. Then the induced map

F : C ⋆E D → C′ ⋆E ′ D′

is also an inner fibration.

https://kerodon.net/tag/02RE
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Proof. Unwinding the definitions, we see that F factors as a composition

C ⋆E D
G−→ C ⋆E ′ D

H−→ C′ ⋆E ′ D′,

where G is a pullback of the inner fibration E ⋆E E → E ⋆E ′ E of Lemma 5.2.3.12 and H is a
pullback of the inner fibration C ⋆D → C′ ⋆D′ of Proposition 4.3.3.24.

Proof of Proposition 5.2.3.11. Let F : C → E and G : D → E be functors of ∞-categories.
Applying Lemma 5.2.3.13, we see that the natural map

C ⋆E D → ∆0 ⋆∆0 ∆0 ≃ ∆1

is an inner fibration of simplicial sets. Since ∆1 is an ∞-category, it follows that C ⋆E D is
also an ∞-category (Remark 4.1.1.9).

Remark 5.2.3.14 (Morphism Spaces in the Relative Join).024F Let F : C → E and G : D → E
be morphisms of simplicial sets. If X and Y are vertices of the relative join C ⋆E D, then we
have canonical isomorphisms of simplicial sets

HomC ⋆E D(X,Y ) ≃



HomC(X,Y ) if X,Y ∈ C
HomD(X,Y ) if X,Y ∈ D
HomE(F (X), G(Y )) if X ∈ C, Y ∈ D
∅ if X ∈ D, Y ∈ C .

The pinched morphism spaces HomL
C ⋆E D(X,Y ) and HomR

C ⋆E D(X,Y ) admit similar descrip-
tions.

We now specialize Construction 5.2.3.1 to the case where D = E and the morphism
G : D → E is the identity. Our goal is to prove the following:

Proposition 5.2.3.15.024J Let F : C → D be a functor of ∞-categories. Then:

(1) The projection map π : C ⋆D D → ∆1 is a cocartesian fibration of ∞-categories.

(2) The map
F̃ : ∆1 × C ≃ (C ⋆C C)→ C ⋆D D

witnesses the functor F as given by covariant transport along the nondegenerate edge
of ∆1.

The proof of Proposition 5.2.3.15 will require some preliminaries.

https://kerodon.net/tag/024F
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Lemma 5.2.3.16. 02RGSuppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
C′ F ′ // D′,

so that U and V induce a morphism W : C ⋆D D → C′ ⋆D′ D′. Let e be an edge of the
simplicial set C ⋆D D satisfying the following conditions:

(1) If e is contained in C, then it is U -cocartesian when viewed as an edge of C.

(2) The image of e under the map

ρ : C ⋆D D → D ⋆D D ≃ ∆1 ×D → D

is V -cocartesian.

Then e is W -cocartesian.

Proof. Let n ≥ 2 be an integer and suppose we are given a lifting problem

024HΛn0
σ0 //

��

C ⋆D D

W

��
∆n

σ

<<

σ′ // C′ ⋆D′ D′,

(5.12)

where σ0 carries N•({0 < 1}) ⊆ Λn0 to the edge e. If σ′ is contained in the simplicial subset
C′ ⊆ C′ ⋆D′ D′, then the lifting problem (5.12) admits a solution by virtue of assumption (1).
Let us therefore assume that σ′ is not contained in C′. Let ρ : C ⋆D D → D be as in (2), and
define ρ′ : C′ ⋆D′ D′ → D′ similarly. Unwinding the definitions, we can rewrite (5.12) as a
lifting problem

Λn0
ρ◦σ0 //

��

D

V

��
∆n

>>

ρ′◦σ′ // D′,

which admits a solution by virtue of assumption (2).

https://kerodon.net/tag/02RG
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Lemma 5.2.3.17.02RH Suppose we are given a commutative diagram of simplicial sets

C F //

U

��

D

V

��
C′ F ′ // D′ .

Suppose that U and V are cocartesian fibrations, and that the morphism F carries U-
cocartesian edges of C to V -cocartesian edges of D. Then the induced map W : C ⋆D D →
C′ ⋆D′ D′ is also a cocartesian fibration. Moreover, an edge e of C ⋆D D is W -cocartesian if
and only if it satisfies conditions (1) and (2) of Lemma 5.2.3.16.

Proof. It follows from Lemma 5.2.3.12 that W is an inner fibration of simplicial sets. Let us
say that an edge of C ⋆D D is special if it satisfies conditions (1) and (2) of Lemma 5.2.3.16,
so that every special edge of C ⋆D D is W -cocartesian. We consider three cases:

• Suppose that X belongs to C and Y belongs to C′. In this case, our assumption that U
is a cocartesian fibration guarantees that we can lift e to U -cocartesian edge e : X → Y

of C ⊆ C ⋆D D. Since F (e) is a V -cocartesian edge of D, the edge e is special.

• Suppose that X belongs to C and Y belongs to D′. In this case, we can identify e with
an edge e0 : V (F (X))→ Y of the simplicial set D′. Since V is a cocartesian fibration,
we can lift e0 to a V -cocartesian morphism e0 : F (X)→ Y of D, which we can identify
with a special edge e : X → Y of the simplicial set C ⋆D D satisfying W (e) = e.

• Suppose that X belongs to D and Y belongs to D′. In this case, our assumption
that V is a cocartesian fibration guarantees that we can lift e to V -cocartesian edge
e : X → Y of D ⊆ C ⋆D D, which is then special when regarded as an edge of C ⋆D D.

To complete the proof, it will suffice to show that every W -cocartesian edge e : X → Y of
C ⋆D D is special. Applying the preceding argument, we can choose a special edge e′ : X → Y ′

satisfying W (e′) = W (e). Set Y = W (Y ) = W (Y ′). Since e and e′ are both W -cocartesian,
Remark 5.1.3.8 supplies a 2-simplex σ of the simplicial set C ⋆D D with boundary given by

Y

u

  
X

e

??

e′ // Y ′,

where u is an isomorphism in the ∞-category {Y } ×(C′ ⋆D′ D′) (C ⋆D D). Applying Remark
5.1.3.8 to the cocartesian fibrations U and V , we deduce that the edge e is also special.

https://kerodon.net/tag/02RH
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Example 5.2.3.18. 02RJLet F : C → D be a functor of ∞-categories. Applying Lemma 5.2.3.17
to the diagram

C F //

��

D

��
∆0 ∆0,

we deduce that the projection map

π : C ⋆D D → ∆0 ⋆∆0 ∆0 ≃ ∆1

is a cocartesian fibration. Moreover, a morphism e : X → Y of the ∞-category C ⋆D D is
π-cocartesian if and only if it satisfies one of the following three conditions:

• The objects X and Y belong to C and e is an isomorphism in the ∞-category C.

• The objects X and Y belong to D and e is an isomorphism in the ∞-category D.

• The object X belongs to C, the object Y belongs to D, and e corresponds to an
isomorphism e0 : F (X)→ Y in the ∞-category D (under the identification of Remark
5.2.3.14).

Proof of Proposition 5.2.3.15. Let F : C → D be a functor of ∞-categories, so that the
projection map π : C ⋆D D → ∆1 of Example 5.2.3.18 is a cocartesian fibration. Note that
the morphism

H : ∆1 × C ≃ C ⋆C C → C ⋆D D

satisfies H|{0}×C = idC and H|{1}×C = F . To complete the proof, it will suffice to show that
for every object C ∈ C, the restriction H|∆1×{C} is a π-cocartesian morphism e : X → F (X)
in the ∞-category C ⋆D D. This follows from the criterion of Example 5.2.3.18, since e
corresponds to the identity morphism idF (X) : F (X) → F (X) under the identification of
Remark 5.2.3.14.

Passing to opposite ∞-categories, we obtain a dual version of Proposition 5.2.3.15:

Variant 5.2.3.19. 024KLet G : D → C be a functor of ∞-categories. Then:

(1) The projection map π : C ⋆C D → ∆1 is a cartesian fibration of ∞-categories.

(2) The map
h : ∆1 ×D ≃ (D ⋆D D)→ C ⋆C D

witnesses the functor G as given by contravariant transport along the nondegenerate
edge of ∆1.

https://kerodon.net/tag/02RJ
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5.2.4 Fibrations over the 1-Simplex

024M Let M be an ∞-category equipped with a cocartesian fibration π :M→ ∆1. Our goal
in this section is to show that M is determined (up to equivalence) by the ∞-categories
C = {0} ×∆1 M, D = {1} ×∆1 M, and the functor F : C → D given by covariant transport
along the nondegenerate edge of ∆1. This is a consequence of the following:

Theorem 5.2.4.1.024N Let U :M→ ∆1 be a functor of ∞-categories, and suppose we are given
a commutative diagram σ :

{1} × C //

��

{1} × D

g

��
∆1 × C h //M

in the category (Set∆)/∆1. Then σ is a categorical pushout diagram of simplicial sets
(Definition 4.5.4.1) if and only if the following conditions are satisfied:

(1) The restriction h|{0}×C : C → {0} ×∆1 M is a categorical equivalence of simplicial sets.

(2) The morphism g : D → {1} ×∆1 M is a categorical equivalence of simplicial sets.

(3) For every vertex C ∈ C, the restriction h|∆1×{C} is a U -cocartesian morphism of M.

Moreover, if these conditions are satisfied, then U is a cocartesian fibration.

Corollary 5.2.4.2.024P Let U :M→ ∆1 be a cocartesian fibration of ∞-categories with fibers
C = {0} ×∆1 M and D = {1} ×∆1 M. Let h : ∆1 × C →M be a functor which witnesses
the functor F = h|{1}×C as given by covariant transport along the nondegenerate edge of ∆1

(Definition 5.2.2.4). Then h induces a categorical equivalence of simplicial sets

(∆1 × C)
∐

({1}×C)
D →M .

Proof. Combine Theorem 5.2.4.1 with Proposition 4.5.4.11.

Remark 5.2.4.3.024Q Let U :M→ ∆1 be a cocartesian fibration of ∞-categories. It follows
from Corollary 5.2.4.2 that the ∞-category M can be recovered (up to equivalence) from
the ∞-categories C = {0} ×∆1 M, D = {1} ×∆1 M, and the covariant transport functor
F : C → D. Similarly, if U :M→ ∆1 is a cartesian fibration, then the ∞-category M can
be recovered from C, D, and the contravariant transport functor G : D → C.

As an application of Theorem 5.2.4.1, we give an alternative characterization of the
covariant transport functors introduced in §5.2.2.

https://kerodon.net/tag/024M
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Corollary 5.2.4.4. 046WLet U : M → ∆1 be a cocartesian fibration of ∞-categories and let
F :M0 →M1 be a functor. The following conditions are equivalent:

(1) The functor F is given by covariant transport along the nondegenerate edge of ∆1 (in
the sense of Definition 5.2.2.4).

(2) There exists a functor R :M→M1 such that R|M0 = F , R|M1 = id, and R carries
U -cocartesian morphisms of M to isomorphisms in M1.

Proof. Let e denote the nondegenerate edge of ∆1. By virtue of Proposition 5.2.2.8, we
can choose a functor F ′ : M0 → M1 and a natural transformation H : ∆1 ×M0 → M
which exhibits F ′ as given by covariant transport along e. Let R :M→M1 be a functor
satisfying condition (2). Then the composition

∆1 ×M0
H−→M R−→M1

can be regarded as a natural transformation from R ◦H|{0}×M0 = F to R ◦H|{1}×M1 = F ′.
By assumption, this natural transformation carries each object of M0 to an isomorphism
in the ∞-category M1, and is therefore an isomorphism of functors (Theorem 4.4.4.4). It
follows that the functor F is also given by covariant transport along e (see Proposition
5.2.2.8). This proves the implication (2)⇒ (1).

Now suppose that condition (1) is satisfied. Then we can assume that F ′ = F , so that
we have a commutative diagram of simplicial sets

M0
F //

��

M1

��
M0

∐
M0

id
∐
F
//

��

M0
∐
M1

��
∆1 ×M0

H //M .

The upper half of the diagram is a pushout square in which the vertical maps are monomor-
phisms, and therefore a categorical pushout square (Example 4.5.4.12). Theorem 5.2.4.1
guarantees that the outer rectangle is a categorical pushout square, so the lower half of
the diagram is also a categorical pushout square (Proposition 4.5.4.8). It follows that the
diagram of ∞-categories

Fun(M,M1) ◦H //

��

Fun(∆1 ×M0,M1)

��
Fun(M0

∐
M1,M1) // Fun(M0

∐
M0,M1)

https://kerodon.net/tag/046W
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is a categorical pullback square (Proposition 4.5.4.4). Since the vertical maps are isofibrations
(Corollary 4.4.5.3), Corollary 4.5.2.32 implies that composition with H induces an equivalence
of ∞-categories

{(F, id)} ×Fun(M0
∐
M1,M1) Fun(M,M1) ◦H−−→ HomFun(M0,M1)(F, F ).

It follows that we can choose a functor R :M→M1 such that R|M0 = F , R|M1 = id, and
the composition R◦H is homotopic to the identity (when regarded as a morphism from F to
itself in the ∞-category Fun(M0,M1)). To complete the proof, it will suffice to show that
if f : X → Y is a U -cocartesian morphism of M, then U(f) is an isomorphism. We may
assume without loss of generality that X belongs to M0 and Y belongs to M1 (otherwise,
f is already an isomorphism and there is nothing to prove). In this case, Remark 5.1.3.8
guarantees that f is isomorphic (as an object of Fun(∆1,M)) to the edge H|∆1×{X}. It will
therefore suffice to show that (R ◦H)|∆1×{X} is an isomorphism inM1, which is clear (since
it is homotopic to the identity morphism from F (X) to itself).

For any functor of ∞-categories F : C → D, the projection map

C ⋆D D → ∆0 ⋆∆0 ∆0 ≃ ∆1

is a cocartesian fibration (Proposition 5.2.3.15). The commutative diagram of simplicial sets

∅ ⋆C C //

��

∅ ⋆D D

��
C ⋆C C // C ⋆D D

satisfies the hypotheses of Theorem 5.2.4.1, and is therefore a categorical pushout square.
This is a special case of the following more general assertion, which does not require C and
D to be ∞-categories:

Proposition 5.2.4.5.024R Let f : X → Y be a morphism of simplicial sets. Then the diagram

0356 {1} ×X f //

��

Y

��
∆1 ×X // X ⋆Y Y

(5.13)

is a categorical pushout square of simplicial sets. Here the lower horizontal map is given by
the composition

∆1 ×X ≃ X ⋆X X
id ⋆ff−−−→ X ⋆Y Y.

https://kerodon.net/tag/024R
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Example 5.2.4.6. 024SIn the special case Y = ∆0, Proposition 5.2.4.5 asserts that the diagram

{1} ×X //

��

∆0

��
∆1 ×X // X▷

is a categorical pushout square: that is, that the comparison map X ⋄ ∆0 → X ⋆ ∆0 of
Notation 4.5.8.3 is a categorical equivalence. This is the content of Proposition 4.5.8.12
(which is a special case of Theorem 4.5.8.8).

Corollary 5.2.4.7. 0357Suppose we are given a commutative diagram of simplicial sets

X //

��

Y

��
X ′ // Y ′,

where the vertical maps are categorical equivalences. Then the induced map X ⋆Y Y →
X ′ ⋆Y ′ Y

′ is also a categorical equivalence of simplicial sets.

Proof. Combine Propositions 5.2.4.5 and 4.5.4.9.

Proof of Proposition 5.2.4.5. The diagram (5.13) determines a morphism of simplicial sets

λX : (∆1 ×X)
∐

({1}×X)
Y → X ⋆Y Y,

and we wish to show that λX is a categorical equivalence of simplicial sets (obtained by
applying Construction 5.3.4.7 to the diagram [1]→ Set∆ determined by the morphism f).
We wish to show that λX is a categorical equivalence of simplicial sets (Proposition 4.5.4.11).
By virtue of Corollary 4.5.7.3, it will suffice to prove that for every map ∆n → Y , the
induced map

∆n ×Y ((∆1 ×X)
∐

({1}×X)
Y )→ ∆n ×Y (X ⋆Y Y )

is a categorical equivalence. Using Remark 5.2.3.9, we can replace Y by ∆n and X by the
fiber product ∆n ×Y X, and thereby reduce the proof of Proposition 5.2.4.5 to the special
case where Y = ∆n is a standard simplex.

Since the collection of categorical equivalences is closed under the formation of filtered
colimits (Corollary 4.5.7.2), we may assume without loss of generality that the simplicial

https://kerodon.net/tag/024S
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set X is finite (see Remark 3.6.1.8). In particular, X has dimension ≤ m for some integer
m ≥ −1. We proceed by induction on m. If m = −1, then X is empty and the morphism λX
is an isomorphism (see Example 5.2.3.4). Assume that m ≥ 0; we now proceed by induction
on the number of nondegenerate m-simplices of X. If X does not have dimension ≤ m− 1,
then a choice of nondegenerate m-simplex of X determines a pushout diagram

∂∆m //

��

∆m

��
X ′ // X,

where the horizontal maps are monomorphisms (Proposition 1.1.4.12). We then obtain a
cubical diagram

(∆1 × ∂∆m)∐({1}×∂∆m)Y

λ∂∆m

$$

//

��

(∆1 ×∆m)∐({1}×∆m)Y

λ∆m

##

��

∂∆m ⋆Y Y

��

// ∆m ⋆Y Y

��

(∆1 ×X ′)∐({1}×X′)Y

λX′

$$

// (∆1 ×X)∐({1}×X)Y

λX

##
X ′ ⋆Y Y // X ⋆Y Y,

where the front and back faces are categorical pushout squares (Proposition 4.5.4.11).
Our inductive hypothesis guarantees that the morphisms λX′ and λ∂∆m are categorical
equivalences. Consequently, to show that λX is a categorical equivalence, it will suffice to
show that λ∆m is a categorical equivalence. We can therefore replace X by ∆m, and thereby
reduce the proof of Proposition 5.2.4.5 to the special case where f : ∆m → ∆n is a morphism
between standard simplices.

Suppose that f(m) < n. In this case, we can identify f with a morphism from X = ∆m

to the simplex ∆n−1 (regarded as a simplicial subset of ∆n), and we can identify X ⋆Y Y

with the right cone (X ⋆∆n−1 ∆n−1)▷. Under this identification, λX corresponds to the
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composition

(∆1 ×X)
∐

({1}×X)
(∆n−1)▷ λ′−→ (∆1 ×X)▷

∐
({1}×X)▷

(∆n−1)▷

≃ (∆1 ×X)
∐

({1}×X)
(∆n−1)▷

λ′′−→ (X ⋆∆n−1 ∆n−1)▷,

where λ′ is a pushout of the map

(∆1 ×X)
∐

({1}×X)
({1} ×X)▷ → (∆1 ×X)▷

and is therefore inner anodyne by virtue of Example 4.3.6.5 (since the inclusion {1} ×X ↪→
∆1 × X is right anodyne; see Proposition 4.2.5.3). Consequently, to show that λX is a
categorical equivalence, it will suffice to show that λ′′ is a categorical equivalence. By virtue
of Corollary 4.5.8.9, we are reduced to proving Proposition 5.2.4.5 for the map f : X → ∆n−1.
Applying this argument repeatedly, we can reduce to the case where f(m) = n.

Let Z(0) denote the simplicial subset of ∆1 ×∆m given by the union of ∆1 × ∂∆m with
{1} ×∆m, and let

Z(0) ⊂ Z(1) ⊂ Z(2) ⊂ · · · ⊂ Z(m) ⊂ Z(m+ 1) = ∆1 ×∆m

be the sequence of simplicial subsets appearing in Lemma 3.1.2.12. Note that λX carries
Z(m) into the simplicial subset ∂∆m ⋆Y Y ⊆ X ⋆Y Y . We therefore obtain a cubical diagram
of simplicial sets

Z(0)

##

//

��

(∆1 × ∂∆m)∐({1}×∂∆m)Y

λ∂∆m

''

��

Z(m) //

��

∂∆m ⋆Y Y

��

∆1 ×∆m

id

##

// (∆1 ×∆m)∐({1}×∆m)Y

λ∆m

''
∆1 ×∆m // ∆m ⋆Y Y
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where the front and back faces are pushout squares and the vertical maps are monomorphisms.
It follows that the front and back faces are categorical pushout squares (Example 4.5.4.12).
Our inductive hypothesis guarantees that λ∂∆m is a categorical equivalence, and the inclusion
Z(0) ↪→ Z(m) is inner anodyne by construction (see Lemma 3.1.2.12). Applying Proposition
4.5.4.9, we conclude that λ∆m is also a categorical equivalence.

Proof of Theorem 5.2.4.1. Let U :M→ ∆1 be a functor of ∞-categories and suppose we
are given a commutative diagram σ :

{1} × C F //

��

{1} × D

g

��
∆1 × C h //M

in the category (Set∆)/∆1 . We wish to show that σ is a categorical pushout square if and
only if conditions (1) through (3) of Theorem 5.2.4.1 are satisfied.

We first reduce to the case where C and D are ∞-categories. Choose inner anodyne
morphisms C ↪→ C′ and D ↪→ D′, where C′ and D′ are∞-categories (Corollary 4.1.3.3). Since
the fiber {1} ×∆1 M is an ∞-category, we can extend g to a functor g′ : D′ → {1} ×∆1 M.
Similarly, the composition C F−→ D ↪→ D′ extends to a functor of ∞-categories F ′ : C′ → D′.
Using Exercise 3.1.7.11, we can factor F ′ as a composition C′ F

′′
−−→ D′′ v−→ D′, where F ′′ is

a monomorphism and v is a trivial Kan fibration. It follows from Lemma 1.5.7.5 that the
inclusion map

(∆1 × C)
∐

({1}×C)
({1} × C′) ↪→ ∆1 × C′

is inner anodyne, so that we can extend h to a functor h′ : ∆1 × C′ → M satisfying
h′|{1}×C′ = g′ ◦ F ′. By virtue of Proposition 4.5.4.9, σ is a categorical pushout square if and
only if the diagram σ :

{1} × C′ F ′′ //

��

{1} × D′′

g′◦v

��
∆1 × C′ h′ //M

is a categorical pushout square. We may therefore replace C and D by C′ and D′′, and
thereby reduce to the case where C and D are ∞-categories and F is a monomorphism.

The assumption that F is a monomorphism guarantees that the natural map

ι : (∆1 × C)
∐

({1}×C)
D → C ⋆D D
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is also a monomorphism, and Proposition 5.2.4.5 guarantees that ι is a categorical equivalence
of simplicial sets. Since M is an ∞-category, Lemma 4.5.5.2 guarantees the existence of
a functor G : C ⋆D D →M satisfying G|∆1×C = h and G|D = g. By virtue of Proposition
4.5.4.9, the diagram σ is a categorical pushout square if and only if the functor G is an
equivalence of ∞-categories.

Note that the functor G fits into a commutative diagram

C ⋆D D G //

U ′

""

M

U

~~
∆1,

where U ′ is the cocartesian fibration of Proposition 5.2.3.15, and the functor U is an
isofibration (Example 4.4.1.6). The desired result now follows by applying the criterion of
Theorem 5.1.6.1 (and invoking Remark 5.1.6.8).

5.2.5 The Homotopy Transport Representation

01VTWe now study the behavior of the transport functors of §5.2.2 with respect to composition.

Proposition 5.2.5.1 (Transitivity). 01VULet U : E → C be a cocartesian fibration of simplicial
sets and let σ be a 2-simplex of C, which we display as a diagram

D

g

  
C

f

??

h // E.

Let f! : EC → ED and g! : ED → EE be functors which are given by covariant transport along
f and g, respectively. Then the composite functor (g! ◦ f!) : EC → EE is given by covariant
transport along h.

Proof. Without loss of generality, we may replace U by the projection map ∆2 ×C E → ∆2,
and thereby reduce to the case where C = ∆2 and σ is the unique nondegenerate 2-simplex
of C. In this case, E is an ∞-category. Let u : idEC

→ f! be a morphism in the ∞-
category Fun(EC , E) which witnesses f! as given by covariant transport along f , and let
v : idED

→ g! be a morphism in the ∞-category Fun(ED, E) which witnesses g! as given
by covariant transport along g. Let v′ : f! → g! ◦ f! denote the image of v under the
functor Fun(ED, E)→ Fun(EC , E) given by precomposition with f!. Let w : idEC

→ g! ◦ f!

https://kerodon.net/tag/01VT
https://kerodon.net/tag/01VU
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be a composition of u with v′ in the ∞-category Fun(EC , E). We will complete the proof
by showing that w witnesses g! ◦ f! as given by covariant transport along h. To prove
this, we must show that for every object X ∈ EC , the morphism wX : X → (g! ◦ f!)(X)
is U -cocartesian. This follows from Corollary 5.1.2.4, since wX is a composition of the
U -cocartesian morphisms uX : X → f!(X) and vf!(X) : f!(X)→ (g! ◦ f!)(X).

Construction 5.2.5.2 (The Homotopy Transport Representation: Covariant Case).019U Let
U : E → C be a cocartesian fibration of simplicial sets and let hQCat denote the homotopy
category of ∞-categories. It follows from Proposition 5.2.5.1 and Example 5.2.2.5 that there
is a unique functor hTrE / C : hC → hQCat with the following properties:

• For each vertex C of the simplicial set C, hTrE / C(C) is the∞-category EC = {C}×C E
(regarded as an object of hQCat).

• For each edge f : C → D of the simplicial set C representing a morphism [f ] ∈
HomhC(C,D), we have hTrE / C([f ]) = [f!]. Here [f!] denotes the isomorphism class of
the covariant transport functor of Notation 5.2.2.9, which we regarded as an element
of the set

HomhQCat(EC , ED) = π0(Fun(EC , ED)≃).

We will refer to hTrE / C as the homotopy transport representation of the cocartesian fibration
U .

Example 5.2.5.3.0358 Let U : E → C be a left covering map of simplicial sets. Then the
homotopy transport representation hTrE / C of Construction 5.2.5.2 coincides with the functor
hTrE / C : hC → Set of Proposition 5.2.0.3 (here we abuse notation by identifying the category
of sets with the full subcategory of hKan spanned by the discrete simplicial sets).

Remark 5.2.5.4.01VY Let U : E → C be a cocartesian fibration of simplicial sets, and let
hTrE / C : hC → hQCat be the homotopy transport representation of Construction 5.2.5.2. It
follows from Proposition 5.1.4.14 that U is a left fibration if and only if the functor hTrE / C
factors through the full subcategory hKan ⊆ hQCat. In particular, if U is a left fibration,
then Construction 5.2.5.2 determines a functor hC → hKan which we will also refer to as
the homotopy transport representation of the left fibration U .

Remark 5.2.5.5.02RD Let U : E → C be a cocartesian fibration of ∞-categories, let f : C → D

be a morphism of C, and let f! : EC → ED be given by covariant transport along f . If f is
an isomorphism in the ∞-category C, then f! is an equivalence of ∞-categories. This follows
from the observation that the homotopy transport functor hTrE / C : hC → hQCat carries
isomorphisms to isomorphisms.

https://kerodon.net/tag/019U
https://kerodon.net/tag/0358
https://kerodon.net/tag/01VY
https://kerodon.net/tag/02RD
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Remark 5.2.5.6 (Base Change). 0359Suppose we are given a pullback diagram of simplicial sets

E ′ //

U ′

��

E

U

��
C′ // C,

where U and U ′ are cocartesian fibrations. Then the homotopy transport representation
hTrE ′ / C′ is isomorphic to the composite functor

hC′ → hC
hTrE / C−−−−−→ hQCat.

Construction 5.2.5.2 has an analogue for cartesian fibrations:

Construction 5.2.5.7 (The Homotopy Transport Representation: Contravariant Case).
019ZLet U : E → C be a cartesian fibration of simplicial sets and let hQCat denote the homotopy

category of ∞-categories (Construction 4.5.1.1). It follows from Proposition 5.2.5.1 and
Example 5.2.2.5 that there is a unique functor hTrE / C : hCop → hQCat satisfying the
following conditions:

• For each vertex C of the simplicial set C, hTrE / C(C) is the∞-category EC = {C}×C E
(regarded as an object of hQCat).

• For each edge f : C → D of the simplicial set C representing a morphism [f ] ∈
HomhC(C,D), we have hTrE / C([f ]) = [f∗], where [f∗] denotes the isomorphism class
of the contravariant transport functor of Notation 5.2.2.17.

We will refer to hTrE / C as the homotopy transport representation of the cartesian fibration
U .

Warning 5.2.5.8. 01VZLet U : E → C be a morphism of simplicial sets which is both a cartesian
fibration and a cocartesian fibration. Then Constructions 5.2.5.2 and 5.2.5.7 supply functors
hC → hQCat and hCop → hQCat respectively, which are both referred to as the homotopy
transport representation of U and both denoted by hTrE / C . We will see later that these two
functors are interchangeable data: either can be recovered from the other (see Proposition
6.2.3.5).

Example 5.2.5.9. 01W0Let U : E → C be a morphism of simplicial sets. Combining Remark
5.2.5.4 with Theorem 5.2.2.19, we deduce that the following conditions are equivalent:

• The morphism U is a Kan fibration.

https://kerodon.net/tag/0359
https://kerodon.net/tag/019Z
https://kerodon.net/tag/01VZ
https://kerodon.net/tag/01W0
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• The morphism U is a cocartesian fibration and the homotopy transport representa-
tion hTrE / C : hC → hQCat of Construction 5.2.5.2 factors through the subcategory
hKan≃ ⊆ hQCat.

• The morphism U is a cartesian fibration and the homotopy transport representation
hTr′E / C : hCop → hQCat of Construction 5.2.5.7 factors through the subcategory
hKan≃ ⊆ hQCat.

If these conditions are satisfied, then hTr′E / C is given by the composition

hCop hTrop
E / C−−−−−→ (hKan≃)op ι−→ hKan≃,

where ι is the isomorphism which carries each morphism in hKan≃ to its inverse.

5.2.6 Elements of Set-Valued Functors

01Q7 Throughout this section, we let Set denote the category of sets.

Construction 5.2.6.1 (The Category of Elements).01Q8 Let C be a category and let F : C → Set
be a functor. We define a category

∫
CF as follows:

• The objects of
∫
CF are pairs (C, x), where C is an object of C and x is an element of

the set F (C).

• If (C, x) and (C ′, x′) are objects of
∫
CF , then a morphism from (C, x) to (C ′, x′) in

the category
∫
CF is a morphism f : C → C ′ in the category C for which the induced

map F (f) : F (C)→ F (C ′) carries x to x′.

• Composition of morphisms in
∫
CF is given by composition of morphisms in C.

We will refer to
∫
CF as the category of elements of the functor F . Note that the construction

(C, x) 7→ C determines a functor
∫
CF → C, which we will refer to as the forgetful functor.

Variant 5.2.6.2.01Q9 Let C be a category and let F : Cop → Set be a functor. We define a
category

∫ CF as follows:

• The objects of
∫ CF are pairs (C, x), where C is an object of C and x is an element of

the set F (C).

• If (C, x) and (C ′, x′) are objects of
∫ CF , then a morphism from (C, x) to (C ′, x′) in

the category
∫ CF is a morphism f : C → C ′ in the category C for which the induced

map F (f) : F (C ′)→ F (C) carries x′ to x.

• Composition of morphisms in
∫ CF is given by composition of morphisms in C.

https://kerodon.net/tag/01Q7
https://kerodon.net/tag/01Q8
https://kerodon.net/tag/01Q9
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We will refer to
∫ CF as the category of elements of the functor F . Note that the construction

(C, x) 7→ C determines a functor U :
∫ CF → C, which we will refer to as the forgetful

functor.

Remark 5.2.6.3. 01QALet C be a category and let F : C → Set be a functor. Then we have a
canonical isomorphism of categories

(
∫
C
F )op ≃ (

∫ Cop

F ),

where
∫
CF is the category of elements introduced in Construction 5.2.6.1 and

∫ Cop
F is the

category of elements introduced in Variant 5.2.6.2.

Example 5.2.6.4. 01QBLet X : ∆op → Set be a simplicial set. Then
∫ ∆X is the category of

simplices ∆X introduced in Construction 1.1.3.9.

Example 5.2.6.5. 01QCLet C be a category, let X be an object of C, and let hX : C → Set denote
the functor corepresented by X (given on objects by the formula hX(Y ) = HomC(X,Y )).
Then the category of elements

∫
C h

X can be identified with the coslice category CX/ of
Variant 4.3.1.4. Similarly, if hX : Cop → Set is the functor represented by X (given on
objects by hX(Y ) = HomC(Y,X)), then the category of elements

∫ C hX can be identified
with the slice category C/X .

Remark 5.2.6.6. 01QDLet C be a category and let F : C → Set be a functor. Then the category
of elements

∫
CF fits into a pullback diagram∫

CF //

��

Set∗

��
C F // Set .

Here Set∗ denotes the category of pointed sets (see Example 4.2.3.3).

Remark 5.2.6.7. 01QELet C be a small category, let Fun(Cop,Set) be the category of set-
valued functors on Cop, and let h : C → Fun(Cop, Set) be the Yoneda embedding (so that h
carries each object C ∈ C to the representable functor hC = HomC(•, C)). For any object
F ∈ Fun(Cop,Set), the category of elements

∫ CF fits into a pullback diagram∫ CF

��

// Fun(Cop, Set)/F

��
C h // Fun(Cop,Set).

https://kerodon.net/tag/01QA
https://kerodon.net/tag/01QB
https://kerodon.net/tag/01QC
https://kerodon.net/tag/01QD
https://kerodon.net/tag/01QE
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This is essentially a reformulation of Yoneda’s lemma (see Corollary 8.4.2.7 for an ∞-
categorical counterpart).

We now show that, up to isomorphism, every functor F : C → Set can be recovered
from the category of elements

∫
CF (together with the forgetful functor

∫
CF → C). Let Cat

denote the category of (small) categories.

Proposition 5.2.6.8.01QF Let C be a small category. Then:

• Construction 5.2.6.1 determines a fully faithful functor

Fun(C, Set)→ Cat/ C F 7→
∫
C
F .

• Variant 5.2.6.2 determines a fully faithful functor

Fun(Cop,Set)→ Cat/ C F 7→
∫ C

F .

Proof. We will prove the first assertion; the second follows by a similar argument. Let F

and G be functors from C to the category of sets, and let T : (
∫
CF )→ (

∫
C G ) be a functor

for which the diagram ∫
CF

T //

  

∫
C G

~~
C

is strictly commutative, where the vertical maps are the forgetful functors. We wish to show
that there is a unique natural transformation of functors

f : F → G {fC : F (C)→ G (C)}C∈C

for which the functor T is given on objects by the construction T (C, x) = (C, fC(x)). Note
that this requirement uniquely determines the function fC : F (C)→ G (C) for each object
C ∈ C. We must show that the resulting collection {fC}C∈C is a natural transformation:
that is, for every morphism u : C → D in the category C, the diagram of sets

F (C) fC //

F (u)

��

G (C)

G (u)

��
F (D) fD) // G (D)

https://kerodon.net/tag/01QF


1052 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

is commutative. Fix an element x ∈ F (C), so that u can be regarded as a morphism from
(C, x) to (D,F (u)(x)) in the category

∫
CF . Applying the functor T , we deduce that u can

also be regarded as a morphism from (C, fC(x)) to (D, fD(F (u)(x))) in the category
∫
C G .

It follows that G (u)(fC(x)) = fD(F (u)(x)), as desired.

Remark 5.2.6.9. 01QPLet C be a category, let F : C → Set be a functor, and let
∫
CF denote

the category of elements of F (Construction 5.2.6.1). Then the forgetful functor
∫
CF → C

is a left covering functor, in the sense of Definition 4.2.3.1. This follows from the pullback
diagram ∫

CF //

��

Set∗

��
C F // Set

of Remark 5.2.6.6, together with Remark 4.2.3.6 and Example 4.2.3.3. We will see in §5.2.7
that the converse is also true: for every left covering functor U : E → C, there exists a
functor F : C → Set and isomorphism E ≃

∫
CF which is compatible with the functor U

(Corollary 5.2.7.5). By virtue of Proposition 5.2.6.8, the functor F is unique up to canonical
isomorphism.

5.2.7 Covering Space Theory

01QGLet S be a topological space. Every covering map f : X → S determines a functor
from the fundamental groupoid π≤1(S) to the category of sets, given by the monodromy
representation of Example 5.2.0.5. Under some mild assumptions on the topological space
S, the converse is also true: every functor π≤1(S)→ Set can be obtained as the monodromy
representation of an essentially unique covering map f : X → S. More precisely, we have
the following:

Theorem 5.2.7.1 (The Fundamental Theorem of Covering Space Theory). 027RLet S be a
topological space which is semilocally simply connected. Then the construction X 7→ hTrX/S
determines an equivalence of categories

{Covering maps f : X → S} → Fun(π≤1(S),Set).

The proof of Theorem 5.2.7.1 can be broken into two parts:

(a) If S is a topological space which is semilocally simply connected, then the construction

https://kerodon.net/tag/01QP
https://kerodon.net/tag/01QG
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X 7→ Sing•(X) induces an equivalence of categories

{Covering maps of topological spaces f : X → S}

��
{Covering maps of simplicial sets E → Sing•(S)}.

(b) For every Kan complex C, the formation of monodromy representations determines an
equivalence of categories

{Covering maps E → C} → Fun(π≤1(C), Set) E 7→ hTrE / C .

The proof of (a) requires some point-set topology; we defer a discussion to §[?]. Our goal
in this section is to give a proof of (b) (see Corollary 5.2.7.6). We will deduce (b) from a more
general statement, which classifies left coverings of an arbitrary simplicial set C (Corollary
5.2.7.3).

Proposition 5.2.7.2.027V Let U : E → C be a left covering map of simplicial sets, and let
hTrE / C : hC → Set be the homotopy transport representation of Proposition 5.2.0.3. Then
there is a canonical isomorphism of simplicial sets

E ≃ C ×N•(hC) N•(
∫

hC
hTrE / C).

Proof. Every vertex X ∈ E can be regarded as an element of the set hTrE / C(U(X)), and
the construction (X ∈ E) 7→ (EU(X), X) determines a functor h̃TrE / C : hE → Set∗. Let us
identify hTrE / C with a morphism of simplicial sets from C to N•(Set) and h̃TrE / C with a
morphism of simplicial sets from E to N•(Set∗), so that we have a commutative diagram of
simplicial sets

E

U

��

h̃TrE / C // N•(Set∗)

��
C

hTrE / C // N•(Set)

which we can identify with a morphism of simplicial sets V : E → C ×N•(hC) N•(
∫

hC hTrE / C).
Since U and the projection map

∫
C hTrE / C → hC are both left covering maps (Remark

5.2.6.9), it follows that V is a left covering map (Remark 4.2.3.14). By construction, V is
bijective at the level of vertices, and is therefore an isomorphism of simplicial sets (Proposition
4.2.3.19).

https://kerodon.net/tag/027V
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Corollary 5.2.7.3. 027WLet C be a simplicial set, and let LCov(C) denote the full subcategory
of (Set∆)/ C spanned by the left covering maps U : E → C. Then the formation of homotopy
transport representations supplies an equivalence of categories

LCov(C)→ Fun(hC, Set) (U : E → C) 7→ hTrE / C .

Proof. Proposition 5.2.7.2 shows that the functor

(F ∈ Fun(hC, Set)) 7→ C ×N•(hC) N•(
∫

hC
F ) ∈ LCov(C)

is a left homotopy inverse to the functor E 7→ hTrE / C. By virtue of Example 5.2.0.6 and
Remark 5.2.5.6, it is also a right homotopy inverse.

Corollary 5.2.7.4. 027XLet U : E → C be a morphism of simplicial sets. The following conditions
are equivalent:

(1) There exists a pullback diagram of simplicial sets

E //

U

��

N•(D)

N•(V )

��
C // N•(hC),

where V : D → hC is a left covering functor (in the sense of Definition 4.2.3.1).

(2) For every category C′ and every morphism of simplicial sets N•(C′)→ C, the fiber product
N•(C′)×C E is isomorphic to the nerve of a category E ′ and the projection E ′ → C′ is
left covering functor (in the sense of Definition 4.2.3.1).

(3) For every n-simplex σ : ∆n → C, the fiber product ∆n ×C E is isomorphic to the nerve
of a category E ′ and the projection E ′ → [n] is a left covering functor (in the sense of
Definition 4.2.3.1).

(4) The morphism U is a left covering map of simplicial sets (in the sense of Definition
4.2.3.8).

Proof. The implication (1)⇒ (2) follows from Remark 4.2.3.6, the implication (2)⇒ (3) is
trivial, and the implication (3)⇒ (4) follows by combining Remark 4.2.3.15 with Proposition
4.2.3.16. The implication (4)⇒ (1) follows from Proposition 5.2.7.2.

Corollary 5.2.7.5. 01R0Let C be a category. Then:
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• Construction 5.2.6.1 determines a fully faithful functor

Fun(C, Set)→ Cat/ C F 7→
∫
C
F ,

whose essential image consists of the left covering functors U : E → C.

• Variant 5.2.6.2 determines a fully faithful functor

Fun(Cop,Set)→ Cat/ C F 7→
∫ C

F ,

whose essential image consists of the right covering functors U : E → C.

Corollary 5.2.7.6.027Z Let C be a Kan complex. Then the construction (U : E → C) 7→ hTrE / C
induces an equivalence of categories

{Covering maps E → C} → Fun(π≤1(C),Set).

Proof. Combine Corollaries 5.2.7.3 and 4.4.3.9.

5.2.8 Parametrized Covariant Transport

02RL Let U : E → C be a cocartesian fibration of ∞-categories. To every morphism f : C → D

in the∞-category C, Definition 5.2.2.4 associates a covariant transport functor f! : EC → ED,
which is uniquely determined up to isomorphism (see Proposition 5.2.2.8). Our goal in this
section is to show that the functor f! can be chosen to depend functorially on the morphism
f : that is, the construction f 7→ f! can be promoted to a functor from the Kan complex
HomC(C,D) to the ∞-category Fun(EC , ED). We begin by introducing a more elaborate
version of Definition 5.2.2.4.

Definition 5.2.8.1 (Parametrized Covariant Transport).02RM Let U : E → C be a cocartesian
fibration of simplicial sets and let C and D be vertices of C. We will say that a morphism
F : HomC(C,D) × EC → ED is given by parametrized covariant transport if there exists
a morphism of simplicial sets F̃ : ∆1 × HomC(C,D) × EC → E satisfying the following
conditions:

(1) The diagram of simplicial sets

∆1 ×HomC(C,D)× EC F̃ //

��

E

U

��
∆1 ×HomC(C,D) // C

commutes (where the lower horizontal map is induced by the inclusion HomC(C,D) ↪→
Fun(∆1, C)).
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(2) The restriction F̃ |{0}×HomC(C,D)×EC
is given by projection onto EC , and the restriction

F̃ |{1}×HomC(C,D)×EC
is equal to F .

(3) For every edge f : C → D of C and every object X ∈ EC , the composite map

∆1 × {f} × {X} ↪→ ∆1 ×HomC(C,D)× EC F̃−→ E

is a U -cocartesian edge of E .

If these conditions are satisfied, we say that the morphism F̃ witnesses F as given by
parametrized covariant transport.

Remark 5.2.8.2. 02RNLet U : E → C be a cocartesian fibration of simplicial sets, let C and D

be vertices of C, and let F : HomC(C,D) × EC → ED be given by parametrized covariant
transport. Then, for every edge f : C → D, the composite map

{f} × EC ↪→ HomC(C,D)× EC F−→ ED

is given by covariant transport along f , in the sense of Definition 5.2.2.4. In other words,
we can identify F with a diagram HomC(C,D) → Fun(EC , ED), which carries each edge
f ∈ HomC(C,D) to the covariant transport functor f! of Notation 5.2.2.9.

Example 5.2.8.3. 02RPLet Set∗ denote the category of pointed sets (Example 4.2.3.3), and
let V : Set∗ → Set denote the forgetful functor (X,x) 7→ X. Then the induced map
N•(V ) : N•(Set∗) → N•(Set) is a cocartesian fibration (in fact, it is a left covering map),
whose fiber over an object X ∈ N•(Set) can be identified with the set X. For every pair of
sets X and Y , the evaluation map

ev : HomSet(X,Y )×X → Y (f, x) 7→ f(x)

is given by parametrized covariant transport (in the sense of Definition 5.2.8.1).

Proposition 5.2.8.4. 02RQLet U : E → C be a cocartesian fibration of simplicial sets, and let C
and D be vertices of C. Then:

• There exists a morphism F : HomC(C,D)× EC → ED which is given by parametrized
covariant transport.

• An arbitrary diagram F ′ : HomC(C,D) × EC → ED is given by parametrized covari-
ant transport if and only if it is isomorphic to F (as an object of the ∞-category
Fun(HomC(C,D)× EC , ED)).

Proof. Apply Lemma 5.2.2.13 to the simplicial set K = HomC(C,D)× EC .
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Remark 5.2.8.5 (Functoriality).02RR Suppose we are given a commutative diagram of simplicial
sets

E

U

��

G // E ′

U ′

��
C G // C′,

where U and U ′ are cocartesian fibrations. Let C and D be vertices of C having images
C ′ = G(C) and D′ = G(D), respectively, so that G induces functors GC : EC → E ′C′ and
GD : ED → E ′D′ . Let φ : HomC(C,D)→ HomC′(C ′, D′) be the morphism induced by G, and
let

F : HomC(C,D)× EC → ED F ′ : HomC′(C ′, D′)× E ′C′ → E ′D′

be given by parametrized covariant transport with respect to U and U ′. Suppose that
the morphism G carries U -cocartesian edges of E to U ′-cocartesian edges of E ′. Then the
diagram

HomC(C,D)× EC F //

φ×GC

��

ED

GD

��
HomC′(C ′, D′)× E ′C′

F ′ // E ′D′

commutes up to isomorphism: that is, GD ◦ F and F ′ ◦ (φ×GC) are isomorphic as objects
of the ∞-category Fun(HomC(C,D) × EC , E ′D′). This follows by applying the uniqueness
assertion of Lemma 5.2.2.13 to the lifting problem

{0} ×HomC(C,D)× EC //

��

E ′

U ′

��
∆1 ×HomC(C,D)× EC //

88

C′ .

Variant 5.2.8.6 (Parametrized Contravariant Transport).02RS Let U : E → C be a cartesian
fibration of simplicial sets and let C and D be vertices of C. Applying Proposition 5.2.8.4
to the opposite cocartesian fibration Uop : Eop → Cop, we obtain a diagram HomC(C,D)→
Fun(ED, EC), carrying each edge f : C → D to a functor f∗ : ED → EC given by contravariant
transport along f .

https://kerodon.net/tag/02RR
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Let C be an ∞-category. Recall that, for every pair of objects X,Y ∈ C, the morphism
space HomC(X,Y ) can be identified with the fiber over Y of the left fibration {X} ×̃C C → C
of Proposition 4.6.4.11, or with the fiber over X of the right fibration C ×̃C{Y }. In either
case, parametrized transport recovers the composition law of C:

Proposition 5.2.8.7. 02GTLet C be an ∞-category containing objects C, D, and E. Then the
composition law

◦ : HomC(D,E)×HomC(C,D)→ HomC(C,E)
of Construction 4.6.9.9 is given by parametrized covariant transport for the left fibration
U : {C} ×̃C C → C (in the sense of Definition 5.2.8.1), and also by parametrized contravariant
transport for the right fibration V : C ×̃C{E} → C.

Proof. We will prove the first assertion; the second follows by a similar argument. Let
S : ∆1 ×∆1 → ∆2 be the morphism given on vertices by the formula T (i, j) = i(j + 1), and
let T be a section of the trivial Kan fibration HomC(C,D,E)→ HomC(D,E)×HomC(C,D)
(see Corollary 4.6.9.5). Then the composite map

∆1 ×∆1 ×HomC(D,E)×HomC(C,D) S×T−−−→ ∆2 ×HomC(C,D,E)→ C

carries {0}×∆1×HomC(D,E)×HomC(C,D) to the vertex C, and can therefore be identified
with a functor

F̃ : ∆1 ×HomC(D,E)×HomC(C,D)→ {C} ×̃C C .
which exhibits the composition law as given by parametrized covariant transport for the left
fibration U .

Proposition 5.2.5.1 has a counterpart for parametrized covariant transport:

Proposition 5.2.8.8. 02GULet U : E → C be a cocartesian fibration of ∞-categories. Let C, D,
and E be objects of C, and let

F : HomC(C,D)× EC → ED G : HomC(D,E)× ED → EE

H : HomC(C,E)× EC → EE
be given by parametrized covariant transport. Then the diagram

02RTHomC(D,E)×HomC(C,D)× EC
id×F //

��

HomC(D,E)× ED

G

��
HomC(C,E)× EC H // EE

(5.14)

commutes in the homotopy category hQCat; here the left vertical map is given by the
composition law of Construction 4.6.9.9.
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Proof. Let HomC(C,D,E) be the Kan complex defined in Notation 4.6.9.1, let H ′ denote
the composite map

HomC(C,D,E)× EC → HomC(C,E)× EC H−→ EE ,

and let H ′′ denote the composition

HomC(C,D,E)× EC → HomC(D,E)×HomC(C,D)× EC
F−→ HomC(D,E)× ED
G−→ EE .

We will show that H ′ and H ′′ are isomorphic when regarded as objects of the ∞-category
Fun(HomC(C,D,E) × EC , EE). The homotopy commutativity of the diagram (5.14) will
then follow by precomposing with any section of the trivial Kan fibration HomC(C,D,E)→
HomC(D,E)×HomC(C,D).

Choose morphisms

F̃ : N•({0 < 1})×HomC(C,D)× EC → E

G̃ : N•({1 < 2})×HomC(D,E)× ED → E

H̃ : N•({0 < 2})×HomC(C,E)× EC → E

which witness F , G, and H as given by parametrized covariant transport, respectively.
Composing with the projection maps

HomC(C,D)← HomC(C,D,E)→ HomC(C,E),

we obtain morphisms

F̃ ′ : N•({0 < 1})×HomC(C,D,E)× EC → E

H̃ ′ : N•({0 < 2})×HomC(C,D,E)× EC → E .

Let G̃′ denote the composite map

N•({1 < 2})×HomC(C,D,E)× EC → N•({1 < 2})×HomC(D,E)×HomC(C,D)× EC
F−→ N•({1 < 2})×HomC(D,E)× ED
G̃−→ E .
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Since U is an inner fibration, the lifting problem

Λ2
1 ×HomC(C,D,E)× EC

(G̃′,•,F̃ ′) //

��

E

U

��
∆2 ×HomC(C,D,E)× EC //

Φ

55

C

admits a solution Φ : ∆2×HomC(C,D,E)×EC → E . Let H̃ ′′ denote the restriction of Φ to the
product N•({0, 2})×HomC(C,D,E)×EC . Using Proposition 5.1.4.12, we see that H̃ ′′ is a U -
cocartesian lift of U ◦H̃ ′′ = U ◦H̃ ′, in the sense of Definition 5.2.2.10. Applying the uniqueness
assertion of Lemma 5.2.2.13, we conclude that the restrictions H ′ = H̃ ′|{2}×HomC(C,D,E)×EC

and H ′′ = H̃ ′′|{2}×HomC(C,D,E)×EC
are isomorphic when regarded as objects of the∞-category

Fun(HomC(C,D,E)× EC , EE), as desired.

Using Proposition 5.2.8.8, we obtain the following refinement of Construction 5.2.5.2:

Construction 5.2.8.9 (Enriched Homotopy Transport: Covariant Case). 02GWLet U : E → C
be a cocartesian fibration of ∞-categories and let us regard the homotopy category hC as
enriched over the homotopy category hKan of Kan complexes (Construction 4.6.9.13). It
follows from Proposition 5.2.8.8 (and Example 5.2.2.5) that there is a unique hKan-enriched
functor hTrE / C : hC → hQCat with the following properties:

• For each object C of the ∞-category C, hTrE / C(C) is the ∞-category EC = {C} ×C E
(regarded as an object of hQCat).

• For every pair of objects C,D ∈ C, the induced map

hTrE / C : HomC(C,D)→ Fun(EC , ED)≃

in hKan corresponds to the parametrized covariant transport functor HomC(C,D)×
EC → ED of supplied by Proposition 5.2.8.4 (which is well-defined up to isomorphism).

We will refer to hTrE / C as the enriched homotopy transport representation of the cocartesian
fibration U . Note that the underlying functor of ordinary categories hC → hQCat coincides
with homotopy transport representation of Construction 5.2.5.2.

Remark 5.2.8.10 (Functoriality). 02RUSuppose we are given a commutative diagram of ∞-
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categories
02RV E

U

��

G // E ′

U ′

��
C G // C′,

(5.15)

where U and U ′ are cocartesian fibrations and the functor G carries U -cocartesian morphisms
of E to U ′-cocartesian morphisms of E ′. For each object C ∈ C having image C ′ = G(C), G
restricts to a functor GC : EC → E ′C′ . It follows from Remark 5.2.8.5 that the construction
C 7→ GC determines a natural transformation of hKan-enriched functors α : hTrE / C →
hTrE ′ / C′ ◦hG from hC to hQCat. Moreover, if (5.15) is a pullback square, then α is an
isomorphism of hKan-enriched functors.

Variant 5.2.8.11 (Enriched Homotopy Transport: Left Fibrations).02RW Let U : E → C be a
left fibration of ∞-categories. Applying Construction 5.2.8.9, we obtain an hKan-enriched
functor

hTrE / C : hC → hKan,

given on objects by the formula hTrE / C(C) = {C} ×C E .

Variant 5.2.8.12 (Enriched Homotopy Transport: Contravariant Case).02GX Let U : E → C be
a cartesian fibration of ∞-categories. Applying Construction 5.2.8.9 to the opposite functor
Uop, we deduce that there is a unique hKan-enriched functor hTrE / C : hCop → hQCat with
the following properties:

• For each object C of the ∞-category C, hTrE / C(C) is the ∞-category EC = {C} ×C E
(regarded as an object of hQCat).

• For every pair of objects C,D ∈ C, the induced map

hTrE / C : HomC(C,D)→ Fun(ED, EC)≃

is given by the parametrized contravariant transport functor ED ×HomC(C,D)→ EC
of Variant 5.2.8.6.

We will refer to hTrE / C as the enriched homotopy transport representation of the cartesian
fibration U . If U is a right fibration, then hTrE / C takes values in the full subcategory
hKan ⊆ hQCat.

Example 5.2.8.13.02GY Let C be an ∞-category and let hC denote its homotopy category,
which we regard as enriched over the homotopy category hKan of Kan complexes. Applying
Proposition 5.2.8.7, we obtain the following:

https://kerodon.net/tag/02RV
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• For every object C ∈ C, the corepresentable hKan-enriched functor

hC → hKan D 7→ HomC(C,D)

is the enriched homotopy transport representation for the left fibration {C} ×̃C C → C.

• For every object D ∈ C, the representable hKan-enriched functor

hCop → hKan C 7→ HomC(C,D)

is the enriched homotopy transport representation for the right fibration C ×̃C{D} → C.

5.3 Fibrations over Ordinary Categories

035ALet Set∆ denote the category of simplicial sets, let QCat ⊂ Set∆ denote the full subcate-
gory spanned by the∞-categories, and let hQCat denote its homotopy category (Construction
4.5.1.1). In §5.2.5, we associated to every cocartesian fibration of simplicial sets U : E → S a
functor hTrE /S : hS → hQCat called the homotopy transport representation of U , given on
objects by the formula hTrE /S(s) = {s}×S E (Construction 5.2.5.2). In §5.3.1, we specialize
to the situation where S = N•(C) is the nerve of an ordinary category C. In this case, we
show that hTrE /N•(C) can be lifted to a functor taking values in the category QCat. More
precisely, we introduce a functor sTrE / C : C → QCat which we refer to as the strict transport
representation of U (Construction 5.3.1.5), and show that the diagram

QCat

##
C

sTrE / C

>>

hTrE / N•(C)
// hQCat

commutes up to canonical isomorphism (Corollary 5.3.1.8).
Our primary goal in this section is to show that a cocartesian fibration U : E → N•(C)

can be recovered, up to equivalence, from its strict transport representation sTrE / C. To
formulate this precisely, we need another construction. In §5.3.3, we associate to every
diagram F : C → Set∆ a simplicial set NF

• (C), which we will refer to as the F -weighted
nerve of C (Definition 5.3.3.1). The weighted nerve is equipped with a projection map
V : NF

• (C)→ N•(C), whose fiber over an object C ∈ C can be identified with the simplicial
set F (C) (Example 5.3.3.8). If each of these simplicial sets is an ∞-category, then V

is a cocartesian fibration of ∞-categories (Corollary 5.3.3.16). Our main results can be
summarized as follows:

https://kerodon.net/tag/035A
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(1) Let F : C → QCat be a diagram of ∞-categories having weighted nerve E = NF
• (C).

Then there is a natural transformation from F to the strict transport representation
sTrE / C , which carries each object C ∈ C to an equivalence of ∞-categories F (C)→
sTrE / C(C) (Corollary 5.3.4.19).

(2) Let U : E → N•(C) be a cocartesian fibration of ∞-categories having strict transport
representation F = sTrE / C . Then U is equivalent (in the sense of Definition 5.1.7.1)
to the cocartesian fibration NF

• (C)→ N•(C) (Theorem 5.3.5.6).

The proof of (1) is relatively straightforward. However, the proof of (2) is somewhat
more difficult: given a cocartesian fibration U : E → N•(C) there is no obvious comparison
map between the simplicial sets E and NsTrE / C

• (C). To relate them, we need an auxiliary
construction. In §5.3.2, we associate to every diagram F : C → Set∆ a simplicial set
holim
−→

(F ), which we refer to as the homotopy colimit of F (Construction 5.3.2.1). The
formation of homotopy colimits plays an important role in the classical homotopy theory
of simplicial sets: it can be regarded as a replacement for the usual notion of colimit (see
Remark 5.3.2.9) which is compatible with weak homotopy equivalence (Proposition 5.3.2.18).
Beware that the homotopy colimit holim

−→
(F ) is generally not an ∞-category (even in the

special case where F is a diagram of ∞-categories). Nevertheless, it is equipped with a
projection map holim

−→
(F ) → N•(C), whose fiber over each object C ∈ C can be identified

with the simplicial set F (C), and which behaves in certain respects like a cocartesian
fibration. In §5.3.4, we make this heuristic precise by introducing the notion of a scaffold. If
U : E → N•(C) is a cocartesian fibration of ∞-categories, we define a scaffold of U to be a
commutative diagram

holim
−→

(F ) λ //

##

E

U

~~
N•(C),

where λ restricts to a categorical equivalence F (C)→ EC for each C ∈ C and behaves well
with respect to the collection of U -cocartesian morphisms of E (Definition 5.3.4.2). We are
primarily interested in two examples:

• To any cocartesian fibration U : E → N•(C), we associate a universal scaffold λu :
holim
−→

(F ) → E , where F = sTrE / C is the strict transport representation of U (see
Construction 5.3.4.7 and Proposition 5.3.4.8).
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• To any diagram of ∞-categories F : C → QCat, we associate a taut scaffold λ :
holim
−→

(F ) → E , where E = NF
• (C) is the F -weighted nerve of C (see Construction

5.3.4.11 and Proposition 5.3.4.17).

In §5.3.5, we show that every scaffold holim
−→

(F ) → E is a categorical equivalence of
simplicial sets (Theorem 5.3.5.7). In particular, if U : E → N•(C) is a cocartesian fibration
with strict transport representation F = sTrE / C , then we can exploit the taut and universal
scaffolds

NF
• (C) λ←− holim

−→
(F ) λu−→ E ,

to deduce the existence of an equivalence of ∞-categories E ≃ NF
• (C) (compatible with the

projection N•(C)), thereby obtaining a proof of (2) (see Theorem 5.3.5.6).
We close this section by describing some other applications of our theory of scaffolds. Let

U : C → B be a morphism of simplicial sets, let D be an∞-category, and let Fun(C /B,D) be
the relative exponential of Construction 4.5.9.1. In §5.3.6, we show that if U is a cocartesian
fibration, then the projection map Fun(C /B,D)→ B is a cartesian fibration. More generally,
for every cocartesian fibration of simplicial sets V : D → E , the induced map

Fun(C /B,D) V ◦−−→ Fun(C /B,D)

is also a cocartesian fibration (Proposition 5.3.6.6). In §5.3.7, we apply this result to study
the oriented fiber product of Definition 4.6.4.1. For any functor of ∞-categories F : A → B,
projection onto the second factor determines a cocartesian fibration A×̃B B → B (Corollary
5.3.7.3) which is, in some sense, freely generated by the ∞-category A (Theorem 5.3.7.6).

Remark 5.3.0.1. 035BThere is a close analogy between the homotopy colimit construction
(studied in §5.3.2) and the weighted nerve construction (studied in §5.3.3).

• The formation of homotopy colimits determines a functor

Fun(C,Set∆)→ (Set∆)/N•(C) F 7→ holim
−→

(F ).

This functor has a right adjoint, which carries an object E ∈ (Set∆)/N•(C) to the
diagram

C → Set∆ C 7→ Fun/N•(C)(N•(CC/), E).
See Corollary 5.3.2.24.

• The formation of weighted nerves determines a functor

Fun(C, Set∆)→ (Set∆)/N•(C) F 7→ NF
• (C).

This functor has a left adjoint, which carries an object E ∈ (Set∆)/N•(C) to the diagram

C → Set∆ C 7→ N•(C/C)×N•(C) E .

See Corollary 5.3.3.25.

https://kerodon.net/tag/035B


5.3. FIBRATIONS OVER ORDINARY CATEGORIES 1065

Remark 5.3.0.2.035C After restricting to diagrams of Kan complexes, the results of this section
supply a dictionary

{Left fibrations E → N•(C)}

sTr(−)/ C

��
{Functors C → Kan}

N(−)
• (C)

OO

This dictionary was formulated in work of Heuts and Moerdijk (using the language of model
categories) which is closely related to the contents of this section. For more details, we refer
the reader to [28].

5.3.1 The Strict Transport Representation

035D Let C be a category and let U : E → N•(C) be a cocartesian fibration of ∞-categories.
To each morphism f : C → D of C, the homotopy transport representation hTrE /N•(C)
associates the homotopy class [f!], where f! : EC → ED is given by covariant transport along
f . Beware that the functor f! is only well-defined up to isomorphism. For example, the
value of f! on an object X ∈ EC depends on an auxiliary choice: namely, the choice of a
U -cocartesian morphism f̃ : X → Y satisfying U(f̃) = f (once we have made this choice,
we can take f!(X) to be the object Y ∈ ED). Our goal in this section is to show that, by
replacing each fiber EC by an equivalent ∞-category, the ambiguity in the definition of the
transport functors can be eliminated. More precisely, we will associate to each object C ∈ C
a simplicial set sTrE / C(C) with the following properties:

• There is a trivial Kan fibration of simplicial sets evC : sTrE / C(C)→ EC (Proposition
5.3.1.7). In particular, sTrE / C(C) is an ∞-category which is equivalent to EC .

• Every morphism f : C → D in the category C determines a functor of ∞-categories
sTrE / C(f) : sTrE / C(C)→ sTrE / C(D), which does not depend on any auxiliary choices.
Moreover, the assignment f 7→ sTrE / C(f) is compatible with composition, and therefore
determines a functor sTrE / C : C → QCat which we will refer to as the strict transport
representation of U (Construction 5.3.1.5).

• For every morphism f : C → D in C, the diagram of ∞-categories

sTrE / C(C)
sTrE / C(f)

//

evC

��

sTrE / C(D)

evD

��
EC

f! // ED

https://kerodon.net/tag/035C
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commutes up to isomorphism. Consequently, the strict transport representation sTrE / C
can be regarded as a refinement of the homotopy transport representation hTrE /N•(C)
of Construction 5.2.5.2.

We begin by considering a closely related construction.

Construction 5.3.1.1. 035ELet Cat denote the ordinary category whose objects are (small)
categories and whose morphisms are functors. If C is a category, then the construction
C 7→ CC/ determines a functor C → (Cat/ C)op, carrying each morphism f : C → D in C to
the functor

CD/ → CC/ (g : D → E) 7→ ((g ◦ f) : C → E).

For any morphism of simplicial sets U : E → N•(C), we let wTrE / C : C → Set∆ denote the
functor given on objects by the formula

wTrE / C(C) = Fun/N•(C)(N•(CC/), E).

We will refer to wTrE / C as the weak transport representation of U .

Remark 5.3.1.2. 035FLet C be a category and let U : E → N•(C) be an inner fibration of
∞-categories. Then, for every object C ∈ C, the simplicial set

wTrE / C(C) = Fun/N•(C)(N•(CC/), E)

is an ∞-category (Corollary 4.1.4.8).

Remark 5.3.1.3. 035GLet C be a category and let U : E → N•(C) be a morphism of simplicial
sets. For each object C ∈ C, we can regard the identity morphism idC as an object of the
coslice ∞-category CC/. Evaluation on idC determines a morphism of simplicial sets

evC : wTrE / C(C)→ EC .

Note that idC is an initial object of the category CC/, so the inclusion map {idC} ↪→ N•(CC/)
is left anodyne (Corollary 4.6.7.24). If U is a left fibration of ∞-categories, then evC is a
trivial Kan fibration of simplicial sets. It follows that the simplicial set wTrE / C(C) is a Kan
complex, and that evC is a homotopy equivalence of Kan complexes.

Example 5.3.1.4. 035HLet C be a category and let U : E → N•(C) be a left covering map of
simplicial sets. Then, for every object C ∈ C, the evaluation map evC : wTrE / C(C)→ EC
is an isomorphism of simplicial sets (Exercise 4.2.5.5). It follows that the simplicial set
wTrE / C(C) is discrete (see Remark 4.2.3.17). We can therefore identify wTrE / C with a
functor from C to the category of sets, which is isomorphic to the homotopy transport
representation hTrE /N•(C) : C → Set of Definition 5.2.0.4.
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Let C be a category and let U : E → N•(C) be a cocartesian fibration of ∞-categories.
For an object C ∈ C, the evaluation map evC : wTrE / C(C) → EC of Remark 5.3.1.3 is
generally not an equivalence of ∞-categories. By definition, an object of wTrE / C(C) can be
identified with a functor of ∞-categories F : N•(CC/)→ E for which the diagram

N•(CC/)
F //

##

E

U

~~
N•(C)

is commutative. This functor carries idC to an object X = evC(F ) ∈ EC , and carries each
morphism f : C → D of C to an object Y ∈ ED equipped with a morphism f̃ : X → Y

satisfying U(f̃) = f . To guarantee that this data can be recovered from X (at least up
to isomorphism), we need to impose an additional condition which guarantees that f̃ is
U -cocartesian.

Construction 5.3.1.5 (The Strict Transport Representation).035J Let C be a category and let
U : E → N•(C) be a cocartesian fibration of ∞-categories. For every object C ∈ C, we let
sTrE / C(C) denote the full subcategory of wTrE / C(C) = Fun/N•(C)(N•(CC/), E) spanned by
those commutative diagrams

N•(CC/)
F //

##

E

U

~~
N•(C)

where F carries each morphism of N•(CC/) to a U -cocartesian morphism of E . The con-
struction C 7→ sTrE / C(C) determines a functor sTr : C → QCat, which we will refer to as
the strict transport representation of the cocartesian fibration U .

Remark 5.3.1.6.035K In the situation of Construction 5.3.1.5, suppose that U : E → N•(C)
is a left fibration of ∞-categories. It follows that every morphism of E is U -cocartesian
(Proposition 5.1.4.14), so the strict transport representation sTrE / C : C → QCat coincides
with the weak transport representation wTrE / C .

We now wish to show that Construction 5.3.1.5 is a refinement of the homotopy transport
representation introduced in §5.2.5. This is a consequence of the following generalization of
Remark 5.3.1.3:
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Proposition 5.3.1.7. 035LLet C be a category and let U : E → N•(C) be a cocartesian fibration
of ∞-categories. Then, for every object C ∈ C, the evaluation map of Remark 5.3.1.3 induces
a trivial Kan fibration of ∞-categories evC : sTrE / C(C)→ EC .

Corollary 5.3.1.8. 035MLet C be a category and let U : E → N•(C) be a cocartesian fibration of
∞-categories. Then the diagram of functors

QCat

##
C

sTrE / C

>>

hTrE / N•(C)
// hQCat

commutes up to natural isomorphism, given by the construction

(C ∈ C) 7→ (evC : sTrE / C(C)→ hTrE /N•(C)(C) = EC).

Proof. It follows from Proposition 5.3.1.7 that for each object C ∈ C, the evaluation functor
evC is a trivial Kan fibration, and therefore an isomorphism in the homotopy category
hQCat. To complete the proof, it will suffice to show that the construction C 7→ evC is
a natural transformation: that is, for every morphism f : C → D of C, the diagram of
∞-categories

sTrE / C(C)
sTrE / C(f)

//

evC

��

sTrE / C(D)

evD

��
EC

f! // ED
commutes up to natural isomorphism. Let s : EC → sTrE / C(C) be a section of the trivial
Kan fibration evC . Then the homotopy class [s] is an inverse of [evC ] in the homotopy
category hQCat. It will therefore suffice to show that the diagram

sTrE / C(C)
sTrE / C(f)

// sTrE / C(D)

evD

��
EC

f! //

s

OO

ED

commutes up to isomorphism: that is, that the composite functor

EC
s−→ sTrE / C(C)

sTrE / C(f)
−−−−−−→ sTrE / C(D) evD−−→ ED
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is given by covariant transport along f .
Unwinding the definitions, we can identify the composition

EC
s−→ sTrE / C(C) ⊆ wTrE / C(C) = Fun/N•(C)(N•(CC/), E)

with a functor H : N•(CC/)× EC → E . Let us regard idC and f as objects of the category
CC/, so that f lifts to a morphism f̃ : idC → f corresponding to an edge e : ∆1 → N•(CC/).
Let He denote the composition

∆1 × EC
e×id−−−→ N•(CC/)× EC

H−→ E .

Unwinding the definitions, we see that the commutative diagram

∆1 × EC
He //

��

E

U

��
∆1 f // N•(C)

witnesses the composite functor evD ◦ sTrE / C(f) ◦ s as given by covariant transport along f ,
in the sense of Definition 5.2.2.4.

Corollary 5.3.1.9 (Functoriality).035N Suppose we are given a commutative diagram of ∞-
categories

E

U

!!

F // E ′

U ′

}}
N•(C),

where U and U ′ are cocartesian fibrations. The following conditions are equivalent:

(1) The functor F carries U -cocartesian morphisms of E to U ′-cocartesian morphisms of E ′.

(2) The induced map of weak transport representations wTrE / C → wTrE ′ / C carries sTrE / C
into sTrE ′ / C.

Proof. The implication (1) ⇒ (2) is immediate from the definitions. Conversely, suppose
that condition (2) is satisfied, and let f : X → Y be a U -cocartesian morphism of E ; we
wish to show that F (f) is U ′-cocartesian. Set C = U(X). Using Proposition 5.3.1.7, we
can choose an object X̃ ∈ sTrE / C(C) satisfying evC(X̃) = X. Let us identify X̃ with a

https://kerodon.net/tag/035N
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functor of ∞-categories G : N•(CC/)→ E . Write f for the image U(f), which we regard as
a morphism in the coslice category CC/. Assumption (2) guarantees that F carries X̃ to
an object of sTrE ′ / C(C), so that (F ◦G)(f) is a U ′-cocartesian morphism of E ′. Since f is
isomorphic to G(f) (as an object of the ∞-category Fun(∆1, E)), it follows that F (f) is also
U ′-cocartesian.

The remainder of this section is devoted to the proof of Proposition 5.3.1.7. With an eye
toward future applications, we will formulate a more general result, which can be applied to
cocartesian fibrations U : E → C where C is not given by (the nerve of) an ordinary category.

Notation 5.3.1.10 (Cocartesian Sections). 02T1Let U : E → C and U ′ : E ′ → C be cocartesian
fibrations of simplicial sets. Then the simplicial set

Fun/ C(E ′, E) = {U ′} ×Fun(E ′,C) Fun(E ′, E)

is an ∞-category (see Corollary 4.1.4.8). We let FunCCart
/ C (E ′, E) denote the full subcategory

of Fun/ C(E ′, E) whose objects are morphisms F : E ′ → E which satisfy the identity U ◦F = U ′

and carry U ′-cocartesian edges of E ′ to U -cocartesian edges of E .

Variant 5.3.1.11 (Cartesian Sections). 02T2Let U : E → C and U ′ : E ′ → C be cartesian
fibrations of simplicial sets. We let FunCart

/ C (E ′, E) denote the full subcategory of Fun/ C(E ′, E)
whose objects are morphisms F : E ′ → E which satisfy the identity U ◦F = U ′ and carry U ′-
cartesian edges of E ′ to U -cartesian edges of E . Note that we have a canonical isomorphism
of simplicial sets

FunCart
/ C (E ′, E)op = FunCCart

/ Cop (E ′ op, Eop).

In the special case E ′ = C, we will refer to FunCart
/ C (C, E) as the ∞-category of cartesian

sections of U .

Remark 5.3.1.12. 03LMSuppose we are given a commutative diagram of simplicial sets

E ′

U ′ ��

F // E

U��
C,

where U and U ′ are cocartesian fibrations. Let e : X → Y be an edge of C. The following
conditions are equivalent:

(1) For every U ′-cocartesian edge ẽ : X̃ → Ỹ of E ′ satisfying U ′(ẽ) = e, the image F (ẽ) is a
U -cocartesian edge of E .

(2) For every vertex X̃ of E ′ satisfying U ′(X̃) = X, there exists a U ′-cocartesian edge
ẽ : X̃ → Ỹ of E ′ such that F (ẽ) is U -cocartesian and U ′(ẽ) = e.
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The implication (1)⇒ (2) is immediate from the definitions, and the implication (2)⇒ (1)
follows from Remark 5.1.3.8.

Let W be the collection of edges of C which satisfy these conditions. Then W contains
all degenerate edges of C and is closed under composition: that is, for every 2-simplex

Y

e′

��
X

e

??

e′′ // Z

of C, if e and e′ belong to W , then e′′ also belongs to W (see Proposition 5.1.4.12).

Remark 5.3.1.13.035P We will be primarily interested in the special case of Notation 5.3.1.10
where U ′ : E ′ → C is a left fibration of simplicial sets. In this case, an object F ∈ Fun/ C(E ′, E)
belongs to the full subcategory FunCCart

/ C (E ′, E) if and only if it carries every edge of E ′ to a
U -cocartesian edge of E (Proposition 5.1.4.14).

Example 5.3.1.14.035Q Let C be a category and let U : E → N•(C) be a cocartesian fibration
of ∞-categories. Then the strict transport representation sTrE / C of Construction 5.3.1.5 is
given on objects by the formula

sTrE / C(C) = FunCCart
/N•(C)(N•(CC/), E).

Remark 5.3.1.15.02T3 Let U : E → C and U ′ : E ′ → C be cocartesian fibrations of simplicial
sets. Then the full subcategory FunCCart

/ C (E ′, E) ⊆ Fun/ C(E ′, E) is replete (Example 4.4.1.12).
That is, if F and G are isomorphic objects of Fun/ C(E ′, E), then F carries U ′-cocartesian
edges of E ′ to U -cocartesian edges of E if and only if G has the same property. In fact, we
can be more precise: for every particular edge e of E ′, the image F (e) is U -cocartesian if
and only if G(e) is U -cocartesian. To prove this, we can assume without loss of generality
that C = ∆1, in which case it follows from Corollary 5.1.2.5.

Remark 5.3.1.16 (Detecting Isomorphisms).035R Let U : E → C and U ′ : E ′ → C be co-
cartesian fibrations of ∞-categories, and let α : F → G be a morphism in the ∞-category
FunCCart

/ C (E ′, E). The following conditions are equivalent:

(1) The morphism α is an isomorphism in the ∞-category FunCCart
/ C (E ′, E).

(2) The image of α is an isomorphism in the ∞-category Fun/ C(E ′, E).

(3) The image of α is an isomorphism in the ∞-category Fun(E ′, E).
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(4) For each object X ∈ C, the induced map αX : F (X)→ G(X) is an isomorphism in the
∞-category EX .

(5) For each object X ∈ C, the induced map αX : F (X)→ G(X) is an isomorphism in the
∞-category E .

The implications (1)⇔ (2) is immediate, the equivalences (2)⇔ (3) and (4)⇔ (5) follow
from Corollary 4.4.3.19, and the equivalence (3)⇔ (5) follows from Theorem 4.4.4.4.

Remark 5.3.1.17 (Functoriality). 02T4Let U : E → C and U ′ : E ′ → C be cocartesian fibrations
of simplicial sets. Suppose that we are given a morphism of simplicial sets F : C0 → C,
and set E0 = C0×C E and E ′0 = C0×C E ′. Then pullback along F determines a morphism of
simplicial sets

F ∗ : FunCCart
/ C (E ′, E)→ FunCCart

/ C0
(E ′0, E0),

which we will refer to as the restriction map.

Remark 5.3.1.18. 02T5In the situation of Remark 5.3.1.17, suppose that F : C0 → C is
a monomorphism of simplicial sets. Then the restriction map F ∗ : FunCCart

/ C (E ′, E) →
FunCCart

/ C0
(E ′0, E0) is an isofibration. To see this, we first observe that FunCCart

/ C (E ′, E) can be
regarded as a replete subcategory of the fiber product

FunCCart
/ C0

(E ′0, E0)×Fun/ C0 (E ′0,E0) Fun/ C(E ′, E)

(Remark 5.3.1.15). It will therefore suffice to show that the restriction map

Fun/ C(E ′, E)→ Fun/ C0(E ′0, E0) ≃ Fun/ C(E ′0, E)

is an isofibration, which follows from Proposition 4.5.5.14.

Remark 5.3.1.19. 02T6Let U : E → C and U ′ : E ′ → C be cocartesian fibrations of simplicial
sets, and let K be an arbitrary simplicial set. Then:

• The projection map C ×Fun(K,C) Fun(K, E)→ C is also a cocartesian fibration.

• The canonical isomorphism

Fun(K,Fun/ C(E ′, E)) ≃ Fun/ C(E ′, C ×Fun(K,C) Fun(K, E))

restricts to an isomorphism of full subcategories

Fun(K,FunCCart
/ C (E ′, E)) ≃ FunCCart

/ C (E ′, C ×Fun(K,C) Fun(K, E)).

Both assertions follow immediately from Theorem 5.2.1.1.
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Remark 5.3.1.20.02T7 Let U : E → C be a cocartesian fibration of simplicial sets. Let E◦ ⊆ E
be the simplicial subset whose n-simplices are maps ∆n → E which carry each edge of
∆n to a U -cocartesian edge of E , so that U restricts to a left fibration U◦ : E◦ → C (see
Corollary 5.1.4.15). Then Fun/ C(C, E◦) can be identified with the core of the ∞-category
FunCCart

/ C (C, E).

Proposition 5.3.1.21.035S Let U : E → C be a cocartesian fibration of simplicial sets, let
F : C0 → C be a left anodyne morphism of simplicial sets, and set E0 = C0×C E. Then the
restriction map

F ∗ : FunCCart
/ C (C, E)→ FunCCart

/ C0
(C0, E0)

of Remark 5.3.1.17 is a trivial Kan fibration.

Proof. Since F is a monomorphism of simplicial sets, the functor F ∗ is an isofibration of
∞-categories (Remark 5.3.1.18). It will therefore suffice to show that F ∗ is an equivalence of
∞-categories (see Proposition 4.5.5.20). By virtue of Proposition 4.5.1.22, this is equivalent
to the assertion that for simplicial set X, the induced map

Fun(X,FunCCart
/ C (C, E))≃ → Fun(X,FunCCart

/ C0
(C0, E0))≃

is a homotopy equivalence of Kan complexes (in fact, it suffices to verify this for X = ∆1;
see Theorem 4.5.7.1). Replacing E by the fiber product C ×Fun(X,C) Fun(X, E) and using
Remark 5.3.1.19, we are reduced to proving that F ∗ restricts to a homotopy equivalence
F ∗ : FunCCart

/ C (C, E)≃ → FunCCart
/ C0

(C0, E0)≃. Let U◦ : E◦ → E denote the underlying left
fibration of U . Using Remark 5.3.1.20, we can identify θ with the map

Fun/ C(C, E◦)→ Fun/ C0(C0, C0×C E◦) ≃ Fun/ C(C0, E◦),

given by precomposition with F . Since F is left anodyne, this map is a trivial Kan fibration
(Proposition 4.2.5.4).

Corollary 5.3.1.22.035T Let U : E → C be a cocartesian fibration of∞-categories, let U ′ : E ′ → C
be a left fibration of ∞-categories, and let X be an initial object of E ′. Then evaluation at
X induces a trivial Kan fibration of ∞-categories

evX : FunCCart
/ C (E ′, E)→ {X} ×C E .

Proof. By virtue of Remark 5.3.1.13, we can replace U by the projection map E ′×C E → E ′
and thereby reduce to the case where U ′ is the identity map. In this case, the desired
result follows from Proposition 5.3.1.21, since the inclusion map {X} ↪→ E ′ is left anodyne
(Corollary 4.6.7.24).
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Proof of Proposition 5.3.1.7. Let C be a category and let U : E → N•(C) be a cocartesian
fibration of ∞-categories. By virtue of Example 5.3.1.14, it will suffice to show that the
evaluation functor

evC : FunCCart
/N•(C)(N•(CC/), E)→ EC

is a trivial Kan fibration. This is a special case of Corollary 5.3.1.22, since the identity
morphism idC is initial when viewed as an object of the coslice category CC/.

We conclude by recording another special case of Corollary 5.3.1.22 which will be useful
later:

Corollary 5.3.1.23. 02TCLet U : E → C◁ be a cocartesian fibration of simplicial sets. Then
evaluation at 0 induces a trivial Kan fibration of simplicial sets

FunCCart
/ C◁ (C◁, E)→ {0} ×C◁ E .

Proof. Combine Corollary 5.3.1.22 with Example 4.3.7.11.

5.3.2 Homotopy Colimits of Simplicial Sets

035ULet f0 : A → A0 and f1 : A → A1 be morphisms of simplicial sets. Recall that the
homotopy pushout of A0 with A1 along A is defined to be the simplicial set

A0
∐h

A
A1 = A0

∐
({0}×A)

(∆1 ×A)
∐

({1}×A)
A1

(see Construction 3.4.2.2). This construction has two essential properties:

(1) The formation of homotopy pushouts is compatible with weak homotopy equivalence.
That is, if we are given a commutative diagram of simplicial sets

A0

��

A
f0oo f1 //

��

A1

��
B0 B

g0oo g1 // B1,

in which the vertical maps are weak homotopy equivalences, then the induced map
A0

∐h
AA1 → B0

∐h
BB1 is also a weak homotopy equivalence (Corollary 3.4.2.15).

(2) The homotopy pushout is equipped with a comparison map A0
∐h
AA1 ↠ A0

∐
AA1,

which is a weak homotopy equivalence if either f0 : A0 → A or f1 : A1 → A is a
monomorphism (Corollary 3.4.2.13).
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Our goal in this section is to introduce a variant of the homotopy pushout construction
which can be applied to more general diagrams of simplicial sets. To every category C and
every functor F : C → Set∆, we introduce a simplicial set holim

−→
(F ) which we refer to

as the homotopy colimit of F (Construction 5.3.2.1). The homotopy colimit satisfies an
analogue of property (1): it is compatible both with weak homotopy equivalence (Proposition
5.3.2.18) and with categorical equivalence (Variant 5.3.2.19). Moreover, there is a natural
epimorphism from the homotopy colimit holim

−→
(F ) to the usual colimit lim−→(F ) (Remark

5.3.2.9). We will see later that this map is often a weak homotopy equivalence (Corollary
7.5.6.14).

Construction 5.3.2.1.035V Let C be a category and let F : C → Set∆ be a functor. For every
integer n ≥ 0, we let holim

−→
(F )n denote the set of all ordered pairs (σ, τ), where σ : [n]→ C

is an n-simplex of the nerve N•(C) and τ is an n-simplex of the simplicial set F (σ(0)).
If (σ, τ) is an element of holim

−→
(F )n and α : [m] → [n] is a nondecreasing function of

linearly ordered sets, we set α∗(σ, τ) = (σ ◦ α, τ ′) ∈ holim
−→

(F )m, where τ ′ is given by the
composite map

∆m α−→ ∆n τ−→ F (σ(0))→ F ((σ ◦ α)(0)).

By means of this construction, the assignment [n] 7→ holim
−→

(F )n determines a simplicial
set holim

−→
(F ) = holim

−→
(F )• which we will refer to as the homotopy colimit of the diagram

F . Note that the construction (σ, τ) 7→ σ determines a morphism of simplicial sets
U : holim

−→
(F )→ N•(C), which we will refer to as the projection map.

Example 5.3.2.2 (Discrete Diagrams).035W Let C be a category having only identity morphisms,
and let F : C → Set∆ be a diagram of simplicial sets. Then the homotopy colimit holim

−→
(F )

can be identified with the disjoint union ∐
C∈CF (C).

Remark 5.3.2.3.035X Let T : C′ → C be a functor between categories, let F : C → Set∆ be a
diagram of simplicial sets indexed by C, and let F ′ denote the composition F ◦ T . Then we
have a pullback diagram of simplicial sets

holim
−→

(F ′) //

U ′

��

holim
−→

(F )

U

��
N•(C′)

N•(T ) // N•(C),

where U and U ′ denote the projection maps of Construction 5.3.2.1. In particular, for every
object C ∈ C, we have a canonical isomorphism of simplicial sets

F (C) ≃ {C} ×N•(C) holim
−→

(F ).
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Example 5.3.2.4 (Constant Diagrams). 035YLet C be a category, let X be a simplicial set, and let
F : C → Set∆ be the constant diagram taking the value X. Combining Remark 5.3.2.3 with
Example 5.3.2.2, we obtain a canonical isomorphism of simplicial sets holim

−→
(F ) ≃ N•(C)×X.

In particular, if X = ∆0, then the projection map holim
−→

(F )→ N•(C) is an isomorphism.

Example 5.3.2.5 (Set-Valued Functors). 035ZLet C be a category and let F : C → Set be a
diagram of sets indexed by C. Let us abuse notation by identifying F with a diagram of
simplicial sets (by identifying each of the sets F (C) as a discrete simplicial set). Then there
is a canonical isomorphism of simplicial sets

holim
−→

(F ) ≃ N•(
∫
C
F ).

Here
∫
CF denotes the category of elements of of the functor F (Construction 5.2.6.1).

Example 5.3.2.6 (Corepresentable Functors). 0360Let C be a category and let hC : C → Set
be the functor corepresented by an object C ∈ C, given by hC(D) = HomC(C,D). Let us
abuse notation by regarding hC as a functor from C to the category of simplicial sets (by
identifying each morphism set HomC(C,D) with the corresponding discrete simplicial set).
Combining Examples 5.3.2.5 and 5.2.6.5, we obtain a canonical isomorphism of simplicial
sets holim

−→
(hC) ≃ N•(CC/).

Remark 5.3.2.7. 0361Let C be a category, let F : C → Set∆ be a diagram of simplicial sets
indexed by C, and let C0 ⊆ C be a full subcategory. Suppose that, for every object C ∈ C
which does not belong to C0, the simplicial set F (C) is empty. Then the image of the
projection map holim

−→
(F )→ N•(C) is contained in N•(C0). Setting F0 = F |C0 , we deduce

that the canonical map

holim
−→

(F0) ≃ N•(C0)×N•(C) holim
−→

(F ) ↪→ holim
−→

(F )

is an isomorphism.

Remark 5.3.2.8 (Functoriality). 0362Let C be a category. Then the formation of homotopy
colimits determines a functor

holim
−→

: Fun(C, Set∆)→ (Set∆)/N•(C) F 7→ holim
−→

(F ).

Moreover, this functor preserves small limits and colimits.

Remark 5.3.2.9 (Comparison with the Colimit). 0363Let F : C → Set∆ be a diagram of
simplicial sets and let {tC : F (C)→ X}C∈C be a collection of morphisms which exhibit X
as a colimit of the diagram F . The morphisms tC then determine a natural transformation
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t• : F → X, where X : C → Set∆ denotes the constant functor taking the value X. Using
Example 5.3.2.4, we obtain a morphism of simplicial sets

θ : holim
−→

(F )
holim
−→

(t•)
−−−−−−→ holim

−→
(X) ≃ N•(C)×X → X,

which we will refer to as the comparison map. Note that, for every vertex C ∈ C, the
restriction of θ to the fiber {C} ×N•(C) holim

−→
(F ) can be identified with the morphism tC .

Since X is the union of the images of the morphisms tC , it follows that the comparison map
θ : holim

−→
(F ) ↠ lim−→(F ) is an epimorphism of simplicial sets.

Example 5.3.2.10 (Disjoint Unions).0364 Let I be a set, which we regard as a category having
only identity morphisms. Let F : I → Set∆ be a functor, which we identify with a collection
of simplicial sets {Xi}i∈I . Then the comparison map

holim
−→

(F ) ↠ lim−→(F ) =
∐

i∈I
Xi

is an isomorphism of simplicial sets.

Notation 5.3.2.11 (The Mapping Simplex).0365 Suppose we are given a diagram of simplicial
sets

X(0) f(1)−−→ X(1) f(1)−−→ X(2) f(3)−−→ · · · f(n)−−−→ X(n),

which we will identify with a functor F : [n] → Set∆. We denote the homotopy colimit
holim
−→

(F ) by holim
−→

(X(0) → · · · → X(n)), and refer to it as the mapping simplex of the
diagram F .

Let F : C → Set∆ be any diagram of simplicial sets and suppose we are given an
n-simplex of N•(C), corresponding to a diagram C0 → · · · → Cn in the category C. By virtue
of Remark 5.3.2.3, the fiber product ∆n×N•(C) holim

−→
(F ) can be identified with the mapping

simplex of the diagram F (C0) → · · · → F (Cn). When n = 0, this mapping simplex can
be identified with the simplicial set F (C0) (Example 5.3.2.4). For larger values of n, the
mapping simplex can be computed recursively:

Remark 5.3.2.12.0252 Let n ≥ 1 and let F : [n]→ Set∆ be a diagram of simplicial sets which
we denote by

X(0)→ X(1)→ X(2)→ · · · → X(n).

Let F ′ : [n]→ Set∆ denote the constant diagram taking the value X(0). Let F0 ⊆ F be
the subfunctor given by the diagram

∅ → X(1)→ X(2)→ · · · → X(n),
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and define F ′0 ⊆ F ′ similarly, so that we have a pushout diagram

F ′0 //

��

F0

��
F ′ // F

in the category Fun([n],Set∆). Applying Remark 5.3.2.8, we deduce that the induced
diagram of simplicial sets

holim
−→

(F ′0) //

��

holim
−→

(F0)

��
holim
−→

(F ′) // holim
−→

(F )

is also a pushout square. Using Example 5.3.2.4 and Remark 5.3.2.7, we can rewrite this
diagram as

N•({1 < 2 < · · · < n})×X(0) //

��

holim
−→

(X(1)→ · · · → X(n))

��
∆n ×X(0) // holim

−→
(X(0)→ · · · → X(n)).

Example 5.3.2.13 (The Mapping Cylinder). 0366Let f : X → Y be a morphism of simplicial
sets, which we identify with a diagram F : [1]→ Set∆. We will denote the homotopy colimit
holim
−→

(F ) by holim
−→

(f : X → Y ) and refer to it as the mapping cylinder of the morphism f .
Applying Remark 5.3.2.12, we obtain an isomorphism of simplicial sets

holim
−→

(f : X → Y ) ≃ (∆1 ×X)
∐

({1}×X)
Y ;

that is, the mapping cylinder holim
−→

(f : X → Y ) can be identified with the homotopy
pushout X∐h

XY of Construction 3.4.2.2.

Remark 5.3.2.14. 0367Let n be a nonnegative integer, and suppose we are given a diagram of
simplicial sets

X(0)→ X(1)→ X(2)→ · · · → X(n).
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For each integer 0 ≤ i ≤ n, let ∆n
≥i denote the nerve of the linearly ordered set {i < i+ 1 <

· · · < n}, which we regard as a simplicial subset of ∆n. Applying Remark 5.3.2.12 repeatedly,
we can identify the mapping simplex holim

−→
(X(0)→ · · · → X(n)) with the iterated pushout

(∆n ×X(0))
∐

(∆n
≥1×X(0))

(∆n
≥1 ×X(1))

∐
(∆n
≥2×X(1))

· · ·
∐

({n}×X(n−1))
({n} ×X(n)).

Example 5.3.2.15 (Homotopy Quotients).0368 Let G be a group and let BG denote the
associated groupoid (consisting of a single object with automorphism group G). Let X be a
simplicial set equipped with an action of G, which we identify with a functor F : BG→ Set∆.
We will denote the homotopy colimit holim

−→
(F ) by XhG, and refer to it as the homotopy

quotient of X by the action of G.

Example 5.3.2.16.0369 Let C be the partially ordered set depicted in the diagram

• ← • → •

and suppose we are given a functor F : C → Set∆, which we identify with a diagram of
simplicial sets

A0
f0←− A f1−→ A1.

The homotopy colimit holim
−→

(F ) can be identified with the iterated homotopy pushout

(A
∐h

A
A0)

∐h
A
A1.

In particular, the comparison map q0 : A∐h
AA0 ↠ A

∐
AA0 ≃ A0 induces an epimorphism of

simplicial sets
q : holim

−→
(F )→ A0

∐h
A
A1.

Note that q0 is always a weak homotopy equivalence of simplicial sets (Corollary 3.4.2.13),
so that q is also a weak homotopy equivalence (Corollary 3.4.2.14). Beware that q is never
an isomorphism, except in the trivial case where the simplicial set A is empty (in which case
the homotopy colimit holim

−→
(F ) and the homotopy pushout A0

∐h
AA1 can both be identified

with the disjoint union A0
∐
A1).

Exercise 5.3.2.17.036A Let C be a category and let F : C → Set∆ be a diagram of simplicial
sets with the following properties:

• For every object C ∈ C, the simplicial set F (C) is a Kan complex.

• For every morphism u : C → C ′ in C, the induced map F (u) : F (C) → F (C ′) is a
Kan fibration.

Show that the projection map holim
−→

(F )→ N•(C) is a left fibration of simplicial sets.
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We now apply the preceding analysis to study the homotopy invariance properties of
Construction 5.3.2.1.

Proposition 5.3.2.18. 036BLet C be a category and let α : F → G be a levelwise weak
homotopy equivalence between diagrams F ,G : C → Set∆. Then the induced map holim

−→
(α) :

holim
−→

(F )→ holim
−→

(G ) is a weak homotopy equivalence of simplicial sets.

Proof. By virtue of Proposition 3.4.2.16, it will suffice to show that for every n-simplex
∆n → N•(C), the induced map ∆n ×N•(C) holim

−→
(F ) → ∆n ×N•(C) holim

−→
(G ) is a weak

homotopy equivalence. Using Remark 5.3.2.3, we are reduced to proving Proposition 5.3.2.18
in the special case where C is the linearly ordered set [n] = {0 < 1 < · · · < n}. We now
proceed by induction on n. If n = 0, the desired result follows immediately from Example
5.3.2.2. Let us therefore assume that n > 0. Let F ′ denote the restriction of F to the
full subcategory {1 < 2 < · · · < n} and define G ′ similarly. The natural transformation α

determines a commutative diagram of simplicial sets

∆n ×F (0)

��

N•({1 < · · · < n})×F (0) //

��

oo holim
−→

(F ′)

��
∆n × G (0) N•({1 < · · · < n})× G (0)oo // holim

−→
(G ′),

where the left horizontal maps are monomorphisms, the right vertical map is a weak homotopy
equivalence by virtue of our inductive hypothesis, and the other vertical maps are weak
homotopy equivalences by virtue of our assumption on α. The desired result now follows by
combining Corollary 3.4.2.14 with Remark 5.3.2.12.

Using exactly the same argument, we see that the formation of homotopy colimits is
compatible with categorical equivalence:

Variant 5.3.2.19. 036CLet C be a category and let α : F → G be a levelwise categorical equiva-
lence between diagrams F ,G : C → Set∆. Then the induced map holim

−→
(α) : holim

−→
(F )→

holim
−→

(G ) is a categorical equivalence of simplicial sets.

Proof. By virtue of Corollary 4.5.7.3, it will suffice to show that for every n-simplex
∆n → N•(C), the induced map ∆n ×N•(C) holim

−→
(F ) → ∆n ×N•(C) holim

−→
(G ) is a cate-

gorical equivalence of simplicial sets. Using Remark 5.3.2.3, we are reduced to proving
Variant 5.3.2.19 in the special case where C is the linearly ordered set [n] = {0 < 1 < · · · < n}.
We now proceed by induction on n. If n = 0, the desired result follows immediately from
Example 5.3.2.2. Let us therefore assume that n > 0. Let F ′ denote the restriction of F to
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the full subcategory {1 < 2 < · · · < n} and define G ′ similarly. The natural transformation
α determines a commutative diagram of simplicial sets

∆n ×F (0)

��

N•({1 < · · · < n})×F (0) //

��

oo holim
−→

(F ′)

��
∆n × G (0) N•({1 < · · · < n})× G (0)oo // holim

−→
(G ′),

where the left horizontal maps are monomorphisms, the right vertical map is a categorical
equivalence by virtue of our inductive hypothesis, and the other vertical maps are categorical
equivalences by virtue of our assumption on α. The desired result now follows by combining
Corollary 4.5.4.14 with Remark 5.3.2.12.

The homotopy colimit of Construction 5.3.2.1 can be characterized by a universal mapping
property.

Construction 5.3.2.20.036D Let C be a category and let F : C → Set∆ be a diagram of
simplicial sets indexed by C. For each object C ∈ C, we let

fC : N•(CC/)×F (C)→ holim
−→

(F )

denote the morphism of simplicial sets given on n-simplices by the formula fC(σ, τ) = (σ, τ),
where σ denotes the image of σ in N•(C) and τ denote the image of τ under the map
F (C)→ F (σ(0)). Note that we can identify fC with a morphism of simplicial sets

uF ,C : F (C)→ Fun/N•(C)(N•(CC/),holim
−→

(F )) = wTrholim
−→

(F )/ C(C).

This morphism depends functorially on C: that is, the collection uF = {uF ,C}C∈C is a
natural transformation from F to the weak transport representation wTrholim

−→
(F )/ C .

For every pair of functors F ,G : C → Set∆, let HomFun(C,Set∆)(F ,G )• denote the sim-
plicial set parametrizing natural transformations from F to G (Example 2.4.2.2), described
concretely by the formula

HomFun(C,Set∆)(F ,G )n = HomFun(C,Set∆)(F ,G ∆n).

Here G ∆n : C → Set∆ denotes the functor given by G ∆n(C) = Fun(∆n,G (C)).

Proposition 5.3.2.21.036E Let F : C → Set∆ be a diagram of simplicial sets, let E be a simplicial
set, and define G : C → Set∆ by the formula G (C) = Fun(N•(CC/), E). Then composition
with the natural transformation uF of Construction 5.3.2.20 induces an isomorphism of
simplicial sets

ΦF : Fun(holim
−→

(F ), E)→ HomFun(C,Set∆)(F ,G )•.
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Proof. For every object C ∈ C, let hC : C → Set∆ denote the functor corepresented by C

(given by hC(D) = HomC(C,D), regarded as a discrete simplicial set). For every simplicial
set K, let K : C → Set∆ denote the constant functor taking the value K. For every functor
F : C → Set∆ we have a coequalizer diagram

∐
C→D

hD ×F (C) ⇒
∐

C
hC ×F (C)→ F

in the category Fun(C, Set∆). Note that, if we regard the simplicial set E as fixed, then
the construction F 7→ ΦF carries colimits in Fun(C, Set∆) to limits in the arrow category
Fun([1], Set∆). We can therefore assume without loss of generality that the functor F

factors as a product hC ×K, for some object C ∈ C and some simplicial set K.
Fix an integer n ≥ 0; we wish to show that ΦF induces a bijection from n-simplices of

Fun(holim
−→

(F ), E) to n-simplices of HomFun(C,Set∆)(F ,G )•. Replacing E by the simplicial
set Fun(K×∆n, E), we are reduced to proving that Construction 5.3.2.20 induces a bijection

Φ0 : HomSet∆(holim
−→

(hC), E)→ HomFun(C,Set∆)(hC ,G ).

Let G0 : C → Set denote the functor given on objects by the formula

G0(C) = HomSet∆(∆0,G (C)) = HomSet∆(N•(CC/), E).

Under the identification of holim
−→

(hC) ≃ N•(CC/) of Example 5.3.2.6, the function Φ0

corresponds to the bijection G0(C) ≃ HomFun(C,Set)(hC ,G0) supplied by Yoneda’s lemma.

Corollary 5.3.2.22. 036FLet C be a small category. Then the homotopy colimit functor

Fun(C, Set∆)→ Set∆ F 7→ holim
−→

(F )

admits a right adjoint, given by the construction

Set∆ → Fun(C,Set∆) E 7→ (C 7→ Fun(N•(CC/), E)).

Corollary 5.3.2.23. 036GLet C be a category, let U : E → N•(C) be a morphism of simplicial
sets, and let F : C → Set∆ be a functor. Then composition with the natural transformation
uF of Construction 5.3.2.20 induces an isomorphism of simplicial sets

Fun/N•(C)(holim
−→

(F ), E)→ HomFun(C,Set∆)(F ,wTrE / C)•,

where wTrE / C is the weak transport representation of Construction 5.3.1.1.
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Proof. Define G ,H : C → Set∆ by the formulae G (C) = Fun(N•(CC/), E) and H (C) =
Fun(N•(CC/),N•(C)). We have a commutative diagram of simplicial sets

Fun(holim
−→

(F ), E) //

U◦

��

HomFun(C,Set∆)(F ,G )•

U◦

��
Fun(holim

−→
(F ),N•(C)) // HomFun(C,Set∆)(F ,H )•,

where the horizontal maps are isomorphisms by virtue of Proposition 5.3.2.21. Corollary
5.3.2.23 follows by restricting to fibers of the vertical maps.

Corollary 5.3.2.24.036H Let C be a small category. Then the homotopy colimit functor

holim
−→

: Fun(C, Set∆)→ (Set∆)/N•(C)

admits a right adjoint, given by the functor

(Set∆)/N•(C) → Fun(C, Set∆) (U : E → N•(C)) 7→ (wTrE / C : C → Set∆)

of Construction 5.3.1.1.

5.3.3 The Weighted Nerve

025W Let C be a category and let F : C → Kan be a diagram of Kan complexes indexed by C.
In §5.3.2, we introduced the homotopy colimit holim

−→
(F ), which is a simplicial set equipped

with a projection map U : holim
−→

(F )→ N•(C). If F carries each morphism of C to a Kan
fibration, then the projection map U is a left fibration of simplicial sets (Exercise 5.3.2.17).
Beware that U is not a left fibration in general. In this section, we introduce a variant of
the homotopy colimit holim

−→
(F ) which we will refer to as the F -weighted nerve of C and

denote by NF
• (C) (Definition 5.3.3.1). The weighted nerve is equipped with a projection map

NF
• (C)→ N•(C), which is a left fibration provided that F is a diagram of Kan complexes

(Corollary 5.3.3.19). In §5.3.5, we will construct a comparison map λt : holim
−→

(F )→ NF
• (C)

(Construction 5.3.4.11) which is a categorical equivalence of simplicial sets (Corollary 5.3.5.9);
in particular, it is a weak homotopy equivalence.

Definition 5.3.3.1 (The Weighted Nerve).025X Let C be a category equipped with a functor
F : C → Set∆. For every integer n ≥ 0, we let NF

n (C) denote the collection of all pairs
(σ, τ), where σ : [n]→ C is an n-simplex of N•(C) which we identify with a diagram

C0 → C1 → C2 → · · · → Cn−1 → Cn
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and τ is a collection of simplices {τj : ∆j → F (Cj)}0≤j≤n which fit into a commutative
diagram of simplicial sets

∆0

τ0

��

� � // ∆1

τ1

��

� � // ∆2 � � //

τ2

��

· · ·

��

� � // ∆n

τn

��
F (C0) // F (C1) // F (C2) // · · · // F (Cn).

For every nondecreasing function α : [m]→ [n], we define a map α∗ : NF
n (C)→ NF

m(C)
by the formula α∗(σ, τ) = (σ ◦ α, τ ′), where τ ′ = {τ ′i : ∆i → F (α(i))}0≤i≤m is determined
by the requirement that each τ ′i is equal to the composition

∆i α|{0<1<···<i}−−−−−−−−→ ∆α(i) τα(i)−−−→ F (α(i)).

By means of these restriction maps, we regard the construction [n] 7→ NF
n (C) as a simplicial

set. We will denote this simplicial set by NF
• (C) and refer to it as the F -weighted nerve of

C. Note that there is an evident projection map NF
• (C)→ N•(C), given on simplices by the

construction (σ, τ) 7→ σ.

Example 5.3.3.2. 025YLet X be a simplicial set, which we identify with the constant functor
F : [0]→ Set∆ taking the value X. Then the weighted nerve NF

• ([0]) can be identified with
the simplicial set X.

Remark 5.3.3.3 (Vertices of the Weighted Nerve). 0267Let C be a category equipped with a
functor F : C → Set∆. Then vertices of the weighted nerve NF

• (C) can be identified with
pairs (C, x), where C is an object of C and x is a vertex of the simplicial set F (C).

Remark 5.3.3.4 (Edges of the Weighted Nerve). 0268Let C be a category equipped with a
functor F : C → Set∆, and let (C, x) and (D, y) be vertices of the weighted nerve NF

• (C)
(see Remark 5.3.3.3). Edges of the weighted nerve NF

• (C) with source (C, x) and target
(D, y) can be identified with pairs (f, e), where f : C → D is a morphism of the category C
and e : F (f)(x)→ y is an edge of the simplicial set F (D).

Remark 5.3.3.5. 036JLet C be a category and let F : C → Set∆ be a functor. Let K be an
auxiliary simplicial set, and define FK : C → Set∆ by the formula FK(C) = Fun(K,F (C)).
Then the weighted nerves of F and FK are related by a pullback diagram of simplicial sets

NF K

• (C) //

��

Fun(K,NF
• (C))

��
N•(C) // Fun(K,N•(C)).
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Example 5.3.3.6.036K Let C be a category, and let F : C → Set∆ be the functor given on
objects by the formula F (C) = N•(C/C). Then there is a canonical isomorphism of simplicial
sets

NF
• (C) ≃ N•(Fun([1], C)) = Fun(∆1,N•(C)).

Remark 5.3.3.7 (Functoriality in C).0261 Let C be a category equipped with a functor F :
C → Set∆, let U : C′ → C be a functor between categories, and let F ′ : C′ → Set∆ denote
the composition F ◦ U . Then there is a pullback diagram of simplicial sets

NF ′
• (C′) //

��

NF
• (C)

��
N•(C′)

N•(U) // N•(C).

Example 5.3.3.8 (Fibers of the Weighted Nerve).0263 Let F : C → Set∆ be functor. For each
object C ∈ C, Remark 5.3.3.7 and Example 5.3.3.2 supply an isomorphism of simplicial sets

F (C) ≃ {C} ×N•(C) NF
• (C).

Example 5.3.3.9 (The Weighted Nerve of a Constant Diagram).0262 Let C be a category,
let X be a simplicial set, and let X : C → Set∆ be the constant functor taking the value
X. Then Remark 5.3.3.7 and Example 5.3.3.2 supply an isomorphism of simplicial sets
NX
• (C) ≃ X ×N•(C).

Remark 5.3.3.10 (Functoriality in F ).0266 Let C be a category. Then the construction
F 7→ NF

• (C) determines a functor from the diagram category Fun(C,Set∆) to the category
(Set∆)/N•(C) of simplicial sets over the nerve N•(C). This functor commutes with all limits
and with filtered colimits.

Exercise 5.3.3.11.036L Let C be a category and let α : F → G be a natural transformation
between functors F ,G : C → Set∆. Show that, if α is a levelwise trivial Kan fibration, then
the induced map of weighted nerves NF

• (C)→ NG
• (C) is a trivial Kan fibration of simplicial

sets.

Example 5.3.3.12 (The Weighted Nerve of a Cone).036M Let C be a category and let C▷ denote
the right cone on C (Example 4.3.2.5), and let 1 ∈ C▷ denote the final object. Suppose we
are given a diagram of simplicial sets F : C▷ → Set∆. Set F = F |C and Y = F (1), so
that F determines a natural transformation α : F → Y (where Y : C → Set∆ denotes the
constant functor taking the value Y ). Combining Remark 5.3.3.10 with Example 5.3.3.9, we
obtain morphisms of simplicial sets

NF
• (C) α−→ NY

• (C) ≃ Y ×N•(C)→ Y.
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Unwinding the definitions, there is a canonical isomorphism of simplicial sets

NF
• (C▷) ≃ NF

• (C) ⋆Y Y,

where the right hand side denotes the relative join of Construction 5.2.3.1.

Example 5.3.3.13. 025ZLet f : X → Y be a morphism of simplicial sets, which we identify
with a functor F : [1]→ Set∆ (so that X = F (0) and Y = F (1)). Then Example 5.3.3.12
supplies an isomorphism of simplicial sets NF

• ([1]) ≃ X ⋆Y Y .

Example 5.3.3.14. 0264Let F : C → Set∆ be a functor. For every morphism f : C → D in C,
Remark 5.3.3.7 and Example 5.3.3.13 supply an isomorphism of simplicial sets

∆1 ×N•(C) NF
• (C) ≃ F (C) ⋆F (D) F (D).

Proposition 5.3.3.15. 046XLet C be a category and let α : F → G be a natural transformation
between functors F ,G : C → Set∆. Assume that:

• For each object C ∈ C, the morphism αC : F (C)→ G (C) is a cocartesian fibration of
simplicial sets.

• For each morphism u : C → D of C, the morphism F (u) : F (C) → F (D) carries
αC-cocartesian edges of F (C) to αD-cocartesian edges of F (D).

Then:

(1) The induced map U : NF
• (C)→ NG

• (C) is a cocartesian fibration of simplicial sets.

(2) Let (f, e) : (C, x)→ (D, y) be an edge of the simplicial set NF
• (C) (see Remark 5.3.3.4).

Then (f, e) is U -cocartesian if and only if e : F (f)(x)→ y is an αD-cocartesian edge
of the simplicial set F (D).

Proof. By virtue of Proposition 5.1.4.7 and Remark 5.3.3.7, we may assume without loss of
generality that C is the linearly ordered set [n] = {0 < 1 < · · · < n} for some nonnegative
integer n. We proceed by induction on n. If n = 0, then U can be identified with the
cocartesian fibration α0 : F (0)→ G (0) (Example 5.3.3.2), so that assertions (1) and (2) are
immediate. Let us therefore assume that n > 0, so that C can be identified with the cone C▷0
for C0 = [n− 1]. Set F0 = F |C0 and G0 = G |C0 . It follows from our inductive hypothesis
that U restricts to a cocartesian fibration U0 : NF0

• (C0)→ NG0
• (C0) is a cocartesian fibration

of ∞-categories, and that an edge of NF0
• (C0) is U0-cocartesian if and only if it satisfies the

criterion described in (2). It follows that the functor NF0
• (C0)→ F (n) described in Example

5.3.3.12 carries U0-cocartesian morphisms to αn-cocartesian morphisms of the ∞-category
F (n). Unwinding the definitions, we can identify U with the map of relative joins

NF0
• (C0) ⋆F (n) F (n)→ NG0

• (C0) ⋆G (n) G (n).

Assertions (1) and (2) now follow from Lemma 5.2.3.17.

https://kerodon.net/tag/025Z
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Corollary 5.3.3.16.046Y Let C be a category and let F : C → QCat be a diagram of∞-categories
indexed by C. Then:

(1) The projection map U : NF
• (C)→ N•(C) is a cocartesian fibration of simplicial sets.

(2) Let (f, e) : (C, x)→ (D, y) be an edge of the simplicial set NF
• (C) (see Remark 5.3.3.4).

Then (f, e) is U -cocartesian if and only if e : F (f)(x)→ y is an isomorphism in the
∞-category F (D).

In particular, NF
• (C) is an ∞-category.

Proof. Apply Proposition 5.3.3.15 in the special case where G is the constant diagram taking
the value ∆0.

Exercise 5.3.3.17.05DY Let C be a category, let n be an integer, and let F : C → Set∆ be a
diagram of simplicial sets indexed by C. Assume that, for each object C ∈ C, the simplicial
set F (C) is an (n, 1)-category (Definition 4.8.1.8). Show that the cocartesian fibration
U : NF

• (C)→ N•(C) is n-categorical, in the sense of Definition 4.8.6.23.
In particular, if each of the simplicial sets F (C) is (isomorphic to) the nerve of an

ordinary category, then the weighted nerve NF
• (C) is also isomorphic to the nerve of an

ordinary category. For a more precise statement, see Example 5.6.1.8.

Corollary 5.3.3.18.046Z Let C be a category and let α : F → G be a natural transformation
between functors F ,G : C → Set∆. Suppose that, for every object C ∈ C, the morphism
αC : F (C)→ G (C) is a left fibration of simplicial sets. Then the induced map U : NF

• (C)→
NG
• (C) is also a left fibration of simplicial sets.

Proof. Combine Propositions 5.1.4.14 and 5.3.3.15.

Corollary 5.3.3.19.036N Let C be a category and let F : C → Set∆ be a functor. Suppose that,
for every object C ∈ C, the simplicial set F (C) is a Kan complex. Then the projection map
U : NF

• (C)→ N•(C) is a left fibration.

Proof. Apply Corollary 5.3.3.18 in the special case where G is the constant diagram taking
the value ∆0.

Corollary 5.3.3.20.036P Let C be a category and let α : F → F ′ be a natural transformation
between functors F ,F ′ : C → Set∆. Then α is a levelwise categorical equivalence if and
only if the induced map T : NF

• (C)→ NF ′
• (C) is a categorical equivalence of simplicial sets.

Proof. Assume first that α is a levelwise categorical equivalence. To prove that T is
a categorical equivalence of simplicial sets, it will suffice to show that for every simplex
σ : ∆n → N•(C), the induced map Tσ : ∆n×N•(C) NF

• (C)→ ∆n×N•(C) NF ′
• (C) is a categorical

https://kerodon.net/tag/046Y
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equivalence of simplicial sets (Corollary 4.5.7.3). Using Remark 5.3.3.7, we can reduce to
the special case where C is the linearly ordered [n] = {0 < 1 < · · · < n} for some n ≥ 0. We
now proceed by induction on n. If n = 0, the result is immediate from Example 5.3.3.2. The
inductive step follows by combining Example 5.3.3.12 with Corollary 5.2.4.7.

We now prove the converse. Using Proposition 4.1.3.2, we can choose a commutative
diagram

F
α //

��

F ′

��
G

β // G ′

in the category Fun(C, Set∆), where the vertical maps are levelwise categorical equivalences
and the simplicial sets G (C) and G ′(C) are∞-categories for each C ∈ C. Using the first part
of the proof, we can replace α by β and thereby reduce to the special case where F and F ′

are diagrams of ∞-categories. In this case, the projection maps NF
• (C)→ N•(C)← NF ′

• (C)
are cocartesian fibrations of ∞-categories (Corollary 5.3.3.16). It then follows from Theorem
5.1.6.1 (together with Example 5.3.3.8) that if T is an equivalence of ∞-categories, then α

is a levelwise categorical equivalence.

Example 5.3.3.21. 036QLet C be a category and let F : C → Set∆. Suppose that, for
every object C ∈ C, the simplicial set F (C) is an ∞-category, so that the projection map
U : NF

• (C)→ N•(C) is a cocartesian fibration (Corollary 5.3.3.16). Define F≃ : C → Set∆ by
the formula F≃(C) = F (C)≃. Then NF≃

• (C) can be identified with with simplicial subset
of NF

• (C) spanned by those n-simplices which carry each edge of ∆n to a U -cocartesian
edge of NF

• (C). That is, the projection map U≃ : NF≃
• (C) → N•(C) is the underlying left

fibration of the cocartesian fibration U (see Corollary 5.1.4.15).

Remark 5.3.3.22 (The Homotopy Transport Representation). 026CLet C be a category equipped
with a functor F : C → QCat and let U : NF

• (C) → N•(C) be the cocartesian fibration of
Corollary 5.3.3.16. Then the homotopy transport representation

hTrNF
• (C)/N•(C) : C → hQCat

of Construction 5.2.5.2 is canonically isomorphic to the composition C F−→ QCat ↠ hQCat.
To prove this, it suffices to observe that for every morphism f : C → D in C, the functor

F (f) : F (C) ≃ {C} ×N•(C) NF
• (C)→ {D} ×N•(C) NF

• (C) ≃ F (D)

is given by covariant transport along f , which follows immediately from Proposition 5.2.3.15
and Example 5.3.3.14.

https://kerodon.net/tag/036Q
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We conclude this section by showing that the weighted nerve can be characterized by a
universal mapping property.

Notation 5.3.3.23.036R Let C be a category and suppose we are given a morphism of sim-
plicial sets U : E → N•(C). For every object C ∈ C, let GE(C) denote the fiber product
N•(C/C)×N•(C) E . The construction C 7→ GE(C) then determines a functor GE : C → Set∆.

Suppose we are given an n-simplex σ of E . Then U(σ) is an n-simplex of the simplicial
set N•(C), which we can identify with a diagram

C0
f1−→ C1

f2−→ C2 → · · ·
fn−→ Cn

in the category C. For 0 ≤ m ≤ n, we can view the diagram

C0
f1−→ C1

f2−→ C2 → · · ·
fm−−→ Cm

id−→ Cm

as an m-simplex τm of the simplicial set N•(C/Cm
). The pair (τm, U(σ)|∆m) can then be

viewed as an m-simplex τm of GE(Cm). Setting τ = (τ0, τ1, · · · , τn), we observe that the pair
(U(σ), τ) can be regarded as an n-simplex uE(σ) of the weighted nerve NGE

• (C). Allowing n to
vary, the construction σ 7→ uE(σ) determines a morphism of simplicial sets uE : E → NGE

• (C)
for which the diagram

E uE //

U

  

NGE
• (C)

||
N•(C)

is commutative.

Proposition 5.3.3.24.036S Let C be a category, let U : E → N•(C) be a morphism of simplicial
sets, and let uE : E → NGE

• (C) be the morphism of Notation 5.3.3.23. For every functor
F : C → Set∆, precomposition with uE induces a bijection

TE : HomFun(C,Set∆)(GE ,F )→ Hom(Set∆)/ N•(C)(E ,N
F
• (C)).

Corollary 5.3.3.25.036T Let C be a category. Then the weighted nerve functor

Fun(C,Set∆)→ (Set∆)/N•(C) F 7→ NF
• (C)

has a left adjoint, given by the construction E 7→ GE of Notation 5.3.3.23.

https://kerodon.net/tag/036R
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Proof of Proposition 5.3.3.24. The construction E 7→ TE carries colimits in the category
(Set∆)/N•(C) to limits in the arrow category Fun([1],Set). We can therefore assume without
loss of generality that E = ∆n is a standard simplex, so that the morphism U determines
a diagram C0 → C1 → · · · → Cn in the category C. Unwinding the definitions, we see
that the codomain of TE can be identified with the set of tuples τ = (τ0, τ1, · · · , τn), where
τi : ∆i → F (Ci) are simplices for which the diagram

∆0

τ0

��

� � // ∆1

τ1

��

� � // ∆2 � � //

τ2

��

· · ·

��

� � // ∆n

τn

��
F (C0) // F (C1) // F (C2) // · · · // F (Cn)

is commutative. Let us regard τ as fixed; we wish to prove that there is a unique natural
transformation α : GE → F satisfying TE(α) = τ .

Let D be an object of C and let m ≥ 0 be an integer. Then m-simplices of the simplicial
set GE(D) = N•(C/D)×N•(C) E can be identified with pairs (f, g), where g : [m]→ [n] is a
nondecreasing function and f : Cg(m) → D is a morphism in the category C. Let αD(f, g)
denote the m-simplex of F (D) given by the composition

∆m g−→ ∆g(m) τg(m)−−−→ F (Cg(m))
F (f)−−−→ F (D).

The construction (f, g) 7→ αD(f, g) determines a morphism of simplicial sets αD : GE(D)→
F (D). The assignmentD 7→ αD determines a natural transformation of functors α : GE → F

satisfying TE(α) = τ . This proves existence.
We now prove uniqueness. Suppose we are given another natural transformation α′ :

GE → F satisfying TE(α′) = τ ; we wish to show that α = α′. Fix an object D ∈ C and
an m-simplex of the simplicial set GE(D), which we identify with a pair (f, g) as above.
We wish to verify that αD(f, g) and α′D(f, g) coincide (as m-simplices of the simplicial set
F (D)). Set n′ = g(m), so that the function g factors as a composition [m] g−→ [n′] ι−→ [n],
where ι : [n′] ↪→ [n] is the inclusion map. Since αD and α′D are morphisms of simplicial sets,
it will suffice to prove that αD(f, ι) and α′D(f, ι) coincide (as n′-simplices of the simplicial
set F (D)). Since both αD and α′D are natural in D, we may assume without loss of
generality that D = Cn′ and that f is the identity morphism. In this case, the identities
TE(α) = τ = TE(α′) give αD(f, ι) = τn′ = α′D(f, ι).

Variant 5.3.3.26. 036ULet C be a category, and let us regard Fun(C, Set∆) as equipped with
the simplicial enrichment described in Example 2.4.2.2. For every morphism of simplicial
sets E → N•(C) and every functor F : C → Set∆, precomposition with the morphism

https://kerodon.net/tag/036U
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uE : E → NGE
• (C) of Notation 5.3.3.23 induces an isomorphism of simplicial sets

HomFun(C,Set∆)(GE ,F )• → Fun/N•(C)(E ,NF
• (C)).

To see that this map is bijective on m-simplices, we can replace E by the product ∆m × E
to reduce to the case m = 0, in which case it follows from Proposition 5.3.3.24.

5.3.4 Scaffolds of Cocartesian Fibrations

036V Let C be a category and let F : C → QCat be a (strictly commutative) diagram of
∞-categories indexed by C. Our goal in this section is to show that the diagram F can be
recovered, up to equivalence, from the weighted nerve NF

• (C) of Definition 5.3.3.1. More
precisely, we will show that there exists a levelwise categorical equivalence from F to the
strict transport representation sTrNF

• (C)/ C of Construction 5.3.1.5 (Corollary 5.3.4.19).
We begin with some general remarks. Let U : E → N•(C) be any cocartesian fibration

of simplicial sets and let wTrE / C : C → QCat be the weak transport representation of U
(Construction 5.3.1.1). Every levelwise categorical equivalence α : F → sTrE / C can be
viewed as a natural transformation from F to the weak transport representation wTrE / C ,
which we can identify (using Corollary 5.3.2.23) with a morphism from the homotopy colimit
holim
−→

(F ) into E . Our first goal is to give an explicit characterization of the collection of
morphisms λ : holim

−→
(F )→ E which arise in this way, which we will refer to as scaffolds of

the cocartesian fibration U (Definition 5.3.4.2 and Remark 5.3.4.10).

Definition 5.3.4.1.036W Let C be a category, let F : C → Set∆ be a diagram of simplicial sets
indexed by C, and let e be an edge of the homotopy colimit holim

−→
(F ). Let us identify e

with a pair (f, e), where f : C → D is a morphism in the category C and e is an edge of the
simplicial set F (C). We will say that the edge e = (f, e) is horizontal if e is a degenerate
edge of F (C).

Definition 5.3.4.2.0255 Let C be a category, let U : E → N•(C) be a cocartesian fibration
of ∞-categories, and let F : C → Set∆ be a diagram of simplicial sets. We will say that
a morphism of simplicial sets λ : holim

−→
(F ) → E is a scaffold if it satisfies the following

conditions:

(0) The diagram of simplicial sets

holim
−→

(F ) λ //

##

E

U

~~
N•(C)

https://kerodon.net/tag/036V
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is commutative (where the left vertical map is the projection map of Construction
5.3.2.1).

(1) The morphism λ carries horizontal edges of holim
−→

(F ) to U -cocartesian morphisms of E .

(2) For every object C ∈ C, the induced map

F (C) ≃ {C} ×N•(C) holim
−→

(F ) λ−→ {C} ×N•(C) E

is a categorical equivalence of simplicial sets.

Example 5.3.4.3. 036XLet n be a nonnegative integer and let E denote the nerve of the partially
ordered set Q = {(i, j) ∈ [n] × [n] : j ≤ i}. Then there is a cocartesian fibration of ∞-
categories U : E → ∆n, given on vertices by the formula U(i, j) = i. Let F : [n] → Set∆
denote the functor given by F (i) = ∆i, so that vertices of the homotopy colimit can be
identified with elements of Q. There is a unique morphism of simplicial sets λ : holim

−→
(F )→ E

which is the identity at the level of vertices, which is a scaffold of the cocartesian fibration U .
Moreover, λ is a monomorphism, and an n-simplex (i0, j0) ≤ (i1, j1) ≤ · · · ≤ (in, jn) belongs
to the image of λ if and only if jn ≤ i0. The case n = 3 is depicted in the following diagram,
where the image of λ is indicated with solid arrows:

(3, 3)

(2, 2)

;;

// (3, 2)

OO

(1, 1)

;;

// (2, 1)

OO

// (3, 1)

OO

(0, 0)

;;

// (1, 0) //

OO

(2, 0)

OO

// (3, 0).

OO

Example 5.3.4.4. 0256Let E be an∞-category equipped with a cocartesian fibration U : E → ∆1

having fibers E0 = {0} ×∆1 E and E1 = {1} ×∆1 E . Choose a functor F : E0 → E1 and a
morphism h : ∆1 × E0 → E which witnesses F as given by covariant transport along the
nondegenerate edge of ∆1, in the sense of Definition 5.2.2.4. Then F can be identified with
a diagram F : [1]→ QCat, and the map

holim
−→

(F ) = (∆1 × E0)
∐

({1}×E0)
E1

(h,id)−−−→ E

is a scaffold.

https://kerodon.net/tag/036X
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Remark 5.3.4.5 (Isomorphism Invariance).036Y In the situation of Definition 5.3.4.2, suppose
that we are given a pair of morphisms λ, λ′ : holim

−→
(F ) → E which are isomorphic when

viewed as objects of the ∞-category Fun/N•(C)(holim
−→

(F ), E). Then λ is a scaffold if and
only if λ′ is a scaffold (see Corollary 5.1.2.5 and Remark 4.5.1.15).

Remark 5.3.4.6 (Change of E).036Z Suppose we are given a commutative diagram

E T //

U

!!

E ′

U ′

}}
N•(C),

where the vertical maps are cocartesian fibrations and T is an equivalence of cocartesian
fibrations over N•(C). Then a morphism λ : holim

−→
(F )→ E is a scaffold of the cocartesian

fibration U if and only if T ◦ λ is a scaffold of the cocartesian fibration U ′.

We now describe two important examples of scaffolds, both of which can be regarded as
generalizations of Example 5.3.4.3.

Construction 5.3.4.7 (The Universal Scaffold).026D Let C be a category, let U : E → N•(C)
be a cocartesian fibration of ∞-categories, and let sTrE / C denote the strict transport
representation of U (Construction 5.3.1.5). For each n ≥ 0, we can identify n-simplices of
the homotopy colimit holim

−→
(sTrE / C) with pairs (σ, τ), where σ is an n-simplex of N•(C)

(given by a diagram C0 → C1 → · · · → Cn in the category C) and τ is an n-simplex of the
∞-category sTrE / C(C0) = FunCCart

/N•(C)(N•(CC0/), E), which we identify with a morphism of
simplicial sets ∆n×N•(CC0/)→ E . Let us identify the diagram C0

id−→ C0 → C1 → · · · → Cn
with an n-simplex σ̃ of the simplicial set N•(CC0/), and let λu(σ, τ) denote the n-simplex of
E given by the composite map

∆n (id,σ̃)−−−→ ∆n ×N•(CC0/)
τ−→ E .

The construction (σ, τ) 7→ λu(σ, τ) determines a morphism of simplicial sets

λu : holim
−→

(sTrE / C)→ E ,

which we will refer to as the universal scaffold of the cocartesian fibration U .

Proposition 5.3.4.8.0370 Let C be a category and let U : E → N•(C) be a cocartesian fibration
of ∞-categories. Then the morphism λu : holim

−→
(sTrE / C)→ E of Construction 5.3.4.7 is a

scaffold, in the sense of Definition 5.3.4.2.

https://kerodon.net/tag/036Y
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Proof. It is clear that the composition U ◦λu coincides with the projection map holim
−→

(F )→
N•(C). Let e be a horizontal edge of the homotopy colimit holim

−→
(sTrE / C), determined by a

morphism e : C → D in the category C together with a degenerate edge idT of the simplicial
set sTrE / C(C). Identifying T with an object of the ∞-category FunCCart

/N•(C)(N•(CC/), E), we
see that λu(e) coincides with the morphism T (e) and is therefore a U -cocartesian morphism
of E . To complete the proof, we observe that for every object C ∈ C, the induced map

sTrE / C(C) ≃ {C} ×N•(C) holim
−→

(sTrE / C)
λ−→ {C} ×N•(C) E

agrees with the map evC : FunCCart
/N•(C)(N•(CC/), E)→ EC given by evaluation on the initial

object idC ∈ CC/, and is therefore a trivial Kan fibration of simplicial sets (Proposition
5.3.1.7).

Corollary 5.3.4.9. 0371Let C be a category and let U : E → N•(C) be a cocartesian fibration of
∞-categories. Then there exists a diagram F : C → QCat and a scaffold λ : holim

−→
(F )→ E.

Remark 5.3.4.10 (Universality). 0372Let C be a category, let U : E → N•(C) be a cocartesian
fibration of ∞-categories, and let F : C → Set∆ be a diagram of simplicial sets. Applying
Corollary 5.3.2.23, we obtain a bijection from the set of morphisms λ : holim

−→
(F )→ E in the

category (Set∆)/N•(C) to the set of natural transformations α : F → wTrE / C . Unwinding the
definitions, we see that α factors through the subfunctor sTrE / C ⊆ wTrE / C if and only if λ
satisfies condition (1) of Definition 5.3.4.2. If this condition is satisfied, then α : F → sTrE / C
is a levelwise categorical equivalence if and only if λ satisfies condition (2) of Definition
5.3.4.2. We therefore obtain a bijection

{Levelwise categorical equivalences α : F → sTrE / C}

Φ

��
{Scaffolds λ : holim

−→
(F )→ E}.

Concretely, this bijection carries a levelwise categorical equivalence α : F → sTrE / C to the
composite map

holim
−→

(F ) α−→ holim
−→

(sTrE / C)
λu−→ E ,

where λu is the universal scaffold of Construction 5.3.4.7.

Construction 5.3.4.11 (The Taut Scaffold). 0373Let F : C → Set∆ be a diagram of simplicial
sets. By definition, an n-simplex of the homotopy colimit holim

−→
(F ) is a pair (σ, τ), where σ

https://kerodon.net/tag/0371
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is an n-simplex of N•(C) (given by a diagram C0 → · · · → Cn in the category C) and τ is an
n-simplex of the simplicial set F (C0). For 0 ≤ i ≤ n, let τi denote the composite map

∆i ↪→ ∆n τ−→ F (C0)→ F (Ci).

We then have a commutative diagram of simplicial sets

∆0

τ0

��

� � // ∆1

τ1

��

� � // ∆2 � � //

τ2

��

· · ·

��

� � // ∆n

τn

��
F (C0) // F (C1) // F (C2) // · · · // F (Cn).

Consequently, we can view the pair (σ, {τi}0≤i≤n) as an n-simplex of the weighted nerve
NF
• (C). The construction (σ, τ) 7→ (σ, {τi}0≤i≤n) determines a morphism of simplicial sets

λt : holim
−→

(F ) → NF
• (C). In the special case where F : C → QCat is a diagram of ∞-

categories, we will refer to λt as the taut scaffold of the cocartesian fibration NF
• (C)→ N•(C).

Remark 5.3.4.12.0374 Let C be a category and let F : C → Set∆ be a functor. Then the
diagram of simplicial sets

holim
−→

(F ) λt //

##

NF
• (C)

||
N•(C)

commutes, where λt is the morphism of Construction 5.3.4.11 and the vertical morphism
are the projection maps of Construction 5.3.2.1 and Definition 5.3.3.1.

Example 5.3.4.13.0375 Let X be a simplicial set, which we identify with a diagram F : [0]→
Set∆. Then the homotopy colimit holim

−→
(F ) and the weighted nerve NF

• ([0]) can both be
identified with X (see Examples 5.3.2.2 and 5.3.3.2). Under these identifications, the taut
scaffold λt : holim

−→
(F )→ NF

• ([0]) of Construction 5.3.4.11 corresponds to the identity map
idX .

Remark 5.3.4.14 (Functoriality).0376 Let F : C → Set∆ be a diagram of simplicial sets and
let λt : holim

−→
(F )→ NF

• (C) be the morphism of Construction 5.3.4.11. If T : C′ → C is any
functor between categories, then λ induces a morphism

λ′t : N•(C′)×N•(C) holim
−→

(F )→ N•(C′)×N•(C) NF
• (C).

https://kerodon.net/tag/0374
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Setting F ′ = F ◦ T , we can use Remarks 5.3.2.3 and 5.3.3.7 to identify λ′t with a morphism
from the homotopy colimit holim

−→
(F ′) to the weighted nerve NF ′

• (C′). This morphism
coincides with the map obtained by applying Construction 5.3.4.11 to the diagram F ′.

Example 5.3.4.15 (Comparison of Fibers). 026ELet F : C → Set∆ be a diagram of simplicial
sets and let λt : holim

−→
(F )→ NF

• (C) be the morphism of Construction 5.3.4.11. Combining
Example 5.3.4.13 with Remark 5.3.4.14, we see that for every object C ∈ C, the induced
map of fibers

{C} ×N•(C) holim
−→

(F )→ {C} ×N•(C) NF
• (C)

is an isomorphism of simplicial sets (under the identifications provided by Remark 5.3.2.3
and Example 5.3.3.8, it corresponds to the identity morphism id : F (C)→ F (C)).

Example 5.3.4.16. 0377Let f : X → Y be a morphism of simplicial sets, which we identify
with a diagram F : [1] → Set∆. Then the homotopy colimit holim

−→
(F ) can be identified

with the mapping cylinder (∆1 ×X)∐({1}×X)Y (Example 5.3.2.13), and the weighted nerve
NF
• ([1]) can be identified with the relative join X ⋆Y Y (Example 5.3.3.13). Under these

identifications, Construction 5.3.4.11 corresponds to a morphism of simplicial sets

λt : (∆1 ×X)
∐

({1}×X)
Y → X ⋆Y Y.

Unwinding the definitions, we see that this map classifies the commutative diagram

0378∅ ⋆X X //

��

∅ ⋆Y Y

��
X ⋆X X // X ⋆Y Y.

(5.16)

In particular, the morphism λt is an isomorphism if and only if (5.16) is a pushout square of
simplicial sets.

Proposition 5.3.4.17. 0379Let F : C → QCat be a diagram of ∞-categories indexed by a
category C. Then the morphism λt : holim

−→
(F ) → NF

• (C) of Construction 5.3.4.11 is a
scaffold of the cocartesian fibration U : NF

• (C)→ N•(C).

Proof. Condition (0) of Definition 5.3.4.2 follows from Remark 5.3.4.12, condition (2) from
Example 5.3.4.15, and condition (1) from the characterization of U -cocartesian morphisms
supplied by Corollary 5.3.3.16.

Corollary 5.3.4.18. 037ALet F : C → Set∆ be a diagram of simplicial sets. Then there exists a
cocartesian fibration of ∞-categories U : E → N•(C) and a scaffold λ : holim

−→
(F )→ E.
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Proof. Using Proposition 4.1.3.2, we can choose a diagram of ∞-categories F ′ : C → QCat
and a levelwise categorical equivalence α : F → F ′. We can then take λ to be the
composition holim

−→
(F ) α−→ holim

−→
(F ′) λt−→ NF ′

• (C), where λt is the taut scaffold of Proposition
5.3.4.17.

Corollary 5.3.4.19.037B Let C be a category, let F : C → QCat be a diagram of ∞-categories
indexed by C, and let U : NF

• (C)→ N•(C) be the cocartesian fibration of Corollary 5.3.3.16.
Then there exists a levelwise categorical equivalence from F to the strict transport represen-
tation sTrNF

• (C)/ C.

Proof. Combine Proposition 5.3.4.17 with Remark 5.3.4.10 (for a more precise statement,
see Construction 7.5.3.3).

In certain cases, one can improve on Example 5.3.4.15.

Proposition 5.3.4.20.037C Let C be a category and let F : C → Set∆ be a functor. Suppose
that, for every morphism u : C → D in the category C, the image F (u) : F (C)→ F (D) is
a left covering map (Definition 4.2.3.8). Then the morphism λt : holim

−→
(F ) → NF

• (C) of
Construction 5.3.4.11 is an isomorphism.

Proof. Let (σ, {τi}0≤i≤n) be an n-simplex of the weighted nerve NF
• (C). We identify σ

with a diagram C0 → · · · → Cn in the category C, and each τi with an i-simplex of the
simplicial set F (Ci). We wish to show that there is a unique n-simplex τ of F (C0) satisfying
λt(σ, τ) = (σ, {τi}0≤i≤n). Note that, for this condition to be satisfied, the simplex τ must
be a solution to the lifting problem

{0}

��

// F (C0)

��
∆n

<<

τn // F (Cn).

Since the inclusion {0} ↪→ ∆n is left anodyne (Example 4.3.7.11), our assumption that the
right vertical map is a left covering guarantees that this lifting problem has a unique solution
τ : ∆n → F (C0) (Corollary 4.2.4.6). This proves uniqueness. To prove existence, write
λt(σ, τ) = (σ, {τ ′i}0≤i≤n). We wish to prove that τi = τ ′i for 0 ≤ i ≤ n. For this, we observe

https://kerodon.net/tag/037B
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that both τi and τ ′i can be viewed as solutions to a common lifting problem

{0} τi(0) //

��

F (Ci)

��
∆i

<<

// F (Cn).

Since the inclusion {0} ↪→ ∆i is left anodyne (Example 4.3.7.11) and the right vertical map
is a left covering, the solution to this lifting problem is uniquely determined (Corollary
4.2.4.6).

Example 5.3.4.21 (Set-Valued Functors). 037DLet F : C → Set be a diagram of sets, and let
us abuse notation by identifying F with a diagram of discrete simplicial sets. Then the taut
scaffold λt : holim

−→
(F )→ NF

• (C) is an isomorphism. It follows that NF
• (C) can be identified

with the nerve of the category of elements
∫
CF (see Example 5.3.2.5).

Corollary 5.3.4.22. 037ELet F : C → Set∆ be a functor which carries each morphism of C to
an isomorphism of simplicial sets. Then the morphism λt : holim

−→
(F )→ NF

• (C) of Remark
5.3.4.12 is an isomorphism.

Corollary 5.3.4.23. 037FLet C be a groupoid and let F : C → Kan be a diagram of Kan
complexes. Then the homotopy colimit holim

−→
(F ) is a Kan complex.

Proof. Using Corollaries 5.3.4.22 and 5.3.3.19, we see that the map U : holim
−→

(F )→ N•(C)
is a left fibration. Since N•(C) is a Kan complex (Proposition 1.3.5.2), it follows that U
is a Kan fibration (Corollary 4.4.3.8), so that holim

−→
(F ) is also a Kan complex (Remark

3.1.1.11).

Example 5.3.4.24 (Homotopy Quotients). 037GLet G be a group and let BG denote the
associated groupoid (consisting of a single object with automorphism group G). Let X be a
simplicial set equipped with an action of G, which we identify with a functor F : BG→ Set∆.
Applying Corollary 5.3.4.22, we obtain an isomorphism of simplicial sets XhG

∼−→ NF
• (BG),

where XhG is the homotopy quotient of X by the action of G (Example 5.3.2.15). If X is a
Kan complex, then Corollary 5.3.4.23 guarantees that XhG is also a Kan complex.

5.3.5 Application: Classification of Cocartesian Fibrations

037HLet C be a category. In this section, we apply the results of §5.3.4 to classify cocartesian
fibrations U : E → N•(C) up to equivalence. First, we need to introduce a bit of terminology.
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Definition 5.3.5.1.037J Let C be a category and let F0,F1 : C → QCat be diagrams of
∞-categories indexed by C. We will say that F0 and F1 are levelwise equivalent if there
exists another diagram F : C → QCat equipped with levelwise categorical equivalences
F0 → F ← F1 (see Definition 4.5.6.1).

Proposition 5.3.5.2.037K Let C be a category and suppose we are given a pair of functors
F0,F1 → QCat. Then F0 is levelwise equivalent to F1 (in the sense of Definition 5.3.5.1)
if and only if the cocartesian fibrations U0 : NF0

• (C)→ N•(C) and U1 : NF1
• (C)→ N•(C) are

equivalent (in the sense of Definition 5.1.7.1).

Corollary 5.3.5.3.037L For every category C, levelwise equivalence determines an equivalence
relation on the set of functors from C to QCat.

Exercise 5.3.5.4.037M Give a direct proof of Corollary 5.3.5.3 (which does not use the charac-
terization of Proposition 5.3.5.2).

Proof of Proposition 5.3.5.2. Assume first that the functors F0,F1 : C → QCat are levelwise
equivalent. Then there exists a functor F : C → QCat together with levelwise categorical
equivalences F0 → F ← F1. Applying Corollary 5.3.3.20, we see that the induced maps
NF0
• (C)→ NF

• (C)← NF1
• (C) are equivalences of cocartesian fibrations over N•(C).

We now prove the converse. Suppose that there exists a functor T : NF0
• (C)→ NF1

• (C)
which is an equivalence of cocartesian fibrations over N•(C). Let λ0 : holim

−→
(F0)→ NF0

• (C)
and λ1 : holim

−→
(F1)→ NF1

• (C) be the taut scaffolds of Construction 5.3.4.11. Then T ◦ λ0 is
a scaffold of the cocartesian fibration U1 (Remark 5.3.4.6). Applying Remark 5.3.4.10, we
obtain levelwise categorical equivalences F0 → sTrNF1

• (C)/ C ← F1.

Warning 5.3.5.5.037N Let C be a category and let F0,F1 : C → QCat be diagrams. The
assumption that F0 is levelwise equivalent to F1 (in the sense of Definition 5.3.5.1) does
not guarantee the existence of a levelwise categorical equivalence directly from F0 to F1 (or
in the opposite direction).

Theorem 5.3.5.6.037P Let C be a category. Then the weighted nerve functor F 7→ NF
• (C)

induces a bijection

{Diagrams C → QCat}/Levelwise Equivalence

��
{Cocartesian Fibrations E → N•(C)}/Equivalence.

The inverse bijection carries (the equivalence class of) a cocartesian fibration U : E → N•(C)
to (the equivalence class of) the strict transport representation sTrE / C.
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We will deduce Theorem 5.3.5.6 from the following result, which we prove at the end of
this section:

Theorem 5.3.5.7. 037QLet C be a category, let F : C → Set∆ be a functor, and suppose we are
given a commutative diagram of simplicial sets

holim
−→

(F ) λ //

##

E

U

~~
N•(C),

where E is an ∞-category. The following conditions are equivalent:

(1) The functor U is a cocartesian fibration and λ is a scaffold.

(2) The morphism λ is a categorical equivalence of simplicial sets.

Corollary 5.3.5.8. 037RLet C be a category, let U : E → N•(C) be a cocartesian fibration of
∞-categories, and let sTrE / C denote the strict transport representation of Construction
5.3.1.5. Then the universal scaffold λu : holim

−→
(sTrE / C) → E of Construction 5.3.4.7 is a

categorical equivalence of simplicial sets.

Proof. Combine Theorem 5.3.5.7 with Proposition 5.3.4.8.

Corollary 5.3.5.9. 037SLet F : C → Set∆ be a diagram of simplicial sets. Then the morphism
λt : holim

−→
(F )→ NF

• (C) of Construction 5.3.4.11 is a categorical equivalence of simplicial
sets.

Proof. Using Proposition 4.1.3.2, we can choose a diagram of ∞-categories F ′ : C → QCat
and a levelwise categorical equivalence α : F → F ′. We then have a commutative diagram
of simplicial sets

holim
−→

(F ) λt //

��

NF
• (C)

��
holim
−→

(F ′)
λ′t // NF ′

• (C)

where the horizontal maps are given by Construction 5.3.4.11 and the vertical maps are
induced by the natural transformation α. Since α is a levelwise categorical equivalence,
Variant 5.3.2.19 and Corollary 5.3.3.20 guarantee that the vertical maps are categorical
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equivalences of simplicial sets. Consequently, to show that λt is a categorical equivalence, it
will suffice to show that λ′t is a categorical equivalence. This is a special case of Theorem
5.3.5.7, since λ′t is a scaffold of the cocartesian fibration NF ′

• (C) → N•(C) (Proposition
5.3.4.17).

Example 5.3.5.10.037T In the special case C = [1], Theorem 5.3.5.7 is a restatement of Theorem
5.2.4.1 and Corollary 5.3.5.9 is a restatement of Proposition 5.2.4.5.

Proof of Theorem 5.3.5.6. Let C be a category. It follows from Proposition 5.3.5.2 that the
construction F 7→ NF

• (C) determines an injective function

{Diagrams C → QCat}/Levelwise Equivalence

Φ

��
{Cocartesian Fibrations E → N•(C)}/Equivalence.

Moreover, the construction (U : E → N•(C)) 7→ sTrE / C carries equivalences of cocartesian
fibrations over N•(C) to levelwise categorical equivalences, and therefore induces a function

{Cocartesian Fibrations E → N•(C)}/Equivalence

Ψ

��
{Diagrams C → QCat}/Levelwise Equivalence

in the opposite direction. We will show that Φ ◦Ψ is equal to the identity; it will then follow
that Φ is a bijection and that Ψ = Φ−1 is the inverse bijection.

Fix a cocartesian fibration U : E → N•(C), let F = sTrE / C denote its strict transport
representation, and let U ′ : NF

• (C)→ N•(C) be the projection map. We wish to show that U
and U ′ are equivalent as cocartesian fibrations over N•(C). Let λu : holim

−→
(F )→ E denote

the universal scaffold (Construction 5.3.4.7) and let λt : holim
−→

(F ) → NF
• (C) denote the

taut scaffold (Construction 5.3.4.11). Then λt is a categorical equivalence of simplicial sets
(Corollary 5.3.5.9). Applying Corollary 4.5.2.34, we see that precomposition with λt induces
an equivalence of ∞-categories

Fun/N•(C)(NF
• (C), E)→ Fun/N•(C)(holim

−→
(F ), E).

In particular, there exists a morphism T : NF
• (C)→ E such that U ◦ T = U ′ and T ◦ λt is

isomorphic to λu (as an object of the ∞-category Fun/N•(C)(holim
−→

(F ), E)). Since λu is a

https://kerodon.net/tag/037T
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categorical equivalence of simplicial sets (Corollary 5.3.5.8), it follows that T ◦ λt is also a
categorical equivalence of simplicial sets (Corollary 4.5.3.9). Applying the two-out-of-three
property, we see that T is an equivalence of ∞-categories (Remark 4.5.3.5) and therefore an
equivalence of cocartesian fibrations over N•(C) (Proposition 5.1.7.5).

Proof of Theorem 5.3.5.7. We first show that (1) implies (2). Assume that U : E → N•(C)
is a cocartesian fibration of simplicial sets and let λ : holim

−→
(F )→ E be a scaffold of U ; we

wish to show that λ is a categorical equivalence of simplicial sets. By virtue of Corollary
4.5.7.3, it will suffice to show that for every n-simplex σ : ∆n → N•(C), the induced map

∆n ×N•(C) holim
−→

(F )→ ∆n ×N•(C) E

is a categorical equivalence of simplicial sets. We may therefore assume without loss of
generality that the category C is a linearly ordered set of the form [n] = {0 < 1 < · · · < n}
for some n ≥ 0.

We proceed by induction on n. If n = 0, the result is clear. Let us therefore assume
that n > 0. Let S = N•({1 < · · · < n}) be the 0th face of the simplex ∆n and set
E+ = S ×∆n E . Let F+ denote the restriction of F to the subcategory {1 < · · · < n} ⊂ [n],
so that our inductive hypothesis guarantees that λ restricts to a categorical equivalence
λ+ : holim

−→
(F+) → E+. Note that Remark 5.3.2.12 supplies an isomorphism of simplicial

sets
(∆n ×F (0))

∐
(S×F (0))

holim
−→

(F+)→ holim
−→

(F ).

Let V : ∆n → ∆1 be the morphism given on vertices by the formula V (i) =

0 if i = 0
1 if i > 0.

Then V is a cocartesian fibration of simplicial sets, and the edge N•({0 < 1}) ⊆ ∆n is
V -cocartesian. It follows that, for every vertex x of the simplicial set F (0), the composite
map

∆1 × {x} ↪→ ∆n ×F (0)→ holim
−→

(F ) λ−→ E

is a (V ◦ U)-cocartesian edge of E . Applying Theorem 5.2.4.1 to the cocartesian fibration
V ◦ U , we deduce that the composition

(∆1 ×F (0))
∐

({1}×F (0))
holim
−→

(F+) ι−→ (∆n ×F (0))
∐

(S×F (0))
holim
−→

(F+)

≃ holim
−→

(F )
λ−→ E .

is a categorical equivalence of simplicial sets. Consequently, to show that λ is a categorical
equivalence of simplicial sets, it will suffice to show that ι is inner anodyne. By construction,
ι is a pushout of the inclusion map

(∆1∐
{1}
S)×F (0)→ ∆n ×F (0).
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By virtue of Lemma 1.5.7.5, it will suffice to show that the inclusion map ∆1∐
{1}S ↪→ ∆n

is inner anodyne. This is a special case of Example 4.3.6.5, since the inclusion {1} ↪→ S is
left anodyne (Lemma 4.3.7.8).

We now show that (2) implies (1). Let U : E → N•(C) be a functor of ∞-categories,
and suppose that λ : holim

−→
(F ) → E is a categorical equivalence of simplicial sets such

that U ◦ λ is equal to the projection map holim
−→

(F )→ N•(C). We first claim that U is an
isofibration of ∞-categories. Since E is an ∞-category, the morphism U is an inner fibration
(Proposition 4.1.1.10). It will therefore suffice to show that, for each object C̃ ∈ E having
image C = U(C̃) ∈ C and every isomorphism e : C → D of C, there exists an isomorphism
ẽ : C̃ → D̃ in E satisfying U(ẽ) = e. Since λ is a categorical equivalence, we can choose
a vertex v of holim

−→
(F ) and an isomorphism f̃ : C̃ → λ(v) in E . Let us identify v with

a pair (C ′, X), where C ′ is an object of C and X is a vertex of the simplicial set F (C ′).
Then f = U(f̃) is an isomorphism from C to C ′ in the category C. Replacing v by the
pair (C,F (f−1)(X)), we can reduce to the case where C ′ = C and f = idC so that f̃ is an
isomorphism in the ∞-category EC . In this case, we can take ẽ to be any composition of f̃
with the morphism λ(e, idX) : λ(C,X) → λ(D,F (e)(X)) of E . This completes the proof
that U : E → N•(C) is an isofibration.

Using Corollary 5.3.4.18, we can choose a cocartesian fibration U ′ : E ′ → N•(C) and
a scaffold λ′ : holim

−→
(F ) → E ′. Then U ′ is an isofibration, so composition with λ induces

a categorical equivalence Fun/N•(C)(E , E ′)→ Fun/N•(C)(holim
−→

(F ), E ′) (Corollary 4.5.2.34).
It follows that there exists a functor F : E → E ′ satisfying U ′ ◦ F = U such that F ◦ λ
is isomorphic to λ′ as an object of the ∞-category Fun/N•(C)(holim

−→
(F ), E ′). Since λ′ is a

categorical equivalence of simplicial sets, the morphism F ◦λ is also a categorical equivalence
of simplicial sets (Corollary 4.5.3.9). Applying the two-out-of-three property (Remark
4.5.3.5), we deduce that F is an equivalence of ∞-categories. It follows that U is also a
cocartesian fibration (Corollary 5.1.6.2) and that λ is a scaffold of U (Remark 5.3.4.6).

We close this section by recording another consequence of Theorem 5.3.5.7.

Corollary 5.3.5.11.037U Let C be a category, let U : E → N•(C) be a cocartesian fibration of
∞-categories, and let U ′ : E ′ → N•(C) be an isofibration of ∞-categories. Then the composite
map

Fun/N•(C)(E , E ′)
θ−→ HomFun(C,Set∆)(wTrE / C ,wTrE ′ / C)•
→ HomFun(C,Set∆)(sTrE / C ,wTrE ′ / C)•

is an equivalence of ∞-categories.

Proof. Using Corollary 5.3.2.23, we can identify θ with the functor

Fun/N•(C)(E , E ′)→ Fun/N•(C)(holim
−→

(sTrE / C), E ′)
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given by precomposition with the universal scaffold λu. The desired result now follows by
combining Corollaries 5.3.5.8 and 4.5.2.34.

Corollary 5.3.5.12. 037VLet C be a category and let U : E → N•(C) and U ′ : E ′ → N•(C) be
cocartesian fibrations of ∞-categories, having strict transport representations sTrE / C and
sTrE ′ / C, respectively. Then the tautological map

FunCCart
/N•(C)(E , E ′)→ HomFun(C,Set∆)(sTrE / C , sTrE ′ / C)•

is an equivalence of ∞-categories.

Proof. By virtue of Remark 5.3.4.10, we have a pullback diagram of ∞-categories

FunCCart
/N•(C)(E , E ′)

��

// HomFun(C,Set∆)(sTrE / C , sTrE ′ / C)•

��
Fun/N•(C)(E , E ′) // HomFun(C,Set∆)(sTrE / C ,wTrE ′ / C)•,

where the vertical maps are inclusions of replete full subcategories (and are therefore
isofibrations; see Example 4.4.1.12). Since the bottom horizontal map is an equivalence
of ∞-categories (Corollary 5.3.5.11), it follows that the upper horizontal map is also an
equivalence of ∞-categories (Corollary 4.5.2.29).

5.3.6 Application: Relative Exponentials

037WLet U : C → B be a cocartesian fibration of simplicial sets. Applying Construction
5.2.5.2, we obtain a homotopy transport representation

hTrC /B : hB → hQCat B 7→ CB .

Let D be an ∞-category. In this section, we will show that the composite functor

hBop hTrop
C /B−−−−−→ hQCatop Fun(−,D)−−−−−−→ hQCat

can be realized as the homotopy transport representation of a cartesian fibration C′ →
B. Moreover, we can take C′ to be the relative exponential Fun(C /B,D) introduced in
Construction 4.5.9.1 (Corollary 5.3.6.10). Our starting point is the following:

Proposition 5.3.6.1. 025HLet U : E → C be a functor of ∞-categories which is either a cartesian
fibration or a cocartesian fibration. Then U is exponentiable (in the sense of Definition
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4.5.9.10). That is, if we are given any diagram of simplicial sets

E ′′ F //

��

E ′ //

��

E

U

��
C′′ F // C′ // C

where both squares are pullbacks and F is a categorical equivalence, then F is also a categorical
equivalence.

Remark 5.3.6.2.025J In the statement of Proposition 5.3.6.1, the hypothesis that C is an
∞-category is not necessary: see Corollary 5.6.7.6.

Our proof of Proposition 5.3.6.1 will require some preliminaries.

Lemma 5.3.6.3.025A Let F : C → Set∆ be a diagram of simplicial sets and suppose we are
given morphisms of simplicial sets A f−→ B

g−→ N•(C), where f is inner anodyne. Then the
induced map

θg : A×N•(C) holim
−→

(F )→ B ×N•(C) holim
−→

(F )

is inner anodyne.

Proof. Let S be the collection of all morphisms of simplicial sets f : A → B having the
property that, for every morphism g : B → N•(C), the map θg is inner anodyne. It follows
immediately from the definitions that S is weakly saturated (in the sense of Definition
1.5.4.12). Consequently, to show that every inner anodyne morphism belongs to S, it will
suffice to prove that S contained every inner horn inclusion f : Λn

i ↪→ ∆n, 0 < i < n.
Using Remark 5.3.2.3, we can reduce to the case where C = [n] and g : ∆n → N•(C) is the
identity map. In this case, Remark 5.3.2.14 shows that θg is a pushout of the inclusion map
Λni ×F (0) ↪→ ∆n ×F (0), which is inner anodyne by virtue of Lemma 1.5.7.5.

Lemma 5.3.6.4.037X Let F : C → Set∆ be a diagram of simplicial sets, let U : E → N•(C) be
a cocartesian fibration of ∞-categories, and let λ : holim

−→
(F )→ E be a scaffold. Then, for

every morphism of simplicial sets S → N•(C), the induced map

λS : S ×N•(C) holim
−→

(F )→ S ×N•(C) E

is a categorical equivalence of simplicial sets.

Proof. By virtue of Corollary 4.5.7.3, we may assume without loss of generality that S = ∆n

is a standard simplex. Replacing C by the category [n] = {0 < 1 < · · · < n}, we are reduced
to proving that λ is a categorical equivalence, which follows from Theorem 5.3.5.7.

https://kerodon.net/tag/025J
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Lemma 5.3.6.5. 02RKSuppose we are given a pullback diagram of simplicial sets

E ′

��

F // E

U

��
C′ F // C,

where F is inner anodyne. If U is either a cartesian fibration or a cocartesian fibration, then
F is a categorical equivalence of simplicial sets.

Proof. We will give the proof under the assumption that U is a cocartesian fibration; the
proof when U is a cartesian fibration is similar. Let S be the collection of all monomorphisms
of simplicial sets f : A ↪→ B with the following property: for every morphism of simplicial
sets B → C, the induced map A×C E ↪→ B×C E is a categorical equivalence. To complete the
proof, it will suffice to show that the morphism F : C′ ↪→ C belongs to S. In fact, we claim
that every inner anodyne morphism of simplicial sets belongs to S. Using Remark 4.5.3.6,
Remark 4.5.3.5, Corollary 4.5.7.2, and Remark 4.5.4.13, we see that S is weakly saturated
(see Definition 1.5.4.12). It will therefore suffice to show that S contains every inner horn
inclusion Λn

i ↪→ ∆n, 0 < i < n. In particular, we are reduced to proving Lemma 5.3.6.5
in the special case where C = N•(C0) is the nerve of a category C0. Applying Corollary
5.3.4.9, we deduce that there exists a diagram of ∞-categories G : C0 → QCat and a scaffold
λ : holim

−→
(G )→ E . We then have a commutative diagram of simplicial sets

C′×Cholim
−→

(G ) F̃ //

��

holim
−→

(G )

λ

��
E ′ F // E ,

where the vertical maps are categorical equivalences (Lemma 5.3.6.4). Consequently, to show
that F is a categorical equivalence, it will suffice to show that F̃ is a categorical equivalence,
which follows from Lemma 5.3.6.3.

Proof of Proposition 5.3.6.1. Without loss of generality we may assume that U : E → C is
a cocartesian fibration of ∞-categories. Suppose we are given a commutative diagram of

https://kerodon.net/tag/02RK
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simplicial sets
E ′′ F //

��

E ′ G //

��

E

U

��
C′′ F // C′ G // C

where both squares are pullbacks and F is a categorical equivalence. We wish to show that
F is also a categorical equivalence. By virtue of Proposition 4.1.3.2, the morphism G factors
as a composition C′ G

′

−→ B G
′′

−−→ C, where G′ is inner anodyne and G
′′ is an inner fibration.

Note that the projection map V : B×C E → B is a cocartesian fibration of ∞-categories.
We may therefore replace C by B and thereby reduce to the special case where G is inner
anodyne. In this case, the morphism G : E ′ → E is a categorical equivalence of simplicial sets
(Lemma 5.3.6.5). Consequently, to show that F is a categorical equivalence of simplicial sets,
it will suffice to show that the composite map (G ◦ F ) : E ′′ → E is a categorical equivalence
of simplicial sets (Remark 4.5.3.5).

Since F is a categorical equivalence and G is inner anodyne, it follows that the composite
map G ◦ F : C′′ → C is also a categorical equivalence. Applying Proposition 4.1.3.2, we can
factor G ◦ F as a composition C′′ F 0−−→ C′0

G0−−→ C, where F 0 is inner anodyne and G0 is an
inner fibration. Since C is an ∞-category, it follows that C′0 is also an ∞-category (Remark
4.1.1.9). Set E ′0 = C′0×C E , so that we have a commutative diagram

E ′′ F0 //

��

E ′0
G0 //

��

E

U

��
C′′ F 0 // C′0

G0 // C

satisfying G ◦ F = G0 ◦ F0. Since U is an isofibration (Proposition 5.1.4.8) and G0 is an
equivalence of ∞-categories, it follows that G0 is an equivalence ∞-categories (Corollary
4.5.2.29). Applying Lemma 5.3.6.5 to the square on the left, we see that F0 is a categorical
equivalence of simplicial sets. Invoking Remark 4.5.3.5, we deduce that G ◦ F = G0 ◦ F0 is
also a categorical equivalence, as desired.

We now formulate the main result of this section. In what follows, we assume that the
reader is familiar with the relative exponential construction introduced in §4.5.9.

Proposition 5.3.6.6.0470 Let U : C → B be a cocartesian fibration of simplicial sets and let
V : D → E be a cartesian fibration of simplicial sets. Then postcomposition with V induces

https://kerodon.net/tag/0470
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a cartesian fibration of simplicial sets

V ′ : Fun(C /B,D)→ Fun(C /B, E).

Moreover, an edge e of Fun(C /B,D) is V ′-cocartesian if and only if it satisfies the following
condition:

(∗) Write e = (e, f), where e is an edge of B and f : ∆1 ×B C → D is a morphism of
simplicial sets. Let Ue : ∆1 ×B C → ∆1 be given by projection onto the first factor.
Then f carries Ue-cocartesian morphisms of ∆1 ×B C to V -cartesian morphisms of D.

Remark 5.3.6.7. 0471For a more general version of Proposition 5.3.6.6 (which looses the
requirement that U is a cocartesian fibration), see Corollary 7.3.7.6 (and Example 7.3.7.8).

Before giving the proof of Proposition 5.3.6.6, let us note some of its consequences.

Corollary 5.3.6.8. 0472Let U : C → B be a cocartesian fibration of simplicial sets and let D be
an ∞-category. Then:

(1) The projection map π : Fun(C /B,D)→ B is a cartesian fibration of simplicial sets.

(2) Let e be an edge of the simplicial set Fun(C /B,D), corresponding to a pair (e, f), where e
is an edge of the simplicial set B and f : ∆1×B C → D is a functor of ∞-categories. Let
Ue : ∆1 ×B C → ∆1 be given by projection onto the first factor. Then e is π-cartesian
if and only if the functor f carries Ue-cocartesian morphisms to isomorphisms in the
∞-category D.

Proof. Apply Proposition 5.3.6.6 in the special case E = ∆0 (and use Example 5.1.1.4).

In the situation of Corollary 5.3.6.8, contravariant transport for the cartesian fibration π
has a simple explicit description.

Proposition 5.3.6.9. 0473Let U : C → B be a cocartesian fibration of simplicial sets, let
f : B → B′ be an edge of B, and let f! : CB → CB′ be given by covariant transport along f
for the cocartesian fibration U (see Definition 5.2.2.4). For every ∞-category D, the functor

Fun(C /B,D)B′ ≃ Fun(CB′ ,D) ◦f!−−→ Fun(CB,D) ≃ Fun(C /B,D)B

is given by contravariant transport along f (for the cartesian fibration π : Fun(C /B,D)→ B).

Proof. Replacing C by the fiber product ∆1 ×B C, we can assume without loss of generality
that B = ∆1 and f is the nondegenerate edge of B. By virtue of Corollary 5.2.4.4, we can
choose a functor R : C → CB′ such that R|CB

= f!, R|CB′ = id, and R carries U -cocartesian
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morphisms of C to isomorphisms in CB′ . Precomposition with functor (U,R) : C → ∆1×CB′
then determines a functor

H : ∆1 × Fun(CB′ ,D) ≃ Fun((∆1 × CB′)/B,D)→ Fun(C /B,D).

Unwinding the definitions, we see that H|{0}×Fun(CB′ ,D) is the functor given by precomposition
with f!, and that H|{1}×Fun(CB′ ,D) is the identity functor from Fun(CB′ ,D) to itself. It will
therefore suffice to show that, for each object F ∈ Fun(CB′ ,D), the restriction H|∆1×{F} is a
π-cartesian morphism of the∞-category Fun(C /B,D). By virtue of Corollary 5.3.6.8, this is
equivalent to the assertion that the composite functor C R−→ CB′

F−→ D carries U -cocartesian
morphisms of C to isomorphisms in D. This follows from our assumption on R, since the
functor F carries isomorphisms of CB′ to isomorphisms of D.

Corollary 5.3.6.10.0474 Let U : C → B be a cocartesian fibration of simplicial sets and let

hTrC /B : hB → hQCat

be the homotopy transport representation for U (Construction 5.2.5.2). Then, for any
∞-category D, the composition

hBop hTrop
C /B−−−−−→ hQCatop Fun(−,D)−−−−−−→ hQCat

is the homotopy transport representation for the cartesian fibration Fun(C /B,D) → B of
Corollary 5.3.6.8.

We will carry out the proof of Proposition 5.3.6.6 in several steps.

Lemma 5.3.6.11.02UA Let U : C → B be a cocartesian fibration of simplicial sets, let V : D → E
be an isofibration of simplicial sets, and let e be an edge of the simplicial set Fun(C /B,D)
which satisfies condition (∗) of Proposition 5.3.6.6. Then e is V ′-cartesian, where V ′ :
Fun(C /B,D)→ Fun(C /B, E) is given by postcomposition with V .

Proof. Let n ≥ 2 and suppose we are given a lifting problem

02UB Λnn
σ0 //

��

Fun(C /B,D)

V ′

��
∆n σ //

σ

::

Fun(C /B, E),

(5.17)

where σ0 carries the final edge N•({n− 1 < n}) ⊆ Λnn to e; we wish to show that this lifting
problem admits a solution. Replacing U with the projection map ∆n ×B C → ∆n, we can

https://kerodon.net/tag/0474
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assume without loss of generality that B = ∆n is a standard simplex, so that σ corresponds
to a morphism of simplicial sets F : C → E . Invoking the universal property of the simplicial
sets Fun(C /B,D) and Fun(C /B, E) (Proposition 4.5.9.5), we can rewrite (5.17) as a lifting
problem

02UCC0

��

F0 // D

V

��
C F //

F

>>

E .

(5.18)

Note that since the edge e satisfies condition (∗), the morphism F0 satisfies the following
condition:

(∗′) If u is a U -cocartesian edge of C lying over the final edge N•({n− 1 < n}) ⊆ ∆n, then
F0(u) is a V -cartesian edge of D.

Using Corollary 5.3.4.9, we can choose a diagram of ∞-categories F : [n]→ QCat and a
scaffold λ : holim

−→
(F )→ C. Set C′ = holim

−→
(F ) and C′0 = Λnn ×∆n C′, so that λ restricts to a

map λ0 : C′0 → C0. We then have a commutative diagram of ∞-categories

02UDFun/ E(C,D) ◦λ //

��

Fun/ E(C′,D)

��
Fun/ E(C0,D) ◦λ // Fun/ E(C′0,D).

(5.19)

Since V is an isofibration (Proposition 5.1.4.8), the vertical maps in this diagram are
isofibrations (Proposition 4.5.5.14). Since λ and λ0 are categorical equivalences of simplicial
sets (Lemma 5.3.6.4), the horizontal maps are equivalences of ∞-categories. Applying
Corollary 4.5.2.32, we deduce that the upper horizontal map in the diagram (5.19) restricts
to an equivalence from each fiber of the left vertical map to the corresponding fiber of the
right vertical map. Consequently, we can replace (5.18) with the lifting problem

02UEC′0

��

F0◦λ0 // D

V

��
C′ F◦λ //

??

E .

(5.20)
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Using Remark 5.3.2.12, we obtain a pushout square

Λnn ×F (0) G0 //

��

C′0

��
∆n ×F (0) G // C′ .

Let us identify F0 ◦ λ0 ◦G0 with a morphism of simplicial sets τ0 : Λnn → Fun(F (0),D), and
F ◦ λ ◦ G with an n-simplex τ of Fun(F (0), E), so that we can rewrite (5.20) again as a
lifting problem

Λnn

��

τ0 // Fun(F (0), E)

V ′′

��
∆n τ //

τ

::

Fun(F (0),D).
To show that this lifting problem admits a solution, it will suffice to show that τ0 carries the
final edge N•({n− 1 < n}) of Λnn to a V ′′-cocartesian edge of the simplicial set Fun(F (0), E).
Since λ is a scaffold, this follows by combining (∗′) with the criterion of Theorem 5.2.1.1.

Lemma 5.3.6.12.02UF Let U : C → B be a cocartesian fibration of simplicial sets, let V : D → E
be a cartesian fibration of simplicial sets, and let V ′ : Fun(C /B,D)→ Fun(C /B, E) be the
morphism given by postcomposition with V . Suppose we are given a vertex Y of the simplicial
set Fun(C /B,D) having image Y = V ′(Y ), and an edge e : X → Y of the simplicial set
Fun(C /B, E). Then we can write e = V ′(e) for some edge e : X → Y of Fun(C /B,D) which
satisfies condition (∗) of Proposition 5.3.6.6.

Proof. As in the proof of Lemma 5.3.6.11, we may assume without loss of generality that
B = ∆1, so that C is an ∞-category and e corresponds to a morphism T : C → E . Replacing
D by the fiber product C ×E D, we can further reduce to the case where C = E and T is the
identity functor (so that V : D → C is a cartesian fibration of ∞-categories). Let C(0) and
C(1) denote the fibers of C over the the vertices 0, 1 ∈ ∆1, so that we can identify Y with a
functor C(1) → D such that V ◦ Y is the inclusion map C(1) ↪→ C. Applying Proposition
5.2.2.8, we can choose a functor F : C(0)→ C(1) and a diagram

∆1 × C(0) H //

��

C

U

��
∆1 B

https://kerodon.net/tag/02UF
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which exhibits F = H|{1}×C(0) as given by covariant transport along the nondegenerate edge
of B = ∆1. Since V is a cartesian fibration, Proposition 5.2.1.3 guarantees that the lifting
problem

{1} × C(0) Y ◦F //

��

D

V

��
∆1 × C(0) H //

G

<<

C

admits a solution with the property that, for every object C of the ∞-category C(0), the
restriction G|∆1×{C} is a V -cartesian morphism of D.

Let C′ = (∆1 × C(0))∐
({1}×C(0)) C(1) denote the mapping cylinder of the functor F .

Amalgamating H with the inclusion map C(1) ↪→ C, we obtain a morphism of simplicial sets
H : C′ → C which is a categorical equivalence by virtue of Corollary 5.2.4.2. Amalgamating
G with Y , we obtain a diagram G : C′ → D satisfying V ◦G = H. We have a commutative
diagram of simplicial sets

Fun/ C(C,D) ◦G //

��

Fun/ C(C′,D)

��
Fun/ C(C(1),D) Fun/ C(C(1),D),

where the horizontal maps are equivalences of ∞-categories. Since V is an isofibration, the
vertical maps in this diagram are isofibrations (Proposition 4.5.5.14). Applying Corollary
4.5.2.32, we deduce that the upper horizontal map in the diagram (5.19) restricts to an
equivalence of the fibers of the vertical maps over the object Y ∈ Fun/ C(C(1),D). It follows
that there there exists a functor E : C → D such that V ◦ E = idC , E|C(1) = Y , and E ◦H
is isomorphic to G as an object of the ∞-category Fun/ C(C′,D). By construction, we can
identify E with an edge e : X → Y of Fun(C /B,D) satisfying V ′(e) = e. To complete
the proof, it will suffice to show that e satisfies condition (∗) of Proposition 5.3.6.6. Let
f : C → C ′ be a U -cocartesian morphism of C; we wish to show that E(f) is a V -cartesian
morphism of D. Without loss of generality, we may assume that U(f) is the nondegenerate
edge of B = ∆1 (otherwise, f is an isomorphism and there is nothing to prove). By virtue
of Remark 5.1.3.8, we can assume without loss of generality that f : C → F (C) is the
U -cocartesian morphism given by the restriction H|∆1×{C}. In this case, E(f) is isomorphic
(as an object of the ∞-category Fun(∆1,D)) to the V -cartesian morphism G|∆1×{C}, and is
therefore also V -cartesian (Corollary 5.1.2.5).
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Proof of Proposition 5.3.6.6. Let U : C → B be a cocartesian fibration of simplicial sets,
let V : D → E be a cartesian fibration of simplicial sets, and let V ′ : Fun(C /B,D) →
Fun(C /B, E) be given by postcomposition with V . We first claim that V ′ is an inner
fibration. To prove this, we may assume without loss of generality that B is a standard
simplex, so that U : C → B is a cocartesian fibration of ∞-categories. Proposition 5.3.6.1
then guarantees that U is exponentiable, so that V ′ is an isofibration (Proposition 4.5.9.17)
and therefore an inner fibration by virtue of Remark 4.5.5.7.

Let us say that an edge of Fun(C /B,D) is special if it satisfies condition (∗) appearing in
the statement of Proposition 5.3.6.6. Lemma 5.3.6.11 guarantees that every special edge of
Fun(C /B,D) is V ′-cartesian. Moreover, if Y is a vertex of Fun(C /B,D) and e : X → V ′(Y )
is an edge of Fun(C /B, E), then Lemma 5.3.6.12 guarantees that there exists a special edge
e : X → Y of Fun(C /B,D) satisfying V ′(e) = e. It follows that V ′ is a cartesian fibration
of simplicial sets.

To complete the proof of Proposition 5.3.6.6, we must show that every V ′-cartesian
edge e : X → Y of Fun(C /B,D) is special. Without loss of generality we may assume
that B = ∆1 and that e lies over the nondegenerate edge of B, so that e corresponds to
a functor of ∞-categories F : C → D. Replacing D by the fiber product C ×E D, we can
assume that E = C and that V ◦ F : C → E is the identity functor, so that V is a cartesian
fibration of ∞-categories. Using Lemma 5.3.6.12, we can choose a special edge e′ : X ′ → Y

of Fun(C /B,D) satisfying V ′(e′) = V ′(e), corresponding to another functor F ′ : C → D
satisfying V ◦F ′ = idC . Since e′ is also V ′-cartesian, it is isomorphic to e as an object of the
∞-category Fun/B(∆1,Fun(C /B,D)). It follows that F and F ′ are isomorphic as objects of
the ∞-category Fun(C,D). If u is a U -cocartesian edge of C, then F (u) is isomorphic to the
V -cartesian morphism E′(u) (as an object of the ∞-category Fun(∆1,D)), and is therefore
also V -cartesian (Corollary 5.1.2.5).

5.3.7 Application: Path Fibrations

01US Recall that every morphism of Kan complexes f : X → Y admits a canonical factorization

X
δ−→ P (f) π−→ Y,

where δ is a homotopy equivalence and π is the path fibration

P (f) = X ×Fun({0},Y ) Fun(∆1, Y )→ Fun({1}, Y ) ≃ Y

of Example 3.1.7.10. Note that the simplicial set P (f) = X ×̃Y Y is an example of an
oriented fiber product (Definition 4.6.4.1), which is defined for any morphism of simplicial
sets f : X → Y . Beware that if X and Y are not Kan complexes, then δ need not be a
homotopy equivalence and π need not be a Kan fibration. However, if X = C and Y = D
are ∞-categories, then we have the following weaker statements:

https://kerodon.net/tag/01US
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(a) The functor δ : C → C ×̃D D is fully faithful, and its essential image is the homotopy
fiber product C ×h

D D of Construction 4.5.2.1 (Corollary 4.5.2.22).

(b) The functor π : C ×̃D D → D is a cocartesian fibration of∞-categories (Corollary 5.3.7.3).

Moreover, the oriented fiber product C ×̃D D can be characterized by a universal mapping
property: roughly speaking, the diagonal map δ exhibits the cocartesian fibration π as freely
generated by the functor f (Theorem 5.3.7.6).

Our starting point is the following observation:

Lemma 5.3.7.1. 0475Let U : C → D be an inner fibration of simplicial sets, let e be an edge of
Fun(∆1, C), and let

V : Fun(∆1, C) = C ×̃C C → C ×̃D C

denote the morphism induced by U . Let ev0, ev1 : Fun(∆1, C)→ C be the evaluation maps.
If ev0(e) is U-cocartesian, then e is V -cocartesian. If ev1(e) is U-cartesian, then e is
V -cartesian.

Proof. Assume that ev0(e) is U -cocartesian; we will show that e is V -cocartesian (the second
assertion follows by a similar argument). Let n ≥ 2; we wish to show that every lifting
problem

0476Λn0
σ0 // //

��

Fun(∆1, C)

V

��
∆n σ //

σ

;;

C ×̃D C

(5.21)

admits a solution, provided that the composite map

∆1 ≃ N•({0 < 1}) ↪→ Λn0
τ0−→ Fun(∆1, C)

coincides with e. Let X(0) denote the simplicial subset of ∆1 × ∆n given by the union
of ∂∆1×∆n with ∆1 × Λn

0 . Unwinding the definitions, we can rewrite (5.21) as a lifting
problem

X(0) τ0 ////

��

C

U

��
∆1 ×∆n τ //

τ

<<

D .
Choose a filtration

X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · ⊂ X(t) = ∆1 ×∆n
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satisfying the requirements of Lemma 4.4.4.7. We will complete the proof by showing that,
for each s ≤ t, the morphism τ0 admits an extension τs : X(s)→ C satisfying U ◦ τs = τ |X(s).
The proof proceeds by induction on s, the case s = 0 being vacuous. Let us therefore assume
that 0 < s ≤ t and that τ0 has already been extended to a morphism of simplicial sets
τs−1 : X(s− 1)→ C. By construction, we have a pushout diagram of simplicial sets

Λqp
φ0 //

��

X(s− 1)

��
∆q φ // X(s)

for some q ≥ 2 and 0 ≤ p < q. Consequently, to prove the existence of τs, it will suffice to
show that τs−1◦φ0 can be extended to a q-simplex of C lying over the simplex τ ◦φ : ∆q → D.
For p ≠ 0, the existence of this extension follows from our assumption that U is an inner
fibration. To handle the case p = 0, we observe that the morphism φ carries the initial edge
of ∆q to the edge (0, 0)→ (0, 1) of ∆1 ×∆n, so that τs−1 ◦ φ0 carries the initial edge of ∆q

to the edge ev0(e) of C, which is U -cocartesian by assumption.

Proposition 5.3.7.2.0477 Suppose we are given a commutative diagram of simplicial sets

C0

U0
��

F0 // C

U
��

C1
F1oo

U1
��

D0
G0 // D D1

G1oo

where U0, U1, and U are cocartesian fibrations, and F0 carries U0-cocartesian edges of C0 to
U -cocartesian edges of C. Then the induced map

V : C0 ×̃C C1 → D0 ×̃D D1

is a cocartesian fibration of simplicial sets. Moreover, an edge e of C0 ×̃C C1 is V -cocartesian
if and only if it satisfies the following condition:

(∗) Let e0 and e1 denote the images of e in C0 and C1, respectively. Then e0 is U0-cocartesian
and e1 is U1-cocartesian.

Proof. Let us say that an edge e of C0 ×̃C C1 is special if it satisfies condition (∗). We first
show that if e is a special edge of C0 ×̃C C1, then e is V -cocartesian. Let e0 and e1 denote
the images of e in C0 and C1, respectively. Note that V factors as a composition

C0 ×̃C C1
V ′−→ C0 ×̃D C1

V ′′−−→ D0 ×̃D D1 .

https://kerodon.net/tag/0477
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Here V ′ is a pullback of the projection map V ′ : Fun(∆1, C) = C ×̃C C → C ×̃D C. Since F (e0)
is U -cocartesian, Lemma 5.3.7.1 implies that e is V ′-cocartesian. Moreover, V ′′ is a pullback
of the product map (U0 × U1) : C0×C1 → D0×D1. By assumption, e0 is U0-cocartesian
and e1 is U1-cocartesian. It follows that V ′(e) is V ′′-cocartesian, so that e is V -cocartesian
by virtue of Remark 5.1.1.6.

Since U0, U1, and U are inner fibrations, the morphisms V ′ and (U0 × U1) are also inner
fibrations (see Proposition 4.1.4.1). It follows that V ′ and V ′′ are inner fibrations (Remark
4.1.1.5), so that V is an inner fibration (Remark 4.1.1.8). To show that V is a cocartesian
fibration, it will suffice to show that if C is an object of C0 ×̃C C1 and e : V (C)→ C

′ is an
edge of D0 ×̃D D1, then there exists a special edge e : C → C ′ satisfying V (e) = e. Let us
identify C with a triple (C0, C1, u) where C0 is a vertex of C0, C1 is a vertex of C1, and
u : F0(C0)→ F1(C1) is an edge of C. Similarly, we can identify C ′ with a triple (C ′0, C

′
1, u
′)

where C0 is a vertex of D0, C ′1 is a vertex of D1, and u′ : G0(C ′0)→ G1(C ′1) is an edge of D.
The edge e has images e0 : U0(C0) → C

′
0 an e1 : U1(C1) → C

′
1 in D0 and D1-respectively.

Since U0 is a cocartesian fibration, we can lift e0 to a U0-cocartesian edge e0 : C0 → C ′0 of
C0. Similarly, we can lift e1 to a U1-cocartesian edge e1 : C1 → C ′1 of C1. The edge e also
determines a map ∆1 ×∆1 → D, which we depict informally in the diagram

(G0 ◦ U0)(C0) U(u) //

G0(e0)
��

(G1 ◦ U1)(C1)

G1(e1)
��

G0(C ′0) u′ // G1(C ′1).

Using our assumption that U is an inner fibration, we can lift the upper right triangle to a
2-simplex σ:

F0(C0) u //

v

%%

F1(C1)

F1(e1)
��

F1(C ′1)

of the simplicial set C. Using the fact that F0(e0) is U -cocartesian, we can lift the lower
triangle to a 2-simplex τ

F0(C0)

F0(e0)
��

v

%%
F0(C ′0) w // F1(C ′1)

of C. Setting C ′ = (C ′0, C ′1, w) ∈ C0 ×̃C C1, we observe that the tuple (e0, e1, σ, τ) determines
a special edge e : C → C ′ satisfying V (e) = e.

We now complete the proof by showing that every V -cocartesian edge f : C → C ′′ in
C0 ×̃C C1 is special. Using the preceding argument, we can choose a special edge e : C → C ′
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satisfying V (e) = V (f). Set C ′ = V (C ′) = V (C ′′). Applying Remark 5.1.3.8, we deduce
that there is a 2-simplex ρ :

C ′

s

!!
C

e

>>

f // C ′′

of the simplicial set C0 ×̃C C1, where s is an isomorphism in the ∞-category V −1({C ′}).
Applying Example 5.1.3.6, we deduce that the images of s in C0 is U0-cocartesian, and the
image of s in C1 is U1-cocartesian. Since the collections of U0-cocartesian and U1-cocartesian
edges are closed under composition (Corollary 5.1.2.4), we conclude that f is also special.

Corollary 5.3.7.3.0478 Let F0 : C0 → C and F1 : C1 → C be morphisms of simplicial sets and
let

C0
π←− C0 ×̃C C1

π′−→ C1

denote the projection maps. Then:

(1) If C0 and C are ∞-categories, then π′ is a cocartesian fibration of simplicial sets.
Moreover, an edge e of C0 ×̃C C1 is π′-cocartesian if and only if π(e) is an isomorphism
in the ∞-category C0.

(2) If C1 and C are∞-categories, then the evaluation map π : C0 ×̃C C1 is a cartesian fibration
of simplicial sets. Moreover, an edge e of C0 ×̃C C1 is π-cartesian if and only if π′(e) is
an isomorphism in the ∞-category C1.

Proof. Assertion (1) follows by applying Proposition 5.3.7.2 in the special case D0 = D = ∆0

and D1 = C1. Assertion (2) follows by a similar argument.

Example 5.3.7.4.01UU Let C be an ∞-category. Applying Corollary 5.3.7.3 in the case where
both F and G are the identity functor id : C → C, we deduce that the evaluation functor

Fun(∆1, C)→ Fun({0}, C) ≃ C

is a cartesian fibration of ∞-categories, and the evaluation functor

Fun(∆1, C)→ Fun({1}, C) ≃ C

is a cocartesian fibration of ∞-categories.

Corollary 5.3.7.5.02VW Let C be an ∞-category and let K be a simplicial set. Then:

(1) The restriction map U : Fun(K◁, C)→ Fun(K, C) is a cocartesian fibration. Moreover,
a morphism e of Fun(K◁, C) is U-cocartesian if and only if it carries the cone point
0 ∈ K◁ to an isomorphism in C.

https://kerodon.net/tag/0478
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(2) The restriction map V : Fun(K▷, C) → Fun(K, C) is a cartesian fibration. Moreover,
a morphism e of Fun(K▷, C) is U-cartesian if and only if it carries the cone point
1 ∈ K▷ to an isomorphism in C.

Proof. We will prove (1); the proof of (2) is similar. Let ∆0 ⋄K denote the blunt join of
Notation 4.5.8.3, and let c : ∆0 ⋄ K → ∆0 ⋆ K = K◁ be the categorical equivalence of
Theorem 4.5.8.8. We have a commutative diagram of ∞-categories

Fun(K◁, C)

U

%%

◦c // Fun(∆0 ⋄K, C)

U ′

xx
Fun(K, C)

where the horizontal map is an equivalence of ∞-categories (Proposition 4.5.3.8) and the
vertical maps are isofibrations (Corollary 4.4.5.3). Unwinding the definitions, we can
identify Fun(∆0 ⋄K, C) with the oriented fiber product C ×̃Fun(K,C) Fun(K, C). Under this
identification, the functor U ′ is given by projection onto the second factor, and is therefore
a cocartesian fibration (Corollaryt 5.3.7.3). Applying Corollary 5.1.6.2, we deduce that U
is also a cocartesian fibration. Moreover, a morphism e of Fun(K◁, C) is U -cocartesian if
and only if its image in Fun(∆0 ⋄K, C) is U ′-cocartesian (Proposition 5.1.6.6). Using the
criterion of Corollary 5.3.7.3, we see that this is equivalent to the requirement that e carries
the cone point 0 ∈ K◁ to an isomorphism in C.

Theorem 5.3.7.6. 037ZLet F : C → D be a functor of ∞-categories, let π : C ×̃D D → D be
given by projection onto the second factor, let δ : C ↪→ C ×̃D D be the diagonal map. For
every cocartesian fibration U : E → D, precomposition with δ induces a trivial Kan fibration
of ∞-categories

FunCCart
/D (C ×̃D D, E)→ Fun/D(C, E).

Our proof of Theorem 5.3.7.6 will make use of an auxiliary construction.

Notation 5.3.7.7 (Cocartesian Direct Images). 02UHLet U : D → C be a morphism of simplicial
sets idD : D → D determines a section of the projection map π : Fun(D / C,D) → C. For
every morphism of simplicial sets V : E → D, we let ResD / C(E) denote the fiber product
C ×Fun(D / C,D) Fun(D / C, E). Unwinding the definitions, we see that vertices of ResD / C(E)
can be identified with pairs (C,F ), where C is a vertex of C and

F : DC = {C} ×C D → {C} ×C E = EC

is a section of the map V |EC
: EC → DC . If V is a cocartesian fibration, we let ResCCart

D / C (E)
denote the full simplicial subset of ResD / C(E) spanned by those vertices (C,F ) where F

https://kerodon.net/tag/037Z
https://kerodon.net/tag/02UH
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carries each edge of DC to VC-cocartesian edge of EC . We will refer to ResCCart
D / C (E) as the

cocartesian direct image of E along U .

Remark 5.3.7.8.02UJ02UJ Let U : D → C be a morphism of simplicial sets and let V : E → D
be a cocartesian fibration of simplicial sets. Then the projection map π : ResD / C(E)→ C
restricts to a projection map πCCart : ResCCart

D / C (E)→ C. Moreover, for each vertex C ∈ C, the
canonical isomorphism {C} ×C ResD / C(E) ≃ Fun/DC

(DC , EC) restricts to an isomorphism
of full subcategories {C} ×C ResCCart

D / C (E) ≃ FunCCart
/DC

(DC , EC).

Proposition 5.3.7.9.02UK Let V : E → D be a cocartesian fibration of simplicial sets, let
U : D → C be a cartesian fibration of simplicial sets. Then:

(1) The projection map π : ResD / C(E)→ C is a cocartesian fibration of simplicial sets.

(2) Let e : X → Y be a π-cocartesian edge of the simplicial set ResD / C(E). If X belongs to the
simplicial subset ResCCart

D / C (E), then Y also belongs to the simplicial subset ResCCart
D / C (E).

(3) The morphism π restricts to a cocartesian fibration πCCart : ResCCart
D / C (E)→ C.

(4) An edge of the simplicial set ResCCart
D / C (E) is πCCart-cocartesian if and only if it is π-

cocartesian.

Proof. Assertion (1) follows from Proposition 5.3.6.6 (after passing to opposite simplicial
sets). To prove (2), we may assume without loss of generality that C = ∆1 and π(e) is the
nondegenerate edge of C. In this case, the simplicial sets D and E are ∞-categories, and we
can identify the edge e with a morphism of simplicial sets E : D → E satisfying V ◦E = idD.
Let u : D → D′ be a morphism in the∞-category D1 = {1}×CD; we wish to show that E(u)
is a V -cocartesian morphism of E . To prove this, let G : D1 → D0 = {0} ×C D be given by
contravariant transport along the nondegenerate edge of C, so that we have a commutative
diagram

G(D)

G(u)

��

// D

u

��
G(D′) // D′,

in the ∞-category where the horizontal maps are U -cartesian. Our assumption that e
is π-cocartesian guarantees that the functor E carries U -cartesian morphisms of D to
V -cocartesian morphisms of E (Proposition 5.3.6.6). We therefore obtain a commutative

https://kerodon.net/tag/02UJ
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diagram
(E ◦G)(D)

(E◦G)(u)

��

// E(D)

E(u)

��
(E ◦G)(D′) // E(D′),

where the horizontal maps are V -cocartesian. By virtue of Corollary 5.1.2.4, it will suffice
to show that the morphism (E ◦G)(u) is V -cocartesian, which follows from our assumption
that X belongs to ResCCart

D / C (E). This completes the proof of (2); assertions (3) and (4) then
follow by applying Proposition 5.1.4.16.

In the situation of Proposition 5.3.7.9, the cocartesian direct image ResCCart
D / C (E) can be

characterized by a universal property:

Proposition 5.3.7.10. 02ULLet V : E → D be a cocartesian fibration of simplicial sets and let
U : D → C be a cartesian fibration of simplicial sets. For every cocartesian fibration of
simplicial sets W : C′ → C, the canonical isomorphism

Fun/ C(C′,ResD / C(E)) ∼−→ Fun/D(C′×C D, E)

restricts to an isomorphism of full simplicial subsets

FunCCart
/ C (C′,ResCCart

D / C (E)) ∼−→ FunCCart
/D (C′×C D, E).

Proof. Let π : ResD / C(E) → C denote the projection map and let f : C′ → ResD / C(E)
be a morphism satisfying π ◦ f = W , corresponding to a morphism of simplicial sets
F : C′×C D → E for which V ◦ F is given by projection to the second factor. Note that
we can regard F as a vertex of the simplicial subset FunCCart

/D (C′×C D, E) if and only if it
satisfies the following condition:

(a) For every edge (e′, e) of the fiber product C′×C D for which e′ is a W -cocartesian edge
of C′, the image F (e′, e) is a V -cocartesian edge of E .

We wish to show that (a) is equivalent to the following pair of conditions:

(b) The morphism f factors through the full simplicial subset ResCCart
D / C (E) ⊆ ResD / C(E).

In other words, for every edge (e′, e) of the fiber product C′×C D for which e′ is a
degenerate edge of C′, the image F (e′, e) is a V -cocartesian edge of E .

(c) For every W -cocartesian edge e′ of C′, the image f(e′) is a π|ResCCart
D / C (E)-cocartesian

edge of ResCCart
D / C (E). By virtue of Propositions 5.3.7.9 and 5.3.6.6, this is equivalent

to the assertion that for every edge (e′, e) of the fiber product C′×C D where e′ is
W -cocartesian and e is U -cartesian, the image F (e′, e) is a V -cocartesian edge of E .

https://kerodon.net/tag/02UL
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The implications (a)⇒ (b) and (a)⇒ (c) are clear. For the converse, suppose that (b) and
(c) are satisfied; we wish to prove (a). Let (e′, e) : (X ′, X) → (Z ′, Z) be an edge of the
fiber product C′×C D, where e′ : X ′ → Z ′ is W -cocartesian. Let e = U(e) = W (e′) denote
the corresponding edge of C. Since U is a cartesian fibration, there exists a U -cartesian
morphism f : Y → Z satisfying U(f) = e. Let σ denote the left-degenerate 2-simplex s1

0(e).
Since f is U -cartesian, we can lift σ to a 2-simplex of D as indicated in the diagram

Y

f

  
X

??

e // Z.

Writing σ′ for the left-degenerate 2-simplex s1
0(e′) of C′, we obtain a 2-simplex τ = F (σ′, σ)

of E . It follows from assumption (b) that the restriction τ |N•({0<1}) is a V -cocartesian edge
of E , and from assumption (c) that the restriction τ |N•({1<2}) is a V -cocartesian edge of E .
Applying Proposition 5.1.4.12, we conclude that F (e′, e) = τ |N•({0<2}) is also a V -cocartesian
edge of E .

Proof of Theorem 5.3.7.6. Let F : C → D be a functor of ∞-categories, let U : E → D be a
cocartesian fibration of ∞-categories, and let δ : C ↪→ C ×̃D D be the diagonal embedding.
Since U is an isofibration (Proposition 5.1.4.8), the restriction map θ : Fun/D(C ×̃D D, E)→
Fun/D(C, E) is also an isofibration (Corollary 4.5.5.16). Because FunCCart

/D (C ×̃D D, E) is a
replete full subcategory of Fun/D(C ×̃D D, E), it follows that θ restricts to an isofibration
θ : FunCCart

/D (C ×̃D D, E)→ Fun/D(C, E). To prove Theorem 5.3.7.6, we will show that θ is
an equivalence of ∞-categories (it is then automatically a trivial Kan fibration of simplicial
sets: see Proposition 4.5.5.20).

Note that the functor U : E → D induces cocartesian fibrations U ′ : C ×̃D E → C ×̃D D
and U ′′ : C ×D E → C. Let π′ : C ×̃D D → C be given by projection onto the first factor, so
that π′ is a cartesian fibration (Corollary 5.3.7.3). Let M denote the cocartesian direct
image ResCCart

C ×̃D D / C(C ×̃D E) and let T :M→ C be the projection map. Precomposition with
the diagonal embedding δ : C ↪→ C ×̃D D induces a restriction functor

δ∗ :M→ ResC / C(C ×D E) = C ×D E

which fits into a commutative diagram

M δ∗ //

T

��

C ×D E

U ′′

}}
C
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It follows from Proposition 5.3.7.9 that T is a cocartesian fibration and that δ∗ carries
T -cocartesian morphisms of M to U ′′-cocartesian morphisms of C ×D E . Using Proposition
5.3.7.10, we can identify θ with the map

Fun/ C(C,M)→ Fun/ C(C, C ×D, E) ≃ Fun/D(C, E)

given by postcomposition with δ∗. Consequently, to show that θ is an equivalence of ∞-
categories, it will suffice to show that δ∗ is an equivalence of cocartesian fibrations over C.
By virtue of Proposition 5.1.7.14), this can be checked fiberwise: that is, it suffices to show
that for each object C ∈ C, the induced map of fibers

δ∗C : {C} ×CM≃ FunCCart
/D ({C} ×̃D D, E)→ {C} ×D E

is an equivalence of ∞-categories. This is a special case of Corollary 5.3.1.22, since δ(C) is
an initial object of the ∞-category {C} ×̃D D (Proposition 4.6.7.22).

5.4 (∞, 2)-Categories

01W4In §1.4, we defined an ∞-category to be a simplicial set C which satisfies the weak
Kan extension condition: for 0 < i < n, every morphism of simplicial sets Λn

i ↪→ C can
be extended to an n-simplex of C (Definition 1.4.0.1). Beware that this terminology is
potentially confusing, because the theory of ∞-categories does not generalize the classical
theory of 2-categories. For every 2-category E , the Duskin nerve ND

• (E) is a simplicial set
which determines E up to isomorphism (Theorem 2.3.4.1). However, the simplicial set ND

• (E)
is an ∞-category if and only if E is a (2, 1)-category: that is, every 2-morphism in E is
invertible (Theorem 2.3.2.1). Consequently, one can view the notions of 2-category and
∞-category as mutually incomparable extensions of the notion of (2, 1)-category. Our goal
in this section is to show that these extensions admit a common generalization: a class of
simplicial sets which we will refer to as (∞, 2)-categories.

Our starting point is the notion of a thin 2-simplex, which was introduced in §2.3.2.
Recall that if C is a simplicial set, then a 2-simplex σ of C is thin if every morphism of
simplicial sets τ0 : Λni → C can be extended to an n-simplex of C, provided that 0 < i < n,
n ≥ 3, and the 2-simplex τ0|N•({i−1<i<i+1}) is equal to σ (Definition 2.3.2.3). By virtue of
Example 2.3.2.4, C is an ∞-category if and only if it satisfies the following pair of conditions:

(1) Every morphism of simplicial sets Λ2
1 → C can be extended to a 2-simplex of C.

(2) Every 2-simplex of C is thin.

We will obtain the notion of (∞, 2)-category by weakening (2) to the requirement that
degenerate 2-simplices of C are thin, but strengthening (1) to require that every map Λ2

1 → C

https://kerodon.net/tag/01W4
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can be extended to a thin 2-simplex of C. We will also add additional axioms that guarantee
the ability to fill outer horns of C in certain special circumstances (see Definition 5.4.1.1).

Every ∞-category is an (∞, 2)-category (Proposition 5.4.1.2), and every 2-category can
be regarded as an (∞, 2)-category by passing to its Duskin nerve (Proposition 5.4.1.5). The
situation is summarized in the following diagram

{Groupoids} ⊂

∩

{Categories}

∩

{2-Groupoids} ⊂
� _

ND
•

��

{(2, 1)-Categories} ⊂
� _

ND
•

��

{2-Categories}� _

ND
•

��
{Kan Complexes} ⊂ {∞-Categories} ⊂ {(∞, 2)-Categories},

where none of the inclusions is reversible.
Let C be a simplicial set containing a pair of objects X and Y , and let HomL

C (X,Y )
and HomR

C (X,Y ) denote the pinched morphism spaces of Construction 4.6.5.1. If C is
an ∞-category, then the simplicial sets HomL

C (X,Y ) and HomR
C (X,Y ) are Kan complexes

(Proposition 4.6.5.5). In §5.4.3, we prove an analogous result: if C is an (∞, 2)-category,
then the simplicial sets HomL

C (X,Y ) and HomR
C (X,Y ) are ∞-categories (Corollary 5.4.3.5).

Recall that HomL
C (X,Y ) is defined as the fiber over Y of the projection map q : CX/ → C,

and HomR
C (X,Y ) is defined as the fiber over X of the projection map q′ : C/Y → C. When

C is an ∞-category, the morphism q is a left fibration of simplicial sets and the morphism q′

is a right fibration of simplicial sets (Corollary 4.3.6.11). Beware that, in the case where C is
an (∞, 2)-category, the morphisms q and q′ are generally not inner fibrations. Nevertheless,
we will deduce that the fibers of q and q′ are ∞-categories by showing that q and q′ are
interior fibrations (Definition 5.4.2.1), a class of morphisms which we introduce and study in
§5.4.2. From this we deduce also that the simplicial sets CX/ and C/Y are (∞, 2)-categories;
moreover, an analogous result holds more generally for the slice and coslice constructions
associated to any diagram f : K → C (Corollary 5.4.3.4).

Suppose that we are given a 2-simplex σ of a simplicial set C, whose 1-skeleton we
indicate in the diagram

Y

g

  
X

f

??

h // Z.
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Writing q : CX/ → C for the projection map, we can identify σ with an edge g̃ of the simplicial
set CX/ satisfying q(g̃) = g. It follows immediately from the definition that if the 2-simplex
σ is thin, then the edge g̃ is q-cocartesian (in the sense of Definition 5.1.1.1); in particular,
it is locally q-cocartesian. In §5.4.4, we prove that if C is an (∞, 2)-category, then the
converse holds: every locally q-cocartesian edge of CX/ is thin when viewed as a 2-simplex
of C (Theorem 5.4.4.1). Roughly speaking, one can think of g̃ as encoding the datum of a
morphism γ from g ◦ f to h in the ∞-category HomL

C (X,Z); Theorem 5.4.4.1 confirms the
heuristic that γ is an isomorphism if and only if σ is thin (in the case where C is the Duskin
nerve of a 2-category, this is also the content of Theorem 2.3.2.5).

Let C be an (∞, 2)-category. We define the pith of C to be the simplicial subset
Pith(C) ⊆ C consisting of those simplices ∆m → C which carry each 2-simplex of ∆m

to a thin 2-simplex of C (Construction 5.4.5.1). In §5.4.5, we show that Pith(C) is an
∞-category (Proposition 5.4.5.6) whose pinched morphism spaces HomL

Pith(C)(X,Y ) and
HomR

Pith(C)(X,Y ) can be identified with the cores of the ∞-categories HomL
C (X,Y ) and

HomR
C (X,Y ), respectively (Proposition 5.4.5.13). Roughly speaking, one can think of the

∞-category Pith(C) as obtained from the (∞, 2)-category by “discarding” its noninvertible
2-morphisms. In particular, when C is the Duskin nerve of a 2-category E , we can identify
Pith(C) with the Duskin nerve of the (2, 1)-category Pith(E) introduced in Construction
2.2.8.9 (Example 5.4.5.4).

Let C and D be (∞, 2)-categories. We define a functor from C to D to be a morphism
of simplicial sets F : C → D which carries thin 2-simplices of C to thin 2-simplices of D
(Definition 5.4.7.1). This definition can be somewhat cumbersome to work with in practice,
because it requires us to check a condition for every thin 2-simplex of C. In §5.4.7, we show
that this is unnecessary: to verify that a morphism of simplicial sets F : C → D is a functor,
it suffices to show that every morphism σ0 : Λ2

1 → C can be extended to a thin 2-simplex
σ of C for which F (σ) is a thin 2-simplex of D (Proposition 5.4.7.9). Here we can think
of σ0 as given by a pair of morphisms X f−→ Y

g−→ Z, and the thinness assumption on F (σ)
corresponds heuristically to the requirement that F “preserves” the composition of f and
g (up to isomorphism). Our proof will make use of a certain closure property enjoyed by
the thin 2-simplices of an (∞, 2)-category which we refer to as the four-out-of-five property,
which we formulate and study in §5.4.6 (see Definition 5.4.6.8 and Proposition 5.4.6.11).

Recall that a 2-category E is strict if its unit and associativity constraints are identity
morphisms (Example 2.2.1.4); in this case, we can view E as an ordinary category which
is enriched over Cat (see Definition 2.2.0.1). This notion has a counterpart in the setting
of (∞, 2)-categories. Let Set∆ denote the ordinary category of simplicial sets, and let
QCat denote the full subcategory of Set∆ whose objects are ∞-categories. Let E be a
QCat-enriched category: that is, a simplicial category with the property that, for every
pair of objects X,Y ∈ C, the simplicial set HomC(X,Y )• is an ∞-category. In §5.4.8, we
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show that the homotopy coherent nerve Nhc
• (E) is an (∞, 2)-category (Theorem 5.4.8.1).

The construction E 7→ Nhc
• (E) can be regarded as a generalization of the inclusion from

strict 2-categories into general 2-categories (recall that if E is a strict 2-category, then its
Duskin nerve can be identified with the homotopy coherent nerve of the associated simplicial
category; see Example 2.4.3.11). Beware that not every (∞, 2)-category C is isomorphic to
the homotopy coherent nerve of a QCat-enriched category. Nevertheless, we will later prove
a coherence theorem which guarantees that C is equivalent to the homotopy coherent nerve
of a QCat-enriched category: see Theorem [?].

Remark 5.4.0.1.01W5 The ideas presented in this section are closely related to the work of Verity,
who has proposed a simplicial framework for studying higher categories with noninvertible
morphisms at all levels. We refer the reader to [57], [58], and [56] for Verity’s work, and to
[24] for a discussion of its relationship to the theory of (∞, 2)-categories presented here.

5.4.1 Definitions

01W6 We begin by introducing some terminology.

Definition 5.4.1.1.01W9 Let C be a simplicial set. We will say that C is an (∞, 2)-category if it
satisfies the following axioms:

(1) Every morphism of simplicial sets Λ2
1 → C can be extended to a thin 2-simplex of C.

(2) Every degenerate 2-simplex of C is thin.

(3) Let n ≥ 3 and let σ0 : Λn0 → C be a morphism of simplicial sets with the property that
the 2-simplex σ0|N•({0<1<n}) is left-degenerate (see Example 1.1.2.8) Then σ0 can be
extended to an n-simplex of C.

(4) Let n ≥ 3 and let σ0 : Λnn → C be a morphism of simplicial sets with the property that
the 2-simplex σ0|N•({0<n−1<n}) is right-degenerate. Then σ0 can be extended to an
n-simplex of C.

Proposition 5.4.1.2.01WA Let C be an ∞-category. Then C is an (∞, 2)-category.

Proof. Our assumption that C is an ∞-category guarantees that every 2-simplex of C is
thin (Example 2.3.2.4). Consequently, condition (2) of Definition 5.4.1.1 is automatic, and
condition (1) follows immediately from the definition. Conditions (3) and (4) follow from
Theorem 4.4.2.6 (since every degenerate edge of C is an isomorphism).

Remark 5.4.1.3.01WB Let C be an (∞, 2)-category. We will refer to vertices of C as objects, and
to the edges of C as morphisms. If f is an edge of C satisfying d1

1(f) = X and d1
0(f) = Y ,

then we say that f is a morphism from X to Y and write f : X → Y .

https://kerodon.net/tag/01W5
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Suppose we are given morphisms f : X → Y , g : Y → Z, and h : X → Z of C. We will
say that a 2-simplex σ witnesses h as a composition of f and g if it is thin and satisfies
d2

0(σ) = g, d2
1(σ) = h, and d2

2(σ) = f , as indicated in the diagram

Y

g

  
X

f

??

h // Z.

Note that:

• When C is an ∞-category, this recovers the terminology of Definition 1.4.4.1 (since the
2-simplex σ is automatically thin).

• If C is the Duskin nerve of a 2-category E , the 2-simplex σ can be identified with a
2-morphism γ : g ◦ f ⇒ h of E , which is invertible if and only if σ is thin. In other
words, σ witnesses h as a composition of f and g if and only if it encodes the datum
of an isomorphism g ◦ f ∼=⇒ h in the category HomE(X,Z).

• Axiom (1) of Definition 5.4.1.1 asserts that the composition of 1-morphisms in C is
defined (albeit not uniquely). More precisely, it asserts that for every pair of morphisms
f : X → Y and g : Y → Z, there exists a morphism h : X → Z and a 2-simplex which
witnesses h as a composition of f and g.

Remark 5.4.1.4. 01WCLet C be a simplicial set. Then C is an (∞, 2)-category if and only if the
opposite simplicial set Cop is an (∞, 2)-category.

Proposition 5.4.1.5. 01WDLet C be a 2-category. Then the Duskin nerve ND
• (C) is an (∞, 2)-

category.

Proof. Condition (1) of Definition 5.4.1.1 follows immediately from Theorem 2.3.2.5, and
condition (2) from Corollary 2.3.2.7. We will verify (4); the proof of (3) is similar. Suppose
we are given an integer n ≥ 3 and a map σ0 : Λn

n → ND
• (C). for which the restriction

σ0|N•({0<n−1<n}) is right-degenerate. We wish to show that σ0 can be extended to an
n-simplex of ND

• (C). We now consider three cases:

• Suppose that n = 3. Then σ0 can be identified with a collection of objects {Xi}0≤i≤3,
1-morphisms {fji : Xi → Xj}0≤i<j≤3, and 2-morphisms

µ321 : f32 ◦ f21 ⇒ f31 µ320 : f32 ◦ f20 ⇒ f30 µ310 : f31 ◦ f10 ⇒ f30

in the 2-category C. The assumption that σ0|N•({0<n−1<n}) is right-degenerate guaran-
tees that X2 = X3, that f20 = f30, that the 1-morphism f32 is the identity idX2 , and

https://kerodon.net/tag/01WC
https://kerodon.net/tag/01WD
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that µ320 is the left unit constraint λf20 . To extend σ0 to a 3-simplex of ND
• , we must

show that there exists a 2-morphism µ210 : f21 ◦ f10 ⇒ f20 for which the diagram

01WE f32 ◦ (f21 ◦ f10) α
∼

+3

idf32 ◦µ210

��

(f32 ◦ f21) ◦ f10

µ321◦idf10

��
f32 ◦ f20

µ320

 (

f31 ◦ f10

µ310

v~
f30

(5.22)

is commutative, where α = αf32,f21,f10 is the associativity constraint for the composition
of 1-morphisms in C (Proposition 2.3.1.9). This commutativity can be rewritten as an
equation

µ320(idf32 ◦µ210) = µ310(µ321 ◦ idf10)α.

This equation has a unique solution, because µ320 is invertible and horizontal composi-
tion with idf32 induces an equivalence of categories HomC(X0, X2)→ HomC(X0, X3).

• Suppose that n = 4. The restriction of σ0 to the 2-skeleton of ∆4 can be identified
with a collection of objects {Xi}0≤i≤4, 1-morphisms {fji : Xi → Xj}0≤i<j≤4, and
2-morphisms {µkji : fkj ◦ fji ⇒ fki}0≤i<j<k≤4 in the 2-category C. The assumption
that σ0|N•({0<n−1<n}) is right-degenerate guarantees that X3 = X4, that f30 = f40,
that the 1-morphism f43 is the identity idX3 , and that µ430 is the left unit constraint

https://kerodon.net/tag/01WE
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λf30 . Consider the diagram

f43(f31f10) ∼ +3

µ310

��

(f43f31)f10

µ431

��

f43((f32f21)f10)

µ321
bj

∼ +3 (f43(f32f21))f10

µ321
4<

∼
��

f43(f32(f21f10))

∼
KS

∼

#+
µ210
��

((f43f32)f21)f10

µ432
��

f43(f32f20)
∼
��

µ320

}�

(f43f32)(f21f10)
µ210

s{

µ432

#+

∼
3;

(f42f21)f10

µ421

�!

∼
��

(f43f32)f20 µ432
+3 f42f20

µ420
��

f42(f21f10)µ210
ks

f43f30
µ430
∼

+3 f04 f41f10;µ410ks

in the category HomC(X0, X4), where the unlabeled 2-morphisms are given by the
associativity constraints. Note that the 4-cycles in this diagram commute by functori-
ality, and the central 5-cycle commutes by the pentagon identity of C. Our assumption
that σ0 is defined on the horn Λ4

4 guarantees that pentagonal cycles on the right and
bottom of the diagram are commutative and that the outer cycle commutes. Since the
2-morphism µ430 is invertible, a diagram chase shows that the pentagonal cycle on the
left of the diagram also commutes. Since f43 is an identity 1-morphism, horizontal
composition with f43 is isomorphic to the identity (via the left unit constraint of
Construction 2.2.1.11) and is therefore faithful. It follows that the diagram (5.22) is
commutative, so that σ0 extends (uniquely) to a 4-simplex of ND

• (C).

• If n ≥ 5, then the horn Λnn contains the 3-skeleton of ∆n. In this case, the morphism
σ0 : Λn

n → ND
• (C) extends uniquely to an n-simplex of ND

• (C) by virtue of Corollary
2.3.1.10.

5.4.2 Interior Fibrations

01WFRecall that a morphism of simplicial sets q : C → D is an inner fibration if it is weakly
right orthogonal to the horn inclusion Λni ↪→ ∆n for every pair of integers 0 < i < n. In the
setting of (∞, 2)-categories, it will be convenient to consider a variant of this condition.

https://kerodon.net/tag/01WF
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Definition 5.4.2.1.01WG Let D be an (∞, 2)-category and let q : C → D be a morphism of
simplicial sets. We will say that q is an interior fibration if it satisfies the following conditions:

• Every lifting problem
Λni

σ0 //

��

C

q

��
∆n σ //

>>

D

admits a solution, provided that 0 < i < n and the restriction σ|N•({i−1<i<i+1}) is a
thin 2-simplex of D.

• For every vertex X ∈ C, the degenerate edge idX is q-cartesian and q-cocartesian.

Example 5.4.2.2.01WH Let D be an ∞-category and let q : C → D be a morphism of simplicial
sets. The following conditions are equivalent:

(1) The morphism q is an interior fibration (in the sense of Definition 5.4.2.1).

(2) The morphism q is an inner fibration (in the sense of Definition 4.1.1.1).

The implication (1)⇒ (2) follows from the observation that every 2-simplex of D is thin,
and the implication (2)⇒ (1) follows from Corollary 5.1.1.9. In particular, if either of these
conditions is satisfied, then C is an ∞-category.

Remark 5.4.2.3.01WJ Let D be an (∞, 2)-category and let q : C → D be a morphism of simplicial
sets. Then q is an interior fibration if and only if the opposite morphism qop : Cop → Dop is
an interior fibration.

Remark 5.4.2.4.01WK Suppose we are given a pullback diagram of simplicial sets

C′ //

q′

��

C

q

��
D′ F // D .

Assume that D and D′ are (∞, 2)-categories and that the morphism F carries thin 2-simplices
of D′ to thin 2-simplices of D (that is, that F is a functor of (∞, 2)-categories; see Definition
5.4.7.1). If q is an interior fibration, then q′ is an interior fibration.

https://kerodon.net/tag/01WG
https://kerodon.net/tag/01WH
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Remark 5.4.2.5. 01WLLet D be an (∞, 2)-category and let q : C → D be an interior fibration.
Then, for every object X ∈ D, the fiber CX = {X} ×D C is an ∞-category (this follows by
combining Example 5.4.2.2 with Remark 5.4.2.4).

Our goal in this section is to show that, if D is an (∞, 2)-category and q : C → D is an
interior fibration of simplicial sets, then C is also an (∞, 2)-category (Proposition 5.4.2.8).
To prove this, we must exhibit a sufficiently large collection of thin 2-simplices of C.

Lemma 5.4.2.6. 01WMLet D be an (∞, 2)-category, let q : C → D be an interior fibration of
simplicial sets, and let σ be a 2-simplex of C. If q(σ) is a thin 2-simplex of D, then σ is a
thin 2-simplex of C.

Proof. Suppose we are given a morphism of simplicial sets τ0 : Λn
i → C, where n ≥ 3,

0 < i < n, and τ0 carries N•({i− 1 < i < i+ 1}) to the 2-simplex σ. We wish to show that
τ0 can be extended to an n-simplex τ of C. Let τ0 : Λni → D be the composition q ◦ τ0. Since
q(σ) is a thin 2-simplex of D, we can extend τ0 to an n-simplex τ : ∆n → D. To complete
the proof, it suffices to find a solution to the lifting problem

Λni
τ0 //

��

C

q

��
∆n

τ

>>

τ // D,

which exists by virtue of our assumption that q is an interior fibration.

Remark 5.4.2.7. 01WNIn the situation of Lemma 5.4.2.6, we will see later that the converse
assertion is also true: if σ is a thin 2-simplex of C, then q(σ) is a thin 2-simplex of D
(Proposition 5.4.7.10).

Proposition 5.4.2.8. 01WPLet D be an (∞, 2)-category and let q : C → D be an interior fibration
of simplicial sets. Then C is also an (∞, 2)-category.

Proof. We must verify that the simplicial set C satisfies each of the axioms of Definition
5.4.1.1:

(1) Let f : X → Y and g : Y → Z be edges of the simplicial set C; we wish to show that
there exists a thin 2-simplex ∆2 → C satisfying d2

2(σ) = f and d2
0(σ) = g, as indicated

in the diagram
Y

g

  
X

f

??

// Z.

https://kerodon.net/tag/01WL
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We first invoke our assumption that D is an (∞, 2)-category to choose a thin 2-simplex
σ of D satisfying d2

2(σ) = q(f) and d2
0(σ) = q(g). Since σ is thin, our assumption that

q is an interior fibration guarantees that the lifting problem

Λ2
1

(g,•,f) //

��

C

q

��
∆2 σ //

σ

??

D

admits a solution. It follows from Lemma 5.4.2.6 that σ is a thin 2-simplex of C.

(2) Let σ be a degenerate 2-simplex of C. Then q(σ) is a degenerate 2-simplex of D. Since
D is an (∞, 2)-category q(σ) is a thin 2-simplex of D. Applying Lemma 5.4.2.6, we
conclude that σ is a thin 2-simplex of C.

(3) Let n ≥ 3 and let τ0 : Λn
0 → C be a morphism of simplicial sets with the property

that the 2-simplex τ0|N•({0<1<n}) is left-degenerate; we wish to show that τ0 can be
extended to an n-simplex τ of C. Let τ0 : Λn0 → D denote the composition q ◦ τ0. Since
D is an (∞, 2)-category, we can extend τ0 to an n-simplex τ : ∆n → D. To complete
the proof, it will suffice to show that the lifting problem

Λn0
τ0 //

��

C

q

��
∆n τ //

τ

>>

D

admits a solution. We conclude by observing that the edge τ0|N•({0<1}) is degenerate
and is therefore q-cocartesian by virtue of our assumption that q is an interior fibration.

(4) Let n ≥ 3 and let τ0 : Λnn → C be a morphism of simplicial sets with the property that
the 2-simplex τ0|N•({0<n−1<n}) is right-degenerate; we wish to show that τ0 can be
extended to an n-simplex τ of C. This follows by the argument given above, applied
to the opposite interior fibration qop : Cop → Dop.

Proposition 5.4.2.9.01WQ Let F : C → D and G : D → E be interior fibrations of (∞, 2)-
categories. Then the composition (G ◦ F ) : C → E is also an interior fibration.

https://kerodon.net/tag/01WQ
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Proof. Suppose we are given an integer n ≥ 2 and a lifting problem

Λni
σ0 //

��

C

G◦F

��
∆n σ //

σ

>>

E .

We wish to show that this lifting problem admits a solution if one of the following conditions
is satisfied:

(a) The integer i is equal to 0 and σ0|N•({0<1}) is a degenerate edge of C.

(b) The integer i satisfies 0 < i < n and the restriction σ|N•({i−1<i<i+1}) is a thin 2-simplex
of E .

(c) The integer i is equal to n and σ0|N•({n−1<n}) is a degenerate edge of C.

Since G is an interior fibration, any of these hypotheses guarantee the existence of a solution
to the associated lifting problem

Λni
F◦σ0 //

��

D

G

��
∆n σ //

τ

>>

E .

It will therefore suffice to construct a solution to the lifting problem

Λni
σ0 //

��

C

F

��
∆n τ //

σ

>>

D .

In cases (a) and (c), our assumption that F is an interior fibration immediately guarantees
the existence of σ. In case (b), it suffices to verify that the restriction τ |N•({i−1<i<i+1}) is a
thin 2-simplex of D, which follows from Lemma 5.4.2.6.

Proposition 5.4.2.10. 01WRLet F : C → D be an interior fibration between (∞, 2)-categories,
and let X and Y be objects of C. Then:

https://kerodon.net/tag/01WR
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(1) The induced map of left-pinched morphism spaces HomL
C (X,Y )→ HomL

D(F (X), F (Y ))
is a right fibration of simplicial sets.

(2) The induced map of right-pinched morphism spaces HomR
C (X,Y )→ HomR

D(F (X), F (Y ))
is a left fibration of simplicial sets.

Proof. We will prove (2); assertion (1) follows from a similar argument. We wish to show
that, for every pair of integers 0 ≤ i < n, every lifting problem

01WS Λni
σ0 //

��

HomR
C (X,Y )

��
∆n σ //

σ

99

HomR
D(F (X), F (Y ))

(5.23)

admits a solution. Unwinding the definitions, we can rewrite (5.23) as a lifting problem

Λn+1
i

τ0 //

��

C

F

��
∆n+1 τ //

τ

>>

D,

where the restriction τ0|N•({0<1<···<n}) is the constant map taking the value X. If i = 0,
then this lifting problem admits a solution because the edge τ0|N•({0<1}) is degenerate (and
therefore F -cocartesian, by virtue of our assumption that F is an interior fibration). If
0 < i < n, the solution exists by virtue of the fact that F is an interior fibration and
τ |N•({i−1<i<i+1}) is a degenerate 2-simplex of D (and therefore thin).

5.4.3 Slices of (∞, 2)-Categories

01WT The slice and coslice constructions of §4.3 provide many examples of interior fibrations
of (∞, 2)-categories.

Proposition 5.4.3.1.01WU Let C be an (∞, 2)-category and let f : K → C be a morphism of
simplicial sets. Then the projection maps

Cf/ → C C/f → C

are interior fibrations.

https://kerodon.net/tag/01WS
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Warning 5.4.3.2. 01WVIn the situation of Proposition 5.4.3.1, the projection maps

Cf/ → C C/f → C

are generally not inner fibrations of simplicial sets.

Remark 5.4.3.3. 01WWLet C be a simplicial set. Then axioms (3) and (4) of Definition 5.4.1.1
can be stated as follows:

(3′) Let X be any vertex of C and let q : C/X → C be the projection map. Then every
degenerate edge of C/X is q-cocartesian.

(4′) Let X be any vertex of C and let q′ : CX/ → C be the projection map. Then every
degenerate edge of CX/ is q′-cartesian.

Note that (3′) and (4′) appear as special cases of the conclusion of Proposition 5.4.3.1.

Corollary 5.4.3.4. 01WXLet C be an (∞, 2)-category and let f : K → C be a morphism of
simplicial sets. Then the simplicial sets Cf/ and C/f are (∞, 2)-categories.

Proof. Combine Proposition 5.4.3.1 with Proposition 5.4.2.8.

Corollary 5.4.3.5. 01WYLet C be an (∞, 2)-category. For every pair of objects X and Y ,
the pinched morphism spaces HomL

C (X,Y ) and HomR
C (X,Y ) of Construction 4.6.5.1 are

∞-categories.

Proof. By definition, the left-pinched morphism space HomL
C (X,Y ) is the fiber over Y of

the projection map π : CX/ → C. Since π is an interior fibration (Proposition 5.4.3.1), each
of its fibers is an ∞-category (Remark 5.4.2.5). A similar argument shows that HomR

C (X,Y )
is an ∞-category.

Warning 5.4.3.6. 01WZLet C be an (∞, 2)-category containing objects X and Y . Then the
simplicial set HomC(X,Y ) of Construction 4.6.1.1 is generally not an ∞-category (see
Warning 8.1.8.1).

Remark 5.4.3.7. 01X0Let C be an (∞, 2)-category containing X and Y . We will see later
that the ∞-category HomL

C (X,Y ) is naturally equivalent to the opposite of the ∞-category
HomR

C (X,Y ) (Proposition [?]). When C is the Duskin nerve of a 2-category, we can do better:
the ∞-category HomL

C (X,Y ) is isomorphic to the opposite of HomR
C (X,Y ); see Example

4.6.5.13.

We will deduce Proposition 5.4.3.1 from the following more precise result:

https://kerodon.net/tag/01WV
https://kerodon.net/tag/01WW
https://kerodon.net/tag/01WX
https://kerodon.net/tag/01WY
https://kerodon.net/tag/01WZ
https://kerodon.net/tag/01X0


5.4. (∞, 2)-CATEGORIES 1135

Proposition 5.4.3.8.01X1 Let f : K → C be a morphism of simplicial sets and let f0 : K0 → C
be the restriction of f to a simplicial subset K0 ⊆ K. Then every lifting problem

01X2

Λmi
σ0 //

��

C/f

��
∆m σ //

>>

C/f0

(5.24)

admits a solution provided that m ≥ 2 and one of the following additional conditions is
satisfied:

(a) The simplicial set C is an (∞, 2)-category, i = 0, and the composition

∆1 ≃ N•({0 < 1}) ⊆ Λmi
σ0−→ C/f

is a degenerate edge of C/f .

(b) The integer i satisfies 0 < i < m and the composite map

∆2 ≃ N•({i− 1 < i < i+ 1}) ⊆ ∆m σ−→ C/f0 → C

is a thin 2-simplex of C.

(c) The integer i is equal to m and, for every vertex x ∈ K, the composite map

∆2 ≃ N•({m− 1 < m}) ⋆ {x} ↪→ Λmi ⋆ K
σ−→ C

is a thin 2-simplex of C.

Proof. Unwinding the definitions, we can identify the diagram (5.24) with a morphism of
simplicial sets

f : (Λmi ⋆ K)
∐

(Λm
i ⋆K0)

(∆m ⋆ K0)→ C,

and we wish to show that f can be extended to a morphism ∆m ⋆ K → C. Let P be
the collection of all pairs (L, g), where L is a simplicial subset of K containing K0 and
g : ∆m ⋆ L→ C is a morphism satisfying

g|∆m⋆K0 = f |∆m⋆K0 g|Λm
i ⋆L

= f |Λm
i ⋆L

.

We regard P as a partially ordered set, with (L, g) ≤ (L′, g′) if L is contained in L′ and
g = g′|∆m⋆L. The partially ordered set P satisfies the hypotheses of Zorn’s lemma and
therefore admits a maximal element (Lmax, gmax). We will complete the proof by showing

https://kerodon.net/tag/01X1
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that Lmax = K (so that gmax is the desired extension of f). Suppose otherwise. Then there
is some nondegenerate simplex ρ : ∆n → K which is not contained in Lmax. Choosing ρ so
that n is as small as possible, we may assume without loss of generality that ρ carries the
boundary ∂∆n into Lmax. Let L′ ⊆ K be the simplicial subset given by the union of Lmax
together with the image of ρ, so that ρ determines a pushout diagram

∂∆n //

��

Lmax

��
∆n // L′.

We will show that gmax can be extended to a morphism of simplicial sets g′ : ∆m ⋆ L′ → C
satisfying g′|Λm

i ⋆L
′ = f |Λm

i ⋆L
′ ; thereby contradicting the maximality of (Lmax, gmax) and

completing the proof of Proposition 5.4.3.8. Note that the composite maps

Λmi ⋆∆n id ⋆ρ−−−→ Λmi ⋆ K
f−→ C

∆m ⋆ ∂∆n id ⋆ρ−−−→ ∆m ⋆ Lmax
gmax−−−→ C

can be amalgamated to a morphism of simplicial sets

τ0 : (Λmi ⋆∆n)
∐

(Λm
i ⋆∂∆n)

(∆m ⋆ ∂∆n)→ C,

whose source can be identified with the horn Λm+1+n
i ⊆ ∆m+1+n (Lemma 4.3.6.15). We

wish to show that τ0 can be extended to a map

τ : ∆m ⋆∆n ≃ ∆m+1+n → C .

If 0 < i ≤ m, the desired extension exists because the composite map

∆2 ≃ N•({i− 1 < i < i+ 1}) ⊆ Λm+1+n
i

τ0−→ C

is a thin 2-simplex of C (by virtue of assumption (b) when i < m or (c) in the case i = m).
If i = 0, then the desired extension exists because assumption (a) guarantees that C is an
(∞, 2)-category and the 2-simplex

∆2 ≃ N•({0 < 1 < m+ 1 + n}) ⊆ Λm+1+n
i

τ0−→ C

is left-degenerate.
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Proof of Proposition 5.4.3.1. Let C be an (∞, 2)-category and let f : K → C be a morphism
of simplicial sets. We will show that the projection map q : C/f → C is an interior fibration;
the analogous assertion for the coslice simplicial set Cf/ follows by a similar argument. Let
m ≥ 2 and suppose that we are given a lifting problem

Λmi
σ0 //

��

C/f

��
∆m σ //

>>

C .

We wish to show that a solution exists under any of the following additional assumptions:

(a) The integer i is equal to zero and the restriction σ0|N•({0<1}) is a degenerate edge of C/f .

(b) The integer i satisfies 0 < i < m and the composite map

∆2 ≃ N•({i− 1 < i < i+ 1}) ⊆ ∆m σ−→ C/f0 → C

is a thin 2-simplex of C.

(c) The integer i is equal to m and the restriction σ0|N•({m−1<m}) is a degenerate edge of
C/f .

In cases (a) and (b), this follows immediately from Proposition 5.4.3.8. In case (c), we
observe that for every vertex x ∈ K, the composite map

∆2 ≃ N•({m− 1 < m}) ⋆ {x} ↪→ Λmi ⋆ K
σ0−→ C

is a left-degenerate 2-simplex of C. Since C is an (∞, 2)-category, this degenerate 2-simplex
is thin, so that existence of the desired extension again follows from Proposition 5.4.3.8.

In the situation of Proposition 5.4.3.1, the interior fibration C/f → C behaves like a
cartesian fibration (with the caveat that it need not be an inner fibration).

Proposition 5.4.3.9.01X3 Let C be an (∞, 2)-category, let f : K → C be a morphism of simplicial
sets, and let q : C/f → C be the projection map. Let Y be an object of the (∞, 2)-category
C/f , and let u : X → q(Y ) be a morphism in the (∞, 2)-category C. Then u can be lifted to
a morphism u : X → Y of C/f with the following property:

(∗) For every vertex z ∈ K, the image of u in C/f(z) is a thin 2-simplex of C.

https://kerodon.net/tag/01X3
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Remark 5.4.3.10. 01X4In the situation of Proposition 5.4.3.9, condition (∗) guarantees that
u is a q-cartesian morphism of C/f (this follows immediately from Proposition 5.4.3.8). In
§5.4.4, we will prove the converse: every q-cartesian morphism of C/f satisfies condition (∗)
(Corollary 5.4.4.2).

Proposition 5.4.3.9 is a special case of the following more general assertion:

Proposition 5.4.3.11. 01X5Let C be an (∞, 2)-category, let f : K → C be a morphism of
simplicial sets, and let f0 : K0 → C be the restriction of f to a simplicial subset K0 ⊆ K.
Let q : C/f → C/f0 denote the projection map, and suppose we are given a lifting problem

01X6

{1} σ0 //

��

C/f

q

��
∆1 σ //

σ

>>

C/f0

(5.25)

with the following property:

(∗0) For every vertex x ∈ K0, the composition

∆2 ≃ ∆1 ⋆ {x} ↪→ ∆1 ⋆ K0
σ−→ C

is a thin 2-simplex of C.

Then there exists an edge σ : ∆1 → C/f which solves the lifting problem problem (5.25) and
which satisfies the following stronger version of (∗0):

(∗) For every vertex x ∈ K, the composition

∆2 ≃ ∆1 ⋆ {x} ↪→ ∆1 ⋆ K
σ−→ C

is a thin 2-simplex of C.

Proof. Arguing as in the proof of Proposition 5.4.3.8, we can reduce to the case where
K = ∆n is a standard simplex and K0 = ∂∆n is its boundary. In this case, the lifting
problem (5.25) determines a morphism of simplicial sets

τ0 : ({1} ⋆∆n)
∐

({1}⋆∂∆n)
(∆1 ⋆ ∂∆n)→ C,

whose source can be identified with the horn Λn+2
1 ⊆ ∆n+2 (Lemma 4.3.6.15), and we wish

to extend τ to an (n+ 2)-simplex of C. If n > 0, then the desired extension exists because
τ0 carries N•({0 < 1 < 2}) to a thin 2-simplex of C (by virtue of assumption (∗0)). If n = 0,
then our assumption that C is an (∞, 2)-category allows us to extend τ0 to a thin 2-simplex
of C.

https://kerodon.net/tag/01X4
https://kerodon.net/tag/01X5
https://kerodon.net/tag/01X6
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5.4.4 The Local Thinness Criterion

01X7 Let C be an (∞, 2)-category and let σ be a 2-simplex of C, whose restriction to the
1-skeleton of ∆2 we indicate in the diagram

Y

v

��
X

u

??

w // Z

Roughly speaking, we can think of σ as encoding a 2-morphism γ : v ◦ u⇒ w, and we can
think of the condition that σ is thin as corresponding to the requirement that γ is invertible.
In the case where C is the Duskin nerve of a 2-category, this is the content of Theorem
2.3.2.5. For a general (∞, 2)-category, we can formulate this heuristic more precisely as
follows:

Theorem 5.4.4.1 (Local Thinness Criterion).01X8 Let C be an (∞, 2)-category and let σ be a
2-simplex of C, which we represent by the diagram

Y

v

  
X

u

??

w // Z.

The following conditions are equivalent:

(1) The 2-simplex σ is thin.

(2) Let q : C/Z → C denote the projection map. Then σ is q-cartesian when viewed as an
edge of the simplicial set C/Z .

(3) The 2-simplex σ is locally q-cartesian when viewed as an edge of the simplicial set C/Z .

(4) Let q′ : CX/ → C denote the projection map. Then σ is q′-cocartesian when viewed as an
edge of the simplicial set CX/.

(5) The 2-simplex σ is locally q′-cocartesian when viewed as an edge of the simplicial set
CX/.

Proof. We will prove that (1) ⇔ (2) ⇔ (3); the proof that (1) ⇔ (4) ⇔ (5) follows by
applying the same argument to the opposite (∞, 2)-category Cop. The implication (1)⇒ (2)
follows from Proposition 5.4.3.8, and the implication (2)⇒ (3) is immediate (see Remark
5.1.3.3). For each integer n ≥ 3, consider the following weaker version of condition (1):

https://kerodon.net/tag/01X7
https://kerodon.net/tag/01X8
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(1n) For every integer 0 < i < n and every morphism of simplicial sets µ0 : Λn
i → C for

which the composition

∆2 ≃ N•({i− 1 < i < i+ 1}) ↪→ Λni
µ0−→ C

is equal to σ, there exists a map µ : ∆n → C extending µ0.

Note that σ satisfies condition (1) if and only if it satisfies condition (1n) for each n ≥ 3. We
will complete the proof by showing that (3)⇒ (1n), using a fairly elaborate induction on n.

Assume that σ is locally q-cartesian when viewed as a morphism in the (∞, 2)-category
C/Z . Since C is an (∞, 2)-category, we can choose a thin 2-simplex σ′ satisfying d2

0(σ′) = d2
0(σ)

and d2
2(σ′) = d2

2(σ), which we represent as a diagram

Y

v

  
X

u

??

w′ // Z.

The implication (1)⇒ (3) shows that σ′ is also locally q-cartesian when viewed as an edge
of the simplicial set C/Z . Let us regard the edge u as a morphism of simplicial sets ∆1 → C,
and let E denote the fiber product ∆1×C C/Z . Since q is an interior fibration, it follows from
Remark 5.4.2.4 and Example 5.4.2.2 that the projection map π : E → ∆1 is an inner fibration.
Moreover, we can identify σ and σ′ with π-cartesian edges of E having nondegenerate images
under π. Applying Remark 5.1.3.8, we see that there exists a 2-simplex of E which exhibits
σ′ as a composition of σ with an isomorphism in E . The image of this 2-simplex under
the projection map E → C/Z can be identified with a 3-simplex ρ of C such that d3

0(ρ) = σ,
d3

1(ρ) = σ′, and d3
3(ρ) = s1

0(u) is left-degenerate; the restriction of ρ to the 1-skeleton of ∆3

we can represent by the diagram

X
u //

w

''

Y

v

  
X

idX

>>

u

77

w′ // Z.

By construction, the remaining face σ′′ = d3
2(ρ) is an isomorphism when viewed as a

morphism in the∞-category HomR
C (X,Z) = {X}×C C/Z , and is therefore locally q-cartesian

(Example 5.1.3.6). In particular, our inductive hypothesis guarantees that the simplex σ′′
satisfies condition (1m) for 3 ≤ m < n.
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Fix a morphism of simplicial sets µ0 : Λni → C as in condition (1n); we wish to show that
µ0 can be extended to an n-simplex µ of C. Let δi−1

n+1 : ∆n ↪→ ∆n+1 denote the inclusion of
the (i− 1)st face, given on vertices by the formula

δi−1
n+1(j) =

j if j < i− 1
j + 1 if j ≥ i− 1.

We will construct an (n+ 1)-simplex ν : ∆n+1 → C which satisfies the following conditions:

(a) The composite map

Λni ↪→ ∆n
δi−1

n+1−−−→ ∆n+1 ν−→ C

is equal to µ0.

(b) The composite map

∆3 ≃ N•({i− 1 < i < i+ 1 < i+ 2}) ↪→ ∆n+1 ν−→ C

is equal to the 3-simplex ρ.

(c) For every integer 0 ≤ j < i− 1, the 2-simplex

∆2 ≃ N•({j < i− 1 < i}) ↪→ ∆n+1 ν−→ C

is right-degenerate (in particular, it is thin).

(d) For every integer i+ 2 < j ≤ n+ 1, the 2-simplex

∆2 ≃ N•({i− 1 < i < j}) ↪→ ∆n+1 ν−→ C

is left-degenerate (in particular, it is thin).

Assuming that this construction is possible, we complete the proof by observing that
µ = ν ◦ δi−1

n+1 provides the desired extension of µ0 (by virtue of assumption (a)).
The construction of the (n + 1)-simplex ν will take place in several steps. We define

simplicial subsets
K0 ⊊ K1 ⊊ K2 ⊊ K3 ⊊ K4 ⊊ ∆n+1

and maps νj : Kj → C as follows:

• Let K0 ⊆ ∆n+1 be the image of the horn Λn
i under δi−1

n+1, so that δi−1
n+1 induces an

isomorphism Λn
i
∼−→ K0. It follows that there is a unique morphism of simplicial

sets ν0 : K0 → C satisfying µ0 = ν0 ◦ δi−1
n+1|Λn

i
. By construction, the map ν0 satisfies

condition (a).
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• Let K1 ⊆ ∆n+1 be the union of K0 with the 3-simplex N•({i− 1 < i < i+ 1 < i+ 2}).
It follows from the identity d3

0(ρ) = σ that ν0 extends uniquely to a map ν1 : K1 → C
satisfying condition (b).

• Let K2 be the simplicial subset of ∆n+1 obtained by removing those nondegenerate
simplices which contain all of the vertices {0 < 1 < · · · < i− 2 < i+ 2 < i+ 3 < · · · <
n+ 1} and at least one of the vertices {i− 1, i}. We will prove below that ν1 can be
extended to a map ν2 : K2 → C which satisfies conditions (c) and (d).

• Let δin+1 : ∆n ↪→ ∆n+1 denote the inclusion of the ith face, given on vertices by the
formula

δin+1(j) =

j if j < i

j + 1 if j ≥ i.

Let K3 be the union of K2 with the image of δin+1. Note that δin+1 determines a
pushout diagram of simplicial sets

Λni //

��

K2

��
∆n

δi
n+1 // K3.

Let α0 denote the composite map Λni
δi

n+1−−−→ K2
ν2−→ C. Since ν1 satisfies condition (b),

α0 carries N•({i− 1 < i < i+ 1}) to the thin 2-simplex σ′ of C, and can therefore be
extended to an n-simplex α of C. It follows that ν2 extends uniquely to a morphism of
simplicial sets ν3 : K3 → C satisfying ν3 ◦ δin+1 = α.

• Let K4 denote the horn Λn+1
i−1 ⊊ ∆n. Note that K4 can be written as the union of

K3 with the image of the face inclusion δi+1
n+1 : ∆n ↪→ ∆n+1, given on vertices by the

formula

δi+1
n+1(j) =

j if j ≤ i
j + 1 if j > i.

Moreover, we have a pushout diagram

Λni−1
//

��

K3

��
∆n

δi+1
n+1 // K4.
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Let β0 denote the composite map

Λni−1
δi+1

n+1−−−→ K3
ν3−→ C .

If i > 1, then condition (c) guarantees that the restriction β0|N•({i−2<i−1<i}) is a right-
degenerate 2-simplex of C. If i = 1, then condition (d) guarantees that the restriction
β0|N•({0<1<n}) is a left-degenerate 2-simplex of C. In either case, our assumption that
C is an (∞, 2)-category guarantees that β0 can be extended to an n-simplex β of C, so
that ν3 can be extended uniquely to a map ν4 : K4 → C satisfying ν4 ◦ δi+1

n+1 = β.

• If i > 1, then condition (c) guarantees that the map ν4 : Λn+1
i−1 → C carries N•({i− 2 <

i− 1 < i}) to a right-degenerate 2-simplex of C. If i = 1, then condition (d) guarantees
that ν4 carries N•({0 < 1 < n+ 1}) to a left-degenerate 2-simplex of C. In either case,
our assumption that C is an (∞, 2)-category guarantees that we can extend ν4 to an
(n+ 1)-simplex ν : ∆n+1 → C, thereby completing the proof of Theorem 5.4.4.1.

It remains to show that ν1 admits an extension ν2 : K2 → C which satisfies conditions (c)
and (d). Let us say that a simplex τ : ∆m → K2 is free if it is nondegenerate, not contained
in K1, and there exists an integer 0 ≤ j ≤ m satisfying τ(j) = i. Note that in this case,
we automatically have j > 0 and τ(j − 1) = i− 1 (otherwise, τ would be contained in K1).
Moreover, if τ is any nondegenerate m-simplex of K2 which is not contained in K1, then τ

is either free or can be realized uniquely as a face of a free (m+ 1)-simplex τ ′ : ∆m+1 → K2
(obtained by adjoining i to the image of τ).

Let {τ1, τ2, · · · , τt} be an enumeration of the collection of all free simplices of K2, chosen
so dim(τ1) ≤ dim(τ2) ≤ · · · ≤ dim(τt). For 0 ≤ s ≤ t, let K2(s) denote the union of K1 with
the images of the maps {τ1, τ2, · · · , τs}, so that we have inclusions of simplicial sets

K1 = K2(0) ⊂ K2(1) ⊂ K2(2) ⊂ · · · ⊂ K2(t) = K2.

We will complete the proof by inductively constructing a compatible sequence of maps
ν2(s) : K2(s)→ C satisfying ν2(0) = ν1 together with the following translation of conditions
(c) and (d):

(∗s) If the simplex τs has dimension 2, then the 2-simplex ν2 ◦ τs of C is left-degenerate if
τs(1) = i and right-degenerate if τs(2) = i.

Assume that s > 0 and that the map ν2(s− 1) has already been constructed. Set τ = τs :
∆m → K2, so that there is a unique integer 1 ≤ j ≤ m satisfying τ(j) = i. Note that for
0 ≤ k ≤ m with k ≠ j, the face dmk (τ) is either free or belongs to K1; in either case, it
belongs to K2(s − 1). Moreover, the face dmj (τ) is neither free, nor contained in K1, nor
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contained as a face of any other free m-simplex of K2. It follows that τ determines a pushout
diagram of simplicial sets

Λmj //

��

K2(s− 1)

��
∆m τ // K2(s).

Let ξ0 : Λmj → C denote the composite map Λmj
τ−→ K2(s−1) ν2(s−1)−−−−−→ C; we wish to show that

ξ0 can be extended to an m-simplex of C. If m = 2, then there is a unique such extension
which satisfies condition (∗s) (since, by construction, the morphism ν1 carries N•({i−1 < i})
to the degenerate edge idX of C). We may therefore assume that m ≥ 3. We consider several
cases:

• If j = m, then it follows from assumption (∗s′) for s′ < s that ξ0 carries N•({0 <

m− 1 < m}) to a right-degenerate 2-simplex of C, so the desired extension exists by
virtue of our assumption that C is an (∞, 2)-category.

• If j < m and τ(j + 1) = i + 1, then it follows from (b) that ξ0 carries N•({j − 1 <
j < j + 1}) to the left-degenerate 2-simplex d3

3(ρ). Since C is an (∞, 2)-category, this
2-simplex is thin so that ξ0 can be extended to an m-simplex of C.

• If j < m and τ(j + 1) > i + 2, then it follows from assumption (∗s′) for s′ < s that
ξ0 carries N•({j − 1 < j < j + 1}) to a left-degenerate 2-simplex of C. Since C is an
(∞, 2)-category, this 2-simplex is thin so that ξ0 can be extended to an m-simplex of C.

• If j < m and τ(j + 1) = i+ 2, then it follows from (b) that ξ0 carries N•({j − 1 < j <

j + 1}) to the 2-simplex σ′′ of C. In this case, our assumption that τ belongs to K2
guarantees that m < n, so the existence of the desired extension follows the fact that
σ′′ satisfies condition (1m) (by virtue of our inductive hypothesis).

Theorem 5.4.4.1 immediately generalizes to other slice constructions:

Corollary 5.4.4.2. 01X9Let C be an (∞, 2)-category, let f : K → C be a morphism of simplicial
sets, and let q : C/f → C denote the projection map. Let u : X → Y be a morphism in the
(∞, 2)-category C/f . The following conditions are equivalent:

(1) For every vertex z ∈ K, the composite map

∆2 ≃ ∆1 ⋆ {z} ↪→ ∆1 ⋆ K
u−→ C

is a thin 2-simplex of C.

https://kerodon.net/tag/01X9
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(2) The morphism u is q-cartesian.

(3) The morphism u is locally q-cartesian.

Proof. The implication (1) ⇒ (2) follows from Proposition 5.4.3.8, and the implication
(2) ⇒ (3) is immediate (see Remark 5.1.3.3). We will show that (3) ⇒ (1). Fix a vertex
z ∈ K; we wish to show that the composite map

∆2 ≃ ∆1 ⋆ {z} ↪→ ∆1 ⋆ K
u−→ C

is a thin 2-simplex of C. Set Z = f(z) ∈ C, so that q factors as a composition

C/f
q′−→ C/Z

q′′−→ C .

By virtue of Theorem 5.4.4.1, it will suffice to show that the q′(u) is a locally q′′-cartesian
morphism of the (∞, 2)-category C/Z .

Set u = q(u), which we regard as a morphism q : X → Y in the (∞, 2)-category C. By
virtue of Proposition 5.4.3.9, we can lift u to a morphism u′ : X ′ → Y in C/f which satisfies
condition (1) (and therefore also satisfies (3)). Regard u as a 1-simplex of C and let E
denote the fiber product ∆1 ×C C/f . Since q is an interior fibration (Proposition 5.4.3.1),
the projection map π : E → ∆1 is also an interior fibration (Remark 5.4.2.4) and therefore
an inner fibration (Example 5.4.2.2). Let us abuse notation by identifying u and u′ with
morphisms in the∞-category E lying over the unique nondegenerate edge of ∆1. Assumption
(3) then guarantees that u and u′ are π-cartesian. Invoking Remark 5.1.3.8, we deduce that
there exists a 2-simplex ρ : ∆2 → E , which we display as a diagram

X ′

u′

  
X

v

>>

u // Y,

where v is an isomorphism in the ∞-category {0} ×∆1 E ≃ {X} ×C C/f . It follows that q′(v)
is an isomorphism in the ∞-category {X} ×C C/Z . Since u′ satisfies condition (1), Theorem
5.4.4.1 guarantees that q′(u′) is locally q′′-cartesian. Invoking Remark 5.1.3.8 again, we
deduce that q′(u) is locally q′′-cartesian, as desired.

5.4.5 The Pith of an (∞, 2)-Category

01XA Let C be a 2-category. Recall that the pith of C is the subcategory Pith(C) ⊆ C obtained
by removing the non-invertible 2-morphisms of C (Construction 2.2.8.9). In this section, we
generalize this definition to the setting of (∞, 2)-categories.

https://kerodon.net/tag/01XA
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Construction 5.4.5.1. 01XBLet C be an (∞, 2)-category. We let Pith(C) ⊆ C denote the
simplicial subset consisting of those simplices σ : ∆n → C which carry every 2-simplex of ∆n

to a thin 2-simplex of C. We will refer to Pith(C) as the pith of C.

Remark 5.4.5.2. 01XCLet C be an (∞, 2)-category. Then every degenerate 2-simplex of C is
thin. Consequently, to check that a simplex σ : ∆n → C belongs to the pith Pith(C), it
suffices to check that σ carries every nondegenerate 2-simplex of ∆n to a thin 2-simplex of C.
In particular:

• Every object of C belongs to Pith(C).

• Every morphism of C belongs to Pith(C).

• A 2-simplex σ of C belongs to Pith(C) if and only if it is thin.

Remark 5.4.5.3. 01XDLet C be an (∞, 2)-category. Then Pith(C) is the largest simplicial subset
of C which does not contain any non-thin 2-simplices of C.

Example 5.4.5.4. 01XELet C be a 2-category and let Pith(C) denote its pith (Construction
2.2.8.9). Then the inclusion Pith(C) ↪→ C induces an isomorphism of simplicial sets
ND
• (Pith(C)) ≃ Pith(ND

• (C)). This is an immediate consequence of Theorem 2.3.2.5.

Example 5.4.5.5. 01XFLet C be an ∞-category. Then Pith(C) = C (see Example 2.3.2.4).

Proposition 5.4.5.6. 01XGLet C be an (∞, 2)-category. Then Pith(C) is an ∞-category.

Our proof of Proposition 5.4.5.6 will make use of a closure property of the collection of
thin 2-simplices of an (∞, 2)-category C.

Definition 5.4.5.7. 01XHLet C be a simplicial set and let T be a collection of 2-simplices of C.
We will say that T has the inner exchange property if the following condition is satisfied:

(∗) Let σ : ∆3 → C be a 3-simplex of C. For every triple of integers 0 ≤ i < j < k ≤ 3,
let σkji be the face of σ given by the restriction σ|N•({i<j<k}). Assume that the outer
faces σ210 and σ321 belong to T . Then σ310 belongs to T if and only if σ320 belongs to
T .

Remark 5.4.5.8. 01XJLet C be a simplicial set, let T be a collection of 2-simplices of C, and let
T op denote the set T , regarded as a collection of simplices of the opposite simplicial set Cop.
Then T has the inner exchange property if and only if T op has the inner exchange property.

Remark 5.4.5.9. 01XKLet F : C → D be a morphism of simplicial sets and let T be a collection
of 2-simplices of D. If T has the inner exchange property, then the inverse image F−1(T )
has the inner exchange property.

https://kerodon.net/tag/01XB
https://kerodon.net/tag/01XC
https://kerodon.net/tag/01XD
https://kerodon.net/tag/01XE
https://kerodon.net/tag/01XF
https://kerodon.net/tag/01XG
https://kerodon.net/tag/01XH
https://kerodon.net/tag/01XJ
https://kerodon.net/tag/01XK
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Proposition 5.4.5.10 (Inner Exchange).01XL Let C be an (∞, 2)-category. Then the collection
of thin 2-simplices of C has the inner exchange property (Definition 5.4.5.7).

Remark 5.4.5.11.01XM To get a feeling for the content of Proposition 5.4.5.10, let us specialize
to the case where C = ND

• (D) is the Duskin nerve of a 2-category D. In this case, we can
identify a 3-simplex σ : ∆3 → C with a collection of objects {Xi}0≤i≤3 of D, a collection of
1-morphisms {fji : Xi → Xj}0≤i<j≤3, and a collection of 2-morphisms {µkji : fkj ◦fji ⇒ fki}
for which the diagram

f32 ◦ (f21 ◦ f10) α
∼

+3

idf32 ◦µ210

��

(f32 ◦ f21) ◦ f10

µ321◦idf10

��
f32 ◦ f20

µ320

 (

f31 ◦ f10

µ310

v~
f30

is commutative, where α = αf32,f21,f10 is the associativity constraint for the composition of
1-morphisms in C (Proposition 2.3.1.9). The assumption that the outer faces of σ are thin
guarantees that the 2-morphisms µ321 and µ210 are isomorphisms. In this case, Proposition
5.4.5.10 asserts that µ320 is an isomorphism if and only if µ310 is an isomorphism, which
follows by inspection.

Proof of Proposition 5.4.5.10. Let C be an (∞, 2)-category, let σ : ∆3 → C be a 3-simplex
of C and let C = σ(3) ∈ C be the image of the final vertex. Let us regard the face
σ210 = σ|N•({0<1<2}) as a morphism of simplicial sets from ∆2 to C, and let E denote
the pullback ∆2 ×C C/C . Note that the projection map C/C → C is an interior fibration
(Proposition 5.4.3.1). If σ210 is thin, then the projection map π : E → ∆2 is also an interior
fibration (Remark 5.4.2.4); since ∆2 is an ∞-category, it is an inner fibration (Example
5.4.2.2). Unwinding the definitions, we can identify σ with a 2-simplex of E lying over the
unique nondegenerate 2-simplex of ∆2, which we display as a diagram

Y

g

  
X

f

??

h // Z.

https://kerodon.net/tag/01XL
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If σ321 = σ|N•({1<2<3}) is a thin 2-simplex of C, then the “easy direction” of Theorem 5.4.4.1
guarantees that g is π-cartesian. It follows that f is π-cartesian if and only if h is π-cartesian
(Corollary 5.1.2.4). Equivalently, f is locally π-cartesian if and only if h is locally π-cartesian
(see Remark 5.1.3.4). Applying the “hard direction” of Theorem 5.4.4.1, we conclude that
the 2-simplex σ310 = σ|N•({0<1<3}) is thin if and only if the 2-simplex σ320 = σ|N•({0<2<3})
is thin.

Proof of Proposition 5.4.5.6. Let C be an (∞, 2)-category. Suppose we are given integers
0 < i < n and a morphism of simplicial sets σ0 : Λni → Pith(C); we wish to show that σ0 can
be extended to an n-simplex σ : ∆n → Pith(C). If n = 2, then condition (1) of Definition
5.4.1.1 guarantees that we can extend σ0 to a thin 2-simplex of C, which then belongs to
Pith(C) by virtue of Remark 5.4.5.2. We may therefore assume that n ≥ 3. In this case, we
observe that the composite map

∆2 ≃ N•({i− 1 < i < i+ 1}) ↪→ Λni
σ0−→ Pith(C)→ C

is a thin 2-simplex of C, so that we can extend σ0 to an n-simplex σ : ∆n → C. To complete
the proof, it will suffice to show that σ carries each 2-simplex of ∆n to a thin 2-simplex of C.
If n ≥ 4, this is automatic (since every 2-simplex of ∆n is contained in the horn Λni ). In the
case n = 3, it follows from our assumption that the collection of thin 2-simplices of C has
the inner exchange property (Proposition 5.4.5.10).

Definition 5.4.5.12. 047RLet C be an (∞, 2)-category. We say that a morphism f : X → Y of
C is an isomorphism if it is an isomorphism when viewed as a morphism in the ∞-category
Pith(C). We say that objects X,Y ∈ C are isomorphic if there is an isomorphism from X to
Y (that is, if X and Y are isomorphic when viewed as objects of the ∞-category Pith(C)).

Let C be an (∞, 2)-category. Heuristically, one can think of the ∞-category Pith(C)
as obtained from C by removing its noninvertible 2-morphisms, just as the core E≃ of an
∞-category E is obtained by removing its noninvertible morphisms (see Construction 4.4.3.1).
We now make this heuristic more precise (see Corollary 5.4.7.12 for a relative version):

Proposition 5.4.5.13. 01XNLet C be an (∞, 2)-category containing objects X and Y . Then the
inclusion Pith(C) ↪→ C induces isomorphisms of simplicial sets

HomL
Pith(C)(X,Y ) ≃ HomL

C (X,Y )≃ HomR
Pith(C)(X,Y ) ≃ HomR

C (X,Y )≃.

Proof. Let σ be an n-simplex of the simplicial set HomR
C (X,Y ), which we view as a morphism

of simplicial sets τ : ∆n+1 → C whose restriction to the face ∆n ⊆ ∆n+1 equal to the
constant map ∆n → {X} ↪→ C. Then σ belongs to the simplicial subset HomR

Pith(C)(X,Y ) ⊆
HomR

C (X,Y ) if and only if, for every 2-simplex ρ : ∆2 → ∆n+1, the composition τ ◦ ρ is a

https://kerodon.net/tag/047R
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thin 2-simplex of C. Note that this condition is automatically satisfied if ρ is degenerate,
or takes values in the subset ∆n ⊆ ∆n+1 (since every degenerate 2-simplex of C is thin).
Consequently, it suffices to verify this condition in the case where ρ is the right cone of a map
ρ0 : ∆1 → ∆n. In this case, τ ◦ ρ is thin if and only if the edge ∆1 ρ0−→ ∆n σ−→ HomR

C (X,Y )
is an isomorphism in the ∞-category HomR

C (X,Y ) (Theorem 5.4.4.1). Allowing τ0 to vary,
we obtain the identification HomR

Pith(C)(X,Y ) ≃ HomR
C (X,Y )≃; the proof of the analogous

statement for left-pinched morphism spaces is similar.

Proposition 5.4.5.14.01XP Let C be an (∞, 2)-category and let f : K → C be a morphism of
simplicial sets. Then:

(1) The projection map π : C/f ×C Pith(C)→ Pith(C) is a cartesian fibration of ∞-categories.
Moreover, a morphism u of C/f ×C Pith(C) is π-cartesian if and only if, for every vertex
z ∈ K, the composite map

∆2 ≃ ∆1 ⋆ {z} ↪→ ∆1 ⋆ K
u−→ C

is a thin 2-simplex of C.

(2) The projection map π′ : Cf/×C Pith(C) → Pith(C) is a cocartesian fibration of ∞-
categories. Moreover, a morphism v of Cf/×C Pith(C) is π′-cocartesian if and only if,
for every vertex x ∈ K, the composite map

∆2 ≃ {x} ⋆∆1 ↪→ K ⋆∆1 v−→ C

is a thin 2-simplex of C.

Proof. We will prove (1); the proof of (2) is similar. It follows from Remark 5.4.2.4 that π
is an interior fibration. Since Pith(C) is an ∞-category (Proposition 5.4.5.6), it is an inner
fibration of ∞-categories (Example 5.4.2.2). Let us say that a morphism u of C/f ×C Pith(C)
is special if, for every vertex z ∈ K, the composite map

∆2 ≃ ∆1 ⋆ {z} ↪→ ∆1 ⋆ K
u−→ C

is a thin 2-simplex of C. Let π : C/f → C be the projection map. It follows from Corollary
5.4.4.2 that every special morphism of C/f ×C Pith(C) is π-cartesian when viewed as a
morphism of C/f , and therefore also π-cartesian (Remark 5.1.1.11). Conversely, any π-
cartesian morphism of C/f ×C Pith(C) is locally π-cartesian when viewed as a morphism of
C/f , and therefore special (again by Corollary 5.4.4.2). To complete the proof, it will suffice
to show that if Y is an object of C/f , then any morphism u : X → q(Y ) in Pith(C) can be
lifted to a special morphism u : X → Y of C/f ×C Pith(C), which follows from Proposition
5.4.3.9.

https://kerodon.net/tag/01XP
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5.4.6 The Four-out-of-Five Property

01XQLet C be an ∞-category. Recall that the collection of isomorphisms in C has the “two-
out-of-three” property: if f : X → Y and g : Y → Z are composable morphisms of C and
any two of the morphisms f , g, and g ◦ f is an isomorphism, then so is the third (Remark
1.4.6.3). This can be regarded as a special case of a more general closure property.

Definition 5.4.6.1. 01XRLet C be a simplicial set and let W be a collection of edges of C. We
will say that W has the two-out-of-six property if it satisfies the following condition:

(∗) Let σ be a 3-simplex of C and, for every pair of integers 0 ≤ i < j ≤ 3, let σji denote
the edge of C given by σ|N•({i<j}). If the edges σ20 and σ31 belong to W , then the
edges σ10, σ21, σ32, and σ30 also belong to W .

Exercise 5.4.6.2. 01XSLet C be a simplicial set and let W be a collection of edges of C which
has the two-out-of-six property. Show that W has the two-out-of-three property. That is,
for any 2-simplex σ of C, if any two of the faces d2

0(σ), d2
1(σ), and d2

2(σ) belong to W , then
so does the third.

Remark 5.4.6.3. 01XTLet C be an ∞-category and let W be a collection of edges of C. We can
informally summarize Definition 5.4.6.1 as follows: a collection of morphisms W of C has the
two-out-of-six property if, for every triple of composable morphisms f : A→ B, g : B → C,
and h : C → D, if the compositions g ◦ f and h ◦ g belong to W , then the morphisms f , g,
h, and h ◦ g ◦ f belong to W . Beware that this summary is somewhat imprecise, since the
compositions g ◦ f , h ◦ g, and h ◦ g ◦ f are a priori only well-defined up to homotopy.

Remark 5.4.6.4. 01XULet F : C → D be a morphism of simplicial sets and let W be a collection
of edges of D. If W has the two-out-of-six property, then the inverse image F−1(W ) also
has the two-out-of-six property.

Proposition 5.4.6.5 (Two-out-of-Six). 0051Let C be an ∞-category and let W be the collection
of isomorphisms in C. Then W has the two-out-of-six property.

Proof. By definition, a morphism f of C is an isomorphism if and only if its homotopy
class [f ] is an isomorphism in the homotopy category hC (Definition 1.4.6.1). By virtue of
Remark 5.4.6.4, we can replace C by the nerve N•(hC) and thereby reduce to the case where
C = N•(C′) for some category C′. Let σ be a 3-simplex of C, corresponding to a triple of
morphisms

A
f−→ B

g−→ C
h−→ D

in C′, and suppose that g ◦ f and h ◦ g are isomorphisms. Then g ◦ f admits an inverse
u : C → A. It follows that g ◦ (f ◦ u) = (g ◦ f) ◦ u = idC , so that g admits a right inverse. A
similar argument shows that g also admits a left inverse, and is therefore an isomorphism

https://kerodon.net/tag/01XQ
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(Remark 1.4.6.7). Applying the two-out-three property, we deduce that f and h are also
isomorphisms. Since the collection of isomorphisms is closed under composition, it also
follows that h ◦ g ◦ f is an isomorphism.

Proposition 5.4.6.5 admits a converse:

Proposition 5.4.6.6.01XV Let C be an ∞-category and let W be a collection of morphisms of C
which has the two-out-of-six property. If W contains every identity morphism of C, then it
contains every isomorphism of C.

In other words, the collection of isomorphisms in an ∞-category C is the smallest
collection of morphisms which contains all identity morphisms and has the two-out-of-six
property.

Warning 5.4.6.7.01XW The analogue of Proposition 5.4.6.6 for the two-out-of-three property is
false in general. For example, if C is the nerve of a category, then the collection of identity
morphisms of C has the two-out-of-three property, but usually does not contain all the
isomorphisms of C.

Proof of Proposition 5.4.6.6. Let C be an∞-category and let f : X → Y be an isomorphism
in C. Then f admits a homotopy inverse g : Y → X. Let σ be a 2-simplex of C which
witnesses idX as a composition f and g, and let σ′ be a 2-simplex of C which witnesses idY
as a composition of g and f . Then the triple (σ′, s1

0(f), •, σ) can be regarded as a morphism
of simplicial sets τ0 : Λ3

2 → C. Since C is an ∞-category, we can extend τ0 to a 3-simplex
τ : ∆3 → C, whose restriction to the 1-skeleton of ∆3 is indicated in the diagram

Y
g //

idY

''

X

f

  
X

f

??

idX

77

f // Y.

It follows that if W is a collection of morphisms of C which contains idX , idY , and has the
two-out-of-six property, then W also contains the isomorphism f .

Our goal in this section is to prove analogues of Propositions 5.4.6.5 and Proposition
5.4.6.6 in the setting of (∞, 2)-categories, where we replace the set W ⊆ HomSet∆(∆1, C) of
isomorphisms with the set T ⊆ HomSet∆(∆2, C) of thin 2-simplices.

Definition 5.4.6.8.01XX Let C be a simplicial set and let T be a collection of 2-simplices of C.
We say that T has the four-out-of-five property if it satisfies the following condition:

https://kerodon.net/tag/01XV
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(∗) Let σ : ∆4 → C be a 4-simplex of C. For every triple of integers 0 ≤ i < j < k ≤ 4, let
σkji denote the 2-simplex of C given by the restriction of σ to N•({i < j < k}). If the
2-simplices σ310, σ420, σ321, and σ432 belong to T , then the 2-simplex σ430 also belongs
to T .

Warning 5.4.6.9. 01XYDefinition 5.4.6.8 is not self-dual. Let T be a collection of 2-simplices of
C which satisfies the four-out-of-five property and let T op denote the same set, regarded as
a collection of 2-simplices of the opposite simplicial set Cop. Then T op need not satisfy the
four-out-of-five property.

Remark 5.4.6.10. 01XZLet F : C → D be a morphism of simplicial sets and let T be a collection
of 2-simplices of D. If T has the four-out-of-five-property, then the inverse image F−1(T )
also has the four-out-of-five property.

Proposition 5.4.6.11 (Four-out-of-Five). 01Y0Let C be an (∞, 2)-category and let T be the
collection of all thin 2-simplices of C. Then T has the four-out-of-five property.

Warning 5.4.6.12. 01Y1Let C be an (∞, 2)-category and let σ : ∆4 → C be a 4-simplex of C.
For 0 ≤ i < j < k ≤ 4, let σkji denote the restriction σ|N•({i<j<k}). Proposition 5.4.6.11
asserts that, if the 2-simplices σ310, σ420, σ321, and σ432 are thin, then σ430 is also thin.
Beware that the remaining 2-simplices σ210, σ410, σ320, σ421, and σ431 need not be thin.

Example 5.4.6.13. 01Y2To get a feeling for the content of Proposition 5.4.6.11, let us consider
the special case where C = ND

• (C′) is the Duskin nerve of a strict 2-category C′. Let σ be
a 4-simplex of C, which we identify with a collection of objects {Xi}0≤i≤4, 1-morphisms
{fji : Xj → Xi}0≤i<j≤4, and 2-morphisms {µkji : fkj ◦ fji ⇒ fki}0≤i<j<k≤4 of C satisfying
the condition described in Proposition 2.3.1.9. Proposition 5.4.6.11 asserts that if the
2-morphisms µ310, µ420, µ321, and µ432 are invertible, then the 2-morphism µ430 is also

https://kerodon.net/tag/01XY
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invertible. This follows by inspecting the cubical diagram

f43 ◦ f32 ◦ f21 ◦ f10
µ210 +3

µ321
∼

"*
µ432

��

f43 ◦ f32 ◦ f20

µ320

 (

µ432∼

��

f43 ◦ f31 ◦ f10

µ431

��

µ310
∼

+3 f43 ◦ f30

µ430

��

f42 ◦ f21 ◦ f10
µ210 +3

µ421

"*

f42 ◦ f20

µ420
∼

 (
f41 ◦ f10

µ410 +3 f40

in the category HomC′(X0, X4) and applying the two-out-of-six property to the chain of
2-morphisms

f43 ◦ f32 ◦ f21 ◦ f10
µ210===⇒ f43 ◦ f32 ◦ f20

µ320===⇒ f43 ◦ f30
µ430===⇒ f40.

Proof of Proposition 5.4.6.11. Let C be an (∞, 2)-category and let σ : ∆4 → C be a 4-
simplex. For every triple of integers 0 ≤ i < j < k ≤ 4, let σkji denote the 2-simplex of C
given by the restriction of σ to N•({i < j < k}). Assume that the 2-simplices σ310, σ420,
σ321, and σ432 are thin. We wish to show that σ430 is also thin.

Set X = σ(0) ∈ C. Let E denote the fiber product CX/×C Pith(C) and let π : E → Pith(C)
be the projection map, so that π is a cocartesian fibration of ∞-categories (Proposition
5.4.5.14). For 1 ≤ i ≤ 4, let E i denote the ∞-category {σ(i)} ×Pith(C) E , so that the edge
σ|N•({0<i}) of C can be identified with an object Yi ∈ E i. For 1 ≤ i < j ≤ 4, let us identify
the 2-simplex σ|N•({0<i<j}) with a morphism fj,i : Yi → Yj in E . By virtue of Proposition
5.4.5.14), it will suffice to show that the morphism f4,3 : Y3 → Y4 is π-cocartesian.

For 2 ≤ i ≤ 4, let Fi : E i−1 → E i be given by covariant transport along the edge
σ|N•({i−1<i}) of Pith(C) (see Definition 5.2.2.4) so that we have a sequence of functors

E1
F2−→ E2

F3−→ E3
F4−→ E4 .

Let Hi : ∆1 ×E i−1 → E be a functor which witnesses that Fi is given by covariant transport
along σ|N•({i−1<i}), so that hi = Hi|∆1×{Yi−1} is a π-cocartesian morphism of E . It follows
that the morphism fi,i−1 can be written as a composition

Yi−1
hi−→ Fi(Yi−1) gi−→ Yi,
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where gi is a morphism in the ∞-category E i. To complete the proof, it will suffice to show
that the morphism g4 : F4(Y3)→ Y4 is an isomorphism in the ∞-category E4 (see Remark
5.1.3.8).

Note that we have a chain of 1-morphisms

(F4 ◦ F3 ◦ F2)(Y1) (F4◦F3)(g2)−−−−−−−→ (F4 ◦ F3)(Y2) F4(g3)−−−−→ F4(Y3) g4−→ Y4

in the ∞-category E4. Since the collection of isomorphisms in the homotopy category hE4
satisfies the two-out-of-six property, it will suffice to prove the following:

(a) The composition

(F4 ◦ F3 ◦ F2)(Y1) [(F4◦F3)(g2)]−−−−−−−−→ (F4 ◦ F3)(Y2) [F4(g3)]−−−−−→ F4(Y3)

is an isomorphism in the homotopy category hE4 .

(b) The composition
(F4 ◦ F3)(Y2) [F4(g3)]−−−−−→ F4(Y3) [g4]−−→ Y4

is an isomorphism in the homotopy category hE4 .

We will deduce (a) from the following slightly stronger assertion:

(a′) The composition
(F3 ◦ F2)(Y1) [F3(g2)]−−−−−→ F3(Y2) [g3]−−→ Y3

is an isomorphism in the homotopy category hE3 .

To prove (a′), we first note that the 2-simplex σ321 is thin, and can therefore be regarded as
a 2-simplex of Pith(C). Let E ′ denote the fiber product N•({1 < 2 < 3})×Pith(C) E , and let
π′ : E ′ → N•({1 < 2 < 3}) be the projection map. In the homotopy category hE ′, we have a
commutative diagram

Y1
[h2] //

[f2,1]

!!

F2(Y1) //

[g2]

��

(F3 ◦ F2)(Y1)

[F3(g2)]

��
Y2

[h3] //

[f3,2]

%%

F3(Y2)

[g3]

��
Y3,
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where the upper horizontal composition is the homotopy class of a π′-cocartesian morphism
(Corollary 5.1.2.4). It follows that the vertical composition on the right is an isomorphism if
and only if the diagonal composition is also the homotopy class of a π′-cocartesian morphism
(Remark 5.1.3.8). We now observe that the 3-simplex σ|N•({0<1<2<3}) witnesses the identity
[f3,2] ◦ [f2,1] = [f3,1] in the homotopy category hE ′. It will therefore suffice to show that f3,1
is a π′-cocartesian morphism of the ∞-category E ′, which follows from Proposition 5.4.5.14
and our assumption that σ310 is thin. This completes the proof of (a). The proof of (b)
follows by the same argument, using the thinness of the 2-simplices σ432 and σ420 in place of
σ321 and σ310.

We now prove a partial converse to Proposition 5.4.6.11, which can be regarded as an
(∞, 2)-categorical analogue of Proposition 5.4.6.6.

Proposition 5.4.6.14.01Y3 Let C be an (∞, 2)-category and let T be a collection of 2-simplices
of C. Assume that:

(1) Every degenerate 2-simplex of C belongs to T .

(2) For every pair of morphisms f : X → Y and g : Y → Z in C, there exists a thin
2-simplex σ of C which belongs to T and satisfies d2

2(σ) = f and d2
0(σ) = g, as indicated

in the diagram
Y

g

  
X

f

??

// Z.

(3) The collection T has the inner exchange property (Definition 5.4.5.7).

(4) The collection T has the four-out-of-five property (Definition 5.4.6.8).

Then every thin 2-simplex of C belongs to T .

Proof. Let σ be a thin 2-simplex of C, whose 1-skeleton we represent by the diagram

Y

g

  
X

f

??

h // Z.

https://kerodon.net/tag/01Y3
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Applying assumption (2), we can choose a thin 2-simplex σ′ of C which belongs to T whose
restriction to the 1-skeleton of ∆2 is represented by the diagram

Y

g

  
X

f

??

h′ // Z.

The edge g determines a morphism of simplicial sets ∆1 → C. Let E denote the fiber
product ∆1 ×C CX/. Since the projection map CX/ → C is an interior fibration (Proposition
5.4.3.1), it follows from Remark 5.4.2.4 and Example 5.4.2.2 that the projection map
π : E → ∆1 is an inner fibration; in particular, E is an∞-category. Moreover, we can identify
the edges f , h, and h′ of C with objects Ỹ , Z̃, and Z̃ ′ of E , and the 2-simplices σ and σ′ with
morphisms h̃ : Ỹ → Z̃ and h̃′ : Ỹ → Z̃ ′. Since σ and σ′ are both thin, the morphisms h̃ and
h̃′ are both π-cocartesian (Theorem 5.4.4.1). It follows that h̃ and h̃′ are isomorphic when
viewed as objects of the ∞-category E

Ỹ /
(see Remark 5.1.3.8). We can therefore choose a

2-simplex ρ of E
Ỹ /

whose 1-skeleton is given by the diagram

h̃′

��
h̃

id̃
h //

@@

h̃,

which we can identify with a 4-simplex τ : ∆4 → C. For 0 ≤ i < j < k ≤ 4, let τkji
denote the 2-simplex of C given by τ |N•({i<j<k}). By construction, the 2-simplex τ310 is
equal to σ′, and therefore belongs to T . Moreover, the 2-simplices τ420, τ321, τ431, and
τ432 are right-degenerate, and therefore belong to T by virtue of assumption (1). Since
T has the four-out-of-five-property, it follows that τ430 belongs to T . Applying the inner
exchange property to the 3-simplex τ |N•({0<1<3<4}), we deduce that the 2-simplex σ = τ410
also belongs to T , as desired.

5.4.7 Functors of (∞, 2)-Categories

01Y4Let C and D be ∞-categories. Recall that a functor from C to D is a morphism of
simplicial sets F : C → D (Definition 1.5.0.1). In this case, it is automatic that F carries
isomorphisms in C to isomorphisms in D (Remark 1.5.1.6). Beware that the (∞, 2)-categorical
analogue of this statement is false: if C and D are (∞, 2)-categories, then a morphism of

https://kerodon.net/tag/01Y4
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simplicial sets F : C → D will generally not carry thin 2-simplices of C to thin 2-simplices of
D. This motivates the following:

Definition 5.4.7.1.01Y5 Let C and D be (∞, 2)-categories. A functor from C to D is a morphism
of simplicial sets F : C → D which carries thin 2-simplices of C to thin 2-simplices of D.

Example 5.4.7.2.01Y6 Let C be an (∞, 2)-category and let D be an ∞-category. Then every
2-simplex of D is thin, so every morphism of simplicial sets F : C → D is a functor. In
particular, when C and D are ∞-categories, Definition 5.4.7.1 reduces to Definition 1.5.0.1.

Example 5.4.7.3.01Y7 Let C and D be 2-categories. By virtue of Theorem 2.3.4.1 and Corollary
2.3.4.5, passage to the Duskin nerve induces a bijection

{Strictly unitary functors of 2-categories C → D}

��
{Functors of (∞, 2)-categories ND

• (C)→ ND
• (D)}.

Remark 5.4.7.4 (Functoriality).01Y8 Let C and D be (∞, 2)-categories, and let F : C → D be
a morphism of simplicial sets. Then F is a functor (Definition 5.4.7.1) if and only it carries
Pith(C) into Pith(D). If this condition is satisfied, then Pith(F ) = F |Pith(C) can be regarded
as a functor from the ∞-category Pith(C) to the ∞-category Pith(D).

Remark 5.4.7.5.047S Let C and D be (∞, 2)-categories and let F : C → D be a morphism of
simplicial sets. If F is a functor of (∞, 2)-categories and u : X → Y is an isomorphism
in the (∞, 2)-category C, then F (u) : F (X) → F (Y ) is an isomorphism in the (∞, 2)-
category D (see Definition 5.4.5.12). This follows by applying Remark 1.5.1.6 to the functor
Pith(F ) : Pith(C)→ Pith(D) of Remark 5.4.7.4. Beware that, if F is not assumed to be a
functor, then F (u) need not be an isomorphism.

Remark 5.4.7.6.01Y9 Let C be an ∞-category and let D be an (∞, 2)-category. Then every
functor F : C → D takes values in the pith Pith(D) ⊆ D. Consequently, the inclusion
Pith(D) ↪→ D induces a bijection

{Functors of ∞-categories from C to Pith(D)}

��
{Functors of (∞, 2)-categories from C to D}.

Note that this property (together with Proposition 5.4.5.6) characterize the simplicial set
Pith(D) up to unique isomorphism.

https://kerodon.net/tag/01Y5
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Remark 5.4.7.7. 01YAThe existence of morphisms between (∞, 2)-categories which do not
preserve thin 2-simplices should be viewed as a feature of our formalism, rather than a bug.
Recall that, if C and D are 2-categories, then Theorem 2.3.4.1 supplies a bijection

{Strictly unitary lax functors C → D}

∼

��
{Morphisms of simplicial sets ND

• (C)→ ND
• (D)}.

Consequently, we can think of general morphisms of simplicial sets as providing a generaliza-
tion of the notion of (strictly) unitary lax functors to the setting of (∞, 2)-categories.

Warning 5.4.7.8. 01YBFor every pair of simplicial sets C and D, we let Fun(C,D) denote the
simplicial set introduced in Construction 1.5.3.1. When working with (∞, 2)-categories, this
notation is potentially confusing. By construction, vertices of the simplicial set Fun(C,D) can
be identified with morphisms of simplicial sets F : C → D. If C and D are (∞, 2)-categories,
then such morphisms need not carry thin 2-simplices of C to thin 2-simplices of D, and
therefore need not correspond to functors from C to D in the sense of Definition 5.4.7.1. We
will return to this point in §[?].

The following criterion is often useful for checking that a morphism of (∞, 2)-categories
F : C → D is a functor:

Proposition 5.4.7.9. 01YCLet C and D be (∞, 2)-categories and let F : C → D be a morphism
of simplicial sets. The following conditions are equivalent:

(1) The morphism F is a functor: that is, it carries thin 2-simplices of C to thin 2-simplices
of D.

(2) For every pair of morphisms f : X → Y and g : Y → Z of C, there exists a thin
2-simplex σ of C with d2

0(σ) = g and d2
2(σ) = f , as indicated in the diagram

Y

g

��
X

f

??

// Z,

such that F (σ) is a thin 2-simplex of D.

https://kerodon.net/tag/01YA
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Proof. The implication (1)⇒ (2) is immediate. To prove the converse, let T be the collection
of all 2-simplices of C for which F (σ) is a thin 2-simplex of D. Since the collection of thin
2-simplices of D has the four-out-of-five property (Proposition 5.4.6.11), it follows that T also
has the four-out-of-five property (Remark 5.4.6.10). Since the collection of thin 2-simplices of
D has the inner exchange property (Proposition 5.4.5.10), T has the inner exchange property
(Remark 5.4.5.9). Since D is an (∞, 2)-category, every degenerate 2-simplex of D is thin, so
every degenerate 2-simplex of C belongs to T . If condition (2) is satisfied, then Proposition
5.4.6.14 guarantees that every thin 2-simplex of C belongs to T , so that F is a functor.

Proposition 5.4.7.10.01YD Let F : C → D be an interior fibration of (∞, 2)-categories (Defini-
tion 5.4.2.1). Then:

(1) The morphism F is a functor of (∞, 2)-categories: that is, it carries thin 2-simplices of C
to thin 2-simplices of D, and therefore induces a functor Pith(F ) : Pith(C)→ Pith(D).

(2) The diagram of simplicial sets

Pith(C) //

Pith(F )

��

// C

F

��
Pith(D) // D

is a pullback square.

(3) The functor Pith(F ) : Pith(C)→ Pith(D) is an inner fibration of ∞-categories.

Proof. We will prove assertion (1) by showing that F satisfies the criterion of Proposition
5.4.7.9. Let f : X → Y and g : Y → Z be morphisms of C. Since D is an (∞, 2)-category,
we can choose a thin 2-simplex σ of D satisfying d2

0(σ) = F (g) and d2
2(σ) = F (f), which we

depict as a diagram

F (Y )

F (g)

""
F (X)

F (f)

<<

// F (Z).

https://kerodon.net/tag/01YD
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Since F is an interior fibration, the lifting problem

Λ2
1

(g,•,f) //

��

C

F

��
∆2 σ //

σ

??

D

admits a solution. Then σ is a thin 2-simplex of C (Lemma 5.4.2.6) for which the image
σ = F (σ) is a thin 2-simplex of D.

We now prove (2). Let τ be an m-simplex of the simplicial set C, and suppose that F (τ)
belongs to the pith Pith(D). We wish to show that τ belongs to Pith(C): that is, that it
carries each 2-simplex of ∆m to a thin 2-simplex of C. This follows immediately from Lemma
5.4.2.6, since the composite map

∆2 → ∆m τ−→ C F−→ D

is a thin 2-simplex of D.
Combining (2) with Remark 5.4.2.4, we conclude that the functor Pith(F ) : Pith(C)→

Pith(D) is an interior fibration. Since Pith(D) is an ∞-category (Proposition 5.4.5.6), it
follows that Pith(F ) is an inner fibration (Example 5.4.2.2).

Corollary 5.4.7.11. 01YELet C be an (∞, 2)-category, let f : K → C be a morphism of simplicial
sets, and let

q′ : Cf/ → C q : C/f → C

be the projection maps. Then:

(1) The functor Pith(q) : Pith(C/f ) → Pith(C) is a cartesian fibration of ∞-categories.
Moreover, a morphism u of Pith(C/f ) is Pith(q)-cartesian if and only if, for every
vertex z ∈ K, the composite map

∆2 ≃ ∆1 ⋆ {z} ↪→ ∆1 ⋆ K
u−→ C

is a thin 2-simplex of C.

(2) The functor Pith(q′) : Pith(Cf/) → Pith(C) is a cocartesian fibration of ∞-categories.
Moreover, a morphism v of Pith(Cf/) is Pith(q′)-cocartesian if and only if, for every
vertex x ∈ K, the composite map

∆2 ≃ {x} ⋆∆1 ↪→ K ⋆∆1 v−→ C

is a thin 2-simplex of C.

https://kerodon.net/tag/01YE
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Proof. Combine Propositions 5.4.7.10 and 5.4.5.14.

Specializing Corollary 5.4.7.11 to the case K = ∆0, we obtain the following:

Corollary 5.4.7.12.01YF Let C be an (∞, 2)-category and let Z be an object of C. Then:

(1) The projection map π : C/Z → C induces a cartesian fibration of ∞-categories Pith(π) :
Pith(C/Z)→ Pith(C).

(2) A morphism u of Pith(C/Z) is Pith(π)-cartesian if and only if it corresponds to a thin
2-simplex of C (in this case, it is also π-cartesian when viewed as a morphism of C/Z).

(3) The inclusion Pith(C) ↪→ C induces an isomorphism from Pith(C)/Z to the (non-full)
subcategory of Pith(C/Z) spanned by the π-cartesian morphisms.

Proof. Assertions (1) and (2) follow from Corollary 5.4.7.11, and assertion (3) is an immediate
consequence of (2).

Remark 5.4.7.13.01YG Recall that every cartesian fibration of simplicial sets π : E → D has an
underlying right fibration π′ : E ′ → D, given by restricting π to the simplicial subset E ′ ⊆ E
spanned by those simplices σ : ∆n → E which carry each edge of ∆n to π-cartesian edge of
E . Corollary 5.4.7.12 asserts that, when π is the cartesian fibration Pith(C/Z) → Pith(C)
associated to a choice of object Z of an (∞, 2)-category C, then π′ can be identified with the
right fibration Pith(C)/Z → Pith(C) supplied by Corollary 4.3.6.11; compare with Proposition
5.4.5.13.

We can also use Proposition 5.4.7.10 to deduce a relative version of Proposition 5.4.3.1:

Corollary 5.4.7.14.01YH Let C be an (∞, 2)-category, let f : K → C be a morphism of simplicial
sets, and let f0 = f |K0 denote the restriction of f to a simplicial subset K0 ⊆ K. Then the
projection maps

Cf/ → Cf0/ C/f → C/f0

are interior fibrations of (∞, 2)-categories.

Warning 5.4.7.15.01YJ In the situation of Corollary 5.4.7.14, the induced map Pith(C/f )→
Pith(C/f0) is generally not a cartesian fibration, and the induced map Pith(Cf/)→ Pith(Cf0/)
is generally not a cocartesian fibration.

Proof of Corollary 5.4.7.14. We will show that the map of slice simplicial sets q : C/f → C/f0

is an interior fibration; the analogous statement for coslice simplicial sets follows by a similar
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argument. We first observe that C/f0 is an (∞, 2)-category (Corollary 5.4.3.4). Suppose we
are given an integer n ≥ 2 and a lifting problem

Λni
σ0 //

��

C/f

q

��
∆n σ //

σ

==

C/f0 .

We wish to show that this lifting problem admits a solution provided that one of the following
conditions is satisfied:

(a) The integer i is equal to 0 and σ0|N•({0<1}) is a degenerate edge of C/f .

(b) The integer i satisfies 0 < i < n and the restriction σ|N•({i−1<i<i+1}) is a thin 2-simplex
of C/f0 .

(c) The integer i is equal to n and σ0|N•({n−1<n}) is a degenerate edge of C/f .

In cases (a) and (c), this follows immediately from Proposition 5.4.3.8. In case (b), it suffices
(by virtue of Proposition 5.4.3.8) to verify that the composite map

∆2 ≃ N•({i− 1 < i < i+ 1}) ⊆ ∆n σ−→ C/f0 → C

is a thin 2-simplex of C. This follows from our hypothesis, since the projection map C/f0 → C
preserves thin 2-simplices (Proposition 5.4.7.10).

5.4.8 Strict (∞, 2)-Categories

01YKLet C be a simplicial category. If C is locally Kan, then Theorem 2.4.5.1 guarantees
that the homotopy coherent nerve Nhc

• (C) is an ∞-category. Our goal in this section is to
establish an (∞, 2)-categorical variant of this result:

Theorem 5.4.8.1. 01YLLet C be a simplicial category. Suppose that, for every pair of objects
X and Y , the simplicial set HomC(X,Y )• is an ∞-category. Then the homotopy coherent
nerve Nhc

• (C) is an (∞, 2)-category.

We will deduce Theorem 5.4.8.1 from the following thinness criterion for 2-simplices of
the homotopy coherent nerve Nhc

• (C).

Proposition 5.4.8.2. 01YMLet C be a simplicial category. Suppose that, for every pair of objects
X and Y , the simplicial set HomC(X,Y )• is an ∞-category. Let σ be a 2-simplex of the

https://kerodon.net/tag/01YK
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homotopy coherent nerve Nhc
• (C), which we identify with a (not necessarily commutative)

diagram
Y

g

��
X

f

??

h
// Z

in C together with an edge µ : g ◦ f → h in the simplicial set HomC(X,Z)•. If µ is an
isomorphism, then σ is thin.

Proof. Suppose we are given integers n ≥ 3, 0 < i < n, and a morphism of simplicial sets
τ0 : Λni → Nhc

• (C) for which the restriction τ0|N•({i−1<i<i+1}) is the 2-simplex σ. We wish to
show that τ0 can be extended to an n-simplex of C. Let Path[n]• be the simplicial category
described in Notation 2.4.3.1, and let us identify Path[Λni ]• with the simplicial subcategory
of Path[n]• described in Proposition 2.4.5.8. Then τ0 can be identified with a simplicial
functor F0 : Path[Λn

i ]• → C, and we wish to show that τ0 can be extended to a simplicial
functor F : Path[n]• → C.

For 0 ≤ j ≤ n, let Cj denote the object of C given by F0(j). For 1 ≤ j ≤ n, let
uj : Cj−1 → Cj be the morphism in C obtained by applying F0 to the unique vertex of
HomPath[Λn

i ](j − 1, j), so that we have a chain of composable morphisms

C0
u1−→ C1

u2−→ · · · un−→ Cn

in the simplicial category C. Let n−1 denote the simplicial cube of dimension (n− 1) and
let ⊓n−1

i ⊆ n−1 denote the hollow cube of Notation 2.4.5.5, so that Remark 2.4.5.4 and
Proposition 2.4.5.8 supply isomorphisms

HomPath[n](0, n)• ≃ n−1 HomPath[Λn
i ](0, n)• ≃ ⊓n−1

i .

Let λ0 denote the composite map

⊓n−1
i ≃ HomPath[Λn

i ](0, n)•
F0−→ HomC(C0, Cn)•.

By virtue of Corollary 2.4.5.10, it will suffice to show that λ0 can be extended to a morphism
of simplicial sets λ : n−1 → HomC(C0, Cn)•.

Let I denote the set {1, 2, . . . , i− 1, i+ 1, · · · , n− 1}, so that we can identify n−1 with
the product ∆1 × I . Under this identification, ⊓n−1

i corresponds to the pushout

(∆1 × ∂ I)
∐

({0}×∂ I)
({0} × I).
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Let v ∈ I be the initial vertex (corresponding to the empty subset of I), and let e be the
edge of HomC(C0, Cn)• given by the composite map

∆1 × {v} ↪→ ∆1 × ∂ I ↪→ ⊓n−1
i

λ0−→ HomC(C0, Cn)•.

Unwinding the definitions, we see that e is the image of µ under the morphism of simplicial
sets

HomC(Ci−1, Ci+1)• → HomC(C0, Cn)• ρ 7→ un ◦ un−1 ◦ · · ·ui+2 ◦ ρ ◦ ui−1 ◦ · · · ◦ u1,

and is therefore an isomorphism in the ∞-category HomC(C0, Cn)•. Note that every simplex
of I which is not contained in the boundary ∂ I has initial vertex v. The existence of the
desired extension λ now follows from Proposition 4.4.5.8.

Example 5.4.8.3. 01YNLet C be a simplicial category. Suppose that, for every pair of objects X
and Y , the simplicial set HomC(X,Y )• is an∞-category. Then the inclusion N•(C) ↪→ Nhc

• (C)
of Remark 2.4.3.8 carries every 2-simplex of the ordinary nerve N•(C) to a thin 2-simplex of
the homotopy coherent nerve Nhc

• (C).

To verify the outer horn-filling conditions which appear in Definition 5.4.1.1, we will
need a variant of Proposition 2.4.5.8.

Proposition 5.4.8.4. 01YPLet n ≥ 2 be an integer and let F : Path[Λn
n]• → Path[∆n]• be the

simplicial functor induced by the horn inclusion Λnn ↪→ ∆n. Then:

(a) The functor F is bijective on objects; in particular, we can identify the objects of
Path[Λnn]• with elements of the set [n] = {0 < 1 < · · · < n}.

(b) For (0, n− 1) ̸= (i, j) ̸= (0, n), the functor F induces an isomorphism of simplicial sets

HomPath[Λn
n](i, j)• ≃ HomPath[∆n](i, j)•.

(c) The functor F induces a monomorphism of simplicial sets

HomPath[Λn
n](0, n− 1)• ↪→ HomPath[∆n](0, n− 1)•,

whose image can be identified with the boundary

∂ n−2 ⊆ n−2 ≃ HomPath[∆n](0, n− 1)•

introduced in Notation 2.4.5.5.

https://kerodon.net/tag/01YN
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(d) The functor F induces a monomorphism of simplicial sets

HomPath[Λn
n](0, n)• ↪→ HomPath[∆n](0, n)•,

whose image can be identified with the hollow cube

⊔n−1
n−1 ⊆

n−1 ≃ HomPath[∆n](0, n)•

introduced in Notation 2.4.5.5.

Proof. Assertion (a) is immediate from Theorem 2.4.4.10. To prove the remaining assertions,
fix an integer m ≥ 0. Using Lemma 2.4.4.16, we see that Path[∆n]m can be identified
with the path category Path[G] of a directed graph G which can be described concretely as
follows:

• The vertices of G are the elements of the set [n] = {0 < 1 < · · · < n}.

• For 0 ≤ i < j ≤ n, an edge of G with source j and target k is a chain of subsets

{i, i+ 1, . . . , j − 1, j} ⊇ I0 ⊇ · · · ⊇ Im = {i, j}

Using Theorem 2.4.4.10, we see that Path[Λnn]m can be identified with the path category of
the directed subgraph G′ ⊆ G having the same vertices, where an edge −→I = (I0 ⊇ · · · ⊇ Im)
of G belongs to G′ if and only if the subset I0 ⊆ [n] corresponds to a simplex of ∆n which
belongs to the horn Λnn: that is, if and only if [n− 1] ⊈ I0. We now argue as follows:

• For (0, n− 1) ̸= (i, j) ̸= (0, n), every path from i to j in the graph G is also a path in
the graph G′. This proves (b).

• Let τ be a morphism from 0 to n− 1 in the category Path[n]m, which we identify with
a chain of subsets

[n− 1] ⊇ I0 ⊇ I1 ⊇ · · · ⊇ Im ⊇ {0, n− 1}.

Then τ belongs to Path[Λnn]m if and only if I0 ≠ [n− 1] or Im ≠ {0, n− 1}: that is, if
and only if τ corresponds to an m-simplex of the cube ∂ n−2 ⊆ n−2. This proves
(c).

• Let τ be a morphism from 0 to n in the category Path[n]m, which we identify with a
chain of subsets

[n] ⊇ I0 ⊇ I1 ⊇ · · · ⊇ Im ⊇ {0, n}.

Then τ belongs to Path[Λn
n]m if and only if I0 ̸= [n] or {0, n} ̸= Im ̸= {0, n − 1, n}:

that is, if and only if τ corresponds to an m-simplex of the hollow cube ⊔n−1
n−1 ⊆ n−1.

This proves (d).
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Corollary 5.4.8.5. 01YQLet C be a simplicial category, let n ≥ 2 be an integer, and let σ0 :
Λnn → Nhc

• (C) be a morphism of simplicial sets, which we identify with a simplicial functor
F : Path[Λnn]• → C inducing a map of simplicial sets

λ0 : ⊔n−1
n−1 ≃ HomPath[Λn

n](0, n)• → HomC(F (0), F (n))•.

Suppose that F carries the edge N•({n− 1 < n}) ⊆ Λnn to an isomorphism in C. Then the
restriction map

{Maps σ : ∆n → Nhc
• (C) with σ0 = σ|Λn

n
}

θ

��
{Maps λ : n−1 → HomC(F (0), F (n))• with λ0 = λ|⊔n−1

n−1
}

is bijective.

Proof. By virtue of Corollary 2.4.6.13, we can identify θ with a pullback of the restriction
map

{Maps σ1 : ∂∆n → Nhc
• (C) with σ0 = σ1|Λn

n
}

θ′

��
{Maps λ1 : ∂ n−1 → HomC(F (0), F (n))• with λ0 = λ1|⊔n−1

n−1
}.

It will therefore suffice to show that θ′ is bijective. Let us identify ∆n−1 with a simplicial
subset of ∆n (via the map which is the identity on vertices), so that the boundary ∂∆n−1 is
contained in the horn Λnn. Let τ0 denote the restriction of σ0 to ∂∆n−1, let µ0 denote the λ0
to the simplicial subset ∂ n−2×{0} ⊆ ⊔n−1

n−1. Note that µ0 can be written as a composition

∂ n−2 ≃ HomPath[∂∆n−1](0, n− 1)•
ν0−→ HomC(F (0), F (n− 1))• e◦−→ HomC(F (0), F (n))•,

where ν0 is determined by τ0. Using the identifications

∂∆n ≃ ∆n−1∐
∂∆n−1Λnn ∂ n−1 ≃ ( n−2×{0})

∐
(∂ n−2×{0})

⊔n−1
n−1,

https://kerodon.net/tag/01YQ
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we can identify θ′ with composition

{Maps τ : ∆n−1 → Nhc
• (C) with τ0 = τ |∂∆n}

��
{Maps ν : n−2 → HomC(F (0), F (n− 1))• with ν = ν0|∂ n−2}

e◦

��
{Maps µ : n−2 → HomC(F (0), F (n))• with µ = µ0|∂ n−2}.

Here the first map is bijective by virtue of Corollary 2.4.6.13, and the second by virtue of
our assumption that e is an isomorphism in the simplicial category C.

Proof of Theorem 5.4.8.1. Let C be a simplicial category with the property that, for every
pair of objects X,Y ∈ C, the simplicial set HomC(X,Y )• is an ∞-category. Using Example
5.4.8.3, we immediately deduce that every degenerate 2-simplex of the homotopy coherent
nerve Nhc

• (C) is thin, and that every morphism Λ2
1 → Nhc

• (C) can be extended to a thin
2-simplex of Nhc

• (C). We will complete the proof that Nhc
• (C) is an (∞, 2)-category by showing

that, if n ≥ 3 and σ0 : Λnn → Nhc
• (C) is a morphism of simplicial sets for which the 2-simplex

σ0|N•({0<n−1<n}) is right-degenerate, then σ0 can be extended to an n-simplex σ of C (the
dual assertion regarding extension of maps Λn

0 → Nhc
• (C) follows by the same argument,

applied to the opposite simplicial category Cop). Let us identify σ0 with a simplicial functor
F : Path[Λnn]• → C, carrying each element i ∈ [n] to an object Ci ∈ C.

Let n−1 denote the simplicial cube of dimension (n− 1) and let ⊔n−1
n−1 ⊆ n−1 denote

the hollow cube of Notation 2.4.5.5, so that Remark 2.4.5.4 and Proposition 5.4.8.4 supply
isomorphisms

HomPath[n](0, n)• ≃ n−1 HomPath[Λn
n](0, n) ≃ ⊓n−1

n−1.

Let λ0 denote the composite map

⊔n−1
n−1 ≃ HomPath[Λn

n](0, n)• F−→ HomC(C0, Cn)•.

Note that our degeneracy assumption on σ0|N•({0<n−1<n}) guarantees that the functor F
induces an isomorphism Cn−1 ≃ Cn in the category C. By virtue of Corollary 5.4.8.5, it
will suffice to show that λ0 can be extended to a morphism of simplicial sets λ : n−1 →
HomC C0, Cn)•.
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Let us identify ⊔n−1
n−1 with the pushout

(∂ n−2×∆1)
∐

(∂ n−2×{1})
( n−2×{1}).

Let v be the final vertex of the cube ∂ n−2 (corresponding to the set {1, 2, . . . , n − 2},
regarded as a subset of itself). Our assumption that the 2-simplex σ0|N•({0<n−1<n}) is
right-degenerate guarantees that the composite map

{v} ×∆1 ↪→ ⊔n−1
n−1

λ0−→ HomC(C0, Cn)•.

is a degenerate edge of the ∞-category HomC(C0, Cn)•; in particular, it is an isomorphism
of HomC(C0, Cn)•. Note that every simplex of n−2 which is not contained in the boundary
∂ n−2 has final vertex v. The existence of the desired extension λ now follows by applying
Proposition 4.4.5.8.

Proposition 5.4.8.6 (Functoriality). 01YRLet F : C → D be a functor of simplicial categories.
Assume that:

• For every pair of objects C,C ′ ∈ C, the simplicial set HomC(C,C ′)• is an ∞-category.

• For every pair of objects D,D′ ∈ D, the simplicial set HomD(D,D′)• is an ∞-category.

Then the induced map Nhc
• (F ) : Nhc

• (C)→ Nhc
• (D) is a functor of (∞, 2)-categories: that is,

it carries thin 2-simplices of Nhc
• (C) to thin 2-simplices of Nhc

• (D).

Proof. It follows from Theorem 5.4.8.1 that the simplicial sets Nhc
• (C) and Nhc

• (D) are
(∞, 2)-categories. We will show that the morphism Nhc

• (F ) is a functor by verifying the
criterion of Proposition 5.4.7.9. Let f : X → Y and g : Y → Z be morphisms in the category
C (or, equivalently, in the (∞, 2)-category Nhc

• (C)). Then f and g determine a 2-simplex of
the nerve N•(C), which we identify with 2-simplex σ of the homotopy coherent nerve Nhc

• (C)
(see Remark 2.4.3.8). By virtue of Example 5.4.8.3, σ is a thin 2-simplex of Nhc

• (C) and its
image Nhc

• (F )(σ) is a thin 2-simplex of Nhc
• (D).

We are now equipped to establish the converse of Proposition 5.4.8.2:

Proposition 5.4.8.7. 01YSLet C be a simplicial category. Suppose that, for every pair of objects
X and Y , the simplicial set HomC(X,Y )• is an ∞-category. Let σ be a 2-simplex of the
homotopy coherent nerve Nhc

• (C), which we identify with a (not necessarily commutative)
diagram

Y

g

��
X

f

??

h
// Z

https://kerodon.net/tag/01YR
https://kerodon.net/tag/01YS


5.4. (∞, 2)-CATEGORIES 1169

in C together with an edge µ : g ◦ f → h in the simplicial set HomC(X,Z)•. Then σ is thin
if and only if µ is an isomorphism in the ∞-category HomC(X,Z)•.

Proof. It follows from Proposition 5.4.8.2 that if µ is an isomorphism, then σ is thin.
Conversely, assume that σ is thin; we wish to show that µ is an isomorphism. Define a strict
2-category E as follows:

• The objects of E are the objects of C.

• For every pair of objects A,B ∈ C, we define HomE(A,B) to be the homotopy category
of the ∞-category HomC(A,B)•.

• For every triple of objects A,B,C ∈ C, we define the composition law

◦ : HomE(B,C)×HomE(A,B)→ HomE(A,C)

to be the functor of homotopy categories induced by the composition law

HomC(B,C)• ×HomC(A,B)• → HomC(A,C)

of the simplicial category C.

Let D denote the simplicial category obtained by applying the construction of Example
2.4.2.8 to the strict 2-category E : the simplicial category D has the same objects as C, with
simplicial morphism spaces given by

HomD(A,B)• = N•(HomE(A,B)) = N•(hHomC(A,B)•).

There is an evident functor of simplicial categories F : C → D, which is the identity on
objects and which induces the unit map HomC(A,B)• → N•(hHomC(A,B)•) on simplicial
morphism spaces. Invoking Proposition 5.4.8.6, we see that the induced map Nhc

• (F ) carries
σ to a thin 2-simplex of the homotopy coherent nerve Nhc

• (D), which we can identify with
the Duskin nerve ND

• (E) of the 2-category E (Example 2.4.3.11). Using the description of
the thin simplices of ND

• (E) supplied by Theorem 2.3.2.5, we conclude that the homotopy
class [µ] is an isomorphism in the category HomE(X,Z) = hHomC(X ,Z )•, so that µ is an
isomorphism in the ∞-category HomC(X,Z)•.

Corollary 5.4.8.8.01YT Let C be a simplicial category having the property that, for every pair
of objects X,Y ∈ C, the simplicial set HomC(X,Y )• is an ∞-category. Let C′ denote the
simplicial subcategory of C having the same objects, with morphism simplicial sets given by
HomC′(X,Y )• = HomC(X,Y )≃• . Then the inclusion of simplicial categories C′ ↪→ C induces
an isomorphism of ∞-categories Nhc

• (C′) ≃ Pith(Nhc
• (C)).

https://kerodon.net/tag/01YT
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Proof. Let σ be an n-simplex of the homotopy coherent nerve Nhc
• (C), which we identify

with a simplicial functor F : Path[n]• → C carrying each i ∈ [n] to an object Ci ∈ C. If
T ⊆ [n] is a nonempty subset having smallest element i and largest element k, let us write
F (T ) for the corresponding vertex of the simplicial set HomC(Ci, Ck)•. If S ⊆ T is a subset
containing i and k, let us write F (S ⊆ T ) : F (T )→ F (S) for the corresponding edge of the
simplicial set HomC(Ci, Ck)•. Let us abuse notation by identifying Nhc

• (C′) with a simplicial
subset of Nhc

• (C). Unwinding the definitions, we see that σ is contained in Nhc
• (C′) if and

only if the following condition is satisfied:

(1) For every inclusion S ⊆ T of nonempty subsets of [n] having the same smallest element
i and largest element k, the edge F (S ⊆ T ) : F (T )→ F (S) is an isomorphism in the
∞-category HomC(Ci, Ck)•.

Using the thinness criterion of Proposition 5.4.8.7, we see that σ belongs to the pith
Pith(Nhc

• (C)) if and only if the following a priori weaker condition is satisfied:

(2) For every triple of elements 0 ≤ i ≤ j ≤ k ≤ n, the edge

F ({i, k} ⊆ {i, j, k}) : F ({i, j, k})→ F ({i, k})

is an isomorphism in the ∞-category HomC(Ci, Ck)•).

To complete the proof, it will suffice to show that (2)⇒ (1). Assume that (2) is satisfied,
and suppose that we are given nonempty subsets S ⊆ T of [n] having the same smallest
element i and largest element k. We wish to show that F (S ⊆ T ) is an isomorphism in
the ∞-category HomC(Ci, Ck)•. Since the collection of isomorphisms contains all identity
morphisms and is closed under composition (Remark 1.4.6.3), we may assume without loss of
generality that the difference T \S contains exactly one element j. Set S− = {s ∈ S : s < j}
and S+ = {s ∈ S : s > j}. Let i′ be the largest element of S−, and let k′ denote the smallest
element of S+. Unwinding the definitions, we see that the edge F (S ⊆ T ) is the image of
F ({i′, k′} ⊆ {i′, j, k′}) under the functor

HomC(Ci′ , Ck′)•
F (S+)◦•◦F (S−)−−−−−−−−−−→ HomC(Ci, Ck)•,

and is therefore an isomorphism by virtue of assumption (2).

5.4.9 Comparison of Homotopy Transport Representations

02RXLet C be a locally Kan simplicial category containing an object X. Since the ho-
motopy coherent nerve Nhc

• (C) is an ∞-category (Theorem 2.4.5.1), the projection map
U : Nhc

• (C)X/ → Nhc
• (C) is a left fibration (Proposition 4.3.6.1). Let hTrNhc

• (C)X//Nhc
• (C) :

hNhc
• (C)→ hKan denote the homotopy transport representation of U . Combining Example

5.2.8.13 with Corollary 4.6.9.20, we obtain the following concrete description of the functor
hTrNhc

• (C)X//Nhc
• (C):

https://kerodon.net/tag/02RX
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Proposition 5.4.9.1.02RY Let C be locally Kan simplicial category containing an object X, and
let Φ : hC ∼−→ hNhc

• (C) be the isomorphism of Proposition 2.4.6.9. Then the diagram of
functors

hC

Φ
∼

||

HomC(X,•)•

!!
hNhc
• (C)

hTrNhc
• (C)X// Nhc

• (C)
// hKan

commutes up to isomorphism.

Our goal in this section is to formulate and prove a stronger version of Proposition
5.4.9.1, which differs in three respects:

• We drop the assumption that the simplicial category C is locally Kan, and assume
instead that the simplicial set HomC(Y,Z)• is an ∞-category for every pair of objects
Y, Z ∈ C. In this case, the nerve Nhc

• (C) need not be an ∞-category, so the projection
map U : Nhc

• (C)X/ → Nhc
• (C) need not be a left fibration. However, Theorem 5.4.8.1

guarantees that Nhc
• (C) is an (∞, 2)-category, so that U restricts to a cocartesian fibra-

tion of ∞-categories Pith(U) : Pith(Nhc
• (C)X/) → Pith(Nhc

• (C)) (Corollary 5.4.7.11).
Note that Proposition 2.4.6.9 and Corollary 5.4.8.8 supply an isomorphism of homo-
topy categories Φ : hC′ ∼−→ hPith(Nhc

• (C)), where C′ ⊆ C is the locally Kan simplicial
subcategory with morphism spaces given by HomC′(Y,Z)• = HomC(Y, Z)≃• .

• Proposition 5.4.9.1 asserts that a certain diagram commutes up to isomorphism.
However, it is possible to be more precise. For every pair of objects X,Y ∈ C, Theorem
4.6.8.9 supplies an equivalence of ∞-categories

θX,Y : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y ) = hTrPith(Nhc

• (C)X/)/Pith(Nhc
• (C))(Y ),

so that the homotopy class [θX,Y ] can be viewed as an isomorphism in the category
hQCat. We will show that [θX,Y ] depends functorially on Y , so that the construction
Y 7→ [θX,Y ] furnishes a natural isomorphism of functors

HomC(X, •)• → hTrPith(Nhc
• (C)X/)/Pith(Nhc

• (C)) ◦Φ

• Since Pith(Nhc
• (C)) is an ∞-category, we can regard the homotopy transport represen-

tation
hTrPith(Nhc

• (C)X/)/Pith(Nhc
• (C)) : hPith(Nhc

• (C))→ hQCat

as an hKan-enriched functor (Construction 5.2.8.9). Similarly, we can regard Φ as an
isomorphism of hKan-enriched categories (Corollary 4.6.9.20), and the construction

https://kerodon.net/tag/02RY
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Y 7→ HomC(X,Y )• determines an hKan-enriched functor from hC′ to hQCat. We
will show that the natural isomorphism Y 7→ [θY ] is compatible with these hKan-
enrichments.

Our main result is the following:

Theorem 5.4.9.2. 02RZLet C be a simplicial category having the property that, for every pair
of objects Y,Z ∈ C, the simplicial set HomC(Y,Z)• is an ∞-category. Let X be an object
of C, let hTr denote the (enriched) homotopy transport representation associated to the
cocartesian fibration Pith(U) : Pith(Nhc

• (C)X/)→ Pith(Nhc
• (C)), and let C′ ⊆ C be the locally

Kan simplicial subcategory defined above. Then the diagram of hKan-enriched functors

hC′

Φ
∼

||

HomC(X,•)•

!!
hNhc
• (C) hTr // hQCat

commutes up to natural isomorphism, given explicitly by the map

Y 7→ ([θX,Y ] : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y )).

of Construction 4.6.8.3.

Proof. For every object Y ∈ C, the comparison functor

θX,Y : HomC(X,Y )• → HomL
Nhc
• (C)(X,Y )

is an equivalence of ∞-categories (Theorem 4.6.8.9), so its homotopy class [θX,Y ] is an
isomorphism when regarded as a morphism in the homotopy category hQCat. To complete
the proof, it will suffice to show that the construction Y 7→ [θX,Y ] determines a natural
transformation of hKan-enriched functors. Let Y and Z be objects of C, so that the
map θY,Z restricts to a homotopy equivalence of Kan complexes θ≃Y,Z : HomC′(Y,Z)• →

https://kerodon.net/tag/02RZ
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HomNhc
• (C′)(Y,Z). We wish to show that the diagram of Kan complexes

02S0 HomC′(Y,Z)• //

θ≃Y,Z

��

Fun(HomC(X,Y )•,HomC(X,Z)•)≃

θX,Z◦

��

HomNhc
• (C′)(Y,Z)

ρ

��
Fun(HomL

Nhc
•

(X,Y ),HomL
Nhc
•

(X,Z))≃
◦θX,Y // Fun(HomC(X,Y )•,HomL

Nhc
•

(X,Z))≃

(5.26)
commutes up to homotopy, where ρ is given by parametrized covariant transport for the
cocartesian fibration Pith(U) : Pith(Nhc

• (C)X/)→ Pith(Nhc
• (C)) ≃ Nhc

• (C′).
We will show that there exists a functor of ∞-categories

H : ∆1 ×HomC(X,Y )• ×HomC(Y,Z)• → Nhc
• (C)X/

satisfying the following requirements:

(a) The diagram of simplicial sets

∆1 ×HomC(X,Y )• ×HomC(Y,Z)• H //

��

Nhc
• (C)X/

U

��
∆1 ×HomC(Y, Z)≃•

θY,Z // ∆1 ×HomNhc
• (C)(Y,Z) // Nhc

• (C)

commutes.

(b) The restriction H0 = H|{0}×HomC(X,Y )•×HomC(Y,Z)• is given by the composition

HomC(X,Y )• ×HomC(Y,Z)• → HomC(X,Y )•
θX,Y−−−→ HomL

Nhc
• (C)(X,Y ).

(c) The restriction H1 = H|{1}×HomC(X,Y )•×HomC(Y,Z)• is given by the composition

HomC(X,Y )• ×HomC(Y, Z)• ◦−→ HomC(X,Z)•
θX,Z−−−→ HomL

Nhc
• (C)(X,Z).

https://kerodon.net/tag/02S0
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(d) For every pair of morphisms f : X → Y and g : Y → Z in C, the composite map

∆1 × {f} × {g} ↪→ ∆1 ×HomC(X,Y )• ×HomC(Y, Z)• H−→ Nhc
• (C)X/

is a U -cocartesian morphism of the (∞, 2)-category Nhc
• (C)X/ (that is, it corresponds

to a thin 2-simplex of Nhc
• (C); see Theorem 5.4.4.1.

Assume for the moment that there exists a morphism H satisfying these requirements.
Note that the restriction H|{1}×HomC(X,Y )•×HomC′ (Y,Z)• can be identified with a map of Kan
complexes

λ : HomC′(Y,Z)• → Fun(HomC(X,Y )•,HomL
Nhc
•

(X,Z))≃.

It follows from requirement (c) that λ is given by clockwise composition around the diagram
(5.26), and from requirements (a), (b), and (d) that λ is also given (up to homotopy) by
counterclockwise composition around the diagram (5.26). It follows that the diagram (5.26)
commutes up to homotopy, as desired.

It remains to construct the morphism H. Fix an auxiliary symbol e, let n ≥ 0, and let σ
be an n-simplex of the simplicial set ∆1 ×HomC(X,Y )• ×HomC(Y,Z)•. We will identify σ
with a triple (α, fσ, gσ), where α : [n]→ [1] is a nondecreasing function, fσ is an n-simplex
of HomC(X,Y )•, and Fgσ is an n-simplex of HomC(Y, Z)•. Let Path[{e} ⋆ [n]]• denote the
simplicial path category of the linearly ordered set {e}⋆[n] = {e < 0 < · · · < n} (see Notation
2.4.3.1). To the n-simplex σ, we associate a simplicial functor hσ : Path[{e} ⋆ [n]]• → C as
follows:

• On objects, the functor hσ is given by the formula

hσ(i) =


X if i = e

Y if 0 ≤ i ≤ n and α(i) = 0
Z if 0 ≤ i ≤ n and α(i) = 1.

• Let i < j be elements of the linearly ordered set {e} ⋆ [n], so that HomPath[{e}⋆[n]](i, j)•
can be identified with the nerve N•(Q), where Q is the collection of all subsets
K ⊆ {e} ⋆ [n] having smallest element i and largest element j (and we regard Q as
ordered by reverse inclusion). The simplicial functor hσ is given on morphisms by
a map of simplicial sets ui,j : N•(Q) → HomC(hσ(i), hσ(j)). If 0 ≤ i < j ≤ n with
α(i) = α(j), we take ui,j to be the constant map taking the value idY (if α(i) = 0) or
idZ (if α(i) = 1). The remaining cases can be described as follows:

(a′) If 0 ≤ i < j ≤ n satisfy α(i) = 0 and α(j) = 1, then ui,j is given by the
composition

N•(Q) r+−→ ∆n gσ−→ HomC(Y, Z)•,

where r+ is given on vertices by the formula r+(K) = min{k ∈ K : α(k) = 1}.
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(b′) If i = e and α(j) = 0, then ui,j is given by the composition

N•(Q) r−−→ ∆n fσ−→ HomC(X,Y )•,

where r− is given on vertices by the formula r−(K) = min{k ∈ K : k > e}.

(c′) If i = e and α(j) = 1, then ui,j is given by the composition

N•(Q) (r+,r−)−−−−−→ ∆n ×∆n gσ×fσ−−−−→ HomC(Y, Z)• ×HomC(X,Y )• ◦−→ HomC(X,Z)•,

where r− and r+ are defined as above.

Note that we can identify hσ with a morphism of simplicial sets {e} ⋆∆n → Nhc
• (C) carrying

{e} to the vertex X, which we can view as an n-simplex H(σ) of the (∞, 2)-category
Nhc
• (C)X/. The construction σ 7→ H(σ) determines a morphism of simplicial sets

H : ∆1 ×HomC(X,Y )• ×HomC(Y,Z)• → Nhc
• (C)X/.

Requirements (a), (b), and (c) follow immediately from (a′), (b′), and (c′) (together with the
definitions of the maps θY,Z , θX,Y , and θX,Z , respectively). Requirement (d) follows from
the description of the thin 2-simplices of Nhc

• (C) supplied by Proposition 5.4.8.7.

5.5 The ∞-Categories S and QC

01YV Let Kan denote the category of Kan complexes and let hKan denote its homotopy
category (Construction 3.1.5.10). There is an evident forgetful functor U : Kan → hKan,
which carries each Kan complex X to itself and each morphism of Kan complexes f : X → Y

to its homotopy class [f ] ∈ π0(Fun(X,Y )). Broadly speaking, homotopy theory is concerned
with questions about Kan complexes which are invariant under homotopy equivalence. Since
a morphism of Kan complexes f is a homotopy equivalence if and only if its homotopy
class [f ] is an isomorphism, it is tempting to characterize homotopy theory as the study
of the category hKan. Beware that this characterization is somewhat misleading: many
questions belonging to the purview of homotopy theory cannot be formulated at the level of
the homotopy category. For example, suppose we are given a commutative diagram of Kan
complexes σ :

X ′ //

��

X

��
Y ′ // Y.

https://kerodon.net/tag/01YV
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One can then ask if σ is a homotopy pullback square (Definition 3.4.1.1). Though the answer
to this question depends only on the homotopy type of the diagram σ (Corollary 3.4.1.12),
it does not depend only on the associated diagram U(σ) in the homotopy category hKan
(see Example 3.4.1.13).

Roughly speaking, the problem is that passage from the category of Kan complexes Kan
to its homotopy category hKan destroys too much information. To remedy the situation, it
is convenient to consider a refinement of the homotopy category hKan. Note that Kan has
the structure of a simplicial category (see Example 2.4.2.1). In §5.5.1, we show that the
homotopy coherent nerve Nhc

• (Kan) is an ∞-category (Proposition 5.5.1.2), which we will
denote by S and refer to as the ∞-category of spaces (Construction 5.5.1.1). After passing
to nerves, the forgetful functor U : Kan→ hKan factors as a composition

N•(Kan) U ′
↪−→ Nhc

• (Kan) = S U ′′−−→ N•(hKan)

with the following features:

• The functor U ′ is a monomorphism of simplicial sets which is bijective on vertices and
edges. In particular, we can identify objects of the ∞-category S with Kan complexes,
and morphisms in the ∞-category S with morphisms of Kan complexes (Remark
5.5.1.3).

• The functor U ′′ exhibits hKan as a homotopy category of the ∞-category S (Remark
5.5.1.6). In particular, a map of Kan complexes f : X → Y is a homotopy equivalence
if and only if it is an isomorphism when regarded as a morphism of the ∞-category S
(Remark 5.5.1.4).

In §5.5.3, we introduce a variant of the ∞-category S whose objects are pointed Kan
complexes (X,x). Here there are (at least) two different ways we might proceed:

• Let Kan∗ denote the category of pointed Kan complexes (Definition 3.2.1.5). Note that
Kan∗ can be identified with the coslice category Kan∆0/, where we regard the standard
simplex ∆0 as an object of the category Kan. This identification determines a simplicial
enrichment of the category Kan∗, and we can obtain an ∞-category Nhc

• (Kan∗) by
passing to the homotopy coherent nerve.

• If we regard ∆0 as an object of the ∞-category S, then we can instead form the
coslice ∞-category S∆0/. We will denote this ∞-category by S∗ and refer to it as the
∞-category of pointed spaces (Construction 5.5.3.1).

Beware that the ∞-categories Nhc
• (Kan∗) and S∗ are not isomorphic as simplicial sets.

However, there is a natural comparison functor Nhc
• (Kan∗) ↪→ S∗ which is an equivalence of

∞-categories (Proposition 5.5.3.8). This is a special case of a general assertion concerning
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the compatibility of the homotopy coherent nerve with (co)slice constructions (Theorem
5.5.2.21), which we formulate and prove in §5.5.2.

In §5.5.5, we consider an enlargement of the∞-category S. Let Set∆ denote the category
of simplicial sets and let QCat ⊆ Set∆ denote the full subcategory spanned by the ∞-
categories, which we again regard as a simplicial category (see Example 2.4.2.1). The
homotopy coherent nerve Nhc

• (QCat) is an (∞, 2)-category (Proposition 5.5.5.2), which
we will denote by QCQCQC and refer to as the (∞, 2)-category of ∞-categories (Construction
5.5.5.1). For many applications, it is convenient to work instead with the underlying ∞-
category QC = Pith(QCQCQC), which we study in §5.5.4. Both of these constructions have pointed
analogues, which we introduce and compare in §5.5.6.

Warning 5.5.0.1.01YW The constructions of this section depend on a choice of dichotomy
between “small” and “large” mathematical objects, and we implicitly assume that the
categories Set∆ ⊇ QCat ⊇ Kan consist only of small simplicial sets. In particular, the
objects of S are small Kan complexes, and the objects of QC are small ∞-categories. By
contrast, the ∞-categories S and QC are not themselves small. In particular, one cannot
regard QC as an object of itself, or the Kan complex S≃ as an object of S.

5.5.1 The ∞-Category of Spaces

01YX We begin by introducing a refinement of Construction 3.1.5.10.

Construction 5.5.1.1 (The ∞-Category of Spaces).00TZ00TZ Let Kan denote the category of Kan
complexes. We view Kan as a simplicial category, with simplicial morphism sets given by
the construction

HomKan(X,Y )• = Fun(X,Y ).

We let S denote the homotopy coherent nerve Nhc
• (Kan) (Definition 2.4.3.5). We will refer

to S as the ∞-category of spaces.

Proposition 5.5.1.2.01YY The simplicial set S is an ∞-category.

Proof. By virtue of Theorem 2.4.5.1, it suffices to show that the simplicial category Kan is
locally Kan: that is, for every pair of Kan complexes X and Y , the simplicial set Fun(X,Y )
is also a Kan complex. This is a special case of Corollary 3.1.3.4.

Remark 5.5.1.3.01YZ Let N•(Kan) denote the nerve of the category of Kan complexes, where
we view Kan as an ordinary category. There is an evident monomorphism of simplicial sets

ι : N•(Kan) ↪→ Nhc
• (Kan) = S,

which is bijective on simplices of dimension ≤ 1 (Example 2.4.3.9). In other words:

https://kerodon.net/tag/01YW
https://kerodon.net/tag/01YX
https://kerodon.net/tag/00TZ
https://kerodon.net/tag/00TZ
https://kerodon.net/tag/01YY
https://kerodon.net/tag/01YZ
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• The objects of the ∞-category S are Kan complexes.

• If X and Y are Kan complexes, then morphisms f : X → Y in the ∞-category S can
be identified with morphisms of simplicial sets from X to Y .

However, ι is not bijective on simplices of dimension ≥ 2. For example, 2-simplices of S can
be identified with diagrams of Kan complexes

Y

g

��

µ

��
X

f

??

h
// Z

which commute up to a specified homotopy µ : (g ◦ f)→ h.

Remark 5.5.1.4. 01Z0Let f : X → Y be a morphism of Kan complexes. Then f is a homotopy
equivalence (in the sense of Definition 3.1.6.1) if and only if it is an isomorphism when
viewed as a morphism of the ∞-category S.

Remark 5.5.1.5. 01Z1Let X and Y be Kan complexes. Then Remark 4.6.8.6 supplies a
canonical homotopy equivalence of Kan complexes Fun(X,Y )→ HomS(X,Y ). Beware that
this homotopy equivalence is generally not an isomorphism.

Remark 5.5.1.6. 00U000U0Let X and Y be Kan complexes, and let f, g : X → Y be morphisms.
Then f and g are homotopic as morphisms of simplicial sets (that is, they belong to the same
connected component of the Kan complex Fun(X,Y )) if and only if they are homotopic as
morphisms in the ∞-category S (Definition 1.4.3.1). Consequently, the category hKan of
Construction 3.1.5.10 can be identified with the homotopy category of the ∞-category S
(this is a special case of Proposition 2.4.6.9). Moreover, this identification is compatible
(via the homotopy equivalences of Remark 5.5.1.5) with the hKan-enrichments supplied by
Remark 3.1.5.12 and Construction 4.6.9.13 (see Corollary 4.6.9.20).

Remark 5.5.1.7 (Comparison with Sets). 01Z2For every set S, let S denote the associated
constant simplicial set (Construction 1.1.5.2). The construction S 7→ S determines a fully
faithful embedding from the category of sets to the category of Kan complexes. Passing to
homotopy coherent nerves, we obtain a functor of ∞-categories N•(Set)→ S. This functor
is fully faithful: in fact, it is an isomorphism from N•(Set) to the full subcategory of S
spanned by Kan complexes of the form S. We will generally abuse notation by identifying
(the nerve of) the category Set with its image in S: in particular, we will not distinguish
between a set S and the associated constant simplicial set S, viewed as an object of S. We
can summarize the situation informally by saying that the ∞-category S is an enlargement
of the ordinary category Set.
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Remark 5.5.1.8 (Comparison with Groupoids).01Z3 Let Cat denote the (strict) 2-category
of small categories, let Gpd ⊆ Cat denote the full subcategory spanned by the groupoids,
and let Gpd• denote the associated simplicial category (Example 2.4.2.8), which we can
describe concretely as follows:

• The objects of the simplicial category Gpd• are small groupoids.

• If C and D are groupoids, then the simplicial set HomGpd(C,D)• is the nerve of the
functor category Fun(C,D).

Note that if C is a groupoid, then the nerve N•(C) is a Kan complex (Proposition 1.3.5.2).
By virtue of Proposition 1.5.3.3, the construction C 7→ N•(C) determines a fully faithful
embedding of simplicial categories Gpd• ↪→ Kan. Passing to homotopy coherent nerves and
invoking Example 2.4.3.11, we obtain a functor of ∞-categories

ND
• (Gpd) ≃ Nhc

• (Gpd•) ↪→ Nhc
• (Kan) = S,

where ND
• (Gpd) is the Duskin nerve of the 2-category Gpd (Construction 2.3.1.1). This

functor restricts to an isomorphism of ND
• (Gpd) with the full subcategory of S spanned by

those Kan complexes of the form N•(C), where C is a small groupoid. We can informally
summarize the situation informally by saying that the ∞-category S is an enlargement of
the 2-category of groupoids Gpd.

Remark 5.5.1.9 (Comparison with Topological Spaces).01Z4 Let Top denote the category
of topological spaces and continuous functions, endowed with the simplicial enrichment
described in Example 2.4.1.5. The geometric realization construction X 7→ |X| determines a
functor of simplicial categories | • | : Kan→ Top (see Construction 3.6.5.1). Moreover, if X
and Y are Kan complexes, then Proposition 3.6.5.2 guarantees that the induced map

Fun(X,Y ) = HomKan(X,Y )• → HomTop(|X|, |Y |)•

is a homotopy equivalence of Kan complexes. Applying Corollary 4.6.8.8, we deduce that
the induced map

S = Nhc
• (Kan) |•|−→ Nhc

• (Top)

is a fully faithful functor of ∞-categories. The essential image of this functor is the full
subcategory T 0 ⊆ Nhc

• (Top) spanned by those topological spaces which have the homotopy
type of a CW complex (Proposition 3.6.5.3). We therefore obtain an equivalence of ∞-
category S |•|−→ T 0 (Theorem 4.6.2.20), which has a homotopy inverse induced by the
simplicial functor X 7→ Sing•(X).

https://kerodon.net/tag/01Z3
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5.5.2 Digression: Slicing and the Homotopy Coherent Nerve

01Z5Let C be a category and let N•(C) denote its nerve. For every object X ∈ C, Example
4.3.5.8 supplies canonical isomorphisms

N•(C/X) ≃ N•(C)/X N•(CX/) ≃ N•(C)X/.

Our goal in this section is to establish a counterpart of this result in the case where C is a
(locally Kan) simplicial category. In this case, the slice and coslice categories C/X and CX/
inherit simplicial enrichments (Construction 5.5.2.1), and there are natural comparison maps

Nhc
• (C/X) ↪→ Nhc

• (C)/X Nhc
• (CX/) ↪→ Nhc

• (C)X/.

Beware that these maps are generally not isomorphisms at the level of simplicial sets
(Warning 5.5.2.19). However, we will show that, under some mild assumptions, they are
equivalences of ∞-categories (Theorem 5.5.2.21).

Construction 5.5.2.1 (Slices of Simplicial-Categories). 01Z6Let C be a simplicial category and
let X be an object of C. We define a simplicial category C/X as follows:

• The objects of C/X are pairs (C, f), where C is an object of C and f : C → X is a
vertex of the simplicial set HomC(C,X)•.

• Let (C, f) and (D, g) be objects of C/X . We let HomC/X
((C, f), (D, g))• denote the

simplicial set given by the fiber product

HomC(C,D)• ×HomC(C,X)• {f},

which we regard as a simplicial subset of HomC(C,D)•. More precisely, we let
HomC/X

((C, f), (D, g))• denote the simplicial subset of HomC(C,D)• consisting of those
n-simplices σ for which the composite map is equal to the constant map ∆n ↠ {f}.

• Let (C, f), (D, g), and (E, h) be objects of C/X . Then the composition law

◦ : HomCX/
((D, g), (E, h))• ×HomC/X

((C, f), (D, g))• → HomC/X
((C, f), (E, h))•

for the simplicial category C/X is given by the restriction of the composition law

◦ : HomC(D,E)• ×HomC(C,D)• → HomC(C,E)•

for the simplicial category C.

Exercise 5.5.2.2. 01Z7Let C be a simplicial category containing an object X. Show that the
simplicial categories C/X and CX/ of Construction 5.5.2.1 are well-defined (that is, the
composition law of Construction 5.5.2.1 is unital and associative).
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Variant 5.5.2.3 (Coslices of Simplicial-Categories).01Z8 Let C be a simplicial category and let
X be an object of C. We define a simplicial category CX/ as follows:

• The objects of CX/ are pairs (C, f), where C is an object of C and f is a vertex of the
simplicial set HomC(X,C)•.

• Let (C, f) and (D, g) be objects of CX/. We let HomCX/
((C, f), (D, g))• denote the

simplicial set given by the fiber product

HomC(C,D)• ×HomC(X,D)• {g},

which we regard as a simplicial subset of HomC(C,D)•.

• Let (C, f), (D, g), and (E, h) be objects of CX/. Then the composition law

◦ : HomC/X
((D, g), (E, h))• ×HomCX/

((C, f), (D, g))• → HomCX/
((C, f), (E, h))•

for the simplicial category CX/ is given by the restriction of the composition law

◦ : HomC(D,E)• ×HomC(C,D)• → HomC(C,E)•

for the simplicial category C.

Remark 5.5.2.4.01Z9 Let C be a simplicial category containing an object X, which we also
regard as an object of the opposite simplicial category Cop. Then there is a canonical
isomorphism of simplicial categories (CX/)op ≃ (Cop)/X .

Remark 5.5.2.5.01ZA For every simplicial category C, let C◦ denote the underlying ordinary
category of C (Example 2.4.1.4). If X is an object of C, then we have canonical isomorphisms

(C/X)◦ ≃ (C◦)/X (CX/)◦ ≃ (C◦)X/,

where the left hand sides are defined using the slice and coslice operations on simplicial
categories (Construction 5.5.2.1 and Variant 5.5.2.3) and the right hand sides are defined
using the slice and coslice operations on ordinary categories (Construction 4.3.1.1 and Variant
4.3.1.4). In other words, the slice and coslice constructions are compatible with the forgetful
functor from simplicial categories to ordinary categories. We can summarize the situation
more informally as follows: if C is a category and X is an object of C, then any simplicial
enrichment of C determines a simplicial enrichment on the slice and coslice categories C/X
and CX/.

Remark 5.5.2.6.01ZB Let C be an ordinary category and let C denote the associated constant
simplicial category (Example 2.4.2.4). Then the simplicial categories C/X and CX/ of
Construction 5.5.2.1 and Variant 5.5.2.3 are also constant, associated to the ordinary
categories C/X and CX/ of Construction 4.3.1.1 and Variant 4.3.1.4, respectively. In other
words, the slice and coslice constructions are compatible with the operation of regarding an
ordinary category as a (constant) simplicial category.
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Warning 5.5.2.7. 01ZCLet C be a simplicial category and let hC denote the homotopy category
of C (Construction 2.4.6.1). For every object X ∈ C, there is a natural comparison map
h(C/X ) → (hC)/X , which carries an object (C, f) of the slice simplicial category C/X to
the object (C, [f ]) of the slice category (hC)/X , where [f ] ∈ π0(HomC(C,X)•) denotes the
homotopy class of f . Beware that this functor is generally not an equivalence of categories
(see Warning 3.2.1.11).

We now characterize the simplicial category C/X of Construction 5.5.2.1 by a universal
property.

Notation 5.5.2.8. 01ZDLet C be a simplicial category. We define a simplicial category C◁ as
follows:

• The set of objects Ob(C◁) is the (disjoint) union Ob(C)∪{X0}, where X0 is an auxiliary
symbol.

• The simplicial morphism sets in C◁ are given by

HomC◁(C,D)• =


HomC(C,D)• if C,D ∈ Ob(C)
∆0 if C = X0

∅ otherwise.

• For objects C,D,E ∈ Ob(C◁), the composition law

◦ : HomC◁(D,E)• ×HomC◁(C,D)• → HomC◁(C,E)•

is given by the composition law on C in the case where C,D,E ∈ Ob(C), and is
otherwise uniquely determined (since either the left hand side is empty or the right
hand side is ∆0).

More informally, the simplicial category C◁ is obtained from C by adjoining a (new) initial
object X0. We will refer to C◁ as the left cone on C, and to the object X0 ∈ C◁ as the cone
point.

Variant 5.5.2.9. 01ZELet C be a simplicial category. We define a simplicial category C▷ as
follows:

• The set of objects Ob(C▷) is given by the (disjoint) union Ob(C) ∪ {Y0}, where Y0 is
an auxiliary symbol.

• The simplicial morphism sets in C▷ are given by

HomC▷(C,D)• =


HomC(C,D)• if C,D ∈ Ob(C)
∆0 if D = Y0

∅ otherwise.
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• For objects C,D,E ∈ Ob(C▷), the composition law

◦ : HomC▷(D,E)• ×HomC▷(C,D)• → HomC▷(C,E)•

is given by the composition law on C in the case where C,D,E ∈ Ob(C), and is
otherwise uniquely determined.

More informally, the simplicial category C▷ is obtained from C by adjoining a (new) final
object Y0. We will refer to C▷ as the right cone on C, and to the object Y0 ∈ C▷ as the cone
point.

Remark 5.5.2.10.01ZF Let C be a simplicial category. Then there is a canonical isomorphism
of simplicial categories (C◁)op ≃ (Cop)▷.

Remark 5.5.2.11.01ZG For every simplicial category C, let C◦ denote the underlying ordinary
category of C (Example 2.4.1.4). Then we have canonical isomorphisms

(C◁)◦ ≃ (C◦)◁ (C▷)◦ ≃ (C◦)▷,

where the left hand sides are defined using Notation 5.5.2.8 and Variant 5.5.2.9, and the
right hand sides are defined in Example 4.3.2.5. In other words, the formation of cones is
compatible with the forgetful functor from simplicial categories to ordinary categories.

Remark 5.5.2.12.01ZH Let C be an ordinary category and let C denote the associated constant
simplicial category (Example 2.4.2.4). Then the simplicial categories C◁ and C▷ of Notation
5.5.2.8 and Variant 5.5.2.9 are also constant, associated to the ordinary categories C◁ and C▷
of Example 4.3.2.5. In other words, the formation of cones is compatible with the operation
of regarding an ordinary category as a (constant) simplicial category.

Remark 5.5.2.13.01ZJ For every simplicial category C, let hC denote its homotopy category.
Then there are canonical isomorphisms of categories

h(C◁) ≃ (hC)◁ h(C▷) ≃ (hC)▷.

In other words, the formation of cones is compatible with the passage from a simplicial
category to its homotopy category.

Remark 5.5.2.14.01ZK For every simplicial category C, let Nhc
• (C) denote the homotopy coherent

nerve of C. Then there are canonical isomorphisms of simplicial sets

Nhc
• (C◁) ≃ Nhc

• (C)◁ Nhc
• (C▷) ≃ Nhc

• (C)▷,

which are uniquely determined by the requirements that they restrict to the identity on
Nhc
• (C) and preserve the cone points. In other words, the formation of cones is compatible

with the homotopy coherent nerve.
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Construction 5.5.2.15. 01ZLLet C be a simplicial category and let Y be an object of C. We
define a simplicial functor V : (C/Y )▷ → C as follows:

• The functor V carries each object (C, f) ∈ C/Y to the object C ∈ C, and carries the
cone point Y0 ∈ (C/Y )▷ to the object Y ∈ C.

• If (C, f) and (D, g) are objects of C/Y , then the induced map of simplicial sets

Hom(C/Y )▷((C, f), (D, g))• → HomC(V (C, f), V (D, g))•

is equal to the inclusion map HomC/Y
((C, f), (D, g))• ↪→ HomC(C,D)•.

• If (C, f) is an object of C/Y , then the induced map

∆0 = Hom(C/Y )▷((C, f), Y0)• → HomC(V (C, f), V (Y0))• = HomC(C, Y )•

is equal to the vertex f .

We will refer to V as the right cone contraction functor. Similarly, to every object X ∈ C we
can associate a simplicial functor V ′ : (CX/)◁ → C carrying the cone point of (CX/)◁ to the
object X, which we will refer to as the left cone contraction functor.

Proposition 5.5.2.16. 01ZMLet C and D be simplicial categories. Let X0 and Y0 denote the
cone points of D◁ and D▷, respectively. Then:

• For every object Y ∈ C, postcomposition with the right cone contraction functor
V : (C/Y )▷ → C of Construction 5.5.2.15 induces a bijection

{Simplicial functors F : D → C/Y }

∼

��
{Simplicial functors G : D▷ → C with G(Y0) = Y }

• For every object X ∈ C, postcomposition with the left cone contraction functor V ′ :
(CX/)◁ → C of Construction 5.5.2.15 induces a bijection

{Simplicial functors F : D → CX/}

∼

��
{Simplicial functors G : D◁ → C with G(X0) = X}
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Proof. We will prove the first assertion; the proof of the second is similar. Fix a simplicial
functor G : D▷ → C and set Y = G(Y0). We wish to show that there is a unique simplicial
functor F : D → C/Y for which the composition

D▷ F ▷

−−→ (C/Y )▷ V−→ C

is equal to G. For each object D ∈ D, the simplicial functor G induces a morphism of
simplicial sets

∆0 = HomD▷(D,Y0)• G−→ HomC(G(D), G(Y0))•,

which we can identify with a vertex f of the simplicial set HomC(G(D), Y )•. The simplicial
functor F is then given on objects by the formula F (D) = (G(D), f), and is determined on
morphisms by the requirement that the composition

HomD(D,E)• F−→ HomC/Y
(F (D), F (E))• ⊆ HomC(G(D), G(E))•

coincides with the map of simplicial sets determined by the simplicial functor G.

Construction 5.5.2.17.01ZN Let C be a simplicial category, let X be an object of C, and let
V : (C/X)▷ → C be the right cone contraction functor of Construction 5.5.2.15. Passing to
homotopy coherent nerves (and invoking Remark 5.5.2.14), we obtain a map

Nhc
• (C/X)▷ ≃ Nhc

• ((C/X)▷)→ Nhc
• (C)

carrying the cone point to the vertex X, which we can further identify with a morphism of
simplicial sets c : Nhc

• (C/X)→ Nhc
• (C)/X . We will refer to c as the slice comparison morphism.

Similarly, the left cone contraction functor V ′ : (CX/)◁ → C induces a morphism of simplicial
sets c′ : Nhc

• (CX/)→ Nhc
• (C)X/, which we will refer to as the coslice comparison morphism.

Example 5.5.2.18.01ZP Let C be an ordinary category, which we identify with the associated
constant simplicial category C of Example 2.4.2.4. For every object X ∈ C, the slice and
coslice comparison morphisms

c : Nhc
• (C/X)→ Nhc

• (C)/X c′ : Nhc
• (CX/)→ Nhc

• (C)X/

of Construction 5.5.2.17 can be identified with the isomorphisms N•(C/X) ≃ N•(C)/X and
N•(CX′) ≃ N•(C)X/ described in Example 4.3.5.8.

Warning 5.5.2.19.01ZQ Let C be a simplicial category containing an object X. Then the slice
and coslice comparison morphisms

c : Nhc
• (C/X)→ Nhc

• (C)/X c′ : Nhc
• (CX/)→ Nhc

• (C)X/

https://kerodon.net/tag/01ZN
https://kerodon.net/tag/01ZP
https://kerodon.net/tag/01ZQ


1186 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

of Construction 5.5.2.17 are always bijective at the level of vertices (on the left side, vertices
of either of the simplicial sets Nhc

• (C/X) and Nhc
• (C)/X can be identified with pairs (C, f),

where C is an object of C and f is a morphism from C to X). Beware that c and c′ are
generally not bijective on simplices of dimension ≥ 1. Unwinding the definitions, we see that
edges of the simplicial set Nhc

• (C/X) can be identified with diagrams

C

f

��

h // D

g

~~
X

in the category C which are strictly commutative, while edges of Nhc
• (C)/X can be identified

with diagrams which commute up to a specified homotopy µ : g ◦ h→ f in HomC(C,X)•.

Exercise 5.5.2.20. 01ZRLet C be a simplicial category and let X be an object of C. Show that
the slice and coslice comparison morphisms

c : Nhc
• (C/X)→ Nhc

• (C)/X c′ : Nhc
• (CX/)→ Nhc

• (C)X/

are monomorphisms of simplicial sets.

We are now ready to state the main result of this section. For the sake of brevity, we
will formulate the statement only for coslice categories (one can deduce a dual statement for
slice categories by replacing C by its opposite).

Theorem 5.5.2.21. 01ZSLet C be a locally Kan simplicial category and let X be an object of C
with the following property:

(∗) For every morphism f : X → Y and every object Z ∈ C, the morphism of simplicial sets
HomC(Y, Z)•

◦f−→ HomC(X,Z)• is a Kan fibration.

Then the coslice comparison morphism c′ : Nhc
• (CX/)→ Nhc

• (C)X/ of Construction 5.5.2.17
is an equivalence of ∞-categories.

For many applications, hypothesis (∗) of Theorem 5.5.2.21 is too strong: it is often
satisfied only for morphisms f : X → Y which are sufficiently well-behaved. We therefore
consider a somewhat more general situation:

Proposition 5.5.2.22. 01ZTLet C be a locally Kan simplicial category, let X be an object of C,
and let E be a full simplicial subcategory of CX/ with the following property:

(∗) For every pair of objects (Y, f) and (Z, g) of the simplicial category E ⊆ CX/, the
morphism of simplicial sets HomC(Y, Z)•

◦f−→ HomC(X,Z)• is a Kan fibration.
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Then the homotopy coherent nerve Nhc
• (E) is an ∞-category, and the coslice comparison

morphism c′ : Nhc
• (CX/) → Nhc

• (C)X/ of Construction 5.5.2.17 restricts to a fully faithful
functor of ∞-categories Nhc

• (E)→ Nhc
• (C)X/.

Proof of Theorem 5.5.2.21 from Proposition 5.5.2.22. Let C be a locally Kan simplicial cate-
gory and let X be an object of C which satisfies hypothesis (∗) of Theorem 5.5.2.21. Applying
Proposition 5.5.2.22 in the case E = CX/, we conclude that the coslice comparison morphism
c′ : Nhc

• (CX/)→ Nhc
• (C)X/ is fully faithful. Since c′ is bijective on vertices, it is also essentially

surjective, and is therefore an equivalence of∞-categories by virtue of Theorem 4.6.2.20.

Proof of Proposition 5.5.2.22. Let C be a locally Kan simplicial category containing an object
X, and let E ⊆ CX/ be a full simplicial subcategory satisfying hypothesis (∗) of Proposition
5.5.2.22. For every pair of objects (Y, f), (Z, g) ∈ E , the simplicial set HomE((Y, f), (Z, g))•
is the fiber of the Kan fibration

HomC(Y, Z)•
◦f−→ HomC(X,Z)•

over the vertex g, and is therefore a Kan complex (Remark 3.1.1.9). Applying Theorem
2.4.5.1, we conclude that the homotopy coherent nerve Nhc

• (E) is an ∞-category. We wish
to show that, for every pair of objects (Y, f), (Z, g) ∈ E as above, the coslice comparison
morphism c′ induces a homotopy equivalence of morphism spaces

HomNhc
• (E)((Y, f), (Z, g))→ HomNhc

• (C)X/
((Y, f), (Z, g)).

By virtue of Proposition 4.6.5.10, this is equivalent to the requirement that c′ induces
a homotopy equivalence ρ : HomL

Nhc
• (E)((Y, f), (Z, g)) → HomL

N•(C)X/
((Y, f), (Z, g)) of left-

pinched morphism spaces.
Construction 4.6.8.3 supplies comparison maps

θ : HomE((Y, f), (Z, g))• → HomL
Nhc
• (E)((Y, f), (Z, g))

θY,Z : HomC(Y,Z)• → HomL
Nhc
• (C)(Y, Z) θX,Z : HomC(X,Z)• → HomL

Nhc
• (C)(X,Z),

which are homotopy equivalences of Kan complexes by virtue of Theorem 4.6.8.5. Let
us regard f : X → Y as an edge of the simplicial set Nhc

• (C), and let Q denote the fiber
Nhc
• (C)f/ ×Nhc

• (C) {Z}. Since the inclusion {1} ↪→ ∆1 is right anodyne, the restriction map
Nhc
• (C)f/ → Nhc

• (C)Y/ is a trivial Kan fibration (Proposition 4.3.6.12), and therefore restricts
to a trivial Kan fibration

π : Q→ Nhc
• (C)Y/ ×Nhc

• (C) {Z} = HomL
Nhc
• (C)(Y,Z).

In particular, Q is a Kan complex and π is a homotopy equivalence. Let π′ denote the
restriction map

Q→ Nhc
• (C)X/ ×Nhc

• (C) {Z} = HomL
Nhc
• (C)(X,Z).
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Note that π′ is a pullback of the left fibration Nhc
• (C)f/ → Nhc

• (C)X/ (Corollary 4.3.6.11),
and is therefore also a left fibration (Remark 4.2.1.8). Since the left-pinched morphism
space HomL

Nhc
• (C)(X,Z) is a Kan complex (Proposition 4.6.5.5), the morphism π′ is a Kan

fibration (Corollary 4.4.3.8). We will construct an auxiliary map of Kan complexes λ :
HomC(Y,Z)• → Q with the following properties:

(a) The composition HomC(Y, Z)• λ−→ Q
π−→ HomL

Nhc
• (C)(Y,Z) is equal to θY,Z .

(b) The cubical diagram of Kan complexes

01ZUHomE((Y, f), (Z, g))• //

ρ◦θ
&&

��

HomC(Y,Z)•

λ

!!

◦f

��

HomL
N•(C)X/

((Y, f), (Z, g)) //

��

Q

π′

��

{g} // HomC(X,Z)•

θX,Z

!!
{g} // HomL

Nhc
• (C)(X,Z)

(5.27)

is commutative.

Suppose that such a map has been constructed. It follows from (a) that λ is a homotopy
equivalence. Moreover, the front and back faces of the diagram (5.27) are pullback squares
of simplicial sets. Since the vertical maps

HomC(Y, Z)• → HomC(X,Z)• π′ : Q→ HomL
Nhc
• (C)(X,Z)

are Kan fibrations, these faces are also homotopy pullback squares (Example 3.4.1.3). Since
λ, θX,Z , and the identity map id : {g} → {g} are homotopy equivalences of Kan complexes,
it follows from Corollary 3.4.1.12 that the map ρ ◦ θ is also a homotopy equivalence of Kan
complexes. Since θ is a homotopy equivalence, we conclude that ρ is a homotopy equivalence
as desired.

We now complete the proof by constructing the morphism λ : HomC(Y, Z)• → Q. Let
σ be an n-simplex of the simplicial set HomC(Y,Z)•, so that θY,Z(σ) is an n-simplex of
the left-pinched morphism space HomL

Nhc
• (C)(Y,Z) which we can identify with a simplicial

functor Fσ : Path[{y} ⋆ [n]]• → C such that Fσ(y) = Y and Fσ|Path[n]• is the constant
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functor taking the value Z (see Construction 4.6.8.3). We extend Fσ to a simplicial functor
F+
σ : Path[{x} ⋆ {y} ⋆ [n]]• → C as follows:

• The functor F+
σ carries x to the object X ∈ C.

• For every element i ∈ {y} ⋆ [n], the induced map of simplicial sets

HomPath[{x}⋆{y}⋆[n]](x, i)• → HomC(X,Fσ(i))•

is given by the composition

HomPath[{x}⋆{y}⋆[n]](x, i)•
u−→ HomPath[{y}⋆[n]](y, i)•
Fσ−→ HomC(Y, Fσ(i))•
◦f−→ HomC(X,Fσ(i))•,

where u is induced by the map of partially ordered sets {x} ⋆ {y} ⋆ [n] → {y} ⋆ [n]
which is the identity on {y} ⋆ [n] and carries x to y.

Then F+
σ determines a morphism of simplicial sets {x}⋆{y}⋆∆n → Nhc

• (C) carrying {x}⋆{y}
to the edge f and ∆n to the vertex Z, which we can identify with an n-simplex λ(σ) of the
Kan complex Q. The construction σ 7→ λ(σ) depends functorially on [n] ∈∆, and therefore
induces a morphism of simplicial sets λ : HomC(Y, Z)• → Q which is easily verified to satisfy
conditions (a) and (b).

5.5.3 The ∞-Category of Pointed Spaces

01ZV We now study a variant of Construction 5.5.1.1.

Construction 5.5.3.1 (The ∞-Category of Pointed Spaces).01ZW Let S = Nhc
• (Kan) denote the

∞-category of spaces, and regard the Kan complex ∆0 as an object of S. We let S∗ denote
the coslice ∞-category S∆0/. We will refer to S∗ as the ∞-category of pointed spaces.

Proposition 5.5.3.2.01ZX The simplicial set S∗ is an ∞-category, and the projection map
S∗ → S is a left fibration of ∞-categories.

Proof. By virtue of Proposition 5.5.1.2, the simplicial set S is an ∞-category. It follows that
for every object X ∈ S, the projection map SX/ → S is a left fibration (Corollary 4.3.6.11).
Taking X = ∆0, we conclude that the projection map S∗ → S is a left fibration, so that S∗
is an ∞-category (Remark 4.2.1.4).

Example 5.5.3.3 (Objects of S∗).01ZY By definition, an object of the ∞-category S∗ is an edge
e : ∆0 → X of the simplicial set S = Nhc

• (Kan) whose source is the Kan complex ∆0. By
virtue of Remark 5.5.1.3, this is the same data as a morphism e : ∆0 → X in the ordinary
category of Kan complexes: that is, the data of a pointed Kan complex (X,x) (Definition
3.2.1.5).
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Example 5.5.3.4 (Morphisms of S∗). 01ZZLet (X,x) and (Y, y) be pointed Kan complexes,
regarded as objects of the∞-category S∗. By definition, a morphism from (X,x) to (Y, y) in
the ∞-category S∗ can be identified with a 2-simplex σ of the simplicial set S = Nhc

• (Kan),
which we can identify with a diagram of simplicial sets

X

f

��

h

��∆0

x

>>

y
// Y

which commutes up to a specified homotopy h. In other words, a morphism from (X,x)
to (Y, y) in the ∞-category S∗ can be identified with a pair (f, h), where f : X → Y is a
morphism of Kan complexes and h : f(x)→ y is an edge of the simplicial set Y .

Remark 5.5.3.5. 02S1Let X be a Kan complex, which we regard as an object of the∞-category
S. Then Theorem 4.6.8.5 supplies a homotopy equivalence

θX : X = HomKan(∆0, X)• → HomL
S(∆0, X) = {X} ×S S∗ .

Beware that θX is generally not an isomorphism of simplicial sets.

Proposition 5.5.3.6. 02S2Let U : S∗ → S be the left fibration of Proposition 5.5.3.2, and let

hTrS∗ /S : hS → hKan

be the enriched homotopy transport representation of Variant 5.2.8.11. Then hTrS∗ /S is
homotopy inverse (as an hKan-enriched functor) to the isomorphism hKan ≃ hS of Remark
5.5.1.6. In particular, hTrS∗ /S is an equivalence of hKan-enriched categories.

Proof. Apply Theorem 5.4.9.2 to the simplicial category Kan.

Remark 5.5.3.7. 02S3The statement of Proposition 5.5.3.6 can be made more precise: Theorem
5.4.9.2 supplies an explicit hKan-enriched isomorphism from the identity functor idhKan to
the composition

hKan ∼−→ hS
hTrS∗ /S−−−−−→ hKan,

which carries each Kan complex X to the homotopy equivalence θX : X → {X} ×S S∗ =
hTrS∗ /S(X) of Remark 5.5.3.5.

Let Kan∗ denote the category of pointed Kan complexes (Definition 3.2.1.5). For every
pair of pointed Kan complexes (X,x) and (Y, y), we let

HomKan∗((X,x), (Y, y))• = Fun(X,Y )×Fun({x},Y ) {y}
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be the simplicial set parametrizing pointed morphisms from X to Y . If (Z, z) is another
pointed Kan complex, we have an evident composition law

◦ : HomKan∗((Y, y), (Z, z))• ×HomKan∗((X,x), (Y, y))• → HomKan∗((X,x), (Z, z)),

which endows Kan∗ with the structure of a simplicial category. Note that this construction
is a special case of Variant 5.5.2.3, since Kan∗ can be identified with the coslice category
Kan∆0/. Applying Construction 5.5.2.17, we obtain a coslice comparison functor

Nhc
• (Kan∗) = Nhc

• (Kan∆0/)→ Nhc
• (Kan)∆0/ = S∗ .

Proposition 5.5.3.8.0200 The coslice comparison functor Nhc
• (Kan∗)→ S∗ is an equivalence

of ∞-categories.

Proof. Note that, for every pair of pointed Kan complexes (X,x) and (Y, y), the evaluation
map Fun(X,Y )→ Fun({x}, Y ) is a Kan fibration (Corollary 3.1.3.3). Proposition 5.5.3.8 is
therefore a special case of Theorem 5.5.2.21.

Warning 5.5.3.9.0201 The coslice comparison functor F : Nhc
• (Kan∗) → S∗ of Proposition

5.5.3.8 is bijective on vertices: objects of either Nhc
• (Kan∗) and S∗ can be identified with

pointed Kan complexes (X,x). However, it is not bijective on edges (and is therefore not
an isomorphism of simplicial sets). If (X,x) and (Y, y) are pointed Kan complexes, then a
morphism from (X,x) to (Y, y) in the ∞-category S∗ can be identified with a pair (f, h),
where f : X → Y is a morphism of Kan complexes and h : f(x)→ y is an edge of the Kan
complex Y . The pair (f, h) belongs to the image of F if and only if the edge h is degenerate
(which guarantees in particular that f(x) = y, so that f is a morphism of pointed Kan
complexes).

Corollary 5.5.3.10.0202 The coslice comparison functor Φ : Nhc
• (Kan∗) → S∗ induces an

isomorphism of homotopy categories hΦ : hKan∗ ∼−→ hS∗, where hKan∗ denotes the homotopy
category of pointed Kan complexes (Construction 3.2.1.12).

Proof. It follows from Propositions 2.4.6.9 and 5.5.3.8 that the functor hΦ is an equivalence
of categories. Since it is bijective on objects, it is an isomorphism of categories.

Note that the coslice comparison functor Nhc
• (Kan∗) → S∗ is a monomorphism of

simplicial sets (Exercise 5.5.2.20). Heuristically, we can think of S∗ as an enlargement of
the homotopy coherent nerve Nhc

• (Kan∗) which is obtained by allowing morphisms between
pointed Kan complexes which preserve base points only up to (specified) homotopy. By virtue
of Proposition 5.5.3.8, this enlargement gives rise to an equivalent ∞-category. However, the
∞-category S∗ is in some respects more convenient to work with, because the forgetful functor
S∗ → S is a left fibration of ∞-categories. The composite functor Nhc

• (Kan∗) → S∗ → S
does not share this property:
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Warning 5.5.3.11. 0203There is an evident simplicial functor from the category Kan∗ of pointed
Kan complexes to the category Kan of Kan complexes, given on objects by the construction
(X,x) 7→ X. Passing to homotopy coherent nerves, we obtain a functor of ∞-categories
U : Nhc

• (Kan∗) → Nhc
• (Kan) = S. Beware that the functor U is not a left fibration of

simplicial sets. For example, suppose we are given a 2-simplex σ of S, corresponding to a
diagram of Kan complexes

Y

g

��

µ

��
X

f

??

h
// Z

which commutes up to a homotopy µ : (g ◦ f) → h (see Remark 5.5.1.3). Pick a vertex
x ∈ X and set y = f(x) and z = h(x), so that we have morphisms of pointed Kan complexes
f : (X,x)→ (Y, y) and h : (X,x)→ (Z, z). This data determines a lifting problem

Λ2
0

(•,h,f) //

��

Nhc
• (Kan∗)

U

��
∆2 σ //

;;

S,

which admits a solution if and only if µ(x) : g(y) → z is a degenerate edge of the Kan
complex Z (in which case g(y) = z, so that g : (Y, y)→ (Z, z) is also a morphism of pointed
Kan complexes).

Example 5.5.3.12 (Pointed Sets as Pointed Spaces). 0204Let Set∗ denote the category of pointed
sets (see Example 4.2.3.3). Every pointed set (X,x) can be regarded as a pointed Kan
complex by identifying X with the corresponding constant simplicial set. This construction
determines a fully faithful embedding Set∗ ↪→ Kan∗. Composing with the equivalence of
Proposition 5.5.3.8, we obtain a functor of ∞-categories

N•(Set∗) ↪→ N•(Kan∗) ↪→ Nhc
• (Kan∗) ↪→ S∗ .

It follows from Remark 5.5.1.7 that this functor is fully faithful: in fact, it is an isomorphism
from N•(Set∗) to the full subcategory of S∗ spanned by those pointed Kan complexes (X,x)
where the simplicial set X is constant.

For every group G, let B•G denote its classifying simplicial set (Construction 1.3.2.5),
which we regard as a Kan complex (Proposition 1.2.5.9) having a unique vertex. The
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construction G 7→ B•G determines a functor from the category Group of groups to the
category Kan∗ of pointed Kan complexes. Passing to nerves, we obtain a functor of ∞-
categories

N•(Group)→ N•(Kan∗)→ Nhc
• (Kan∗)→ S∗ .

Proposition 5.5.3.13.0205 The functor

N•(Group)→ S∗ G 7→ B•G

is fully faithful.

Proof. By virtue of Proposition 5.5.3.8 and Corollary 4.6.8.8, it will suffice to show that the
construction G 7→ B•G determines a weakly fully faithful functor from Group (regarded as
a constant simplicial category) to the simplicial category Kan∗. In other words, we must
show that for every pair of groups G and H, the canonical map

θ : {Group homomorphisms from G to H} → HomKan∗(B•G,B•H)•

is a homotopy equivalence of Kan complexes. In fact, we claim that θ is an isomorphism of
simplicial sets. Let BG denote the category having a single object X with automorphism
group G, and let BH denote the category having a single object Y with automorphism
group H. Proposition 1.5.3.3 then supplies an isomorphism

HomKan∗(B•G,B•H)• = Fun(N•(BG),N•(BH))×N•(BH) N•({Y })
≃ N•(Fun(BG,BH))×N•(BH) N•({Y })
≃ N•(Fun(BG,BH)×BH {Y }).

Note that if F, F ′ : BG → BH are functors and α : F → F ′ is a natural transformation
with the property that αX : F (X)→ F ′(X) is the identity morphism idY , then the functors
F and F ′ are equal and α is the identity transformation (since X is the only object of the
category BG). It follows that the fiber product category Fun(BG,BH)×BH {Y } is discrete:
that is, it has only identity morphisms. We conclude by observing that the set of objects of
the category Fun(BG,BH)×BH {Y } can be identified with the set of group homomorphisms
from G to H.

Remark 5.5.3.14 (Comparison with Pointed Topological Spaces).0206 Let Top∗ denote the
category whose objects are pointed topological spaces (X,x) and whose morphisms f :
(X,x)→ (Y, y) are continuous functions f : X → Y satisfying f(x) = y. We regard Top∗ as
a simplicial category, where the n-simplices of HomTop∗((X,x), (Y, y))• are continuous maps
f : |∆n| ×X → Y satisfying f(t, x) = y for every point t ∈ |∆n|.

The construction (X,x) 7→ (|X|, x) determines a simplicial functor from the category
Kan∗ of pointed Kan complexes to the category Top∗ of pointed topological spaces. Moreover,
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if (X,x) and (Y, y) are pointed Kan complexes, then we have a commutative diagram of
Kan complexes

HomKan(X,Y )• //

��

HomTop(|X|, |Y |)•

��
Y // Sing•(|Y |),

where the vertical maps are Kan fibrations given by evaluation at x and the horizontal maps
are homotopy equivalences (Proposition 3.6.5.2). Passing to the fiber over the vertex y ∈ Y ,
we deduce that the induced map

HomKan∗((X,x), (Y, y))• → HomTop∗((|X|, x), (|Y |, y))•

is also a homotopy equivalence of Kan complexes. Allowing (X,x) and (Y, y) to vary, we
deduce that geometric realization | • | : Kan∗ → Top∗ is a weakly fully faithful functor of
simplicial categories (Definition 4.6.8.7), and therefore induces a fully faithful functor of
∞-categories Nhc

• (Kan∗)→ Nhc
• (Top∗) (Corollary 4.6.8.8). Composing this functor with a

homotopy inverse to the equivalence Nhc
• (Kan∗)→ S∗ of Proposition 5.5.3.8, we obtain a

fully faithful functor S∗ → Nhc
• (Top∗).

Exercise 5.5.3.15. 0207Let (X,x) be a pointed topological space. Show that (X,x) belongs to
the essential image of the functor S∗ → Nhc

• (Top∗) if and only if the topological space X
has the homotopy type of a CW complex and the inclusion map {x} ↪→ X is a Hurewicz
cofibration (that is, the union ({0} ×X) ∪ ([0, 1]× {x}) is a retract of the product space
[0, 1]×X).

5.5.4 The ∞-Category of ∞-Categories

0208Let hQCat denote the homotopy category of (small) ∞-categories (Construction 4.5.1.1).
Recall that the objects of hQCat are (small) ∞-categories, and a morphism from C to D
in hQCat is an isomorphism class of functors from C to D. In this section, we show that
hQCat can be realized as the homotopy category of an ∞-category QC, which we will refer
to as the ∞-category of ∞-categories. Proceeding as in §5.5.1, we will realize QC as the
homotopy coherent nerve of a simplicial category.

Construction 5.5.4.1 (The ∞-Category of ∞-Categories). 0209We define a simplicial category
QCat as follows:

• The objects of QCat are (small) ∞-categories.
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• If C and D are ∞-categories, then the simplicial set HomQCat(C,D)• is the core
Fun(C,D)≃ of the functor ∞-category Fun(C,D).

• If C, D, and E are ∞-categories, then the composition law

◦ : HomQCat(D, E)• ×HomQCat(C,D)• → HomQCat(C, E)•

is induced by the composition map Fun(D, E)× Fun(C,D)→ Fun(C, E).

We let QC denote the homotopy coherent nerve Nhc
• (QCat). We will refer to QC as the

∞-category of ∞-categories.

Remark 5.5.4.2.020A Many authors use the term quasicategory for what we refer to as an
∞-category (see Remark 1.4.0.2); the notations of Construction 5.5.4.1 reflect this alternative
terminology.

Proposition 5.5.4.3.020B The simplicial set QC is an ∞-category.

Proof. For every pair of ∞-categories C and D, the core Fun(C,D)≃ is a Kan complex
(Corollary 4.4.3.11). It follows that the simplicial category QCat of Construction 5.5.4.1 is
locally Kan, so its homotopy coherent nerve QC = Nhc

• (QCat) is an ∞-category by virtue of
Theorem 2.4.5.1.

Remark 5.5.4.4.020C The low-dimensional simplices of QC are simple to describe:

• An object of QC is a (small) ∞-category C.

• If C and D are objects of QC, then a morphism from C to D in QC is a functor
F : C → D.

• A 2-simplex of QC can be identified with a diagram

D

G

��

µ∼

��C

F

??

H
// E

where C, D, and E are (small)∞-categories, F , G, and H are functors, and µ : G◦F →
H is an isomorphism in the ∞-category Fun(C, E).

Remark 5.5.4.5.020F Let C and D be ∞-categories. Then Remark 4.6.8.6 supplies a homotopy
equivalence of Kan complexes ϕ : Fun(C,D)≃ → HomQC(C,D). Beware that this homotopy
equivalence is generally not an isomorphism.
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Remark 5.5.4.6. 020DLet hQCat denote the homotopy category of ∞-categories (Construction
4.5.1.1), which we view as an hKan-enriched category (see Remark 3.1.5.12). Applying
Proposition 2.4.6.9 and Corollary 4.6.9.20, we obtain a canonical isomorphism of hKan-
enriched categories Φ : hQCat ∼−→ hQC, which is given on objects by the construction
Φ(C) = C and on morphism spaces by the homotopy equivalences

HomQCat(C,D)• = Fun(C,D)≃ → HomQC(C,D)

of Remark 5.5.4.5.

Remark 5.5.4.7. 020ELet F : C → D be a functor between ∞-categories. Then F is an
equivalence of ∞-categories (in the sense of Definition 4.5.1.10) if and only if it is an
isomorphism in the ∞-category QC.

Remark 5.5.4.8 (Comparison with Kan Complexes). 020GEvery Kan complex is an ∞-category
(Example 1.4.0.3). Moreover, if X and Y are Kan complexes, then the simplicial set
Fun(X,Y ) is also a Kan complex (Corollary 3.1.3.4), and therefore coincides with its core
Fun(X,Y )≃. It follows that we can regard the simplicial category Kan of Construction
5.5.1.1 as a full simplicial subcategory of QCat. Passing to homotopy coherent nerves, we
deduce that the ∞-category S = Nhc

• (Kan) is the full subcategory of QC = Nhc
• (QCat)

spanned by the Kan complexes.

Remark 5.5.4.9 (Comparison with Categories). 020HLet Cat denote the strict 2-category of
small categories (Example 2.2.0.4), let Pith(Cat) denote its pith (Construction 2.2.8.9), and
let us abuse notation by identifying Pith(Cat) with the simplicial category described in
Example 2.4.2.8. Concretely, this simplicial category can be described as follows:

• The objects of Pith(Cat) are small categories.

• If C and D are objects of Pith(Cat), then the simplicial set HomPith(Cat)(C,D)• is the
nerve of the groupoid Fun(C,D)≃ whose objects are functors from C to D and whose
morphisms are natural isomorphisms.

By virtue of Proposition 1.5.3.3, the construction C 7→ N•(C) determines a fully faithful
embedding of simplicial categories Pith(Cat) ↪→ QCat. Passing to homotopy coherent nerves
(and invoking Example 2.4.3.11), we obtain a functor of ∞-categories ND

• (Pith(Cat))→ QC.
Unwinding the definitions, we see that this functor induces an isomorphism from the Duskin
nerve ND

• (Pith(Cat)) to the full subcategory of QC spanned by those ∞-categories of the
form N•(C), where C is an ordinary category.

Variant 5.5.4.10. 03UTLet κ be an uncountable cardinal. We let QC<κ denote the full subcate-
gory of QC spanned by the ∞-categories which are κ-small. We will refer to QC<κ as the
∞-category of essentially κ-small ∞-categories.
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Remark 5.5.4.11 (Set-Theoretic Conventions).03UU By definition, the objects of the∞-category
QC = Nhc

• (QCat) are small ∞-categories. According to the convention of Remark 4.7.0.5,
this means that we restrict our attention to essentially λ-small Kan complexes, where λ is
some fixed uncountable strongly inaccessible cardinal. In this case, the definitions given in
Variant 5.5.4.10 are appropriate only for uncountable cardinals κ < λ. More generally, if
κ is an arbitrary uncountable cardinal, we can define QC<κ to be the homotopy coherent
nerve Nhc

• (QCat<κ), where QCat<κ denotes the (simplicially enriched) category of κ-small
∞-categories. We then have three cases:

(a) If κ < λ, then QC<κ is a full subcategory of QC.

(b) If κ = λ, then QC<κ coincides with QC.

(c) If κ > λ, then QC is a full subcategory of QC<κ.

To simplify the exposition, we will often implicitly assume that we are in case (a), as
suggested in Variant 5.5.4.10. However, it will be convenient to also allow case (c) when
working with ∞-categories which are not necessarily small (such as QC itself).

Variant 5.5.4.12.03UV Let κ be an uncountable cardinal. We let S<κ denote the full subcategory
of S spanned by the κ-small Kan complexes, which we also regard as a full subcategory of
QC<κ. Similarly, we let S<κ∗ denote the full subcategory of S∗ spanned by those pointed
Kan complexes (X,x) where X is κ-small.

Remark 5.5.4.13.03UW Let κ and λ be regular cardinals and suppose that κ is less than or
equal to the exponential cofinality ecf(λ) (see Definition 4.7.3.16). Then the ∞-category
QC<κ is locally λ-small. This follows by combining Remarks 5.5.4.5 and 4.7.5.10. It follows
that the full subcategory S<κ ⊆ QC<κ is also locally λ-small.

5.5.5 The (∞, 2)-Category of ∞-Categories

020J For some applications, it will be convenient to work with a variant of Construction
5.5.4.1, which retains information about non-invertible natural transformations of functors.

Construction 5.5.5.1 (The (∞, 2)-Category of ∞-Categories).020K Let Set∆ denote the cate-
gory of simplicial sets, endowed with the simplicial enrichment of Example 2.4.2.1. We let
QCat denote the full simplicial subcategory of Set∆ spanned by the (small) ∞-categories,
which we can describe concretely as follows:

• The objects of QCat are (small) ∞-categories.

• If C and D are∞-categories, then the simplicial set HomQCat(C,D)• is the∞-category
of functors Fun(C,D).
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We let QCQCQC denote the homotopy coherent nerve Nhc
• (QCat). We will refer to QCQCQC as the

(∞, 2)-category of ∞-categories.

Proposition 5.5.5.2. 020LThe simplicial set QCQCQC is an (∞, 2)-category.

Proof. For every pair of∞-categories C and D, Theorem 1.5.3.7 guarantees that the simplicial
set HomQCat(C,D)• = Fun(C,D) is an ∞-category. The desired result is now a special case
of Theorem 5.4.8.1.

Remark 5.5.5.3. 020MThe low-dimensional simplices of QCQCQC are simple to describe:

• An object of QCQCQC is a (small) ∞-category C.

• If C and D are objects of QC, then a morphism from C to D in QCQCQC is a functor
F : C → D.

• A 2-simplex σ of QCQCQC can be identified with a diagram

D

G

��

µ

��C

F

??

H
// E

where C, D, and E are (small)∞-categories, F , G, and H are functors, and µ : G◦F →
H is a morphism in the ∞-category Fun(C, E). Moreover, σ is thin if and only if µ is
an isomorphism of functors (Proposition 5.4.8.7).

Remark 5.5.5.4 (Comparison with QC). 020NLet QCat and QCat be the simplicial categories
defined in Constructions 5.5.4.1 and 5.5.5.1, respectively. There is an evident comparison
map QCat ↪→ QCat which is the identity at the level of objects, and which is given on
morphism spaces by the inclusion maps

HomQCat(C,D)• = Fun(C,D)≃ ↪→ Fun(C,D) = HomQCat(C,D).

Passing to the homotopy coherent nerve, we obtain a functor of (∞, 2)-categories QC ↪→QCQCQC
which restricts to an isomorphism of ∞-categories QC ≃ Pith(QCQCQC) (Corollary 5.4.8.8).

Remark 5.5.5.5. 020PLet C and D be ∞-categories. Then Theorem 4.6.8.5 supplies an
equivalence of ∞-categories Fun(C,D) → HomL

QCQCQC(C,D). Beware that this equivalence is
generally not an isomorphism at the level of simplicial sets.
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Remark 5.5.5.6 (Comparison with Kan Complexes).020Q Since every Kan complex is an ∞-
category (Example 1.4.0.3), we can identify the simplicial category Kan of Construction 5.5.1.1
with a full simplicial subcategory of QCat. Passing to homotopy coherent nerves, we can
identify ∞-category of spaces S = Nhc

• (Kan) with the full subcategory of QCQCQC = Nhc
• (QCat)

spanned by the Kan complexes.

Remark 5.5.5.7 (Comparison with Categories).020R Let Cat denote the strict 2-category
of small categories (Example 2.2.0.4). By virtue of Proposition 1.5.3.3, the construction
C 7→ N•(C) induces an isomorphism from the Duskin nerve ND

• (Cat) to the full subcategory
of QCQCQC spanned by those ∞-categories of the form N•(C), where C is an ordinary category.

Remark 5.5.5.8 (Passage to the Homotopy Category).025K Let Cat• denote the simplicial
category associated to the strict 2-category Cat (see Example 2.4.2.8). For every pair of
∞-categories C and D, Corollary 1.5.3.5 supplies a comparison map

Fun(C,D)→ Fun(C,N•(hD)) ≃ N•(Fun(hC,hD)).

This construction is compatible with composition, and therefore determines a functor of
simplicial categories

QCat→ Cat• C 7→ hC.

Passing to homotopy coherent nerves (and invoking Example 2.4.3.11), we obtain a functor
of (∞, 2)-categories

QCQCQC = Nhc
• (QCat)→ Nhc

• (Cat•) ≃ ND
• (Cat).

Stated more informally, the construction C 7→ hC determines a functor from the (∞, 2)-
category QCQCQC to the ordinary 2-category Cat.

Variant 5.5.5.9.03UX Let κ be an uncountable cardinal. We let QCQCQC<κ denote the full simplicial
subset of QCQCQC spanned by those ∞-categories C which are κ-small. Then QCQCQC<κ is an (∞, 2)-
category, which we will refer to as the (∞, 2)-category of essentially κ-small ∞-categories.

5.5.6 ∞-Categories with a Distinguished Object

020S In this section, we study pairs (C, C), where C is a (small) ∞-category and C ∈ C is a
distinguished object. Our goal is to organize the collection of such pairs into an ∞-category.
We consider several variants of this construction which are related by inclusion maps

Nhc
• (QCat∗) ↪→ QC∗ ↪→ QCObj ↪→QCQCQCObj;

their interrelationships can be described informally as follows:
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• Morphisms from (C, C) to (D, D) in the ∞-category Nhc
• (QCat∗) are given by functors

F : C → D which satisfy F (C) = D (that is, F is strictly compatible with the choice
of distinguished objects).

• Morphisms from (C, C) to (D, D) in the ∞-category QC∗ are given by pairs (F, α),
where F : C → D is a functor and α : F (C)→ D is an isomorphism in the ∞-category
D (that is, F is compatible with the choice of distinguished objects up to isomorphism).
The inclusion Nhc

• (QCat∗) ↪→ QC∗ is an equivalence of ∞-categories (Proposition
5.5.6.6).

• Morphisms from (C, C) to (D, D) in the ∞-category QCObj are given by pairs (F, α),
where F : C → D is a functor and α : F (C)→ D is an morphism in the ∞-category
D which is not required to be an isomorphism; this ∞-category contains QC∗ as a
(non-full) subcategory (Remark 5.5.6.16).

• The simplicial set QCQCQCObj is an (∞, 2)-category having the same objects and mor-
phisms as QCObj, but which also contains information about non-invertible natural
transformations between functors (see Example 5.5.6.17).

Construction 5.5.6.1. 020TLet QC denote the ∞-category of ∞-categories (Construction
5.5.4.1), and regard the Kan complex ∆0 as an object of QC. We let QC∗ denote the coslice
simplicial set QC∆0/.

Proposition 5.5.6.2. 020UThe simplicial set QC∗ is an ∞-category, and the projection map
QC∗ → QC is a left fibration of ∞-categories.

Proof. By virtue of Proposition 5.5.4.3, the simplicial set QC is an ∞-category. It follows
that for every object C ∈ QC, the projection map QCC / → QC is a left fibration (Corollary
4.3.6.11). Taking C = ∆0, we conclude that the projection map QC∗ → QC is a left fibration,
so that QC∗ is an ∞-category (Remark 4.2.1.4).

Example 5.5.6.3 (Objects and Morphisms of QC∗). 020VThe low-dimensional simplices of the
∞-category QC∗ are easy to describe:

• The objects of QC∗ can be identified with pairs (C, C), where C is a (small)∞-category
and C ∈ C is an object (which we identify with the morphism ∆0 → C taking the value
C).

• Let (C, C) and (D, D) be objects of QC∗. A morphism from (C, C) to (D, D) in the
∞-category QC∗ can be identified with a pair (F, α), where F : C → D is a functor of
∞-categories and α : F (C)→ D is an isomorphism in the ∞-category D.
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Warning 5.5.6.4.020W By analogy with Definition 3.2.1.5, it would be natural to refer to the
objects (C, C) of QC∗ as pointed ∞-categories. We will avoid using this terminology, since
it conflicts with another (related but distinct) notion of pointed ∞-category that we will
consider later (Definition [?]).

Remark 5.5.6.5 (Comparison with Pointed Spaces).020X Let us regard the ∞-category of
spaces S as a full subcategory of the ∞-category QC (Remark 5.5.4.8). The inclusion
S ↪→ QC determines a functor of coslice ∞-categories S∗ → QC∗. This functor restricts to
an isomorphism from S∗ with the full subcategory of QC∗ spanned by those pairs (C, C),
where C is a Kan complex.

Let QCat denote the ordinary category whose objects are (small) ∞-categories and
whose morphisms are functors, and let QCat∗ denote the coslice category QCat∆0/. The
simplicial enrichment of QCat (described in Construction 5.5.4.1) determines a simplicial
enrichment of the coslice category QCat∗ (see Variant 5.5.2.3), and Construction 5.5.2.17
yields a coslice comparison functor

Nhc
• (QCat∗) = Nhc

• (QCat∆0/)→ Nhc
• (QCat)∆0/ = QC∗ .

Proposition 5.5.6.6.020Y The coslice comparison functor Nhc
• (QCat∗)→ QC∗ is an equivalence

of ∞-categories.

Proof. By virtue of Theorem 5.5.2.21, it will suffice to show that for every pair of objects
(C, C), (D, D) ∈ QC∗, the restriction map

Fun(C,D)≃ = HomQCat(C,D)• → HomQCat({C},D) = Fun({C},D)≃

is a Kan fibration. This follows from Proposition 4.4.3.7, since the restriction functor
Fun(C,D)→ Fun({C},D) is an isofibration of ∞-categories (Corollary 4.4.5.3).

Warning 5.5.6.7.020Z The coslice comparison functor U : Nhc
• (QCat∗)→ QC∗ of Proposition

5.5.6.6 is bijective on vertices: objects of either Nhc
• (QCat∗) and QC∗ can be identified

with pairs (C, C), where C is an ∞-category and C is an object of C. However, it is not
bijective on edges (and is therefore not an isomorphism of simplicial sets). If (C, C) and
(D, D) are objects of QC∗, then a morphism from (C, C) to (D, D) in the ∞-category QC∗
can be identified with a pair (F, α), where F : C → D is a functor of ∞-categories and
α : F (C) → D is an isomorphism in the ∞-category D. The pair (F, α) belongs to the
image of U if and only if the isomorphism α is a degenerate edge of D (which guarantees in
particular that F (C) = D).

We now introduce an enlargement of the ∞-category QC∗.
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Construction 5.5.6.8. 0210Let QCQCQC denote the (∞, 2)-category of ∞-categories (Construction
5.5.5.1), and regard the Kan complex ∆0 as an object of QCQCQC. We let QCQCQCObj denote the
coslice simplicial set QCQCQC∆0/.

Proposition 5.5.6.9. 0211The simplicial set QCQCQCObj is an (∞, 2)-category. Moreover, the
projection map QCQCQCObj →QCQCQC is an interior fibration of (∞, 2)-categories.

Proof. It follows from Proposition 5.5.5.2 that QCQCQC is an (∞, 2)-category. The desired
conclusion now follows from Corollary 5.4.3.4 and Proposition 5.4.3.1.

Definition 5.5.6.10. 0212Let QCObj denote the pith of the (∞, 2)-category QCQCQCObj (see Con-
struction 5.4.5.1).

Proposition 5.5.6.11. 0213

(1) The simplicial set QCObj is an ∞-category.

(2) The projection map Ṽ :QCQCQC∗ =QCQCQC∆0/ →QCQCQC restricts to a functor

V : QCObj = Pith(QCQCQCObj)→ Pith(QCQCQC) = QC .

(3) The diagram
QCObj //

V

��

QCQCQCObj

Ṽ

��
QC //QCQCQC

is a pullback square of simplicial sets.

(4) The functor V is a cocartesian fibration of ∞-categories.

Proof. Assertion (1) follows from Proposition 5.4.5.6. Since Ṽ is an interior fibration
(Proposition 5.5.6.9), assertions (2) and (3) follow from Proposition 5.4.7.10. Assertion (4)
is a special case of Corollary 5.4.7.11.

Example 5.5.6.12 (Objects and Morphisms of QCObj). 0214The inclusion of simplicial sets
QC ↪→QCQCQC induces a functor of ∞-categories ι : QC∗ ↪→ QCObj. The functor ι is bijective on
vertices. In particular, we can identify the objects of QCObj with pairs (C, C), where C is a
(small) ∞-category and C ∈ C is an object. However, it is not bijective on edges. Unwinding
the definitions, we see that a morphism F̃ from (C, C) to (D, D) in the ∞-category QCObj
can be identified with a pair (F, α), where F : C → D is a functor of ∞-categories and
α : F (C)→ D is a morphism in the ∞-category D. For every such pair (F, α), the following
conditions are equivalent:
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• The morphism F̃ = (F, α) belongs to the image of the inclusion map ι : QC∗ ↪→ QCObj.

• The morphism α : F (C)→ D is an isomorphism in the ∞-category D.

• The morphism F̃ is V -cocartesian, where V : QCObj → QC is the cocartesian fibration
of Proposition 5.5.6.11.

Remark 5.5.6.13 (Fibers of V ).02S4 Let C be a small∞-category, which we regard as an object
of the ∞-category QC. Then Construction 4.6.8.3 supplies a comparison map

C = HomQCat(∆0, C)
θC−→ HomL

QCQCQC(∆0, C)
= {C} ×QCQCQC QCQCQCObj

= {C} ×QC QCObj,

which is an equivalence of ∞-categories (Theorem 4.6.8.9). Beware that θC is generally
not an isomorphism of simplicial sets (though it is bijective on n-simplices for n ≤ 1; see
Example 5.5.6.12).

We have the following generalization of Proposition 5.5.3.6:

Proposition 5.5.6.14.02S5 Let V : QCObj → QC be the cocartesian fibration of Proposition
5.5.6.11 and let

hTrQCObj /QC : hQC → hQCat

denote the enriched homotopy transport representation of Construction 5.2.8.9. Then
hTrQCObj /QC is homotopy inverse (as an hKan-enriched functor) to the isomorphism
hQCat ≃ hQC supplied by Remark 5.5.4.6. In particular, hTrQCObj /QC is an equivalence of
hKan-enriched categories.

Proof. Apply Theorem 5.4.9.2 to the simplicial category QCat.

Remark 5.5.6.15.02S6 The statement of Proposition 5.5.6.14 can be made more precise:
Theorem 5.4.9.2 supplies an explicit hKan-enriched isomorphism from the identity functor
idhQCat to the composition

hQCat ∼−→ hQC
hTrQCObj /QC
−−−−−−−−−→ hQCat,

which carries each small ∞-category C to the equivalence

θC : C → {C} ×QC QCObj = hTrQCObj /QC(C)

described in Remark 5.5.6.13.
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Remark 5.5.6.16. 0215The inclusion map ι : QC∗ ↪→ QCObj is an isomorphism from QC∗ to the
(non-full) subcategory of QCObj spanned by those morphisms which satisfy the conditions
of Example 5.5.6.12. In other words, the projection map QC∗ → QC is the underlying left
fibration of the cocartesian fibration QCObj → QC (see Corollary 5.4.7.12).

Note that the inclusion map QCObj = Pith(QCQCQCObj) ↪→QCQCQCObj is bijective on simplices of
dimension ≤ 1 (Remark 5.4.5.2). However, it is not bijective at the level of 2-simplices.

Example 5.5.6.17 (2-Simplices of QCQCQCObj). 0216By virtue of Example 5.5.6.12, a morphism of
simplicial sets σ0 : ∂∆2 →QCQCQCObj can be identified with the following data:

• A collection of ∞-categories C, D, and E equipped with distinguished objects C ∈ C,
D ∈ D, and E ∈ E .

• A collection of functors F : C → D, G : D → E , and H : C → E .

• A collection of morphisms α : F (C)→ D, β : G(D)→ E, and γ : H(C)→ E in the
∞-categories D and E .

Unwinding the definitions, we see that extending σ0 to a 2-simplex σ of QCQCQCObj is equivalent
to choosing a natural transformation of functors µ : (G ◦ F ) → H and a morphism of
simplicial sets θ : 2 → E whose restriction to the boundary ∂ 2 is indicated in the diagram

(G ◦ F )(C) µ(C) //

G(α)

��

H(C)

γ

��
G(D) β // E.

Moreover:

• The 2-simplex σ belongs to the image of QCObj ↪→QCQCQCObj if and only if µ : G ◦F → H

is an isomorphism in the functor ∞-category Fun(C, E).

• The 2-simplex σ belongs to the image of QC∗ ↪→QCQCQCObj if and only if µ, α, β, and γ

are all isomorphisms.

• The 2-simplex σ belongs to the image of Nhc
• (QCat∗) ↪→QCQCQCObj if and only if µ, α, β,

and γ are identity morphisms (so that H = G ◦ F , D = F (C), and E = G(D)) and
the morphism θ : 2 → E is constant.

Variant 5.5.6.18. 03UYLet κ be an uncountable cardinal. We letQCQCQC<κObj denote the full simplicial
subset of QCQCQCObj spanned by those pairs (C, C) where the ∞-category C is κ-small, and we
define QC<κObj = Pith(QCQCQC<κObj) similarly. The projection map QC<κObj → QC

<κ is then a
cocartesian fibration of ∞-categories, whose fibers are κ-small.
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5.6 Classification of Cocartesian Fibrations

027M Our goal in this section is to address the following:

Question 5.6.0.1.0380 Let U : E → C be a cocartesian fibration of ∞-categories. To what
extent can U be recovered from the collection of ∞-categories {EC}C∈C?

In §5.2.7, we gave an answer to Question 5.6.0.1 under the assumption that U is a left
covering map. In this case, the construction C 7→ EC determines a functor hTrE / C : hC → Set.
Moreover, the ∞-category E can be recovered (up to isomorphism) as the fiber product
C ×N•(hC)

∫
hC hTrE / C (Proposition 5.2.7.2), where the second factor denotes the category of

elements of the set-valued functor hTrE / C (Construction 5.2.6.1).
In the setting of classical category theory, Grothendieck gave a complete answer to

Question 5.6.0.1. Let C be an ordinary category, and let Cat denote the (strict) 2-category
of small categories (Example 2.2.0.4), and let F : C → Cat be a functor of 2-categories. In
§5.6.1, we introduce a category

∫
CF whose objects are pairs (C,X) where C is an object of

C and X is an object of the category F (C). We will refer to
∫
CF as the category of elements

of the functor F (Definition 5.6.1.1). The category
∫
CF is equipped with a cocartesian

fibration U :
∫
CF → C, given on objects by the construction (C,X) 7→ C. Moreover, the

cocartesian fibration U is essentially small: that is, for each object C ∈ C, the fiber U−1{C}
is an essentially small category (since it is equivalent to the small category F (C)). In [27],
Grothendieck showed that, up to isomorphism, every essentially small cocartesian fibration
can be obtained in this way (Corollary 5.6.5.19).

In §5.6.2, we introduce an ∞-categorical counterpart of the preceding construction. Let
QCObj denote the∞-category of Construction 5.5.6.10, whose objects are pairs (A, X) where
A is a (small) ∞-category and X is an object of A. For every morphism of simplicial
sets F : C → QC, we let

∫
CF denote the fiber product C ×QC QCObj. By construction,

vertices of
∫
CF can be identified with pairs (C,X), where C is a vertex of C and X is an

object of the ∞-category F (C). Projection onto the first factor determines a cocartesian
fibration of simplicial sets U :

∫
CF → C, given on objects by the construction (C,X) 7→ C

(Proposition 5.6.2.2). In particular, if C is an ∞-category, then the simplicial set
∫
CF is also

an ∞-category, which we refer to as the ∞-category of elements of F (Definition 5.6.2.4).
This construction has the following features:

• Let C be an ordinary category and let F : C → Cat be a functor of 2-categories, so
that the construction C 7→ N•(F (C)) determines a functor of ∞-categories N•(F ) :
N•(C)→ QC. In §5.6.3, we construct a canonical isomorphism of simplicial sets∫

N•(C)
N•(F ) ≃ N•(

∫
C
F )
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where the left hand side is the ∞-category of elements of the functor N•(F ) and
the right hand side is the nerve of the ordinary category of elements of the functor
F (Proposition 5.6.3.4). Consequently, we can view the ∞-category of elements
construction as a generalization of the classical category of elements construction.

• Let C be an ordinary category and let F : C → QCat be a functor of ordinary
categories. Passing to the homotopy coherent nerve, we obtain a functor of ∞-
categories Nhc

• (F ) : N•(C)→ QC. In §5.6.4, we construct a comparison map

θ : NF
• (C)→

∫
N•(C)

Nhc
• (F )

and show that it is an equivalence of ∞-categories (Proposition 5.6.4.8). In other
words, we can think of the ∞-category of elements as a variant of the weighted nerve
construction, which can be applied to homotopy coherent diagrams which are not
strictly commutative. Beware that θ is usually not an isomorphism of simplicial sets.

It is not difficult to show that if diagrams F ,F ′ : C → QC are isomorphic (as objects of
the ∞-category Fun(C,QC)), then the cocartesian fibrations∫

C
F → C

∫
C
F ′ → C

are equivalent (see Proposition 5.6.2.19). It follows that the construction F 7→
∫
CF

determines a function from the collection of isomorphism classes in the∞-category Fun(C,QC)
to the collection of equivalence classes of cocartesian fibrations over C. We will show that,
modulo set-theoretic technicalities, this function is a bijection.

Theorem 5.6.0.2 (Universality Theorem). 028KLet C be a simplicial set. Then the construction

(F : C → QC) 7→ (
∫
C
F → C)

induces a bijection from π0(Fun(C,QC)≃) to the set of equivalence classes of essentially
small cocartesian fibrations U : E → C.

Warning 5.6.0.3. 027QIn the statement of Theorem 5.6.0.2, the essential smallness assumption
cannot be omitted: if the cocartesian fibration U : E → C is equivalent to

∫
CF for some

diagram F : C → QC, then each fiber EC = {C} ×C E is equivalent to the small ∞-category
F (C) (see Example 5.6.2.18).

Remark 5.6.0.4. 028MWe can summarize Theorem 5.6.0.2 more informally by saying that the
projection map V : QCObj → QC is universal among essentially small cocartesian fibrations.
Note that this property characterizes the ∞-category QC (and the cocartesian fibration V )
up to equivalence.
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Remark 5.6.0.5.028N We will later show that the bijection of Theorem 5.6.0.2 can be upgraded
to an equivalence of ∞-categories; see Theorem [?].

Corollary 5.6.0.6.028T Let C be a simplicial set. Then the construction

(F : C → S) 7→ (
∫
C
F → C)

induces a bijection from π0(Fun(C,S)≃) to the set of equivalence classes of essentially small
left fibrations U : E → C.

Example 5.6.0.7.0381 Let C be a locally small ∞-category and let X be an object of C. It
follows from Corollary 5.6.0.6 that there is an essentially unique functor hX : C → S for∫
C h

X is equivalent to CX/ as left fibrations over C. We will refer to hX : C → S as the
functor corepresented by X. For every object Y ∈ C, we have isomorphisms

hX(Y ) ≃ {Y } ×C
∫
C
hX ≃ {Y } ×C CX/ = HomL

C (X,Y ) ≃ HomC(X,Y )

in the homotopy category hKan, depending functorially on Y . In §5.6.6, we will show that
this property characterizes the functor hX up to isomorphism (Theorem 5.6.6.13).

Let U : E → C be a cocartesian fibration of simplicial sets. We will say that a diagram
F : C → QC is a covariant transport representation for U if there exists an equivalence
α : E →

∫
CF of cocartesian fibrations over C (Definition 5.6.5.1). Theorem 5.6.0.2 asserts

that if U is essentially small, then there exists a covariant transport representation for U
which is uniquely determined up to isomorphism (as an object of the∞-category Fun(C,QC)).
In fact, we will prove something stronger: the covariant transport representation of U is
unique up to a contractible space of choices. In §5.6.8, we formulate this statement more
precisely by introducing a Kan complex TW(E / C) whose vertices are pairs (F , α) as above
(see Notation 5.6.8.1). We prove the contractibility of TW(E / C) in §5.6.9: as we will
see, it is a formal consequence of the fact that the homotopy transport representation of
the cocartesian fibration V : QCObj → QC determines an equivalence of hKan-enriched
categories hTrQCObj /QC : hQC → hQCat (Proposition 5.5.6.14).

Remark 5.6.0.8.0382 Let U : E → C be a cocartesian fibration between (small) simplicial sets.
We will denote the covariant transport representation of U by TrE / C ; it can be regarded as a
homotopy coherent refinement of the homotopy transport representation hTrE / C introduced
in Construction 5.2.5.2 (see Remark 5.6.5.8 for a precise statement). We can summarize the
situation with the following informal answer to Question 5.6.0.1:

• For every essentially small cocartesian fibration U : E → C, the construction C 7→ EC
determines a functor of ∞-categories TrE / C : C → QC. Moreover, we can recover E
(up to equivalence) as the ∞-category of elements

∫
C TrE / C .
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Remark 5.6.0.9. 0383In the statement of Theorem 5.6.0.2, it is not necessary to assume that
the simplicial set C is an ∞-category. This additional generality will play an essential role
in our proof (which will require us to analyze the restriction of the cocartesian fibration
U : E → C to simplicial subsets of C). Moreover, it has a number of pleasant consequences:
since QC is an ∞-category, it guarantees that every cocartesian fibration of simplicial sets is
equivalent to the pullback of a cocartesian fibration between ∞-categories. In §5.6.7, we use
this to prove a sharper statement: every cocartesian fibration of simplicial sets is isomorphic
to the pullback of a cocartesian fibration between ∞-categories (Corollary 5.6.7.3). From
this, we deduce that every cocartesian fibration of simplicial sets is an isofibration (Corollary
5.6.7.5), and that the collection of categorical equivalences of simplicial sets is stable under
the formation of pullback by cocartesian fibrations (Corollary 5.6.7.6).

5.6.1 Elements of Category-Valued Functors

01R1Let C be a category and let F : C → Set be a functor. In §5.2.6 we introduced the
category of elements

∫
CF , whose objects are pairs (C, x) where C is an object of C and x is

an element of the set F (C) (Construction 5.2.6.1). In this section, we study a generalization
of this construction, where we allow F to be a C-indexed diagram of categories (rather than
a C-indexed diagram of sets). In what follows, we let Cat denote the (strict) 2-category of
small categories (Example 2.2.0.4).

Definition 5.6.1.1 (The Category of Elements: Covariant Version). 025NLet C be a category
and let F : C → Cat be a functor of 2-categories. We define a category

∫
CF as follows:

• The objects of
∫
CF are pairs (C,X), where C is an object of C and X is an object of

the category F (C).

• Let (C,X) and (D,Y ) be objects of
∫
CF . Then a morphism from (C,X) to (D,Y )

in the category
∫
CF is a pair (f, u), where f : C → D is a morphism in the category

C and u : F (f)(X)→ Y is a morphism in the category F (D).

• Let (f, u) : (C,X) → (D,Y ) and (g, v) : (D,Y ) → (E,Z) be morphisms in the
category

∫
CF . Then the composition (g, v) ◦ (f, u) is the pair (g ◦ f, w), where

w : F (g ◦ f)(X)→ Z is the morphism of F (E) given by the composition

F (g ◦ f)(X)
µ−1

g,f
(X)

−−−−−→ (F (g) ◦F (f))(X) F (g)(u)−−−−−→ F (g)(Y ) v−→ Z,

where µg,f : F (g) ◦ F (f) ≃ F (g ◦ f) denotes the composition constraint for the
functor F .

We will refer to
∫
CF as the category of elements of F .
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Remark 5.6.1.2.025M The category of elements
∫
CF was originally introduced by Grothendieck

in [27]. For this reason, many authors refer to the category
∫
CF as the Grothendieck

construction on the functor F .

Proposition 5.6.1.3.01R3 Let C be a category and let F : C → Cat be a functor of 2-categories.
Then the category of elements

∫
CF is well-defined: that is, the composition law described in

Definition 5.6.1.1 is unital and associative.

Proof. Let (D,Y ) be an object of
∫
CF . We let id(D,Y ) denote the morphism from (D,Y ) to

itself given by the pair (idD, ϵ−1
D (Y )), where ϵD : idF (D)

∼−→ F (idD) is the identity constraint
for the functor F . We first show that id(D,Y ) is a (two-sided) unit for the composition law
on

∫
CF . We consider two cases:

• Let (C,X) be another object of
∫
CF and let (f, u) : (C,X)→ (D,Y ) be a morphism

in
∫
CF . We wish to show that the composition id(D,Y ) ◦(f, u) is equal to (f, u) (as a

morphism from (C,X) to (D,Y )). Unwinding the definitions, this is equivalent to the
assertion that the morphism u : F (f)(X)→ Y is equal to the composition

F (f)(X)
µ−1

idD,f
(X)

−−−−−−→ (F (idD) ◦F (f))(X) F (idD)(u)−−−−−−→ F (idD)(Y )
ϵ−1

D (Y )
−−−−→ Y.

Using the commutativity of the diagram

F (f)(X)

u

��

ϵD(F (f)(X))
∼

// (F (idD) ◦F (f))(X)

F (idD)(u)

��
Y

ϵD(Y )
∼

// F (idD)(Y ),

we are reduced to showing that the composition

F (f)(X)
µ−1

idD,f
(X)

−−−−−−→ (F (idD) ◦F (f))(X)
ϵ−1

D (F (f)(X))
−−−−−−−−−→ F (f)(X)

is equal to the identity, which follows from axiom (a) of Definition 2.2.4.5.

• Let (E,Z) be another object of
∫
CF , and let (g, v) : (D,Y )→ (E,Z) be a morphism

in
∫
CF . We wish to show that the composition (g, v) ◦ id(D,Y ) is equal to (g, v) (as a

morphism from (D,Y ) to (E,Z)). Unwinding the definitions, this is equivalent to the
assertion that the morphism v : F (g)(Z)→ Y is equal to the composition

F (g)(Y )
µ−1

g,idD
(Y )

−−−−−−→ (F (g) ◦F (idD))(Y )
F (g)(ϵ−1

D (Y ))
−−−−−−−−→ F (g)(Y ) v−→ Z,

which follows from from axiom (b) of Definition 2.2.4.5.

https://kerodon.net/tag/025M
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We now show that composition of morphisms in
∫
CF is associative. Suppose we are

given a composable sequence

(B,W ) (e,t)−−→ (C,X) (f,u)−−−→ (D,Y ) (g,v)−−−→ (E,Z)

of morphisms of
∫
CF . Unwinding the definitions, we obtain equalities

(g, v) ◦ ((f, u) ◦ (e, t)) = (g ◦ f ◦ e, v ◦F (g)(u) ◦ w)

((g, v) ◦ (f, u)) ◦ (e, t)) = (g ◦ f ◦ e, v ◦F (g)(u) ◦ w′)

where w,w′ : F (g ◦f ◦ e)(W )→ (F (e)◦F (f))(X) are the morphisms in the category F (E)
given by clockwise and counterclockwise composition in the diagram

F (g ◦ f ◦ e)(W )
µ−1

g,f◦e(W )
∼

//

µ−1
g◦f,e

(W )∼

��

(F (g) ◦F (f ◦ e))(W )

F (g)(µ−1
f,e

(W ))∼

��
(F (g ◦ f) ◦F (e))(W )

µ−1
g,f

(F (e)(W ))
∼

//

F (g◦f)(t)

��

(F (g) ◦F (f) ◦F (e))(W )

(F (g)◦F (f))(t)

��
F (g ◦ f)(X)

µ−1
g,f

(X)
∼

// (F (g) ◦F (f))(X).

It will therefore suffice to show that this diagram commutes. For the upper square, this
follows from axiom (c) of Definition 2.2.4.5. For the lower square, it follows from the
naturality of the composition constraint µg,f .

Definition 5.6.1.1 has a counterpart for contravariant functors:

Definition 5.6.1.4 (The Category of Elements: Contravariant Version). 025PLet C be a category
and let F : Cop → Cat be a functor of 2-categories (Definition 2.2.4.5). We define a category∫ CF as follows:

• The objects of
∫ CF are pairs (C,X), where C is an object of C and X is an object of

the category F (C).

• Let (C,X) and (D,Y ) be objects of
∫ CF . Then a morphism from (C,X) to (D,Y )

in the category
∫ CF is a pair (f, u), where f : C → D is a morphism in the category

C and u : X → F (f)(Y ) is a morphism in the category F (C).

https://kerodon.net/tag/025P
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• Let (f, u) : (C,X) → (D,Y ) and (g, v) : (D,Y ) → (E,Z) be morphisms in the
category

∫ CF . Then the composition (g, v) ◦ (f, u) is the pair (g ◦ f, w), where
w : X → F (g ◦ f)(Z) is the morphism of F (C) given by the composition

X
u−→ F (f)(Y ) F (f)(v)−−−−−→ (F (f) ◦F (g))(Z) µf,g(Z)

−−−−→ F (g ◦ f)(Z),

where µf,g : F (f) ◦F (g) ≃ F (g ◦ f) denotes the composition constraint for the lax
functor F .

We will refer to
∫ CF as the category of elements of the functor F .

Remark 5.6.1.5.025Q The category of elements
∫ CF can be defined more generally when

F : Cop → Cat is a lax functor of 2-categories. We will return to this point in §[?] (see
Definition [?]).

Remark 5.6.1.6.01R5 Let C be a category and let F : C → Cat be a functor of 2-categories.
Then the construction (C ∈ C) 7→ F (C)op determines a functor of 2-categories F op : C =
(Cop)op → Cat. In this case, we have a canonical isomorphism of categories∫ Cop

(F op) ≃ (
∫
C
F )op,

where the left hand side is given by Definition 5.6.1.4 and the right hand side is given by
Definition 5.6.1.1.

Example 5.6.1.7 (Set-Valued Functors).01R6 Let C be a category and let F : C → Set be a
functor from C to the category of sets. Then we can also regard F as a functor from C to
the 2-category Cat (by composing with the fully faithful embedding Set ↪→ Cat, carrying
each set S to the associated discrete category). In this case, the category

∫
CF of Definition

5.6.1.1 agrees with the category of elements of F defined in Construction 5.2.6.1. Similarly,
for every functor F : Cop → Set, the category

∫ CF can be identified with the category of
elements of F defined in Variant 5.2.6.2.

Example 5.6.1.8.0260 Let Cat denote the category whose objects are (small) categories and
whose morphisms are functors, and let F : C → Cat be a functor of ordinary categories.
Composing with the nerve functor N• : Cat → Set∆, we obtain a functor F ′ : C → Set∆.
There is a canonical isomorphism of simplicial sets NF ′

• (C) ≃ N•(
∫
CF ), where the left

hand side denotes the weighted nerve of Definition 5.3.3.1 and
∫
CF denotes the category of

elements introduced in Definition 5.6.1.1. See Exercise 5.3.3.17.

Example 5.6.1.9.01R7 Let I denote the inclusion from the ordinary category Cat (regarded as
a 2-category having only identity 2-morphisms) to the 2-category Cat, and let Catlax

∗ denote
the category of elements

∫
Cat I . The category Catlax

∗ can be described concretely as follows:

https://kerodon.net/tag/025Q
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• The objects of Catlax
∗ are pairs (C, X), where C is a category and X is an object of C.

• A morphism from (C, X) to (D, Y ) is a pair (F, u), where F : C → D is a functor and
u : F (X)→ Y is a morphism in the category D.

• If (F, u) : (C, X)→ (D, Y ) and (G, v) : (D, Y )→ (E , Z) are morphisms in Catlax
∗ , then

their composition is the pair (G ◦ F,w), where w is the morphism of E given by the
composition

(G ◦ F )(X) G(u)−−−→ G(Y ) v−→ Z.

Example 5.6.1.10. 0384Let C be a category and let F : C → Cat denote the (strict) functor
given on objects by the formula F (C) = C/C . Then the category of elements

∫
CF can be

identified with the arrow category Fun([1], C).

Notation 5.6.1.11. 01RALet C be a category and let F : C → Cat be a functor of 2-categories.
Then the category of elements

∫
CF is equipped with a forgetful functor U :

∫
CF → C,

given on objects by the construction (C,X) 7→ C and on morphisms by the construction
(f, u) 7→ f . Similarly, for every functor of 2-categories F : Cop → Cat, the category of

∫ CF

of Definition 5.6.1.4 is equipped with a forgetful functor U :
∫ CF → C.

Remark 5.6.1.12 (Fibers of the Forgetful Functor). 025RLet C be a category and let F : C →
Cat be a functor of 2-categories. For every object C ∈ C, there is a canonical isomorphism
of categories

F (C) ≃ {C} ×C
∫
C
F ,

which carries each object X ∈ F (C) to the object (C,X) ∈
∫
CF and each morphism

u : X → Y in F to the morphism (idC , u ◦ ϵC(X)) : (C,X) → (C, Y ) of
∫
CF (here

ϵC : F (idC) ≃ idF (C) denotes the identity constraint on the functor F ). Similarly, for each
functor F : Cop → Cat, we have a canonical isomorphism

F (C) ≃ {C} ×C
∫ C

F .

Remark 5.6.1.13. 01RBLet V : D → C be a functor between categories. If F : C → Cat is
a functor of 2-categories, then the composition (F ◦ V ) : D → Cat is also a functor of
2-categories, and we have a pullback diagram of categories∫

D(F ◦ V ) //

��

∫ CF

��
D V // C

https://kerodon.net/tag/0384
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where the vertical maps are the forgetful functors of Notation 5.6.1.11. Similarly, for every
functor of 2-categories F : Cop → Cat, we have a pullback diagram

∫D(F ◦ V op) //

��

∫ CF

��
D V // C .

Example 5.6.1.14.01RC Let C be a category and let F : C → Cat be a functor between
ordinary categories, which we can identify with a strict functor from C to the 2-category
Cat. Applying Remark 5.6.1.13, we deduce that the category of elements

∫
CF fits into a

pullback diagram ∫
CF

��

// Catlax
∗

��
C F // Cat .

Proposition 5.6.1.15.025S Let C be a category, let F : C → Cat be a functor of 2-categories,
and let U :

∫
CF → C denote the forgetful functor. Then a morphism (f, u) : (C,X)→ (D,Y )

of
∫
CF is U -cocartesian if and only if u : F (f)(X)→ Y is an isomorphism in the category

F (D).

Proof. Assume first that u is an isomorphism; we wish to show that (f, u) is a U -cocartesian
morphism of the category

∫
CF . Fix a morphism g : D → E of C and an object Z ∈ F (E);

we wish to show that every morphism (g◦f, w) : (C,X)→ (E,Z) in the category
∫
CF can be

written uniquely as a composition (g, v) ◦ (f, u) for some morphism (g, v) : (D,Y )→ (E,Z).
Unwinding the definitions, we wish to show that there is a unique morphism v : F (g)(Y )→ Z

in the category F (E) for which the composition

F (g ◦ f)(X)
µ−1

g,f
(X)

−−−−−→ (F (g) ◦F (f))(X) F (g)(u)−−−−−→ F (g)(Y ) v−→ Z

is equal to w. This is clear, since µ−1
g,f (X) and F (g)(u) are isomorphisms.

Now suppose that (f, u) is a U -cocartesian morphism of the category
∫
CF ; we wish

to show that u is an isomorphism. Let ι : F (D) → {D} ×C
∫
CF be the isomorphism of

Remark 5.6.1.12. Then the morphism (f, u) factors as a composition

(C,X) (f,id)−−−→ (D,F (f)(X)) ι(u)−−→ (D,Y ).

https://kerodon.net/tag/01RC
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The first half of the argument shows that the morphism (f, id) is also U -cocartesian, so that
ι(u) is an isomorphism in the fiber {D} ×C

∫
CF . Since ι is an isomorphism of categories, it

follows that u is an isomorphism in the category F (D).

Corollary 5.6.1.16. 025TLet C be a category. If F : C → Cat is a functor of 2-categories, then
the forgetful functor U :

∫
CF → C is a cocartesian fibration of categories. If F : Cop → Cat

is a functor of 2-categories, then the forgetful functor
∫ CF → C is a cartesian fibration of

categories.

Proof. We will prove the first assertion; the second follows by a similar argument. Let (C,X)
be an object of the category

∫
CF and let f : C → D be a morphism in C; we wish to show

that f can be lifted to a U -cocartesian morphism (f, u) : (C,X) → (D,Y ) of
∫
CF . This

follows immediately from the criterion of Proposition 5.6.1.15: for example, we can take
Y = F (f)(X) and u to be the identity morphism.

Remark 5.6.1.17. 025UIn §5.6.5, we will prove a converse to Corollary 5.6.1.16: for every
cocartesian fibration of categories U : E → C, there exists a functor of 2-categories F : C →
Cat and an isomorphism of categories

∫
CF ≃ E whose composition with U is the forgetful

functor of Notation 5.6.1.11. See Corollary 5.6.5.19.

Remark 5.6.1.18 (Covariant Transport). 025VLet C be a category, let F : C → Cat be a
functor of 2-categories, and let U :

∫
CF → C be the forgetful functor of Notation 5.6.1.11.

For each object C ∈ C, let

ιC : F (C) ≃ {C} ×C
∫
C
F ⊆

∫
C
F

be the isomorphism of Remark 5.6.1.12. Note that every morphism f : C → D in C
determines a natural transformation of functors f̃ : ιC → ιD ◦F (f), which carries an object
X ∈ F (C) to the U -cocartesian morphism (f, id) : (C,X)→ (D,F (f)(X)). It follows that
f̃ identifies F (f) with the covariant transport functor f! of Notation 5.2.2.2.

5.6.2 Elements of QC-Valued Functors

026HLet QCat denote the ordinary category whose objects are ∞-categories and whose
morphisms are functors (Construction 5.5.4.1). To every functor F : C → QCat, the
weighted nerve construction of Definition 5.3.3.1 supplies a cocartesian fibration of ∞-
categories U : NF

• (C) → N•(C) (Corollary 5.3.3.16), whose fiber over an object C ∈ C is
isomorphic to the ∞-category F (C) (Example 5.3.3.8). The utility of this construction is
limited by the fact that it applies only to strictly commutative diagrams in QCat: that is,
Definition 5.3.3.1 requires C to be an ordinary category and F to be a functor of ordinary
categories. Our goal in this section is to introduce a homotopy coherent variant of the
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weighted nerve which is associated to any functor of ∞-categories F : C → QC; here QC
denotes the ∞-category of ∞-categories introduced in Construction 5.5.4.1.

Definition 5.6.2.1.026J Let C be a simplicial set and let F : C → Nhc
• (Set∆) be a morphism of

simplicial sets. We let
∫
CF denote the fiber product C ×Nhc

• (Set∆) Nhc
• (Set∆)∆0/, so that we

have a pullback diagram of simplicial sets∫
CF //

U

��

Nhc
• (Set∆)∆0/

��
C F // Nhc

• (Set∆).

We will refer to U :
∫
CF → C as the projection map.

The simplicial set
∫
CF of Definition 5.6.2.1 is defined for an arbitrary morphism F :

C → Nhc
• (Set∆). However, we will be primarily interested in the case where F takes values

in the simplicial subset QC ⊆ Nhc
• (Set∆) introduced in Construction 5.5.4.1.

Proposition 5.6.2.2.026K Let F : C → QC be a morphism of simplicial sets. Then the projection
map U :

∫
CF → C is a cocartesian fibration of simplicial sets.

Proof. By construction, the morphism U fits into a pullback diagram∫
CF //

U

��

QCObj

��
C F // QC,

where
QCObj = QC ×Nhc

• (Set∆) Nhc
• (Set∆)∆0/

is the ∞-category introduced in Construction 5.5.6.10. It will therefore suffice to show that
the projection map QCObj → QC is a cocartesian fibration of simplicial sets, which follows
from Proposition 5.5.6.11.

Corollary 5.6.2.3.026L Let F : C → QC be a functor of ∞-categories. Then the simplicial set∫
CF of Definition 5.6.2.1 is an ∞-category.

Definition 5.6.2.4.026M Let F : C → QC be a functor of ∞-categories. We will refer to
∫
CF

as the ∞-category of elements of F .
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Remark 5.6.2.5. 026NLet C be an ordinary category equipped with a strictly unitary functor
of 2-categories F : C → Cat. Then the construction C 7→ N•(F (C)) determines a functor
of ∞-categories N•(F ) : N•(C)→ QC (see Remark 5.5.4.9). In §5.6.3, we will construct a
canonical isomorphism ∫

N•(C)
N•(F ) ≃ N•(

∫
C
F ),

where the simplicial set on the left hand side is given by Definition 5.6.2.1 and
∫
CF is the

category of elements introduced in Definition 5.6.1.1 (see Proposition 5.6.3.4). Stated more
informally, we can regard the ∞-category of elements construction (Definition 5.6.2.4) as a
generalization of the classical category of elements construction (Definition 5.6.1.1).

Warning 5.6.2.6. 026PIn §5.6.1, we introduced a variant of the category of elements construction
for contravariant Cat-valued functors F : Cop → Cat (see Definition 5.6.1.4), which is
characterized by the formula ∫ C

F = (
∫
Cop

F op)op.

In the ∞-categorical setting, the situation is more subtle: the involution E 7→ Eop does not
preserve the simplicial structure on the category QCat and therefore does not induce an
involution on the simplicial set QC = Nhc

• (QCat). We will return to this point in §[?].

Warning 5.6.2.7. 026QLet F : C → QCat be a functor of ordinary categories. Passing to
the homotopy coherent nerve, we obtain a functor of ∞-categories Nhc

• (F ) : N•(C)→ QC.
Beware that the simplicial set

∫
N•(C) Nhc

• (F ) is usually not isomorphic to the weighted nerve
NF
• (C) of Definition 5.3.3.1, even in the special case C = ∆0. However, in §5.6.4 we will

construct a comparison map
NF
• (C)→

∫
N•(C)

Nhc
• (F )

which is an equivalence of ∞-categories (Proposition 5.6.4.8).

Example 5.6.2.8 (Set-Valued Functors). 026RLet Set denote the category of sets, and let us
regard the nerve N•(Set) as a simplicial subset of the homotopy coherent nerve Nhc

• (Set∆).
Let F : C → N•(Set) be a morphism of simplicial sets, which we can identify with a functor
of categories hF : hC → Set. Using Example 5.5.3.12 and Remark 5.2.6.6, we obtain a
canonical isomorphism of simplicial sets∫

C
F ≃ C ×N•(hC) N•(

∫
hC

hF ),

where
∫
CF is the simplicial set of Definition 5.6.2.1 and

∫
hC hF is the category of elements

introduced in Construction 5.2.6.1. In particular, the projection map
∫
CF → C is a left

covering map.
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Example 5.6.2.9 (S-Valued Functors).026S Let S denote the∞-category of spaces (Construction
5.5.1.1), which we view as a full simplicial subset of Nhc

• (Set∆), and let F : C → S be a
morphism of simplicial sets. Then the simplicial set

∫
CF fits into pullback diagram∫

CF //

π

��

S∗

��
C F // S,

where S∗ is the∞-category of pointed spaces (Construction 5.5.3.1). In this case, Proposition
5.5.3.2 guarantees that the projection map π :

∫
CF → C is a left fibration of simplicial sets.

Example 5.6.2.10 (QCQCQC-Valued Functors).026T Let QCQCQC denote the (∞, 2)-category of ∞-
categories (Construction 5.5.5.1), which we view as a full simplicial subset of Nhc

• (Set∆),
and let F : C →QCQCQC be a morphism of simplicial sets. We then have a pullback diagram of
simplicial sets ∫

CF //

π

��

QCQCQCObj

��
C F //QCQCQC,

where QCQCQCObj is the (∞, 2)-category of Construction 5.5.6.10 (Construction 5.5.6.8). If
F : C →QCQCQC is a functor of (∞, 2)-categories, then Proposition 5.5.6.9 and Remark 5.4.2.4
guarantee that π :

∫
CF is an interior fibration; in particular,

∫
CF is also an (∞, 2)-category.

Warning 5.6.2.11.026U Let C be an (∞, 2)-category and let F : C → QCQCQC be a morphism
of simplicial sets. If F is not a functor, then

∫
CF need not be an (∞, 2)-category (this

phenomenon arises already in the case C = ∆2).

Example 5.6.2.12 (Objects of the ∞-Category of Elements).026V Let F : C → Nhc
• (Set∆) be a

morphism of simplicial sets. Then vertices of the simplicial set
∫
CF can be identified with

pairs (C,X), where C is a vertex of C and X is a vertex of the simplicial set F (C) (see
Example 5.5.6.12). Moreover, the projection map U :

∫
CF → C is given on vertices by the

construction U(C,X) = C.

Example 5.6.2.13 (Morphisms of the ∞-Category of Elements).026W Let F : C → Nhc
• (Set∆)

be a morphism of simplicial sets. Let (C,X) and (D,Y ) be vertices of the simplicial set
∫
CF .

Edges of
∫
CF from (C,X) to (D,Y ) can be identified with pairs (f, u), where f : C → D is

an edge of the simplicial set C and u : F (f)(X)→ Y is an edge of the simplicial set F (D)
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(see Example 5.5.6.12). Moreover, the projection map U :
∫
CF → C is given on edges by

the construction U(f, u) = f .

Remark 5.6.2.14 (Cocartesian Morphisms of the ∞-Category of Elements). 026XLet F : C →
QC be a morphism of simplicial sets, so that the projection map U :

∫
CF → C is a cocartesian

fibration of simplicial sets (Proposition 5.6.2.2). Then an edge (f, u) : (C,X)→ (D,Y ) of∫
CF is U -cocartesian if and only if u : F (f)(X)→ Y is an isomorphism in the ∞-category

F (D) (see Example 5.5.6.12).

Example 5.6.2.15 (2-Simplices of the ∞-Category of Elements). 026ZLet F : C → Nhc
• (Set∆)

be a morphism of simplicial sets and let σ0 : ∂∆2 →
∫
CF be a morphism of simplicial sets,

which we depict informally as a diagram

(D,Y )

(g,v)

##
(C,X)

(f,u)

;;

(h,w) // (E,Z).

Extensions of σ0 to a 2-simplex of
∫
CF can be identified with pairs (µ, θ), where µ :

F (g)◦F (f)→ F (h) is an edge of the simplicial set Fun(F (C),F (E)), and θ : 2 → F (E)
is a morphism of simplicial sets whose restriction to the boundary ∂ 2 is indicated in the
diagram

(F (g) ◦F (f))(X) µ(X) //

F (g)(u)

��

F (h)(X)

w

��
F (g)(Y ) v // Z

(see Example 5.5.6.17). Moreover, the projection map U :
∫
CF → C is given on 2-simplices

by the construction U(µ, θ) = µ.

Example 5.6.2.16. 0270Let E be a simplicial set, which we identify with the morphism of
simplicial sets ∆0 → Nhc

• (Set∆) taking the value E . Then the simplicial set
∫

∆0 E can
be identified with the left-pinched morphism space HomL

Nhc
• (Set∆)(∆

0, E). In particular,
Construction 4.6.8.3 supplies a comparison morphism

θE : E = HomSet∆(∆0, E)• → HomL
Nhc
• (Set∆)(∆

0, E) =
∫

∆0
E .

If E is an ∞-category, then HomL
Nhc
• (Set∆)(∆

0, E) is also an ∞-category, and the comparison
morphism ρ is an equivalence of∞-categories (Theorem 4.6.8.9). Beware that θE is generally
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not an isomorphism (though it is always a monomorphism which is bijective on simplices
of dimension ≤ 1). For example, Example 5.6.2.15 implies that 2-simplices of

∫
∆0 E can

be identified with morphisms of simplicial sets ρ : ∆1 ×∆1 → E for which the restriction
ρ|∆1×{0} is a degenerate edge of E , as indicated in the diagram

X
idX //

u

��   

X

w

��

σ

τ

Y v
// Z.

The corresponding 2-simplex of
∫

∆0 E belongs to the image of θE if and only if σ is a
left-degenerate 2-simplex of E (in which case it is given by θE(τ)).

Remark 5.6.2.17.0271 Let U : C′ → C and F : C → Nhc
• (Set∆) be morphisms of simplicial

sets, and let F ′ denote the composition (F ′ ◦ U) : C′ → Nhc
• (Set∆). Then the simplicial set∫

C′ F
′ can be identified with the fiber product C′×C

∫
CF .

Example 5.6.2.18 (Fibers of the∞-Category of Elements).0272 Let F : C →QCQCQC be a morphism
of simplicial sets. For each vertex C ∈ C, Remark 5.6.2.17 and Example 5.6.2.16 supply a
canonical isomorphism

{C} ×C
∫
C
F ≃ HomL

QCQCQC(∆0,F (C)).

In particular, Construction 4.6.8.3 supplies a comparison functor θC : F (C)→ {C}×C
∫
CF

which is an equivalence of∞-categories (Theorem 4.6.8.9), but generally not an isomorphism
of simplicial sets.

Proposition 5.6.2.19.02S7 Let C be a simplicial set, let F ,F ′ : C → QC be diagrams, and let
U :

∫
CF → C and U ′ :

∫
CF ′ → C be the projection maps. If F and F ′ are isomorphic as

objects of the diagram ∞-category Fun(C,QC), then U and U ′ are equivalent as cocartesian
fibrations over C (in the sense of Definition 5.1.7.1).

Proof. Apply Proposition 5.1.7.10 to the cocartesian fibration QCObj → QC of Proposition
5.5.6.11.

Proposition 5.6.2.20.02S8 Let F : C → QC be a functor of ∞-categories, let E =
∫
CF denote

the ∞-category of elements of F , and let

hTrE / C : hC → hQC

https://kerodon.net/tag/0271
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denote the enriched homotopy transport representation associated to the cocartesian fibration
U : E → C (see Construction 5.2.8.9). Then there is a canonical isomorphism of hKan-
enriched functors θ : hF → hTrE / C, which carries each object C ∈ C to the comparison
map

θC : F (C)→ hTrE / C(C) = {C} ×C
∫
C
F

of Example 5.6.2.18.

Proof. By virtue of Remarks 5.2.8.10 and 5.6.2.17, we may assume without loss of generality
that C = QC and that F is the identity functor. In this case, the desired result is a
restatement of Proposition 5.5.6.14.

Corollary 5.6.2.21. 027KLet F : C → QC be a morphism of simplicial sets, let U :
∫
CF → C

be the cocartesian fibration of Proposition 5.6.2.2, and let

f! : {C} ×C
∫
C
F → {D} ×C

∫
C
F

be a functor which is given by covariant transport along an edge f : C → D of C (Definition
5.2.2.4). Then the diagram

F (C)

[F (f)]

��

∼ // {C} ×C
∫
CF

[f!]

��
F (D) ∼ // {D} ×C

∫
CF

commutes in the homotopy category hQCat (where the horizontal maps are the equivalences
described in Example 5.6.2.18).

Proof. Without loss of generality, we may assume that C = ∆1, in which case the desired
result reduces to Proposition 5.6.2.20.

Corollary 5.6.2.22. 027LLet F : C → QC be a functor of ∞-categories and set E =
∫
CF .

Then there is a canonical isomorphism hF
∼−→ hTrE / C in the functor category Fun(hC, hQC),

which carries each vertex C ∈ C to the comparison map

θC : F (C)→ hTrE / C(C) = {C} ×C
∫
C
F

of Example 5.6.2.18.

https://kerodon.net/tag/027K
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5.6.3 Comparison with the Category of Elements

0273 Let Cat denote the 2-category of small categories (Example 2.2.0.4) and let QCQCQC denote
the (∞, 2)-category of small ∞-categories (Construction 5.5.5.1). Suppose we are given a
category C equipped with a functor F : N•(C)→QCQCQC. Composing with the functor

QCQCQC → ND
• (Cat) C 7→ hC

of Remark 5.5.5.8 and invoking Corollary 2.3.4.5, we obtain a (strictly unitary) functor of
2-categories hF : C → Cat, which carries each object C ∈ C to the homotopy category of
the ∞-category F (C). Our goal in this section is to compare the ∞-category

∫
N•(C) F of

Definition 5.6.2.1 with the ordinary category
∫
C hF of Definition 5.6.1.1. We begin with two

simple observations:

• Objects of the ∞-category
∫

N•(C) F can be identified with pairs (C,X), where C is an
object of C and X is an object of the ∞-category F (C) (Example 5.6.2.12). Since the
∞-category F (C) and its homotopy category hF (C ) have the same objects, we can
also identify such pairs with objects of the ordinary category

∫
C hF .

• Let (C,X) and (D,Y ) be objects of the∞-category
∫

N•(C) F . By definition, morphisms
from (C,X) to (D,Y ) in the ∞-category

∫
N•(C) F can be identified with pairs (f, u),

where f : C → D is a morphism in the category C and u : F (f)(X)→ Y is a morphism
in the ∞-category F (D) (Example 5.6.2.13). Every such pair determines a morphism
(f, [u]) in the ordinary category

∫
C hF , where [u] denotes the homotopy class of u

(regarded as a morphism in the homotopy category hF (D)).

Proposition 5.6.3.1.0274 Let C be a category and let F : N•(C) → QC be a functor of
∞-categories. Then there is a unique functor of ∞-categories

T :
∫

N•(C)
F → N•(

∫
C

hF )

which is the identity on objects and which carries each morphism (f, u) of
∫

N•(C) F to the pair
(f, [u]), regarded as a morphism in the ordinary category

∫
C hF . Moreover, the functor T

exhibits the classical category of elements
∫
C hF as the homotopy category of the ∞-category

of elements
∫

N•(C) F .

Stated more informally, Proposition 5.6.3.1 asserts that there is a canonical isomorphism
of categories

h
∫

N•(C)
F
∼−→

∫
C

hF .

In other words, passage to the homotopy category intertwines the classical category of
elements construction (Definition 5.6.1.1) with the ∞-category of elements construction
introduced in §5.6.2.

https://kerodon.net/tag/0273
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Proof of Proposition 5.6.3.1. We first prove the existence of the functor T appearing in the
statement of Proposition 5.6.3.1 (the uniqueness is immediate). Since the induced functor
of 2-categories hF : C → Cat is strictly unitary, the construction (f, u) 7→ (f, [u]) carries
degenerate edges of the ∞-category

∫
N•(C) F to identity morphisms in the category

∫
C hF .

It will therefore suffice to show that, for every 2-simplex σ of the simplicial set
∫

N•(C) F

whose boundary is indicated in the diagram

(D,Y )

(g,v)

##
(C,X)

(f,u)

;;

(h,w) // (E,Z),

we have an identity (h, [w]) = (g, [v]) ◦ (f, [u]) in the category
∫
CF . Note that the func-

tor F determines a natural isomorphism µ : F (g) ◦ F (f) ∼−→ F (h) in the ∞-category
Fun(F (C),F (E)). Unwinding the definitions, we see that the composition (g, [v])◦(f, [u]) is
equal to (h, [v]◦[F (f)(u)]◦[µ(X)]−1). We are therefore reduced to proving the commutativity
of the diagram

(F (g) ◦F (f))(X) [µ(X)] //

[F (u)]

��

(F (h)(X)

[w]

��
F (g)(Y ) [v] // Z

in the homotopy category hF (Z ). This commutativity is witnessed by the existence of a
diagram

(F (g) ◦F (f))(X) µ(X) //

F (u)

��

(F (h)(X)

w

��
F (g)(Y ) v // Z

in the ∞-category F (Z) itself, which is supplied by the datum of the 2-simplex σ (see
Example 5.6.2.15). This completes the construction of the functor T .

It follows immediately from the definitions that the functor T is bijective at the level of
objects and that, for every pair of objects (C,X) and (D,Y ), the induced map

θ : π0(Hom∫
N•(C) F ((C,X), (D,Y ))→ Hom∫

C hF ((C,X), (D,Y ))
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is surjective. To complete the proof, we must show that θ is also injective. Fix a pair
of morphisms (f, u) : (C,X) → (D,Y ) and (f ′, u′) : (C,X) → (D,Y ) in the ∞-category∫

N•(C) F having the same image under T , so that f = f ′ as elements of HomC(C,D) and
the morphisms u, u′ : F (f)(X)→ Y are homotopic in the ∞-category F (D). By virtue of
Corollary 1.4.3.7, there exists a morphism of simplicial sets θ : 2 → F (D) whose restriction
to the boundary ∂ 2 is indicated in the diagram

F (f)(X) id //

u

��

F (f)(X)

u′

��
Y

id // Y.

By virtue of Example 5.6.2.15, θ determines a 2-simplex of the ∞-category
∫

N•(C) F whose
boundary is indicated in the diagram

(D,Y )

(idD,idY )

##
(C,X)

(f,u)

;;

(f ′,u′) // (D,Y ),

which we can regard as a homotopy from (f, u) to (f ′, u′).

In the statement of Proposition 5.6.3.1, it is essential that the source of the functor F is
(the nerve of) an ordinary category. For a more general functor of∞-categories F : C → QC,
one cannot expect to obtain the homotopy category of

∫
CF from the construction of

Definition 5.6.1.1, because the forgetful functor h
∫
CF → hC need not be a cocartesian

fibration. However, this difficulty does not arise in the case where F is a set-valued functor:

Proposition 5.6.3.2.0275 Let C be a simplicial set equipped with a morphism F : C → N•(Set),
which we can identify with a functor hF : hC → Set. Then the isomorphism of simplicial
sets ∫

C
F ≃ C ×N•(hC) N•(

∫
hC

hF )

of Example 5.6.2.8 induces an isomorphism of categories

h
∫
C
F →

∫
hC

hF .

Proof. Using Proposition 4.1.3.2, we can factor the unit map C → N•(hC) as a composition

C F−→ C′ G−→ N•(hC)

https://kerodon.net/tag/0275
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where F is inner anodyne and G is an inner fibration of simplicial sets (so that C′ is an
∞-category). It follows that F extends uniquely to a morphism F ′ : C′ → N•(Set). Using
Remark 5.6.2.17, we obtain a pullback diagram of simplicial sets

∫
CF

U

��

F̃ //
∫
C′ F

′

��
C F // C′,

where the vertical maps are cocartesian fibrations (Proposition 5.6.2.2). Since F is inner
anodyne, the map F̃ is a categorical equivalence of simplicial sets (Proposition 5.3.6.1).
Moreover, since F is bijective at the level of vertices, F̃ is also bijective at the level of
vertices. It follows that F and F̃ induce isomorphisms of homotopy categories

hF : hC → hC′ hF̃ ′ : h
∫
C
F → h

∫
C′

F ′.

Replacing C by C′, we are reduced to proving Proposition 5.6.3.2 in the special case where C
is an ∞-category.

Let D be the category of elements
∫

hC hF , so that Example 5.6.2.8 supplies a pullback
diagram of simplicial sets ∫

CF

U

��

G // N•(D)

��
C G // N•(hC).

We wish to show that G exhibits D as a homotopy category of the ∞-category
∫
CF . Note

that, since G is bijective at the level of vertices, the functor G has the same property. It
will therefore suffice to show that, for every pair of objects X,Y ∈

∫
CF , the induced map

θX,Y : Hom∫
C F (X,Y )→ HomD(G(X), G(Y ))

exhibits HomD(G(X), G(Y )) as the set of connected components of the Kan complex
Hom∫

C F (X,Y ). Equivalently, we wish to show that each fiber of the map θX,Y is a
connected (and therefore nonempty) Kan complex. This is clear, since θX,Y is a pullback of
the map

θX,Y : HomC(U(X), U(Y ))→ π0(HomC(U(X), U(Y ))) = HomhC(U(X), U(Y )),

whose fibers are the connected components of HomC(U(X), U(Y )).
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Corollary 5.6.3.3.027Y Let U : E → C be a morphism of simplicial sets. Then U is a left
covering map (in the sense of Definition 4.2.3.8) if and only if the following pair of conditions
is satisfied:

(1) The induced map hU : hE → hC is a left covering functor (in the sense of Definition
4.2.3.1).

(2) The diagram of simplicial sets

E //

U

��

N•(hE)

N•(hU)

��
C // N•(hC)

is a pullback square.

Proof. The sufficiency of conditions (1) and (2) follows from Proposition 4.2.3.16 and Remark
4.2.3.15. To prove the converse, assume that U is a left covering map. By virtue of Corollary
5.2.7.4, we may assume that E =

∫
CF for some morphism of simplicial sets F : C → N•(Set).

Let us abuse notation by identifying F with a functor from the homotopy category hC to
the category of sets. Using Proposition 5.6.3.2, we can identify hE with the category of
elements

∫
hCF of Construction 5.2.6.1. Condition (1) now follows from Remark 5.2.6.9, and

condition (2) by combining Example 5.6.2.8 with Remark 5.6.2.17.

We now consider a variant of the situation described in Proposition 5.6.3.1. Let C be
an ordinary category and suppose we are given a strictly unitary functor of 2-categories
F : C → Cat. Passing to the Duskin nerve (and using Remark 5.5.5.7 to identify ND

• (Cat)
with a full subcategory of QCQCQC), we obtain a functor of ∞-categories ND

• (F ) : N•(C)→ QC.
Identifying hND

• (F ) with the original functor F , Proposition 5.6.3.1 yields a comparison
functor

T :
∫

N•(C)
ND
• (F )→ N•(

∫
C
F ).

Proposition 5.6.3.4.0276 Let C be a category and let F : C → Cat be a strictly unitary functor
of 2-categories. Then the comparison map

T :
∫

N•(C)
ND
• (F )→ N•(

∫
C
F )

is an isomorphism of simplicial sets.

Stated more informally, Proposition 5.6.3.4 asserts that we can regard the classical
category of elements construction (Definition 5.6.1.1) as a special case of Definition 5.6.2.4.

https://kerodon.net/tag/027Y
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Proof of Proposition 5.6.3.4. By virtue of Proposition 5.6.3.1, it will suffice to show that
the simplicial set

∫
N•(C) ND

• (F ) is isomorphic to the nerve of a category. We will prove
this by verifying the criterion of Proposition 1.3.4.1. Fix 0 < i < n; we wish to show that
every morphism of simplicial sets σ0 : Λni →

∫
N•(C) ND

• (F ) can be extended uniquely to an
n-simplex σ of

∫
N•(C) ND

• (F ). Let σ0 denote the composition of σ0 with the projection map∫
N•(C) ND

• (F )→ N•(C). Proposition 1.3.4.1 then guarantees that σ0 extends uniquely to a
morphism of simplicial sets σ : ∆n → N•(C). It will therefore suffice to show that the lifting
problem

0277Λni
σ0 //

��

∫
N•(C) ND

• (F )

π

��
∆n σ //

σ

;;

N•(C)

(5.28)

has a unique solution.
We begin by treating the special case n = 2 (so that i = 1). In this case, we can identify

σ0 with a pair of composable morphisms

(C,X) (f,u)−−−→ (D,Y ) (g,v)−−−→ (E,Z)

in the ∞-category
∫

N•(C) ND
• (F ). Set h = g ◦ f ∈ HomC(C,E), so that the composition

constraint of F determines an isomorphism of functors µ : F (g)◦F (f) ∼−→ F (h). Unwinding
the definitions (using Example 5.6.2.15), we are reduced to proving that there is a unique
morphism w : F (h)(X)→ Z in the category F (E) for which the diagram

(F (g) ◦F (f))(X) µ(X) //

F (u)

��

F (h)(X)

w

��
F (g)(Y ) v // Z

commutes. This is clear, since µ(X) is an isomorphism in the category F (E).
We now treat the case n ≥ 3. Note that the existence of a solution to the lifting problem

(5.28) is automatic (since the projection map π is a cocartesian fibration; see Proposition
5.6.2.2). It will therefore suffice to show that σ is unique. Using Lemma 4.3.6.15 and Remark

https://kerodon.net/tag/0277
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5.5.5.7, we can rewrite (5.28) as a lifting problem

Λn+1
i+1

τ0 //

��

ND
• (Cat)

��
∆n+1 //

τ

;;

∆0.

The uniqueness of its solution is now an immediate consequence of Proposition 2.3.1.9, since
the horn Λn+1

i+1 contains the 2-skeleton of ∆n+1.

Corollary 5.6.3.5.0278 Let F : C → QC be a morphism of simplicial sets which factors through
the full subcategory ND

• (Pith(Cat)) ⊂ QC of Remark 5.5.4.9. Then the projection map∫
CF → C is an inner covering map of simplicial sets.

Proof. By virtue of Corollary 4.1.5.11, we may assume without loss of generality that C = ∆n

is a standard simplex. In this case, we wish to show that the simplicial set
∫
CF is isomorphic

to the nerve of an ordinary category (see Proposition 4.1.5.10), which is a special case of
Proposition 5.6.3.4.

Warning 5.6.3.6.05DZ Let F : C → QC be a morphism of simplicial sets. In the language of
§4.8, Corollary 5.6.3.5 asserts that if each of the ∞-categories F (C) is a (1, 1)-category,
then the cocartesian fibration U :

∫
CF → C is 1-categorical (see Example 4.8.6.26). Beware

that for n ≥ 2, the assumption that each F (C) is an (n, 1)-category does not guarantee
that the cocartesian fibration U is n-categorical. However, if C is an ∞-category, then it is
essentially n-categorical: this is an immediate consequence of Variant 5.1.5.17.

5.6.4 Comparison with the Weighted Nerve

0279 Let C be a category which is equipped with a functor F : C → QCat. In §5.3.3 and
§5.6.3, we introduced two different cocartesian fibrations associated to F :

• The projection map U : NF
• (C)→ N•(C), where NF

• (C) denotes the F -weighted nerve
of C (Definition 5.3.3.1). For each object C ∈ C, the fiber U−1{C} is isomorphic (as a
simplicial set) to the ∞-category F (C) (Example 5.3.3.8).

• The projection map U ′ :
∫

N•(C) Nhc
• (F ) → N•(C), where

∫
N•(C) Nhc

• (F ) denotes the
∞-category of elements of the functor Nhc

• (F ) : N•(C)→ Nhc
• (QCat) = QC. For each

object C ∈ C, the fiber U ′−1{C} is equivalent (but not necessarily isomorphic) to the
∞-category F (C) (Example 5.6.2.18).
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Our goal in this section is to show that these constructions are equivalent (though not
necessarily isomorphic).

Construction 5.6.4.1 (The Comparison Map). 027ALet C be a category and let −→C be an
n-simplex of the nerve N•(C), given by a diagram

C0 → C1 → C2 → · · · → Cn−1 → Cn

in the category C. Let F be a functor from C to the category of simplicial sets and suppose
that we are given a collection of simplices −→σ = {σj : ∆j → F (Cj)}0≤j≤n which fit into a
commutative diagram

∆0

σ0

��

� � // ∆1

σ1

��

� � // ∆2 � � //

σ2

��

· · ·

��

� � // ∆n

σn

��
F (C0) // F (C1) // F (C2) // · · · // F (Cn).

To this data, we can associate a commutative diagram of simplicial sets

027B∆n //

−→
C

��

Nhc
• (Set∆)∆0/

��
N•(C)

Nhc
• (F ) // Nhc

• (Set∆),

(5.29)

where the upper horizontal map is given by the simplicial functor

F : Path[{x} ⋆ [n]]• → Set∆

described as follows:

• The functor F carries x to the simplicial set ∆0 (so that F can be identified with an
n-simplex of the coslice simplicial set Nhc

• (Set∆)∆0/).

• The restriction of F to the simplicial path category Path[n]• is given by the composition

Path[n]• → [n]
−→
C−→ C F−→ Set∆

(as required by the commutativity of the diagram (5.29)).

https://kerodon.net/tag/027A
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• For 0 ≤ m ≤ n, the induced map of simplicial sets

HomPath[{x}⋆[n]](x,m)• → HomSet∆(F (x), F (m))• = F (Cm)

is given by the composition HomPath[{x}⋆[n]](x,m)•
ρ−→ ∆m σm−−→ F (Cm), where ρ is

induced by the morphism of partially ordered sets

HomPath[{x}⋆[n]](x,m)→ [m] (S ⊆ {x} ⋆ [n]) 7→ min(S \ {x}).

Note that we can identify the diagram (5.29) with an n-simplex θ(−→C ,−→σ ) of the simplicial
set

∫
N•(C) Nhc

• (F ). The construction (−→C ,−→σ ) 7→ θ(−→C ,−→σ ) then determines a morphism of
simplicial sets θ : NF

• (C)→
∫

N•(C) Nhc
• (F ), which we will refer to as the comparison map.

Example 5.6.4.2 (The Comparison Map on Vertices).027C Let C be a category and let F be a
functor from C to the category of simplicial sets. Let us identify vertices of the weighted
nerve NF

• (C) with pairs (C,X), where C is an object of C and X is a vertex of the simplicial
set F (C) (Remark 5.3.3.3). Under this identification, the comparison map

θ : NF
• (C)→

∫
N•(C)

Nhc
• (F )

of Construction 5.6.4.1 is given on vertices by the construction (C,X) 7→ (C,X), where we
identify (C,X) with a vertex of

∫
N•(C) Nhc

• (F ) using Example 5.6.2.12. In particular, the
morphism θ is bijective at the level of vertices.

Example 5.6.4.3 (The Comparison Map on Edges).027D Let C be a category and let F be a
functor from C to the category of simplicial sets. Let (C,X) and (D,Y ) be vertices of the
weighted nerve NF

• (C). Using Remark 5.3.3.4, we can identify edges of NF
• (C) having source

(C,X) and target (D,Y ) with pairs (f, u), where f : C → D is a morphism in the category
C and u : F (f)(X)→ Y is an edge of the simplicial set F (D). Under this identification,
the comparison map

θ : NF
• (C)→

∫
N•(C)

Nhc
• (F )

of Construction 5.6.4.1 is given on edges by the construction (f, u) 7→ (f, u), where we
identify (f, u) with an edge of the simplicial set

∫
N•(C) Nhc

• (F ) using Example 5.6.2.13. In
particular, the morphism θ is bijective at the level of edges.

Warning 5.6.4.4.027E Let C be a category and let F be a functor from C to the category of
simplicial sets. The comparison map θ : NF

• (C)→
∫

N•(C) Nhc
• (F ) of Construction 5.6.4.1 is

generally not bijective on n-simplices for n ≥ 2 (even in the special case C = [0]).

Exercise 5.6.4.5.027F Let C be a category and let F be a functor from C to the category of
simplicial sets. Show that the comparison map θ : NF

• (C)→
∫

N•(C) Nhc
• (F ) of Construction

5.6.4.1 is a monomorphism of simplicial sets.
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Remark 5.6.4.6. 027GLet C be a category and let F be a functor from C to the category of
simplicial sets. Then the diagram of simplicial sets

NF
• (C) θ //

""

∫
N•(C) Nhc

• (F )

zz
N•(C)

is commutative, where the vertical morphisms are the projection maps of Definitions 5.3.3.1
and 5.6.2.1 and θ is the comparison morphism of Construction 5.6.4.1

Example 5.6.4.7. 027HLet C be a category and let F be a functor from C to the category of
simplicial sets. For every object C ∈ C, the comparison morphism θ : NF

• (C)→
∫

N•(C) Nhc
• (F )

of Construction 5.6.4.1 induces a morphism of simplicial sets

θC : {C} ×N•(C) NF
• (C)→ {C} ×N•(C)

∫
N•(C)

Nhc
• (F ).

Under the isomorphisms

F (C) ≃ {C} ×N•(C) NF
• (C) HomL

Nhc
• (Set∆)(∆

0,F (C)) ≃ {C} ×N•(C)

∫
N•(C)

Nhc
• (F )

supplied by Examples 5.3.3.8 and 5.6.2.18, we can identify θC with the comparison map
F (C)→ HomL

Nhc
• (Set∆)(∆

0,F (C)) of Construction 4.6.8.3.

Proposition 5.6.4.8. 027JLet C be a category equipped with a functor F : C → QCat, and let

NF
• (C)

U

""

θ //
∫

N•(C) Nhc
• (F )

U ′

zz
N•(C)

be the commutative diagram of Remark 5.6.4.6. Then:

(1) For each object C ∈ C, the morphism θ induces an equivalence of ∞-categories

θC : {C} ×N•(C) NF
• (C)→ {C} ×N•(C)

∫
N•(C)

Nhc
• (F ).

(2) A morphism f of the weighted nerve NF
• (C) is U-cocartesian if and only if θ(f) is a

U ′-cocartesian morphism of the ∞-category
∫

N•(C) Nhc
• (F ).
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(3) The functor θ is an equivalence of ∞-categories.

Proof. Assertion (1) follows from Example 5.6.4.7 and Theorem 4.6.8.9. Assertion (2) follows
from Example 5.6.4.3 together with the descriptions of U -cocartesian and U ′-cocartesian
morphisms supplied by Corollary 5.3.3.16 and Remark 5.6.2.14. Assertion (3) follows by
combining (1) and (2) with Theorem 5.1.6.1 (since U and U ′ are cocartesian fibrations, by
virtue of Corollary 5.3.3.16 and Proposition 5.6.2.2).

5.6.5 The Universality Theorem

028U Throughout this section, we let QCObj denote the ∞-category of pairs (C, C), where C is
a small∞-category and C is an object of C (Definition 5.5.6.10), and we let V : QCObj → QC
denote the forgetful functor (given on objects by the formula V (C, C) = C).

Definition 5.6.5.1.028V Let U : E → C be a cocartesian fibration of simplicial sets. We will say
that a commutative diagram of simplicial sets

E

U

��

F̃ // QCObj

V

��
C F // QC

witnesses F as a covariant transport representation of U if the induced map

E → C ×QC QCObj =
∫
C
F

is an equivalence of cocartesian fibrations over C, in the sense of Definition 5.1.7.1. We say
that F : C → QC is a covariant transport representation of U if there exists a diagram
which witnesses F as a covariant transport representation of U .

Remark 5.6.5.2.028W Let U : E → C be a cocartesian fibration of ∞-categories and let
F : C → QC be a functor. By virtue of Proposition 5.1.7.5, a diagram

E

U

��

F̃ // QCObj

V

��
C F // QC

witnesses F as a covariant transport representation for U if and only if the induced map
E →

∫
CF is an equivalence of ∞-categories. We will later extend this observation to the

case where C is a general simplicial set (Corollary 5.6.7.8).
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Remark 5.6.5.3. 028XLet U : E → C be a cocartesian fibration of simplicial sets. A commutative
diagram

E

U

��

F̃ // QCObj

V

��
C F // QC

witnesses F as a covariant transport representation of U if and only if it satisfies the
following pair of conditions:

(a) For every vertex C ∈ C, the map of fibers

F̃C : EC = {C} ×C E → {C} ×C
∫
C
F

is an equivalence of ∞-categories.

(b) The morphism F̃ carries U -cocartesian edges of E to V -cocartesian edges of QCObj.

See Proposition 5.1.7.14. Moreover, we can replace (b) by the following a priori weaker
condition (see Remark 5.1.6.8):

(b′) For every vertex X ∈ E and every edge e : U(X)→ Y in C, there exists a U -cocartesian
edge e : X → Y of E for which U(e) = e and and F̃ (e) is a V -cocartesian edge of
QCObj.

Example 5.6.5.4 (Left Covering Maps). 028ZLet U : E → C be a left covering map of
simplicial sets and let hTrE / C : hC → Set be the homotopy transport representation of
U (Example 5.2.5.3), so that hTrE / C can be identified with a morphism of simplicial sets
TrE / C : C → N•(Set). Combining Proposition 5.2.7.2 with Example 5.6.2.8, we obtain a
canonical isomorphism of simplicial sets E ≃

∫
C TrE / C , which exhibits TrE / C as a covariant

transport representation of U (in the sense of Definition 5.6.5.1).

Example 5.6.5.5 (Fibrations over a Point). 0290Let E be a small∞-category, which we identify
with a morphism F : ∆0 → QC. Then F is a covariant transport representation of the
projection map U : E → ∆0. More precisely, Example 5.6.2.16 supplies an equivalence of
∞-categories E →

∫
∆0 F which witnesses F as a covariant transport representation of U .

More generally, a functor ∆0 → QC is a covariant transport representation of U if and only
if it corresponds to an ∞-category which is equivalent to E .

Example 5.6.5.6 (Weighted Nerves). 0385Let C be an ordinary category, let F : C → QCat be
a functor, and let NF

• (C) be the weighted nerve of Definition 5.3.3.1. Then the projection
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map U : NF
• (C) → N•(C) is a cocartesian fibration (Corollary 5.3.3.16). Moreover, the

equivalence

NF
• (C)→

∫
N•(C)

Nhc
• (F )

of Proposition 5.6.4.8 exhibits Nhc
• (F ) as a covariant transport representation for U .

Example 5.6.5.7 (Strict Transport).0386 Let C be an ordinary category, let U : E → N•(C) be
a cocartesian fibration of ∞-categories, and let sTrE / C : C → QCat be the strict transport
representation of U (Construction 5.3.1.5). Then the functor

Nhc
• (sTrE / C) : N•(C)→ Nhc

• (QCat) = QC

is a covariant transport representation for U (in the sense of Definition 5.6.5.1). In other
words, U is equivalent to the cocartesian fibration U ′ :

∫
C Nhc
• (sTrE / C)→ N•(C). To see this,

we observe that both U and U ′ are equivalent to the cocartesian fibration NsTrE / C
• (C)→ N•(C):

this follows from Theorem 5.3.5.6 and Proposition 5.6.4.8.

Remark 5.6.5.8.0291 Let U : E → C be a cocartesian fibration of simplicial sets, and let hTrE / C
be the homotopy transport representation of U (Construction 5.2.5.2). Let F : C → QC be
a morphism of simplicial sets and let hF : hC → hQCat be the induced functor between
homotopy categories. Let α : E →

∫
CF be an equivalence of cocartesian fibrations over C.

By virtue of Corollary 5.6.2.22, α induces an isomorphism from hTrE / C to hF in the functor
category Fun(hC,hQCat). Stated more informally, any covariant transport representation
of U provides a lifting of the homotopy transport representation hTrE / C from the ordinary
category Fun(hC, hQCat) to the ∞-category Fun(C,QC). Moreover, if the simplicial set C is
an ∞-category, then the identification hTrE / C ≃ hF is an isomorphism of hKan-enriched
functors (Proposition 5.6.2.20).

Remark 5.6.5.9.0292 Let U : E → C be a cocartesian fibration of simplicial sets and let
F ,F ′ : C → QC be morphisms which are isomorphic as objects of the diagram ∞-category
Fun(C,QC). Then F is a covariant transport representation of U if and only if F ′ is a
covariant transport representation of U . This follows immediately from Proposition 5.6.2.19.

We now formulate a stronger version of Theorem 5.6.0.2:

Theorem 5.6.5.10 (Relative Universality Theorem).0293 Let U : E → C be an essentially small
cocartesian fibration of simplicial sets, let C0 ⊆ C be a simplicial subset having inverse image
E0 = C0×C E ⊆ E, and let U0 : E0 → C0 be the restriction U |E0. Suppose we are given a
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commutative diagram of simplicial sets

E0

U0

��

F̃0 // QCObj

V

��
C0

F0 // QC

which witnesses F0 as a covariant transport representation of U0. Then there exists a
commutative diagram of simplicial sets

E

U

��

F̃ // QCObj

V

��
C F // QC

which witnesses F as a covariant transport representation of U , where F0 = F |C0 and
F̃0 = F̃ |E0.

We will give a reformulation of Theorem 5.6.5.10 in §5.6.8 (see Theorem 5.6.8.3), which
we prove in §5.6.9.

Corollary 5.6.5.11. 0294Let U : E → C be an essentially small cocartesian fibration of
simplicial sets, let C′ ⊆ C be a simplicial subset, and let F ′ : C′ → QC be a covariant
transport representation for the projection map C′×C E → C′. Then there exists a morphism
F : C → QC satisfying F ′ = F |C′ which is a covariant transport representation of U .

Corollary 5.6.5.12. 0295Let Q be a full subcategory of QC and let U : E → C be a cocartesian
fibration of simplicial sets having the property that, for each vertex C ∈ C, the fiber EC =
{C} ×C E is equivalent to an ∞-category which belongs to Q. Then there exists a morphism
F : C → Q ⊆ QC which is a covariant transport representation of U .

Proof. For each vertex C ∈ C, choose an ∞-category F ′(C) ∈ Q which is equivalent to the
fiber EC = {C} ×C E . The construction C 7→ F ′(C) determines a morphism of simplicial
sets F ′ : C′ → Q, where C′ = sk0(C) is the 0-skeleton of C, which is a covariant transport
representation of the projection map C′×C E → C′ (see Example 5.6.5.5). Applying Corollary
5.6.5.11, we can extend F ′ to a morphism F : C → QC which is a covariant transport
representation of U . By construction, the morphism F takes values in the full subcategory
Q ⊆ QC.
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Corollary 5.6.5.13.0296 Let U : E → C be a cocartesian fibration of simplicial sets and let
F0,F1 : C → QC be covariant transport representations for U . Then F0 and F1 are
isomorphic as objects of the ∞-category Fun(C,QC).

Proof. Let U∆1 : ∆1 × E → ∆1 × C be the product of U with the identity map id∆1 , and
define U∂∆1 : ∂∆1×E → ∂∆1×C similarly. Note that the map (F0,F1) : ∂∆1×C → QC
is a covariant transport representation of U∂∆1 . Applying Corollary 5.6.5.11, we deduce
that U∆1 admits a covariant transport representation F : ∆1 × C → QC which satisfies
F |{0}×C = F0 and F |{1}×C = F1. Let us identify F with a morphism u : F0 → F1 in the
∞-category Fun(C,QC). We will complete the proof by showing that u is an isomorphism.
By virtue of Theorem 4.4.4.4, it will suffice to show that for each vertex C ∈ C, the induced
map uC : F0(C)→ F1(C) is an isomorphism in QC. Using Remark 5.6.5.8 (and Remark
5.2.8.5), we see that the homotopy class [uC ] is isomorphic (as an object of the arrow category
Fun([1], hQCat)) to the homotopy class of the functor EC → EC given by covariant transport
along the degenerate edge idC of C: that is, the homotopy class of the identity functor
idEC

.

Proof of Theorem 5.6.0.2. Let U : E → C be an essentially small cocartesian fibrations
of simplicial sets. We wish to show that U admits a covariant transport representation
F : C → QC, which is uniquely determined up to isomorphism (as an object of the functor
∞-category Fun(C,QC)). The existence statement follows by applying Theorem 5.6.5.10 in
the special case C0 = ∅, and the uniqueness follows from Corollary 5.6.5.13.

Notation 5.6.5.14 (The Covariant Transport Representation).019S Let U : E → C be an essen-
tially small cocartesian fibration. We let TrE / C denote a covariant transport representation
of U , regarded as an object of the∞-category Fun(C,QC) (which exists by virtue of Corollary
5.6.5.12). We write [TrE / C ] for the isomorphism class of the diagram TrE / C , regarded as an
object of the set π0(Fun(C,QC)≃). By virtue of Corollary 5.6.5.13, the isomorphism class
[TrE / C] is well-defined: that is, it depends only on the cocartesian fibration U : E → C.
Beware that TrE / C is not uniquely determined: in fact, any diagram isomorphic to TrE / C
is also a covariant transport representation of U (Remark 5.6.5.9). Nevertheless, it will be
convenient to abuse terminology and refer to TrE / C as the covariant transport representation
of U , with the caveat that it is well-defined only up to isomorphism.

Remark 5.6.5.15.0297 Let C be a simplicial set equipped with a functor F : hC → hQCat. It
follows from Corollary 5.6.5.12 that the functor F is isomorphic to the homotopy transport
representation of a cocartesian fibration U : E → C if and only if it can be promoted to a
diagram F : C → QC.

Corollary 5.6.5.16.0387 Let C be a small category. Then passage to the homotopy coherent
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nerve induces a bijection

{Functors of ordinary categories C → QCat}/Levelwise equivalence

��
{Functors of ∞-categories N•(C)→ QC}/Isomorphism.

Proof. Combine Example 5.6.5.7, Theorem 5.3.5.6, and Theorem 5.6.0.2.

Remark 5.6.5.17 (Rectification). 0388Corollary 5.6.5.16 is a prototypical example of a rectifi-
cation result. If C is an ordinary category, then a functor of ∞-categories F : N•(C)→ QC
can be viewed as a homotopy coherent diagram in the simplicial category QCat:

• To every object X of the category C, the functor F associates an ∞-category F (X).

• To every morphism u : X → Y of the category C, the functor F associates a functor
of ∞-categories F (u) : F (X)→ F (Y ).

• To every pair of composable morphisms u : X → Y and v : Y → Z in the category C,
the functor F associates an isomorphism of functors αu,v : F (v) ◦F (u)→ F (v ◦ u).

• When applied to higher-dimensional simplices of N•(C), the functor F provides
additional data which encode coherence laws satisfied by the isomorphisms αu,v.

Corollary 5.6.5.16 asserts that we can always find a strictly commutative diagram G : C →
QCat which is isomorphic to F in the ∞-category Fun(N•(C),QC). In particular, the
diagram G carries each object X ∈ C to an ∞-category G (X) which is equivalent to F (X)
(beware that we generally cannot arrange that G (X) is isomorphic to F (X) as a simplicial
set).

In §[?], we will prove a more refined version of this result, which allows us to describe
the entire ∞-category Fun(N•(C),QC) in terms of strictly commutative diagrams indexed
by C (Proposition [?]).

Using Theorem 5.6.5.10, we obtain the following converse of Corollary 5.6.3.5.

Proposition 5.6.5.18. 029ALet U : E → C be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism U is an inner covering map (Definition 4.1.5.1), a cocartesian fibration,
and each fiber of U is small.

(2) There exists a morphism of simplicial sets F : C → ND
• (Pith(Cat)) ⊆ QC and an

isomorphism G : E ≃
∫
CF in the category (Set∆)/ C.
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Proof. The implication (2)⇒ (1) follows from Corollary 5.6.3.5 and Proposition 5.6.2.2. For
each vertex C ∈ C, our assumption that U is an inner covering map guarantees that the
fiber {C} ×C E is isomorphic to the nerve of a (small) category F0(C) (Example 4.1.5.3).
Let C0 be the 0-skeleton of C, so that the construction C 7→ F0(C) determines a morphism
of simplicial sets F0 : C0 → ND

• (Pith(Cat)). Let E0 denote the inverse image C0×C E , so
that Proposition 5.6.3.4 supplies an isomorphism of simplicial sets G0 : E0 ≃

∫
C0

F0. In
particular, G0 is an equivalence of cocartesian fibrations over C0. Invoking Theorem 5.6.5.10,
we can extend F0 to a diagram F : C → ND

• (Pith(Cat)) and G0 to a morphism of simplicial
sets G : E →

∫
CF which is an equivalence of cocartesian fibrations over C. We will complete

the proof by showing that G is an isomorphism of simplicial sets. To prove this, it will
suffice to show that for every simplex σ : ∆n → C, the induced map

Gσ : ∆n ×C E → ∆n ×C
∫
C
F

is an isomorphism of simplicial sets. Replacing U by the projection map ∆n ×C E → ∆n,
we are reduced to proving that G is an isomorphism under the additional assumption
that C = ∆n is a standard simplex. Since U and the projection map

∫
CF → C are inner

covering maps, the simplicial sets E and
∫
CF are isomorphic to the nerves of their homotopy

categories hE and h
∫
CF , respectively; it will therefore suffice to show that the functor of

ordinary categories hG : hE → h
∫
CF is an isomorphism. Our assumption that G is an

equivalence of cocartesian fibrations over C = ∆n guarantees that it is an equivalence of
∞-categories (Corollary 5.1.7.8), so that hG is an equivalence of ordinary categories. It
will therefore suffice to show that the functor hG is bijective on objects: that is, that the
morphism G is bijective on vertices. This is clear, since the morphism G0 = G|E0 is an
isomorphism.

Corollary 5.6.5.19 (Grothendieck).01SU Let U : E → C be functor between categories. The
following conditions are equivalent:

(1) The functor U is a cocartesian fibration and each fiber of U is a small category.

(2) There exists a functor of 2-categories F : C → Cat and an isomorphism
∫
CF → E

whose composition with U coincides with the forgetful functor
∫
CF → C.

Proof. We will show that (1)⇒ (2); the reverse implication follows from Corollary 5.6.1.16.
Note that the map N•(U) : N•(E) → N•(C) is a cocartesian fibration of simplicial sets
(Example 5.1.4.2) and an inner covering map (Proposition 4.1.5.10). By virtue of Proposition
5.6.5.18, there exists a morphism of simplicial sets F ′ : N•(C) → ND

• (Pith(Cat)) and an
isomorphism of simplicial sets V :

∫
N•(C) F ≃ N•(E) which is compatible with N•(U). By

virtue of Theorem 2.3.4.1 (and Corollary 2.3.4.5), we have F ′ = ND
• (F ) for a unique functor

of 2-categories F : C → Cat. In this case, we can use Proposition 5.6.3.4 to identify
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∫
N•(C) F ′ with the nerve of the ordinary category of elements

∫
CF . Under this identification,

V corresponds to the nerve of an isomorphism
∫
CF ′ ≃ E which is compatible with U .

Let Gpd ⊆ Cat denote the full subcategory spanned by the groupoids.

Corollary 5.6.5.20. 01SZLet U : E → C be a functor between categories. The following conditions
are equivalent:

• The functor U is an opfibration in groupoids (Variant 4.2.2.4) and each fiber of U is a
small groupoid.

• There exists a functor of 2-categories F : C → Gpd and an isomorphism of categories∫
CF → E which carries U to the forgetful functor

∫
CF → C.

Proof. Combine Corollary 5.6.5.19 with Exercise 5.0.0.6.

5.6.6 Application: Corepresentable Functors

02HULet C be a category. Every object X ∈ C determines a functor

hX : C → Set Y 7→ HomC(X,Y ),

which we refer to as the functor corepresented by X. We say that a functor from C to Set is
corepresentable if it is isomorphic to hX for some object X ∈ C. Our goal in this section is
to develop an ∞-categorical counterpart of the notion of corepresentable functor (and the
dual notion of representable functor), where we replace the ordinary category Set by the
∞-category S of Construction 5.5.1.1.

We begin with an elementary observation. Let F : C → Set be a functor between
ordinary categories. For each object X ∈ C, Yoneda’s lemma supplies a bijection

F (X) ∼−→ HomFun(C,Set)(hX ,F ).

Concretely, this bijection carries each element x ∈ F (X) to a natural transformation
αx : hX → F , characterized by the requirement that it carries each Y ∈ C to the composite
map

0389hX(Y ) = HomC(X,Y ) F−→ HomSet(F (X),F (Y )) evx−−→ F (Y ). (5.30)

The functor F is corepresentable if it is possible to choose the object X ∈ C and the element
x ∈ F (X) so that the map (5.30) is bijective, for each Y ∈ C. This motivates the following:

Definition 5.6.6.1 (Corepresentable Functors). 038ALet C be an ∞-category containing an
object X, let F : C → S be a functor, and let x be a vertex of the Kan complex F (X). We
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will say that x exhibits F as corepresented by X if, for every object Y ∈ C, the composite
map

HomC(X,Y ) F−→ HomS(F (X),F (Y ))
≃ Fun(F (X),F (Y ))

evx−−→ F (Y )

is an isomorphism in the homotopy category hKan; here the second map is the inverse of
the homotopy equivalence Fun(F (X),F (Y ))→ HomS(X,Y ) supplied by Remark 5.5.1.5.

We say that the functor F : C → S is corepresentable by X if there exists a vertex
x ∈ F (X) which exhibits F as corepresented by X. We say that the functor F is
corepresentable if it is corepresentable by X, for some object X ∈ C.

Variant 5.6.6.2 (Representable Functors).038B Let C be an ∞-category, let X be an object
of C, and write Xop for the corresponding object of the opposite ∞-category Cop. Given a
functor F : Cop → S, we say that a vertex x ∈ F (Xop) exhibits F as represented by X if it
exhibits F as corepresented by the object Xop, in the sense of Definition 5.6.6.1. We say
that a functor F : Cop → S is representable by X if it is corepresentable by Xop, and that
F is representable if it is representable by X for some object X ∈ C.

Remark 5.6.6.3.038C Let F : C → S be a functor of ∞-categories and let X ∈ C be an object,
and let x ∈ F (X) be a vertex. The condition that x exhibits F as corepresented by X

depends only on the connected component [x] ∈ π0(F (X)).

Remark 5.6.6.4.038D Let C be an ∞-category containing an object X, let α : F → G be a
morphism in the ∞-category Fun(C,S), and let x be a vertex of the Kan complex F (X).
Then any two of the following conditions imply the third:

The vertex x ∈ F (X) exhibits the functor F as corepresented by X.

The vertex α(x) ∈ G (X) exhibits the functor G as corepresented by X.

The natural transformation α is an isomorphism.

In particular, if F and G are isomorphic objects of Fun(C,S), then F is corepresentable by
X if and only if G is corepresentable by X.

Remark 5.6.6.5.03LN Let F : C → S and U : D → C be functors of ∞-categories. Suppose we
are given an object Y ∈ D and a vertex η ∈ F (U(Y )). Then:

• If U is fully faithful and η exhibits the functor F as corepresented by U(Y ), then it
also exhibits the functor F ◦ U as Y .

https://kerodon.net/tag/038B
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• If U is an equivalence of∞-categories and η exhibits the functor F ◦U as corepresented
by η, then it also exhibits F as corepresented by U(Y ).

• If U is an equivalence of ∞-categories, then the functor F is corepresentable if and
only if F ◦ U is corepresentable.

Remark 5.6.6.6. 038ELet F : C → S be a functor of ∞-categories, let u : X → Y be a
morphism in C, and let x ∈ F (X) be a vertex having image y = F (u)(x) ∈ F (Y ). Then
any two of the following conditions imply the third:

• The vertex x exhibits the functor F as corepresented by X.

• The vertex y exhibits the functor F as corepresented by Y .

• The morphism u is an isomorphism.

Remark 5.6.6.7 (Uniqueness of the Corepresenting Object). 038FLet F : C → S be a functor
of ∞-categories which is corepresentable by an object X ∈ C. Let Y be another object of
C. Then F is corepresentable by Y if and only if Y is isomorphic to X. The “if” direction
follows immediately from Remark 5.6.6.6. Conversely, suppose that F is corepresentable by
Y . Choose vertices x ∈ F (X) and y ∈ F (Y ) which exhibit F as corepresented by X and Y ,
respectively. Since evaluation at x induces a homotopy equivalence HomC(X,Y )→ F (Y ),
we can choose a morphism u : X → Y such that F (u)(x) and y belong to the same connected
component of F (Y ). Then F (u)(x) also exhibits F as corepresented by Y (Remark 5.6.6.3),
so that u is an isomorphism in C by virtue of Remark 5.6.6.6.

Remark 5.6.6.8. 02FSLet F : C → S be a functor of ∞-categories. Then the construction
Y 7→ π0(F (Y )) determines a functor from the homotopy category hC to the category of sets,
which we will denote by π0(F ). Suppose that X is an object of C and x ∈ F (X) exhibits
F as corepresented by X. Then, for every object Y ∈ C, evaluation on the connected
component [x] ∈ π0(F (X)) induces a bijection

HomhC(X,Y ) = π0(HomC(X,Y ))→ π0(F (Y )).

It follows that the functor π0(F ) : hC → Set is corepresentable by X, in the sense of classical
category theory.

Warning 5.6.6.9. 038GThe converse of Remark 5.6.6.8 is false in general. For example, let C be
an ∞-category containing an object X, and let F : C → Set ⊂ S be the functor given on
objects by the formula F (Y ) = π0(HomC(X,Y )). Then π0(F ) is corepresentable by the
object X (when regarded as a functor from hC to the category of sets), but the functor F is
usually not corepresentable.

https://kerodon.net/tag/038E
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In spite of Warning 5.6.6.9, the corepresentability of a functor F : C → S can be tested
at the level of the homotopy category hC. The caveat is that we must equip hC with the
enrichment described in Construction 4.6.9.13.

Definition 5.6.6.10.02FR Let hKan denote the homotopy category of Kan complexes (Con-
struction 3.1.5.10) and let C be an hKan-enriched category containing an object X. We will
say that an hKan-enriched functor F : C → hKan is corepresentable by X if there exists a
vertex x ∈ F (X) such that, for every object Y ∈ C, the induced map

HomC(X,Y )× {x} ↪→ HomC(X,Y )×F (X)→ F (Y )

is an isomorphism in the homotopy category hKan. In this case, we also say that x exhibits
F as corepresented by the object X. We say that the functor F is corepresentable if it is
corepresentable by X for some object X ∈ C.

We say that an hKan-enriched functor F : Cop → hKan is representable by X if it is
corepresentable by the object Xop ∈ Cop, and that F is representable if it is representable
by some object of C.

Remark 5.6.6.11.038H Let F : C → S be a functor of ∞-categories, and let hF : hC →
hS = hKan be the induced functor of hKan-enriched homotopy categories (see Construction
4.6.9.13). Then:

• A vertex x ∈ F (X) exhibits F as corepresented by an object X ∈ C (in the sense of
Definition 5.6.6.1) if and only if it exhibits hF as corepresented by the object X ∈ hC
(in the sense of Definition 5.6.6.10).

• The functor F is corepresentable by an objectX ∈ C if and only if hF is corepresentable
by X ∈ hC.

• The functor F is corepresentable if and only if hF is corepresentable as an hKan-
enriched functor.

Remark 5.6.6.12.02FT Let C be an hKan-enriched category. Then an hKan-enriched functor
F : C → hKan is corepresentable by an object X ∈ C if and only if it is isomorphic (as an
hKan-enriched functor) to the functor

C → hKan Y 7→ HomC(X,Y ).

Let C be an ∞-category. It follows from Remarks 5.6.6.4 and 5.6.6.7 that there is a

https://kerodon.net/tag/02FR
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unique function

{Isomorphism classes of corepresentable functors C → S}

��
{Isomorphism classes of objects of C},

which carries (the isomorphism class of) a corepresentable functor F to (the isomorphic
class of) an object X ∈ C which corepresents F . Our main goal in this section is to show
that, modulo set-theoretic considerations, this map is bijective.

Theorem 5.6.6.13. 038JLet C be a locally small ∞-category. Then, for every object X ∈ C,
there exists a functor F : C → S which is corepresentable by X. Moreover, the functor F is
uniquely determined up to isomorphism.

Notation 5.6.6.14 (Corepresentable Functors). 038LLet C be a locally small ∞-category. For
every object X ∈ C, Theorem 5.6.6.13 asserts that there exists a functor F : C → S which
is corepresented by X, which is uniquely determined up to isomorphism. To emphasize this
uniqueness, we will typically denote the functor F by hX and refer to it as the functor
corepresented by X. For every object Y ∈ C, we can apply the same argument to the opposite
∞-category Cop to obtain a functor represented by Y , which we will typically denote by
hY : Cop → S and refer to as the functor represented by Y . Note that Remark 5.6.6.12
supplies isomorphisms hX(Y ) ≃ HomC(X,Y ) ≃ hY (X) in the homotopy category hKan,
depending functorially on the pair (X,Y ) ∈ hCop × hC.

Remark 5.6.6.15. 038MLet C be an ∞-category. Then every object X ∈ C determines an
hKan-enriched functor

HomC(X, •) : hC → hKan Y 7→ HomC(X,Y ).

Theorem 5.6.6.13 asserts HomC(X, •) can be promoted, in an essentially unique way, to a
functor of ∞-categories hX : C → S (see Remark 5.6.6.12). Beware that this is a special
feature of corepresentable functors. In general, an hKan-enriched functor F : hC → hKan
cannot be promoted to a functor of ∞-categories. Moreover, when such a promotion exists,
it need not be unique.

Remark 5.6.6.16 (Functoriality). 038NLet C be a locally small ∞-category. We will see later
that the corepresentable functor hX : C → S and the representable functor hY : Cop → S of
Notation 5.6.6.14 depend functorially on the objects X and Y , respectively. More precisely,
the construction

HomC(•, •) : hCop × hC → hKan (X,Y ) 7→ HomC(X,Y )

https://kerodon.net/tag/038J
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can be promoted to a functor of ∞-categories H : Cop×C → S with the following properties:

• For each object X ∈ C, the restriction H|{X}×C is corepresentable by X.

• For each object Y ∈ C, the restriction H|Cop×{Y } is representable by Y .

See Proposition 8.3.3.2.

Unlike its classical counterpart, Theorem 5.6.6.13 is nontrivial: given an object X of an
∞-category C, there is no immediately obvious candidate for a functor hX : C → S which
is corepresented by X. However, the situation is better when C arises from a simplicially
enriched category.

Proposition 5.6.6.17.038P Let C be a locally Kan simplicial category, let X be an object of C,
and let

F : Nhc
• (C)→ Nhc

• (Kan) = S .

denote the homotopy coherent nerve of the simplicial functor Y 7→ HomC(X,Y )•. Then the
identity morphism idX ∈ HomC(X,X)• = F (X) exhibits the functor F as corepresented by
X, in the sense of Definition 5.6.6.1.

Proof. Fix an object Y ∈ C. We then have a commutative diagram of Kan complexes

HomC(X,Y )• U //

θ∼

��

HomKan(F (X),F (Y ))•

θ′∼

��

ev // F (Y )

HomNhc
• (C)(X,Y ) V // HomS(F (X),F (Y )),

where the vertical maps are supplied by Construction 4.6.8.3 (applied in the simplicial
categories C and Kan, respectively) and ev is given by evaluation at the vertex idX ∈ F (X).
Let θ′−1 denote a homotopy inverse to θ′ (which exists by virtue of Theorem 4.6.8.5).
Proposition 5.6.6.17 asserts that the composition ev ◦θ′−1 ◦ V is a homotopy equivalence.
Since θ is also a homotopy equivalence (Theorem 4.6.8.5), this is equivalent to the assertion
that ev ◦U is a homotopy equivalence. This is clear: the composition ev ◦U is the identity
map from the Kan complex F (Y ) = HomC(X,Y )• to itself.

Remark 5.6.6.18.038Q Let C be a locally Kan simplicial category. The preceding proof shows
that if C satisfies the conclusion of Proposition 5.6.6.17, then it also satisfies the conclusion
of Theorem 4.6.8.5: that is, the comparison map θ : HomC(X,Y )• → HomNhc

• (C)(X,Y ) is
a homotopy equivalence for every pair of objects X,Y ∈ C. Note however that we have
already used Theorem 4.6.8.5 (applied to the simplicial category Kan) implicitly to give the
definition of a corepresentable functor in the ∞-categorical setting.

https://kerodon.net/tag/038P
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The rest of this section is devoted to the proof of Theorem 5.6.6.13. Fix a locally small
∞-category C and an object X ∈ C. We can then use the dictionary of Corollary 5.6.0.6 to
identify functors F : C → S with essentially small left fibrations U : E → C. We will show
that F is corepresentable by an object X ∈ C if and only if the ∞-category E has an initial
object X̃ satisfying U(X̃) = X (Proposition 5.6.6.21). We will then show that this condition
guarantees that U is equivalent to the left fibration U0 : CX/ → C (Proposition 5.6.6.21).
Combining these assertions, we see that a functor F : C → S is corepresentable by X if and
only if it is a covariant transport representation for U0, so that the existence and uniqueness
assertions of Theorem 5.6.6.13 follow from Theorem 5.6.0.2.

Proposition 5.6.6.19. 038RLet U : D → C be a left fibration of ∞-categories and let X̃ ∈ D be
an object having image X = U(X̃). The following conditions are equivalent:

(1) There exists an equivalence F : CX/ → D of left fibrations over C satisfying F (idX) = X̃.

(2) The object X̃ ∈ D is initial (Definition 4.6.7.1).

(3) For every left fibration V : E → C, evaluation on the object X̃ induces a trivial Kan
fibration Fun/ C(D, E)→ {X} ×C E.

(4) For every left fibration V : E → C, evaluation on the object X̃ induces a bijection

π0(Fun/ C(D, E))→ π0({X} ×C E).

Proof. If F : CX/ → D is an equivalence of left fibrations over C, then it is an equivalence of
∞-categories (Proposition 5.1.7.5). Since idX : X → X is initial when regarded as an object
of the ∞-category CX/ (Proposition 4.6.7.22), Corollary 4.6.7.20 guarantees that X̃ is an
initial object of D. This proves the implication (1)⇒ (2). The implication (2)⇒ (3) follows
by combining Corollary 4.6.7.24 with Proposition 4.2.5.4, and the implication (3)⇒ (4) is
immediate.

We will complete the proof by showing that (4) implies (1). Note that the object
idX ∈ CX/ satisfies condition (1) and therefore also satisfies condition (3). It follows that
there exists a commutative diagram

CX/
F //

  

D

U

��
C

satisfying F (idX) = X̃. To complete the proof, it will suffice to show that if condition (4) is
satisfied, then F is an equivalence of left fibrations over C. For every left fibration V : E → C,

https://kerodon.net/tag/038R
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we have a commutative diagram of sets

π0(Fun/ C(D, E)) ◦[F ] //

''

π0(Fun/ C(CX/, E))

ww
π0({X} ×C E) ,

where the vertical maps are given by evaluation on the objects X̃ ∈ D and idX ∈ CX/, and
are therefore bijective. It follows that the horizontal map is also bijective.

Corollary 5.6.6.20.03J6 Suppose we are given a commutative diagram of ∞-categories

D F //

U

��

E
V

��
C

where U and V are left fibrations. Let X̃ ∈ D be an initial object. Then F is an equivalence
of ∞-categories if and only if F (X̃) is an initial object of E.

Proof. If F is an equivalence of ∞-categories, then it carries initial objects to initial objects
by virtue of Corollary 4.6.7.20. Conversely, suppose that F (X̃) is an initial object of
E ; we wish to show that F is an equivalence of ∞-categories. Set X = U(X̃). Applying
Proposition 5.6.6.19, we deduce that there is a functor G ∈ Fun/ C(E ,D) such that (G◦F )(X̃)
is isomorphic to X̃ as an object of the ∞-category DX = {X} ×C D. Applying Proposition
5.6.6.19 again, we deduce that G ◦ F is isomorphic to idD as an object of the ∞-category
Fun/ C(D,D); in particular, F is a right homotopy inverse to G. Since G carries F (X̃) to an
initial object of D, we can apply the same argument (with the roles of D and E reversed) to
show that G has a left homotopy inverse. It follows that G is an equivalence of ∞-categories,
so that F is also an equivalence of ∞-categories.

Proposition 5.6.6.21.02J8 Let U : D → C be an essentially small left fibration of ∞-categories
and let X ∈ C be an object. Then:

(1) Let X̃ ∈ D be an object satisfying U(X̃) = X. Then X̃ is an initial object of D if and
only if, for every object Y ∈ C, the composition

HomC(X,Y ) θ−→ Fun(DX ,DY )
ev

X̃−−→ DY

is a homotopy equivalence, where θ is given by parametrized covariant transport (see
Definition 5.2.8.1).
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(2) Let hTrD / C : hC → hKan be the homotopy transport representation of U , which we
regard as an hKan-enriched functor (Variant 5.2.8.12). Then X̃ is an initial object of
D if and only if it exhibits hTrD / C as corepresented by X, in the sense of Definition
5.6.6.10.

(3) The homotopy transport representation hTrD / C is corepresentable by the object X if and
only if there exists an initial object X̃ ∈ D satisfying U(X̃) = X.

(4) Let TrD / C : C → S be a covariant transport representation for U . Then TrD / C is
corepresentable by the object X if and only if there exists an initial object X̃ ∈ D
satisfying U(X̃) = X.

Proof. Let {X} ×̃C C be the oriented fiber product of Definition 4.6.4.1, and let us regard
idX as an initial object of {X} ×̃C C (Proposition 4.6.7.22). Using Proposition 5.6.6.19, we
can choose a functor of ∞-categories F : {X} ×̃C C → D satisfying F (idX) = X̃ which fits
into a commutative diagram

{X} ×̃C C F //

##

D

U

��
C .

Using Proposition 5.6.6.19, we see that X̃ is an initial object of D if and only if F is an
equivalence of left fibrations over C. By virtue of Corollary 5.1.7.15, this is equivalent to the
requirement that for each object Y ∈ C, the functor F restricts to a homotopy equivalence
of Kan complexes

FY : HomC(X,Y ) = {X} ×̃C{Y } → DY

Assertion (1) follows from the observation that FY is homotopic to the composition of
the parametrized covariant transport morphism θ : HomC(X,Y )→ Fun(DX ,DY ) with the
evaluation map ev

X̃
: Fun(DX ,DY )→ DY (see Remark 5.2.8.5 and Proposition 5.2.8.7). The

implication (1)⇒ (2) follows from Remark 5.6.5.8, the implication (2)⇒ (3) is immediate,
and the implication (3)⇒ (4) follows from Remark 5.6.6.11.

Proof of Theorem 5.6.6.13. Let C be a locally small ∞-category and let X be an object of
C. We wish to show that there exists a functor F : C → S which is corepresentable by
X, and that F is uniquely determined up to isomorphism (as an object of the ∞-category
Fun(C,S)). By virtue of Proposition 5.6.6.21 and Corollary 5.6.0.6, this is equivalent to the
assertion that there exists a left fibration U : D → C together with an initial object X̃ ∈ D
satisfying U(X̃) = X, and that the left fibration U is uniquely determined up to equivalence
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(in the sense of Definition 5.1.7.1). To prove existence, we can take D = CX/ and X̃ to be
the identity morphism idX (Proposition 4.6.7.22). The uniqueness assertion follows from
Proposition 5.6.6.19.

5.6.7 Application: Extending Cocartesian Fibrations

029B In §3.3.8, we showed that every Kan fibration of simplicial sets f : X → S can be
obtained as the pullback of a Kan fibration between Kan complexes. Our goal in this section
is to prove an analogous result for cocartesian fibrations of simplicial sets (Corollary 5.6.7.3).
Our starting point is the following:

Lemma 5.6.7.1.029C Suppose we are given a commutative diagram of simplicial sets

029D E0
G0 //

U0

��

E ′

V

��
C0 // C

(5.31)

where the vertical maps are inner fibrations, the bottom horizontal map exhibits C0 as a
simplicial subset of C, and G0 induces an equivalence E0 → C0×C E ′ of inner fibrations over
C0. Then (5.31) can be extended to a commutative diagram

E0 //

U0

��

E

U

��

G // E ′

V

��
C0 // C C,

where U is an inner fibration, G is an equivalence of inner fibrations over C, and the square
on the left induces an isomorphism of simplicial sets E0 ≃ C0×C E.

Proof. Choose a monomorphism of simplicial sets E0 ↪→ Q, where Q is a contractible Kan
complex (see Exercise 3.1.7.11). Replacing E ′ with the product E ′×Q, we can reduce to the
case where G0 is a monomorphism of simplicial sets. Let E denote the simplicial subset of E ′
consisting of those simplices σ : ∆m → E ′ for which the induced map C0×C∆m → C0×C E ′

factors through G0. To complete the proof, it will suffice to verify the following:

(a) The morphism U = V |E is an inner fibration from E to C.

(b) The inclusion E ↪→ E ′ is an equivalence of inner fibrations over C.
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By virtue of Remark 4.1.1.13 and Proposition 5.1.7.9, it suffices to prove (a) and (b) in the
special case where C = ∆n is a standard simplex. In this case, the morphism V : E ′ → C is
an isofibration (Example 4.4.1.6).

Let E ′0 denote the fiber product C0×C E ′. Applying Lemma 5.1.7.12 to the morphism
G0 : E0 → E ′0 (which is an equivalence of inner fibrations over C0), we deduce that there
exists a morphism R0 : E ′0 → E0 in the category (Set∆)/ C0 such that R0 ◦G0 = idE0 , and
an isomorphism α0 : idE ′0 → G0 ◦ R0 in the ∞-category Fun/ C0(E ′0, E ′0) whose image in
Fun/ C0(E0, E ′0) is degenerate. Applying Proposition 4.4.5.8 (and the criterion of Proposition
4.4.4.9), we can choose a morphism R : E ′ → E ′ in (Set∆)/ C such that R|E ′0 = G0 ◦R0 and an
isomorphism α : idE ′ → R in the ∞-category Fun/ C(E ′, E ′) whose image in Fun/ C0(E ′0, E ′0)
is equal to α0.

We now prove (a). Suppose we are given a lifting problem

A

��

f0 // E

U

��
B

f //

f

??

C,

where the left vertical map is inner anodyne. Since V : E ′ → C is an inner fibration, we
can extend f0 to a morphism f ′ : B → E satisfying V ◦ f ′ = f . Set B0 = C0×CB and
A0 = C0×CA, and define

f1 : (A
∐

A0
B0)→ E

by the formula f1|A = f0 and f1|B0 = R ◦ f ′|B0 . Note that there is an isomorphism

β : f ′|A∐
A0
B0
→ f1

in the∞-category Fun/ C(A
∐
A0B0, E ′), whose image in Fun/ C(A, E ′) is degenerate and whose

image in Fun/ C(B0, E ′) is the restriction of α. Applying Proposition 4.4.5.8, we deduce that
f1 admits an extension f : B → C satisfying U ◦ f = f .

To prove (b), we observe that the morphism R : E ′ → E is a homotopy inverse of the
inclusion ι : E ↪→ E ′ relative to C. By construction, α determines an isomorphism from idE ′
to the composition ι◦R in the∞-category Fun/ C(E ′, E ′), and the restriction of α determines
an isomorphism from idE to R ◦ ι in the ∞-category Fun/ C(E , E).

Proposition 5.6.7.2 (Extending Cocartesian Fibrations). 029ELet C be a simplicial set, let
C0 ⊆ C be a simplicial subset, and let U0 : E0 → C0 be a cocartesian fibration of simplicial
sets. Suppose that the inclusion C0 ↪→ C is a categorical equivalence of simplicial sets. Then

https://kerodon.net/tag/029E
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there exists a pullback diagram of simplicial sets

E0 //

U0

��

E

U

��
C0 // C,

where U is a cocartesian fibration.

Proof. By virtue of Theorem 5.6.0.2, there exists a morphism of simplicial sets F0 : C0 → QC
and an equivalence G0 : E0 →

∫
C0

F0 of cocartesian fibrations over C0. Since QC is an
∞-category (Proposition 5.5.4.3), our assumption that the inclusion C0 ↪→ C is a categorical
equivalence guarantees that we can extend F0 to a morphism of simplicial sets F : C → QC.
We can then identify G0 with an equivalence E0 → C0×C

∫
CF of cocartesian fibrations

over C0. Applying Lemma 5.6.7.1, we can write U0 as the pullback of an inner fibration
U : E → C which is equivalent to the projection map V :

∫
CF → C as an inner fibration

over C. Since V is a cocartesian fibration (Proposition 5.6.2.2), it follows that U is also a
cocartesian fibration (Proposition 5.1.7.13).

Corollary 5.6.7.3.029F Let U0 : E0 → C0 be a cocartesian fibration of simplicial sets. Then
there exists a pullback diagram

E0 //

U0

��

E

U

��
C0

F // C,

where U is a cocartesian fibration of ∞-categories and F is inner anodyne.

Proof. Using Corollary 4.1.3.3, we can choose an inner anodyne map F : C0 ↪→ C, where
C is an ∞-category. Since F is a categorical equivalence of simplicial sets (Corollary
4.5.3.14), Proposition 5.6.7.2 guarantees that U0 is the pullback of a cocartesian fibration
U : E → C.

Remark 5.6.7.4.02LR In the situation of Corollary 5.6.7.3, if U0 is a left fibration, then U is
also a left fibration. To see this, it suffices to show that the fibers of U are Kan complexes
(Proposition 5.1.4.14). This is clear, since every fiber of U is also a fiber of U0 (note that the
inner anodyne morphism F : C0 → C is bijective at the level of vertices; see Exercise 1.5.6.6).

Corollary 5.6.7.5.029G Let U : E → C be a cocartesian fibration of simplicial sets. Then U is
an isofibration.

https://kerodon.net/tag/029F
https://kerodon.net/tag/02LR
https://kerodon.net/tag/029G


1250 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

Proof. By virtue of Corollary 5.6.7.3, we may assume without loss of generality that U
is a cocartesian fibration of ∞-categories, in which case the desired result follows from
Proposition 5.1.4.8.

Corollary 5.6.7.6. 029HLet U : E → C be a cocartesian fibration of simplicial sets. Then U is
exponentiable (Definition 4.5.9.10). In particular, for any pullback diagram of simplicial sets

029JE F //

U ′

��

E

U

��
C′ F // C,

(5.32)

if F is a categorical equivalence, then F is also a categorical equivalence.

Proof. By virtue of Corollary 5.6.7.3 and Remark 4.5.9.13, we may assume that U is a
cocartesian fibration of∞-categories, in which case the desired result follows from Proposition
5.3.6.1.

Corollary 5.6.7.7. 03TXLet κ be an uncountable regular cardinal, let U : E → C be a cocartesian
fibration of simplicial sets, and suppose that C is essentially κ-small. The following conditions
are equivalent:

(1) The ∞-category E is essentially κ-small.

(2) For every vertex C ∈ C, the ∞-category EC = {C} ×C E is essentially κ-small.

Proof. Using Corollaries 5.6.7.3 and 5.6.7.6, we can reduce to the situation where C is an
∞-category. In this case, the desired result is a special case of Corollary 5.1.5.16.

Corollary 5.6.7.8. 029KSuppose we are given a commutative diagram of simplicial sets

D F //

U

��

E

V

��
C,

where U and V are cocartesian fibrations. Then F is an equivalence of cocartesian fibrations
over C (Definition 5.1.7.1) if and only if it is a categorical equivalence of simplicial sets.

Proof. Combine Proposition 5.1.7.5 with Corollary 5.6.7.5.

https://kerodon.net/tag/029H
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5.6.8 Transport Witnesses

02S9 Let U : E → C be an essentially small cocartesian fibration of ∞-categories. Theorem
5.6.0.2 asserts that there exists a commutative diagram

E F̃ //

U

��

QCObj

V

��
C F // QC

which witnesses F as a covariant transport representation for U ; here V : QCObj → QC is
the cocartesian fibration of Proposition 5.5.6.11. In this section, we formulate a stronger
statement, which asserts that the collection of all such diagrams is parametrized by a
contractible Kan complex (Theorem 5.6.8.3).

Notation 5.6.8.1.02SA Let U : E → C be a cocartesian fibration of simplicial sets. We let
TW(E / C) denote the simplicial subset of the fiber product

Fun(C,QC)×Fun(E,QC) Fun(E ,QCObj)

whose n-simplices are diagrams

∆n × E F̃ //

id∆n ×U

��

QCObj

V

��
∆n × C F // QC

which witness F as a covariant transport representation for the cocartesian fibration
(id∆n ×U) : ∆n × E → ∆n × C.

Example 5.6.8.2.02SB Let E be an ∞-category and let U : E → ∆0 denote the projection map.
Note that projection onto the first factor determines a morphism of simplicial sets

TW(E /∆0)→ Fun(∆0,QC) = QC .

Unwinding the definitions, we see that the fiber of this morphism over a small ∞-category
E ′ can be identified with the full subcategory

Equiv(E , {E ′} ×QC QCObj) ⊆ Fun(E , {E ′} ×QC QCObj)≃

spanned by the equivalences of ∞-categories E → {E ′} ×QC QCObj.

https://kerodon.net/tag/02S9
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We will prove the following result in §5.6.9:

Theorem 5.6.8.3. 02SCLet U : E → C be an essentially small cocartesian fibration of simplicial
sets. Then the simplicial set TW(E / C) is a contractible Kan complex.

Remark 5.6.8.4. 02SDTheorem 5.6.8.3 is an immediate consequence of Theorem 5.6.5.10. We
will see at the end of this section that the converse is also true.

The remainder of this section is devoted to establishing some formal properties of the
simplicial sets TW(E / C) which will be useful for the proof of Theorem 5.6.8.3.

Lemma 5.6.8.5. 02SESuppose we are given a commutative diagram of simplicial sets

E F̃ //

U

��

QCObj

V

��
C F // QC,

where U is a cocartesian fibration. Let j : C0 ↪→ C be an inner anodyne morphism of
simplicial sets, let E0 denote the fiber product C0×C E, and let U0 : E0 → C0 denote the
projection map. If F̃ |E0 witnesses F |C0 as a covariant transport representation for U0, then
F̂ witnesses F as a covariant transport representation for U .

Proof. Let S denote the collection of all morphisms of simplicial sets i : A → B with the
following property: for every morphism of simplicial sets B → C, if the restriction F̃ |A×CE
witnesses F |A as a covariant transport representation for the projection map A×C E → A,
then F̃ |B×CE witnesses F |B as a covariant transport representation for the projection map
B ×C E → B. To prove Lemma 5.6.8.5, it will suffice to show that every inner anodyne
morphism of simplicial sets belongs to S. It is not difficult to see that the collection of
morphisms S is weakly saturated, in the sense of Definition 1.5.4.12. It will therefore suffice
to show that, for every pair of integers 0 < i < n, the inner horn inclusion Λni ↪→ ∆n belongs
to S. We may therefore assume without loss of generality that C = ∆n and C0 = Λni is an
inner horn.

Since every vertex of ∆n is contained in Λni , it follows immediately that the pair (F , F̃ )
satisfies condition (a) of Remark 5.6.5.3. To verify (b), let e : X → Z be an U -cocartesian
edge of E having image e = U(e) in ∆n; we wish to show that F̃ (e) is a V -cocartesian edge
of E ′. If e belongs to the horn Λni , then this follows from our assumption on F̃ |E0 . We may
therefore assume without loss of generality that C = ∆2 and that e : 0 → 2 is the “long”
edge of the simplex ∆2. Since U is a cocartesian fibration, there exists a U -cocartesian edge

https://kerodon.net/tag/02SC
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e′ : X → Y of E , where U(Y ) = 1. Our assumption that e′ is U -cocartesian guarantees the
existence of a 2-simplex

Y

e′′

��
X

e′

??

e // Z

of E , and Proposition 5.1.4.12 implies that e′′ is also U -cocartesian. Since F̃ |C0 carries
U0-cocartesian morphisms of E0 to V -cocartesian morphisms of QCObj, it follows that F̃ (e′)
and F̃ (e′′) are V -cocartesian edges of E ′. Applying Proposition 5.1.4.12 again, we deduce
that F̃ (e) is also V -cocartesian.

Lemma 5.6.8.6.02SF Let U : E → C be a cocartesian fibration of simplicial sets. Then:

(1) The fiber product M = Fun(C,QC)×Fun(E,QC) Fun(E ,QCObj) is an ∞-category.

(2) The simplicial set TW(E / C) is a replete subcategory of M (see Example 4.4.1.12).

In particular, the simplicial set TW(E / C) is an ∞-category.

Proof. Since V is an inner fibration, the induced map V ′ : Fun(E ,QCObj) → Fun(E ,QC)
is also an inner fibration (Corollary 4.1.4.3). The projection map M → Fun(C,QC) is a
pullback of V ′, and is therefore also an inner fibration. Since Fun(C,QC) is an ∞-category
(Theorem 1.5.3.7), assertion (1) follows from Remark 4.1.1.9.

We now prove (2). We first show that TW(E / C) is a subcategory of M: that is, that
the inclusion map TW(E / C) ↪→M is an inner fibration. Fix integers 0 < i < n and let σ
be an n-simplex of M for which the restriction σ|Λn

i
belongs to TW(E / C); we wish to show

that σ is an n-simplex of TW(E / C). Unwinding the definitions, we can identify σ with a
commutative diagram

∆n × E F̃ //

id∆n ×U

��

QCObj

V

��
∆n × C F // QC;

we wish to show that F̃ witnesses F as a covariant transport representation for the
cocartesian fibration id∆n ×U . This follows from Lemma 5.6.8.5, since the inclusion Λni ×C ↪→
∆n × C is inner anodyne (Lemma 1.5.7.5).

https://kerodon.net/tag/02SF


1254 CHAPTER 5. FIBRATIONS OF ∞-CATEGORIES

We now complete the proof by showing that the subcategory TW(E / C) ⊆M is replete.
Let u be an isomorphism in the ∞-category M, which we identify with a commutative
diagram

∆1 × E F̃ //

id∆1 ×U

��

QCObj

V

��
∆1 × C F // QC .

Set F0 = F |{0}×C and F̃0 = F̃ |{0}×E , and suppose that the pair (F0, F̃0) is an object of
the ∞-category TW(E / C) (that is, F̃0 witnesses F0 as a covariant transport representation
for U . We wish to show that F̃ witnesses F as a covariant transport representation for
(id∆1 ×U) : ∆1 × E → ∆1 × C.

We first verify condition (b) of Remark 5.6.5.3. Let e be an (id∆1 ×U)-cocartesian edge of
the simplicial set ∆1×E ; we wish to show that F̃ (e) is a V -cocartesian morphism of QCObj.
Write e = (φij , e), where φij : i→ j is an edge of ∆1 and e : X → Y is a U -cocartesian edge
of E . We consider three cases:

(1) Suppose that i = j = 0. Then F̃ (e) = F̃0(e) is V -cocartesian by virtue of our
assumption that F̃0 witnesses F0 as a covariant transport representation for U .

(2) Suppose that i = 0 and j = 1. In this case, there exists a 2-simplex of ∆1 × E whose
boundary is indicated in the diagram

(0, Y )

(φ01,idY )

""
(0, X)

(φ00,e)

<<

(φ01,e) // (1, Y ).

Our assumption that u is an isomorphism in the ∞-category M guarantees that
F̃ (φ01, idY ) is an isomorphism in the∞-category QCObj, and is therefore V -cocartesian
(Proposition 5.1.1.8). It follows from case (1) that F̃ (φ00, e) is also a V -cocartesian
morphism of QCObj. Since the collection of V -cocartesian morphisms of QCObj is closed
under composition (Corollary 5.1.2.4), we conclude that F̃ (φ01, e) is also V -cocartesian.

(3) Suppose that i = j = 1. In this case, there exists a 2-simplex of ∆1 ×E whose boundary
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is indicated in the diagram

(1, X)

(φ11,e)

##
(0, X)

(φ01,idX)

<<

(φ01,e) // (1, Y ).

Our assumption that u is an isomorphism in the ∞-category M guarantees that
F̃ (φ01, idX) is an isomorphism in the∞-categoryQCObj, and is therefore V -cocartesian
(Proposition 5.1.1.8). It follows from case (2) that F̃ (φ01, e) is also a V -cocartesian
morphism of QCObj, so that F̃ (φ11, e) is V -cocartesian by virtue of Corollary 5.1.2.4.

We now complete the proof by showing that the pair (F̃ ,F ) satisfies condition (a) of
Remark 5.6.5.3. Let (i, C) be a vertex of the product ∆1×C, so that F̃ restricts to a functor
of ∞-categories

F̃(i,C) : {i} × EC → {F (i, C)} ×QC QCObj .

We wish to show that the functor F̃(i,C) is an equivalence of ∞-categories. If i = 0, this
follows from our assumption that F̃0 witnesses F0 as a covariant transport representation
for U . We may therefore assume without loss of generality that i = 1. Set v = F (φ01, idC)
and let

v! : {F (0, C)} ×QC QCObj → {F (1, C)} ×QC QCObj

be the functor given by covariant transport along v. Since u is an isomorphism in the
∞-category M, v is an isomorphism in the ∞-category QC so that v! is an equivalence of
∞-categories (Remark 5.2.5.5). Combining the first part of the proof with Remark 5.2.8.5,
we deduce that the diagram of ∞-categories

{0} × EC
F̃(0,C) //

∼

��

{F (0, C)} ×QC QCObj

v!

��
{1} × EC

F̃(1,C) // {F (1, C)} ×QC QCObj

commutes up to isomorphism (that is, it determines a commutative diagram in the homotopy
category hQCat). Since v! and F̃(0,C) are equivalences of∞-categories, it follows that F̃(1,C)
is also an equivalence of ∞-categories.

Lemma 5.6.8.7.02SG Let U : E → C be a cocartesian fibration of simplicial sets. Then the
simplicial set TW(E / C) is a Kan complex.

https://kerodon.net/tag/02SG
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Proof. Since TW(E / C) is an ∞-category (Lemma 5.6.8.6), it will suffice to show that every
morphism u of TW(E / C) is an isomorphism (Proposition 4.4.2.1). Let us identify u with a
commutative diagram of simplicial sets

∆1 × E F̃ //

id∆1 ×U

��

QCObj

V

��
∆1 × C F // QC

satisfying conditions (a) and (b) of Remark 5.6.5.3.
Passing to homotopy categories, we see that F induces a functor hF : [1]×hC → hQC ≃

hQCat. Applying Remark 5.6.5.8, we see that hF is isomorphic to the composite functor
[1]×hC ↠ hC

hTrE / C−−−−−→ hQCat, where hTrE / C denotes the homotopy transport representation
of Construction 5.2.5.2. It follows that, for every vertex C ∈ C, the morphism F carries the
edge ∆1×{C} to an isomorphism e in QC. If X is an object of E satisfying U(X) = C, then
F̃ carries ∆1 × {X} to a V -cocartesian morphism e of QCObj satisfying V (e) = e, which is
then also an isomorphism by virtue of Corollary 5.1.1.10. Allowing C and X to vary and
applying Theorem 4.4.4.4, we deduce that F and F̃ are isomorphisms when regarded as
morphisms in the ∞-categories Fun(C,QC) and Fun(E ,QCObj), respectively.

Set M = Fun(C,QC) ×Fun(E,QC) Fun(E ,QCObj). Applying Corollary 4.4.3.19 to the
pullback diagram

M //

��

Fun(E ,QCObj)

��
Fun(C,QC) // Fun(E ,QC),

we deduce that u is an isomorphism when regarded as a morphism of the ∞-category M.
Since TW(E / C) is replete subcategory of M (Lemma 5.6.8.6), it follows that u is also an
isomorphism when regarded as a morphism of TW(E / C) (Example 4.4.2.9).

Remark 5.6.8.8. 02SHLet U : E → C be a cocartesian fibration of simplicial sets. It follows
from Lemmas 5.6.8.6 and 5.6.8.7 that TW(E / C) can be identified with the full subcategory
of the Kan complex

Fun(C,QC)≃ ×Fun(E,QC)≃ Fun(E ,QCObj)≃

spanned by those pairs (F , F̃ ) which witness F as a covariant transport representation for
U .

https://kerodon.net/tag/02SH
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Notation 5.6.8.9 (Functoriality).02SJ Let U : E → C be a cocartesian fibration of simplicial
sets. Suppose we are given an arbitrary morphism of simplicial sets f : C0 → C, and set
E0 = C0×C E . Precomposition with f and with the projection map E0 → E determines a
morphism of simplicial sets

f∗ : TW(E / C)→ TW(E0 / C0),

which we will refer to as the restriction map. Note that the construction C0 7→ TW(E0 / C0)
carries colimits in the category (Set∆)/ C to limits in the category of simplicial sets.

Lemma 5.6.8.10.02SK Let U : E → C be a cocartesian fibration of simplicial sets. Let C0 be a
simplicial subset of C and set E0 = C0×C E. Then:

(1) The restriction map θ : TW(E / C)→ TW(E0 / C0) of Notation 5.6.8.9 is a Kan fibration
between Kan complexes.

(2) If the inclusion C0 ↪→ C is inner anodyne, then θ is a trivial Kan fibration.

Proof. We first prove (1). Since the simplicial set TW(E0 / C0) is a Kan complex (Lemma
5.6.8.7), it will suffice to show that θ is an isofibration. Define fiber products

M = Fun(C,QC)×Fun(E,QC) Fun(E ,QCObj)

M0 = Fun(C0,QC)×Fun(E0,QC) Fun(E0,QCObj),
so that we have a commutative diagram

02SL TW(E / C) //

θ

��

M

θ

��
TW(E0 / C0) //M0 .

(5.33)

It follows from Lemma 5.6.8.6 that TW(E / C) is a replete subcategory of M, and therefore
also a replete subcategory of the fiber product TW(E0 / C0)×M0M. It will therefore suffice
to show that the projection map TW(E0 / C0)×M0 M→ TW(E0 / C0) is an isofibration of
∞-categories. Since the collection of isofibrations is stable under pullback, we are reduced
to showing that the map θ :M→M0 is an isofibration. We now observe that θ factors as
a composition

M = Fun(C,QC)×Fun(E,QC) Fun(E ,QCObj)
θ
′

−→ Fun(C,QC)×Fun(E0,QC) Fun(E0,QCObj)
θ
′′

−→ Fun(C0,QC)×Fun(E0,QC) Fun(E0,QCObj)
= M0,

https://kerodon.net/tag/02SJ
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where θ′′ is a pullback of the restriction map

ψ′′ : Fun(E ,QCObj)→ Fun(E0,QCObj)×Fun(E0,QC) Fun(E ,QC).

Since the forgetful functor V : QCObj → QC is an isofibration, ψ′′ is also an isofibration
(Propositions 4.4.5.1). Similarly, θ′ is a pullback of the restriction map ψ′ : Fun(C,QC)→
Fun(C0,QC), which is an isofibration by virtue of Corollary 4.4.5.3. It follows that θ = θ

′′ ◦θ′

is also an isofibration. This completes the proof of (1).
We now prove (2). Suppose that the inclusion map C0 ↪→ C is inner anodyne; we wish to

show that θ is a trivial Kan fibration. Applying Proposition 1.5.7.6, we deduce that ψ′ is
a trivial Kan fibration of simplicial sets. Since U is a cocartesian fibration, the inclusion
map E0 ↪→ E is a categorical equivalence (Lemma 5.3.6.5). Applying Proposition 4.5.5.18,
we deduce that ψ′′ is a trivial Kan fibration. It follows that the morphisms θ′ and θ

′′ are
also trivial Kan fibrations, so that θ = θ

′′ ◦ θ′ is a trivial Kan fibration. Applying Lemma
5.6.8.5, we see that the diagram (5.33) is a pullback square, so that θ is also a trivial Kan
fibration.

Proof of Theorem 5.6.5.10 from Theorem 5.6.8.3. Let U : E → C be an essentially small
cocartesian fibration of simplicial. Let C0 ⊆ C be a simplicial subset and set E0 = C0×C E .
Applying Theorem 5.6.8.3, we see that the simplicial sets TW(E / C) and TW(E0 / C0) are
contractible Kan complexes. It follows that the restriction map θ : TW(E / C)→ TW(E0 / C0)
is a homotopy equivalence. Since θ is also Kan fibration (Lemma 5.6.8.10), it is a trivial
Kan fibration (Proposition 3.2.7.2). In particular, θ is surjective on vertices, which is a
restatement of Theorem 5.6.5.10.

5.6.9 Proof of the Universality Theorem

02SMLet U : E → C be an essentially small cocartesian fibration of simplicial sets. Our goal
in this section is to prove Theorem 5.6.8.3, which that the space of transport witnesses
TW(E / C) of Notation 5.6.8.1 is a contractible Kan complex. The main step is to establish
the following:

Lemma 5.6.9.1. 02SNLet U : E → ∆1 be a cocartesian fibration having fibers E0 = {0} ×∆1 E
and E1 = {1} ×∆1 E. Then the restriction map

θ : TW(E /∆1)→ TW(E0⨿E1 / ∂∆1)

is a trivial Kan fibration of simplicial sets.

Proof. It follows from Lemma 5.6.8.10 that θ is a Kan fibration; we wish to show that it is a
trivial Kan fibration. Fix a pair of small∞-categories D0 and D1. Set E ′0 = {D0}×QCQCObj

https://kerodon.net/tag/02SM
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and E ′1 = {D1} ×QC QCObj, and let Equiv(E0, E ′0) and Equiv(E1, E ′1) be the Kan complexes
introduced in Example 5.6.8.2, so that the fiber

{(D0,D1)} ×Fun(∂∆1,QC) TW(E0⨿E1 / ∂∆1)

can be identified with the product Equiv(E0, E ′0) × Equiv(E1, E ′1). Let TW(E /∆1)D0,D1

denote the fiber product {(D0,D1)} ×Fun(∂∆1,QC) TW(E /∆1), so that θ restricts to a Kan
fibration

θD0,D1 : TW(E /∆1)D0,D1 → Equiv(E0, E ′0)× Equiv(E1, E ′1).

Note that every fiber of θ can also be viewed as a fiber of θD0,D1 for suitably chosen ∞-
categories D0 and D1. Consequently, to show that θ is a trivial Kan fibration, it will suffice
to show that each of the morphisms θD0,D1 is a trivial Kan fibration, or alternatively that it
is a homotopy equivalence (see Proposition 3.2.7.2).

For the remainder of the proof, we will regard the ∞-categories D0 and D1 as fixed. Let
B+ denote the fiber product

HomQC(D0,D1)×Fun(∆1×E0,QC)≃ Fun(∆1 × E0,QCObj)≃.

Let π+ : B+ → HomQC(D0,D1) be given by projection onto the first factor, and let

r+
0 : B+ → Fun(E0, E ′0)≃ r+

1 : B+ → Fun(E0, E ′1)≃

be given by restriction to the simplicial subsets {0}×E0 and {1}×E0, respectively. Combining
Propositions 4.4.5.1 and 4.4.3.7, we deduce that the map

(r+
0 , r

+
1 , π

+) : B+ → Fun(E0, E ′0)≃ × Fun(E0, E ′1)≃ ×HomQC(D0,D1)

is a Kan fibration. In particular, the simplicial set B+ is a Kan complex.
Let B denote the summand B+ spanned by those pairs (e, ẽ), where e : D0 → D1 is a

functor and ẽ : ∆1 × E0 → QCObj is a morphism fitting into a commutative diagram

∆1 × E0
ẽ //

��

QCObj

V

��
∆1 e // QC

which satisfies the following pair of conditions:

(i) The restriction ẽ|{0}×E0 : E0 → E ′0 is an equivalence of ∞-categories.
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(ii) For each object Z ∈ E0, the composite map

∆1 × {Z} ↪→ ∆1 × E0
ẽ−→ QCObj

is a V -cocartesian morphism of QCObj.

Condition (i) ensures that r+
0 restricts to a morphism of Kan complexes r0 : B →

Equiv(E0, E ′0). Moreover, π+ and r+
1 restrict to morphisms π : B → HomQC(D0,D1) and

r1 : B → Fun(E0, E ′1)≃, respectively. Since B is a summand of B+, the map

(r0, r1, π) : B → Equiv(E0, E ′0)× Fun(E0, E ′1)≃ ×HomQC(D0,D1)

is also a Kan fibration.
It follows from Theorem 5.2.1.1 that composition with V induces a cocartesian fi-

bration V ′ : Fun(E0,QCObj) → Fun(E0,QC). Moreover, a morphism of the ∞-category
Fun(E0,QCObj) is V ′-cocartesian if and only if it corresponds to a morphism of simplicial
sets ẽ : ∆1 × E0 → QCObj satisfying condition (ii). Let Fun′(∆1 × E0,QCObj) denote the
full subcategory of Fun(∆1 ×E0,QCObj) spanned by morphisms which satisfy this condition.
Unwinding the definitions, we have a pullback square

B

(r0,π)

vv &&
Equiv(E0, E ′0)×HomQC(D0,D1)

((

Fun′(∆1 × E0,QCObj)

xx
Fun({0} × E0,QCObj)×Fun({0}×E0,QC) Fun(∆1 × E0,QC),

where the bottom right map is a trivial Kan fibration (Proposition 5.2.1.3). It follows that
the map (r0, π) : B → Equiv(E0, E ′0)×HomQC(D0,D1) is a trivial Kan fibration of simplicial
sets.

Let s : Equiv(E0, E ′0) × HomQC(D0,D1) → B be a section of the trivial Kan fibration
(r0, π), and let T denote the composite map

Equiv(E0, E ′0)×HomQC(D0,D1) s−→ B (r0,r1)−−−−→ Equiv(E0, E ′0)× Fun(E0, E ′1)≃.

For every equivalence of ∞-categories F : E0 → E ′0, we can regard T |{F}×HomQC(D0,D1)
as a morphism of Kan complexes TF : HomQC(D0,D1) → Fun(E0, E ′1)≃. Unwinding the
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definitions, we can identify TF with the composition

HomQC(D0,D1) T ′−→ Fun(E ′0, E ′1)≃ ◦F−−→ Fun(E0, E ′1)≃,

where T ′ is given by parametrized covariant transport for the cocartesian fibration V :
QCObj → QC (Definition 5.2.8.1). It follows from Proposition 5.5.6.14 that T ′ is a homotopy
equivalence. Our assumption that F is an equivalence of ∞-categories then guarantees
that TF is also a homotopy equivalence. Allowing F ∈ Equiv(E0, E ′0) to vary and applying
Proposition 3.2.8.1, we conclude that T is a homotopy equivalence. Since s is homotopy
inverse to the trivial Kan fibration (r0, π), it is also a homotopy equivalence. Applying the
two-out-of-three property (Remark 3.1.6.7), we conclude that the map

(r0, r1) : B → Equiv(E0, E ′0)× Fun(E0, E ′1)≃

is also a homotopy equivalence. Since (r0, r1) is also a Kan fibration, it is a trivial Kan
fibration (Proposition 3.3.7.6).

Using Proposition 5.2.2.8, we can choose a functor λ : E0 → E1 and a natural trans-
formation h : ∆1 × E0 → E which witnesses λ as given by covariant transport along the
nondegenerate edge of ∆1 (in the sense of Definition 5.2.2.4). Form a pullback diagram

02SP B̃ //

(r̃0,r̃1)

��

B

(r0,r1)

��
Equiv(E0, E ′0)× Equiv(E1, E ′1) ◦λ // Equiv(E0, E ′0)× Fun(E0, E ′1)≃.

(5.34)

Let M denote the pushout (∆1 × E0)∐
({1}×E0) E1, so that we can identify B̃ with a

summand of the Kan complex

HomQC(D0,D1)×Fun(M,QC)≃ Fun(M,QCObj)≃.

Note that h induces a categorical equivalence of simplicial sets h+ : M → E (Corollary

https://kerodon.net/tag/02SP
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5.2.4.2). We have a commutative diagram of Kan complexes

02SQHomQC(D0,D1)×Fun(E,QC)≃ Fun(E ,QCObj)≃

��

// HomQC(D0,D1)

��
Fun(E ,QCObj)≃

◦h+

��

V ◦ // Fun(E ,QC)≃

◦h+

��
Fun(M,QCObj)≃ V ◦ // Fun(M,QC)≃,

(5.35)

where the upper vertical are homotopy equivalences (since h+ is a categorical equivalence)
and the horizontal maps are Kan fibrations (Corollary 4.4.5.7). Note that the top and
bottom squares of (5.35) are homotopy pullback squares (Example 3.4.1.3 and Corollary
3.4.1.5). It follows that the outer rectangle is also a homotopy pullback square (Proposition
3.4.1.11): that is, precomposition with h+ induces a homotopy equivalence of Kan complexes

HomQC(D0,D1)×Fun(E,QC)≃ Fun(E ,QCObj)≃

φ

��
HomQC(D0,D1)×Fun(M,QC)≃ Fun(M,QCObj)≃.

Applying Remark 5.6.5.3, we see that TW(E /∆1)D0,D1 can be identified with the inverse
image of B̃ under the homotopy equivalence φ. In particular, φ restricts to a homotopy
equivalence φ0 : TW(E /∆1)D0,D1 → B̃. Unwinding the definitions, we see that the morphism

θD0,D1 : TW(E /∆1)D0,D1 → Equiv(E0, E ′0)× Equiv(E1, E ′1)

coincides with the the composition (r̃0, r̃1) ◦φ0. Since (r̃0, r̃1) is a pullback of the trivial Kan
fibration (r0, r1) : B → Equiv(E0, E ′0)× Fun(E0, E ′1)≃, it is also a trivial Kan fibration. In a
particular, (r̃0, r̃1) is a homotopy equivalence, so that the composite map θD0,D1 = (r̃0, r̃1)◦φ0
is also a homotopy equivalence, as desired.

Lemma 5.6.9.2. 02SRLet E be an essentially small ∞-category. Then the simplicial set
TW(E /∆0) is a contractible Kan complex.
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Proof. It follows from Lemma 5.6.8.7 that the simplicial set TW(E /∆0) is a Kan complex.
Since E is essentially small, the Kan complex TW(E /∆0) is nonempty. It will therefore
suffice to show that the diagonal map

δ : TW(E /∆0)→ TW(E /∆0)× TW(E /∆0)

is a homotopy equivalence (Corollary 3.5.1.33). Unwinding the definitions, we see that δ
factors as a composition

TW(E /∆0) δ′−→ Fun(∆1,TW(E /∆0))
≃ TW(∆1 × E /∆1)
δ′′−→ TW(∂∆1×E / ∂∆1)
≃ TW(E /∆0)× TW(E /∆0).

Since the 1-simplex ∆1 is contractible (Example 3.2.4.2), the morphism δ′ is a homotopy
equivalence. It will therefore suffice to show that the restriction map δ′′ is a homotopy
equivalence, which follows from Lemma 5.6.9.1.

Proof of Theorem 5.6.8.3. Let U : E → C be an essentially small cocartesian fibration of
simplicial sets. We wish to show that the simplicial set TW(E / C) is a contractible Kan
complex.

For every simplicial set C0 equipped with a morphism C0 → C, let X(C0) denote the
simplicial set TW(E0 / C0), where E0 is the fiber product C0×C E . Note that the simplicial
set X(C) = TW(E / C) can be realized as the inverse limit of the tower

· · · → X(sk2(C))→ X(sk1(C))→ X(sk0(C)),

where each of the transition maps is a Kan fibration (Lemma 5.6.8.10). Consequently, to
show that X(C) is a contractible Kan complex, it will suffice to show that each of the
simplicial sets X(skk(C)) is a contractible Kan complex. Replacing C by skk(C), we can
assume that the simplicial set C has dimension ≤ k, for some integer k ≥ −1.

We now proceed by induction on k. In the case k = −1, the simplicial set C is empty
and TW(E / C) is isomorphic to ∆0. We may therefore assume without loss of generality
that k ≥ 0. Let S be the collection of nondegenerate k-simplices of C, so that Proposition
1.1.4.12 supplies a pushout diagram of simplicial sets∐

σ∈S
∂∆k //

��

∐
σ∈S

∆k

��
C0 // C,
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where C0 = skk−1(C) is the (k−1)-skeleton of C. It follows from our inductive hypothesis that
the simplicial set X(C0) is a contractible Kan complex. Consequently, to show that X(C) is a
contractible Kan complex, it will suffice to show that the restriction map θ : X(C)→ X(C0)
is a trivial Kan fibration. Note that θ is a pullback of the restriction map

θ0 : X(
∐
σ∈S

∆k)→ X(
∐
σ∈S

∂∆k).

We will complete the proof by showing that θ0 is a trivial Kan fibration. Since θ0 is a
Kan fibration (Lemma 5.6.8.10), this is equivalent to the assertion that θ0 is a homotopy
equivalence (Proposition 3.2.7.2). Our inductive hypothesis guarantees that the Kan complex
X( ∐

σ∈S
∂∆k) is contractible. We are therefore reduced to showing that the Kan complex

X( ∐
σ∈S

∆k) is also contractible. Since the collection of contractible Kan complexes is closed

under products, we are reduced to verifying the contractibility of the simplicial set X(C0)
in the special case where C0 = ∆k is a standard simplex of dimension k. We now consider
several cases:

• In the case k = 0, the desired result follows from Lemma 5.6.9.2.

• In the case k = 1, Lemma 5.6.9.1 supplies a trivial Kan fibration X(∆1)→ X(∂∆1).
Our inductive hypothesis guarantees that the Kan complex X(∂∆1) is contractible, so
that X(∆1) is also contractible.

• In the case k ≥ 2, we can choose an integer 0 < i < k. In this case, the inclusion
Λk
i ↪→ ∆k is inner anodyne, so the restriction map X(∆k)→ X(Λk

i ) is a trivial Kan
fibration (Lemma 5.6.8.10). Our inductive hypothesis guarantees that the Kan complex
X(Λki ) is contractible, so that X(∆k) is also contractible.



Part II

Higher Category Theory

1265



Chapter 6

Adjoint Functors

02C96.1 Adjunctions in 2-Categories

02CAWe begin by reviewing the theory of adjoint functors in the setting of classical category
theory, originally introduced in [34].

Definition 6.1.0.1 (Kan). 02CBLet C and D be categories, and let F : C → D and G : D → C
be functors. A Hom-adjunction between F and G is a collection of bijections

ρC,D : HomD(F (C), D) ≃ HomC(C,G(D))

which depend functorially on C ∈ C and D ∈ D (that is, the construction (C,D) 7→ ρC,D is
an isomorphism in the functor category Fun(Cop×D, Set)). In this case, we say that the
construction (C,D) 7→ ρC,D exhibits F as a left adjoint to G and G as a right adjoint to F .

In the situation of Definition 6.1.0.1, functoriality imposes strong constraints on the
construction (C,D) 7→ ρC,D. For each object C ∈ C, let ηC : C → (G ◦ F )(C) be the
morphism of C given by the image of the identity morphism idF (C) under the bijection

ρC,F (C) : HomD(F (C), F (C)) ≃ HomC(C, (G ◦ F )(C)).

For every morphism f : F (C)→ D in D, the commutativity of the diagram

HomD(F (C), F (C))
ρC,F (C)

∼
//

f◦

��

HomD(C, (G ◦ F )(C))

G(f)◦

��
HomD(F (C), D)

ρC,D

∼
// HomC(C,G(D))

1266
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supplies an equality

ρC,D(f) = ρC,D(f ◦ idF (C)) = G(f) ◦ ρC,F (C)(idF (C)) = G(f) ◦ ηC .

In particular, the bijection ρC,D is completely determined by the morphism ηC . Moreover, the
functoriality of ρ•,• in the first variable guarantees that the construction C 7→ ηC is a natural
transformation from the identity functor idC to the composition G ◦F . Similarly, the inverse
bijections ρ−1

C,D : HomC(C,G(D)) ≃ HomD(F (C), D) can be recovered from the collection of
morphisms {ϵD = ρ−1

G(D),D(idG(D))}D∈D, which comprise a natural transformation of functors
ϵ : (F ◦G)→ idD. This leads to a reformulation of Definition 6.1.0.1:
Definition 6.1.0.2.02CC Let F : C → D and G : D → C be functors between categories. An
adjunction between F and G is a pair (η, ϵ), where η : idC → G ◦ F and ϵ : F ◦G→ idD are
natural transformations satisfying the following compatibility conditions:
(Z1) For each object C ∈ C, the composite morphism

F (C) F (ηC)−−−−→ (F ◦G ◦ F )(C)
ϵF (C)−−−→ F (C)

is equal to the identity idF (C).

(Z2) For each object D ∈ D, the composite morphism

G(D)
ηG(D)−−−→ (G ◦ F ◦G)(D) G(ϵD)−−−−→ G(D)

is equal to the identity idG(D).
If these conditions are satisfied, then we will refer to η as the unit of the adjunction (η, ϵ)
and to ϵ as the counit of the adjunction (η, ϵ). In this case, we will say that (η, ϵ) exhibits F
as a left adjoint to G and also that it exhibits G as a right adjoint to F .
Example 6.1.0.3.02CD Let F : C → D and G : D → C be functors between categories, and let
{ρC,D}C∈C,D∈D be a Hom-adjunction between F and G (in the sense of Definition 6.1.0.1).
Let η : idC → G ◦ F and ϵ : F ◦ G → idD be the natural transformations given by the
formulae

ηC = ρC,F (C)(idF (C)) ∈ HomC(C, (G ◦ F )(C))
ϵD = ρ−1

G(D),D(idG(D)) ∈ HomD((F ◦G)(D), D).
Then the pair (η, ϵ) is an adjunction between F and G (in the sense of Definition 6.1.0.2).
Condition (Z1) follows from the observation that for each object C ∈ C, we have

idF (C) = ρ−1
C,F (C)(ρC,F (C)(idF (C)))

= ρ−1
C,F (C)(ηC)

= ρ−1
C,F (C)(id(G◦F )(C) ◦ηC)

= ρ−1
(G◦F )(C),F (C)(id(G◦F )(C)) ◦ F (ηC)

= ϵF (C) ◦ F (ηC).
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The verification of (Z2) is similar.

Exercise 6.1.0.4. 02CELet F : C → D and G : D → C be functors between categories. Show that
every adjunction (η, ϵ) between F and G can be obtained by applying the construction of
Example 6.1.0.3 to a unique Hom-adjunction {ρC,D}C∈C,D∈D between F and G (see Example
6.1.2.7).

It follows from Exercise 6.1.0.4 that Definitions 6.1.0.1 and 6.1.0.2 are essentially equiva-
lent to one another. However, an advantage of Definition 6.1.0.2 is that it can be formulated
entirely in the language of functors and natural transformations: that is, it uses only the
structure of the 2-category Cat of Example 2.2.0.4. In §6.1.1, we exploit this observation
to generalize the notion of adjunction to an arbitrary 2-category. Given a 2-category C
containing 1-morphisms f : C → D and g : D → C, we define an adjunction between f and
g to be a pair of 2-morphisms

η : idC ⇒ g ◦ f ϵ : f ◦ g ⇒ idD

satisfying analogues of the compatibility conditions (Z1) and (Z2) above (Definition 6.1.1.1).
Our first goal is to adapt Exercise 6.1.0.4 to the setting of a general 2-category C. Suppose

we are given 1-morphisms f : C → D, g : D → C, c : T → C, and d : T → D in C. In §6.1.2,
we show that every adjunction (η, ϵ) between f and g determines a bijection

HomHomC(T,D)(f ◦ c, d) ≃ HomHomC(T,C)(c, g ◦ d),

depending functorially on c and d (see Corollary 6.1.2.6 and Remark 6.1.2.4). Here the map
from right to left is constructed using the unit map η : idC ⇒ g ◦ f , and from left to right
using the counit ϵ : f ◦ g ⇒ idD. As an application, we show that an adjunction (η, ϵ) is
completely determined by the unit η (or the counit ϵ), and give a criterion which can be
used to test if an arbitrary 2-morphism η : idC ⇒ g ◦ f is the unit of an adjunction (see
Proposition 6.1.2.9, Variant 6.1.2.12, and Proposition 6.1.2.13)

Let C be a 2-category and let f : C → D be a 1-morphism in C. In §6.1.3, we show that
if f admits a right adjoint g, then g is uniquely determined up to (canonical) isomorphism
(Corollary 6.1.3.3). Moreover, the formation of right adjoints can be regarded as a (partially
defined) functor from HomC(C,D)op to HomC(D,C) (Notation 6.1.3.5), with a (partially
defined) inverse given by the formation of left adjoints (Notation 6.1.3.8). In §6.1.4, we
consider the special case where f : C ∼−→ D is an isomorphism in C: in this case, f
automatically admits a right adjoint (and a left adjoint), which can be identified with a
homotopy inverse isomorphism D

∼−→ C (Proposition 6.1.4.1).
In §6.1.5, we show that the formation of adjoints is compatible with composition. More

precisely, if f : C → D and f ′ : D → E are 1-morphisms in a 2-category C which admit right
adjoints g : D → C and g′ : E → D, respectively, then the composition (f ′ ◦ f) : C → E also
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admits a right adjoint, which is canonically isomorphic to the composition (g ◦ g′) : E → C

(Corollary 6.1.5.5).
The theory of adjunctions can be usefully applied to many 2-categories C other than

Cat (for example, we will use it in §6.2 to generalize the theory of adjoint functors to the
setting of ∞-categories). In §6.1.6, we consider the case where C has a single object X, and
can therefore be identified with the monoidal category E = EndC(X) (see Example 2.2.2.5).
Specializing the theory of adjunctions to this situation, we recover the classical notion of a
duality datum in E (Definition 6.1.6.1).

6.1.1 Adjunctions

02CF Our goal in this section is to generalize the notion of an adjunction to an arbitrary
2-category C. Here Definition 6.1.0.2 adapts without essential change; the only additional
complications are the fact that the associativity and unit constraints of C need not be strict.

Definition 6.1.1.1.02CG Let C be a 2-category, let C and D be objects of C, and let f : C → D

and g : D → C be 1-morphisms in C. An adjunction between f and g is a pair of 2-morphisms
(η, ϵ), where η : idC ⇒ g◦f is a morphism in the category HomC(C,C) and ϵ : f ◦g ⇒ idD is a
morphism in the category HomC(D,D), which satisfy the following compatibility conditions:

(Z1) The composition

f
ρ−1

f==⇒
∼

f ◦ idC
idf ◦η====⇒ f ◦ (g ◦ f)

αf,g,f====⇒
∼

(f ◦ g) ◦ f
ϵ◦idf===⇒ idD ◦f

λf==⇒
∼

f

is the identity 2-morphism from f to itself. Here λf and ρf are the left and right unit
constraints of the 2-category C (Construction 2.2.1.11) and αf,g,f is the associativity
constraint for the 2-category C.

(Z2) The composition

g
λ−1

g===⇒
∼

idC ◦g
η◦idg===⇒ (g ◦ f) ◦ g

α−1
g,f,g====⇒
∼

g ◦ (f ◦ g) idg ◦ϵ===⇒ g ◦ idD
ρg==⇒
∼

g

is the identity 2-morphism from g to itself.

If these conditions are satisfied, then we will refer to η as the unit of the adjunction (η, ϵ)
and to ϵ as the counit of the adjunction (η, ϵ). In this case, we say that (η, ϵ) exhibits f as a
left adjoint of g, and also that it exhibits g as a right adjoint of f .

Example 6.1.1.2.02CH Let F : C → D and G : D → C be functors between categories, which
we regard as 1-morphisms in the strict 2-category Cat of Example 2.2.0.4. An adjunction
between F and G in the 2-category Cat is an adjunction between F and G in the usual
category-theoretic sense: that is, a pair of natural transformations η : idC → G ◦ F and
ϵ : F ◦G→ idD which satisfy the requirements of Definition 6.1.0.2.
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Remark 6.1.1.3. 02CJLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms of
C, and let η : idC ⇒ g ◦ f and ϵ : f ◦ g ⇒ idD be 2-morphisms of C. Then the pair (η, ϵ) is
an adjunction between f and g in the 2-category C if and only if the pair (ηop, ϵop) it is an
adjunction between gop and fop in the opposite 2-category Cop (Construction 2.2.3.1). Note
that in this case, gop is the left adjoint, while fop is the right adjoint.

Remark 6.1.1.4. 02CKLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let η : idC ⇒ g ◦ f and ϵ : f ◦ g ⇒ idD be 2-morphisms of C. Then the pair (η, ϵ)
is an adjunction between f and g in the 2-category C if and only if the pair (ϵc, ηc) is an
adjunction between gc and f c in the conjugate 2-category Cc (Construction 2.2.3.4). Note
that in this case, ϵc is the unit of the adjunction and ηc is the counit. Similarly, gc is the
left adjoint and f c is the right adjoint.

Remark 6.1.1.5 (Isomorphism Invariance). 02CLLet C be a 2-category, let f, f ′ : C → D

and g, g′ : D → C be 1-morphisms in C, and let (η, ϵ) be an adjunction between f and
g. Suppose we are given invertible 2-morphisms β : g ∼=⇒ g′ and γ : f ∼=⇒ f ′. Let

η′ denote the composition idC
η=⇒ g ◦ f β◦γ==⇒

∼
g′ ◦ f ′ and let ϵ′ denote the composition

f ′ ◦ g′ γ
−1◦β−1

======⇒
∼

f ◦ g ϵ=⇒ idD. Then the pair (η′, ϵ′) is an adjunction between f ′ and g′.

Exercise 6.1.1.6 (Functoriality). 02CMLet F : C → D be a functor of 2-categories. Suppose we
are given 1-morphisms f : C → D and g : D → C in C. Let (η, ϵ) be an adjunction between
f and g in the 2-category C, let η′ denote the composition

idF (C) =⇒
∼

F (idC) F (η)===⇒ F (g ◦ f)
µ−1

g,f===⇒
∼

F (g) ◦ F (f),

and let ϵ′ denote the composition

F (f) ◦ F (g)
µf,g===⇒
∼

F (f ◦ g) F (ϵ)===⇒ F (idD) =⇒
∼

idF (D),

where µf,g and µg,f are the composition constraints of the functor F and the unlabeled
isomorphisms are the identity constraints of F . Show that the pair (η′, ϵ′) is an adjunction
between F (f) and F (g) in the 2-category D.

Example 6.1.1.7. 02CNLet C be an ordinary category which admits fiber products, and let
Corr(C) denote the 2-category of correspondences in C (Example 2.2.2.1). Every morphism
f : X → Y in C determines diagrams

X

idX

~~

f

��

X

f

��

idX

  
X Y Y X
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which we can regard as 1-morphisms f! : X → Y and f ! : Y → X in the 2-category Corr(C).
Unwinding the definitions, we see that the compositions f ! ◦ f! and f! ◦ f ! are given (up to
isomorphism) by the diagrams

X ×Y X

π0

||

π1

""

X

f

��

f

��
X X Y Y,

where π0, π1 : X ×Y X → X are the projection maps. We can therefore regard the diagonal
map δ : X → X ×Y X as a 2-morphism from idX to f ! ◦ f! in Corr(C), and the morphism
f : X → Y as a 2-morphism from f! ◦ f ! to idY in Corr(C). The pair (δ, f) is an adjunction
between f! and f !.

6.1.2 Adjuncts

02CP Let F : C → D and G : D → C be functors between categories. By virtue of Exercise
6.1.0.4, every adjunction (η, ϵ) between F and G determines a collection of bijections

ρC,D : HomD(F (C), D) ≃ HomC(C,G(D)),

depending functorially on C ∈ C and D ∈ D. In this section, we establish an analogue of
this statement for adjunctions in an arbitrary 2-category.

Construction 6.1.2.1.02CQ Let C be a 2-category containing objects T , C, and D, together
with 1-morphisms f : C → D, g : D → C, c : T → C, and d : T → D.

• Let ϵ : f ◦ g ⇒ idD and β : c ⇒ g ◦ d be 2-morphisms of C. We will refer to the
composition

f ◦ c
idf ◦β====⇒ f ◦ (g ◦ d)

αf,g,d====⇒
∼

(f ◦ g) ◦ d ϵ◦idd===⇒ idD ◦d
λd==⇒
∼

d

as the left adjunct of β with respect to ϵ, or more simply as the left adjunct of β
if the 2-morphism ϵ is clear from context. Here λd and αf,g,d are the left unit and
associativity constraints for the 2-category C.

• Let η : idC ⇒ g ◦ f and γ : f ◦ c ⇒ d be 2-morphisms of C. We will refer to the
composition

c
λ−1

c===⇒
∼

idC ◦c
η=⇒ (g ◦ f) ◦ c

α−1
g,f,c====⇒
∼

g ◦ (f ◦ c) idg ◦γ====⇒ g ◦ d

as the right adjunct of γ with respect to η, or more simply as the right adjunct of γ if
the 2-morphism η is clear from context. Here again λc and αg,f,c are the left unit and
associativity constraints for the 2-category C.

https://kerodon.net/tag/02CP
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Example 6.1.2.2. 02CRLet C be a 2-category containing 1-morphisms f : C → D and g : D → C.
Then:

• Every 2-morphism η : idC ⇒ g ◦ f is equal to the right adjunct of the right unit
constraint ρf : f ◦ idD

∼=⇒ f (with respect to η).

• Every 2-morphism ϵ : f ◦ g ⇒ idD is equal to the left adjunct of ρ−1
g : g ∼=⇒ g ◦ idD

(with respect to ϵ).

Example 6.1.2.3. 02CSLet C be a 2-category containing 1-morphisms f : C → D and g : D → C,
and suppose we are given 2-morphisms η : idC ⇒ g ◦ f and ϵ : f ◦ g ⇒ idD. Then (η, ϵ) is an
adjunction between f and g if and only if the following conditions are satisfied:

(Z1) The left adjunct of η (with respect to ϵ) is equal to the right unit constraint ρf :
f ◦ idC

∼=⇒ f .

(Z2) The right adjunct of ϵ (with respect to η) is the inverse ρ−1
g : g ∼=⇒ g ◦ idD of the right

unit constraint.

Remark 6.1.2.4 (Functoriality). 02CTLet C be a 2-category containing objects T , C, and D,
together with 1-morphisms f : C → D, g : D → C, c, c′ : T → C, and d, d′ : T → D. Then:

• If η : idC ⇒ g ◦ f and φ : c⇒ c′ are 2-morphisms of C, then the diagram of sets

HomHomC(T,D)(f ◦ c′, d) //

idf ◦φ

��

HomHomC(T,C)(c′, g ◦ d)

φ

��
HomHomC(T,D)(f ◦ c, d) // HomHomC(T,C)(c, g ◦ d)

is commutative, where the horizontal maps are given by the formation of right adjuncts
with respect to η.

• If ϵ : f ◦ g ⇒ idD and φ : c⇒ c′ are 2-morphisms of C, then the diagram of sets

HomHomC(T,C)(c′, g ◦ d)

φ

��

// HomHomC(T,D)(f ◦ c′, d)

idf ◦φ

��
HomHomC(T,C)(c, g ◦ d) // HomHomC(T,D)(f ◦ c, d)

is commutative, where the horizontal maps are given by the formation of left adjuncts
with respect to ϵ.
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• If η : idC ⇒ g ◦ f and ψ : d⇒ d′ are 2-morphisms of C, then the diagram of sets

HomHomC(T,D)(f ◦ c, d) //

ψ

��

HomHomC(T,C)(c, g ◦ d)

idg ◦ψ

��
HomHomC(T,D)(f ◦ c, d′) // HomHomC(T,C)(c, g ◦ d′)

is commutative, where the horizontal maps are given by the formation of right adjuncts
with respect to η.

• If ϵ : f ◦ g ⇒ idD and ψ : d⇒ d′ are 2-morphisms of C, then the diagram of sets

HomHomC(T,C)(c, g ◦ d)

idg ◦ψ

��

// HomHomC(T,D)(f ◦ c, d)

ψ

��
HomHomC(T,C)(c, g ◦ d′) // HomHomC(T,D)(f ◦ c, d′),

is commutative, where the horizontal maps are given by the formation of left adjuncts
with respect to ϵ.

Stated more informally, Construction 6.1.2.1 depends functorially on the 1-morphisms
c : T → C and d : T → D.

Proposition 6.1.2.5.02CU Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let η : idC ⇒ g ◦ f and ϵ : f ◦ g ⇒ idD be 2-morphisms. Suppose we are given
another object T ∈ C equipped with 1-morphisms c : T → C and d : T → D, together with
2-morphisms β : c⇒ g ◦ d and γ : f ◦ c⇒ d. Then:

(1) If the pair (η, ϵ) satisfies condition (Z1) of Definition 6.1.1.1 and β is the right adjunct
of γ, then γ is the left adjunct of β.

(2) If the pair (η, ϵ) satisfies condition (Z2) of Definition 6.1.1.1 and γ is the left adjunct
of β, then β is the right adjunct of γ.

Proof. We will prove (1); the proof of (2) follows by applying the same argument in the

https://kerodon.net/tag/02CU
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conjugate 2-category Cc. Consider the diagram

f ◦ c λ−1
c +3

ρ−1
f

��

f ◦ (idC ◦c)

∼

x�

η +3 f ◦ ((g ◦ f) ◦ c) ∼ +3

∼

w�

f ◦ (g ◦ (f ◦ c))) γ +3

∼

��

f ◦ (g ◦ d)

∼

��
(f ◦ idC) ◦ c η +3 (f ◦ (g ◦ f) ◦ c ∼ +3 ((f ◦ g) ◦ f) ◦ c ∼ +3

ϵ

��

(f ◦ g) ◦ (f ◦ c)

ϵ

��

γ +3 (f ◦ g) ◦ d

ϵ

��
(idD ◦f) ◦ c ∼ +3

λf

 (

idD ◦(f ◦ c)
γ +3

λf◦c

��

idD ◦d

λd

��
f ◦ c γ +3 d

in the category HomC(T,D), where the unlabeled morphisms are given by the associativity
constraints of C (and their inverses). Our assumption that β is the right adjunct of γ
guarantees that the composition along the top line coincides with idf ◦β. Consequently,
the left adjunct of β is the 2-morphism of C given by clockwise composition around the
outside of the diagram. On the other hand, axiom (Z1) of Definition 6.1.1.1 guarantees
counterclockwise composition around the outside of the diagram coincides with γ. To
complete the proof, it will suffice to show that the diagram commutes. The commutativity of
the triangular regions follows from Propositions 2.2.1.14 and 2.2.1.16. The commutativity of
the bottom right square follows from the naturality of left unit constraints (Remark 2.2.1.13)
and the commutativity of the middle right square from the functoriality of composition. The
remaining squares commute by the naturality of the associativity constraints of C, and the
five-sided region commutes by virtue of the pentagon identity.

Corollary 6.1.2.6. 02CVLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms of
C, and suppose we are given 2-morphisms η : idC ⇒ g ◦ f and ϵ : f ◦ g ⇒ idD. The following
conditions are equivalent:

(1) The pair (η, ϵ) is an adjunction between f and g (in the sense of Definition 6.1.1.1).

(2) For every object T ∈ C and every pair of 1-morphisms c : T → C and d : T → D, the
formation of left and right adjuncts (Construction 6.1.2.1) supplies mutually inverse
bijections

HomHomC(T,D)(f ◦ c, d) ≃ HomHomC(T,C)(c, g ◦ d).

https://kerodon.net/tag/02CV
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Proof. The implication (1) ⇒ (2) follows from Proposition 6.1.2.5. For the converse, we
first observe that η : idC ⇒ g ◦ f is equal to the right adjunct of the right unit constraint
ρf : f ◦ idD

∼=⇒ f with respect to η (Example 6.1.2.2). If assumption (2) is satisfied, then
ρf is the left adjunct of η with respect to ϵ. Similarly, assumption (2) guarantees that
ρ−1
g : g ∼=⇒ g ◦ idD is the right adjunct of ϵ with respect to η, so that the pair (η, ϵ) is an

adjunction by virtue of Example 6.1.2.3.

Example 6.1.2.7.02CW Let F : C → D and G : D → C be functors between categories, and let
(η, ϵ) be an adjunction between F and G. Suppose we are given objects C ∈ C and D ∈ D,
which we identify with functors C : {∗} → C and D : {∗} → D, respectively. Applying
Corollary 6.1.2.6 to the 2-category Cat, we obtain a bijection

ρC,D : HomD(F (C), D) ≃ HomD(C,G(D)).

This bijection depends functorially on C and D (Remark 6.1.2.4), and can therefore be
regarded as a Hom-adjunction between F and G in the sense of Definition 6.1.0.1. Note
that, for every morphism f : F (C)→ D in C, the image ρC,D(f) ∈ HomC(C,G(D)) is given
explicitly by the composition C

ηC−−→ (G ◦ F )(C) G(f)−−−→ G(D). In particular, the morphism
ηC : C → (G ◦ F )(C) can be recovered by applying ρC,F (C) to the identity morphism idF (C).
Similarly, for each object D ∈ D, the morphism ϵD : (F ◦ G)(D) → D can be recovered
by applying ρ−1

G(D),D to the identity morphism idG(D). In other words, the adjunction
(η, ϵ) is obtained by applying the construction of Example 6.1.0.3 to the Hom-adjunction
{ρC,D}C∈C,D∈D.

Corollary 6.1.2.8.02CX Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and suppose we are given 2-morphisms η : idC ⇒ g ◦ f and ϵ : f ◦ g ⇒ idD satisfying
condition (Z1) of Definition 6.1.1.1. Let γ : g ⇒ g denote the 2-morphism given by the
composition

g
λ−1

g===⇒
∼

idC ◦g
η◦idg===⇒ (g ◦ f) ◦ g

α−1
g,f,g====⇒
∼

g ◦ (f ◦ g) idg ◦ϵ===⇒ g ◦ idD
ρg==⇒
∼

g.

Then γ is idempotent: that is, γ2 = γ in the category HomC(D,C). In particular, if γ has
either a left or a right inverse, then γ = idg (so that (η, ϵ) is an adjunction between f and
g).

Proof. Let γ′ denote the composition g
γ=⇒ g

ρ−1
g==⇒ g ◦ idD. Then γ′ is the right adjunct of

ϵ with respect to η (see Example 6.1.2.3). Invoking Remark 6.1.2.4, we deduce that the
horizontal composition γ′γ is the right adjunct of ϵ′ with respect to η, where ϵ′ denotes the
composite map f ◦ g

idf ◦γ====⇒ f ◦ g ϵ=⇒ idD. Combining Example 6.1.2.2 with Remark 6.1.2.4,
we see that ϵ′ is the left adjunct of γ′ with respect to ϵ. Since the pair (η, ϵ) satisfies (Z1),

https://kerodon.net/tag/02CW
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it follows that γ′γ = γ′, Composing with the right unit constraint ρg, we conclude that
γγ = γ.

Proposition 6.1.2.9. 02CYLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let η : idC ⇒ g ◦ f be a 2-morphism of C. The following conditions are equivalent:

(1) For every object T ∈ C and every pair of 1-morphisms c : T → C and d : T → D, the
formation of right adjuncts with respect to η (Construction 6.1.2.1) induces a bijection

HomHomC(T,D)(f ◦ c, d)→ HomHomC(T,C)(c, g ◦ d).

(2) There exists a 2-morphism ϵ : f ◦ g ⇒ idD for which (η, ϵ) is an adjunction between f

and g.

Moreover, if these conditions are satisfied, then the 2-morphism ϵ is uniquely determined.

Proof. The implication (2)⇒ (1) follows from Corollary 6.1.2.6. Conversely, suppose that
condition (1) is satisfied. Applying (1) in the case T = D, c = g, and d = idD, we conclude
that there is a unique 2-morphism ϵ : f ◦ g ⇒ idD whose right adjunct is equal to the inverse
ρ−1
g : g ∼=⇒ g ◦ idD of the right unit constraint ρg, so that the pair (η, ϵ) satisfies condition

(Z2) of Definition 6.1.1.1 (Example 6.1.2.3). We will complete the proof by showing that
(η, ϵ) also satisfies condition (Z1). Let γ : f ◦ idC ⇒ f be the left adjunct of η. It follows
from Proposition 6.1.2.5 that the right adjunct of γ is equal to η, which is also the right
adjunct of the unit constraint ρf : f ◦ idC

∼=⇒ f . Invoking assumption (1), we conclude that
γ = ρf , which is a restatement of (Z1) (Example 6.1.2.3).

Definition 6.1.2.10. 02CZLet C be a 2-category and let f : C → D and g : D → C be 1-
morphisms of C. We say that a 2-morphism η : idC ⇒ g ◦ f is the unit of an adjunction if it
satisfies the equivalent conditions of Proposition 6.1.2.9: that is, if there exists a 2-morphism
ϵ : f ◦ g ⇒ idD for which the pair (η, ϵ) is an adjunction. If this condition is satisfied, we will
say that η exhibits f as a left adjoint of g and also that η exhibits g as a right adjoint of f .

In the 2-category Cat, we can formulate a sharper version of Proposition 6.1.2.9:

Variant 6.1.2.11. 02D0Let F : C → D and G : D → C be functors between categories and let
η : idC → G ◦ F be a natural transformation. The following conditions are equivalent:

(1) For every pair of objects C ∈ C and D ∈ D, the formation of right adjuncts with respect
to η induces a bijection HomD(F (C), D)→ HomC(C,G(D)).

(2) There exists a natural transformation ϵ : F ◦G→ idD for which (η, ϵ) is an adjunction
between F and G.
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Moreover, if these conditions are satisfied, then the natural transformation ϵ is uniquely
determined.

Proof. We will prove that (1) ⇒ (2); the remaining assertions follow immediately from
Proposition 6.1.2.9. Fix an object D ∈ D. Applying assertion (1) in the case C = G(D), we
deduce that there is a unique morphism ϵD : (F ◦G)(D)→ D for which the composition

G(D)
ηG(D)−−−→ (G ◦ F ◦G)(D) G(ϵD)−−−−→ G(D)

is the identity morphism from G(D) to itself.
We first claim that the construction D 7→ ϵD is a natural transformation of functors from

F ◦G to idD. Let h : D → D′ be a morphism in the category D; we wish to show that the
diagram

(F ◦G)(D)

(F◦G)(h)

��

ϵD // D

h

��
(F ◦G)(D′)

ϵD′ // D′

commutes. Consider the diagram

G(D)
ηG(D) //

G(h)

��

(G ◦ F ◦G)(D) G(ϵD) //

G(F (G(h)))

��

G(D)

G(h)

����
G(D′)

ηG(D′) // (G ◦ F ◦G)(D′)
G(ϵD′ ) // G(D′)

in the category C. It follows from the definitions of ϵD and ϵD′ that both horizontal
compositions are equal to the identity, so the outer rectangle commutes. Since η is a natural
transformation, the left square commutes. It follows that the compositionsG(h)◦G(ϵD)◦ηG(D)
and G(ϵD′) ◦G(F (G(h))) ◦ ηG(D) are the same: that is, the morphisms

h ◦ ϵD, ϵD′ ◦ F (G(h)) ∈ HomD((F ◦G)(D), D′)

have the same right adjunct. Invoking assumption (1), we deduce that h◦ϵD = ϵD′ ◦F (G(h)),
as desired.

It follows immediately from the construction that the pair of natural transformations
(η, ϵ) satisfies condition (Z2) of Definition 6.1.0.2. To complete the proof, it will suffice to
show that it also satisfies condition (Z1). Let C be an object of C; we wish to show that the
composite map

F (C) F (ηC)−−−−→ (F ◦G ◦ F )(C)
ϵF (C)−−−→ F (C)
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is equal to the identity map idF (C). Note that the right adjunct of ϵF (C) ◦ F (ηC) is the
composite map

C
ηC−−→ (G ◦ F )(C) (G◦F )(ηC)−−−−−−−→ (G ◦ F ◦G ◦ F )(C)

G(ϵF (C))
−−−−−→ (G ◦ F )(C).

By virtue of the fact that (η, ϵ) satisfies (Z2), this composition is equal to ηC , which is also
the right adjunct of the identity map idF (C). Invoking assumption (1), we conclude that
ϵF (C) ◦ F (ηC) = idF (C), as desired.

We can give another characterization of the units of adjunctions by applying Proposition
6.1.2.9 in the opposite 2-category Cop:

Variant 6.1.2.12. 02D1Let C be a 2-category, let f : C → D and g : C → D be 1-morphisms of
C, and let η : idC ⇒ g ◦ f be a 2-morphism of C. Then η is the unit of an adjunction if and
only if the following condition is satisfied:

• For every object T ∈ C and every pair of morphisms c : C → T and d : D → T , the
2-morphism η determines a bijection

HomHomC(D,T )(c ◦ g, d)→ HomHomC(C,T )(c, d ◦ f),

carrying each 2-morphism β : c ◦ g ⇒ d to the composition

c
ρ−1

c==⇒
∼

c ◦ idC
idc ◦η====⇒ c ◦ (g ◦ f)

αc,g,f====⇒
∼

(c ◦ g) ◦ f
β◦idf====⇒ d ◦ f.

For the reader’s convenience, let us also record a conjugate version of the preceding
discussion:

Proposition 6.1.2.13. 02D2Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let ϵ : f ◦ g ⇒ idD be a 2-morphism of C. The following conditions are equivalent:

(1) For every object T ∈ C and every pair of 1-morphisms c : T → C and d : T → D, the
formation of left adjuncts with respect to ϵ (Construction 6.1.2.1) induces a bijection

HomHomC(T,C)(c, g ◦ d)→ HomHomC(T,D)(f ◦ c, d)

(2) For every object T ∈ C and every pair of 1-morphisms c : C → T and d : D → T , the
2-morphism ϵ determines a bijection

HomHomC(C,T )(c, d ◦ f)→ HomHomC(D,T )(c ◦ g, d)

carrying each 2-morphism γ : c⇒ d ◦ f to the composition

c ◦ g γ◦idg===⇒ (d ◦ f) ◦ g
α−1

d,f,g====⇒
∼

d ◦ (f ◦ g) idd ◦ϵ===⇒ d ◦ idD
ρd==⇒
∼

d.

https://kerodon.net/tag/02D1
https://kerodon.net/tag/02D2


6.1. ADJUNCTIONS IN 2-CATEGORIES 1279

(3) There exists a 2-morphism η : idC ⇒ g ◦ f for which (η, ϵ) is an adjunction between f

and g.

Moreover, if these conditions are satisfied, then the 2-morphism η is uniquely determined.

Proof. Apply Proposition 6.1.2.9 and Variant 6.1.2.12 to the conjugate 2-category Cc.

Definition 6.1.2.14.02D3 Let C be a 2-category and let f : C → D and g : D → C be 1-
morphisms of C. We say that a 2-morphism ϵ : f ◦g ⇒ idD is the counit of an adjunction if it
satisfies the equivalent conditions of Proposition 6.1.2.13: that is, there exists a 2-morphism
η : idC ⇒ g ◦ f for which the pair (η, ϵ) is an adjunction. If this condition is satisfied, we will
say that ϵ exhibits f as a left adjoint of g and also that ϵ exhibits g as a right adjoint of f .

6.1.3 Uniqueness of Adjoints

02D4 Let C be a 2-category and let f : C → D be a 1-morphism of C. We will say that a
1-morphism g : D → C is a right adjoint of f if there exists an adjunction (η, ϵ) between f

and g, in the sense of Definition 6.1.1.1. Beware that the right adjoint of f is usually not
unique: if g is a right adjoint of f , then any 1-morphism g′ : D → C which is isomorphic to
g can also be regarded as a right adjoint to f (see Remark 6.1.1.5). However, we will show
in this section that this is the only source of ambiguity: the right adjoint of a 1-morphism f

(if it exists) is well-defined up to canonical isomorphism.

Proposition 6.1.3.1.02D5 Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let η : idC ⇒ g ◦ f be the unit of an adjunction. Then:

(1) For every 1-morphism f ′ : C → D, the function

HomHomC(C,D)(f, f ′)→ HomHomC(C,C)(idC , g ◦ f ′) γ 7→ (idg ◦γ)η

is a bijection.

(2) For every 1-morphism g′ : D → C, the function

HomHomC(D,C)(g, g′)→ HomHomC(C,C)(idC , g′ ◦ f) β 7→ (β ◦ idf )η

is a bijection.

Proof. Let ρf : f ◦ idC
∼=⇒ f be the right unit constraint. To prove (1), we observe that the

composition

HomHomC(C,D)(f ◦ idC , f ′)
ρ−1

f−−→
∼

HomHomC(C,D)(f, f ′)→ HomHomC(C,C)(idC , g ◦ f ′)

is given by the formation of right adjuncts (see Example 6.1.2.2 and Remark 6.1.2.4), and is
therefore bijective by (Proposition 6.1.2.5). Assertion (2) follows by a similar argument.
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Variant 6.1.3.2. 02D6Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms of
C, and let ϵ : f ◦ g ⇒ idD be the counit of an adjunction. Then:

(1) For every 1-morphism f ′ : C → D, the function

HomHomC(C,D)(f ′, f)→ HomHomC(D,D)(f ′ ◦ g, idD) γ 7→ ϵ(γ ◦ idg)

is a bijection.

(2) For every 1-morphism g′ : D → C, the function

HomHomC(D,C)(g′, g)→ HomHomC(D,D)(f ◦ g′, idD) β 7→ ϵ(idf ◦β)

is a bijection.

Proof. Apply Proposition 6.1.3.1 to the conjugate 2-category Cc.

Corollary 6.1.3.3. 02D7Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms of
C, and let (η, ϵ) be an adjunction between f and g. Let g′ : D → C be another 1-morphism
of C. Then:

(1) For every 2-morphism η′ : idC ⇒ g′ ◦ f , there is a unique 2-morphism β : g ⇒ g′ for
which η′ is equal to the composition idC

η=⇒ g ◦ f
β◦idf====⇒ g′ ◦ f . Moreover, β is an

isomorphism if and only if η′ is the unit of an adjunction.

(2) For every 2-morphism ϵ′ : f ◦ g′ ⇒ idD, there is a unique 2-morphism γ : g′ ⇒ g

for which ϵ′ factors as a composition f ◦ g′
idf ◦γ====⇒ f ◦ g ϵ=⇒ idD. Moreover, γ is an

isomorphism if and only ϵ′ is the counit of an adjunction.

Proof. We will prove (1); the proof of (2) similar. Let η′ : idC ⇒ g′ ◦ f be a 2-morphism
of C. It follows from Proposition 6.1.3.1 that there is a unique 2-morphism β : g ⇒ g′

satisfying η′ = (β ◦ idf )η. If β is an isomorphism, then η′ is the unit of an adjunction by
virtue of Remark 6.1.1.5. Conversely, suppose that η′ is the unit of an adjunction. To prove
that β is an isomorphism, it will suffice to show that for every 1-morphism g′′ : D → C,
precomposition with β induces a bijection HomHomC(D,C)(g′, g′′) → HomHomC(D,C)(g, g′′).
This is clear: we have a commutative diagram

HomHomC(D,C)(g′, g′′)
β //

η′

((

HomHomC(D,C)(g, g′′)

η

vv
HomHomC(C,C)(idC , g′′ ◦ f),

where the vertical maps are bijective by virtue of Proposition 6.1.3.1.
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Proposition 6.1.3.4.02D8 Let C be a 2-category containing 1-morphisms f, f ′ : C → D and
g, g′ : D → C. Let (η, ϵ) be an adjunction between f and g, and let (η′, ϵ′) be an adjunction
between f ′ and g′. Then every 2-morphism β : f ⇒ f ′ determines a 2-morphism βR : g′ ⇒ g,
which is uniquely determined by either of the following properties:

(1) The diagram

idC
η +3

η′

��

g ◦ f

idg ◦β

��
g′ ◦ f ′

βR◦idf ′ +3 g ◦ f ′

commutes (in the category HomC(C,C)).

(2) The diagram

f ◦ g′
idf ◦βR

+3

β◦idg′

��

f ◦ g

ϵ

��
f ′ ◦ g′ ϵ′ +3 idD

commutes (in the category HomC(D,D)).

Proof. It follows from Corollary 6.1.3.3 that there is a unique morphism βR satisfying
condition (1). We will prove that βR also satisfies condition (2) (it is also uniquely determined
by condition (2), by virtue of Corollary 6.1.3.3). Note (2) is equivalent to the assertion
that ϵ′(β ◦ idg′) is the left adjunct of ρ−1

g βR with respect to ϵ (in the sense of Construction
6.1.2.1). By virtue of Proposition 6.1.2.5, this is equivalent to the assertion that ρ−1

g βR is
the right adjunct of ϵ′(β ◦ idg′) with respect to η. This follows from the commutativity of

https://kerodon.net/tag/02D8
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the outer rectangle in the diagram

g′
λ−1

g′

∼
+3 idC ◦g′

η◦idg′ +3

η′◦idg′

��

(g ◦ f) ◦ g′
α−1

g,f,g′

∼
+3

(idg ◦β)◦idg′

��

g ◦ (f ◦ g′)

idg ◦(β◦idg′ )

~�
idg ◦ϵ′(β◦idg′ )

��

(g′ ◦ f ′) ◦ g′
(βR◦idf ′ )◦idg′+3

∼α−1
g′,f ′,g′

��

(g ◦ f ′) ◦ g′

∼α−1
g,f ′,g′

��
g′ ◦ (f ′ ◦ g′)

βR◦(idf ′ ◦ idg′ )+3

idg′ ◦ϵ′

��

g ◦ (f ′ ◦ g′)

idg ◦ϵ′

� 

g′
ρ−1

g′ +3

βR

��

g′ ◦ idD

βR◦ididD

&.
g

ρ−1
g +3 g ◦ idD

in the category HomC(D,C). Here the upper middle square commutes by virtue of condition
(1), the rectangle on the left commutes by virtue of the assumption that (η′, ϵ′) is an
adjunction, and the commutativity of the rest of the diagram follows by the naturality
properties of the associativity and unit constraints of the 2-category C.

Notation 6.1.3.5. 02D9Let C be a 2-category containing a pair of objects C and D, and let
LHomC(C,D) denote the full subcategory of HomC(C,D) spanned by those 1-morphisms
f : C → D which admit a right adjoint g : D → C. In this case, Corollary 6.1.3.3 guarantees
that the 1-morphism g is determined uniquely up to isomorphism. We will sometimes
abuse terminology by referring to g as the right adjoint of f and denoting it by fR. The
construction f 7→ fR extends to a functor of categories LHomC(C,D)op → HomC(D,C),
which carries each 2-morphism β : f ⇒ f ′ to the 2-morphism βR : f ′R ⇒ fR described in
Proposition 6.1.3.4.

Warning 6.1.3.6. 02DALet C be a 2-category and let f : C → D be a 1-morphism of C. It
follows from Corollary 6.1.3.3 that if f admits a right adjoint fR, then fR is characterized
(up to canonical isomorphism) by the requirement that it represents the functor

HomC(D,C)op → Set g 7→ HomHomC(D,D)(f ◦ g, idD).

https://kerodon.net/tag/02D9
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Beware that it is possible for this functor to be representable by a 1-morphism g : D → C

which is not a right adjoint to f (in which case f cannot admit any right adjoint); see
Warning 6.1.6.16.

The preceding discussion has an obvious counterpart for left adjoints:

Corollary 6.1.3.7.02DB Let C be a 2-category, let f : C → D and g : D → C be 2-morphisms of
C, and let (η, ϵ) be an adjunction between f and g. Let f ′ : C → D be another 1-morphism
of C. Then:

(1) For every 2-morphism η′ : idC ⇒ g ◦ f ′, there is a unique 2-morphism β : f ⇒ f ′ for
which η′ is equal to the composition idC

η=⇒ g ◦ f idg ◦β====⇒ g ◦ f ′. Moreover, β is an
isomorphism if and only if η′ is the unit of an adjunction.

(2) For every 2-morphism ϵ′ : f ′ ◦ g ⇒ idD, there is a unique 2-morphism γ : f ′ ⇒ f

for which ϵ′ factors as a composition f ′ ◦ g γ◦idg===⇒ f ◦ g ϵ=⇒ idD. Moreover, γ is an
isomorphism if and only ϵ′ is the counit of an adjunction.

Proof. Apply Corollary 6.1.3.7 to the opposite 2-category Cop.

Notation 6.1.3.8.02DC Let C be a 2-category containing a pair of objects C and D, and let
RHomC(D,C) denote the full subcategory of HomC(D,C) spanned by those 1-morphisms
g : D → C which admit a left adjoint f : C → D. In this case, Corollary 6.1.3.3 guarantees
that the 1-morphism f is uniquely determined up to isomorphism. We will sometimes abuse
terminology by referring to f as the left adjoint of g and denoting it by gL. The construction
g 7→ gL determines an equivalence of categories RHomC(D,C)→ LHomC(C,D)op, which is
homotopy inverse to the functor f 7→ fR described in Notation 6.1.3.5.

6.1.4 Adjoints of Isomorphisms

02DD Let C be a 2-category and let f : C → D be an isomorphism in C, so that f admits a
homotopy inverse g : D → C (Definition 2.2.8.17). Then the 1-morphism g is both right
adjoint and left adjoint to f . More precisely, we have the following:

Proposition 6.1.4.1.02DE Let C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let η : idC ⇒ g ◦ f be a 2-morphism of C. Assume that either f or g is an
isomorphism in C. Then η is the unit of an adjunction (in the sense of Definition 6.1.2.10)
if and only if it is an isomorphism in the category HomC(C,C).

We will give the proof of Proposition 6.1.4.1 at the end of this section.

Corollary 6.1.4.2.02DF Let C be a 2-category and let f : C → D be an isomorphism in C. Then
any homotopy inverse to f is both a left adjoint and a right adjoint of f .

https://kerodon.net/tag/02DB
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Proof. Let g : D → C be a homotopy inverse to f , so that there exists an isomorphism
η : idC

∼=⇒ g ◦f in the category HomC(C,C). It follows from Proposition 6.1.4.1 that η is the
unit of an adjunction, and therefore exhibits g as a right adjoint to f . A similar argument
shows that g is left adjoint to f .

Remark 6.1.4.3. 02DGLet C be a 2-category and let f : C → D be a 1-morphism of C. By
definition, f is an isomorphism if and only if there exists a 1-morphism g : D → C together
with isomorphisms

η : idC
∼=⇒ g ◦ f ϵ : f ◦ g ∼=⇒ idD

in the categories HomC(C,C) and HomC(D,D), respectively. The main content of Proposi-
tion 6.1.4.1 is that, if such isomorphisms exist, then we can choose η and ϵ to be compatible
in the sense that they satisfy conditions (Z1) and (Z2) of Definition 6.1.1.1. Note that in
this case, η is determined by ϵ and vice versa (Proposition 6.1.2.9).

Corollary 6.1.4.4. 02DHLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms of
C, and let (η, ϵ) be an adjunction between f and g. The following conditions are equivalent:

(1) The 1-morphism f is an isomorphism in C.

(2) The 1-morphism g is an isomorphism in C.

(3) The 2-morphisms η and ϵ are isomorphisms in HomC(C,C) and HomC(D,D), respec-
tively. In particular, f and g are homotopy inverse to one another.

Proof. The implication (3)⇒ (1) and (3)⇒ (2) are immediate from the definitions, and the
reverse implications follow by applying Proposition 6.1.4.1 to C and the conjugate 2-category
Cc.

Warning 6.1.4.5. 02DJIn the situation of Corollary 6.1.4.4, it is possible for the unit η : idC ⇒
g ◦ f to be an isomorphism while the counit ϵ : f ◦ g ⇒ idD is not, or vice versa (in which
case, the 1-morphisms f and g cannot be isomorphisms).

We will deduce Proposition 6.1.4.1 from the following more general result:

Proposition 6.1.4.6. 02DKLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let η : idC ⇒ g ◦ f be a 2-morphism of C which satisfies the following conditions:

• The 2-morphisms

(idf ◦η) : f ◦ idC ⇒ f ◦ (g ◦ f) (η ◦ idg) : idC ◦g ⇒ (g ◦ f) ◦ g

are isomorphisms.

https://kerodon.net/tag/02DG
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• For every object T ∈ C, the composition functor HomC(T,D) g◦−→ HomC(T,C) is fully
faithful.

Then η is the unit of an adjunction (η, ϵ). Moreover, the counit map ϵ : f ◦ g ⇒ idD is an
isomorphism.

Proof. Since postcomposition with g induces a fully faithful functor

HomC(D,D)→ HomC(D,C),

there is a unique 2-morphism ϵ : f ◦ g ⇒ idD for which the horizontal composition idg ◦ϵ is
equal to the composite map

g ◦ (f ◦ g)
αg,f,g====⇒ (g ◦ f) ◦ g (η◦idg)−1

======⇒ idC ◦g
λg==⇒ g

ρ−1
g==⇒ g ⊗ idD .

Moreover, ϵ is an isomorphism and the pair (η, ϵ) automatically satisfies condition (Z2) of
Definition 6.1.1.1. Let β denote the composition

f
ρ−1

f==⇒
∼

f ◦ idC
idf ◦η====⇒ f ◦ (g ◦ f)

αf,g,f====⇒
∼

(f ◦ g) ◦ f
ϵ◦idf===⇒ idD ◦f

λf==⇒
∼

f

Since ϵ and idf ◦η are isomorphisms, it follows that β is an isomorphism. Applying Corollary
6.1.2.8, we see that β2 = β, so that β = idf .

Proof of Proposition 6.1.4.1. Let C be a 2-category, let f : C → D and g : D → C be
1-morphisms in C, and assume that g is an isomorphism (the case where f is an isomorphism
can be treated by applying a similar argument in the opposite 2-category Cop). Suppose
first that η : idC ⇒ g ◦ f is an isomorphism in the category HomC(C,C). It follows that the
horizontal compositions

(idf ◦η) : f ⇒ f ◦ (g ◦ f) (η ◦ idg) : g ⇒ (g ◦ f) ◦ g

are isomorphisms in HomC(C,D) and HomD(D,C), respectively. For each object T ∈
C, our assumption that g is an isomorphism guarantees that the composition functor
HomC(T,D) g◦−→ HomC(T,C) is an equivalence of categories, and therefore fully faithful.
Invoking the criterion of Proposition 6.1.4.7, we conclude that η is the unit of an adjunction.

We now prove the converse. Suppose that the 2-morphism η : idC ⇒ g ◦ f is the unit of
an adjunction. Our assumption that g is an isomorphism guarantees that we can choose a
1-morphism f ′ : C → D and an isomorphism η′ : idC

∼=⇒ g ◦ f ′ in the category HomC(C,C).
It follows from the first part of the proof that η′ is the unit of an adjunction. Applying
Corollary 6.1.3.7, we deduce that there is a unique isomorphism β : f ∼=⇒ f ′ for which η′ is
equal to the composition

idC
η=⇒ g ◦ f idg ◦β====⇒ g ◦ f ′.
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Since η′ and (idg ◦β) are isomorphisms in the category HomC(C,C), it follows that η is also
an isomorphism.

We close this section by proving a converse of Proposition 6.1.4.6, which characterizes
adjunctions (η, ϵ) for which the counit ϵ is an isomorphism.

Proposition 6.1.4.7. 02DLLet C be a 2-category, let f : C → D and g : D → C be 1-morphisms
of C, and let (η, ϵ) be an adjunction between f and g. The following conditions are equivalent:

(1) The 2-morphism ϵ : f ◦ g ⇒ idD is an isomorphism.

(1′) The 1-morphism f ◦ g is an isomorphism.

(2) The 2-morphisms

(idf ◦η) : f ◦ idC ⇒ f ◦ (g ◦ f) (η ◦ idg) : idC ◦g ⇒ (g ◦ f) ◦ g

are isomorphisms. Moreover, for every object T ∈ C, the functor HomC(T,C) f◦−→
HomC(T,D) is essentially surjective.

(2′) The 2-morphism η ◦ idg : idC ◦g ⇒ (g ◦ f) ◦ g is an isomorphism. Moreover, for every
object T ∈ C, the composite functor

HomC(T,D) g◦−→ HomC(T,C) f◦−→ HomC(T,D)

is essentially surjective.

(3) For every object T ∈ C, the functor HomC(T,D) g◦−→ HomC(T,C) is fully faithful.

(3′) The functor HomD(D,D) g◦−→ HomC(D,C) is fully faithful.

Proof. We first show that (1) and (1′) are equivalent. If ϵ is an isomorphism, then f ◦ g is
isomorphic to idD (as an object of the category HomD(D,D)) and is therefore an isomorphism
of C (Remark 2.2.8.23). Conversely, suppose that f ◦g is an isomorphism. Then it is invertible
when viewed as an object of the monoidal category EndC(D). Since (η, ϵ) is an adjunction,
we can regard f ◦ g as a coalgebra object of EndC(D) with counit ϵ (see Remark [?]).
Applying Proposition 2.1.5.23 (to the monoidal category EndC(D)op), we deduce that ϵ is
an isomorphism.

We now show that (1) implies (2). Assume that ϵ : f ◦ g ⇒ idD is an isomorphism.
Axiom (Z1) of Definition 6.1.1.1 guarantees that the composition

f
∼=⇒ f ◦ idC

idf ◦η====⇒ f ◦ (g ◦ f) ∼=⇒ (f ◦ g) ◦ f
ϵ◦idf===⇒
∼

idD ◦f
∼=⇒ f

is equal to the identity 2-morphism idf , which proves that the horizontal composition idf ◦η
is an isomorphism in HomC(C,D). Similarly, it follows from axiom (Z2) of Definition

https://kerodon.net/tag/02DL
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6.1.1.1 that the horizontal composition η ◦ idg is an isomorphism in HomC(D,C). For every
1-morphism d : T → D in C, the map

f ◦ (g ◦ d)
αf,g,d====⇒
∼

(f ◦ g) ◦ d ϵ◦idd===⇒
∼

idD ◦d
λd==⇒
∼

d

is an isomorphism, so that d belongs to the essential image of the functor HomC(T,C) f◦−→
HomC(T,D).

We now show that (2) implies (2′). Let d : T → D be a 1-morphism of C. If the functor
HomC(T,C) f◦−→ HomC(T,D) is essentially surjective, then d is isomorphic to f ◦ c for some
1-morphism c : T → C of C. If idf ◦η is an isomorphism, then the chain of isomorphisms

f ◦ c ∼=⇒ (f ◦ idC) ◦ c
(idf ◦η)◦idc=======⇒ (f ◦ (g ◦ f)) ◦ c ∼=⇒ f ◦ ((g ◦ f) ◦ c) ∼=⇒ f ◦ (g ◦ (f ◦ c))

shows that d belongs to the essential image of the composite functor

HomC(T,D) g◦−→ HomC(T,C) f◦−→ HomC(T,D).

We next show that (2′) implies (3). Fix an object T ∈ C and a pair of 1-morphisms
d, d′ : T → D; we wish to show that the composition map

HomHomC(T,D)(d′, d)→ HomHomC(T,C)(g ◦ d′, g ◦ d)

is a bijection. By virtue of assumption (2′), we may assume that d′ = f ◦ c, where c : T → C

is a 1-morphism of the form g ◦ d′′. By virtue of Proposition 6.1.2.9, the composition

HomHomC(T,D)(f ◦ c, d) → HomHomC(T,C)(g ◦ (f ◦ c), g ◦ d)
≃ HomHomC(T,C)((g ◦ f) ◦ c, g ◦ d)

η◦idc−−−→ HomHomC(T,C)(idC ◦c, g ◦ d)
≃ HomHomC(T,C)(c, g ◦ d)

is a bijection. It will therefore suffice to show that the 2-morphism (η◦idc) : idC ◦c⇒ (g◦f)◦c
is an isomorphism. This follows from assumption (2′), since (η ◦ idc) can be rewritten as a
composition

idC ◦(g ◦ d′′)
∼=⇒ (idC ◦g) ◦ d′′ (η◦idg)◦idd′′========⇒ ((g ◦ f) ◦ g) ◦ d′′ ≃ (g ◦ f) ◦ (g ◦ d′′).

The implication (3) ⇒ (3′) is clear. We will complete the proof by showing that (3′)
implies (1). Assume that (3′) is satisfied; we wish to show that the 2-morphism ϵ : f ◦g ⇒ idD
is an isomorphism. To prove this, it will suffice to show that for every 1-morphism u : D → D,
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vertical precomposition with ϵ induces a bijection HomEndC(D)(idD, u)→ HomEndC(D)(f ◦
g, u). We now observe that this map fits into a commutative diagram

HomEndC(D)(idD, u) ϵ //

idg ◦

��

HomEndC(D)(f ◦ g, u)

��
HomHomC(D,C)(g ◦ idD, g ◦ u) ∼ // HomHomC(D,C)(g, g ◦ u)

where the bottom horizontal map is induced by the right unit constraint ρg : g ◦ idD
∼=⇒ g,

the right vertical map is given by the formation of right adjuncts with respect to η (and is
therefore bijective by virtue of Corollary 6.1.2.6), and the left vertical map is bijective by
virtue of assumption (3′).

6.1.5 Composition of Adjunctions

02DMWe now show that the formation of right and left adjoints is compatible with composition
of 1-morphisms.

Construction 6.1.5.1. 02DNLet C be a 2-category containing objects C, D, and E, together
with 1-morphisms

f : C → D f ′ : D → E g : D → C g′ : E → D

and 2-morphisms η : idC ⇒ g◦f and η′ : idD ⇒ g′◦f ′. We let c(η, η′) denote the 2-morphism
given by the composition

idC
η=⇒ g ◦ f ∼=⇒ g ◦ (idD ◦f) η′=⇒ g ◦ ((g′ ◦ f ′) ◦ f) ∼=⇒ g ◦ (g′ ◦ (f ′ ◦ f)) ∼=⇒ (g ◦ g′) ◦ (f ′ ◦ f),

where the unlabeled isomorphisms are given by the unit and associativity constraints of C.
We will refer to c(η, η′) as the contraction of η and η′.

Remark 6.1.5.2. 02DPIn the situation of Construction 6.1.5.1, let Cop be the opposite of the
2-category C, so that we can identify η and η′ with 2-morphisms

ηop : idCop ⇒ fop ◦ gop η′ op : idDop ⇒ f ′ op ◦ g′ op.

Then the 2-morphism c(η, η′)op can be identified with the contraction c(η′ op, ηop), formed in
the 2-category Cop. In other words, c(η, η′) can also be computed as the composition

idC
η=⇒ g ◦ f ∼=⇒ (g ◦ idD) ◦ f η′=⇒ (g ◦ (g′ ◦ f ′))) ◦ f ∼=⇒ ((g ◦ g′) ◦ f ′) ◦ f ∼=⇒ (g ◦ g′) ◦ (f ′ ◦ f).
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This follows from the commutativity of the diagram

g ◦ f

idg ◦λ−1
f

∼

s{

ρ−1
g ◦idf

∼

#+
g ◦ (idD ◦f)

idg ◦(η′◦idf )

��

∼
αg,idD,f +3 (g ◦ idD) ◦ f

(idg ◦η′)◦idF

��
g ◦ ((g′ ◦ f ′) ◦ f) ∼

αg,g′◦f ′,f +3

∼idg ◦α−1
g′,f ′f

��

(g ◦ (g′ ◦ f ′)) ◦ f

∼ αg,g′,f ′◦idf ′

��
g ◦ (g′ ◦ (f ′ ◦ f))

∼
αg,g′,f ′◦f

#+

((g ◦ g′) ◦ f ′) ◦ f

∼
α−1

g◦g′,f ′,f

s{
(g ◦ g′) ◦ (f ′ ◦ f)

in the category HomC(C,C). Here the upper triangle commutes by virtue of the trian-
gle identity (Proposition 2.2.1.14), the middle square commutes by the naturality of the
associativity constraints of C, and the lower region commutes by virtue of the pentagon
identity.

Proposition 6.1.5.3.02DQ Let C be a 2-category containing objects C, D, and E, together with
1-morphisms

f : C → D g : D → C f ′ : D → E g′ : E → D

https://kerodon.net/tag/02DQ
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and 2-morphisms η : idC ⇒ g ◦f and η′ : idD ⇒ g′ ◦f ′. Let T be another object of C equipped
with 1-morphisms c : T → C and e : T → E. Then the diagram

02DRHomHomC(T,E)((f ′ ◦ f) ◦ c, e)

��

∼
αf ′,f,c // HomHomC(T,E)(f ′ ◦ (f ◦ c), e)

��
HomHomC(T,D)(f ◦ c, g′ ◦ e)

��
HomHomC(T,C)(c, (g ◦ g′) ◦ e)

αg,g′,e
∼

// HomHomC(T,C)(c, g ◦ (g′ ◦ e))

(6.1)

is commutative. Here the right vertical maps are given by the formation of right adjuncts with
respect to η and η′ (in the sense of Construction 6.1.2.1), while the left vertical map is given
by the formation of right adjuncts with respect to the contraction c(η, η′) of Construction
6.1.5.1.

Proof. Fix a 2-morphism β : (f ′◦f)◦c⇒ e in C. Clockwise and counterclockwise composition
around the outside of the diagram (6.1) determines two elements of HomHomC(T,C)(c, (g◦g′)◦e),
and we wish to prove that these two elements are the same. Unwinding the definitions, we
see that these elements can be obtained as the vertical composition of c λ−1

c===⇒
∼

idC ◦c
η◦idc===⇒

(g ◦ f) ◦ c with 2-morphisms given by clockwise and counterclockwise composition around

https://kerodon.net/tag/02DR
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the outside of the diagram

(gf)c

λ−1
f
∼

��

∼ +3 g(fc)

λ−1
f
∼

��

λ−1
fc

∼

"*
(g(idD f))c

η′

��

∼ +3 g((idD f)c) ∼ +3

η′

��

g(idD(fc))

η′

��
(g((g′f ′)f))c

∼

��

∼ +3 g(((g′f ′)f)c)

∼

��

∼ +3 g((g′f ′)(fc)) ∼ +3 g(g′(f ′(fc)))

∼

t|
(g(g′(f ′f)))c

∼

��

∼ +3 g((g′(f ′f))c) ∼ +3 g(g′((f ′f)c))

∼

��

β +3 g(g′e)

��
((gg′)(f ′f))c ∼ +3 (gg′)((f ′f)c) β +3 (gg′)e

in the category HomC(T,C); here denote the composition of 1-morphisms u and v in C
by uv (rather than u ◦ v) to simplify the notation, and the unlabeled isomorphisms are
given by the associativity constraints of C. It will therefore suffice to observe that this
diagram is commutative. The commutativity of the pentagonal regions follows from the
pentagon identity in C, the commutativity of the triangle from Proposition 2.2.1.16, and the
commutativity of each square from the naturality of the associativity constraints of C.

Corollary 6.1.5.4.02DS Let C be a 2-category containing objects C, D, and E, together with
1-morphisms

f : C → D g : D → C f ′ : D → E g′ : E → D

and 2-morphisms η : idC ⇒ g ◦ f and η′ : idD ⇒ g′ ◦ f ′. If η and η′ are units of adjunctions,
then the contraction c(η, η′) : idC ⇒ (g ◦ g′) ◦ (f ′ ◦ f) is also the unit of an adjunction.

Proof. Combine Proposition 6.1.5.3 with the criterion of Proposition 6.1.2.9.

From Corollary 6.1.5.4, we can extract the following slightly less precise consequence:

https://kerodon.net/tag/02DS


1292 CHAPTER 6. ADJOINT FUNCTORS

Corollary 6.1.5.5. 02DTLet C be a 2-category containing objects C, D, and E, together with
1-morphisms

f : C → D g : D → C f ′ : D → E g′ : E → D.

If f is left adjoint to g and f ′ is left adjoint to g′, then f ′ ◦ f is left adjoint to g ◦ g′.

Corollary 6.1.5.6. 02DULet C be a 2-category containing 1-morphisms u : C → D and v : D → E.
If u and v admit left adjoints, then v ◦u admits a left adjoint. If u and v admit right adjoints,
then v ◦ u admits a right adjoint.

We can also formulate a more precise version of Corollary 6.1.5.4, which explicitly
describes the counit of a composite adjunction. For this, we need a variant of Construction
6.1.5.1:

Construction 6.1.5.7. 02DVLet C be a 2-category containing objects C, D, and E, together
with 1-morphisms

f : C → D g : D → C f ′ : D → E g′ : E → D

and 2-morphisms ϵ : f ◦ g ⇒ idD and ϵ′ : f ′ ◦ g′ ⇒ idE be 2-morphisms of C. We let c(ϵ, ϵ′)
denote the 2-morphism given by the composition

(f ′ ◦ f) ◦ (g ◦ g′) ∼=⇒ f ′ ◦ (f ◦ (g ◦ g′)) ∼=⇒ f ′ ◦ ((f ◦ g) ◦ g′) ϵ=⇒ f ′ ◦ (idD ◦g′)
∼=⇒ f ′ ◦ g′ ϵ

′
=⇒ idE

We will refer to c(ϵ, ϵ′) as the contraction of ϵ and ϵ′.

Remark 6.1.5.8. 02DWIn the situation of Construction 6.1.5.7, we can identify ϵ and ϵ′ with
2-morphisms

ϵc : idDc ⇒ f c ◦ gc ϵ′ c : idEc ⇒ f ′ c ◦ g′ c

in the conjugate 2-category Cc (Construction 2.2.3.4). The contraction c(ϵ, ϵ′) can then be
described as the conjugate of the 2-morphism c(ϵ′ c, ϵc) obtained by applying Construction
6.1.5.1 to the 2-category Cc.

Corollary 6.1.5.9. 02DXLet C be a 2-category containing objects C, D, and E, together with
1-morphisms

f : C → D g : D → C f ′ : D → E g′ : E → D.

Let (η, ϵ) be an adjunction between f and g, and let (η′, ϵ′) be an adjunction between f ′ and
g′. Then the pair (c(η, η′), c(ϵ, ϵ′)) is an adjunction between f ′ ◦ f and g ◦ g′. Here c(η, η′)
is the contraction of η with η′ (in the sense of Construction 6.1.5.1), and c(ϵ, ϵ′) is the
contraction of ϵ with ϵ′ (in the sense of Construction 6.1.5.7).
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Proof. By virtue of Proposition 6.1.5.3 and Corollary 6.1.2.6, it will suffice to show that for
every object T ∈ C equipped with 1-morphisms c : T → C and e : T → E, the diagram

HomHomC(T,E)((f ′ ◦ f) ◦ c, e) ∼
αf ′,f,c // HomHomC(T,E)(f ′ ◦ (f ◦ c), e)

HomHomC(T,D)(f ◦ c, g′ ◦ e)

OO

HomHomC(T,C)(c, (g ◦ g′) ◦ e)
αg,g′,e
∼

//

OO

HomHomC(T,C)(c, g ◦ (g′ ◦ e))

OO

commutes, where the right vertical maps are given by the formation of left adjuncts with
respect to ϵ and ϵ′, and the left vertical map is given by the formation of left adjuncts
with respect to the contraction c(ϵ, ϵ′) of Construction 6.1.5.7. This follows by applying
Proposition 6.1.5.3 to the conjugate 2-category Cc.

6.1.6 Duality in Monoidal Categories

02DY We now specialize the theory of adjunctions to the setting of 2-categories of the form
B C (Example 2.2.2.5), where C is a monoidal category. Throughout this section, we write 1
for the unit object of a monoidal category C.

Definition 6.1.6.1.02DZ Let C be a monoidal category containing objects X and Y . A duality
datum is a pair (coev, ev), where coev : 1→ Y ⊗X and ev : X ⊗ Y → 1 are morphisms of C
satisfying the following compatibility conditions:

(Z1) The composition

X
ρ−1

X−−→
∼

X ⊗ 1 idX ⊗ coev−−−−−−→ X ⊗ (Y ⊗X) αX,Y,X−−−−→
∼

(X ⊗ Y )⊗X ev⊗ idX−−−−−→ 1⊗X λX−−→
∼

X

is equal to the identity morphism idX . Here the isomorphism αX,Y,X is the associativity
constraint for the monoidal category C, and the isomorphisms λX and ρX are the left
and right unit constraints of Construction 2.1.2.17.

(Z2) The composition

Y
λ−1

Y−−→
∼

1⊗ Y coev⊗ idY−−−−−−→ (Y ⊗X)⊗ Y
α−1

Y,X,Y−−−−→
∼

Y ⊗ (X ⊗ Y ) idY ⊗ ev−−−−−→ Y ⊗ 1 ρY−−→
∼

Y

is equal to the identity morphism idY .
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If these conditions are satisfied, then we will refer to coev as the coevaluation morphism of
the duality datum (coev, ev), and to ev as the evaluation morphism of the duality datum
(coev, ev). In this case, we say that the pair (coev, ev) exhibits X as a left dual of Y , also
that it exhibits Y as a right dual of X.

Remark 6.1.6.2 (Duals as Adjoints). 02E0Let C be a monoidal category containing objects X
and Y , which we regard as 1-morphisms of the 2-category B C described in Example 2.2.2.5.
Suppose we are given a pair of morphisms

coev : 1→ Y ⊗X ev : X ⊗ Y → 1

in C, which we identify with 2-morphisms of B C. Then the pair (coev, ev) is a duality
datum in the monoidal category C (in the sense of Definition 6.1.6.1) if and only if it is an
adjunction in the 2-category B C (in the sense of Definition 6.1.1.1).

Remark 6.1.6.3 (Adjoints as Duals). 02E1Let C be a 2-category, let X be an object of C,
let f, g : X → X be 1-morphisms of C, and let η : idX ⇒ g ◦ f and ϵ : f ◦ g ⇒ idX be
2-morphisms of C. Then the pair (η, ϵ) is an adjunction in the 2-category C (in the sense of
Definition 6.1.1.1) if and only if it is a duality datum in the monoidal category EndC(X) of
Remark 2.2.1.7.

Remark 6.1.6.4. 02E2Let C be a monoidal category containing objects X and Y and morphisms

coev : 1→ Y ⊗X ev : X ⊗ Y → 1.

Then:

• The pair (coev, ev) is a duality datum in the monoidal category C if and only if it is a
duality datum in the reverse monoidal category Crev of Example 2.1.3.5. Note that
passage to the reverse monoidal category reverses the roles of X and Y : if X is the left
dual of Y in the monoidal category C, then it is the right dual of Y in the monoidal
category Crev (and vice-versa).

• The pair (coev, ev) is a duality datum in C if and only if the pair (evop, coevop) is a
duality datum in the opposite monoidal category Cop (see Example 2.1.3.4). Note
that passage to the opposite monoidal category reverses the roles of evaluation and
coevaluation: evop is the coevaluation morphism for the duality datum (evop, coevop),
while coevop is the evaluation morphism. Similarly, if X is the left dual of Y in the
monoidal category C, then it is the right dual of Y in the opposite monoidal category
Cop (and vice-versa).

Proposition 6.1.6.5. 02E3Let C be a monoidal category and let ev : X ⊗ Y → 1 be a morphism
of C. The following conditions are equivalent:
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(1) For every pair of objects C,D ∈ C, the composite map

HomC(C, Y ⊗D) → HomC(X ⊗ C,X ⊗ (Y ⊗D))
≃ HomC(X ⊗ C, (X ⊗ Y )⊗D)
ev−→ HomC(X ⊗ C,1⊗D)
≃ HomC(X ⊗ C,D)

is a bijection.

(2) For every pair of objects C,D ∈ C, the composite map

HomC(C,D ⊗X) → HomC(C ⊗ Y, (D ⊗X)⊗ Y )
≃ HomC(C ⊗ Y,D ⊗ (X ⊗ Y ))
ev−→ HomC(C ⊗ Y,D ⊗ 1)
≃ HomC(C ⊗ Y,D)

is a bijection.

(3) There exists a morphism coev : 1→ Y ⊗X for which the pair (coev, ev) is a duality
datum, in the sense of Definition 6.1.6.1.

Moreover, if these conditions are satisfied, then the morphism coev : 1→ Y ⊗X is unique.

Proof. Apply Proposition 6.1.2.13 to the 2-category B C of Example 2.2.2.5.

Definition 6.1.6.6.02E4 Let C be a monoidal category. We will say that a morphism ev :
X ⊗ Y → 1 in C is a duality datum if it satisfies the equivalent conditions of Proposition
6.1.6.5: that is, if there exists a morphism coev : 1→ Y ⊗X for which the pair (coev, ev) is
a duality datum in the sense of Definition 6.1.6.1.

Applying Proposition 6.1.6.5 to the opposite monoidal category Cop, we obtain the
following:

Variant 6.1.6.7.02E5 Let C be a monoidal category and let coev : 1→ Y ⊗X be a morphism
of C. The following conditions are equivalent:

(1) For every pair of objects C,D ∈ C, the composite map

HomC(X ⊗ C,D) → HomC(Y ⊗ (X ⊗ C), Y ⊗D)
≃ HomC((Y ⊗X)⊗ C, Y ⊗D)

coev−−−→ HomC(1⊗ C, Y ⊗D)
≃ HomC(C, Y ⊗D)

is a bijection.
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(2) For every pair of objects C,D ∈ C, the composite map

HomC(C ⊗ Y,D) → HomC((C ⊗ Y )⊗X,D ⊗X)
≃ HomC(C ⊗ (Y ⊗X), D ⊗X)

coev−−−→ HomC(C ⊗ 1, D ⊗X)
≃ HomC(C,D ⊗X)

is a bijection.

(3) There exists a morphism ev : X ⊗ Y → 1 for which the pair (coev, ev) is a duality
datum, in the sense of Definition 6.1.6.1.

Moreover, if these conditions are satisfied, then the morphism ev : X ⊗ Y → 1 is unique.

Definition 6.1.6.8. 02E6Let C be a monoidal category. We will say that a morphism coev :
1→ Y ⊗X in C is a duality datum if it satisfies the equivalent conditions of Variant 6.1.6.7:
that is, if there exists a morphism ev : X ⊗ Y → 1 for which the pair (coev, ev) is a duality
datum in the sense of Definition 6.1.6.1.

Definition 6.1.6.9. 02E7Let C be a monoidal category. Then:

• We say that an object X ∈ C is right dualizable if there exists an object Y ∈ C and a
duality datum ev : X ⊗ Y → 1. In this case, we will also say that Y is a right dual of
X, or that the morphism ev exhibits Y as a right dual of X.

• We say that an object Y ∈ C is left dualizable if there exists an object X ∈ C and a
duality datum ev : X ⊗ Y → 1. In this case, we will also say that X is a left dual of
Y , or that the morphism ev exhibits X as a left dual of Y .

Example 6.1.6.10. 02E8Let C be a monoidal category. We say that an object X ∈ C is invertible
if there exists an object Y ∈ C such that the tensor products Y ⊗X and X⊗Y are isomorphic
to the unit object 1. If this condition is satisfied, then any choice of isomorphism 1 ≃ Y ⊗X
is a duality datum (this is a special case of Proposition 6.1.4.1). In particular, the object Y
is a right dual of X. Similarly, Y is a left dual of X.

Exercise 6.1.6.11. 02E9Let C be a category which admits finite products, and regard C as
equipped with the monoidal structure given by cartesian products (Example 2.1.3.2). Show
that an object X ∈ C is left (or right) dualizable if and only if it is isomorphic to the final
object 1.

Exercise 6.1.6.12. 02EALet k be a field and let Vectk denote the category of vector spaces over
k, equipped with the monoidal structure described in Example 2.1.3.1. Show that an object
V ∈ Vectk is left (or right) dualizable if and only if it is finite-dimensional as a vector space
over k.
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It is instructive to contrast Definition 6.1.6.6 with a slightly more general notion of
duality.

Definition 6.1.6.13.02EB Let C be a monoidal category containing objects X and Y . We will
say that a morphism ev : X ⊗ Y → 1 exhibits Y as a weak right dual of X if, for every
object W ∈ C, the composite map

HomC(W,Y )→ HomC(X ⊗W,X ⊗ Y ) ev−→ HomC(X ⊗W,1)

is bijective. We say that ev exhibits X as a weak left dual of Y if, for every object Z ∈ C,
the composite map

HomC(Z,X)→ HomC(Z ⊗ Y,X ⊗ Y ) ev−→ HomC(Z ⊗ Y,1)

is bijective.

Remark 6.1.6.14.02EC Let C be a monoidal category and let X be an object of C. It follows
immediately from the definition that if there exists a morphism ev : X ⊗ Y → 1 which
exhibits Y as a weak right dual of X, then the pair (Y, ev) is unique up to isomorphism and
depends functorially on X. To emphasize this dependence we will sometimes denote the
object Y by X∨ and abuse terminology by referring to it as the weak right dual of X.

Similarly, if Y is a fixed object of C and there exists a morphism ev : X ⊗ Y → 1 which
exhibits X as a weak left dual of Y , then the pair (X, ev) is uniquely determined up to
isomorphism and depends functorially on Y . We will emphasize this dependence by denoting
the object X by ∨Y and referring to it as the weak left dual of Y .

Proposition 6.1.6.15.02ED Let C be a monoidal category and let ev : X⊗Y → 1 be a morphism
of C. Then:

(1) If the morphism ev exhibits Y as a right dual of X (Definition 6.1.6.6), then it exhibits
Y as a weak right dual of X (Definition 6.1.6.13). The converse holds if X is right
dualizable.

(2) If the morphism ev exhibits X as a left dual of Y , then it exhibits X as a weak left dual
of Y . The converse holds if Y is left dualizable.

Proof. We will prove (1); the proof of (2) is similar. If ev : X ⊗ Y → 1 is a duality datum,
then it exhibits Y as a weak right dual of X by virtue of Variant 6.1.3.2 (applied to the
2-category B C). Conversely, suppose that ev exhibits Y as a weak right dual of X. If there
exists another object Y ′ ∈ C and a duality datum ev′ : X ⊗ Y ′ → 1, then the universal
property of Y guarantees that there is a unique morphism u : Y ′ → Y for which ev′ is equal
to the composite map X ⊗ Y ′ idX ⊗u−−−−→ X ⊗ Y ev−→ 1. Since ev′ exhibits Y ′ as a weak right
dual of X, the morphism u must be an isomorphism, so that the morphism ev is also a
duality datum.
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Warning 6.1.6.16. 02EEIn the situation of Proposition 6.1.6.15, it is possible for an object
X ∈ C to admit a weak right dual which is not a right dual. For example, let C = Vectk
be the category of vector spaces over a field k, equipped with the monoidal structure of
Example 2.1.3.1. Let V be a vector space over k and let V ∗ = Homk(V, k) be its dual space.
Then the evaluation map

ev : V ⊗k V ∗ → k v ⊗ λ 7→ λ(v)

exhibits V ∗ as a weak (right) dual of V (in the sense of Definition 6.1.6.13). However, it is a
duality datum only when V is finite-dimensional over k (Exercise 6.1.6.12).

Remark 6.1.6.17. 02EFLet C be a monoidal category containing objects X and Y . If both X

and Y are right dualizable, then the tensor product X ⊗ Y is also right dualizable; moreover
we have a canonical isomorphism (X ⊗ Y )∨ ≃ Y ∨ ⊗X∨ (see Corollary 6.1.5.4 for a more
precise statement). Similarly, if both X and Y are left dualizable, then the tensor product
X ⊗ Y is left dualizable, and there is a canonical isomorphism ∨(X ⊗ Y ) ≃ ∨Y ⊗ ∨X.

Exercise 6.1.6.18. 02EGLet C be a monoidal category containing objects X and Y . Show that,
if X is weakly right dualizable and Y is right dualizable, then the tensor product X ⊗ Y is
weakly right dualizable (and that there is a canonical isomorphism (X ⊗ Y )∨ ≃ Y ∨ ⊗X∨).

6.2 Adjoint Functors Between ∞-Categories

02EH6.2.1 Adjunctions of ∞-Categories

02EJWe now adapt Definition 6.1.0.2 to the setting of ∞-categories.

Definition 6.2.1.1. 02EKLet F : C → D and G : D → C be functors of∞-categories. We will say
that a pair of natural transformations η : idC → G ◦ F and ϵ : F ◦G→ idD are compatible
up to homotopy if the following conditions are satisfied:

(Z1) The identity isomorphism idF : F → F is a composition of the natural transformations

F = F ◦ idC
idF ◦η−−−−→ F ◦G ◦ F F ◦G ◦ F ϵ◦idF−−−→ idD ◦F = F

in the ∞-category Fun(C,D), in the sense of Definition 1.4.4.1.

(Z2) The identity isomorphism idG : G→ G is a composition of the natural transformations

G = idD ◦G
η◦idG−−−→ G ◦ F ◦G G ◦ F ◦G idG ◦ϵ−−−→ G ◦ idD = G

in the ∞-category Fun(D, C).
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We say that a natural transformation η : idC → G◦F is the unit of an adjunction if there
exists a natural transformation ϵ : F ◦G→ idD which is compatible with η up to homotopy.
We say that a natural transformation ϵ : F ◦G→ idD is the counit of an adjunction if there
exists a natural transformation η : idC → G ◦ F which is compatible with ϵ up to homotopy.

Definition 6.2.1.2.02EL Let F : C → D and G : D → C be functors of ∞-categories. We say
that F is a left adjoint of G, or that G is a right adjoint of F , if there exists a natural
transformation η : idC → G ◦F which is the unit of an adjunction between F and G. In this
case, we say that η exhibits F as a left adjoint of G and also that it exhibits G as a right
adjoint of F . Equivalently, F is a left adjoint of G if there exists a natural transformation
ϵ : F ◦G→ idD which is the counit of an adjunction between F and G; in this case, we say
that ϵ exhibits F as a left adjoint of G and also that it exhibits G as a right adjoint of F .

Notation 6.2.1.3.02EM Let F : C → D be a functor between ∞-categories. We say that F is a
left adjoint, or that F admits a right adjoint, if there exists a functor G : D → C which is
right adjoint to F . We let LFun(C,D) denote the full subcategory of Fun(C,D) spanned by
those functors F : C → D which are left adjoints.

Let G : D → C be a functor between ∞-categories. We say that G is a right adjoint, or
that G admits a left adjoint, if there exists a functor F : C → D which is left adjoint to
G. We let RFun(D, C) denote the full subcategory of Fun(D, C) spanned by those functors
G : D → C which are right adjoints.

Remark 6.2.1.4.02EN Let h2QCat be the homotopy 2-category of ∞-categories (see Construc-
tion 4.5.1.23). Suppose we are given functors of ∞-categories F : C → D and G : D → C,
which we regard as 1-morphisms in the 2-category h2QCat. Let η : idC → G ◦ F and
ϵ : F ◦G→ idD be natural transformations and let [η] and [ϵ] denote their homotopy classes,
which we regard as 2-morphisms in h2QCat. Then η and ϵ are compatible up to homotopy
(in the sense of Definition 6.2.1.1) if and only if the pair ([η], [ϵ]) is an adjunction in the
2-category h2QCat (in the sense of Definition 6.1.1.1).

Remark 6.2.1.5.02EP Let F : C → D and G : D → C be functors of ∞-categories, and let
η : idC → G ◦ F and ϵ : F ◦G→ idD be natural transformations. Axioms (Z1) and (Z2) of
Definition 6.2.1.1 can be restated as follows:

(Z1) There exists a 2-simplex σ of the ∞-category Fun(C,D) with boundary as indicated
in the diagram

F ◦G ◦ F

ϵ◦idF

$$
F ◦ idC

idF ◦η

::

idF // idD ◦F.
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(Z2) There exists a 2-simplex τ of the ∞-category Fun(D, C) with boundary as indicated in
the diagram

G ◦ F ◦G

idG ◦ϵ

%%
idC ◦G

η◦idG

::

idG // G ◦ idD .

In this case, we will say that the 2-simplices σ and τ witness the axioms (Z1) and (Z2),
respectively.

Remark 6.2.1.6. 02EQLet F : C → D and G : D → C be functors of ∞-categories, and let
η : idC → G ◦ F be a natural transformation. It follows from Remark 6.2.1.4 that the
condition that η is the unit of an adjunction (in the sense of Definition 6.2.1.1) depends only
on the homotopy class [η], regarded as a morphism in the category hFun(C, C). Moreover, if
ϵ : F ◦G→ idD is a counit which is compatible with η up to homotopy, then the homotopy
class [ϵ] is uniquely determined (see Proposition 6.1.2.9). Beware that it is only the homotopy
class of ϵ that is uniquely determined: if ϵ′ : F ◦G→ idD is homotopic to ϵ, then it is also
compatible with η up to homotopy.

Remark 6.2.1.7. 02ERLet F : C → D and G : D → C be functors of ∞-categories and let
η : idC → G ◦ F be a natural tranformation. Then η is the unit of an adjunction between
F and G if and only if the opposite natural transformation ηop : Gop ◦ F op → idCop is the
counit of an adjunction between the functors Gop : Dop → Cop and F op : Cop → Dop. Note
that in this case, ηop exhibits Gop as the left adjoint of F op.

Remark 6.2.1.8 (Composition of Adjoints). 02ESLet F : C → D and F ′ : D → E be functors
of ∞-categories which admit right adjoints. Then the composite functor (F ′ ◦ F ) : C → E
also admits a right adjoint. More precisely, if G : D → C and G′ : E → D are right adjoints
of F and F ′, respectively, then the composite functor (G ◦G′) : E → C is right adjoint to
(F ′ ◦ F ) : C → E (see Corollary 6.1.5.5).

Example 6.2.1.9. 02ETLet F : C → D and G : D → C be functors between ordinary categories,
and suppose we are given natural transformations η : idC → G ◦ F and ϵ : F ◦ G → idD.
Then the pair (η, ϵ) is an adjunction between F and G (in the sense of Definition 6.1.0.2) if
and only if the induced maps

N•(η) : idN•(C) → N•(G) ◦N•(F ) N•(ϵ) : N•(F ) ◦N•(G)→ idN•(D)

are compatible up to homotopy, in the sense of Definition 6.2.1.1. In particular:
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• A natural transformation η : idC → G ◦F is the unit of an adjunction between functors
of ordinary categories F and G if and only if N•(η) : idN•(C) → N•(G) ◦N•(F ) is the
unit of an adjunction between functors of ∞-categories N•(F ) and N•(G).

• A natural transformation ϵ : F ◦ G → idC is the counit of an adjunction between
functors of ordinary categories F and G if and only if N•(ϵ) : N•(F ) ◦N•(G)→ idN•(D)
is the unit of an adjunction between functors of ∞-categories N•(F ) and N•(G).

• A functor of ordinary categories F : C → D admits a right adjoint G if and only if the
induced functor of ∞-categories N•(F ) : N•(C) → N•(D) admits a right adjoint (in
which case N•(G) is a right adjoint of N•(F )).

• A functor of ordinary categories G : D → C admits a left adjoint F if and only if
the induced functor of ∞-categories N•(G) : N•(D)→ N•(C) admits a left adjoint (in
which case N•(F ) is a left adjoint of N•(G)).

Proposition 3.1.6.9 generalizes to the setting of ∞-categories:

Remark 6.2.1.10.02EU Let F : C → D be a functor of∞-categories which admits a right adjoint
G : D → C. The existence of natural transformations

η : idC → G ◦ F ϵ : F ◦G→ idD

guarantees that F and G are simplicial homotopy inverses of one another, in the sense of
Definition 3.1.6.1. In particular, F and G are homotopy equivalences of simplicial sets.

Example 6.2.1.11.02EV Let F : C → D be an equivalence of∞-categories, and let G : D → C be
a homotopy inverse of F . Then G is also a right adjoint of F . More precisely, any isomorphism
η : idC → G ◦ F in the functor ∞-category Fun(C, C) is the unit of an adjunction between F
and G (Proposition 6.1.4.1). Similarly, G is a left adjoint of F .

Remark 6.2.1.12.02EW Let F : X → Y be a morphism of Kan complexes. Then F admits a
right adjoint (in the sense of Notation 6.2.1.3) if and only if F is a homotopy equivalence.
This follows by combining Remark 6.2.1.10 with Example 6.2.1.11.

Remark 6.2.1.12 can be regarded as a special case of the following more general assertion:

Proposition 6.2.1.13.02EX Let F : C → D and G : D → C be functors of ∞-categories and let

η : idC → G ◦ F ϵ : F ◦G→ idD

be natural transformations which are compatible up to homotopy. Let C′ ⊆ C be the full
subcategory spanned by those objects C ∈ C for which the unit ηC : C → (G ◦ F )(C) is an
isomorphism, and let D′ ⊆ D be the full subcategory spanned by those objects D ∈ D for
which the counit ϵD : (F ◦G)(D)→ D is an isomorphism. Then F and G restrict to functors
F ′ : C′ → D′ and G′ : D′ → C′ which are homotopy inverse to one another.
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Proof. Let C be an object of C′, so that ηC : C → (G ◦ F )(C) is an isomorphism. Since η
and ϵ are compatible up to homotopy, the identity morphism idF (C) is a composition of
F (ηC) : F (C)→ (F ◦G ◦ F )(C) with ϵF (C) : (F ◦G ◦ F )(C)→ F (C) in the ∞-category D.
It follows that ϵF (C) is an isomorphism in D (Remark 1.4.6.3), so that F (C) belongs to the
full subcategory D′ ⊆ D. Setting F ′ = F |C′ , we obtain a functor F ′ : C′ → D′. A similar
argument shows that we can regard G′ = G|D′ as a functor from D′ to C′. The unit morphism
η restricts to a natural transformation of functors η′ : idC′ → G′ ◦ F ′. By construction, η′
carries each object C ∈ C′ to an isomorphism, and is therefore an isomorphism in the functor
∞-category Fun(C′, C′) (Theorem 4.4.4.4). Similarly, the counit ϵ restricts to a natural
isomorphism ϵ′ : F ′ ◦G′ → idD′ , so that F ′ and G′ are homotopy inverse to one another.

Proposition 6.2.1.14. 02EYLet F : C → D be a functor of ∞-categories which admits a right
adjoint. Let G : D → C be another functor of ∞-categories and let η : idC → G ◦ F be a
natural transformation. The following conditions are equivalent:

(1) The natural transformation η is the unit of an adjunction between the ∞-categories C
and D.

(2) The induced map idhC → hG ◦ hF is the unit of an adjunction between the homotopy
categories hC and hD.

Proof. The implication (1)⇒ (2) follows from the observation that the formation of homotopy
categories defines a (strict) functor of 2-categories

h2QCat→ Cat C 7→ hC,

and therefore carries adjunctions to adjunctions (see Exercise 6.1.1.6). We will show that
(2) implies (1). By assumption, the functor F admits a right adjoint G′ : D → C. Let
η′ : idC → F ◦G′ be the unit of an adjunction. Applying Corollary 6.1.3.3, we deduce that
there exists a natural transformation γ : G′ → G such that η is a composition of the natural
transformations

η′ : idC → F ◦G′ (idF ◦γ) : F ◦G′ → F ◦G

in the ∞-category Fun(C, C). If assumption (2) is satisfied, then the image of γ in the
functor category Fun(hD,hC) is an isomorphism: that is, γ carries each object D ∈ D to
an isomorphism γD : G′(D)→ G(D) in the ∞-category C. Applying Theorem 4.4.4.4, we
conclude that γ is an isomorphism in the ∞-category Fun(D, C), so that the criterion of
Corollary 6.1.3.3 guarantees that η is also the unit of an adjunction.

Corollary 6.2.1.15. 02EZLet F : C → D be a functor of ∞-categories and let hF : hC → hD be
the induced functor of homotopy categories. If F admits a right adjoint G, then hF also
admits a right adjoint, which can be identified with the functor hG.
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Warning 6.2.1.16.02F0 The implication (2) ⇒ (1) of Proposition 6.2.1.14 generally fails if
the functor F : C → D does not have a right adjoint. For example, let X be a simply
connected Kan complex, let F : ∆0 → X be the map corresponding to a vertex x ∈ X, and
let G : X → ∆0 be the projection map. Since X is simply connected, the functors hF and
hG are equivalences of ordinary categories. In particular, the identity transformation from
id∆0 = G ◦ F to itself determines the unit of an adjunction between hF and hG. However,
the functors F and G cannot be adjoint unless the Kan complex X is contractible (see
Remark 6.2.1.10)

Let F : C → D and G : D → C be functors between ∞-categories and let η : idC → G ◦F
be a natural transformation. By virtue of Variant 6.1.2.11, the natural transformation η

exhibits hG as a right adjoint to hF if and only if, for every pair of objects C ∈ C and
D ∈ D, the composite map

HomhD(F (C), D) = π0(HomD(F (C), D))
G−→ π0(HomC((G ◦ F )(C), G(D)))
◦[ηC ]−−−→ π0(HomC(C,G(D))

= HomhC(C,G(D))

is a bijection. If η exhibits G as a right adjoint to F , then we can say more:

Proposition 6.2.1.17.02F1 Let F : C → D and G : D → C be functors between ∞-categories
and let η : idC → G ◦ F be the unit of an adjunction. Then, for every pair of objects C ∈ C
and D ∈ D, the composite map

HomD(F (C), D) G−→ HomC((G ◦ F )(C), G(D)) ◦[ηC ]−−−→ HomC(C,G(D))

is an isomorphism in the homotopy category hKan; here the second map is given by the
composition law of Construction 4.6.9.9.

Proof. It will suffice to show that, for every Kan complex T , the induced map

π0(Fun(T,HomD(F (C), D))) = HomhKan(T,HomD(F (C), D))
θ−→ HomhKan(T,HomC(C,G(D)))
= π0(Fun(T,HomC(C,G(D))))

is bijective. Let C ∈ Fun(T, C) and D ∈ Fun(T,D) be the constant morphisms taking the
values C and D, respectively. Unwinding the definitions, we see that θ can be identified
with the map

HomhFun(T ,D)(F ◦ C,D)→ HomhFun(T ,C)(C,G ◦D)
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given by the formation of right adjuncts with respect to the homotopy class [η] (regarded as
a 2-morphism in the category h2QCat). The bijectivity of θ now follows from the criterion
of Proposition 6.1.2.9.

Remark 6.2.1.18. 02F2We will see later that the converse of Proposition 6.2.1.17 also holds: if
F : C → D and G : D → C are functors of ∞-categories and η : idC → G ◦ F is a natural
transformation which induces a homotopy equivalence HomD(F (C), D) ≃ HomC(C,G(D))
for every pair of objects (C,D) ∈ C ×D, then η is the unit of an adjunction between F and
G (Corollary 6.2.4.5).

Remark 6.2.1.19. 02F3Let F : C → D be a functor of ∞-categories. It follows from Proposition
6.1.3.4 that if F admits a right adjoint G, then G is well-defined up to isomorphism as an
object of the functor ∞-category Fun(D, C). We will sometimes emphasize this by referring
to G as the right adjoint of F and denoting it by FR. By virtue of Notation 6.1.3.8, the
construction F 7→ FR determines an equivalence of homotopy categories hLFun(C,D) →
hRFun(D, C)op. We will see later that this construction can be upgraded to an equivalence
of ∞-categories LFun(C,D) ≃ RFun(D, C)op (see Corollary 8.3.4.10).

Warning 6.2.1.20. 02F4Let C and D be ∞-categories. The following data are essentially
equivalent to one another:

• The datum of a functor F : C → D which admits a right adjoint.

• The datum of a functor G : D → C which admits a left adjoint.

• The datum of a triple (F,G, η), where F : C → D and G : D → C are functors and
η : idC → G ◦ F is the unit of an adjunction between F and G.

• The datum of a triple (F,G, ϵ), where F : C → D and G : D → C are functors and
ϵ : F ◦G→ idD is the counit of an adjunction between F and G.

• The datum of a quintuple (F,G, η, ϵ, σ), where F : C → D and G : D → C are functors,
η : idC → G ◦F and ϵ : F ◦G→ idD are natural transformations which are compatible
up to homotopy, and σ : ∆2 → Fun(C,D) is a 2-simplex witnessing axiom (Z1) of
Definition 6.2.1.1 (see Remark 6.2.1.5).

• The datum of a quintuple (F,G, η, ϵ, τ), where F : C → D and G : D → C are functors,
η : idC → G ◦F and ϵ : F ◦G→ idD are natural transformations which are compatible
up to homotopy, and τ : ∆2 → Fun(D, C) is a 2-simplex witnessing axiom (Z2) of
Definition 6.2.1.1.

The following data are not equivalent to the above (or to each other):
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• The datum of a pair (F,G), where F : C → D and G : D → C are functors which are
adjoint to one another.

• The datum of a quadruple (F,G, η, ϵ), where F : C → D and G : D → C are functors,
η : idC → G ◦F and ϵ : F ◦G→ idD are natural transformations which are compatible
up to homotopy,

• The datum of a sextuple (F,G, η, ϵ, σ, τ), where F : C → D and G : D → C are
functors, η : idC → G ◦ F and ϵ : F ◦ G → idD are natural transformations, and
σ : ∆2 → Fun(C,D) and τ : ∆2 → Fun(D, C) are 2-simplices witnessing axioms (Z1)
and (Z2) of Definition 6.2.1.1.

To say that a functor F : C → D is left adjoint to a functor G : D → C is somewhat imprecise:
one should really specify a witness to the adjointness of F and G, which can take the form
of either a unit η : idC → G ◦ F or a counit ϵ : F ◦ G → idD. Given both a unit η and a
counit ϵ, one can further demand evidence of their compatibility, which can take the form of
a 2-simplex σ : ∆2 → Fun(C,D) witnessing axiom (Z1) or a 2-simplex τ : ∆2 → Fun(D, C)
witnessing axiom (Z2). If one specifies both of the witnesses σ and τ , then one can further
demand a witness to the compatibility of σ with τ ; we will return to this point in §[?].

6.2.2 Reflective Subcategories

02F5 Let C be an∞-category. Our goal in this section is to characterize those full subcategories
C′ ⊆ C for which the inclusion functor C′ ↪→ C admits a left or right adjoint.

Definition 6.2.2.1.02F6 Let C be an ∞-category and let C′ ⊆ C be a full subcategory. We
say that a morphism u : X → Y in C exhibits Y as a C′-reflection of X if Y belongs to
C′ and, for every object Z ∈ C′, the precomposition map HomC(Y,Z) ◦[u]−−→ HomC(X,Z)
is an isomorphism in the homotopy category hKan. We say that u exhibits X as a C′-
coreflection of Y if X belongs to C′ and, for every object W ∈ C′, the postcomposition map
HomC(W,X) [u]◦−−→ HomC(W,Y ) is an isomorphism in the homotopy category hKan.

We say that a subcategory C′ ⊆ C is reflective if it is full and, for every object X ∈ C,
there exists a morphism u : X → Y which exhibits Y as a C′-reflection of X. We say that
the subcategory C′ is coreflective if it is full and, for every object Y ∈ C, there exists a
morphism u : X → Y which exhibits X as a C′-coreflection of Y .

Remark 6.2.2.2.02F7 Let C be an ∞-category and let C′ ⊆ C be a full subcategory, so that we
can identify C′ op with a full subcategory of the opposite ∞-category Cop. Then:

• A morphism u : X → Y in C exhibits Y as a C′-reflection of X if and only if
uop : Y op → Xop exhibits Y op as a C′ op-coreflection of Xop.
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• The subcategory C′ ⊆ C is reflective if and only if the subcategory C′ op ⊆ Cop is
coreflective.

Remark 6.2.2.3. 02F8Let C be an ∞-category, let C′ ⊆ C be a full subcategory, and suppose
we are given a pair of morphisms u : X → Y and w : X → Z of C, where Y and Z belong
to the subcategory C′. If u exhibits Y as a C′-reflection of X, then we can realize w as a
composition of u with another morphism v : Y → Z of C′, which is uniquely determined up
to homotopy. Moreover, v is an isomorphism if and only if w exhibits Z as a C′-reflection of
X. Stated more informally: a C′-reflection of X, if it exists, is unique up to isomorphism.

Example 6.2.2.4. 02F9Let C be an ∞-category, let C′ ⊆ C be a full subcategory, and let
u : X → Y be a morphism of C. If X belongs to the subcategory C′, then u exhibits Y as a
C′-reflection of X if and only if it is an isomorphism. Similarly, if Y belongs to C′, then u

exhibits X as a C′-coreflection of Y if and only if it is an isomorphism.

Example 6.2.2.5. 02SSLet C be an∞-category which contains a final object, and let Cfin denote
the full subcategory of C spanned by its final objects (so that Cfin is a contractible Kan
complex: see Corollary 4.6.7.14). Then Cfin is a reflective subcategory of C.

Example 6.2.2.6. 02STLet S denote the∞-category of spaces (Construction 5.5.1.1) and let QC
denote the ∞-category of (small) ∞-categories (Construction 5.5.4.1). Then S is a reflective
and coreflective subcategory of QC. If C is a small ∞-category, then the inclusion map
C≃ ↪→ C exhibits the core C≃ as a S-coreflection of C (this follows by combining Proposition
4.4.3.17 with Remark 5.5.4.6), and the comparison map C → Ex∞(C) exhibits the Kan
complex Ex∞(C) as a S-reflection of C (this follows by combining Proposition 3.3.6.7 with
Remark 5.5.4.6).

Example 6.2.2.7. 04JCLet Top denote the category whose objects are topological spaces and
whose morphisms are continuous functions Let us regard Top as a simplicial category
(Example 2.4.1.5), and let T = Nhc

• (Top) denote its homotopy coherent nerve. Let T 0 ⊆ T
be the full subcategory spanned by those topological spaces which have the homotopy type
of a CW complex. Then:

• A continuous function between topological spaces f : X → Y is a weak homotopy
equivalence (in the sense of Definition 3.6.3.1) if and only if it exhibits X as a T 0-
colocalization of Y . This is restatement of Corollary 3.6.5.4.

• The full subcategory T 0 ⊆ T is coreflective. That is, for every topological space Y ,
there exists a weak homotopy equivalence f : X → Y , where X has the homotopy type
of a CW complex. For example, we can take f to be the counit map | Sing•(Y )| → Y

(see Corollary 3.6.4.2).

Definition 6.2.2.1 can be rephrased as a lifting property:
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Proposition 6.2.2.8.03XA Let C be an ∞-category, let C′ ⊆ C be a full subcategory, and let
f : X → Y be a morphism in C, where Y ∈ C′. The following conditions are equivalent:

(1) The morphism f exhibits Y as a C′-reflection of X, in the sense of Definition 6.2.2.1.

(2) For every object Z ∈ C′, the restriction map Cf/×C{Z} → CX/×C{Z} is a homotopy
equivalence of Kan complexes.

(3) The restriction map u : Cf/×C C′ → CX/×C C′ is an equivalence of ∞-categories.

(4) The restriction map u is a trivial Kan fibration.

(5) For n ≥ 2, every morphism of simplicial sets σ0 : Λn
0 → C can be extended to an

n-simplex of C, provided that σ0 carries the initial edge ∆1 = N•({0 < 1}) to the
morphism f and satisfies σ0(i) ∈ C′ for i ≥ 2.

Proof. The equivalence (1)⇔ (2) follows from Proposition 4.6.9.16, the equivalence (2)⇔ (3)
from Corollary 5.1.7.15 (and Proposition 5.1.7.5). Corollary 4.3.6.11 guarantees that u is a
left fibration. In particular, it is an isofibration, so the equivalence (3) ⇔ (4) is a special
case of Proposition 4.5.5.20. The equivalence (4)⇔ (5) follows by unwinding definitions.

Corollary 6.2.2.9.04JD Let C be an ∞-category, let C′ ⊆ C be a full subcategory, and let
q : K → C′ be a morphism of simplicial sets. Let f : X → Y be a morphism in the
∞-category C/q, having image f : X → Y in C. If f exhibits Y as a C′-reflection of X, then
f exhibits Y as a C′/q-reflection of X.

Proof. Set D = Cf/×C C′ and E = CX/×C C′. Our assumption that f exhibits Y as a
C′-reflection of X guarantees that the restriction map u : D → E is a trivial Kan fibration
(Proposition 6.2.2.8). We wish to show that the analogous restriction map

u : (C/q)f/ ×C/q
C′/q → (C/q)X/ ×C/q

C′/q

is also trivial Kan fibration. Let us regard f as a morphism of simplicial sets ∆1 ⋆ K → C,
which we can identify with a diagram q : K → D. Under this identification, u corresponds
to the map D/q → E/u◦q induced by u, which is a trivial Kan fibration by virtue of Corollary
4.3.7.17.

Corollary 6.2.2.10.04JE Let C be an ∞-category, let C′ ⊆ C be a full subcategory, and let
q : K → C′ be a diagram. If C′ is a reflective subcategory of C, then C′/q is a reflective
subcategory of C/q.

Proof. Let X be an object of the slice ∞-category C/q; we wish to show that there exists a
morphism f : X → Y which exhibits Y as a C′/q-reflection of X. Let X denote the image of
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X in the ∞-category C. Since C′ is a reflective subcategory of C, we can choose a morphism
f : X → Y in C which exhibits Y as a C′-reflection of X. By virtue of Corollary 6.2.2.9, it
will suffice to show that f can be lifted to a morphism f : X → Y in C/q. Unwinding the
definitions, we can rewrite this as a lifting problem

∅ //

��

Cf/×C C′

��
K //

;;

CX/×C C′,

which admits a solution by virtue of the fact that the right vertical map is a trivial Kan
fibration (Proposition 6.2.2.8).

Our next goal is to prove the following:

Proposition 6.2.2.11. 02FALet C be an ∞-category, let C′ ⊆ C be a full subcategory, and
let ι : C′ ↪→ C be the inclusion map. Then ι admits a left adjoint if and only if C′ is a
reflective subcategory of C. Similarly, ι admits a right adjoint if and only if C′ is a coreflective
subcategory of C.

The first step toward proving Proposition 6.2.2.11 is to show that if X ∈ C is an object
which admits a C′-reflection u : X → Y , then the pair (u, Y ) can be chosen to depend
functorially on X.

Definition 6.2.2.12. 02FBLet C be an ∞-category, let C′ ⊆ C be a full subcategory, and let
L : C → C be a functor. We will say that a natural transformation η : idC → L exhibits
L as a C′-reflection functor if, for every object X ∈ C, the morphism ηX : X → L(X)
exhibits L(X) as a C′-reflection of C, in the sense of Definition 6.2.2.1. We say that a natural
transformation ϵ : L→ idC exhibits L as a C′-coreflection functor if, for every object Y ∈ C,
the morphism ϵY : L(Y )→ Y exhibits L(Y ) as a C′-coreflection of Y .

Remark 6.2.2.13. 02FCIn the situation of Definition 6.2.2.12, the assumption that η : idC → L

exhibits L as a C′-reflection functor guarantees in particular that for every object X ∈ C,
the image L(X) belongs to the full subcategory C′ ⊆ C. Consequently, we can also view L

as a functor from C to C′.

Lemma 6.2.2.14. 02FDLet C be an ∞-category and let C′ ⊆ C be a full subcategory. Then C′

is reflective if and only if there exists a functor L : C → C′ and a natural transformation
η : idC → L which exhibits L as a C′-reflection functor.

Proof. Assume that C′ is a reflective subcategory of C; we will show that there exists a
functor L : C → C′ and a natural transformation η : idC → L which exhibits L as a
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C′-reflection functor (the reverse implication is immediate from the definitions). Let E be
the full subcategory of C ×∆1 spanned by those objects (X, i) having the property that if
i = 1, then X belongs to the full subcategory C′. Let π : E → ∆1 denote the projection
map. Let ũ : (X, 0)→ (Y, 1) be a morphism in E , corresponding to a morphism u : X → Y

in C for which the target Y belongs to C′. By virtue of Corollary 5.1.2.3, the morphism
ũ is π-cocartesian if and only if u exhibits Y as a C′-localization of X. Consequently, our
assumption that C′ is a reflective subcategory of C guarantees that π is a cocartesian fibration
of ∞-categories. Applying Proposition 5.2.2.8, we deduce that there exists a functor

L : C ≃ {0} ×∆1 E → {1} ×∆1 E ≃ C′

and a morphism η̃ : idC → L in the ∞-category Fun(C, E) which carries each object X ∈ C
to a π-cocartesian morphism (X, 0)→ (L(X), 1) in E . Composing with the projection map
π : E → ∆1, we obtain a natural transformation η : idC → L in Fun(C, C) which exhibits L
as a C′-reflection functor.

Proposition 6.2.2.15.02FE Let C be an ∞-category, let C′ ⊆ C be a full subcategory, and let
ι : C′ ↪→ C be the inclusion map. Let L : C → C′ be a functor of ∞-categories and let
η : idC → ι ◦ L be a natural transformation. The following conditions are equivalent:

(1) The natural transformation η is the unit of an adjunction: that is, it exhibits L as a left
adjoint to the inclusion functor C′ ↪→ C.

(2) The natural transformation η exhibits L as a C′-reflection functor: that is, for every
object X ∈ C, the morphism ηX : X → L(X) exhibits L(X) as a C′-reflection of X.

(3) For every object X ∈ C, the morphism L(ηX) : L(X)→ L(L(X)) is an isomorphism in
C′. Moreover, if X belongs to C′, then ηX : X → L(X) is an isomorphism.

Moreover, if these conditions are satisfied, then any natural transformation ϵ : L ◦ ι →
idC′ which is compatible with η up to homotopy (in the sense of Definition 6.2.1.1) is an
isomorphism in the functor ∞-category Fun(C′, C′).

Proof. We first show that (1) implies (2). Let X be an object of C, so that η determines a
morphism ηX : X → L(X). For every object Y ∈ C′, Proposition 6.2.1.17 guarantees that
composition with the homotopy class [ηX ] induces an isomorphism

HomC′(L(X), Y ) = HomC(L(X), Y ) ◦[ηX ]−−−→ HomC(X,Y )

in the homotopy category hKan. It follows that ηX exhibits L(X) as a C′-reflection of X.
Allowing X to vary, we conclude that η exhibits L as a C′-reflection functor.

https://kerodon.net/tag/02FE
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We now show that (2) implies (3). Assume that, for every object X ∈ C, the morphism
ηX : X → L(X) exhibits L(X) as a C′-reflection of X. Note that we have a commutative
diagram

X
ηX //

ηX

��

L(X)

ηL(X)

��
L(X) L(ηX) // L(L(X))

in the ∞-category C, obtained by applying the natural transformation η to the morphism
ηX : X → L(X). For each object Y ∈ C, we obtain a commutative diagram of sets

HomhC(X,Y ) HomhC(L(X), Y )◦[ηX ]oo

HomhC(L(X), Y )

◦[ηX ]

OO

HomhC(L(L(X)), Y ).

◦[ηL(X)]

OO

◦[L(ηX)]oo

If Y belongs to the subcategory C′ ⊆ C, then the vertical maps and the upper horizontal
map in this diagram are bijective. It follows that the lower horizontal map is bijective as
well. Allowing Y to vary, we deduce that the homotopy class [L(ηX)] is an isomorphism
in the homotopy category hC′, so that L(ηX) is an isomorphism in the ∞-category C′. In
the special case where X belongs to C′, Example 6.2.2.4 guarantees that ηX is already an
isomorphism before applying the functor L.

We now show that (3) implies (1). Note that η determines natural transformations

η′ : L→ L ◦ ι ◦ L (X ∈ C) 7→ (L(ηX) ∈ HomC′(L(X), L(L(X))))

η′′ : ι→ ι ◦ L ◦ ι (Y ∈ C′) 7→ (ηY ∈ HomC(Y,L(Y ))).

If condition (3) is satisfied, then Theorem 4.4.4.4 guarantees that η′ and η′′ are isomor-
phisms in the ∞-categories Fun(C, C′) and Fun(C′, C), respectively. Invoking the criterion of
Proposition 6.1.4.6, we conclude that η is the unit of an adjunction.

Proof of Proposition 6.2.2.11. Let C be an ∞-category, let C′ ⊆ C be a full subcategory. It
follows from Proposition 6.2.2.15 that the inclusion functor C′ ↪→ C admits a left adjoint
if and only if there exists a functor L : C → C′ and a natural transformation η : idC → L

which exhibits L as a C′-reflection functor. By virtue of Lemma 6.2.2.14, this is equivalent
to the requirement that C′ is a reflective subcategory of C. The analogous characterization
of coreflective subcategories follows by a similar argument.
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Example 6.2.2.16.02SU Combining Example 6.2.2.6 with Proposition 6.2.2.11, we see that the
inclusion functor S ↪→ QC admits both a right adjoint (given on objects by the construction
C 7→ C≃) and a left adjoint (given on objects by the construction C 7→ Ex∞(C)).

Corollary 6.2.2.17.02FF Let G : D → C be a functor of ∞-categories. The following conditions
are equivalent:

(1) The functor G is fully faithful and the essential image of G is a reflective subcategory of
C.

(2) The functor G is fully faithful and admits a left adjoint F : C → D.

(3) There exist a functor F : C → D and a natural isomorphism ϵ : F ◦G ∼−→ idD which is
the counit of an adjunction between F and G.

(4) The functor G admits a left adjoint F : C → D for which the composition (F ◦G) : D → D
is an equivalence of ∞-categories.

Proof. Let C′ ⊆ C be the essential image of G. If G is fully faithful, then it induces an
equivalence D → C′ (Corollary 4.6.2.22). The equivalence (1) ⇔ (2) follows by applying
Proposition 6.2.2.11 to the subcategory C′ ⊆ C, and the implication (2) ⇒ (3) follows by
applying Proposition 6.2.2.15 to the subcategory C′ ⊆ C. To show that (3)⇒ (2), we observe
that if a natural isomorphism ϵ : F ◦G ∼−→ idD is the counit of an adjunction, then G restricts
to an equivalence of D with a full subcategory of C (Proposition 6.2.1.13), and is therefore
fully faithful. The equivalence (3)⇔ (4) is a special case of Proposition 6.1.4.7.

Remark 6.2.2.18.04JF In the situation of Corollary 6.2.2.17, suppose that η : idC → G ◦ F is
the unit of an adjunction between F and G. Then an object C ∈ C belongs to the essential
image of G if and only if the unit map ηC : C → (G ◦ F )(C) is an isomorphism. The “if”
direction is obvious. To prove the converse, we may assume without loss of generality that
C = G(D), for some object D ∈ D. In this case, the morphism ηC = ηG(D) fits into a
commutative diagram

(G ◦ F ◦G)(D)
G(ϵD)

''
G(D)

ηG(D)
77

idG(D) // G(D),

where ϵ : F ◦G→ idD is compatible with ϵ up to homotopy. Since ϵ is an isomorphism, it
follows that ηC = ηG(D) is also an isomorphism.

Corollary 6.2.2.19.03UZ Let F : C → D be a functor of ∞-categories. Then F is an equivalence
if and only if it satisfies the following pair of conditions:

https://kerodon.net/tag/02SU
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(1) The functor F is conservative. That is, a morphism u of C is an isomorphism if and
only if F (u) is an isomorphism in D.

(2) The functor F admits a fully faithful right adjoint G : D → C.

Proof. Suppose that conditions (1) and (2) are satisfied; we will show that F is an equivalence
of ∞-categories (the converse is immediate from the definitions). Combining assumption
(2) with Corollary 6.2.2.17, we can choose a functor G : D → C and a natural isomorphism
ϵ : F ◦G ∼−→ idD which is the counit of an adjunction between F and G. Let η : idC → G ◦F
be a natural transformation which is compatible up to homotopy with ϵ, in the sense of
Definition 6.2.1.1. For each object C ∈ C, the morphism ηC fits into a commutative diagram

(F ◦G ◦ F )(C)
ϵF (C)

''
F (C)

F (ηC)
77

idF (C) // F (C)

in the ∞-category D, where ϵF (C) and idF (C) are isomorphisms. It follows that F (ηC) is
also an isomorphism in D. Applying assumption (1), we deduce that ηC is an isomorphism
in C. Allowing the object C to vary (and invoking the criterion of Theorem 4.4.4.4), we
deduce that η is also a natural isomorphism, so that F and G are homotopy inverse to one
another.

Corollary 6.2.2.20. 02FGLet C be an ∞-category, let L be a functor from C to itself, and let
η : idC → L be a natural transformation. The following conditions are equivalent:

(1) For every object X ∈ C, the morphisms L(ηX) : L(X)→ L(L(X)) and ηL(X) : L(X)→
L(L(X)) are isomorphisms.

(2) There exists a full subcategory C′ ⊆ C for which η exhibits L as a C′-reflection functor,
in the sense of Definition 6.2.2.12.

Proof. The implication (2)⇒ (1) follows from Proposition 6.2.2.15. Conversely, suppose that
condition (1) is satisfied, and let C′ ⊆ C be the full subcategory spanned by those objects of
the form L(X) for X ∈ C. Assumption (1) guarantees that ηY is an isomorphism for each
Y ∈ C′, so that η exhibits L as a C′-reflection functor by virtue of Proposition 6.2.2.15.

Exercise 6.2.2.21. 02FHSuppose that the conditions of Corollary 6.2.2.20 are satisfied and let
C′ ⊆ C be a full subcategory of C. Show that η exhibits L as a C′-reflection functor if and
only if the following conditions are satisfied:

• For each object X ∈ C, the object L(X) is contained in C′.

• For each object Y ∈ C′, there exists an isomorphism Y → L(X) for some object X ∈ C.

https://kerodon.net/tag/02FG
https://kerodon.net/tag/02FH
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If the subcategory C′ ⊆ C is replete (Example 4.4.1.12), then it is uniquely determined by
these conditions.

Reflective subcategories are stable under pullback along cocartesian fibrations:

Proposition 6.2.2.22.02SV Let U : E → C be a cocartesian fibration of ∞-categories and let
C′ ⊆ C be a reflective subcategory. Then the pullback E ′ = C′×C E is a reflective subcategory
of E. Moreover, a morphism f : X → Y in E exhibits Y as a E ′-reflection of X if and only
if it satisfies the following pair of conditions:

(1) The morphism f is U -cocartesian.

(2) The morphism U(f) : U(X) → U(Y ) exhibits U(Y ) as a C′-reflection of U(X) in the
∞-category C.

Proof. We first show that, if f : X → Y is a morphism of E satisfying conditions (1) and (2),
then f exhibits Y as a E ′-reflection of X. It follows from condition (2) that U(Y ) belongs
to C′, so that Y belongs to E ′. It will therefore suffice to show that for each object Z ∈ E ,
precomposition with f induces a homotopy equivalence θ : HomE(Y,Z)→ HomE(X,Z). Let
us abuse notation by identifying θ with the restriction map {f}×HomE(X,Y )HomE(X,Y, Z)→
HomE(X,Z), so that we have a commutative diagram of Kan complexes

{f} ×HomE(X,Y ) HomE(X,Y, Z) θ //

��

HomE(X,Z)

��
{U(f)} ×HomC(U(X),U(Y )) HomC(U(X), U(Y ), U(Z)) θ // HomC(U(X), U(Z)).

Assumption (1) guarantees that this diagram is a homotopy pullback square (Proposition
5.1.2.1), and assumption (2) guarantees that θ is a homotopy equivalence of Kan complexes.
Applying Corollary 3.4.1.5, we conclude that θ is also a homotopy equivalence.

We now show that E ′ is a reflective subcategory of E . Fix an object X ∈ E . Since C′ is a
reflective subcategory of C, there exists a morphism f : U(X)→ Y in C which exhibits Y
as a C′-reflection of U(X). Since U is a cocartesian fibration, we can write f = U(f) for
some U -cocartesian morphism f : X → Y of E . By construction, the morphism f satisfies
conditions (1) and (2), and therefore exhibits Y as an E ′-reflection of X.

To complete the proof, it will suffice to show that if h : X → Z is another morphism
which exhibits Z as a E ′-reflection of X, then h also satisfies conditions (1) and (2). By

https://kerodon.net/tag/02SV
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virtue of Remark 6.2.2.3, there exists a 2-simplex

Y

g

��
X

f

??

h // Z,

of E , where g : Y → Z is an isomorphism of E ′. In particular, g is U -cocartesian (Proposition
5.1.1.8), so that h satisfies (1) by virtue of Corollary 5.1.2.4. Since U(g) is an isomorphism
in C′, condition (2) follows from Remark 6.2.2.3.

6.2.3 Correspondences

02FJLet U : E → C be a cocartesian fibration of ∞-categories. To every morphism e : C → D

of C, Proposition 5.2.2.8 supplies a covariant transport functor

e! : EC = {C} ×C E → {D} ×C E = ED,

which is well-defined up to isomorphism. Our goal in this section is to show that U is a
cartesian fibration if and only if each of the functors e! : EC → ED admits a right adjoint
(Proposition 6.2.3.5). Moreover, if this condition is satisfied, then the right adjoint to e!
is given by the contravariant transport functor e∗ : ED → EC of Proposition 5.2.2.16. We
begin by analyzing the special case C = ∆1.

Lemma 6.2.3.1. 02FKLet E be an ∞-category equipped with a functor U : E → ∆1, having fibers
E0 = {0} ×∆1 E and E1 = {1} ×∆1 E. Let f : X → Y be a morphism of E. Then:

• The morphism f exhibits X as a E0-coreflection of Y (in the sense of Definition 6.2.2.1)
if and only if X belongs to E0 and f is π-cartesian.

• The morphism f exhibits Y as a E1-reflection of X if and only if Y belongs to E1 and
f is π-cocartesian.

Proof. This is a special case of Corollary 5.1.2.3.

Corollary 6.2.3.2. 02FLLet E be an ∞-category equipped with a functor U : E → ∆1. Then:

• The functor U is a cartesian fibration if and only if the full subcategory {0} ×∆1 E ⊆ E
is coreflective.

• The functor U is a cocartesian fibration if and only if the full subcategory {1}×∆1 E ⊆ E
is reflective.

https://kerodon.net/tag/02FJ
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Remark 6.2.3.3.02FM Let U : E → ∆1 be a functor of∞-categories having fibers E0 = {0}×∆1 E
and E1 = {1} ×∆1 E . Suppose that U is a cocartesian fibration, so that the full subcategory
E1 ⊆ E is reflective (Corollary 6.2.3.2). By virtue of Lemma 6.2.2.14, there exists a E1-
reflection functor L : E → E1. Then the restriction L|E0 : E0 → E1 is given by covariant
transport along the unique nondegenerate edge e of ∆1 (in the sense of Definition 5.2.2.4).
More precisely, if η : idE → L is a natural transformation which exhibits L as a E1-reflection
functor, then η carries each object X ∈ E to a U -cocartesian morphism ηX : X → L(X), so
that η restricts to a natural transformation idE0 → L|E0 which witnesses L|E0 as given by
covariant transport along e.

Similarly, if U is a cartesian fibration, then the full subcategory E0 ⊆ E is coreflective;
if L′ : E → E0 is a E0-coreflection functor, then the restriction L′|E1 : E1 → E0 is given by
contravariant transport along e, in the sense of Definition 5.2.2.14.

Proposition 6.2.3.4.02FN Let E be an ∞-category equipped with a cocartesian fibration U : E →
∆1, having fibers E0 = {0} ×∆1 E and E1 = {1} ×∆1 E. Let F : E0 → E1 be a functor given
by covariant transport along the nondegenerate edge e of ∆1. Then the functor F admits a
right adjoint if and only if U is a cartesian fibration. In this case, the right adjoint to F is
given by contravariant transport along e.

Proof. Let ι0 : E0 ↪→ E and ι1 : E1 ↪→ E denote the inclusion maps. Since U is a cocartesian
fibration, E1 is a reflective subcategory of E (Corollary 6.2.3.2). Let L : E → E1 be a
E1-reflection functor (Lemma 6.2.2.14). Without loss of generality, we may assume that the
functor F : E0 → E1 factors as a composition E0

ι0−→ E L−→ E1 (Remark 6.2.3.3). Note that L
is a left adjoint to the inclusion ι1 : E1 ↪→ E (Proposition 6.2.2.15).

Suppose that U is also a cartesian fibration, so that the subcategory E0 ⊆ E is coreflective
(Corollary 6.2.3.2). Let L′ : E → E0 be a E0-coreflection functor (Corollary 6.2.3.2), so that
L′ can be regarded as a right adjoint to ι0 (Proposition 6.2.2.15). Invoking Remark 6.2.1.8,
we conclude that the composite functor F = L ◦ ι0 has a right adjoint G, given by the
composition L′ ◦ ι1 = L′|E1 . Moreover, Remark 6.2.3.3 guarantees that G : E1 → E0 is given
by contravariant transport along e.

We now prove the converse. Suppose that the functor F : E0 → E1 admits a right adjoint
G : E1 → E0. Fix an object Z ∈ E1; we wish to show that there exists an object Y ∈ E0 and
a U -cartesian morphism f : Y → Z. Let ϵ : F ◦G → idE1 be the counit of an adjunction
between F and G. Set Y = G(Z), so that ϵ determines a morphism ϵZ : F (Y ) → Z in
the ∞-category E1. Let η : idE → L be a natural transformation which exhibits L as a
E1-reflection functor, so that η determines a morphism ηY : Y → F (Y ). Let f : Y → Z be a
composition of ηY with ϵZ . We will complete the proof by showing that f is U -cartesian.
To prove this, it will suffice to show that for every object X ∈ E0, the composite map

HomE0(X,Y ) [ηY ]◦−−−→ HomE(X,F (Y )) = HomE(X, (F ◦G)(Z)) [ϵZ ]◦−−−→ MapE(X,Z)

https://kerodon.net/tag/02FM
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is an isomorphism in the homotopy category hKan (see Corollary 5.1.2.3). Unwinding the
definitions, we see that this map factors as a composition

HomE0(X,G(Z)) F−→ HomE1(F (X), (F ◦G)(Z)) [ϵZ ]◦−−−→ HomE1(F (X), Z) ◦[ηX ]−−−→ HomE(X,Z),

where the composition of the first two maps is an isomorphism in hKan because ϵ is the
counit of an adjunction (see Proposition 6.2.1.17), and third is an isomorphism because ηX
exhibits F (X) as a E1-reflection of X.

Proposition 6.2.3.5. 02FPLet U : E → C be a cocartesian fibration of simplicial sets. The
following conditions are equivalent:

(1) The morphism U is a cartesian fibration of simplicial sets.

(2) For every edge e : C → D of the simplicial set C, the covariant transport functor
e! : EC → ED of Notation 5.2.2.9 admits a right adjoint.

Moreover, if these conditions are satisfied and e : C → D is an edge of C, then the
contravariant transport functor e∗ : ED → EC of Notation 5.2.2.17 is right adjoint to e!.

Proof. Assume first that condition (1) is satisfied and let e : C → D be an edge of the
simplicial set C, which we identify with a morphism ∆1 → C. Applying Proposition 6.2.3.4
to the projection map ∆1 ×C E → ∆1, we deduce that the covariant transport functor
e! : EC → ED is right adjoint to the contravariant transport functor e∗ ED → EC , which
proves (2).

We now show that (2) implies (1). By virtue of Proposition 5.1.4.7, we may assume
without loss of generality that C = ∆n is a standard simplex. For 0 ≤ i ≤ n, let E i denote
the fiber {i} ×∆n E , which we regard as a full subcategory of E . We wish to show that,
for every pair of integers 0 ≤ j < k ≤ n and every object Z ∈ Ek, there exists an object
Y ∈ Ej and a U -cartesian morphism g : Y → Z in E . Proposition 6.2.3.4 implies that
the projection map N•({j < k}) ×∆n E → N•({j < k}) is a cartesian fibration, so we can
choose an object Y ∈ Ej and a morphism g : Y → Z which is locally U -cartesian. We will
complete the proof by showing that g is U -cartesian. To prove this, we must show that for
each integer 0 ≤ i ≤ j and each object W ∈ E i, composition with the homotopy class [g]
induces an isomorphism HomE(W,Y ) [g]◦−−→ HomE(W,Z) in the homotopy category of Kan
complexes hKan (see Corollary 5.1.2.3). Since U is a cocartesian fibration, we can choose a
U -cocartesian morphism f : W → X, where X belongs to Ej . We conclude by observing

https://kerodon.net/tag/02FP
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that there is a commutative diagram

HomE(X,Y ) [g]◦
∼

//

◦[f ]∼

��

HomC(X,Z)

◦[f ]∼

��
HomE(W,Y ) [g]◦ // HomE(W,Z)

in the homotopy category hKan, where the upper horizontal map is an isomorphism by virtue
of our assumption that g is locally U -cartesian, and the vertical maps are isomorphisms by
virtue of our assumption that f is U -cocartesian (Corollary 5.1.2.3).

6.2.4 Local Existence Criterion

02FQ Let G : D → C be a functor between categories. Suppose that G admits a left adjoint
F : C → D. For each object X ∈ C, the value F (X) ∈ D is determined, up to canonical
isomorphism, by the property that it corepresents the functor Z 7→ HomD(X,G(Z)): that
is, there exists a bijection HomD(F (X), Z) ≃ HomC(X,G(Z)) which depends functorially
on Z. This observation has a converse: if, for every object X ∈ C, the functor

D → Set Z 7→ HomC(X,G(Z))

is corepresentable by an object of D, then the functor G admits a left adjoint F : C → D
(Corollary 6.2.4.4). Our goal in this section is to establish a counterpart of this criterion in
the ∞-categorical setting. We begin with a simple observation.

Proposition 6.2.4.1.02FV Let G : D → C be a functor of ∞-categories. Then G admits a left
adjoint if and only if, for every object X ∈ C, the following condition is satisfied:

(∗X) There exists an object Y ∈ D and a morphism u : X → G(Y ) in C such that, for every
object Z ∈ D, the composite map

HomD(Y,Z) G−→ HomC(G(Y ), G(Z)) ◦[u]−−→ HomC(X,G(Z))

is a homotopy equivalence of Kan complexes.

Proof. We first prove necessity. Suppose that there exists a functor F : C → D and a natural
transformation η : idC → G ◦F which exhibits F as a left adjoint of G. Fix an object X ∈ C
and set Y = F (X). Then η determines a morphism ηX : X → G(Y ) which satisfies the
requirement of condition (∗X) (Proposition 6.2.1.17).

We now prove sufficiency. Let E denote the relative join C ⋆C D and let U : E → ∆1 be
the cartesian fibration of Proposition 5.2.3.15. Let us abuse notation by identifying the fibers

https://kerodon.net/tag/02FQ
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{0} ×∆1 E and {1} ×∆1 E with C and D, respectively. Fix an object X ∈ C, and suppose
that there exists an object Y ∈ D together with a morphism u : X → G(Y ) satisfying the
requirement of condition (∗X). Then we can identify u with a morphism f : X → Y in the
∞-category E . Our assumption on u guarantees that the morphism f is U -cocartesian (see
Corollary 5.1.2.3). Consequently, if condition (∗X) is satisfied for every object X ∈ C, then
U is a cocartesian fibration. Applying Proposition 6.2.3.4, we conclude that G admits a left
adjoint.

Corollary 6.2.4.2. 02J9Let G : D → C be a functor of ∞-categories. The following conditions
are equivalent:

(1) The functor G admits a left adjoint F : C → D.

(2) For every left fibration C̃ → C, if the ∞-category C̃ has an initial object, then the
∞-category D×C C̃ also has an initial object.

(3) For every object X ∈ C, the ∞-category D×C CX/ has an initial object.

(4) For every corepresentable hKan-enriched functor λ : hC → hKan, the composite functor

hD hG−−→ hC λ−→ hKan

is also corepresentable (in the sense of Definition 5.6.6.10).

(5) For every corepresentable functor λ : C → S of ∞-categories, the composite functor

D G−→ C λ−→ S

is also corepresentable (in the sense of Definition 5.6.6.1).

Proof. The equivalence (1)⇔ (4) is a reformulation of Proposition 6.2.4.1. The implication
(2)⇒ (3) is immediate. To see that (3) implies (4), we observe that if λ : hC → hKan is an
hKan-enriched functor which is corepresentable by an object X ∈ C, then λ◦hG is isomorphic
to the enriched homotopy transport representation of the left fibration D×C CX/ → D. If
D×C CX/ has an initial object, then this functor is corepresentable by virtue of Proposition
5.6.6.21.

The implication (4) ⇒ (5) follows from Remark 5.6.6.11. We will complete the proof
by showing that (5) implies (2). Let U : C̃ → C be a left fibration, and let TrC̃/ C : C → S
be a covariant transport representation for U (see Definition 5.6.5.1). If C̃ has an initial
object, then the functor TrC̃/ C is corepresentable (Proposition 5.6.6.21). Assumption (5)
then guarantees that the functor TrC̃/ C ◦G is also corepresentable. Identifying TrC̃/ C ◦G
with the covariant transport representation of the left fibration D×C C̃ → D, we see that the
∞-category D×C C̃ also has an initial object (Proposition 5.6.6.21).

https://kerodon.net/tag/02J9
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Remark 6.2.4.3.038S Let G : D → C be a functor of ∞-categories which satisfies the equivalent
conditions of Corollary 6.2.4.2, so that G admits a left adjoint F : C → D. For each object
X ∈ C, the value F (X) ∈ D admits several characterizations:

• The object F (X) corepresents the hKan-enriched functor

hD hG−−→ hC HomhC(X,•)
−−−−−−−−→ hKan.

• The object F (X) corepresents the functor of ∞-categories

D G−→ C hX

−−→ S,

where hX is the functor corepresented by X.

• The object F (X) is the image in D of an initial object of the ∞-category D×C CX/.

Corollary 6.2.4.4.02FW Let G : D → C be a functor between ordinary categories. The following
conditions are equivalent:

(1) The functor G admits a left adjoint F : C → D.

(2) For every object X ∈ C, the set-valued functor

D → Set Z 7→ HomC(X,G(Z))

is corepresentable.

Corollary 6.2.4.5.02FX Let F : C → D and G : D → C be functors between ∞-categories, and
let η : idC → G ◦ F be a natural transformation. The following conditions are equivalent:

(1) The natural transformation η is the unit of an adjunction between F and G.

(2) For every pair of objects X ∈ C and Y ∈ D, the composite map

HomD(F (X), Y ) G−→ HomC((G ◦ F )(X), G(Y )) ◦[ηX ]−−−→ HomC(X,G(Y ))

is a homotopy equivalence of Kan complexes.

(3) The functor F admits a right adjoint. Moreover, for every pair of objects X ∈ C and
Y ∈ D, the composite map

HomhD(F (X), Y ) G−→ HomhC((G ◦ F )(X), G(Y )) ◦[ηX ]−−−→ HomhC(X,G(Y ))

is a bijection of sets.

https://kerodon.net/tag/038S
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Proof. The implication (1)⇒ (2) follows from Proposition 6.2.1.17, the implication (2)⇒ (3)
follows from Proposition 6.2.4.1. We will complete the proof by showing that (3)⇒ (1). Note
that, if condition (3) is satisfied, then the natural transformation η exhibits hG : hD → hC
as a right adjoint of the functor hF : hC → hD (see Variant 6.1.2.11). Invoking Proposition
6.2.1.14, we deduce that η is the unit of an adjunction between F and G.

Corollary 6.2.4.6. 02KDLet G : D → C be a functor of ∞-categories and let u : K → D
be a morphism of simplicial sets, so that G induces a functor of coslice ∞-categories
G′ : D/u → C/(G◦u). If the functor G admits a left adjoint, then the functor G′ also admits
a left adjoint.

Proof. We will use the criterion of Corollary 6.2.4.2. Fix an object X ∈ C/(G◦u); we wish to
show that the ∞-category

E = D/u×C/G◦u(C/(G◦u))X/
has an initial object. Let X denote the image of X in the ∞-category C. Unwinding the
definitions, we can identify X with a morphism of simplicial sets u : K → (D×C CX/), and
E with the slice ∞-category (D×C CX/)/u. Since G admits a left adjoint, the ∞-category
D×C CX/ has an initial object (Corollary 6.2.4.2). Applying Corollary 7.1.3.20, we conclude
that E also has an initial object.

6.2.5 Digression: ∞-Categories with Short Morphisms

03XBLet C be a category. Recall that C is free if every morphism f : X → Y of C factors
uniquely as a composition

X = X0
f1−→ X1

f2−→ X2 → · · ·
fn−→ Xn = Y,

where each fi is an indecomposable morphism of C (see Proposition 1.3.7.11). In this case,
Proposition 1.5.7.3 asserts that the inclusion map G ↪→ N•(C) is inner anodyne, where G is
the 1-dimensional simplicial set whose vertices are the objects of C and whose nondegenerate
edges are the indecomposable morphisms of C. Our goal in this section is to prove a more
general result, where we relax the assumption that C is free. First, we need a definition.

Definition 6.2.5.1. 03XCLet C be an ∞-category and let S be a collection of morphisms of C.
An S-optimal factorization of f is a 2-simplex

03XDY

s

��
X

g

??

f // Z

(6.2)

https://kerodon.net/tag/02KD
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of C, corresponding to a morphism g̃ : X̃ → Ỹ in the ∞-category C/Z with the following
properties:

• The morphism s : Y → Z belongs to S.

• Let Ỹ ′ be an object of C/Z corresponding to a morphism s′ : Y ′ → Z which belongs to
S. Then composition with g̃ induces a homotopy equivalence of Kan complexes

HomC/Z
(Ỹ , Ỹ ′)→ HomC/Z

(X̃, Ỹ ′).

If these conditions are satisfied, we say that the diagram (6.2) is an S-optimal factorization
of f .

Example 6.2.5.2.03XE In the situation of Definition 6.2.5.1, assume that C is (the nerve of)
an ordinary category. Then an S-optimal factorization of a morphism f : X → Z is a pair
of morphisms X g−→ Y

s−→ Z, where s ∈ S and s ◦ g = f , which has the following universal
property: for every other pair of morphisms X g′−→ Y ′

s′−→ Z with s′ ∈ S and s′ ◦ g′ = f , there
is a unique morphism h : Y → Y ′ satisfying h ◦ g = g′ and s′ ◦ h = s, as indicated in the
diagram

Y

h

��

s

  
X

g

>>

g′

  

Z

Y ′.

s′

>>

Stated more informally, the pair (g, s) is universal among all factorizations of f through a
morphism which belongs to S.

Example 6.2.5.3.03XF Let G be a directed graph, let C = Path[G] denote its path category
(Construction 1.3.7.1), and let S be the collection of morphisms of C which are either identity
morphisms or are indecomposable. Then every morphism f : X → Z in C admits a (unique)
S-optimal factorization:

• If f = idX is an identity morphism, then its S-optimal factorization is given by the
diagram X

idX−−→ X
idX−−→ X.

• If f is not an identity morphism, then it admits a unique factorization X
g−→ Y

s−→ Z,
where s is an indecomposable morphism of C (that is, a morphism which corresponds
to an edge of the graph G); this factorization is S-optimal.

https://kerodon.net/tag/03XE
https://kerodon.net/tag/03XF
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Definition 6.2.5.4. 03XGLet C be an∞-category. A class of short morphisms for C is a collection
S of morphisms of C with the following properties:

(1) Every identity morphism of C belongs to S.

(2) For every 2-simplex
Y

f ′

��
X

f ′′

??

f // Z

of the ∞-category C, if f and f ′ belong to S, then f ′′ also belongs to S.

(3) Every morphism f : X → Z of C admits an S-optimal factorization (Definition 6.2.5.1).

(4) Every morphism of C can be obtained as a composition of morphisms which belong to S.

Remark 6.2.5.5. 03XHLet C be an ∞-category and let S be a class of short morphisms for C.
Let f : X → Y and g : X → Y be morphisms of C which are homotopic. If f belongs to S,
then g also belongs to S. This follows by applying property (2) of Definition 6.2.5.4 to a
2-simplex

Y

id

��
X

g

??

f // Y.

Notation 6.2.5.6. 03XJLet C be an ∞-category and let S be a class of short morphisms for
C. We let Cshort ⊆ C denote the simplicial subset consisting of those simplices σ : ∆n → C
having the following property:

(∗) For every pair of integers 0 ≤ i ≤ j ≤ n, the induced morphism σ(i)→ σ(j) belongs to
S.

Note that, since S contains all identity morphisms of C, condition (∗) is automatically
satisfied in the case i = j. In particular, every vertex of C is contained in Cshort, and an edge
of C is contained in Cshort if and only if belongs to S.

Remark 6.2.5.7. 03XKLet C be an ∞-category and let S be a class of short morphisms for C.
Then a simplex σ : ∆n → C belongs to Cshort if and only if, for every integer 0 ≤ i < n,
the morphism σ(i)→ σ(n) belongs to S. Condition (∗) of Notation 6.2.5.6 can be deduced

https://kerodon.net/tag/03XG
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from this a priori weaker assumption by applying assumption (2) of Definition 6.2.5.4 to the
diagrams

σ(j)

!!
σ(i) //

==

σ(n)

for i ≤ j ≤ n.

Remark 6.2.5.8.03XL Let C be an ∞-category and let S be a class of short morphisms of C.
Then the simplicial set Cshort is never an ∞-category, except in the trivial situation where S
is the class of all morphisms of C (in which case we have Cshort = C). However, for every
object Z ∈ C, the simplicial set Cshort

/Z = (Cshort)/Z is an∞-category, since it can be identified
with the full subcategory of C/Z spanned by those morphisms s : Y → Z which belong to S.

Remark 6.2.5.9.03XM Let C be an ∞-category, let S be a class of short morphisms of C, and let
f : X → Z be a morphism of C, which we identify with an object X̃ of the slice ∞-category
C/Z . Then an S-optimal factorization of f can be viewed as a morphism X̃ → Ỹ in C/Z
which exhibits Ỹ as a Cshort

/Z -reflection of X̃, in the sense of Definition 6.2.2.1. Consequently,
condition (3) of Definition 6.2.5.4 is equivalent to the requirement that the full subcategory
Cshort
/Z ⊆ C/Z is reflective, for each object Z ∈ C.

We can now state our main result.

Theorem 6.2.5.10.03XN Let C be an ∞-category and let S be a class of short morphisms for C.
Then the inclusion map Cshort ↪→ C is an inner anodyne morphism of simplicial sets.

Example 6.2.5.11.03XP Let G be a directed graph and let C = Path[G] denote its path category
(Construction 1.3.7.1). Let S be the collection of morphisms of C which are either identity
morphisms or are indecomposable. Then S is a class of short morphisms for the ∞-category
N•(C) (the existence of S-optimal factorizations follows from Example 6.2.5.3, and the
remaining requirements are immediate from the definitions). Moreover, the simplicial set
N•(C)short can be identified with the directed graph G (regarded as a 1-dimensional simplicial
set; see §1.1.6). Applying Theorem 6.2.5.10 in this case, we recover the statement that the
inclusion map G ↪→ N•(C) is inner anodyne (Proposition 1.5.7.3).

Our proof of Theorem 6.2.5.10 will require some auxiliary constructions.

Notation 6.2.5.12.03XQ Let C be an ∞-category, let S be a class of short morphisms for C, and
let f : X → Y be a morphism of C. We let ℓ(f) denote the smallest integer n such that f

https://kerodon.net/tag/03XL
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can be written as the composition of n morphisms of S: that is, there exists an n-simplex
σ : ∆n → C which carries the spine Spine[n] into Cshort, for which the composition

∆1 → N•({0, n}) ↪→ ∆n σ−→ C

coincides with f . Note that condition (4) of Definition 6.2.5.4 guarantees that ℓ(f) < ∞.
We will refer to ℓ(f) as the S-length of f . Note that ℓ(f) = 0 if and only if f is an identity
morphism of C, and ℓ(f) ≤ 1 if and only if f belongs to S.

Lemma 6.2.5.13. 03XRLet C be an ∞-category, let S be a class of short morphisms of C, and
suppose we are given a 2-simplex

03XSY

s

��
X

g

??

f // Z,

(6.3)

of C, where s belongs to S. Then:

(a) If ℓ(f) ≥ 1, then ℓ(g) ≤ ℓ(f).

(b) If ℓ(f) ≥ 2 and the factorization (6.3) is S-optimal, then ℓ(g) = ℓ(f)− 1.

Proof. We prove (a) and (b) by simultaneous induction on the length n = ℓ(f). If n = 1,
then assertion (a) follows from condition (2) of Definition 6.2.5.4 and assertion (b) is vacuous.
We therefore assume that n ≥ 2. We first prove (b). Choose a factorization

Y ′

s′

  
X

g′

??

f // Z,

where s′ ∈ S and ℓ(g′) = n− 1. If the factorization (6.3) is S-optimal, then we can choose a

https://kerodon.net/tag/03XR
https://kerodon.net/tag/03XS
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3-simplex
Y

h

��

s

  
X

g

>>

g′

  

Z

Y ′.

s′

>>

Condition (2) of Definition 6.2.5.4 guarantees that h belongs to S. Our inductive hypothesis
guarantees that the left half of the diagram satisfies assertion (a); so that ℓ(g) ≤ ℓ(g′) =
ℓ(f)− 1. The reverse inequality follows immediately from the definition.

We now prove (a). Choose an S-optimal factorization

Y ′′

s′′

  
X

g′′

>>

f // Z.

It follows from the preceding argument that ℓ(g′′) = n− 1. We then have a commutative
diagram

Y ′′

j

��

s′′

  
X

g′′

>>

g

  

Z

Y,

s

>>

and condition (2) of Definition 6.2.5.4 guarantees that j belongs to S. We therefore obtain
ℓ(g) ≤ ℓ(g′′) + ℓ(j) ≤ (n− 1) + 1 = n, as desired.

Notation 6.2.5.14.03XT Let C be an ∞-category and let S be a class of short morphisms of
C. For every n-simplex σ of C, we let pr(σ) denote the smallest nonnegative integer p such
that, for p ≤ q ≤ n, the morphism σ(q)→ σ(n) belongs to S. We will refer to pr(σ) as the
priority of σ. This definition has the following properties:

https://kerodon.net/tag/03XT
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• The simplex σ has priority 0 if and only if it belongs to the simplicial subset Cshort of
Notation 6.2.5.6 (see Remark 6.2.5.7).

• For each 0 ≤ i ≤ n, the face τ = dni (σ) satisfies pr(τ) ≤ pr(σ). The inequality is strict
if i < pr(σ), and equality holds if pr(σ) ≤ i < n.

• For each 0 ≤ i ≤ n, the degenerate simplex τ = sni (σ) satisfies

pr(τ) =

pr(σ) + 1 if 0 ≤ i < pr(σ)
pr(σ) if pr(σ) ≤ i ≤ n

In the situation of Notation 6.2.5.14, suppose that C is (the nerve of) an ordinary category.
An n-simplex of C can then be viewed as a diagram

X0 → X1 → · · · → Xn,

whose transition maps we denote by fj,i : Xi → Xj . If σ does not belong to Cshort, then the
priority of σ is the smallest integer p for which the morphism fn,p−1 : Xp−1 → Xn does not
belong to S. Then fn,p−1 admits an S-optimal factorization Xp−1

g−→ Y
s−→ Xn. Since the

morphism fn,p : Xp → Xn belongs to S, there is a unique morphism h : Y → Xp for which
the diagram

Y

h

��

s

  
Xp−1

g

==

fp,p−1

!!

Xn

Xp

fn,p

>>

is commutative. The diagram

X0 → · · · → Xp−1
g−→ Y

h−→ Xp → · · · → Xn

then determines an (n+ 1)-simplex σ+ of C having priority p, which satisfies dn+1
p (σ+) = σ.

To prove Theorem 6.2.5.10, we will extend the construction σ 7→ σ+ to the case where C is
an ∞-category.

Lemma 6.2.5.15. 03XULet C be an ∞-category and let S be a class of short morphisms of C.
Then there is a function which associates to each n-simplex σ of C which does not belong to
Cshort an (n+ 1)-simplex σ+ of C, which has the following properties:

https://kerodon.net/tag/03XU
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(1) The face operators satisfy

dn+1
i (σ+) =

σ if i = pr(σ)
dni−1(σ)+ if pr(σ) < i ≤ n.

(2) Let σ = sn−1
j (τ) be a degenerate n-simplex of C. Then

σ+ =

snj (τ+) if 0 ≤ j < pr(τ)
snj+1(τ+) if pr(τ) ≤ j < n.

(3) If σ = τ+ for some (n− 1)-simplex τ of C having priority p > 0, then σ+ = snp (σ).

(4) If pr(σ) = n, then the 2-simplex

∆2 ≃ N•({n− 1 < n < n+ 1}) ↪→ ∆n+1 σ+
−−→ C

is an S-optimal factorization.

Exercise 6.2.5.16.03XV Prove Lemma 6.2.5.15 in the special case where C is (the nerve of) an
ordinary category.

We defer the (somewhat tedious) proof of Lemma 6.2.5.15 until the end of this section.

Proof of Theorem 6.2.5.10. Let C be an∞-category and let S be a class of short morphisms
for C. For every nonnegative integer p, let C≤p denote the smallest simplicial subset of C
which contains all simplices of priority ≤ p (so that a nondegenerate simplex of C belongs to
C≤p if and only if it has priority ≤ p). Then C is the colimit of the sequence of inclusion
maps

Cshort = C≤0 ↪→ C≤1 ↪→ C≤2 ↪→ · · ·

We will complete the proof by showing that each of these inclusion maps is inner anodyne.
For the remainder of the proof, we fix a positive integer p; our goal is to show that the
inclusion map C≤p−1 ↪→ C≤p is inner anodyne.

Choose a function σ 7→ σ+ satisfying the requirements of Lemma 6.2.5.15. For each
integer n ≥ 0, let C≤p(n) denote the simplicial subset of C≤p generated by C≤p−1 together
with all simplices of the form σ+, where σ is a simplex of C having priority p and dimension
≤ n. By virtue of requirement (2) of Lemma 6.2.5.15, it suffices to allow σ to range over
nondegenerate simplices which satisfy these conditions. Note that each C≤p(n) contains the
n-skeleton of C≤p, so that C≤p can be realized as the colimit of the sequence

C≤p−1 = C≤p(0) ↪→ C≤p(1) ↪→ C≤p(2) ↪→ C≤p(3) ↪→ · · ·

https://kerodon.net/tag/03XV


1328 CHAPTER 6. ADJOINT FUNCTORS

It will therefore suffice to show that each of these inclusions is inner anodyne. For the
remainder of the proof, we fix an integer n > 0; our goal is to show that the inclusion map
C≤p(n− 1) ↪→ C≤p(n) is inner anodyne.

Let {σt}t∈T denote the collection of n-simplices of C which have priority p but are not
contained in C≤p(n − 1). We first claim that C≤p(n) is generated by C≤p(n − 1) together
with the collection of (n+ 1)-simplices {σ+

t }t∈T . To prove this, it suffices to show that if σ
is an n-simplex of C which belongs to C≤p(n− 1), then σ+ also belongs to C≤p(n− 1). If σ
is degenerate, then we can write σ+ = sni (σ+

0 ) when σ0 is an (n − 1)-simplex of C having
priority ≤ p (Lemma 6.2.5.15), and the desired conclusion follows from the observation that
σ+

0 is contained in C≤p(n−1). We may therefore assume that σ is a nondegenerate n-simplex
of C. If σ has priority < p, then σ+ also has priority < p and is therefore contained in
C≤p−1. We may therefore assume that σ has priority p, and must therefore be of the form
τ+ where τ is an (n− 1)-simplex of C having priority p. Condition (3) of Lemma 6.2.5.15
then guarantees that σ+ can be obtained from σ by applying a degeneracy operator, and is
therefore contained in C≤p(n− 1) as desired.

For each t ∈ T , we define the complexity of t to be the integer c(t) = ∑n
q=p ℓ(σt(p− 1)→

σt(q)). Using Proposition 4.7.1.35, we can choose a well-ordering on T for which the
complexity function

c : T → Z≥0 t 7→ c(t)

is nondecreasing. For each t ∈ T , let C≤p≤t (n) denote the simplicial subset of C≤p(n) generated
by C≤p(n− 1) together with the simplices σ+

s for s ≤ t, and define C≤p<t (n) similarly. Then
the inclusion map C≤p(n − 1) ↪→ C≤p(n) can be realized as a transfinite composition of
inclusion maps {C≤p<t (n) ↪→ C≤p≤t (n)}t∈T . It will therefore suffice to show that each of these
inclusion maps is inner anodyne.

Fix an element t ∈ T and let Lt ⊆ ∆n+1 be the inverse image of C≤p<t (n) under the map
σ+
t : ∆n+1 → C, so that we have a pullback diagram of simplicial sets

03XWLt //

��

C≤p<t (n)

��

∆n+1 σ+
t // C≤p≤t (n).

(6.4)

We will complete the proof by showing that Lt coincides with the inner horn Λn+1
p ⊆ ∆n+1,

so that the diagram (6.4) is also a pushout square (Lemma 3.1.2.11). This is equivalent to
the following more concrete assertion:

(∗t) For 0 ≤ i ≤ n+ 1, the n-simplex dn+1
i (σ+

t ) belongs to C≤p<t (n) if and only if i ̸= p.

Our proof proceeds by induction on t. We consider several cases:

https://kerodon.net/tag/03XW
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• For 0 ≤ i < p, the n-simplex dn+1
i (σ+

t ) has priority < p, and is therefore contained in
C<p ⊆ C≤p(n− 1) ⊆ C≤p<t (n).

• For i = p, the n-simplex dn+1
i (σ+

t ) coincides with σt (Lemma 6.2.5.15), which is not
contained in C≤p(n − 1). Consequently, if σt is contained in C≤p<t (n − 1), then there
exists some t′ < t such that σt is contained in C≤p≤t′(n − 1) but not in C≤p<t′(n − 1).
Applying our inductive hypothesis, we deduce that σt = σt′ , which contradicts the
inequality t′ < t.

• For p < i ≤ n, condition (1) of Lemma 6.2.5.15 implies that dn+1
i (σ+

t ) coincides with
dni−1(σt)+, and therefore belongs to C≤p(n− 1) ⊆ C≤p<t (n).

• Suppose that i = n+ 1 and set τ = dn+1
i (σ+

t ); we wish to show that τ is contained in
C≤p<t (n). Note that τ has priority ≤ p. If τ is contained in C≤p(n− 1), there is nothing
to prove. We may therefore assume without loss of generality that τ is contained
in T : that is, we have τ = σt′ for some t′ ∈ T . Set X = σt(p − 1) = σt′(p − 1).
For p ≤ q ≤ n, let fq : X → σt(q) be the morphism determined by σt, and define
f ′q : X → σt′(q) similarly. By construction, the morphism fq coincides with f ′q+1 for
p ≤ q < n. Moreover, the restriction of σ+

t to the 2-simplex N•({p− 1 < p < n+ 1}
determines a diagram

σt′(p)

##
X

f ′p
==

fn // σt(n)

which is an S-optimal factorization of fn, so that ℓ(f ′p) = ℓ(fn)− 1 by virtue of Lemma
6.2.5.13. It follows that the complexity c(σt′) is given by

c(σt′) =
n∑
q=p

ℓ(f ′q)

= ℓ(f ′p) +
n∑

q=p+1
ℓ(f ′q)

= ℓ(fn)− 1 +
n−1∑
q=p

ℓ(fq)

= (
n∑
q=p

ℓ(fq))− 1

= c(σt)− 1.

We therefore have t′ < t, so that τ = σt′ = dn+1
p (σ+

t′ ) is contained in C≤p≤t′(n) ⊆ C≤p<t (n).
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Proof of Lemma 6.2.5.15. Let C be an ∞-category and let S be a class of short morphisms
for C. Our construction proceeds by recursion. Fix an integer n ≥ 0. Assume that we
have constructed a function τ 7→ τ+ on simplices of C having dimension < n and priority
> 0, satisfying conditions (1) through (4) of Lemma 6.2.5.15. Let σ be an n-simplex of C
having priority > 0; we wish to show that there is an (n+ 1)-simplex σ+ which also satisfies
conditions (1) through (4). Let us say that σ of C is free if it is not of the form τ+, where τ
is an (n− 1)-simplex of priority > 0. We divide the construction into three cases:

(a) The n-simplex σ is not free.

(b) The n-simplex σ is free and degenerate.

(c) The n-simplex σ is free and nondegenerate.

We begin with case (a). Assume that σ = τ+, where τ is an (n− 1)-simplex of C having
priority p > 0. It follows from our inductive hypothesis that σ has the same priority p,
and that τ = dnp (σ). In particular, τ is uniquely determined by σ. In this case, we define
σ+ = snp (σ), so that condition (3) is satisfied by construction. Since p ≤ n−1 < n, condition
(4) is vacuous. Note that the faces dn+1

p (σ+) and dn+1
p+1 (σ+) coincide with σ = τ+ = dnp (σ)+,

so that condition (1) is satisfied for i = p and i = p+ 1. For p+ 1 < i ≤ n, we compute

dn+1
i (σ+) = dn+1

i (snp (τ+))
= sn−1

p (dni−1(τ+))
= sn−1

p (dn−1
i−2 (τ)+)

= (dn−1
i−2 (τ)+)+

= dni−1(τ+)+

= dni−1(σ)+.

It remains to verify condition (2). Suppose that σ = sn−1
j (σ′) for some (n− 1)-simplex

σ′ of C. Note that, since σ has priority p, we must have j ̸= p− 1 (see Notation 6.2.5.14).
We first consider the case j < p− 1, so that σ′ has priority p− 1. In this case, we wish to
show that σ+ = snj (σ′+). Set τ ′ = dn−1

p−1 (σ′). We then have

τ = dnp (σ) = dnp (sn−1
j (σ′)) = sn−2

j (dn−1
p−1 (σ′)) = sn−2

j (τ ′),

so that σ = τ+ = sn−1
j (τ ′+). Applying the face operator dnj , we obtain σ′ = τ ′+, so that

σ′+ = sn−1
p−1 (σ′). The desired result now follows from the calculation

σ+ = snp (σ) = snp (sn−1
j (σ′)) = snj (sn−1

p−1 (σ′)) = snj (σ′+).
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We now treat the case j ≥ p, so that σ′ has priority p. In this case, we wish to show
that σ+ = snj+1(σ′+). If j = p, this follows from the calculation

σ+ = snp (σ)
= snp (sn−1

p (σ′))
= snp+1(sn−1

p (σ′))
= snp+1(σ)
= snp+1(τ+).

Let us therefore assume that j > p, and set τ ′ = dn−1
p (σ′). We then have

τ = dnp (σ) = dnp (sn−1
j (σ′)) = sn−2

j−1 (dn−1
p (σ′)) = sn−2

j−1 (τ ′),

so that σ = τ+ = sn−1
j (τ ′+). Applying the face operator dnj , we deduce that σ′ = τ ′+, so

that σ′+ = sn−1
p (σ′). The desired result now follows from the calculation

σ+ = snp (σ) = snp (sn−1
j (σ′)) = snj+1(sn−1

p (σ′)) = snj+1(σ′+).

This completes our treatment of case (a).
We now consider case (b). Assume that σ is a free simplex of C of the form sn−1

j (τ).
Choose j as small as possible and let p be the priority of τ . We first treat the case where
j < p, so that σ has priority p+1 (see Notation 6.2.5.14). In this case, we define σ+ = snj (τ+),
so that

dn+1
p+1 (σ+) = dn+1

p+1 (snj (τ+)) = sn−1
j (dnp (τ+)) = sn−1

j (τ) = σ.

For p+ 1 < i ≤ n, a similar calculation gives

dn+1
i (σ+) = dn+1

i (snj (τ+))
= sn−1

j (dni−1(τ+))
= sn−1

j (dn−1
i−2 (τ)+)

= sn−1
j (dn−1

i−2 (τ))+

= dni−1(sn−1
j (τ))+

= dni−1(σ)+,

which proves (1).
To verify (2), suppose that σ = sn−1

j′ (τ ′), for some (n− 1)-simplex τ ′ of C. Note that we
must have j′ ≥ j. Since σ has priority p+ 1, we also have j′ ≠ p. Assume first that j′ < p,
so that τ ′ has priority p. In this case, we wish to show that σ+ = snj′(τ ′+). If j′ = j, this
is immediate. We may therefore assume that j′ > j, so that we can write τ ′ = sn−2

j (τ ′′)
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and τ = sn−2
j′−1(τ ′′) for some unique (n− 2)-simplex τ ′′ of C. In this case, the desired result

follows from the calculation

σ+ = snj (τ+)
= snj (sn−2

j′−1(τ ′′)+)
= snj (sn−1

j′−1(τ ′′+))
= snj′s

n−1
j (τ ′′+)

= snj′(sn−2
j (τ ′′)+)

= snj′(τ ′+).

If j′ > p, then τ ′ instead has priority p+ 1, and the desired result follows instead from the
calculation

σ+ = snj (τ+)
= snj (sn−2

j′−1(τ ′′)+)
= snj (sn−1

j′ (τ ′′+))
= snj′+1s

n−1
j (τ ′′+)

= snj′+1(sn−2
j (τ ′′)+)

= snj′+1(τ ′+).

Condition (3) is vacuous (since we have assumed that σ is free). To prove (4), we note
that if σ has priority n, then τ has priority (n − 1); the desired result now follows from
the observation that the restriction of σ+ to N•({n− 1 < n < n+ 1}) coincides with the
restriction of τ+ to N•({n− 2 < n− 1 < n}), and is therefore an S-optimal factorization.
This completes the construction in the case j < p.

We now treat the case j ≥ p, so that the simplex σ = sn−1
j (τ) has priority p. In this

case, we set σ+ = snj+1(τ+). Condition (3) again vacuous (since σ is assumed to be free),
and condition (4) is vacuous since p < n. We next prove (1). Note that we have

dn+1
p (σ+) = dn+1

p (snj+1(τ+)) = sn−1
j (dnp (τ+)) = sn−1

j (τ) = σ.

To complete the proof of (1), we must show that dn+1
i (σ+) = dni−1(σ)+ for p < i ≤ n. For

i ≤ j, this follows from the calculation

dn+1
i (σ+) = dn+1

i (snj+1(τ+))
= sn−1

j (dni (τ+))
= sn−1

j (dn−1
i−1 (τ)+)

= sn−2
j−1 (dn−1

i−1 (τ))+

= dni−1(sn−1
j (τ))+

= dni−1(σ)+.
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For j + 2 < i ≤ n, it follows instead from the calculation

dn+1
i (σ+) = dn+1

i (snj+1(τ+))
= sn−1

j+1 (dni−1(τ+))
= sn−1

j+1 (dn−1
i−2 (τ)+)

= sn−2
j (dn−1

i−2 (τ))+

= dni−1(sn−1
j (τ))+

= dni−1(σ)+.

It will therefore suffice to treat the case i ∈ {j + 1, j + 2}, in which case we have

dn+1
i (σ+) = dn+1

i (snj+1(τ+))
= τ+

= dni−1(sn−1
j (τ))+

= dni−1(σ)+.

To verify condition (2), suppose that σ = sn−1
j′ (τ ′). By construction, we then have

j′ ≥ j ≥ p, so that the simplex τ ′ has priority p. We wish to show that σ+ = snj′+1(τ ′+).
If j′ = j, this is immediate. We may therefore assume that j′ > j, so that we can write
τ ′ = sn−2

j (τ ′′) and τ = sn−2
j′−1(τ ′′) as above. In this case, the desired result follows from the

calculation

σ+ = snj+1(τ+)
= snj+1(sn−2

j′−1(τ ′′)+)
= snj+1(sn−1

j′ (τ ′′+))
= snj′+1s

n−1
j+1 (τ ′′+)

= snj′+1(sn−2
j (τ ′′)+)

= snj′+1(τ ′+).

This completes the treatment of case (b).
We now consider case (c). For the remainder of the proof, we assume that the simplex σ is

free and nondegenerate, of priority p > 0. Let us decompose ∆n+1 as a join ∆p−1⋆∆n−p⋆{z}.
In what follows, we write x for the final vertex of ∆p−1 (corresponding to the element
p−1 ∈ [n+1]) and y for the initial vertex of ∆n−p (corresponding to the element p ∈ [n+1]).
Note that the n-simplices σ and {dn+1

i (σ)+}p≤i<n determine a morphism of simplicial sets
σ† : ∆p−1 ⋆ ∂∆n−p ⋆{z} → C. Unwinding the definitions, we see that an (n + 1)-simplex
σ+ of C satisfying condition (1) can be identified with an extension of σ† to the join
∆p−1 ⋆∆n−p ⋆ {z} ≃ ∆n+1. We wish to show that such an extension can always be found,
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which additionally satisfies condition (4) in the case p = n (note that conditions (2) and (3)
are vacuous, by virtue of our assumption that σ is free and nondegenerate).

Let σ† denote the restriction of σ† to {x} ⋆ ∂∆n−p ⋆{z}. Since the inclusion {x} ↪→ ∆p−1

is right anodyne (Example 4.3.7.11), it will suffice to show that σ† can be extended to
an (n + 2 − p)-simplex σ+ of C, having the additional property that σ+ is an S-optimal
factorization in the case p = n. If p = n, the existence of σ+ follows from our assumption
that S is a class of short morphisms for C. We therefore assume that p < n. Set Z = σ†(z),
so that we can identify σ† with a morphism of simplicial sets ρ0 : Λn+1−p

0 → C/Z ; we wish to
extend ρ0 to an (n+ 1− p)-simplex of C/Z . For 0 < i ≤ n+ 1− p, the image ρ0(i) belongs to
the full subcategory Cshort

/Z ⊆ C/Z . By virtue of Proposition 6.2.2.8, it will suffice to show that
the restriction of ρ0 to ∆1 exhibits ρ0(1) as a Cshort

/Z -reflection of ρ0(0). This is equivalent to
the assertion that the 2-simplex

σ†(y)

##
σ†(x) //

;;

σ†(z)

is an S-optimal factorization of the lower horizontal morphism (Remark 6.2.5.9), which
follows from our inductive hypothesis.

6.3 Localization

01M4Let C be a category and let W be a collection of morphisms in C. One can then construct
a new category by formally adjoining an inverse to each morphism of W .

Definition 6.3.0.1. 01M5Let F : C → D be a functor between categories and let W be a
collection of morphisms of C. We say that F exhibits D as a strict localization of C with
respect to W if, for every category E , precomposition with F induces a bijection

{Functors D → E}

��
{Functors C → E carrying each w ∈W to an isomorphism in E}.

Remark 6.3.0.2 (Existence and Uniqueness). 01M6Let C be a category and let W be a collection
of morphisms in C. Then there exists a category W−1 C and a functor F : C → W−1 C
which exhibits W−1 C as a strict localization of C with respect to W . Moreover, the category
W−1 C is determined uniquely up to isomorphism. In what follows, we will sometimes

https://kerodon.net/tag/01M4
https://kerodon.net/tag/01M5
https://kerodon.net/tag/01M6
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abuse terminology by referring to W−1 C as the strict localization of C with respect to W .
Explicitly, the category W−1 C can be constructed from C by adjoining a new morphism
w−1 : Y → X for each morphism w : X → Y of W , and imposing the relations w−1◦w = idX
and w ◦ w−1 = idY . From this description, we see that the functor F induces a bijection
Ob(C) ≃ Ob(W−1 C).

Example 6.3.0.3.01Q2 Let Kan denote the category of Kan complexes and let hKan denote the
homotopy category of Kan complexes (Construction 3.1.5.10). Then the quotient functor
Kan→ hKan exhibits hKan as a strict localization of Kan with respect to the collection of
all homotopy equivalences (see Corollary 3.1.7.7).

Warning 6.3.0.4.01M7 Let C be a category and let W be a collection of morphisms of C. If C
is small, then the strict localization W−1 C is also small. Beware that if C is only assumed
to be locally small (Variant 4.7.8.6), then W−1 C need not be locally small. However, one
can often ensure that W−1 C is locally small by imposing additional assumptions on the
collection of morphisms W .

Remark 6.3.0.5.01M8 Let C be a category, let W be a collection of morphisms of C, and let
F : C →W−1 C be a functor which exhibits W−1 C as a strict localization of C with respect
to W . Then, for every category E , the precomposition functor Fun(W−1 C, E) ◦F−−→ Fun(C, E)
induces an isomorphism from Fun(W−1 C, E) to the full subcategory of Fun(C, E) spanned by
those functors C → E which carry each element w ∈W to an isomorphism in E . Bijectivity
at the level of objects follows immediately from the definition. At the level of morphisms, it
follows from the bijectivity of the map

{Functors W−1 C → Fun([1], E)}

��
{Functors C → Fun([1], E) carrying W to isomorphisms}.

Beware that Definition 6.3.0.1 is not invariant under equivalence. If C is a category, W is
a collection of morphisms in C, and D is a category which is equivalent but not isomorphic
to the strict localization W−1 C, then D is not a strict localization of C with respect to W .
We can remedy the situation by introducing a more liberal notion of localization.

Definition 6.3.0.6.01M9 Let F : C → D be a functor between categories and let W be a
collection of morphisms of C. We will say that F exhibits D as a 1-categorical localization of
C with respect to W if, for every category E , precomposition with F induces a fully faithful
functor Fun(D, E) ◦F−−→ Fun(C, E), whose essential image consists of those functors C → E
which carry each w ∈W to an isomorphism in E .

https://kerodon.net/tag/01Q2
https://kerodon.net/tag/01M7
https://kerodon.net/tag/01M8
https://kerodon.net/tag/01M9
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Example 6.3.0.7. 01MALet F : C → D be a functor between categories. If F exhibits D as a
strict localization of C with respect to W , then F exhibits D as a 1-categorical localization
of C with respect to W (see Remark 6.3.0.5). The converse is false (except in the trivial
case where C is empty).

Example 6.3.0.8. 01Q3Let Set∆ denote the category of simplicial sets, and let hKan denote the
homotopy category of Kan complexes (Construction 3.1.5.10). Then the fibrant replacement
functor Ex∞ : Set∆ → hKan exhibits hKan as a 1-categorical localization of Set∆ with
respect to the collection W of weak homotopy equivalences (see Variant 3.1.7.8). However,
it does not exhibit hKan as a strict localization of Set∆ with respect to W (since it is not
bijective on objects).

Remark 6.3.0.9. 01MBLet C be a category, let W be a collection of morphisms in C, and let
F : C →W−1 C be a functor which exhibits W−1 C as a strict localization of C with respect
to W . Let G : C → D be another functor. Then G exhibits D as a 1-categorical localization
of C with respect to W if and only if the following conditions are satisfied:

• The functor G carries each w ∈ W to an isomorphism in D, and therefore factors
uniquely as a composition C F−→W−1 C G′−→ D.

• The functor G′ : W−1 C → D is an equivalence of categories.

Our goal in this section is to adapt the notion of localization to the setting of ∞-
categories. We begin in §6.3.1 by introducing an ∞-categorical counterpart of Definition
6.3.0.6. Given an ∞-category C and a collection W of morphisms of C, we say that a
functor of ∞-categories F : C → D exhibits D as a localization of C with respect to W if, for
every ∞-category E , precomposition with F induces a fully faithful functor of ∞-categories
Fun(D, E) ◦F−−→ Fun(C, E), whose essential image consists of those functors which carry each
element of W to an isomorphism in E (Definition 6.3.1.9). In §6.3.2, we show that such a
localization always exists (Proposition 6.3.2.1) and is uniquely determined up to equivalence
(Remark 6.3.2.2); we will often emphasize this uniqueness by denoting the ∞-category D by
C[W−1].

Let C be an ordinary category, and let W be a collection of morphisms of C. Then W

can also be regarded as a collection of morphisms of the ∞-category N•(C). By virtue of
Proposition 6.3.2.1, there exists a functor of ∞-categories F : N•(C) → D which exhibits
D as a localization of N•(C) with respect to W . In this case, it is not hard to see that the
induced map C ≃ hN•(C) hF−−→ hD exhibits the homotopy category hD as a 1-categorical
localization of C with respect to W , in the sense of Definition 6.3.0.6 (Example 6.3.1.18).
Beware that, in this situation, the unit map D → N•(hD) is generally not an equivalence. In
other words, the formation of localizations (in the ∞-categorical setting) generally does not
carry ordinary categories to ordinary categories, even up to equivalence. In fact, we prove

https://kerodon.net/tag/01MA
https://kerodon.net/tag/01Q3
https://kerodon.net/tag/01MB
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in §6.3.7 that every ∞-category D can be obtained by localizing (the nerve of) a partially
ordered set (Theorem 6.3.7.1). The proof will make use of some basic stability properties for
the class of localizations, which we establish in §6.3.4.

In general, it is very difficult to give an explicit description of the localization of an
∞-category C with respect to a class of morphisms W . In §6.3.3, we study a special case in
which such a description is available. We will say that a localization functor F : C → C[W−1]
is reflective if it admits a right adjoint. In this case, the right adjoint G : C[W−1] → C
is automatically fully faithful, and its essential image is a reflective subcategory C′ ⊆ C
(Proposition 6.3.3.6). Reflective localizations are extremely common in practice, and will
play a central role in the theory of locally presentable ∞-categories which we develop in §[?].

Warning 6.3.0.10.01MC It also is possible to contemplate a version of Definition 6.3.0.1 in the
∞-categorical setting. Let C be an ∞-category and let W be a collection of morphisms of C.
Let us say that a functor of ∞-categories F : C → D exhibits D as a strict localization of C
with respect to W if, for every ∞-category E , precomposition with F induces a bijection

{Functors D → E}

��
{Functors C → E carrying each w ∈W to an isomorphism in E}

.

However, this definition is useless. One can show that an ∞-category C admits a strict
localization with respect to W only in the trivial case where every element of W is already
an isomorphism in C (in which case we can take F to be the identity functor idC : C → C).
Roughly speaking, the problem is that if w : X → Y is an isomorphism in an ∞-category C,
then the homotopy inverse isomorphism w−1 : Y → X is only well-defined up to homotopy
(or up to a contractible space of choices), in contrast with classical category theory where
the inverse isomorphism w−1 is unique.

6.3.1 Localizations of ∞-Categories

01ME We begin by introducing some terminology.

Notation 6.3.1.1.01MF Let C be a simplicial set, let W be a collection of edges of C, and let E
be an ∞-category. We let Fun(C[W−1], E) denote the full subcategory of Fun(C, E) spanned
by those morphisms F : C → E that carry each edge of W to an isomorphism in E .

Remark 6.3.1.2.01MG In the context of Notation 6.3.1.1, we will usually be interested in the
situation where the simplicial set C is an∞-category (as suggested by the notation). However,
it will be technically convenient to allow more general simplicial sets as well.

https://kerodon.net/tag/01MC
https://kerodon.net/tag/01ME
https://kerodon.net/tag/01MF
https://kerodon.net/tag/01MG
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Example 6.3.1.3. 01MHLet C be a simplicial set and let W be a collection of degenerate edges
of C. Then, for every ∞-category E , we have Fun(C[W−1], E) = Fun(C, E).

Example 6.3.1.4. 01MJLet C be a simplicial set and let W be a collection of edges of C. If E is
a Kan complex, then Fun(C[W−1], E) = Fun(C, E) (see Proposition 1.4.6.10).

Example 6.3.1.5. 01MKLet W = {id∆1} consist of the single nondegenerate edge of the standard
1-simplex ∆1. For every ∞-category E , Fun(∆1[W−1], E) is the full subcategory Isom(E) ⊆
Fun(∆1, E) spanned by the isomorphisms in E (Example 4.4.1.14).

Example 6.3.1.6. 01MLLet C be a simplicial set and let hC denote its homotopy category
(Definition 1.3.6.1). Let W be a collection of edges of C, let [W ] denote the collection
of morphisms in hC which belong to the image of W , and let F : hC → D be a functor
of ordinary categories which exhibits D as a strict localization of hC with respect to [W ]
(Definition 6.3.0.1). If E is an ordinary category, then we have a canonical isomorphism of
simplicial sets

Fun(C[W−1],N•(E)) ≃ N•(Fun(D, E)).

Remark 6.3.1.7. 01MMLet C and D be simplicial sets and let W be a collection of edges of C.
For every ∞-category E , the canonical isomorphism Fun(C,Fun(D, E)) ≃ Fun(D,Fun(C, E))
restricts to an isomorphism of full subcategories

Fun(C[W−1],Fun(D, E)) ≃ Fun(D,Fun(C[W−1], E)).

This follows immediately from the criterion of Theorem 4.4.4.4.

Remark 6.3.1.8. 01MNLet C be a simplicial set, let W be a collection of edges of C, and let
E be an ∞-category. Then the full subcategory Fun(C[W−1], E) ⊆ Fun(C, E) is replete.
That is, if F, F ′ : C → E are isomorphic objects of Fun(C, E), then F carries edges of W to
isomorphisms in E if and only if F ′ carries edges of W to isomorphisms in E (see Example
4.4.1.14).

Definition 6.3.1.9. 01MPLet F : C → D be a morphism of simplicial sets and let W be a
collection of edges of C. We say that F exhibits D as a localization of C with respect to W if,
for every ∞-category E , the precomposition map Fun(D, E) ◦F−−→ Fun(C, E) is fully faithful,
and its essential image is the full subcategory Fun(C[W−1], E) ⊆ Fun(C, E).

Remark 6.3.1.10. 01MQLet F : C → D be a morphism of simplicial sets. If F exhibits D as a
localization of C with respect to a collection of edges W , then, for every ∞-category E and
every morphism G : D → E , the composite map (G ◦ F ) : C → E carries each element of
W to an isomorphism in E . In particular, if D itself is an ∞-category, then F carries each
element of W to an isomorphism in D.

https://kerodon.net/tag/01MH
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Exercise 6.3.1.11.02SW Let C be a simplicial set, let W be a collection of edges of C, and let
F, F ′ : C → D be a pair of diagrams taking values in an ∞-category D. Suppose that F
and F ′ are isomorphic when viewed as objects of the ∞-category Fun(C,D). Show that
F exhibits D as a localization of C with respect to W if and only if F ′ exhibits D as a
localization of C with respect to W .

Example 6.3.1.12.01MR Let F : C → D be a morphism of simplicial sets and let W be a
collection of degenerate edges of C. Then F exhibits D as a localization of C with respect to
W if and only if it is a categorical equivalence of simplicial sets (see Proposition 4.5.3.8).

Proposition 6.3.1.13.01MS Let F : C → D be a morphism of simplicial sets and let W be a
collection of edges of C. The following conditions are equivalent:

(1) The morphism F exhibits D as a localization of C with respect to W (Definition 6.3.1.9).

(2) For every ∞-category E, the functor Fun(D, E) ◦F−−→ Fun(C, E) factors through the full
subcategory Fun(C[W−1], E) and induces an equivalence of ∞-categories Fun(D, E)→
Fun(C[W−1], E).

(3) For every ∞-category E, the functor Fun(D, E) ◦F−−→ Fun(C, E) factors through the full
subcategory Fun(C[W−1], E) and induces a homotopy equivalence of Kan complexes
Fun(D, E)≃ → Fun(C[W−1], E)≃.

(4) For every ∞-category E, the functor Fun(D, E) ◦F−−→ Fun(C, E) factors through the
full subcategory Fun(C[W−1], E) and induces a bijection of sets π0(Fun(D, E)≃) →
π0(Fun(C[W−1], E)≃).

Proof. The equivalence (1) ⇔ (2) follows from Corollary 4.6.2.22 (and the repleteness of
the full subcategory Fun(C[W−1], E) ⊆ Fun(C, E)). The implication (2)⇒ (3) follows from
Remark 4.5.1.19 and the implication (3) ⇒ (4) from Remark 3.1.6.5. We will complete
the proof by showing that (4)⇒ (2). Assume that F : C → D satisfies condition (4), and
let E be an ∞-category; we wish to show that the precomposition functor Fun(D, E) ◦F−−→
Fun(C[W−1], E) is an equivalence of ∞-categories. For this, it will suffice to show that for
every simplicial set B, the induced map

θ : π0(Fun(B,Fun(D, E))≃)→ π0(Fun(B,Fun(C[W−1], E))≃)

is a bijection. Using Remark 6.3.1.7, we can identify θ with the map

π0(Fun(D,Fun(B, E))≃)→ π0(Fun(C[W−1],Fun(B, E))≃),

which is bijective by virtue of assumption (4).

https://kerodon.net/tag/02SW
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Example 6.3.1.14. 01MTLet W = {id∆1} consist of the single nondegenerate edge of the
standard 1-simplex ∆1. Then the projection map ∆1 → ∆0 exhibits ∆0 as a localization
of ∆1 with respect to W . To prove this, it will suffice to show that for every ∞-category
E , the construction X 7→ idX induces an equivalence of ∞-categories E = Fun(∆0, E) →
Fun(∆1[W−1], E) = Isom(E), which follows from Corollary 4.5.3.13.

Remark 6.3.1.15. 038TLet F : C → D be a morphism of simplicial sets which exhibits D as a
localization of C with respect to a collection of edges W , and let U : E → E be an isofibration
of ∞-categories. Then, for every diagram D → E , precomposition with F induces a fully
faithful functor

Fun/ E(D, E)→ Fun/ E(C, E),

whose essential image is spanned by those functors G : C → E which carry each edge of W
to an isomorphism in the ∞-category E . This follows by applying Corollary 4.5.2.32 to the
diagram

Fun(D, E) ◦F //

U◦

��

Fun(C[W−1], E)

��
Fun(D, E) // Fun(C[W−1], E).

Remark 6.3.1.16. 01MULet F : C → D be a morphism of simplicial sets which exhibits D as a
localization of C with respect to a collection of edges W . Then, for every Kan complex E ,
precomposition with F induces a homotopy equivalence of Kan complexes

Fun(D, E) ◦F−−→ Fun(C[W−1], E) = Fun(C, E)

(see Example 6.3.1.4). It follows that F is a weak homotopy equivalence of simplicial sets.

Remark 6.3.1.17. 01MVLet F : C → D be a morphism of simplicial sets which exhibits D as a
localization of C with respect to a collection of edges W . Let [W ] denote the collection of
morphisms in the homotopy category hC which belong to the image of W . Then the induced
functor hF : hC → hD exhibits the homotopy category hD as a 1-categorical localization of
hC with respect to [W ], in the sense of Definition 6.3.0.6. This follows immediately from
Example 6.3.1.6.

Example 6.3.1.18. 01MWLet C be an ordinary category and let W be a collection of morphisms
of C, which we identify with edges of the simplicial set N•(C). Let F : N•(C) → D be a
morphism of simplicial sets which exhibits D as a localization of N•(C) with respect to W .
Then the induced functor C ≃ hN•(C) hF−−→ hD exhibits the homotopy category hD as a
1-categorical localization of C with respect to W , in the sense of in the sense of Definition
6.3.0.6.
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Remark 6.3.1.19.01MX Let F : C → D and G : D → E be morphisms of simplicial sets, and
let W be a collection of edges of C. If any two of the following three conditions is satisfied,
then so is the third:

• The morphism F exhibits D as a localization of C with respect to W .

• The morphism G ◦ F exhibits E as a localization of C with respect to W .

• The morphism G is a categorical equivalence of simplicial sets.

Proposition 6.3.1.20.01MY Let F : C → D be a morphism of simplicial sets, where D is an
∞-category, and let W be the collection of all edges of C. The following conditions are
equivalent:

(1) The morphism F exhibits D as a localization of C with respect to W .

(2) The∞-category D is a Kan complex and F is a weak homotopy equivalence of simplicial
sets.

Proof. We first prove that (2) implies (1). Assume that D is a Kan complex and that
F : C → D is a weak homotopy equivalence; we wish to show that F exhibits D as a
localization of C with respect to W . By virtue of Proposition 6.3.1.13, it will suffice to
show that for every ∞-category E , composition with F induces a homotopy equivalence of
Kan complexes θ : Fun(D, E)≃ → Fun(C[W−1], E)≃. Since D is a Kan complex, Proposition
4.4.3.22 allows us to identify θ with the canonical map

Fun(D, E≃) ◦F−−→ Fun(C, E≃),

which is a homotopy equivalence by virtue of our assumption that F is a weak homotopy
equivalence.

We now show that (1) implies (2). Assume that F exhibits D as a localization of C with
respect to W . Invoking Remark 6.3.1.16, we deduce that F is a weak homotopy equivalence.
We wish to show that D is a Kan complex. Choose a weak homotopy equivalence G : D → E ,
where E is a Kan complex (Corollary 3.1.7.2). Then the composite map (G ◦ F ) : C → E is
also a weak homotopy equivalence (Remark 3.1.6.16). Invoking the implication (2)⇒ (1),
we conclude that G ◦ F exhibits E as a localization of C with respect to W . It follows from
Remark 6.3.1.19 that G is an equivalence of ∞-categories. Since E is a Kan complex, it
follows that the ∞-category D is also a Kan complex (Remark 4.5.1.21).

Proposition 6.3.1.21 (Transitivity).02LS Let F : C → C′ and F ′ : C′ → C′′ be morphisms of
simplicial sets. Let W and W ′ be collections of edges of C satisfying the following conditions:

• The morphism F exhibits C′ as a localization of C with respect to W .
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• The morphism F ′ exhibits C′′ as a localization of C′ with respect to F (W ′).

Then the composite morphism (F ′ ◦F ) : C → C′′ exhibits C′′ as a localization of C with respect
to W ∪W ′.

Proof. Let E be an ∞-category; we wish to prove that precomposition with F ′ ◦ F induces
an equivalence from Fun(C′′, E) to the full subcategory Fun(C[(W ∪W ′)−1], E) ⊆ Fun(C, E).
We have a commutative diagram

Fun(C′′, E) ◦F ′ // Fun(C′[F (W ′)−1], E) ◦F //

��

Fun(C[(W ∪W ′)−1], E)

��
Fun(C′, E) ◦F // Fun(C[W−1],

where the horizontal functors on the left and lower right are equivalences of ∞-categories.
Since the square is a pullback and the vertical maps are isofibrations (Remark 6.3.1.8), it
follows that the horizontal map on the upper right is also an equivalence of ∞-categories
(Corollary 4.5.2.29).

Corollary 6.3.1.22. 02LTLet C be a simplicial set, let W and W ′ be collections of edges of C,
and let F : C → D be a morphism of simplicial sets which exhibits D as a localization of C
with respect to W . Suppose that, for every edge w ∈ W ′, the image F (w) is a degenerate
edge of D. Then F also exhibits D as a localization of C with respect to W ∪W ′.

Proof. Combine Proposition 6.3.1.21 with Example 6.3.1.12.

6.3.2 Existence of Localizations

01MZOur goal in this section is to prove the following:

Proposition 6.3.2.1 (Existence of Localizations). 01N0Let C be a simplicial set and let W be a
collection of edges of C. Then there exists an ∞-category D and a morphism of simplicial
sets F : C → D which exhibits D as a localization of C with respect to W .

Remark 6.3.2.2 (Uniqueness of Localizations). 01N1Let C be a simplicial set and let W be a
collection of edges of C. Proposition 6.3.2.1 asserts that there exists an ∞-category D and
a morphism F : C → D which exhibits D as a localization of C with respect to W . In this
case, for every ∞-category E , composition with F induces a bijection

HomhCat∞(D, E) = π0(Fun(D, E)≃)→ π0(Fun(C[W−1], E)≃)
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(Proposition 6.3.1.13). In other words, the ∞-category D corepresents the functor

hCat∞ → Set E 7→ π0(Fun(C[W−1], E)≃).

It follows that D is uniquely determined (up to canonical isomorphism) as an object of
the homotopy category hCat∞. We will sometimes emphasize this uniqueness by referring
to D as the localization of C with respect to W , and denoting it by C[W−1]. Beware that
the localization C[W−1] is not well-defined up to isomorphism as a simplicial set: in fact,
any equivalent ∞-category can also be regarded as a localization of C with respect to W
(Remark 6.3.1.19).

Warning 6.3.2.3.01N2 Let C be a simplicial set, let W be a collection of edges of C, and
let E be an ∞-category. We have now given two different definitions for the ∞-category
Fun(C[W−1], E):

(1) According to Notation 6.3.1.1, Fun(C[W−1], E) denotes the full subcategory of Fun(C, E)
spanned by those diagrams F : C → E which carry each edge of W to an isomorphism
in E .

(2) By the convention of Remark 6.3.2.2, C[W−1] denotes an ∞-category equipped with a
diagram F : C → C[W−1] which exhibits C[W−1] as a localization of C with respect
to W . We can then consider the ∞-category of functors from C[W−1] to E , which we
will temporarily denote by Fun′(C[W−1], E).

Beware that these ∞-categories are not identical. However, they are equivalent: if F : C →
C[W−1] exhibits C[W−1] as a localization of C with respect to W , then composition with
F induces an equivalence of ∞-categories Fun′(C[W−1], E)→ Fun(C[W−1], E) (Proposition
6.3.1.13). Note that the ∞-category Fun(C[W−1], E) does not depend on any auxiliary
choices: it is well-defined up to equality as a simplicial subset of Fun(C, E). By contrast, the
∞-category Fun′(C[W−1], E) depends on the choice of the functor F : C → C[W−1] (and is
therefore well-defined up to equivalence, but not up to isomorphism).

Our proof of Proposition 6.3.2.1 will make use of the following:

Lemma 6.3.2.4.01N3 Let Q be a contractible Kan complex, let e : ∆1 ↪→ Q be a monomorphism
of simplicial sets, and let W = {id∆1} consist of the single nondegenerate edge of ∆1. Then,
for any ∞-category E, precomposition with e induces a trivial Kan fibration of simplicial sets

θ : Fun(Q, E)→ Fun(∆1[W−1], E) = Isom(E).

Proof. Since e is a monomorphism, Corollary 4.4.5.3 immediately implies that θ is an
isofibration when regarded as a functor from Fun(Q, E) to Fun(∆1, E). Using the pullback
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diagram
Fun(Q, E)

θ

��

// Fun(Q, E)

θ

��
Isom(E) // Fun(∆1, E),

we deduce that θ is also an isofibration when regarded as a functor from Fun(Q, E) to
Isom(E). Consequently, to show that θ is a trivial Kan fibration, it will suffice to show
that it is an equivalence of ∞-categories (Proposition 4.5.5.20). In other words, we are
reduced to proving that the morphism e exhibits Q as a localization of ∆1 with respect to
W . Let q : Q→ ∆0 denote the projection map. Since Q is contractible, the morphism q is
an equivalence of ∞-categories. By virtue of Remark 6.3.1.19, we are reduced to proving
that the composite map ∆1 e−→ Q

q−→ ∆0 exhibits ∆0 as a localization of ∆1 with respect to
W , which follows from Example 6.3.1.14.

We will deduce Proposition 6.3.2.1 from the following more precise result:
Proposition 6.3.2.5. 01N4Let F : C → D be a morphism of simplicial sets, where D is an
∞-category. Let W be a collection of edges of C such that, for each w ∈W , the image F (w)
is an isomorphism in D. Then F factors as a composition

C G−→ C[W−1] H−→ D,

where G exhibits C[W−1] as a localization of C with respect to W and H is an inner fibration
(so that C[W−1] is also an ∞-category). Moreover, this factorization can be chosen to depend
functorially on the diagram F : C → D and the collection of edges W , in such a way that
the construction (F : C → D,W ) 7→ C[W−1] commutes with filtered colimits.

Proof. For each element w ∈W , the image F (w) can be regarded as a morphism from ∆1

to the core D≃. By virtue of Proposition 3.1.7.1, we can (functorially) choose a factorization
of this morphism as a composition

∆1 iw−→ Qw
qw−→ D≃,

where iw is anodyne and qw is a Kan fibration. Since D≃ is a Kan complex, Qw is also a
Kan complex, which is contractible by virtue of the fact that iw is anodyne. Form a pushout
diagram of simplicial sets ∐

w∈W ∆1 //

∐
w∈W

iw

��

C

i

��∐
w∈W Qw // C′ .

https://kerodon.net/tag/01N4
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We first claim that i : C → C′ exhibits C′ as a localization of C with respect to W . Let E
be an ∞-category. Note that if G : C → E is a morphism of simplicial sets which factors
through C′, then for each w ∈ W the morphism G(w) belongs to the image of a functor
Qw → E , and is therefore an isomorphism in E . It follows that composition with i induces a
functor θ : Fun(C′, E)→ Fun(C[W−1], E), and we wish to show that θ is an equivalence of
∞-categories. This follows by inspecting the commutative diagram

Fun(C′, E) θ //

��

Fun(C[W−1], E) //

��

Fun(C, E)

��∏
w∈W Fun(Qw, E) θ′ // ∏

w∈W Isom(E) // ∏
w∈W Fun(∆1, E).

The outer rectangle is a pullback square by the definition of C′, and the right square is
a pullback by the definition of Fun(C[W−1], E). It follows that the left square is also a
pullback. Lemma 6.3.2.4 implies that θ′ is a trivial Kan fibration, so that θ is also a trivial
Kan fibration (hence an equivalence of ∞-categories by Proposition 4.5.3.11).

Note that the morphism F : C → D and the collection of morphisms {qw : Qw → D≃ ⊆
D}w∈W can be amalgamated to a single morphism of simplicial sets F ′ : C′ → D. Applying
Proposition 4.1.3.2, we can (functorially) factor F ′ as a composition C′ G

′
−→ C[W−1] H−→ D,

where G′ is inner anodyne and H is an inner fibration. We conclude by observing that
the composite map G = (G′ ◦ i) : C → C[W−1] exhibits C[W−1] as a localization of C with
respect to W , by virtue of Remark 6.3.1.19.

Proof of Proposition 6.3.2.1. Apply Proposition 6.3.2.5 in the special case D = ∆0.

Variant 6.3.2.6.03TZ Let κ be an uncountable cardinal, and let F : C → D be a morphism of
simplicial sets which exhibits D as a localization of C with respect to some collection of
edges W (Definition 6.3.1.9). If C is essentially κ-small, then D is essentially κ-small.

Proof. Without loss of generality, we may assume that F is a monomorphism of simplicial
sets. Choose a categorical equivalence of simplicial sets u : C → C, where C is κ-small, and
form a pushout diagram of simplicial sets

03U0 C u //

F
��

C

F
��

D v // D

(6.5)

Then (6.5) is a categorical pushout square (Example 4.5.4.12), so v is also a categorical
equivalence (Proposition 4.5.4.10). Moreover, the morphism F exhibits D as a localization of
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C with respect to u(W ) (Corollary 6.3.4.3). We may therefore replace F by F , and thereby
reduce to proving Variant 6.3.2.6 in the special case where C is κ-small. In particular, the
set of edges W is κ-small.

Let Q be a contractible Kan complex which is equipped with a monomorphism ∆1 ↪→ Q

and has only countably many simplices. Form a pushout diagram of simplicial sets∐
w∈W ∆1 //

��

C

G
��∐

w∈W Q // C′,

so that C′ is κ-small (Remark 4.7.4.6). It follows from Corollary 6.3.4.3 that the morphism G

exhibits C′ as a localization of C with respect to W . Using Proposition 4.7.5.5, we can choose
an inner anodyne morphism C′ ↪→ C′′, where C′′ is a κ-small ∞-category. Then C′′ is also a
localization of C with respect to W , so Remark 6.3.2.2 supplies a categorical equivalence of
simplicial sets D → C′′. It follows that D is essentially κ-small, as desired.

6.3.3 Reflective Localizations

02FYIt will often be convenient to work with the following variant of Definition 6.3.1.9.

Definition 6.3.3.1. 04JGLet F : C → D be a functor of ∞-categories. We will say that F is a
localization functor if there exists a collection of morphisms W in C such that F exhibits D
as a localization of C with respect to W .

In the situation of Definition 6.3.3.1, there is always a canonical choice for the collection
of morphisms W :

Proposition 6.3.3.2. 04JHLet F : C → D be a functor of ∞-categories and let W be the
collection of all morphisms w of C such that F (w) is an isomorphism in D. Then F is a
localization functor if and only if it exhibits D as a localization of C with respect to W .

Proof. Assume that F is a localization functor; we will show that it exhibitsD as a localization
of C with respect to W (the reverse implication follows immediately from the definitions).
Let E be an ∞-category; we wish to show that composition with F induces an equivalence
of ∞-categories Fun(D, E) → Fun(C[W−1], E). Choose a collection of morphisms W ′ of C
such that F exhibits D as a localization of C with respect to W ′. Note that W ′ is contained
in W , so that we can regard Fun(C[W−1],D) as a full subcategory of Fun(C[W ′−1],D). It
will therefore suffice to show that the composite functor

Fun(D, E) ◦F−−→ Fun(C[W−1], E) ↪→ Fun(C[W ′−1], E)

is an equivalence of ∞-categories, which follows from our assumption on the functor F .
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We now use the ideas of §6.2.2 to describe a large class of localization functors.

Definition 6.3.3.3.02G9 Let F : C → D be a functor of ∞-categories. We say that F is a
reflective localization functor if it admits a right adjoint G : D → C which is fully faithful.

Remark 6.3.3.4.04JJ Let F : C → D be a functor of ∞-categories. Using Corollary 6.2.2.17 to
the right adjoint of F , we see that the following conditions are equivalent:

• The functor F is a reflective localization: that is, it admits a fully faithful right adjoint
G : D → C.

• There exists a functor G : D → C and a natural isomorphism ϵ : F ◦G ∼−→ idD which is
the counit of an adjunction between F and G.

• The functor F admits a right adjoint G : D → C for which the composition (F ◦G) :
D → D is an equivalence of ∞-categories.

Moreover, if these conditions are satisfied, then the essential image of G is a reflective
subcategory of C.

Remark 6.3.3.5.04JK Let F : C → D be a reflective localization of ∞-categories. Then there
exists a functor G : D → C and a natural transformation η : idC → G ◦ F which is the
unit of an adjunction between F and G. The natural transformation η is generally not an
isomorphism (unless F is an equivalence of ∞-categories). However, our assumption that F
is a reflective localization guarantees that there exists a natural isomorphism ϵ : F ◦G ∼−→ idD
which is compatible with η up to homotopy. In particular, for every object X ∈ C, the
composition

F (X) F (ηX)−−−−→ (F ◦G ◦ F )(X)
ϵF (X)−−−→ F (X)

is homotopic to the identity idF (X), which guarantees that F (ηX) is an isomorphism in D.

Proposition 6.3.3.6.04JL Let F : C → D be a functor of ∞-categories. The following conditions
are equivalent:

(1) The functor F is a reflective localization (in the sense of Definition 6.3.3.3): that is, it
admits a fully faithful right adjoint.

(2) The functor F is a localization functor (in the sense of Definition 6.3.3.1) which admits
a right adjoint G : D → C.

Proof. We first show that (2) implies (1). Let G : D → C be a right adjoint to F and let
ϵ : F ◦G→ idD be the counit of an adjunction. We wish to show that, if F is a localization
functor, then ϵ is an isomorphism (Remark 6.3.3.4). By virtue of Proposition 6.1.4.7 (applied
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to the opposite of the 2-category h2QCat), it will suffice to show that for any ∞-category E ,
precomposition with the isomorphism class [F ] ∈ π0(Fun(C,D)≃) induces a monomorphism

π0(Fun(D, E)≃) ◦[F ]−−→ π0(Fun(C, E)≃),

which follows immediately from our assumption on F .
We now prove the converse. Assume that F is a reflective localization functor and let W

be the collection of all morphisms w of C such that F (w) is an isomorphism in D; we will
show that F exhibits D as a localization of C with respect to W . Fix an ∞-category E , so
that precomposition with F induces a function

φ : π0(Fun(D, E)≃)→ π0(Fun(C[W−1], E)≃).

Let G : D → C and ϵ : F ◦G→ idD be as above, so that precomposition with G induces
a function

ψ : π0(Fun(C[W−1], E)≃) ⊆ π0(Fun(C, E)≃)→ π0(Fun(D, E)≃).

We will show that ψ is inverse to φ. By assumption, the natural transformation ϵ is an
isomorphism. It follows that, for every functor E : D → E , ϵ induces an isomorphism
E ◦ F ◦G ∼−→ E. Passing to isomorphism classes, we obtain an equality [E] = [E ◦ F ◦G] =
ψ([E ◦ F ]) = (ψ ◦ φ)([E]). Allowing E to vary, we conclude that ψ ◦ φ is the identity on
π0(Fun(D, E)≃).

We now complete the proof by showing that φ◦ψ is the identity on π0(Fun(C[W−1], E)≃).
Let H : C → E be a functor of ∞-categories which carries each morphism of W to an
isomorphism in E ; we wish to show that H is isomorphic to H ◦ G ◦ F . Choose a unit
map η : idC → G ◦ F which is compatible with ϵ up to homotopy. For every object C ∈ C,
Remark 6.3.3.5 guarantees that the morphism ηC : C → (G ◦ F )(C) belongs to W , so that
H(ηC) is an isomorphism in the ∞-category E . Allowing the object C to vary (and invoking
the criterion of Theorem 4.4.4.4), we conclude that η induces an isomorphism from H to
H ◦G ◦ F in the functor ∞-category Fun(C, E).

Example 6.3.3.7. 04JMLet C be an ∞-category, let C′ ⊆ C be a reflective subcategory, and let
L : C → C′ be a C′-reflection functor (Definition 6.2.2.12). Then L is a reflective localization
functor (since it is left adjoint to the inclusion map C′ ↪→ C; see Proposition 6.2.2.15). In
particular, L exhibits C′ as a localization of C with respect to the collection of morphisms w
such that L(w) is an isomorphism.

Remark 6.3.3.8. 04JNLet C be an ∞-category. Up to equivalence, every reflective localization
functor F : C → D can be obtained from the construction of Example 6.3.3.7. More precisely,
if G is a fully faithful right adjoint to F , then it induces an equivalence of D with a reflective
subcategory C′ ⊆ C (carrying F to the C′-reflection functor (G ◦ F ) : C → C′); see Corollary
6.2.2.17.
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Remark 6.3.3.9.04JP Let F : C → D and G : D → E be functors of ∞-categories, where F is a
reflective localization functor. Then G is a reflective localization functor if and only if (G◦F )
is a reflective localization functor. In particular, the collection of reflective localization
functors is closed under composition. See Remarks 6.2.1.8 and 4.6.2.5.

Warning 6.3.3.10.04JQ Let F : C → D and G : D → E be functors of ∞-categories. If F
and G are localization functors, the composition G ◦ F need not be a localization functor.
For example, let C be the 1-dimensional simplicial set corresponding to the directed graph
depicted in the diagram

• e−→ • w←− • e′−→ •.

There is a functor F : C → ∆2 which carries e and e′ to the edges 0 → 1 and 1 → 2,
respectively. It is not difficult to show that F exhibits ∆2 as a localization of C with respect
to w. However, the localization of ∆2 with respect to its “long edge” 0 → 2 cannot be
realized directly as a localization of C.

Variant 6.3.3.11.04JR Let F : C → D be a functor of ∞-categories. We say that F is a
coreflective localization functor if it admits a fully faithful left adjoint D → C. Equivalently,
F is a coreflective localization functor if the opposite functor F op : Cop → Dop is a reflective
localization functor (see Remark 6.2.1.7). It follows from Proposition 6.3.3.6 that every
coreflective localization functor is a localization functor (in the sense of Definition 6.3.3.1).

Warning 6.3.3.12.04JS Let F : C → D be a localization functor of ∞-categories which is both
reflective and coreflective. Then F admits both a left adjoint FL : D → C and a right adjoint
FR : D → C, which are automatically fully faithful (Proposition 6.3.3.6). Let CL ⊆ C be
the full subcategory spanned by the essential image of the functor FL, and define CR ⊆ C
similarly. When viewed as abstract ∞-categories, CL and CR are equivalent (since they
are both equivalent to the ∞-category D). Beware that they generally do not coincide as
subcategories of C. See Warning 9.1.1.23.

6.3.4 Stability Properties of Localizations

01N5 Our goal in this section is to record some basic formal properties of the localization
construction C 7→ C[W−1] introduced in §6.3.2. We first show that localization commutes
with the formation of filtered colimits. More precisely, we have the following:

Proposition 6.3.4.1.01N6 Let F : C → D be a morphism of simplicial sets which is given
as the colimit (in the arrow category Fun([1],Set∆)) of a filtered diagram of morphisms
{Fα : Cα → Dα}. Assume that:

• Each morphism Fα exhibits Dα as a localization of Cα with respect to some collection
of edges Wα.
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• Each of the transition maps Cα → Cβ of the diagram carries Wα into Wβ.

Let us regard W = lim−→Wα as a collection of edges of the simplicial set C. Then F exhibits
D as a localization of C with respect to W .

Proof. Using Corollary 4.1.3.3, we can choose a compatible family of inner anodyne mor-
phisms Gα : Dα → Eα, where each Eα is an ∞-category. Set E = lim−→Eα, so that the
morphisms Gα determine a map of simplicial sets G : D → E . Since each Gα is a categorical
equivalence of simplicial sets, each of the composite maps (Gα ◦Fα) : Cα → Eα exhibits Eα as
a localization of Cα with respect to Wα. In particular, each of the morphisms Gα ◦Fα carries
edges of Wα to isomorphisms in the∞-category Eα (Remark 6.3.1.10). Applying Proposition
6.3.2.5, we can (functorially) factor each of the morphisms Gα ◦ Fα as a composition

Cα
G′α−−→ Cα[W−1

α ] F ′α−−→ Eα,

where each Cα[W−1
α ] is an ∞-category, each of the morphisms G′α exhibits Cα[W−1

α ] as a
localization of Cα with respect to Wα, and the colimit map G′ : C → lim−→α

Cα[W−1
α ] exhibits

C[W−1] = lim−→α
Cα[W−1

α ] as a localization of C with respect to W . We then have a filtered
diagram of commutative squares

Cα
Fα //

G′α

��

Dα

Gα

��
Cα[W−1

α ] F ′α // Eα

having colimit
C F //

G′

��

D

G

��
C[W−1] F ′ // E .

Applying Remark 6.3.1.19, we deduce that each of the morphisms F ′α is a categorical
equivalence of simplicial sets. Since the collection of categorical equivalences is stable under
filtered colimits (Corollary 4.5.7.2), the morphism F ′ is also a categorical equivalence of
simplicial sets. Applying Remark 6.3.1.19 again, we deduce that F ′ ◦ G′ exhibits E as a
localization of C with respect to W . Since each Gα is a categorical equivalence, Corollary
4.5.7.2 also guarantees that G is a categorical equivalence. Using the equality G◦F = F ′ ◦G′

and applying Remark 6.3.1.19 again, we conclude that F exhibits D as a localization of C
with respect to W , as desired.
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We now show that localization is compatible with the formation of categorical pushout
squares.

Proposition 6.3.4.2.01N7 Suppose we are given a commutative diagram of simplicial sets

C01

F01

!!

G //

H

��

C0

H′

��

F0

  
D01 //

��

D0

��

C1
G′ //

F1

!!

C

F

  
D1 // D

with the following properties:

(a) The back face
C01

G //

H

��

C0

H′

��
C1

G′ // C

is a categorical pushout square of simplicial sets.

(b) The morphism of simplicial sets F01 : C01 → D01 exhibits D01 as a localization of C01
with respect to some collection of edges W01.

(c) The morphism of simplicial sets F0 : C0 → D0 exhibits D0 as a localization of C0 with
respect to some collection of edges W0 containing G(W01).

(d) The morphism of simplicial sets F1 : C1 → D1 exhibits D1 as a localization of C1 with
respect to some collection of edges W1 containing H(W01).

Then the following conditions are equivalent:

https://kerodon.net/tag/01N7


1352 CHAPTER 6. ADJOINT FUNCTORS

(1) The front face
D01 //

��

D0

��
D1 // D

is a categorical pushout square of simplicial sets.

(2) The morphism of simplicial sets F : C → D exhibits D as a localization of C with respect
to the collection of edges W = H ′(W0) ∪G′(W1).

Proof. Let E be an ∞-category. Assumption (a) guarantees that the diagram of Kan
complexes

Fun(C, E)≃ //

��

Fun(C0, E)≃

��
Fun(C1, E)≃ // Fun(C01, E)≃

is a homotopy pullback square. Applying Proposition 3.4.1.14, we deduce that the diagram
of summands

Fun(C[W−1], E)≃ //

��

Fun(C0[W−1
0 ], E)≃

��
Fun(C1[W−1

1 ], E)≃ // Fun(C01[W−1
01 ], E)≃

is also a homotopy pullback square. Invoking Corollary 3.4.1.12, we conclude that the
following conditions are equivalent:

(1E) The diagram of Kan complexes

Fun(D, E)≃ //

��

Fun(D0, E)≃

��
Fun(D1, E)≃ // Fun(D, E)≃

is a homotopy pullback square.
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(2E) Precomposition with F induces a homotopy equivalence of Kan complexes

Fun(D, E)≃ ◦F−−→ Fun(C[W−1], E)≃.

We now observe that condition (1) is equivalent to the requirement that (1E) holds for every
∞-category E (by definition), and condition (2) is equivalent to the requirement that (2E)
holds for every ∞-category E (Proposition 6.3.1.13).

Corollary 6.3.4.3.03E3 Suppose we are given a categorical pushout diagram of simplicial sets

C

F

��

G // C′

F ′

��
D // D′,

where F exhibits D as a localization of C with respect to some collection of edges W . Then
F ′ exhibits D′ as a localization of C′ with respect to G(W ).

Proof. Apply Proposition 6.3.4.2 to the cubical diagram

C

��

//

��

C′

��

  
C //

��

C′

��

C //

��

C′

  
D // D′ .

Example 6.3.4.4 (Contracting an Edge).03E4 Let C be a simplicial set and let e be an edge
of C which corresponds to a monomorphism of simplicial sets ∆1 ↪→ C (that is, the source

https://kerodon.net/tag/03E3
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and target of e are distinct when regarded as vertices of C). Let C′ denote the simplicial set
obtained from C by collapsing the edge e, so that we have a pushout square of simplicial sets

∆1 e //

��

C

T

��
∆0 // C′ .

Since the horizontal maps in this diagram are monomorphisms, it is also a categorical
pushout square (Example 4.5.4.12). Combining Corollary 6.3.4.3 with Example 6.3.1.14, we
see that T exhibits C′ as a localization of C with respect to the singleton W = {e}.

6.3.5 Fiberwise Localization

02LUSuppose we are given a commutative diagram of ∞-categories

E

U

��

F // E ′

U ′

��
C G // C′,

where U and U ′ are cocartesian fibrations and the functor F carries U -cocartesian morphisms
of E to U ′-cocartesian morphisms of E ′. For each object C ∈ C, write FC : EC → E ′G(C) for
the induced map of fibers. It follows from Theorem 5.1.6.1 that if the functors {FC}C∈C and
G are equivalences of ∞-categories, then F is also an equivalence of ∞-categories. Our goal
in this section is to prove a generalization of this result, which gives a sufficient condition
for F to exhibit E ′ as a localization of E .

Theorem 6.3.5.1. 038USuppose we are given a commutative diagram of simplicial sets

E

U

��

F // E ′

U ′

��
C F // C′

which satisfies the following conditions:

(1) The morphisms U and U ′ are cocartesian fibrations.

https://kerodon.net/tag/02LU
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(2) The morphism F carries U -cocartesian edges of E to U ′-cocartesian edges of E ′.

(3) For every vertex C ∈ C having image C ′ = F (C) ∈ C′, the induced functor of ∞-
categories FC : EC → E ′C′ exhibits E ′C′ as the localization of EC with respect to some
collection of morphisms WC of EC .

(4) The morphism F exhibits C′ as a localization of C with respect to some collection of
morphisms W of C.

Set W− = ⋃
C∈CWC and let W+ be the collection of all U -cocartesian edges e such that U(e)

belongs to W . Then F exhibits E ′ as a localization of E with respect to W− ∪W+.

We begin by proving a special case of Theorem 6.3.5.1, where F is assumed to be an
isomorphism.

Proposition 6.3.5.2.02LW Suppose we are given a commutative diagram of simplicial sets

02LX E F //

U

��

E ′

U ′

��
C

(6.6)

with the following properties:

(1) The morphisms U and U ′ are cocartesian fibrations.

(2) The morphism F carries U -cocartesian edges of E to U ′-cocartesian edges of E ′.

(3) For every vertex C ∈ C, the induced functor of ∞-categories FC : EC → E ′C exhibits E ′C
as the localization of EC with respect to some collection of morphisms WC .

Set W = ⋃
C∈CWC , which we regard as a collection of edges of the simplicial set E. Then F

exhibits E ′ as a localization of E with respect to W .

Proof. Let D be an ∞-category, so that precomposition with F induces a functor F ∗ :
Fun(E ′,D)→ Fun(E ,D). We wish to show that the functor F ∗ is fully faithful, and that its
essential image is the full subcategory Fun(E [W−1],D) ⊆ Fun(E ,D). Let B = Fun(E / C,D)
and B′ = Fun(E ′ / C,D) be the relative exponentials of Construction 4.5.9.1, and let π : B → C
and π′ : B′ → C denote the projection maps. Combining assumption (1) with Corollary
5.3.6.8, we see that π and π′ are cartesian fibrations.

For each vertex C ∈ C, let us identify the fibers BC = {C} ×C B and B′C = {C} ×C B′
with the ∞-categories Fun(EC ,D) and Fun(E ′C ,D), respectively. Precomposition with F

https://kerodon.net/tag/02LW
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induces a morphism of simplicial sets G : B′ → B satisfying π ◦G = π′, given on each fiber
by the functor

B′C = Fun(E ′C ,D) ◦FC−−→ Fun(EC ,D) = BC .

Combining assumption (2) with Corollary 5.3.6.8, we see that G carries π′-cartesian edges
of B′ to π-cartesian edges of B. In particular, for every edge e : X → Y of C, the diagram of
∞-categories

038VB′Y
e∗ //

GY

��

B′X

GX

��
BY e∗ // BX

(6.7)

commutes up to isomorphism, where the horizontal functors are given by contravariant
transport along e (see Remark 5.2.8.5).

Let us identify the vertices of B with pairs (C, ρ), where C is a vertex of C and ρ : EC → D
is a functor of ∞-categories. Let B0 ⊆ B denote the full simplicial subset spanned by those
vertices (C, ρ) for which the functor ρ carries each edge of WC to an isomorphism in
the ∞-category D. It follows from assumption (3) that for every vertex C, the functor
GC : B′C → BC is fully faithful, and its essential image can be identified with the full
subcategory B0

C = {C} ×C B0 ⊆ BC . Combining this observation with the homotopy
commutativity of the diagram (6.7), we see that for every edge e : X → Y in E , the
contravariant transport functor e∗ : BY → BX carries B0

Y into B0
X . It follows that π restricts

to a cartesian fibration of simplicial sets π0 : B0 → C, and that an edge of B0 is π0-cartesian if
and only if it is π-cartesian when viewed as an edge of B (Proposition 5.1.4.16). In particular,
the morphism G : B′ → B0 ⊆ B carries π′-cartesian edges of B′ to π0-cartesian edges of B0,
and therefore induces an equivalence B′ → B0 of cartesian fibrations over C (Proposition
5.1.7.14). We complete the proof by observing that F ∗ : Fun(E ′,D)→ Fun(E [W−1],D) can
be identified with the functor

Fun/ C(C,B′)→ Fun/ C(C,B0)

given by precomposition with G, and is therefore an equivalence of ∞-categories.

Corollary 6.3.5.3. 02LYLet U : E → C be a cocartesian fibration of simplicial sets. Suppose
that, for every vertex C ∈ C, the ∞-category EC = {C} ×C E is weakly contractible. Let W
be the collection of all edges e of E having the property that U(e) is a degenerate edge of C.
Then U exhibits C as a localization of E with respect to W .

Proof. For each vertex C ∈ C, let WC be the collection of all morphisms in the ∞-category
EC . Since EC is weakly contractible, the projection map EC → {C} exhibits {C} as a

https://kerodon.net/tag/038V
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localization of EC with respect to WC (Proposition 6.3.1.20). The desired result now follows
by applying Proposition 6.3.5.2 to the commutative diagram

E

U

��

U // C

idC

��
C .

We now consider another special case of Theorem 6.3.5.1.

Proposition 6.3.5.4.038W Suppose we are given a pullback diagram of simplicial sets

E

U

��

F // E ′

U ′

��
C F // C′,

where U and U ′ are cocartesian fibrations. Suppose that F exhibits C′ as a localization of C
with respect to some collection of edges W , and let W denote the collection of U -cocartesian
edges e of E which satisfy U(e) ∈W . Then F exhibits E ′ as a localization of E with respect
to W .

Proof. Using Corollary 4.1.3.3, we can choose an inner anodyne map C′ ↪→ C′′, where C′′ is
an ∞-category. By virtue of Proposition 5.6.7.2, we can assume that U ′ is the pullback of
a cocartesian fibration of simplicial sets U ′′ : E ′′ → C′′. Applying Proposition 5.3.6.1, we
deduce that the inclusion map E ′ ↪→ E ′′ is a categorical equivalence of simplicial sets. We
may therefore replace U ′ by U ′′, and thereby reduce to proving Proposition 6.3.5.4 in the
special case where C′ is an ∞-category.

Fix an ∞-category D. We wish to show that the functor F ∗ : Fun(E ′,D)→ Fun(E ,D) is
fully faithful and that its essential image is the full subcategory Fun(E [W−1],D) ⊆ Fun(E ,D).
Let B′ = Fun(E ′ / C,D) and π′ : B′ → C be as in the proof of Proposition 6.3.5.2, so that we
have canonical isomorphisms

Fun(E ′,D) ≃ Fun/ C′(C′,B′) Fun(E ,D) ≃ Fun/ C′(C,B′)

Note that a morphism G : E → D carries each edge of W to an isomorphism in D if and only
if the corresponding object g ∈ Fun/ C′(C,B′) carries each element e ∈W to a π′-cartesian

https://kerodon.net/tag/038W
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edge of B′ (see Corollary 5.3.6.8). Since F carries each edge e ∈ W to an isomorphism in
C′, this is equivalent to the requirement that g(e) is an isomorphism in B′ (Proposition
5.1.1.8). We are therefore reduced to showing that composition with F induces a fully
faithful functor Fun/ C′(C′,B′)→ Fun/ C′(C,B′), whose essential image is spanned by those
functors g ∈ Fun/ C′(C,B′) which carry each edge of W to an isomorphism in B′. This is a
special case of Remark 6.3.1.15.

Corollary 6.3.5.5. 038XSuppose we are given a pullback diagram of simplicial sets

E

U

��

F // E ′

U ′

��
C F // C′,

where U and U ′ are left fibrations. Suppose that F exhibits C′ as a localization of C with
respect to some collection of edges W . Then F exhibits E ′ as a localization of E with respect
to W = U−1(W ).

Proof. Combine Proposition 6.3.5.4 with Proposition 5.1.4.14.

Proof of Theorem 6.3.5.1. Suppose we are given a commutative diagram of simplicial sets

038YE

U

��

F // E ′

U ′

��
C F // C′

(6.8)

which satisfies the hypotheses of Theorem 6.3.5.1. Fix an ∞-category D. We wish to show
that precomposition with F induces a fully faithful functor F ∗ : Fun(E ′,D) → Fun(E ,D),
whose essential image consists of those morphisms G : E → D which carry each edge of
W− ∪ W+ to an isomorphism in D. Let π : C ×C′ E ′ → E ′ be given by projection onto
the second factor. Note that the pair (U,F ) determines a morphism of simplicial sets
F̃ : E → C ×C′ E ′ satisfying π ◦ F̃ = F , so that F ∗ factors as a composition

Fun(E ′,D) π∗−→ Fun(C ×C′ E ′,D) F̃ ∗−−→ Fun(E ,D).

Let W ′ be the collection of all edges of C ×C′ E ′ of the form (e, f), where e belongs to W
and f is a U ′-cocartesian edge of E ′. It follows from Proposition 6.3.5.4 that the functor π∗

https://kerodon.net/tag/038X
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is fully faithful, and that its essential image consists of those morphisms G′ : C ×C′ E ′ → D
which carry each edge of W ′ to an isomorphism in D. Applying Proposition 6.3.5.2, we
see that the functor F̃ ∗ is also fully faithful, and that its essential image consists of those
morphisms G : E → D which carry each edge of W− to an isomorphism in D. To complete
the proof, it will suffice to show the following:

(∗) A morphism of simplicial setsG′ : C ×C′ E ′ → D carries each edge ofW ′ to an isomorphism
in D if and only if G′ ◦ F̃ carries each edge of W+ to an isomorphism in D.

The “only if” assertion is immediate (since F̃ (W+) is contained in W ′). The converse follows
from the observation that every edge (e, f) is isomorphic, when viewed as an object of
the ∞-category Fun/ C(∆1, C ×C′ E ′), to F̃ (e), where e : X → Y is any U -cocartesian edge
of E for which U(e) = e and F (X) is isomorphic to the domain of f as an object of the
∞-category {X} ×C′ E ′.

We now record a few other thematically related results which will be useful later.

Proposition 6.3.5.6.02LV Let F : C → D be a morphism of simplicial sets which exhibits D
as a localization of C with respect to a collection of edges W . Let K be any simplicial set,
and let WK denote the collection of edges e = (e′, e′′) of the product K × C for which e′ is a
degenerate edge of K and e′′ belongs to W . Then the induced map FK : K × C → K × D
exhibits K ×D as the localization of K × C with respect to WK .

Proof. Let E be an ∞-category, and let

θ : Fun(K ×D, E)→ Fun(K × C, E)

be the functor given by precomposition with FK . We wish to show that FK is fully faithful,
and that its essential image is the full subcategory Fun((K×C)[W−1

K ], E) of Notation 6.3.1.1.
Unwinding the definitions, we can identify θ with the functor

θ′ : Fun(D,Fun(K, E))→ Fun(C,Fun(K, E))

given by precomposition with F . Under this identification Fun((K×C)[W−1
K ], E) corresponds

to the full subcategory Fun(C[W−1],Fun(K, E)) ⊆ Fun(C,Fun(K, E)) (see Theorem 4.4.4.4),
so that the desired result follows from our assumption on the functor F .

6.3.6 Universal Localizations

02LZ
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The formation of localizations is generally not compatible with fiber products. If

X ′ //

f ′

��

X

f

��
S′ // S

is a pullback diagram of simplicial sets where the morphism f exhibits S as a localization of
X (with respect to some collection of edges of X), then the morphism f ′ need not have the
same property. To address this point, it will be convenient to introduce a more restrictive
notion of localization.

Definition 6.3.6.1. 02M0Let f : X → S be a morphism of simplicial sets. We will say that f is
universally localizing if, for every morphism of simplicial sets S′ → S, the projection map
S′ ×S X → S′ exhibits S′ as a localization of S′ ×S X with respect to some collection of
edges W .

Example 6.3.6.2. 047TLet f : X → S be a cocartesian fibration of simplicial sets. If each fiber
Xs = {s} ×S X is weakly contractible, then f is universally localizing. See Corollary 6.3.5.3.

If f : X → S is a universally localizing morphism of simplicial sets, then it exhibits S as
a localization of X with respect to some collection of edges W . It is possible to be more
precise: we can take W to be the collection of edges of X having degenerate image in S.

Proposition 6.3.6.3. 02M1Let f : X → S be a morphism of simplicial sets. For every morphism
T → S, let WT denote the collection of all edges w = (wT , wX) of the fiber product T ×S X
for which wT is a degenerate edge of T . The following conditions are equivalent:

(1) For every morphism of simplicial sets T → S, the projection map T ×S X → T exhibits
T as a localization of T ×S X with respect to WT .

(2) The morphism f is universally localizing, in the sense of Definition 6.3.6.1.

(3) For every simplex σ : ∆n → S, the projection map ∆n ×S X → ∆n exhibits ∆n as a
localization of ∆n ×S X with respect to some collection of edges of ∆n ×S X.

(4) For every simplex σ : ∆n → S, the projection map ∆n ×S X → ∆n exhibits ∆n as a
localization of ∆n ×S X with respect to W∆n.

Proof. The implications (1) ⇒ (2) ⇒ (3) are immediate. We next show that (3) implies
(4). Let σ be an n-simplex of S, and suppose that the projection map π : ∆n ×S X → ∆n

exhibits ∆n as a localization of ∆n ×S X with respect to some collection of edges W . Since
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∆n is an ∞-category in which every isomorphism is an identity morphism, the diagram
π must carry each edge of W to a degenerate edge of ∆n: that is, we have W ⊆ W∆n .
Applying Corollary 6.3.1.22, we deduce that π also exhibits ∆n as a localization of ∆n×S X
with respect to W∆n .

We now complete the proof by showing that (4) implies (1). Let us say that a simplicial
set T is good if, for every morphism T → S, the projection map T ×S X → T exhibits T as
a localization of T ×S X with respect to WT . Assume that condition (4) is satisfied, so that
every standard simplex ∆m is good. We wish to show that every simplicial set T is good.
Using Proposition 6.3.4.1, we see that the collection of good simplicial sets is closed under
filtered colimits; we may therefore assume without loss of generality that T is finite. If T = ∅,
the result is obvious. We may therefore assume that T has dimension n for some integer
n ≥ 0. We proceed by induction on n and on the number of nondegenerate n-simplices of T .
Fix a nondegenerate n-simplex σ : ∆n → T . Using Proposition 1.1.4.12, we see that there is
a pushout square of simplicial sets

∂∆n //

��

∆n

σ

��
T ′ // T,

where T ′ is a simplicial set of dimension ≤ n having fewer nondegenerate n-simplices than
T . By virtue of Proposition 6.3.4.2, to show that T is good, it will suffice to show that the
simplicial sets ∆n, ∂∆n, and T ′ are good. In the first case this follows from assumption (4),
and in the remaining cases it follows from our inductive hypothesis.

Corollary 6.3.6.4.02M2 Let f : X → S be a universally localizing morphism of simplicial sets,
and let W be the collection of edges w of X for which f(w) is a degenerate edge of S. Then
f exhibits S as a localization of X with respect to W .

Remark 6.3.6.5.02M3 Let f : X → S be a universally localizing morphism of simplicial sets.
Then f is a weak homotopy equivalence (see Remark 6.3.1.16).

Remark 6.3.6.6.02M4 Let X be a simplicial set. Then the projection map X → ∆0 is universally
localizing if and only if X is weakly contractible. This follows by combining Propositions
6.3.1.20 and 6.3.5.6.
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Remark 6.3.6.7. 02M5Suppose we are given a pullback diagram of simplicial sets

X ′ //

f ′

��

X

f

��
S′ // S.

If f is universally localizing, then f ′ is universally localizing.

Proposition 6.3.6.8. 04JTLet f : X → S be a morphism of simplicial sets which admits a
section u : S ↪→ X. Suppose that u ◦ f and idX belong to the same connected component of
the simplicial set Fun/S(X,X). Then f is universally localizing.

Proof. Let W be the collection of all edges w of X such that f(w) is degenerate in S. Since
our hypothesis is stable under the formation of pullbacks, it will suffice to show that f
exhibits S as a localization of X with respect to W . Fix an ∞-category C; we wish to show
that composition with f induces a bijection

α : π0(Fun(S, C)≃)→ π0(Fun(X[W−1], C)≃).

The injectivity of α follows immediately from the existence of the section u. To prove
surjectivity, it will suffice to show that for every object g ∈ Fun(X[W−1], C) is isomorphic
to g ◦ u ◦ f . Since u ◦ f and idX belong to the same connected component of Fun/S(X,X),
it suffices to observe that postcomposition with g carries every edge of Fun/S(X,X) to an
isomorphism in the ∞-category Fun(X, C).

Proposition 6.3.6.9. 02M6Let f : X → S be a universally localizing morphism of simplicial sets.
Then f is surjective.

Proof. Let σ : ∆n → S be an n-simplex of S; we wish to show that σ can be lifted to an
n-simplex of X. Assume otherwise, so that the inclusion map ∂∆n×SX ↪→ ∆n ×S X is an
isomorphism. We have a commutative diagram of simplicial sets

∂∆n×SX ∼ //

��

∆n ×S X

��
∂∆n // ∆n,

where the vertical maps are weak homotopy equivalences (see Remarks 6.3.6.7 and 6.3.6.5).
It follows that the inclusion ∂∆n ↪→ ∆n is also a weak homotopy equivalence, which is a
contradiction (since the relative homology group Hn(∆n, ∂∆n; Z) ≃ Z is nonzero).
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Proposition 6.3.6.10.02M7 Let f : X → Y and g : Y → Z be universally localizing morphisms
of simplicial sets. Then the composition (g ◦ f) : X → Z is universally localizing.

Proof. Suppose we are given a morphism of simplicial sets Z ′ → Z. Set X ′ = Z ′ ×Z X,
and let W be the collection of those edges w of X ′ having degenerate image in Z ′. We will
show that the projection map π : X ′ → Z ′ exhibits Z ′ as a localization of X ′ with respect
to W . Set Y ′ = Z ′ ×Z Y , so that π factors as a composition X ′

f ′−→ Y ′
g′−→ Z ′. It follows

from Proposition 6.3.6.9 (and Remark 6.3.6.7) that f ′ is a surjection of simplicial sets. In
particular, the image f ′(W ) is the collection of all edges u of Y ′ having the property that
g′(u) is a degenerate edge of Z ′.

Let W0 ⊆ W be the collection of those edges w of X ′ for which f ′(w) is a degenerate
edge of Y ′. Applying Proposition 6.3.6.3, we conclude that f ′ exhibits Y ′ as a localization of
X ′ with respect to W0, and that g′ exhibits Z ′ as a localization of Y ′ with respect to f ′(W ).
Applying Proposition 6.3.1.21, we conclude that π = g′ ◦ f ′ exhibits Z ′ as the localization of
X ′ with respect to W0 ∪W = W , as desired.

Corollary 6.3.6.11.02M8 Let f : X → S be a universally localizing morphism of simplicial sets,
and let K be a weakly contractible simplicial set. Then the composite map X ×K → X

f−→ S

is universally localizing.

Proof. By virtue of Proposition 6.3.6.10, it will suffice to show that the projection map
X × K → X is universally localizing. Using Remark 6.3.6.7, we can reduce to the case
X = ∆0, in which case the desired result follows from Remark 6.3.6.6.

Proposition 6.3.6.12.02M9 The collection of universally localizing morphisms is closed under
the formation of filtered colimits (when regarded as a full subcategory of the arrow category
Fun([1], Set∆)).

Proof. Suppose that f : X → S is a morphism of simplicial sets which can be realized as the
colimit of a filtered diagram {fα : Xα → Sα} in the category Fun([1], Set∆), where each fα
is universally localizing. We wish to show that f is universally localizing. Fix a morphism
of simplicial sets T → S and let W be the collection of all edges w = (wT , wX) of T ×S X
for which wT is a degenerate edge of T . Note that the projection map fT : T ×S X → T can
be realized as a filtered colimit of morphisms fT,α : T ×S Xα → T ×S Sα. For each index
α, let Wα denote the collection of edges of T ×S Xα having degenerate image in T . Since
fα is universally localizing, Proposition 6.3.6.3 guarantees that fT,α exhibits T ×S Sα as a
localization of T ×S Xα with respect to Wα. Applying Proposition 6.3.4.1, we conclude that
fT exhibits T as a localization of T ×S X with respect to W .
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Proposition 6.3.6.13. 02MASuppose we are given a commutative diagram of simplicial sets

02MBX01

f01

!!

//

��

X0

��

f0

  
S01 //

��

S0

��

X1 //

f1

!!

X

f

  
S1 // S

(6.9)

with the following properties:

(a) The front and back faces

S01 //

��

S0

��

X01 //

��

X0

��
S1 // S X1 // X

are pushout squares.

(b) The morphisms S01 → S0 and X01 → X0 are monomorphisms.

(c) The morphisms f01, f0, and f1 are universally localizing.

Then the morphism f is universally localizing.

Proof. Fix a morphism of simplicial sets T → S; we wish to show that the projection map
fT : T ×S X → T exhibits T as a localization of T ×S X with respect to some collection
of morphisms W . Since the hypotheses of Proposition 6.3.6.13 are stable with respect to
pullback, we may assume without loss of generality that T = S. Let W0 be the collection of
edges w of X0 having the property that f0(w) is a degenerate edge of S0, and define W1 and
W01 similarly. Combining assumption (c) with Proposition 6.3.6.3, we conclude that the
morphism f0 (respectively f1, f01) exhibits the simplicial set S0 (respectively S1, S01) as a
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localization of X0 (respectively X1, X01) with respect to W0 (respectively W1, W01). Let
W be the collection of edges of X given by the union of the images of W0 and W1. Note
that conditions (a) and (b) guarantee that the front and back faces of the diagram (6.9)
are categorical pushout squares (Proposition 4.5.4.11). Applying Proposition 6.3.4.2, we
conclude that f exhibits S as a localization of X with respect to W .

6.3.7 Subdivision and Localization

02MC Our goal in this section is to prove the following:

Theorem 6.3.7.1.02MD Let S be a simplicial set. Then there exists a partially ordered set (A,≤)
and a universally localizing morphism N•(A)→ S.

We begin by proving a weaker version of Theorem 6.3.7.1, which asserts that every
simplicial set S admits a universally localizing morphism N•(C)→ S, for some category C.
Here it is possible to be completely explicit: we can take C to be the category of simplices
∆S introduced in Construction 1.1.3.9 (Corollary 6.3.7.5).

Proposition 6.3.7.2.02ME Let S be a simplicial set, let Sd(S) denote the subdivision of S
(Definition 3.3.3.1), and let λS : Sd(S) → S denote the last vertex map (Construction
3.3.4.3). Then λS is universally localizing.

Remark 6.3.7.3.02MF Let S be a simplicial set. Combining Proposition 6.3.7.2 with Remark
6.3.6.5, we recover the assertion that the last vertex map λS : Sd(S)→ S is a weak homotopy
equivalence. In other words, we can regard Proposition 6.3.7.2 as a refinement of Proposition
3.3.4.8.

Proof of Proposition 6.3.7.2. By virtue of Proposition 6.3.6.12, we may assume without loss
of generality that the simplicial set S is finite. If S is empty, there is nothing to prove.
We may therefore assume that S has dimension n for some integer n ≥ 0. We proceed by
induction on n and on the number of nondegenerate n-simplices of S. Fix a nondegenerate
n-simplex σ : ∆n → S. Using Proposition 1.1.4.12, we see that there is a pushout square of
simplicial sets

∂∆n //

��

∆n

σ

��
S′ // S,

where S′ is a simplicial set of dimension ≤ n having fewer nondegenerate n-simplices than
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S. Applying Proposition 6.3.6.13 to the commutative diagram

Sd(∂∆n)

λ∂∆n

##

//

��

Sd(∆n)

λ∆n

""

��

∂∆n //

��

∆n

��

Sd(S′)

λS′

##

// Sd(S)

λS

""
S′ // S,

we are reduced to showing that the morphisms λS′ , λ∂∆n , and λ∆n are universally localizing.
In the first two cases, this follows from our inductive hypothesis. We are therefore reduced
to proving Proposition 6.3.7.2 in the special case where S = ∆n is a standard simplex. Using
Example 3.3.3.5, we can identify the subdivision Sd(S) = Sd(∆n) with the nerve of the
partially ordered set Chain[n] of nonempty subsets P ⊆ [n]. Under this identification, λS is
obtained from the map of partially ordered sets

Chain[n]→ [n] (S ⊆ [n]) 7→ max(S).

We now observe that this map admits section µ : [n]→ Chain[n], given by the construction
i 7→ {0 < 1 < · · · < i}, and there is a (unique) natural transformation idSd(S) → µ ◦ λS
which belongs to Fun/S(Sd(S),Sd(S)). The desired result now follows from the criterion of
Proposition 6.3.6.8.

Variant 6.3.7.4. 04JULet S be a simplicial set and let ψS : N•(∆S)→ Sd(S) be the comparison
map of Construction 3.3.3.9. Then ψS is universally localizing.

Proof. Note that the functor S 7→ N•(∆S) preserves small colimits (Variant 3.3.3.19).
Proceeding as in the proof of Proposition 6.3.7.2, we can reduce to the case where S = ∆n

is a standard simplex. In this case, we can identify ψS with (the nerve of) the functor

∆S → Chain[n] (α : [m]→ [n] 7→ im(α) ⊆ [n])

This functor admits a section ϕ, which identifies Chain[n] with the subcategory ∆nd
S ⊆∆S

of nondegenerate simplices of S. Note that there is a (unique) natural transformation from
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the identity functor id∆S to ϕ ◦ ψS which belongs to Fun/ Sd(S)(N•(∆S),N•(∆S)), so the
desired result follows from the criterion of Proposition 6.3.6.8.

Corollary 6.3.7.5.04JV Let S be a simplicial set. Then the composite morphism

N•(∆S) ψS−−→ Sd(S) λS−→ S

is universally localizing.

Proof. By virtue of Proposition 6.3.6.10, this follows from the observation that the morphisms
λS and ψS are universally localizing (Proposition 6.3.7.2 and Variant 6.3.7.4).

We now study some additional assumptions on the simplicial set S which will allow us
to replace the category ∆S of Corollary 6.3.7.5 by a partially ordered set.

Definition 6.3.7.6.02MG Let S be a simplicial set. We say that S is nonsingular if, for every every
nondegenerate n-simplex σ of S, the corresponding map σ : ∆n → S is a monomorphism of
simplicial sets.

Remark 6.3.7.7.02MH Recall that a simplicial set S is braced if the collection of nondegenerate
simplices of S is closed under the face operators (Definition 3.3.1.1). Every nonsingular
simplicial set is braced. However, the converse is false. For example, the quotient ∆1/ ∂∆1

is braced, but is not nonsingular.

Example 6.3.7.8.02MJ Let (A,≤) be a partially ordered set. Then the nerve N•(A) is a
nonsingular simplicial set. In particular, for every integer n ≥ 0, the standard simplex ∆n is
nonsingular.

Remark 6.3.7.9.02MK Let S be a nonsingular simplicial set. Then every simplicial subset S′ ⊆ S
is also nonsingular.

Remark 6.3.7.10.02ML Let S be a simplicial set which can be written as a union of a collection
of simplicial subsets {Sα ⊆ S}. If each Sα is nonsingular, then S is nonsingular.

Remark 6.3.7.11.02MM Let S and T be nonsingular simplicial sets. Then the join S ⋆ T is
nonsingular. In particular, if S is nonsingular, then the cone S▷ is also nonsingular.

Remark 6.3.7.12.02MN Let S be a simplicial set and A denote the collection of simplicial subsets
S′ ⊆ S which are isomorphic to a standard simplex. We regard Sub∆(S) as a partially
ordered set with respect to inclusion. If S is nonsingular, the construction

(σ : ∆n → S) 7→ (im(σ) ⊆ S)

determines an isomorphism of categories ∆nd
S ≃ A, where ∆nd

S denotes category of nonde-
generate simplices of S (Notation 3.3.3.11). Combining this observation with Proposition
3.3.3.16, we obtain an isomorphism of simplicial sets N•(A)→ Sd(S).
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Corollary 6.3.7.13. 02MPLet S be a nonsingular simplicial set. Then there exists a partially
ordered set A and a universally localizing morphism N•(A)→ S.

Proof. Combine Proposition 6.3.7.2 with Remark 6.3.7.12.

For our purposes, Corollary 6.3.7.13 is a poor replacement for Theorem 6.3.7.1: an
∞-category C is rarely nonsingular when regarded as a simplicial set (see Exercise 3.3.1.2).
We will deduce the general form of Theorem 6.3.7.1 by combining Corollary 6.3.7.13 with
the following result:

Proposition 6.3.7.14. 02MQLet S be a simplicial set. Then there exists a universally localizing
morphism φ : S̃ → S, where S̃ is nonsingular.

The proof of Proposition 6.3.7.14 will make use of the following:

Lemma 6.3.7.15. 02MRLet {Sα} be a diagram of nonsingular simplicial sets. Then the limit
lim←−α Sα is also nonsingular.

Proof. By virtue of Remark 6.3.7.9, it will suffice to show that the product S = ∏
α Sα is

nonsingular. Let σ : ∆n → S be a nondegenerate simplex of S; we wish to show that σ is
a monomorphism of simplicial sets. For each index α, Proposition 1.1.3.8 guarantees that
there exists a commutative diagram

∆n σ //

τα

��

S

��
∆nα

σα // Sα,

where σα is a nondegenerate simplex Sα. Our assumption that Sα is nondegenerate guarantees
that σα is a monomorphism of simplicial sets, so that the product map

∏
α

∆nα

∏
α
σα

−−−−→
∏
α

Sα = S

is also a monomorphism. It will therefore suffice to show that τ = {τα} determines a
monomorphism of simplicial sets ∆n →

∏
α ∆nα . Since ∏

α ∆nα can be identified with the
nerve of the partially ordered set ∏

α[nα], it is a nonsingular simplicial set (Example 6.3.7.8).
It will therefore suffice to show that τ is nondegenerate, which follows immediately from our
assumption that σ is nondegenerate.
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Proof of Proposition 6.3.7.14. Let S be a simplicial set. For each integer k ≥ 0, let skk(S)
denote the k-skeleton of S (Construction 1.1.4.1). We will construct a commutative diagram

s̃k0(S) � � //

φ0

��

s̃k1(S)

φ1

��

� � // s̃k2(S)

φ2

��

� � // · · ·

sk0(S) � � // sk1(S) � � // sk2(S) � � // · · ·

where each of the horizontal maps is a monomorphism, each of the vertical maps is universally
localizing, and each of the simplicial sets s̃kk(S) is nonsingular. It then follows from Remark
6.3.7.10 that the colimit S̃ = lim−→k

s̃kk(S) is nonsingular. Applying Proposition 6.3.6.12, we
conclude that the morphisms φk determine a universally localizing morphism φ : S̃ → S.

The construction of the morphisms φk : s̃kk(S) → skk(S) proceeds by induction. If
k = 0, we can take s̃kk(S) = skk(S) and φk to be the identity morphism. Let us therefore
assume that k > 0, and that the morphism φk−1 : s̃kk−1(S)→ skk−1(S) has already been
constructed. Let Snd

k denote the set of nondegenerate k-simplices of S, let T denote the
coproduct ∐

σ∈Snd
k

∆k, and let T0 ⊆ T denote the coproduct ∐
σ∈Snd

k
∂∆k, so that Proposition

1.1.4.12 supplies a pushout diagram

T0 //

��

T

��
skk−1(S) // skk(S).

Note that T is nonsingular (Example 6.3.7.8), so the simplicial subset T0 ⊆ T is also
nonsingular (Remark 6.3.7.9). Let T̃0 denote the fiber product T0 ×skk−1(S) s̃kk−1(S), and
we define s̃kk(S) to be the pushout of the diagram

(s̃kk−1(S)× T̃ ▷0 )←↩ T̃0 ↪→ (T × T̃ ▷0 ).

Note that the cone point of T̃ ▷0 determines an embedding s̃kk−1(S)→ s̃kk(S). Moreover, we
have a commutative diagram

02MS s̃kk−1(S)× T̃ ▷0

��

T̃0oo //

��

T × T̃ ▷0

��
skk−1(S) T0oo // T.

(6.10)
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1370 CHAPTER 6. ADJOINT FUNCTORS

which determines an extension of φk−1 to a map

φk : s̃kk(S)→ skk−1(S)
∐
T0

T ≃ skk(S).

Since the cone T̃ ▷0 is weakly contractible, it follows from Corollary 6.3.6.11 that the vertical
maps in the diagram (6.10) are universally localizing. Applying Proposition 6.3.6.13, we
deduce that φk is also universally localizing.

To complete the proof, it will suffice to show that the simplicial set s̃kk(S) is nonsingular.
By virtue of Remark 6.3.7.10, it will suffice to show that the simplicial subsets s̃kk−1(S)× T̃ ▷0
and T × T̃ ▷0 are nonsingular. Since s̃kk−1(S) is nonsingular (by our inductive hypothesis)
and T is nonsingular (Example 6.3.7.8), we are reduced to proving that the cone T̃ ▷0 is
nonsingular (Lemma 6.3.7.15). By virtue of Remark 6.3.7.11, we can reduce further to
showing that T̃0 is nonsingular. This follows from Remark 6.3.7.9 and Lemma 6.3.7.15, since
T̃0 can be identified with a simplicial subset of the product T × s̃kk−1(S).

Remark 6.3.7.16. 02MTLet S be a finite simplicial set. In this case, each of the simplicial sets
s̃kk(S) constructed in the proof of Proposition 6.3.7.14 will also be finite. Specializing to
the case k ≥ dim(S), we obtain a universally localizing morphism

s̃kk(S)→ skk(S) = S

where the simplicial set s̃kk(S) is both finite and nonsingular.

Proof of Theorem 6.3.7.1. Let S be a simplicial set. Applying Proposition 6.3.7.14, we can
choose a universally localizing morphism φ : S̃ → S, where S̃ is a nonsingular simplicial
set. Let A = Sub∆(S̃) denote the partially ordered set of simplicial subsets of S̃ which are
isomorphic to a standard simplex, so that Corollary 6.3.7.13 supplies a universally localizing
morphism λ

S̃
: N•(A)→ S̃. Applying Proposition 6.3.6.10, we deduce that the composite

morphism
N•(A)

λ
S̃−→ S̃

φ−→ S

is also universally localizing.

Combining the preceding argument with Remark 6.3.7.16, we also obtain the following:

Variant 6.3.7.17. 02MULet S be a finite simplicial set. Then there exists a finite partially
ordered set (A,≤) and a universally localizing morphism N•(A)→ S.

Exercise 6.3.7.18. 02MVLet S be a simplicial set and let S̃ be the smallest simplicial subset
of S ×N•(Z≥0) which contains all simplices of the form (σ, τ), where τ is a nondegenerate
simplicial subset of N•(Z≥0) (that is, it corresponds to a strictly increasing sequence of
nonnegative integers). Show that S̃ is nonsingular, and that projection onto the first factor
determines a universally localizing morphism S̃ ↠ S.
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Chapter 7

Limits and Colimits

02H0 In this chapter, we extend the classical theory of limits and colimits to the setting of
higher category theory. Let F : C → D be a functor of ∞-categories. We say that an
object Y ∈ D is a limit of F if there exists a natural transformation α : Y → F having
the following universal property: for every object X ∈ C, composition with α induces a
homotopy equivalence of Kan complexes

HomC(X,Y )→ HomFun(C,D)(X,F );

here X,Y ∈ Fun(C,D) denote the constant functors taking the values X and Y , respectively.
In this case, the object Y is uniquely determined up to isomorphism; to emphasize this, we
often denote Y by lim←−(F ), or by lim←−C∈C(F (C)). In §7.1, we summarize the formal properties
of this notion (as well as the dual notion of colimit, which plays an equally essential role in
the theory).

Throughout this book, we will often be faced with the problem of computing (or describing)
the limit of a diagram F : C → D. In such situations, it is useful to have some flexibility
to modify the ∞-category C. In §7.2, we introduce the notion of a left cofinal morphism of
simplicial sets e : C′ → C (Definition 7.2.1.1). If e : C′ → C is left cofinal, then an object of
D is a limit of F if and only if it is a limit of the composite map F ′ = F ◦ e (see Corollary
7.2.2.11, and Corollary 7.4.5.14 for a converse). When C is an ∞-category, cofinality admits
a simple characterization: a morphism e : C′ → C is left cofinal if and only if, for each
object C ∈ C, the simplicial set C′×C C/C is weakly contractible (Theorem 7.2.3.1). We will
encounter many situations where this criterion is easy to verify. In such cases, it is harmless
to replace C by C′ for the purpose of calculating the limit of a diagram F : C → D.

In §7.3, we consider another important technique for computing limits. Suppose we are
given a cartesian fibration of ∞-categories U : E → C. Under some mild assumptions, one
can show that the limit of a diagram F : E → D obeys a transitivity formula, which we can

1371
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write informally as
lim←−
X∈E

(F (X)) ≃ lim←−
C∈C

( lim←−
X∈EC

F (X)).

More precisely, suppose that for every object C ∈ C, the diagram FC = F |EC
admits a limit

in the ∞-category D. Then one can construct a new functor G : C → D, given on objects
by the formula G(C) = lim←−(FC); we refer to G as a right Kan extension of F along U (see
Definition 7.3.1.2 and Proposition 7.3.4.4). Moreover, an object of the ∞-category D is a
limit of the functor F if and only if it is a limit of the functor G (Corollary 7.3.8.20).

The remainder of this chapter is devoted to studying limits and colimits in special
situations. Let S denote the ∞-category of spaces (Construction 5.5.1.1). For any ∞-
category C, Corollary 5.6.0.6 supplies a bijection from the set of isomorphism classes of
functors F : C → S and the set of equivalence classes of essentially small left fibrations
U : E → C. In §7.4, we use this identification to give an explicit description of limits and
colimits in S:

(1) The Kan complex Fun/ C(C, E) parametrizing sections of U is a limit of the diagram F .

(2) A Kan complex X is a colimit of F if and only if there exists a weak homotopy
equivalence E → X (Corollary 7.4.5.4).

These assertions are special cases of more general results which apply to diagrams taking
values in the ∞-category QC ⊃ S; see Theorems 7.4.1.1 and7.4.3.6.

Recall that the ∞-category S is defined as the homotopy coherent nerve of the ordinary
category of Kan complexes Kan. In particular, if F0 : C0 → Kan is a functor between
ordinary categories, then passing to the homotopy coherent nerve gives a functor of ∞-
categories F : C → S, where C = N•(C0). In this case, there is a natural candidate for
the corresponding left fibration U : E → C, obtained by taking E to be the weighted nerve
NF0
• (C0) of Definition 5.3.3.1. In §7.5, we combine this observation with assertions (1) and

(2) to compare limits and colimits in the∞-category S with the classical theory of homotopy
limits and colimits introduced by Bousfield and Kan in [6].

In §7.6, we provide a detailed discussion of some special classes of limits which arise
frequently in practice, such as products (Definition 7.6.1.3), powers (Definition 7.6.2.1),
pullbacks (Definition 7.6.3.1), equalizers (Definition 7.6.5.4), and sequential limits (Definition
7.6.6.1). From these primitives, many other examples can be constructed: for example,
arbitrary limits in an ∞-category D can be built by combining products and equalizers (see
Corollary 7.6.5.25 and Proposition 7.6.7.9).

7.1 Limits and Colimits

02H1
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Let K and C be categories. For every object X ∈ C, let X denote the constant functor
from K to C, carrying each object of K to X and each morphism of K to the identity
morphism idX . If U : K → C is an arbitrary functor, then a limit of U is an object of C which
represents the functor X 7→ HomFun(K,C)(X,U). This can be formulated more precisely as
follows:

Definition 7.1.0.1.02H2 Let F : K → C be a functor between categories. Let Y be an object
of C and let α : Y → F be a natural transformation of functors. We say that the natural
transformation α exhibits Y as a limit of F if the following condition is satisfied:

(∗) For every object X ∈ C, composition with α induces a bijection from HomC(X,Y ) to
the set HomFun(K,C)(X,F ) of natural transformations from X to F .

Our goal in this section is to introduce an ∞-categorical counterpart of Definition
7.1.0.1. Let C be an ∞-category, let F : K → C be a diagram, let α : Y → F be a natural
transformation. For every object X ∈ C, composition with α induces a map of Kan complexes

HomC(X,Y )→ HomFun(K,C)(X,F ),

which is well-defined up to homotopy. We will say that α exhibits Y as a limit of F if this
map is a homotopy equivalence for each X ∈ C (Definition 7.1.1.1). In §7.1.1, we provide
a detailed analysis of this notion and its formal properties (as well as the dual notion of
colimit, which is defined in a similar way).

In §4.6.7, we introduced the notion of a final object of an ∞-category C (Definition
4.6.7.1). This can be regarded as a special case of the general theory of limits: an object
Y ∈ C is final if and only if it is a limit of the empty diagram (Example 7.1.1.6). Conversely,
if K is an arbitrary simplicial set equipped with a diagram F : K → C, we will see that a
natural transformation α : Y → F exhibits Y as a limit of F if and only if it is final when
viewed as an object of the ∞-category C ×̃Fun(K,C){F} (Proposition 7.1.2.1). Recall that
C ×̃Fun(K,C){F} is equivalent (but not isomorphic) to the slice ∞-category C/F (Theorem
4.6.4.17). In §7.1.2, we use this observation to reformulate the notion of limit: an object Y
is a limit of a diagram F : K → C if there exists a diagram F : K◁ → C which carries the
cone point of K◁ to the object Y and which is final when viewed as an object of the slice
∞-category C/F (Corollary 7.1.2.2). In this situation, we will refer to F as a limit diagram
in the ∞-category C (Definintion 7.1.2.4).

In §7.1.3, we study the dependence of K-indexed limits on the ambient ∞-category
in which they are formed. We say that a functor of ∞-categories G : C → D preserves
K-indexed limits if, for every diagram F : K → C, the induced functor C/F → D/(G◦F )
carries final objects of C/F to final objects of D/(G◦F ) (Definition 7.1.3.4). We illustrate the
concept in this section with a few elementary examples (and will encounter many others
later in this book):
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• If G : C → D is an equivalence of ∞-categories, then it preserves K-indexed limits for
every simplicial set K (Proposition 7.1.3.9).

• Let C be an ∞-category which admits K-indexed limits, and let f : A → C be any
morphism of simplicial sets. Then the coslice ∞-category Cf/ also admits K-indexed
limits, and the projection map Cf/ → C preserves K-indexed limits (Corollary 7.1.3.20).

• Let G : C → D be a right fibration of ∞-categories, and suppose that D admits
K-indexed limits. If K is weakly contractible, then the ∞-category C also admits
K-indexed limits, and the right fibration F preserves K-indexed limits (Corollary
7.1.5.18).

For many applications, it will be useful to consider a relative version of the theory
of limit diagrams. Let U : C → D be a functor of ∞-categories. We say that an object
Y ∈ C is U -final if, for every object X ∈ C, the functor U induces a homotopy equivalence
HomC(X,Y )→ HomD(U(X), U(Y )) (Definition 7.1.4.1). We say that a diagram F : K◁ → C
with restriction F = F |K is a U -limit diagram if it is U/F -final when regarded as an object of
the ∞-category C/F , where U/F : C/F → D/(U◦F ) is the projection map (Definition 7.1.5.1).
In the special case D = ∆0, we recover the usual notions of final object and limit diagram,
respectively (Examples 7.1.4.2 and 7.1.5.3). Moreover, most of the basic features of final
objects and limit diagrams have counterparts in the relative setting, which we summarize in
§7.1.4 and §7.1.5. Even if one is ultimately interested in the “absolute” theory, the language
of relative limits is a useful tool: we illustrate this point in §7.1.6 by using the relative
language to study limits in an ∞-category of the form Fun(B, C) (our main result is that,
under mild assumptions, such limits can be computed pointwise: see Proposition 7.1.6.1)

Remark 7.1.0.2. 02VXThe preceding discussion has centered around the theory of limits. There
is also a dual theory of colimits in the ∞-categorical setting, which can be obtained by
passing to opposite ∞-categories. Every assertion concerning limits has a counterpart for
colimits (and vice versa). We will often use this implicitly (for example, by stating a result
only for colimits but later using the dual assertion for limits).

7.1.1 Limits and Colimits in ∞-Categories

02VYLet C be an ∞-category and let K be a simplicial set. For each object X ∈ C, we let
X ∈ Fun(K, C) denote the constant diagram K → {X} ↪→ C. Note that the construction
X 7→ X determines a functor of ∞-categories C → Fun(K, C), carrying each morphism
f : X → Y to a natural transformation f : X → Y .

Definition 7.1.1.1. 02VZLet C be an ∞-category containing an object Y , let K be a simplicial
set, and let u : K → C be a diagram. We say that a natural transformation α : Y → u

exhibits Y as a limit of u if the following condition is satisfied:
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(∗) For each object X ∈ C, the composition

HomC(X,Y )→ HomFun(K,C)(X,Y ) [α]◦−−→ HomFun(K,C)(X,u)

is an isomorphism in the homotopy category hKan, where the second map is described
in Notation 4.6.9.15.

We will say that a natural transformation β : u → Y exhibits Y as a colimit of u if the
following dual condition is satisfied:

(∗′) For each object Z ∈ C, the composition

HomC(Y,Z)→ HomFun(K,C)(Y , Z) ◦[β]−−→ HomFun(K,C)(u, Z)

is an isomorphism in the homotopy category hKan.

Remark 7.1.1.2.02W0 Stated more informally, a natural transformation α : Y → u exhibits
Y as a limit of u if and only if postcomposition with α induces a homotopy equivalence
HomC(X,Y )→ HomFun(K,C)(X,u) for each object X ∈ C. Similarly, a natural transforma-
tion β : u→ Y exhibits Y as a colimit of u if and only if precomposition with β induces a
homotopy equivalence HomC(Y,Z)→ HomFun(K,C)(u, Z) for each object Z ∈ C.

Remark 7.1.1.3.02JC Let C be an ∞-category containing an object Y and let u : K → C be a
diagram. Then a natural transformation α : Y → u exhibits Y as a limit of u if and only
if it exhibits Y as a colimit of the induced diagram uop : Kop → Cop, when regarded as a
morphism in the ∞-category Fun(Kop, Cop) ≃ Fun(K, C)op.

Example 7.1.1.4.02JD Let C be an ordinary category, let K be a simplicial set, and suppose
we are given a diagram u : K → N•(C), which we can identify with a functor of ordinary
categories U : hK → C (see Proposition 1.4.5.7). If Y is an object of C, then we can use
Corollary 1.5.3.5 to identify natural transformations Y → u (of diagrams in the ∞-category
N•(C)) with natural transformations Y → U (of diagrams in the ordinary category C).
Under this identification, a natural transformation Y → u exhibits Y as a limit of u (in the
∞-categorical sense of Definition 7.1.1.1) if and only if it exhibits Y as a limit of U (in the
classical sense of Definition 7.1.0.1).

Example 7.1.1.5.02JR Let C be an ∞-category and let f : X → Y be a morphism in C. The
following conditions are equivalent:

• The morphism f is an isomorphism from X to Y in the ∞-category C (Definition
1.4.6.1).

• The morphism f exhibits X as a limit of the diagram {Y } ↪→ C.
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• The morphism f exhibits Y as a colimit of the diagram {X} ↪→ C.

Example 7.1.1.6. 038ZLet C be an ∞-category. Then an object Y ∈ C is initial (in the sense of
Definition 4.6.7.1) if and only if it is a colimit of the empty diagram ∅ ↪→ C. Similarly, Y is
final if and only if it is a limit of the empty diagram.

Remark 7.1.1.7. 02W1Let C be an ∞-category, let u : K → C be a diagram, and let Y ∈ C be
an object. If α : Y → u is a natural transformation, then the condition that α exhibits Y
as a limit of u depends only on its homotopy class [α] (as a morphism in the ∞-category
Fun(K, C)). Similarly, if β : u→ Y is a natural transformation, then the condition that β
exhibits Y as a colimit of u depends only on its homotopy class [β].

Remark 7.1.1.8. 02W2Let C be an ∞-category containing an object Y , let K be a simplicial
set, and let β : u → u′ be an isomorphism in the ∞-category Fun(K, C). Suppose we are
given a natural transformation α : Y → u, and let α′ : Y → u′ be any composition of α with
β. Then α exhibits Y as a limit of u if and only if α′ exhibits Y as a limit of u′. Similarly,
if γ′ : u′ → Y is a natural transformation and γ : u→ Y is a composition of β with γ′, then
γ exhibits Y as a colimit of u if and only if γ′ exhibits Y as a colimit of u′.

Remark 7.1.1.9. 02W3Let C be an ∞-category, let u : K → C be a diagram, and let f : X → Y

be a morphism in C. Suppose we are given a natural transformation of diagrams β : Y → u,
and let α : X → u be a composition of β with the constant natural transformation f : X → Y .
Then any two of the following three properties imply the third:

• The natural transformation α exhibits X as a limit of the diagram u.

• The natural transformation β exhibits Y as a limit of the diagram u.

• The morphism f : X → Y is an isomorphism in the ∞-category C.

Remark 7.1.1.10. 02W4Let F : C → D be a fully faithful functor of ∞-categories, let u : K → C
be a diagram, and let Y ∈ C be an object equipped with a natural transformation α : Y → u.
If F (α) : F (Y )→ (F ◦ u) exhibits F (Y ) as a limit of the diagram (F ◦ u) : K → D, then α

exhibits Y as a limit of u. The converse holds if F is an equivalence of ∞-categories.

Definition 7.1.1.11. 02JBLet C be an ∞-category and let u : K → C be a diagram. We say
that an object Y ∈ C is a limit of u if there exists a natural transformation α : Y → u which
exhibits Y as a limit of u, in the sense of Definition 7.1.1.1. We say that Y is a colimit of u
if there exists a natural transformation β : u→ Y which exhibits Y as a colimit of u.

Proposition 7.1.1.12. 02JHLet C be an ∞-category and let u : K → C be a diagram. Then:

• Suppose that the diagram u has limit Y ∈ C. Then an object X ∈ C is a limit of u if
and only if it is isomorphic to Y .
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• Suppose that the diagram u has colimit Y ∈ C. Then an object X ∈ C is a colimit of u
if and only if it is isomorphic to Y .

Proof. Let β : Y → u be a natural transformation which exhibits Y as a limit of the diagram
u. For any object X and any natural transformation α : X → u, there exists a morphism
f : X → Y such that α is a composition of β with the constant natural transformation
f : X → Y . If α also exhibits X as a limit of the diagram u, then f is an isomorphism
(Remark 7.1.1.9); in particular, X is isomorphic to Y . Conversely, if f : X → Y is an
isomorphism, then any composition of f with β is a natural transformation X → u which
exhibits X as a limit of u (Remark 7.1.1.9). This proves the first assertion; the proof of the
second follows by applying the same argument to the opposite ∞-category Cop.

Notation 7.1.1.13.02JJ Let C be an ∞-category and let u : K → C be a diagram. It follows
from Proposition 7.1.1.12 that, if the diagram u admits a limit Y , then the isomorphism
class of the object Y depends only on the diagram u. To emphasize this dependence, we
will often denote Y by lim←−(u) and refer to it as the limit of the diagram u. Similarly, if u
admits a colimit X ∈ C, we will often denote X by lim−→(u) and refer to it as the colimit of
the diagram u. Beware that this terminology is somewhat abusive, since the objects lim←−(u)
and lim−→(u) are only well-defined up to isomorphism.

In situations where the limit lim←−(u) and colimit lim−→(u) are defined, they depend functo-
rially on the diagram u : K → C.

Definition 7.1.1.14.02JK Let C be an ∞-category and let K be a simplicial set. We will say
that C admits K-indexed limits if, for every diagram u : K → C, there exists an object Y ∈ C
which is a limit of u. We will say that C admits K-indexed colimits if, for every diagram
u : K → C, there exists an object X ∈ C which is a colimit of u.

Remark 7.1.1.15.03U1 Let u : K → K ′ be a categorical equivalence of simplicial sets. Then an
∞-category C admits K-indexed colimits if and only if it admits K ′-indexed colimits.

Variant 7.1.1.16.0390 It will often be useful to extend the terminology of Definition 7.1.1.14,
replacing the individual simplicial set K by a collection of simplicial sets. For example:

• We say that an ∞-category C admits finite limits if it admits K-indexed limits for
every finite simplicial set K (Definition 3.6.1.1), every diagram f : K → C admits a
limit.

• We say that an ∞-category C admits finite colimits if it admits K-indexed colimits for
every finiite simplicial set K.

• We say that an ∞-category C is complete if it admits K-indexed limits for every small
simplicial set K.
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• We say that an ∞-category C is cocomplete if it admits K-indexed colimits for every
small simplicial set K.

Let C be an ∞-category. For every simplicial set K, precomposition with the projection
map K → ∆0 determines a functor

δ : C ≃ Fun(∆0, C)→ Fun(K, C).

We will refer to δ as the diagonal functor: it carries each object X ∈ C to the constant
diagram X : K → C taking the value X.

Proposition 7.1.1.17. 02JLLet C be an ∞-category and let K be a simplicial set. Then:

• The ∞-category C admits K-indexed limits if and only if the diagonal functor δ : C →
Fun(K, C) admits a right adjoint G. If this condition is satisfied, then the right adjoint
G : Fun(K, C)→ C carries each diagram u : K → C to a limit lim←−(u) ∈ C.

• The ∞-category C admits K-indexed colimits if and only if the diagonal functor
δ : C → Fun(K, C) admits a left adjoint F . If this condition is satisfied, then the left
adjoint F : Fun(K, C)→ C carries each diagram u : K → C to a colimit lim−→(u) ∈ C.

Proof. Apply Proposition 6.2.4.1.

7.1.2 Limit and Colimit Diagrams

02JALet C be an ∞-category, let u : K → C be a diagram, and let C ×̃Fun(K,C){u} denote
the oriented fiber product of Construction 4.6.4.1. By definition, we can identify objects
of C ×̃Fun(K,C){u} with pairs (Y, α), where Y is an object of C and α : Y → u is a natural
transformation (here Y denotes the constant diagram K → {Y } ↪→ C). Using Proposition
5.6.6.21, we can reformulate Definition 7.1.1.1 as follows:

Proposition 7.1.2.1. 02W7Let C be an ∞-category containing an object Y and let u : K → C be
a diagram. Then:

• A natural transformation α : Y → u exhibits Y as a limit of the diagram u if and only
if it is final when regarded as an object of the oriented fiber product C ×̃Fun(K,C){u}.

• A natural transformation β : u→ Y exhibits Y as a colimit of the diagram u if and only
if it is initial when regarded as an object of the oriented fiber product {u} ×̃Fun(K,C) C.

Proof. We will prove the first assertion; the second follows by a similar argument. Projection
onto the first factor determines a right fibration θ : C ×̃Fun(K,C){u} → C. For each object
X ∈ C, we can identify θ−1(X) with the morphism space HomFun(K,C)(X,u). Let

ρX : HomFun(K,C)(Y , u)×HomC(X,Y )→ HomFun(K,C)(X,u)
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be the parametrized contravariant transport map of Variant 5.2.8.6. Using Remark 5.2.8.5
and Proposition 5.2.8.7, we see that ρX factors as a composition

HomFun(K,C)(Y , u)×HomC(X,Y ) → HomFun(K,C)(Y , u)×HomFun(K,C)(X,Y )
◦−→ HomFun(K,C)(X,u),

given on objects by the construction (α, f) 7→ α ◦ f . It follows that a natural transformation
α : Y → u exhibits Y as a limit of u if and only if, for every object X ∈ C, the restriction
ρX |{α}×HomC(X,Y ) is a homotopy equivalence of Kan complexes. By virtue of Proposition
5.6.6.21, this is equivalent to the requirement that α is final when regarded as an object of
the ∞-category C ×̃Fun(K,C){u}.

Corollary 7.1.2.2.02W8 Let C be an ∞-category, let u : K → C be a diagram, and let Y ∈ C be
an object. The following conditions are equivalent:

(1) The object Y is a limit of the diagram u.

(2) The object Y represents the right fibration C ×̃Fun(K,C){u} → C given by projection onto
the first factor.

(3) The object Y represents the right fibration C/u → C of Proposition 4.3.6.1.

Proof. The equivalence (1)⇔ (2) follows immediately from Proposition 7.1.2.1, and the equiv-
alence (2)⇔ (3) follows from the observation that the slice diagonal C/u ↪→ C ×̃Fun(K,C){u}
of Construction 4.6.4.13 is an equivalence of ∞-categories (Theorem 4.6.4.17).

Corollary 7.1.2.3.02W9 Let C be an ∞-category and let u : K → C be a diagram. The following
conditions are equivalent:

(1) The diagram u has a limit in C.

(2) The oriented fiber product C ×̃Fun(K,C){u} → C has a final object.

(3) The slice ∞-category C/u has a final object.

Let u : K → C be a diagram in an ∞-category C. If Y is an object of C, then supplying
a natural transformation of diagrams α : Y → u is equivalent to giving a morphism of
simplicial sets u : ∆0 ⋄K → C satisfying u|∆0 = Y and u|K = u, where

∆0 ⋄K = ∆0∐
({0}×K)

(∆1 ×K)

is the simplicial set introduced in Notation 4.5.8.3. In practice, a datum of this type can be
somewhat cumbersome to work with. For example, if K is an ∞-category, then ∆0 ⋄K need
not be an ∞-category. It is therefore often convenient to work with the following variant of
Definition 7.1.1.1:
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Definition 7.1.2.4. 02JMLet C be an ∞-category, let K be a simplicial set, and let u : K◁ → C
be a morphism of simplicial sets carrying the cone point of K◁ to an object Y ∈ C. Set
u = u|K , so that the diagram u can be identified with an object of the slice ∞-category C/u.
We will say that u is a limit diagram if it is a final object of C/u. If this condition is satisfied,
we say that u exhibits Y as a limit of the diagram u.

Variant 7.1.2.5. 02JNLet C be an ∞-category, let K be a simplicial set, and let u : K▷ → C
be a morphism of simplicial sets carrying the cone point of K▷ to an object Y ∈ C. Set
u = u|K , so that the diagram u can be identified with an object of the coslice ∞-category
Cu/. We will say that u is a colimit diagram if it is an initial object of Cu/. If this condition
is satisfied, we say that u exhibits Y as a colimit of the diagram u.

Remark 7.1.2.6. 02WALet u : K◁ → C be as in Definition 7.1.2.4. Then u is a limit diagram if
and only if the composite map

∆1 ×K ≃ K ⋆K K → ∆0 ⋆∆0 K = K◁ u−→ C

corresponds to a natural transformation α : Y → u which exhibits Y as a limit of u, in the
sense of Definition 7.1.1.1. This follows from the characterization of Proposition 7.1.2.1,
together with the observation that the slice diagonal C/u ↪→ C ×̃Fun(K,C){u} of Construction
4.6.4.13 is an equivalence of ∞-categories (Theorem 4.6.4.17).

Remark 7.1.2.7. 02JPLet C be an ∞-category and let u : K → C be a diagram. Then an object
Y ∈ C is a limit of u (in the sense of Definition 7.1.1.11) if and only if there exists a diagram
u : K◁ → C which exhibits Y as a limit of u. This is a reformulation of Corollary 7.1.2.2.
Similarly, Y is a colimit of u if and only if there exists a diagram u′ : K▷ → C which exhibits
Y as a colimit of u.

Remark 7.1.2.8. 02JSLet C be an ∞-category and let f : K → C be a morphism of simplicial
sets. An extension f : K▷ → C is a colimit diagram in C if and only if the opposite map
f

op : (Kop)◁ → Cop is a limit diagram in the ∞-category Cop.

Example 7.1.2.9. 02JQLet C be an ∞-category. Then an object Y ∈ C is final (in the sense of
Definition 4.6.7.1) if and only if the map

(∅)◁ ≃ ∆0 Y−→ C

is a limit diagram in C. Similarly, Y is initial if and only if the map

(∅)▷ ≃ ∆0 Y−→ C

is a colimit diagram in C.
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Example 7.1.2.10.02WB Let C be an ∞-category and let f : X → Y be a morphism of C. The
following conditions are equivalent:

• The morphism f is an isomorphism.

• When regarded as a morphism (∆0)◁ → C, f is a limit diagram.

• When regarded as a morphism (∆0)▷ → C, f is a colimit diagram.

This is a restatement of Proposition 4.6.7.22 (and also of Example 7.1.1.5, by virtue of
Remark 7.1.2.6).

Remark 7.1.2.11.02JT Let C be an ∞-category, let g : B → C be a morphism of simplicial sets,
and suppose we are given a diagram f : A◁ → C/g, which we can identify with a morphism
of simplicial sets

q : (A ⋆ B)◁ ≃ A◁ ⋆ B → C .

Then f is a limit diagram in the slice ∞-category C/g if and only if q is a limit diagram in
the ∞-category C.

Proposition 7.1.2.12.02JU Let C be an∞-category, let K be a simplicial set, and let f : K◁ → C
be a morphism with restriction f = f |K . The following conditions are equivalent:

(1) The morphism f is a limit diagram (Definition 7.1.2.4).

(2) The restriction map C/f → C/f is a trivial Kan fibration.

(3) The restriction map C/f → C/f is an equivalence of ∞-categories.

(4) For every object X ∈ C, the restriction map {X}×C C/f → {X}××C C/f is a homotopy
equivalence of Kan complexes.

Proof. The equivalence (1)⇔ (2) follows from Proposition 4.6.7.10. Note that the restriction
map C/f → C/f is a right fibration of ∞-categories (Corollary 4.3.6.11), and therefore an
isofibration (Example 4.4.1.11). The equivalence (2)⇔ (3) now follows from Proposition
4.5.5.20, and the equivalence (3)⇔ (4) follows from Corollary 5.1.6.4.

Proposition 7.1.2.13.0391 Let C be an ∞-category, let K be a simplicial set, and let ρ : F → G

be a natural transformation between diagrams F ,G : K◁ → C. Assume that, for every vertex
x ∈ K, the morphism ρx : F (x) → G(x) is an isomorphism in C. Then any two of the
following conditions imply the third:

(1) The morphism of simplicial sets F is a limit diagram in C.

(2) The morphism of simplicial sets G is a limit diagram in C.

https://kerodon.net/tag/02WB
https://kerodon.net/tag/02JT
https://kerodon.net/tag/02JU
https://kerodon.net/tag/0391


1382 CHAPTER 7. LIMITS AND COLIMITS

(3) The natural transformation ρ carries the cone point 0 ∈ K◁ to an isomorphism ρ0 :
F (0)→ G(0).

Proof. Set F = F |K and G = G|K , so that ρ restricts to an isomorphism ρ : F → G

in the ∞-category Fun(K, C) (Theorem 4.4.4.4). Set X = F (0) and Y = F (0), and let
X,Y : K → C be the constant maps taking the values X and Y , respectively. Let c denote
the composition ∆1 ×K ≃ K ⋆K K → ∆0 ⋆∆0 K = K◁. Then the composition

∆1 ×∆1 ×K id×c−−−→ ∆1 ×K◁ ρ−→ C

can be identified with a commutative diagram

X

α

��

γ

��

f
// Y

β

��
F

ρ

∼
// G

in the ∞-category Fun(K, C). Using Remark 7.1.2.6, we can reformulate conditions (1) and
(2) as follows:

(1′) The natural transformation α exhibits X as a limit of F .

(2′) The natural transformation β exhibits Y as a limit of G.

Since ρ is an isomorphism, we can use Remark 7.1.1.8 to reformulate (1′) as follows:

(1′′) The natural transformation γ exhibits X as a limit of G.

It will therefore suffice to show that any two of the conditions (1′′), (2′), and (3) imply the
third, which is a special case of Remark 7.1.1.9.

Corollary 7.1.2.14. 02K1Let C be an ∞-category and let K be a simplicial set. Then:

(1) Let u, v : K◁ → C be a pair of diagrams which are isomorphic when regarded as objects
of the ∞-category Fun(K◁, C). Then u is a limit diagram if and only if v is a limit
diagram.

(2) Let u, v : K▷ → C be a pair of diagrams which are isomorphic when regarded as objects
of the ∞-category Fun(K▷, C). Then u is a colimit diagram if and only if v is a colimit
diagram.

Corollary 7.1.2.15. 02K2Let C be an ∞-category, let K be a simplicial set, and suppose we are
given a pair of morphisms u, v : K → C which are isomorphic as objects of the ∞-category
Fun(K, C). Then:
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(1) The morphism u can be extended to a limit diagram u : K◁ → C if and only if v can be
extended to a limit diagram v : K◁ → C.

(2) The morphism u can be extended to a colimit diagram u : K▷ → C if and only if v can
be extended to a colimit diagram v : K▷ → C.

Proof. We will prove (1); the proof of (2) is similar. Suppose that u can be extended to
a limit diagram u : K◁ → C. Since the diagrams u and v are isomorphic, it follows from
Corollary 4.4.5.3 that u is isomorphic to a diagram v : K◁ → C satisfying v|K = v. Applying
Corollary 7.1.2.14, we conclude that v is also a limit diagram.

7.1.3 Preservation of Limits and Colimits

02JV Let F : C → D be a functor of ∞-categories. Beware that, in general, F need not carry
(co)limit diagrams in C to (co)limit diagrams in D. This motivates the following:

Definition 7.1.3.1.0392 Let F : C → D be a functor of ∞-categories, and let q : K → C be a
diagram. Suppose that q can be extended to a limit diagram q : K◁ → C. We say that the
limit of q is preserved by F if the composition F ◦ q is a limit diagram in the ∞-category D.
Similarly, if q can be extended to a colimit diagram q : K▷ → C, we say that the colimit of q
is preserved by F if F ◦ q is a colimit diagram in the ∞-category D.

Remark 7.1.3.2.0393 In the situation of Definition 7.1.3.1, the condition that F preserves the
(co)limit of a diagram q : K → C depends only on the diagram q, and not on the extension q
(see Corollary 7.1.2.14).

Remark 7.1.3.3.0394 Let F : C → D be a functor of ∞-categories and let q : K → C be a
diagram which admits a limit in C. Choose an object X ∈ C and a natural transformation
α : X → q which exhibits X as a limit of q. Then F preserves the limit of q if and only if
the natural transformation F (α) exhibits the object F (X) as a limit of the diagram F ◦ q.

Definition 7.1.3.4.02JW Let F : C → D be a functor of ∞-categories and let K be a simplicial
set. We will say that F preserves K-indexed limits if, for every limit diagram q : K◁ → C, the
composite map (F ◦ q) : K◁ → D is a limit diagram in D. We will say that F preserves K-
indexed colimits if, for every colimit diagram q : K▷ → C, the composite map (F ◦q) : K▷ → D
is a colimit diagram in D.

Example 7.1.3.5.02JX Let F : C → D be any functor of ∞-categories. Then F preserves
∆0-indexed limits and colimits. By virtue of Example 7.1.2.10, this is equivalent to the
observation that F carries isomorphisms in C to isomorphisms in D (see Remark 1.5.1.6).

Warning 7.1.3.6.02JY In the formulation of Definition 7.1.3.4, it is not necessary to assume that
the ∞-category C admits K-indexed limits or colimits. For example, if C is an ∞-category
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which contains no limit diagrams q : K◁ → C, then every functor F : C → D preserves
K-indexed limits. In practice, we will usually (but not always) apply the terminology of
Definition 7.1.3.4 in cases where the ∞-category admits K-indexed limits or colimits, so
that the conclusion of Definition 7.1.3.4 is non-vacuous.

Exercise 7.1.3.7. 02WCLet F : C → D be a functor of ∞-categories and let K be a simplicial set.
Show that F preserves K-indexed limits if and only if it satisfies the following condition:

• For every diagram u : K → C and every natural transformation α : Y → u which
exhibits an object Y ∈ C as a limit of u (in the sense of Definition 7.1.1.1), the image
F (α) : F (Y ) → (F ◦ u) exhibits the object F (Y ) ∈ D as a limit of the diagram
(F ◦ u) : K → D.

Variant 7.1.3.8. 0395It will often be useful to extend the terminology of Definition 7.1.3.4,
replacing the individual simplicial set K by a collection of simplicial sets.

• We say that a functor of ∞-categories F : C → D preserves finite limits if it preserves
K-indexed limits, for every finite simplicial set K.

• We say that a functor of∞-categories F : C → D preserves finite colimits if it preserves
K-indexed colimits, for every finite simplicial set K.

• We say that a functor of ∞-categories F : C → D preserves small limits if it preserves
K-indexed limits, for every small simplicial set K.

• We say that a functor of∞-categories F : C → D preserves small colimits if it preserves
K-indexed colimits, for every small simplicial set K.

Let us begin with a trivial example.

Proposition 7.1.3.9. 02JZLet F : C → D be an equivalence of ∞-categories and let K be a
simplicial set. Then:

(1) A morphism u : K◁ → C is a limit diagram if and only if the composition F ◦ u is a
limit diagram in D.

(2) A morphism u : K▷ → C is a colimit diagram if and only if the composition F ◦ u is a
colimit diagram in D.

In particular, the equivalence F preserves K-indexed limits and colimits.
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Proof. We will prove (1); the proof of (2) is similar. Let u : K◁ → C be a diagram and set
u = u|K . We then have a commutative diagram of ∞-categories

C/u //

��

D/(F◦u)

��
C/u // D/(F◦u) .

Since F is an equivalence of ∞-categories, the horizontal maps in this diagram are also
equivalences of ∞-categories (Corollary 4.6.4.19). It follows that the left vertical map is
an equivalence of ∞-categories if and only if the right vertical map is an equivalence of
∞-categories. The desired result now follows from the criterion of Proposition 7.1.2.12.

Variant 7.1.3.10.02WD Let F : C → D be a fully faithful functor of ∞-categories and let
u : K◁ → C be a morphism of simplicial sets. If F ◦ u is a limit diagram in the ∞-category
D, then u is a limit diagram in the ∞-category C.

Proof. Combine Remark 7.1.1.10 with Exercise 7.1.3.7.

Corollary 7.1.3.11.02K3 Let F : C → D be an equivalence of ∞-categories and let u : K → C
be a morphism of simplicial sets. Then:

(1) The morphism u can be extended to a limit diagram u : K◁ → C if and only if the
composite map (F ◦ u) : K → D can be extended to a limit diagram K◁ → D.

(2) The morphism u can be extended to a colimit diagram u : K▷ → C if and only if the
composite map (F ◦ u) : K → D can be extended to a colimit diagram K▷ → D.

Proof. We will prove (1); the proof of (2) is similar. If u can be extended to a limit diagram
u : K◁ → C, then Proposition 7.1.3.9 guarantees that F ◦u is a limit diagram in D extending
F ◦ u. Conversely, suppose that F ◦ u can be extended to a limit diagram v : K◁ → D. Let
G : D → C be an equivalence of ∞-categories which is homotopy inverse to F , so that G ◦ F
is isomorphic to the identity functor idC. Then (G ◦ v) : K◁ → C is a limit diagram in C
(Proposition 7.1.3.9), and the restriction (G ◦ v)|K = (G ◦ F ◦ u) is isomorphic to u as an
object of the ∞-category Fun(K, C). Applying Corollary 7.1.2.15, we deduce that u can be
extended to a limit diagram p : K◁ → C.

Corollary 7.1.3.12.02K4 Let C and D be ∞-categories which are equivalent to one another,
and let K be a simplicial set. Then C admits K-indexed (co)limits if and only if D admits
K-indexed (co)limits.
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Remark 7.1.3.13. 02K5Let F : C → D be a functor of ∞-categories, let K be a simplicial set,
and let u : K◁ → C be a limit diagram with restriction u = u|K . The following conditions
are equivalent:

(1) The composition (F ◦ u) : K◁ → D is a limit diagram.

(2) For every limit diagram u′ : K◁ → C with u′|K = u, the composition (F ◦ u′) : K◁ → D
is a limit diagram.

The implication (2)⇒ (1) is immediate. For the converse, we observe that if u′ : K◁ → C is
another limit diagram with u′|K = u, then u and u′ are isomorphic when viewed as objects
of the slice ∞-category C/u, so that F ◦ u and F ◦ u′ are isomorphic when viewed as objects
of the ∞-category D/(F◦u). Since F ◦ u is a final object of D/(F◦u), it follows that F ◦ u′ is
also a final object of D/(F◦u) (Corollary 4.6.7.15).

A conservative functor F : C → D which preserves K-indexed limits also reflects them:

Proposition 7.1.3.14. 02K6Let F : C → D be a conservative functor of ∞-categories and let K
be a simplicial set.

• Suppose that C admits K-indexed limits and the functor F preserves K-indexed limits.
Then a morphism u : K◁ → C is a limit diagram in C if and only if (F ◦ u) : K◁ → D
is a limit diagram in D.

• Suppose that C admits K-indexed colimits and the functor F preserves K-indexed
colimits. Then a morphism u : K▷ → C is a colimit diagram in C if and only if
(F ◦ u) : K▷ → D is a colimit diagram in D.

Proposition 7.1.3.14 is an immediate consequence of the following more precise assertion:

Lemma 7.1.3.15. 02K7Let F : C → D be a conservative functor of ∞-categories and let
u : K → C be a diagram. Suppose that u can be extended to a limit diagram u : K◁ → C
for which the composition (F ◦ u) : K◁ → D is also a limit diagram. Let u′ : K◁ → C be
an arbitrary extension of u. Then u′ is a limit diagram in C if and only if F ◦ u′ is a limit
diagram in D.

Proof. Let us identify u and u′ with objects C and C ′ of the slice ∞-category C/u. Our
assumption that u is a limit diagram guarantees that C is a final object of C/u, so there
exists a morphism f : C ′ → C in C/u. Note that u′ is a limit diagram if and only if the
object C ′ is also final: that is, if and only if the morphism f is an isomorphism.

Let g : D′ → D be the image of f under the functor F/u : C/u → D/(F◦u). Our assumption
that F ◦ u is a limit diagram guarantees that D is a final object of D/(F◦u). Consequently, g
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is an isomorphism if and only if the object D′ is also final: that is, if and only if (F ◦ u′) is a
limit diagram in D.

To complete the proof, it will suffice to show that f is an isomorphism in C/u if and only
if g = F/u(f) is an isomorphism in D/(F◦u). In fact, the functor F/u is conservative: this
follows from our assumption that F is conservative, by virtue of Corollary 4.4.2.12.

Definition 7.1.3.16.02K8 Let F : C → D be a conservative functor of ∞-categories and let K
be a simplicial set. We will say that the functor F creates K-indexed limits if the following
condition is satisfied:

• Let u : K → C be a diagram for which the induced map (F ◦ u) : K → D admits a
limit in D. Then u can be extended to a limit diagram u : K◁ → C for which the
composition (F ◦ u) : K◁ → D is a limit diagram in D.

We say that the functor F creates K-indexed colimits if it satisfies the following dual
condition:

• Let u : K → C be a diagram for which the induced map (F ◦ u) : K → D admits a
colimit in D. Then u can be extended to a colimit diagram q : K▷ → C for which the
composition (F ◦ u) : K▷ → D is a colimit diagram in D.

Remark 7.1.3.17.02K9 Let F : C → D be a conservative functor of ∞-categories and let
u : K → C be a diagram. Suppose that F creates K-indexed limits and that F ◦ u can be
extended to a limit diagram K◁ → D. Then an extension u : K◁ → C of u is a limit diagram
if and only if F ◦ u is a limit diagram in D (see Lemma 7.1.3.15).

Proposition 7.1.3.18.02KA Let K be a simplicial set, let D be an ∞-category which admits
K-indexed limits, and let F : C → D be a conservative functor of∞-categories. The following
conditions are equivalent:

(1) The ∞-category C admits K-indexed limits and the functor F preserves K-indexed limits.

(2) The functor F creates K-indexed limits.

Proof. The implication (1)⇒ (2) is immediate. Conversely, suppose that (2) is satisfied and
let u : K → C be a diagram. Since D admits K-indexed limits, F ◦ u can be extended to a
limit diagram in D. Since F creates K-indexed limits, it follows that there exists a limit
diagram u : K◁ → C with u|K = u such that F ◦u is a limit diagram in D. Applying Remark
7.1.3.13, we see that this holds for every limit diagram u : K◁ → C satisfying u|K = u, which
proves (1).

The following is an important example of Definition 7.1.3.16:
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Proposition 7.1.3.19. 02KBLet C be an ∞-category, let A be a simplicial set, and let f : A→ C
be a diagram. Then:

(1) The projection map Cf/ → C creates K-indexed limits, for every simplicial set K.

(2) The projection map C/f → C creates K-indexed colimits, for every simplicial set K.

Proof. We will prove (1); the proof of (2) is similar. Let K be a simplicial set and let
p : K → Cf/ be a diagram, which we will identify with a morphism of simplicial sets
q : A ⋆ K → C satisfying q|A = f . Set g = q|K , so that q can also be identified with a
diagram f ′ : A → C/g. Suppose that g can be extended to a limit diagram g : K◁ → C.
Then the projection map C/g → C/g is a trivial Kan fibration (Proposition 7.1.2.12), so that
f ′ can be lifted to a diagram f ′′ : A → C/g. We can then identify f ′′ with a morphism of
simplicial sets q : A ⋆K◁ → C extending q, or equivalently with a morphism p : K◁ → Cf/
extending p. We will complete the proof by showing that p is a limit diagram. To prove
this, it will suffice to show that p is final when regarded as an object of the slice ∞-category
(Cf/)/p ≃ (C/g)f ′/. This follows from Proposition 4.6.7.12, since g is a final object of C/g.

Corollary 7.1.3.20. 02KCLet C be an ∞-category, let f : A→ C be a morphism of simplicial
sets, and let K be an arbitrary simplicial set. Then:

(1) If C admits K-indexed limits, then the coslice ∞-category Cf/ admits K-indexed limits.
Moreover, a morphism K◁ → Cf/ is a limit diagram if and only if its image in C is a
limit diagram.

(2) If C admits K-indexed colimits, then the slice ∞-category C/f admits K-indexed colimits.
Moreover, a morphism K▷ → C/f is a colimit diagram if and only if its image in C is
a colimit diagram.

Proof. Combine Propositions 7.1.3.19 and 7.1.3.18 with Remark 7.1.3.17.

Corollary 7.1.3.21. 02KELet F : C → D be a functor of ∞-categories which admits a right
adjoint G : D → C. For every simplicial set K, the functor F preserves K-indexed colimits
and the functor G preserves K-indexed limits.

Proof. We will show that F preserves K-indexed colimits; the assertion that G preserves
K-indexed limits can be proved by a similar argument. Let u : K → C be a morphism of
simplicial sets, so that F induces a functor F ′ : Cu/ → D(F◦u)/. We wish to show that the
functor F ′ carries initial objects of Cu/ to initial objects of D(F◦u)/. It follows from Corollary
6.2.4.6 that the functor F ′ also admits a right adjoint. We may therefore replace F by F ′ and
thereby reduce to the case where K = ∅. In this case, we must show that if X is an initial
object of C, then F (X) is an initial object of D. Choose an object Y ∈ D; we wish to show that
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the morphism space HomD(F (X), Y ) is a contractible Kan complex. Proposition 6.2.1.17
supplies a homotopy equivalence of Kan complexes HomD(F (X), Y ) ≃ HomC(X,G(Y )). We
conclude by observing that the Kan complex HomC(X,G(Y )) is contractible, by virtue of
our assumption that the object X ∈ C is initial.

Corollary 7.1.3.22 (Colimits in a Reflective Localization).04JW Let C be an ∞-category, let
C′ ⊆ C be a reflective subcategory (Definition 6.2.2.1), and let u : K → C′ be a diagram. If u
admits a colimit in C, then it also admits a colimit in C′.

Proof. By virtue of Proposition 6.2.2.11, the inclusion functor C′ ↪→ C admits a left adjoint
L : C → C′. If u admits a colimit in C, then L ◦ u admits a colimit in C′ (Corollary 7.1.3.21).
Since u factors through C′, it is isomorphic to L ◦ u and therefore also admits a colimit in C′
(Remark 7.1.1.8).

Warning 7.1.3.23.03Y0 In the situation of Corollary 7.1.3.22, the inclusion functor C′ ↪→ C
generally does not preserve the colimit of the diagram u. If C = lim−→(u) is a colimit of u in
the ∞-category C, then C usually does not belong to C′. The colimit of u in the ∞-category
C′ is instead given by the localization L(C).

Variant 7.1.3.24 (Limits in a Reflective Localization).04JX Let C be an ∞-category and let
C′ ⊆ C be a reflective subcategory. Then a diagram u : K → C′ admits a limit in C′ if and
only if it admits a limit in C. In this case, the limit of u is preserved by the inclusion functor
C′ ↪→ C.

We will deduce Variant 7.1.3.24 from the following special case:

Lemma 7.1.3.25.04JY Let C be an ∞-category and let C′ ⊆ C be a reflective subcategory. If C
contains a final object X, then C′ contains an object which is isomorphic to X. In particular,
if C′ is replete, then it contains every final object of C.

Proof. Choose a morphism f : X → Y in C which exhibits Y as a C′-reflection of X (see
Definition 6.2.2.1). Since X is a final object of C, we can choose a morphism g : Y → X. We
will complete the proof by showing that g is a homotopy inverse to f : that is, the homotopy
classes [f ] and [g] are inverses of one another in the homotopy category hC. Since X is a
final object of C, the equality [g] ◦ [f ] = [idX ] is automatic. We wish to prove the equality
[f ] ◦ [g] = [idY ]. Since f exhibits Y as a C′-reflection of X, precomposition with [f ] induces a
bijection HomhC(Y, Y )→ HomhC(X,Y ). The desired result now follows from the calculation

([f ] ◦ [g]) ◦ [f ] = [f ] ◦ ([g] ◦ [f ]) = [f ] ◦ [idX ] = [f ] = [idY ] ◦ [f ].
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Proof of Variant 7.1.3.24. Let C be an ∞-category, let C′ ⊆ C be a reflective subcategory,
and let u : K → C′ be a diagram. Applying Corollary 6.2.2.10, we deduce that C′/u is a
reflective subcategory of C/u. If the diagram u admits a limit in C, then the slice ∞-category
C/u has a final object X. Applying Lemma 7.1.3.25, we deduce that X is isomorphic to an
object of C′/u, which is also a final object of C/u and therefore also of C′/u. In particular, the
diagram u has a limit in C′ (which is preserved by the inclusion functor C′ ↪→ C).

Proposition 7.1.3.26. 04JZLet C be an ∞-category and let C′ ⊆ C be a reflective subcategory.
If C has a final object X, then C′ contains an object which is isomorphic to X. In particular,
if C′ is replete, then it contains every final object of C.

Proof. Choose a morphism f : X → Y which exhibits Y as a C′-reflection of X.

Corollary 7.1.3.27. 03Y1Let C be an ∞-category, let C0 ⊆ C be a reflective subcategory of C,
and let K be a simplicial set. If C admits K-indexed limits, then C0 also admits K-indexed
limits. If C admits K-indexed colimits, then C0 also admits K-indexed colimits.

Proof. Combine Variant 7.1.3.24 with Corollary 7.1.3.22.

7.1.4 Relative Initial and Final Objects

02WEIn §4.6.7, we introduced the notions of initial and final object of an ∞-category C
(Definition 4.6.7.1). In this section, we study the more general notions of U-initial and
U -final objects, where U : C → D is a functor of ∞-categories.

Definition 7.1.4.1. 02KULet U : C → D be a functor of ∞-categories. We say that an object
Y ∈ C is U -final if, for every object X ∈ C, the functor U induces a homotopy equivalence

HomC(X,Y )→ HomD(U(X), U(Y )).

We say that Y is U-initial if, for every object Z ∈ C, the functor U induces a homotopy
equivalence

HomC(Y,Z)→ HomD(U(Y ), U(Z)).

Example 7.1.4.2. 02WFLet C be an ∞-category and let U : C → ∆0 be the projection map.
Then an object Y ∈ C is U -initial if and only if it is initial, and U -final if and only if it is
final.

Remark 7.1.4.3. 0396Let U : C → D be a functor of ∞-categories, and let C0 ⊆ C be the full
subcategory of C spanned by the U -initial objects. Then the restriction U |C0 : C0 → D is
fully faithful. Similarly, U is fully faithful when restricted to the full subcategory of U -final
objects of C.
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Example 7.1.4.4.02WG Let U : C → D be a functor of ∞-categories. The following conditions
are equivalent:

• The functor U is fully faithful.

• Every object of C is U -initial.

• Every object of C is U -final.

Remark 7.1.4.5.02WH Let U : C → D be an inner fibration of ∞-categories. Then an object
Y ∈ C is U -initial if and only if it is Uop-final, when regarded as an object of the opposite
∞-category Cop.

Remark 7.1.4.6 (Transitivity).02WJ Let U : C → D and V : D → E be functors of ∞-categories,
and let Y ∈ C be an object for which U(Y ) is V -final. Then Y is U -final if and only if it is
(V ◦ U)-final.

Remark 7.1.4.7.02WK Let U : C → D be a functor of ∞-categories and let Y ∈ C be an object.
Suppose that U(Y ) is a final object of D. Then Y is a final object of C if and only if it is a
U -final object of C (apply Remark 7.1.4.6 in the special case E = ∆0).

Remark 7.1.4.8.02WL Let U : C → D be a functor of ∞-categories, and let V : C → D be
another functor which is isomorphic to U (as an object of the ∞-category Fun(C,D)). Then
an object Y ∈ C is U -initial if and only if it is V -initial. To prove this, let Z be an object of
C and let α : U → V be an isomorphism of functors, so that we have a commutative diagram

HomC(Y, Z) //

��

HomD(U(Y ), U(Z))

[αZ ]◦

����
HomD(V (Y ), V (Z)) ◦[αY ] // HomD(U(Y ), V (Z))

in the homotopy category hKan, where the bottom horizontal and right vertical maps are
homotopy equivalences. It follows that the upper horizontal map is a homotopy equivalence
if and only if the left vertical map is a homotopy equivalence. Similarly, the object Y is
U -final if and only if it is V -final.

Remark 7.1.4.9.02WM Suppose we are given a commutative diagram of ∞-categories

C

U

��

F // C′

U ′

��
D // D′,
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where the horizontal maps are equivalences of ∞-categories. Then an object X ∈ C is
U -initial if and only if F (X) ∈ C′ is U ′-initial, and U -final if and only if F (X) is U ′-final.

Proposition 7.1.4.10. 02WNLet U : C → D be a functor of ∞-categories and let f : X → Y

be a morphism in C with the property that U(f) is an isomorphism. Then any two of the
following three conditions imply the third:

(1) The object X is U -initial.

(2) The object Y is U -initial.

(3) The morphism f is an isomorphism.

Proof. Fix an object Z ∈ C. We claim that any two of the following three conditions imply
the third:

(1Z) The functor U induces a homotopy equivalence HomC(X,Z)→ HomC(U(X), U(Z)).

(2Z) The functor U induces a homotopy equivalence HomC(Y, Z)→ HomC(U(Y ), U(Z)).

(3Z) Precomposition [f ] induces a homotopy equivalence HomC(Y,Z)→ HomC(X,Z) (see
Notation 4.6.9.15).

This follows from the commutativity of the diagram

HomC(Y, Z) ◦[f ] //

��

HomC(X,Z)

��
HomD(U(Y ), U(Z)) ◦[U(f)] // HomD(U(X), U(Z))

in the homotopy category hKan, since the bottom horizontal map is a homotopy equivalence
(by virtue of our assumption that U(f) is an isomorphism). Proposition 7.1.4.10 follows by
allowing the object Z to vary.

Corollary 7.1.4.11. 02WPLet U : C → D be a functor of ∞-categories, and let f : X → Y be
an isomorphism in C. Then the object X is U -initial if and only if Y is U -initial, and the
object X is U -final if and only if Y is U -final.

Corollary 7.1.4.12 (Uniqueness). 02WQLet U : C → D be a functor of ∞-categories and let X
and Y be U-initial objects of C. Then X and Y are isomorphic if and only if U(X) and
U(Y ) are isomorphic as objects of D.
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Proof. Assume that there exists an isomorphism f : U(X) → U(Y ) in the ∞-category
D. Since X is U -initial, the functor U induces a homotopy equivalence HomC(X,Y ) →
HomD(U(X), U(Y )). It follows that there exists a morphism f : X → Y in C such that
U(f) is homotopic to f . In particular, U(f) : U(X) → U(Y ) is also an isomorphism in
D. Applying Proposition 7.1.4.10, we deduce that f is an isomorphism. In particular, the
objects X and Y are isomorphic.

Recall that a functor of ∞-categories U : C → D is a coreflective localization if it admits
a fully faithful left adjoint D → C (Proposition 6.3.3.6). This condition has a simple
formulation in terms of relatively final objects:

Proposition 7.1.4.13.0397 Let U : C → D be a functor of∞-categories. Then U is a coreflective
localization functor if and only if, for every object D ∈ D, there exists a U-initial object
C ∈ C and an isomorphism D → U(C) in the ∞-category D.

We will deduce Proposition 7.1.4.13 from a slightly more precise result.

Lemma 7.1.4.14.0398 Let U : C → D be a functor of ∞-categories, let C0 denote the full
subcategory of C spanned by the U -initial objects, and suppose that the restriction U0 = U |C0

is essentially surjective. Then:

(1) The functor U0 : C0 → D is an equivalence of ∞-categories.

(2) Let e : X → Y be a morphism in C, where X is U-initial. Then e exhibits X as a
C0-coreflection of Y (in the sense of Definition 6.2.2.1) if and only if U(e) is an
isomorphism in the ∞-category D.

(3) The full subcategory C0 ⊆ C is coreflective.

(4) Let F0 : D → C0 be a homotopy inverse of the functor U0, and let F : D → C be a
composition of F0 with the inclusion map ι : C0 ↪→ C. Then F is a left adjoint of U .

(5) The functor U is a coreflective localization.

Proof. Note that the functor U0 : C0 → D is automatically fully faithful (Remark 7.1.4.3).
Our assumption that U0 is essentially surjective then guarantees that it is an equivalence of
∞-categories, which proves (1).

We next prove the following:

(∗) For every object Y ∈ C, there exists a morphism e : X → Y in C, where X is U -initial
and U(e) is an isomorphism in D.

https://kerodon.net/tag/0397
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To prove (∗), we observe that the essential surjectivity of U0 guarantees that there exists a U -
initial object X ∈ C and an isomorphism e : U(X)→ U(Y ) in the ∞-category D. Since X is
U -initial, the functor U induces a homotopy equivalence HomC(X,Y )→ HomD(U(X), U(Y )).
Modifying e by a homotopy, we can assume without loss of generality that e = U(e) for
some morphism X → Y of C.

We now prove (2). Let e : X → Y be a morphism in C, where the object X is U -initial.
Assume first that U(e) is an isomorphism in D. We wish to show that, for every U -initial
object C ∈ C, postcomposition with e induces a homotopy equivalence of Kan complexes
HomC(C,X)→ HomC(C, Y ). This follows by inspecting the commutative diagram

HomC(C,X) ◦[e] //

��

HomC(C, Y )

��
HomD(U(C), U(X)) ◦[U(e)] // HomD(U(C), U(Y ))

in the homotopy category of Kan complexes hKan; here the vertical maps are homotopy
equivalences by virtue of our assumption that C is U -initial, and the bottom horizontal map
is a homotopy equivalence by virtue of our assumption that U(e) is an isomorphism.

We now prove the converse. Assume that e : X → Y exhibits X as a C0-coreflection of
Y ; we wish to show that U(e) is an isomorphism. Using (∗), we can choose a U -initial object
X ′ ∈ C and a morphism e′ : X ′ → Y such that U(e′) is an isomorphism in D. It follows
from the previous step that e′ exhibits X ′ as a C0-coreflection of Y . It follows that e can
be realized as the composition of e′ with an isomorphism v : X → X ′ in the ∞-category C
(Remark 6.2.2.3). Then U(e) is a composition of the isomorphisms U(v) and U(e′) in the
∞-category D, and is therefore also an isomorphism.

Assertion (3) follows immediately from (2) and (∗). Combining (3) with Proposition
6.2.2.11, we see that there exists a functor L : C → C0 and a natural transformation
η : L→ idC which exhibits L as a C0-colocalization functor: that is, it carries each object
Y ∈ C to a morphism ηY : L(Y )→ Y where L(Y ) is U -initial and U(ηY ) is an isomorphism.
In particular, η induces an isomorphism U0 ◦L→ U in the ∞-category Fun(C,D) (Theorem
4.4.4.4). It follows from assumption (1) that the functor U0 admits a homotopy inverse
F0 : D → C0, which is also a left adjoint of U0 (Example 6.2.1.11). Moreover, the inclusion
functor ι : C0 ↪→ C is left adjoint to L (Proposition 6.2.2.15). It follows that the composition
F = ι ◦ F0 is left adjoint to U0 ◦ L (Remark 6.2.1.8), and therefore also to U . This proves
(4). Moreover, the functor F is fully faithful (since F0 is an equivalence of ∞-categories and
ι is the inclusion of a full subcategory), so assertion (5) follows from Proposition 6.3.3.6.

Proof of Proposition 7.1.4.13. Let U : C → D be a functor of ∞-categories. Assume that U
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is a coreflective localization functor: we will show that, for every object D ∈ D, there exists
a U -initial object C ∈ C and an isomorphism D → U(C) in D (the converse follows from
Lemma 7.1.4.14). Using Proposition 6.3.3.6, we see that there exists a functor F : D → C
and a natural isomorphism η : idD → U ◦ F which is the unit of an adjunction between F

and U . In particular, for every object D ∈ D, we have an isomorphism ηD : D → U(C) for
C = F (D). We will complete the proof by showing that the object C is U -initial. Fix an
object X ∈ C; we wish to show that the functor U induces a homotopy equivalence of Kan
complexes ρ : HomC(F (D), X)→ HomD((U ◦ F )(D), U(X)). Since ηD : D → (U ◦ F )(D) is
an isomorphism, this is equivalent to the requirement that the composite map

HomC(F (D), X)→ HomD((U ◦ F )(D), U(X)) ◦[ηD]−−−→ HomD(D,U(X))

is a homotopy equivalence of Kan complexes, which follows from our assumption that η is
the unit of an adjunction (Proposition 6.2.1.17).

Corollary 7.1.4.15.0399 Let U : C → D be an isofibration of ∞-categories. Then U is a
coreflective localization functor if and only if, for every object Y ∈ D, the fiber CY = {Y }×DC
contains a U -initial object of C.

Proof. Assume that U is a coreflective localization functor. We will show that, for each
object Y ∈ D, the ∞-category CY contains a U -initial object of C (the converse follows
immediately from Proposition 7.1.4.13). Using Proposition 7.1.4.13, we see that there exists
a U -initial object X ∈ C and an isomorphism e : Y → U(X) in D. Since U is an isofibration,
we can lift e to an isomorphism ẽ : Ỹ → X in the ∞-category C. Our assumption that X is
U -initial then guarantees that Ỹ is also U -initial (Corollary 7.1.4.11).

Proposition 7.1.4.16.02WR Let U : C → D be a functor of ∞-categories. Then:

(1) An object Y ∈ C is U-initial if and only if U induces an equivalence of ∞-categories
U ′ : CY/ → C×D DU(Y )/.

(2) An object Y ∈ C is U-final if and only if U induces an equivalence of ∞-categories
U ′′ : C/Y → C×D D/U(Y ).

Proof. We will prove (2); the proof of (1) is similar. Fix an object Y ∈ C, so that the
morphism U ′′ of (1) fits into a commutative diagram

C/Y
U ′′ //

  

C ×D D/U(Y )

{{C

https://kerodon.net/tag/0399
https://kerodon.net/tag/02WR
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where the vertical maps are right fibrations (Proposition 4.3.6.1). Applying Corollary
5.1.7.15, we see that U ′′ is an equivalence of ∞-categories if and only if, for every object
X ∈ C, the induced map of fibers

U ′′X : {X} ×C C/Y → {X} ×D D/U(Y )

is a homotopy equivalence of Kan complexes. By virtue of Proposition 4.6.5.10, this is
equivalent to the requirement that U induces a homotopy equivalence HomC(X,Y ) →
HomD(U(X), U(Y )).

Corollary 7.1.4.17. 02WSLet U : C → D be an inner fibration of ∞-categories and let Y be an
object of C. The following conditions are equivalent:

(1) The object Y is U -initial.

(2) The induced map U ′ : CY/ → C×D DU(Y )/ is a trivial Kan fibration.

(3) Every lifting problem
∂∆n σ0 //

��

C

U

��
∆n //

==

D
has a solution, provided that n > 0 and σ0(0) = Y .

Proof. Since U is an inner fibration, the morphism U ′ is a left fibration (Corollary 4.3.6.9).
In particular, it is a trivial Kan fibration if and only if it is an equivalence of ∞-categories
(Proposition 4.5.5.20). The equivalence (1) ⇔ (2) now follows from Proposition 7.1.4.16.
The equivalence (2)⇔ (3) is immediate from the definitions.

Corollary 7.1.4.18. 02WTLet U : C → D be an inner fibration of ∞-categories. Let C0 ⊆ C be a
full subcategory of C whose objects are U -initial, and let D0 ⊆ D be the full subcategory of
D spanned by objects of the form U(C) for C ∈ C0. Then the functor U |C0 : C0 → D0 is a
trivial Kan fibration.

Proof. Suppose we are given a lifting problem

∂∆n σ0 //

��

C0

U0

��
∆n σ //

==

D0 .

https://kerodon.net/tag/02WS
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If n = 0, this lifting problem admits a solution by the definition of the subcategory D0 ⊆ D.
If n > 0, then σ0(0) is a U -initial object of C, so Corollary 7.1.4.17 guarantees that σ0 can
be extended to an n-simplex σ : ∆n → C satisfying U(σ) = σ. We conclude by observing
that σ automatically factors through the full subcategory C0 (since every vertex of ∆n is
contained in the boundary ∂∆n).

Proposition 7.1.4.19.02WU Suppose we are given a commutative diagram of ∞-categories

C F //

U

��

D

V

��
E ,

where U and V are inner fibrations. Let E ∈ E be an object, and let FE : CE → DE denote
the corresponding restriction of F . Then:

(1) If X ∈ CE is F -initial when viewed as an object of the∞-category C, then X is FE-initial.

(2) Assume that U and V are cartesian fibrations, and that the functor F carries U -cartesian
morphisms of C to V -cartesian morphisms of D. If X is FE-initial, then it is F -initial
when viewed as an object of C.

Proof. We first prove (1). Assume that X is F -initial. For every object Y ∈ CE , we have a
commutative diagram of Kan complexes

HomC(X,Y ) ρ //

&&

HomD(F (X), F (Y ))

ww
HomE(E,E).

Our assumption that X is F -initial guarantees that ρ is a homotopy equivalence. Since
U and V are inner fibrations, the vertical maps are Kan fibrations (Proposition 4.6.1.21).
Applying Corollary 3.3.7.5, we conclude that ρ restricts to a homotopy equivalence

HomCE
(X,Y ) = HomC(X,Y )×HomE(E,E) {idE}

→ HomD(F (X), F (Y ))×HomE(E,E) {idE}
= HomDE

(F (X), F (Y )).

Allowing Y to vary over objects of CE , it follows that X is an FE-initial object of C.

https://kerodon.net/tag/02WU
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We now prove (2). Assume that U and V are cartesian fibrations, that the functor F
carries U -cartesian morphisms of C to V -cartesian morphisms of D, and that X is FE-initial.
We wish to show that X is F -initial. Fix an object Z ∈ C; we must show that the horizontal
map in the diagram

HomC(X,Z) θ //

''

HomD(F (X), F (Z))

vv
HomE(U(X), U(Z))

is a homotopy equivalence. Since the vertical maps are Kan fibrations (Proposition 4.6.1.21),
it will suffice to show that the induced map

θf : HomC(X,Z)×HomE(U(X),U(Z)) {f} → HomD(F (X), F (Z))×HomE(U(X),U(Z)) {f}

is a homotopy equivalence, for each morphism f : U(X) → U(Z) in the ∞-category E
(Corollary 3.3.7.5). Since U is a cartesian fibration, we can write f = U(f), where f : Y → Z

is a U -cartesian morphism in C. By assumption, the image F (f) : F (Y ) → F (Z) is a
V -cartesian morphism in the ∞-category D. Using Proposition 5.1.3.11, we can replace θf
with the morphism

HomCE
(X,Y )→ HomDE

(F (X), F (Y )),

which is a homotopy equivalence by virtue of our assumption that X is FE-initial.

Exercise 7.1.4.20. 02WWLet U : C → D be a cocartesian fibration of∞-categories, and let C ∈ C
be an object having image D = U(C) in D. Show that C is U -initial if and only if the
following condition is satisfied:

(∗) For every morphism f : D → D′ in D, the covariant transport functor f! : CD → CD′
carries C to an initial object of the ∞-category CD′ .

For a more general statement, see Proposition 7.3.9.2.

Corollary 7.1.4.21. 02WVLet U : C → D be an inner fibration of ∞-categories, and let C ∈ C
be an object having image D = U(C) in D. If the object C is U-initial, then it is initial
when regarded as an object of the ∞-category CD = {D} ×D C. The converse holds if U is a
cartesian fibration.

Proof. Apply Proposition 7.1.4.19 in the special case where E = D and E ′ = {D}.

Corollary 7.1.4.22. 039ALet U : C → D be a cartesian fibration of ∞-categories. The following
conditions are equivalent:

https://kerodon.net/tag/02WW
https://kerodon.net/tag/02WV
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(1) For each object D ∈ D, the ∞-category CD = {D} ×D C has an initial object.

(2) The functor U is a coreflective localization: that is, it admits a fully faithful left adjoint
F : D → C.

Proof. Combine Corollaries 7.1.4.15 and 7.1.4.21.

7.1.5 Relative Limits and Colimits

02KF We now introduce a relative version of Definition 7.1.2.4.

Definition 7.1.5.1.02KG Let U : C → D be a functor of ∞-categories and let f : K◁ → C
be a morphism of simplicial sets with restriction f = f |K , so that U induces a functor
U/f : C/f → D/(U◦f). We will say that f is a U -limit diagram if it is U/f -final when viewed
as an object of the ∞-category C/f . Similarly, we say that a morphism g : K▷ → C with
restriction g = g|K is a U -colimit diagram if g is Ug/-initial when viewed as an object of the
∞-category Cg/, where U/g : Cg/ → D(U◦g)/ denotes the functor induced by U .

Remark 7.1.5.2.02KH Let U : C → D be an inner fibration of ∞-categories. Then a morphism
f : K◁ → C is a U -limit diagram if and only if the opposite map f

op : (Kop)▷ → Cop is an
Uop-colimit diagram.

Example 7.1.5.3.02KK Let C be an ∞-category and U : C → ∆0 be the projection map. Then a
morphism f : K◁ → C is a U -limit diagram (in the sense of Definition 7.1.5.1) if and only if
it is a limit diagram (in the sense of Definition 7.1.2.4). Similarly, a morphism g : K▷ → C
is a U -colimit diagram if and only if it is a colimit diagram.

Example 7.1.5.4.02KM Let U : C → D be a fully faithful functor of ∞-categories. Then every
morphism f : K◁ → C is a U -limit diagram, and every morphism g : K▷ → C is a U -colimit
diagram. This follows by combining Example 7.1.4.4 with Corollary 4.6.4.20.

Example 7.1.5.5.02WX Let U : C → D be a functor of ∞-categories. Then an object C ∈ C is
U -final if and only if it is a U -limit diagram when viewed as a morphism of simplicial sets
(∅)◁ ≃ ∆0 → C. Similarly, C is U -initial if and only if it is a U -colimit diagram when viewed
as a morphism of simplicial sets (∅)▷ ≃ ∆0 → C.

Remark 7.1.5.6.02WY Suppose we are given a commutative diagram of ∞-categories

C

U

��

F // C′

U ′

��
D // D′,

https://kerodon.net/tag/02KF
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where the horizontal maps are equivalences of ∞-categories. Then a morphism of simplicial
sets f : K◁ → C is a U -limit diagram if and only if F ◦ f is a U ′-limit diagram. Similarly,
a morphism of simplicial sets g : K▷ → C is a U -colimit diagram if and only if F ◦ g is a
U ′-colimit diagram. This follows by combining Remark 7.1.4.9 with Corollary 4.6.4.19.

Remark 7.1.5.7. 02WZLet U0 : C → D be a functor of ∞-categories, and let U1 : C → D be
a functor which is isomorphic to U0 (as an object of the ∞-category Fun(C,D)). Then a
diagram f : K◁ → C is a U0-limit diagram if and only if it is a U1-limit diagram (see Remark
7.1.4.8). This follows by applying Remark 7.1.5.6 to each square of the diagram

C

U0

��

C

U

��

idoo id // C

U1

��
Fun({0},D) Isom(D)ev0oo ev1 // Fun({1},D),

where U : C → Isom(D) classifies an isomorphism between U0 and U1; note that ev0 and ev1
are trivial Kan fibrations by virtue of Corollary 4.4.5.10.

Remark 7.1.5.8. 02KJLet U : C → D be a functor of ∞-categories, let f : K◁ → C be a
morphism, and set f = f |K , so that U induces a functor

U ′ : C/f → C/f ×D/(U◦f) D/(U◦f) .

By virtue of Proposition 7.1.4.16, the following conditions are equivalent:

(1) The morphism f is a U -limit diagram.

(2) The functor U ′ is an equivalence of ∞-categories.

If U is an inner fibration of ∞-categories, then the functor U ′ is automatically a right
fibration (Proposition 4.3.6.8). In this case, we can replace (1) and (2) by either of the
following conditions:

(3) The functor U ′ is a trivial Kan fibration.

(4) Each fiber of U ′ is a contractible Kan complex.

The equivalence of (2)⇔ (3) follows from Proposition 4.5.5.20, and the equivalence (3)⇔ (4)
from Proposition 4.4.2.14.

Example 7.1.5.9. 02KLLet U : C → D be an inner fibration of ∞-categories. Then:

https://kerodon.net/tag/02WZ
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• A morphism e of C is U -cartesian (in the sense of Definition 5.1.1.1) if and only if it is
a U -limit diagram when viewed as a morphism of simplicial sets (∆0)◁ → C.

• A morphism f of C is U -cocartesian (in the sense of Definition 5.1.1.1) if and only if it
is a U -colimit diagram when viewed as a morphism of simplicial sets (∆0)▷ → C.

This follows by combining Remark 7.1.5.8 with Proposition 5.1.1.13.

Example 7.1.5.10.02KN Let K be a weakly contractible simplicial set and let U : C → D be a
right fibration of ∞-categories. Then every morphism f : K◁ → C is a U -limit diagram (see
Proposition 4.3.7.6). Similarly, if U is a left fibration, then every morphism g : K▷ → C is a
U -colimit diagram.

Remark 7.1.5.11.02X0 Let U : C → D be an inner fibration of ∞-categories and let K be
a simplicial set. Using Remark 7.1.5.8, we see that a morphism f : K◁ → C is a U -limit
diagram if and only if every lifting problem

∂∆n ⋆K
ρ //

��

C

U

��
∆n ⋆ K //

<<

D

admits a solution, provided that n ≥ 1 and the the restriction of ρ to {n}⋆K ≃ K◁ coincides
with f .

Proposition 7.1.5.12.02X1 Let U : C → D be a functor of ∞-categories and let f : K◁ → C.
Then f is a U -limit diagram if and only if, for every object C ∈ C, the diagram of morphism
spaces

02X2 HomFun(K◁,C)(C, f) //

��

HomFun(K,C)(C|K , f |K)

��
HomFun(K◁,D)(U ◦ C,U ◦ f) // HomFun(K,D)(U ◦ C|K , U ◦ f |K)

(7.1)

is a homotopy pullback square; here we let C ∈ Fun(K◁, C) denote the constant diagram
taking the value C.

Proof. Set f = f |K . Note that the restriction maps

C/f → C/f C/f → C D/(U◦f) → D/(U◦f)

https://kerodon.net/tag/02KN
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are right fibrations of simplicial sets (Corollary 4.3.6.11). It follows that we can regard the
map

U ′ : C/f → C/f ×D/(U◦f) D/(U◦f)

of Remark 7.1.5.8 as a functor between ∞-categories which are right-fibered over C. Com-
bining Remark 7.1.5.8 with the criterion of Corollary 5.1.6.4, we see that f is a U -colimit
diagram if and only if, for every object C ∈ C, the induced map

U ′C : {C} ×C C/f → {C} ×C C/f ×D/(U◦f) D/(U◦f)

is a homotopy equivalence of Kan complexes.
To complete the proof, it will suffice to show that U ′C is a homotopy equivalence if

and only if the diagram (7.1) is a homotopy pullback square. To see this, we note that
Proposition 4.6.5.10 supplies a levelwise homotopy equivalence of (7.1) with the diagram

02X3{C} ×C C/f //

��

{C} ×C C/f

��
{U(C)} ×D D/(U◦f)

// {U(C)} ×D D/(U◦f) .

(7.2)

It will therefore suffice to show that (7.2) is a homotopy pullback square if and only if U ′C is
a homotopy equivalence (Corollary 3.4.1.12). This is a special case of Example 3.4.1.3, since
the horizontal maps in the diagram (7.2) are Kan fibrations (combine Corollaries 4.3.6.11
and 4.4.3.8).

Proposition 7.1.5.13. 02X4Let U : C → D be a functor of ∞-categories and let u, v′ : K◁ → C
be diagrams which are isomorphic when viewed as objects of the ∞-category Fun(K◁, C).
Then u is a U -limit diagram if and only if v is a U -limit diagram.

Proof. We proceed as in the proof of Corollary 7.1.2.14. Let Isom(C) denote the full
subcategory of Fun(∆1, C) spanned by the isomorphisms in C, and define Isom(D) ⊆
Fun(∆1,D) similarly. For i ∈ {0, 1}, the evaluation functors

evi : Isom(C)→ C evi : Isom(D)→ D

are trivial Kan fibrations (Corollary 4.4.5.10), and therefore equivalences of ∞-categories
(Proposition 4.5.3.11). Our assumption that u and v are isomorphic guarantees that we
can choose a diagram w : K◁ → Isom(C) satisfying ev0 ◦w = u and ev1 ◦w = v. Applying

https://kerodon.net/tag/02X3
https://kerodon.net/tag/02X4
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Remark 7.1.5.6 to the commutative diagram

Isom(C) ev0 //

U ′

��

C

U

��
Isom(D) ev0 // D,

we see that u is a U -limit diagram if and only if w is a U ′-limit diagram. A similar argument
shows that this is equivalent to the requirement that v is a U -limit diagram.

Proposition 7.1.5.14 (Transitivity).02KQ Let U : C → D and V : D → E be functors of
∞-categories.

(1) Let f : K◁ → C be a morphism of simplicial sets such that U ◦ f is a V -limit diagram.
Then f is a U -limit diagram if and only if it is a (V ◦ U)-limit diagram.

(2) Let g : K▷ → C be a morphism of simplicial sets such that U ◦ g is a V -colimit diagram.
Then g is a U -colimit diagram if and only if it is a (V ◦ U)-colimit diagram.

Proof. Apply Remark 7.1.4.6.

Corollary 7.1.5.15.02X5 Let U : C → D and V : D → E be functors of ∞-categories, where V
is fully faithful. Then:

(1) A morphism f : K◁ → C is a U -limit diagram if and only if it is a (V ◦U)-limit diagram.

(2) A morphism g : K▷ → C is a U-colimit diagram if and only if it is a (V ◦ U)-colimit
diagram.

Proof. Combine Proposition 7.1.5.14 with Example 7.1.5.4.

Corollary 7.1.5.16.02KR Let U : C → D be a functor of ∞-categories. Then:

(1) Let f : K◁ → C be a morphism of simplicial sets such that U ◦ f is a limit diagram in
D. Then f is a limit diagram in C if and only if it is a U -limit diagram.

(2) Let g : K▷ → C be a morphism of simplicial sets such that U ◦ g is a colimit diagram in
D. Then g is a colimit diagram in C if and only if it is a U -colimit diagram.

Proof. Apply Proposition 7.1.5.14 in the case E = ∆0 (and use Example 7.1.5.3).

Corollary 7.1.5.17.02KS Let K be a weakly contractible simplicial set and let U : C → D be a
functor of ∞-categories. If U is a left fibration, then it creates K-indexed colimits. If U is a
right fibration, then it creates K-indexed limits.

https://kerodon.net/tag/02KQ
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Proof. Assume U is a right fibration; we will show that it creates K-indexed limits (the
analogous statement for left fibrations follows by a similar argument). Let f : K → C be a
diagram and suppose that U ◦ f can be extended to a limit diagram g : K◁ → D. Since the
inclusion K ↪→ K◁ is right anodyne (Example 4.3.7.10), our assumption that U is a right
fibration guarantees that the lifting problem

K

��

f // C

U

��
K◁ g //

f

>>

D

has a solution. Since K is weakly contractible, the morphism f is automatically a U -
limit diagram (Example 7.1.5.10). Applying Corollary 7.1.5.16, we see that f is a limit
diagram.

Corollary 7.1.5.18. 02KTLet U : C → D be a functor of ∞-categories and let K be a weakly
contractible simplicial set. Then:

• If U is a right fibration and the ∞-category D admits K-indexed limits, then C also
admits K-indexed limits and U preserves K-indexed limits.

• If U is a left fibration and the ∞-category D admits K-indexed colimits, then C also
admits K-indexed colimits and U preserves K-indexed colimits.

Proof. Combine Corollary 7.1.5.17 with Proposition 7.1.3.18.

https://kerodon.net/tag/02KT
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Proposition 7.1.5.19 (Base Change).02X6 Suppose we are given a commutative diagram of
∞-categories

02X7 C′ F ′ //

U ′

��
G

��

D′

��

��

E ′

��

C

U

��

F // D

V

~~
E

(7.3)

where each square is a pullback and the diagonal maps are inner fibrations. Let f : K▷ → C′

be a morphism of simplicial sets. Then:

(1) If G ◦ f is an F -colimit diagram in the ∞-category C, then f is an F ′-colimit diagram
in the ∞-category C′.

(2) Assume that U and V are cartesian fibrations, and that the functor F carries U -cartesian
morphisms of C to V -cartesian morphisms of D. If f is an F ′-colimit diagram in the
∞-category C′, then G ◦ f is an F -colimit diagram in the ∞-category C.

Proof. Set f = f |K . By virtue of Corollary 4.3.6.10 and Proposition 5.1.4.19, we can replace

https://kerodon.net/tag/02X6
https://kerodon.net/tag/02X7
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(7.3) by the commutative diagram

C′f/ //

##

��

D′(F ′◦f)/

zz

��

E ′(U ′◦f)/

��

C(G◦f)/ //

$$

D(F◦G◦f)/

zz
E(U◦G◦f)/

and thereby reduce to the special case K = ∅. In this case, the desired result follows from
Proposition 7.1.4.19.

Corollary 7.1.5.20. 02KY02KYLet U : C → D be an inner fibration of ∞-categories, let D ∈ D be
an object, and let

f : K▷ → CD = {D} ×D C
be a diagram. If f is a U -colimit diagram in C, then it is a colimit diagram in the ∞-category
CD. The converse holds if U is a cartesian fibration.

Proof. Apply Proposition 7.1.5.19 in the special case E = D and E ′ = {D}.

Remark 7.1.5.21. 02KZCorollary 7.1.5.20 has an obvious counterpart for U -limit diagrams
under the assumption that U : C → D is a cocartesian fibration, which can be proved in
the same way. It also has a more subtle counterpart for U -colimit diagrams when U is a
cocartesian fibration (or U -limit diagrams when U is a cartesian fibration), which we will
discuss in §7.3.9 (see Proposition 7.3.9.2).

7.1.6 Limits and Colimits of Functors

02X8Let C be an ∞-category and let B be a simplicial set. For every vertex b ∈ B, we let

evb : Fun(B, C)→ Fun({b}, C) ≃ C

denote the functor given by evaluation at b. Our goal in this section is to show that the
collection of functors {evb}b∈B creates colimits in the following sense:

https://kerodon.net/tag/02KY
https://kerodon.net/tag/02KY
https://kerodon.net/tag/02KZ
https://kerodon.net/tag/02X8
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Proposition 7.1.6.1.02X9 Let C be an ∞-category, let B be a simplicial set, and let f : K →
Fun(B, C) be a diagram. Assume that, for every vertex b ∈ B, the composite diagram

K
f−→ Fun(B, C) evb−−→ C

admits a colimit in the ∞-category C. Then:

(1) The diagram f admits a colimit in Fun(B, C).

(2) Let f : K▷ → Fun(B, C) be an extension of f . Then f is a colimit diagram if and only
if, for every vertex b ∈ B, the morphism

K▷ f−→ Fun(B, C) evb−−→ C

is a colimit diagram in C.

Corollary 7.1.6.2.02XA Let K be a simplicial set and let C be an ∞-category which admits
K-indexed colimits. Then, for every simplicial set B, the ∞-category Fun(B, C) also admits
K-indexed colimits. Moreover, a morphism of simplicial sets f : K▷ → Fun(B, C) is a colimit
diagram if and only if, for every vertex b ∈ B, the morphism

K▷ f−→ Fun(B, C) evb−−→ C

is a colimit diagram in C.

We will give a proof of Proposition 7.1.6.1 at the end of this section. Our strategy is
to deduce Proposition 7.1.6.1 from a pair of more general results which apply to relative
colimit diagrams (Corollaries 7.1.6.7 and 7.1.6.11). The increased flexibility of the relative
setting will allow us to reduce to the case K = ∅, by virtue of the following:

Proposition 7.1.6.3.02XB Let U : C → D be a functor of ∞-categories, let K be a simplicial
set, and let

U ′ : Fun(K▷, C)→ Fun(K, C)×Fun(K,D) Fun(K▷,D)
be the restriction map. Then a morphism of simplicial sets f : K▷ → C is a U-colimit
diagram if and only if it is U ′-initial when viewed as an object of the ∞-category Fun(K▷, C).

Proof. Set f = f |K , so that U ′ restricts to a functor

U ′′ : {f} ×Fun(K,C) Fun(K▷, C)→ {U ◦ f} ×Fun(K,D) Fun(K▷,D).

We have a commutative diagram

Cf/ //

Ff/

��

{f} ×Fun(K,C) Fun(K▷, C)

U ′′

��
D(F◦f)/ // {F ◦ f} ×Fun(K,D) Fun(K▷,D),

https://kerodon.net/tag/02X9
https://kerodon.net/tag/02XA
https://kerodon.net/tag/02XB
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where the horizontal maps are equivalences of ∞-categories (see Example 4.6.6.8). Applying
Remark 7.1.4.9, we see that f is an U -colimit diagram if and only if it is U ′′-initial when
viewed as an object of the fiber {f} ×Fun(K,C) Fun(K▷).

We have a commutative diagram of ∞-categories

Fun(K▷, C) U ′ //

V

%%

Fun(K, C)×Fun(K,D) Fun(K▷,D)

V ′

vv
Fun(K, C).

Applying Corollary 5.3.7.5, we see that V and V ′ are cartesian fibrations and that U ′ carries
V -cartesian morphisms of Fun(K▷, C) to V ′-cartesian morphisms of Fun(K, C) ×Fun(K,D)
Fun(K▷,D). It follows from Proposition 7.1.4.19, that f is U ′′-initial (when regarded as an
object of {f} ×Fun(K,C) Fun(K▷, C)) if and only if it is U ′-initial (when viewed as an object
of Fun(K▷, C)).

Remark 7.1.6.4. 02XCLet U : C → D be a functor of ∞-categories and let f : K▷ → C be a
morphism of simplicial sets having restriction f = f |K . Proposition 7.1.6.3 asserts that f is
a U -colimit diagram if and only if, for every diagram g : K▷ → C having restriction g = g|K ,
the diagram of Kan complexes

HomFun(K▷,C)(f, g) //

��

HomFun(K,C)(f, g)

��
HomFun(K▷,D)(U ◦ f, U ◦ g) // HomFun(K,D)(U ◦ f, U ◦ g)

is a homotopy pullback square. However, it suffices to verify this condition in the special
case where g is a constant diagram: that is the content of Proposition 7.1.5.12.

Corollary 7.1.6.5. 02XDLet C be an ∞-category, let K be a simplicial set, and let

U : Fun(K▷, C)→ Fun(K, C)

denote the restriction map. Then a morphism of simplicial sets f : K▷ → C is a colimit
diagram if and only if it is U -initial when viewed as an object of the ∞-category Fun(K▷, C).

Proof. Apply Proposition 7.1.6.3 in the special case D = ∆0.

https://kerodon.net/tag/02XC
https://kerodon.net/tag/02XD
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Corollary 7.1.6.6.02XE Let U : C → D be an inner fibration of ∞-categories, let B and K

be simplicial sets, and let A ⊆ B be a simplicial subset which contains every vertex of B.
Suppose we are given a lifting problem

02XF (B ×K)∐(A×K)(A×K▷) f //

��

C

U

��
B ×K▷ //

f

88

D

(7.4)

which satisfies the following condition:

(∗) Let σ : ∆n → B be an n-simplex which does not belong to A, and let a = σ(0) be the
initial vertex. Then the restriction

fa = f |{a}×K▷ : K▷ → C

is a U -colimit diagram.

Then the lifting problem (7.4) admits a solution f : B ×K▷ → C.

Proof. Set C′ = Fun(K▷, C) and D′ = Fun(K, C) ×Fun(K,D) Fun(K▷,D), so that U induces
an inner fibration U ′ : C′ → D′ (Proposition 4.1.4.1). We can then rewrite (7.4) as a lifting
problem

A
g //

��

C′

U ′

��
B

>>

g0 // D′ .

Let P be the partially ordered set of pairs (A′, g′), where A′ ⊆ B is a simplicial subset
containing A, and g′ : A′ → C′ is a morphism satisfying g′|A = g and U ′ ◦ g′ = g0|A′ . The
partially ordered set P satisfies the hypotheses of Zorn’s lemma and therefore contains a
maximal element (Amax, gmax). To complete the proof, it will suffice to show that Amax = B.
Assume otherwise: then there exists some n-simplex σ : ∆n → B which is not contained
in Amax. Choose n as small as possible, so that σ carries the boundary ∂∆n into Amax.
Since every vertex of A is contained in B, we must have n > 0. Moreover, it follows from
(∗) together with Proposition 7.1.6.3 that the vertex a = σ(0) is a U ′-initial object of C′.

https://kerodon.net/tag/02XE
https://kerodon.net/tag/02XF


1410 CHAPTER 7. LIMITS AND COLIMITS

Applying Corollary 7.1.4.17, we deduce that the lifting problem

∂∆n gmax◦σ //

��

C′

U ′

��
∆n

==

g0◦σ // D′

has a solution, which contradicts the maximality of (Amax, gmax).

Corollary 7.1.6.7. 02XGLet U : C → D be an inner fibration of ∞-categories, let B and K be
simplicial sets, and suppose we are given a lifting problem

02XHB ×K f //

��

C

U

��
B ×K▷ g //

f

<<

D

(7.5)

Assume that, for each vertex b ∈ B, the restriction f |{b}×K can be extended to a U -colimit
diagram f b : K▷ → C satisfying U ◦ f b = g|{b}×K▷. Then the lifting problem (7.5) admits a
solution f : B ×K▷ → C satisfying f |{b}×K▷ = f b for each b ∈ B.

Proof. Apply Corollary 7.1.6.6 in the special case where A = sk0(B) is the 0-skeleton of
B.

We can now prove a weak form of Proposition 7.1.6.1:

Corollary 7.1.6.8. 02XJLet C be an ∞-category, let B be a simplicial set, and let f : K →
Fun(B, C) be a diagram. Assume that, for every vertex b ∈ B, the diagram

K
f−→ Fun(B, C) evb−−→ C

has a colimit in C. Then f can be extended to a morphism f : K▷ → Fun(B, C) having the

property that each composition K▷ f−→ Fun(B, C) evb−−→ C is a colimit diagram in C.

Proof. Apply Corollary 7.1.6.7 in the special case D = ∆0.

To complete the proof of Proposition 7.1.6.1, we must show that the morphism f : K▷ →
Fun(B, C) appearing in the statement of Corollary 7.1.6.8 is a colimit diagram. As above, it
will be convenient to deduce this from a stronger assertion about relative colimit diagrams.

https://kerodon.net/tag/02XG
https://kerodon.net/tag/02XH
https://kerodon.net/tag/02XJ
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Proposition 7.1.6.9.02XK Let F : C → D be a functor of ∞-categories. Let B be a simplicial
set and let A be a simplicial subset, so that F induces a functor

F ′ : Fun(B, C)→ Fun(A, C)×Fun(A,D) Fun(B,D).

Suppose we are given a diagram f : K▷ → Fun(B, C) satisfying the following condition:

(∗) Let σ : ∆n → B be an n-simplex of B which is not contained in A and set b = σ(0). Then

the composite map K▷ f−→ Fun(B, C) evb−−→ C is an F -colimit diagram in the ∞-category
C.

Then f is an F ′-colimit diagram in the ∞-category Fun(B, C).

Proof. As in the proof of Corollary 7.1.6.6, we can replace F by the restriction functor

Fun(K▷, C)→ Fun(K, C)×Fun(K,D) Fun(K▷,D)

and thereby reduce to the special case K = ∅ (Proposition 7.1.6.3). In this case, we view f

as an object of the ∞-category Fun(B, C), and we wish to show that this object is F ′-initial.
Using Proposition 4.1.3.2, we can factor F as a composition C G−→ E U−→ D, where U is

an inner fibration (so that E is an ∞-category) and G is inner anodyne (and therefore an
equivalence of ∞-categories). Note that we have a commutative diagram

Fun(B, C)

G◦

��

F ′ // Fun(A, C)×Fun(A,D) Fun(B,D) //

��

Fun(A, C)

G◦

��
Fun(B, E) U ′ // Fun(A, E)×Fun(A,D) Fun(B,D) // Fun(A, E),

where the vertical maps on the left and right are equivalences of ∞-categories (Remark
4.5.1.16). Since the square on the right is a pullback diagram and the right horizontal maps
are isofibrations (Corollary 4.4.5.3), it follows that the vertical map in the middle is also an
equivalence of ∞-categories (Corollary 4.5.2.29). Consequently, to show that f is F ′-initial,
it will suffice to show that G ◦ f is U ′-initial when viewed as an object of Fun(B, E) (Remark
7.1.4.9). Since U ′ is an inner fibration (Proposition 4.1.4.1), it will suffice to verify that f
satisfies the criterion of Corollary 7.1.4.17: every lifting problem

02XL ∂∆n σ0 //

��

Fun(B, E)

U ′

��
∆n

77

// Fun(A, E)×Fun(A,D) Fun(B,D)

(7.6)

https://kerodon.net/tag/02XK
https://kerodon.net/tag/02XL
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has a solution, provided that n > 0 and σ0(0) = f . Unwinding the definitions, we can
rewrite (7.6) as a lifting problem

(∂∆n×B)∐(∂∆n×A)(∆n ×B) g //

��

E

U

��
∆n ×B // D .

Since n > 0, every vertex of the simplicial set ∆n ×B is contained in ∂∆n×B. Moreover, if
τ : ∆m → ∆n ×B is an m-simplex which does not belong to (∂∆n×B)∐(∂∆n×A)(∆n ×B),
then condition (∗) (and Remark 7.1.4.9) guarantee that g carries τ(0) to a U ′-initial vertex
of E . The existence of the desired solution now follows from Corollary 7.1.6.6 (applied in
the special case K = ∅).

Corollary 7.1.6.10. 02XMLet C be an ∞-category, let B be a simplicial set, let A ⊆ B be
a simplicial subset, and let U : Fun(B, C) → Fun(A, C) be the restriction functor. Let
f : K▷ → Fun(B, C) be a diagram satisfying the following condition:

(∗) Let σ : ∆n → B be an n-simplex of B which is not contained in A and set b = σ(0).
Then the composite map K▷ f−→ Fun(B, C) evb−−→ C is a colimit diagram in the∞-category
C.

Then f is a U -colimit diagram in the ∞-category Fun(B, C).

Proof. Apply Proposition 7.1.6.9 in the special case D = ∆0.

Corollary 7.1.6.11. 02XNLet F : C → D be a functor of ∞-categories, let B be a simplicial set,
and let F ′ : Fun(B, C)→ Fun(B,D) be given by composition with F . Let f : K▷ → Fun(B, C)
be a diagram. Assume that, for every vertex b ∈ B, the composition

K▷ → Fun(B, C) evb−−→ C

is an F -colimit diagram in the ∞-category C. Then f is an F ′-colimit diagram in the
∞-category Fun(B, C).

Proof. Apply Proposition 7.1.6.9 in the special case A = ∅.

Corollary 7.1.6.12. 02XPLet C be an ∞-category, let B be a simplicial set, and let f : K▷ →

Fun(B, C) be a diagram. Assume that, for each vertex b ∈ B, the composite map K▷ f−→
Fun(B, C) evb−−→ C is a colimit diagram in C. Then f is a colimit diagram in Fun(B, C).

https://kerodon.net/tag/02XM
https://kerodon.net/tag/02XN
https://kerodon.net/tag/02XP
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Proof. Apply Corollary 7.1.6.11 in the special case D = ∆0 (or Corollary 7.1.6.10) in the
special case A = ∅.

Proof of Proposition 7.1.6.1. Let C be an ∞-category, let B be a simplicial set, and let
f : K → Fun(B, C) be a diagram. Assume that, for every vertex b ∈ B, the composite
diagram

K
f−→ Fun(B, C) evb−−→ C

admits a colimit in the ∞-category C. Applying Corollary 7.1.6.8, we see that f admits
an extension f : K▷ → Fun(B, C) with the property that, for every vertex b ∈ B, the
composition evb ◦f is a colimit diagram in C. Applying Corollary 7.1.6.12, we see any such
extension is a colimit diagram in Fun(B, C). To complete the proof, it will suffice to show the
converse: if f ′ : K▷ → Fun(B, C) is any colimit diagram extending f and b ∈ B is a vertex,
then evb ◦f

′ is also a colimit diagram in C. In this case, the extension f
′ is isomorphic to f

as an object of the ∞-category Fun(K▷,Fun(B, C)). It follows that evb ◦f
′ is isomorphic to

evb ◦f as an object of the ∞-category Fun(K▷, C) and therefore a colimit diagram by virtue
of Corollary 7.1.2.14.

7.2 Cofinality

02MZ Let C be an ∞-category and let f : B → C be a diagram in C indexed by a simplicial set
B. In §7.1, we introduced the definition of a limit lim←−(f) and colimit lim−→(f) of the diagram
f (Definition 7.1.1.11). In practice, it is often convenient to replace f by a simpler diagram
having the same limit (or colimit). The primary goal of this section is to introduce a general
formalism which will allow us to make replacements of this sort.

We begin in §7.2.1 by introducing the notions of left cofinal and right cofinal morphisms
of simplicial sets (Definition 7.2.1.1). Roughly speaking, one can regard left cofinality as
a homotopy-invariant replacement for the notion of left anodyne morphism introduced in
Definition 4.2.4.1. More precisely, the collection of left cofinal morphisms of simplicial sets
is uniquely determined by the following assertions:

• A monomorphism of simplicial sets f : A ↪→ B is left cofinal if and only if it is left
anodyne (Proposition 7.2.1.3).

• Suppose we are given a commutative diagram of simplicial sets

A
f //

��

B

��
A′

f ′ // B′,

https://kerodon.net/tag/02MZ
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where the vertical maps are categorical equivalences. Then f is left cofinal if and only
if f ′ is left cofinal (Corollary 7.2.1.22).

In §7.2.2, we connect the notion of cofinality with the theory of limits and colimits
developed in §7.1. Let C be an ∞-category, and let g : B → C be a diagram in C. We
will show that if f : A→ B is a left cofinal morphism of simplicial sets, then the limit of
the diagram g (if it exists) can be identified with with the limit of the composite diagram
(g ◦ f) : A → C (Corollary 7.2.2.11). Similarly, if f is right cofinal, then the colimit of g
can be identified with the colimit of g ◦ f . Consequently, cofinality is a very useful tool for
computing (or verifying the existence of) limits and colimits.

In §7.2.3, we specialize to the study of cofinal functors between ∞-categories. Our main
result asserts that a functor F : C → D is right cofinal if and only if, for every object D ∈ D,
the ∞-category C ×D DD/ is weakly contractible (Theorem 7.2.3.1). In particular, the weak
contractibility of each slice C ×D D/D guarantees that F is a weak homotopy equivalence
of simplicial sets: this is an ∞-categorical generalization of Quillen’s “Theorem A” (see
Example 7.2.3.3). We will deduce Theorem 7.2.3.1 from a general fact about the stability of
right cofinality with respect to pullback along cocartesian fibrations (Proposition 7.2.3.12),
which is of independent interest.

We devote the second half of this section to studying properties of ∞-categories which
are closely related to the notion of cofinality. We say that an ∞-category C is filtered if, for
every finite simplicial set K and every diagram f : K → C, the coslice ∞-category Cf/ is
nonempty (Definition 7.2.4.3). In §7.2.4, we show that if this property is satisfied for every
finite simplicial set K, then one can say more: every such coslice ∞-category Cf/ is weakly
contractible. It follows that C is filtered if and only if the diagonal map C → Fun(K, C) is
right cofinal for every finite simplicial set K (Proposition 7.2.4.10).

To show that an ∞-category C is filtered, it is not necessary to show that the coslice
∞-category Cf/ is nonempty for every finite diagram f : K → C. In §7.2.5, we show that it
suffices to verify this condition in the case where K = ∂∆n is the boundary of a standard
simplex, for each n ≥ 0 (Lemma 7.2.5.13). Using this observation, we show that the condition
that an ∞-category C is filtered can be formulated entirely at the level of the homotopy
category hC, viewed as an hKan-enriched category (Theorem 7.2.5.5). As an application,
we show that our notion of filtered ∞-category generalizes the classical notion of a filtered
category: that is, an ordinary category C is filtered if and only if the nerve N•(C) is a
filtered ∞-category (Corollary 7.2.5.8). We also formulate a counterpart of this result for
the homotopy coherent nerve of a locally Kan simplicial category (Corollary 7.2.5.10).

Our primary interest in the notion of filtered ∞-category stems from the exactness
properties enjoyed by filtered colimits. We will see later that a small ∞-category C is filtered
if and only if the colimit functor lim−→ : Fun(C,S) → S preserves finite limits (Theorem
[?]). In §7.2.6 we establish a version of this statement, which reformulates the condition
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that C is filtered in terms of fiber products of ∞-categories which are left-fibered over C
(Corollary 7.2.6.3). As a consequence, we show that if F : C′ → C is a right cofinal functor of
∞-categories where C′ is filtered, then C is also filtered (Proposition 7.2.7.1). In §7.2.7, we
establish a partial converse to this assertion: if C is a filtered ∞-category, then there exists
a directed partially ordered set (A,≤) and a right cofinal functor N•(A) → C (Theorem
7.2.7.2).

For many applications, it will be useful to consider a generalization of the notion of
filtered ∞-category. In §7.2.8, we introduce the larger class of sifted simplicial sets. We say
that a simplicial set K is sifted if, for every finite set I, the diagonal map δ : K → KI is
right cofinal (Definition 7.2.8.1). Equivalently, a simplicial set K is sifted if it is weakly
contractible and the diagonal K ↪→ K × K is right cofinal (Proposition 7.2.8.8). Every
filtered ∞-category is sifted (Example 7.2.8.4), but the converse is false: for example, the
∞-category N•(∆)op is sifted (Proposition 7.2.8.10), but is not filtered.

7.2.1 Cofinal Morphisms of Simplicial Sets

02N0 Recall that a morphism of simplicial sets f : A → B is left anodyne if, for every left
fibration q : X → S, every lifting problem

A

f

��

// X

q

��
B

??

// S

admits a solution (Proposition 4.2.4.5). Beware that this condition can only be satisfied
if f is a monomorphism of simplicial sets, and is therefore not invariant under categorical
equivalence. Our goal in this section is to introduce an enlargement of the collection of left
anodyne morphisms which does not suffer from this defect.

Definition 7.2.1.1 (Joyal).02N1 Let f : A→ B be a morphism of simplicial sets. We say that f
is left cofinal if, for every left fibration q : B̃ → B, precomposition with f induces a homotopy
equivalence of Kan complexes Fun/B(B, B̃)→ Fun/B(A, B̃) (see Corollary 4.4.2.5). We say
that f is right cofinal if, for every right fibration q : B̃ → B, precomposition with f induces
a homotopy equivalence of Kan complexes Fun/B(B, B̃)→ Fun/B(A, B̃).

Remark 7.2.1.2.02N2 Let f : A→ B be a morphism of simplicial sets. Then f is left cofinal if
and only if the opposite morphism fop : Aop → Bop is right cofinal.

Proposition 7.2.1.3.02N3 Let f : A → B be a morphism of simplicial sets. Then f is left
anodyne if and only if it is a left cofinal monomorphism. Similarly, f is right anodyne if
and only if it is a right cofinal monomorphism.

https://kerodon.net/tag/02N0
https://kerodon.net/tag/02N1
https://kerodon.net/tag/02N2
https://kerodon.net/tag/02N3


1416 CHAPTER 7. LIMITS AND COLIMITS

Proof. We will prove the first assertion; the second follows by a similar argument. Assume
first that f is left anodyne. Then f is a monomorphism (Remark 4.2.4.4). For every left
fibration of simplicial sets B̃ → B, the restriction map θ : Fun/B(B, B̃)→ Fun/B(A, B̃) is a
pullback of the map

Fun(B, B̃)→ Fun(B,B)×Fun(A,B) Fun(A, B̃),

and is therefore a trivial Kan fibration (Proposition 4.2.5.4). In particular, u is a homotopy
equivalence (Proposition 3.1.6.10). Allowing B̃ to vary, we conclude that f is left cofinal.

We now prove the converse. Assume that f is a left cofinal monomorphism; we wish to
show that f is left anodyne. By virtue of Proposition 4.2.4.5, it will suffice to show that
every lifting problem

02N4A

f

��

// X

q

��
B

??

g // S

(7.7)

admits a solution, provided that q is a left fibration of simplicial sets. Let us regard the
morphism g as fixed, and consider the restriction map

θ : Fun/B(B,X ×S B)→ Fun/B(A,X ×S B).

Since f is a monomorphism, the morphism θ is a left fibration (Proposition 4.2.5.1). Since
the target simplicial set Fun/B(A,X ×S B) is a Kan complex (Corollary 4.4.2.5), it follows
that θ is a Kan fibration (Corollary 4.4.3.8). Our assumption that f is left cofinal guarantees
that θ is a homotopy equivalence, and therefore a trivial Kan fibration (Proposition 3.2.7.2).
In particular, it is surjective at the level of vertices, which guarantees that (7.7) admits a
solution.

Example 7.2.1.4. 03LQLet C be an ∞-category and let X be an object of C. Then the inclusion
map {X} ↪→ C is right cofinal if and only if X is a final object of C. This follows by combining
Proposition 7.2.1.3 with Corollary 4.6.7.24. Similarly, the inclusion map {X} ↪→ C is left
cofinal if and only if X is an initial object of C.

Proposition 7.2.1.5. 02N5Let f : A→ B be a morphism of simplicial sets. Then:

(1) If f is either left cofinal or right cofinal, then it is a weak homotopy equivalence.

(2) If f is a weak homotopy equivalence and B is a Kan complex, then f is left and right
cofinal.

https://kerodon.net/tag/02N4
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Proof. We first prove (1). Let X be a Kan complex. Then the projection map X ×B → B

is a Kan fibration (Remark 3.1.1.6), and therefore both a left and a right fibration (Example
4.2.1.5). Consequently, if f is either left cofinal or right cofinal, the induced map

Fun(B,X) ≃ Fun/B(B,X ×B)→ Fun/B(A,X ×B) ≃ Fun(A,X)

is a homotopy equivalence of Kan complexes. Allowing X to vary, we conclude that f is a
weak homotopy equivalence.

We now prove (2). Assume that B is a Kan complex and that f is a weak homotopy
equivalence; we will show that f is left cofinal (the proof that f is right cofinal is similar).
Let q : B̃ → B be a left fibration. Since B is a Kan complex, q is a Kan fibration
(Corollary 4.4.3.8); in particular, B̃ is a Kan complex. Applying Corollary 3.1.3.4, we obtain
a commutative diagram of Kan complexes

Fun(B, B̃)

q◦

��

◦f // Fun(A, B̃)

q◦

��
Fun(B,B) ◦f // Fun(A,B),

where the vertical maps are Kan fibrations (Corollary 3.1.3.2). Our assumption that
f is a weak homotopy equivalence guarantees that the horizontal maps are homotopy
equivalences (Proposition 3.1.6.17). Applying Proposition 3.2.8.1, we deduce that the map
Fun/B(B, B̃)→ Fun/B(A, B̃) is also a homotopy equivalence.

Proposition 7.2.1.6.02N6 Let f : A → B and g : B → C be morphisms of simplicial sets,
and suppose that f is left cofinal. Then g is left cofinal if and only if the composite map
g ◦ f is left cofinal. In particular, the collection of left cofinal morphisms is closed under
composition.

Proof. Let q : C̃ → C be a left fibration of simplicial sets, and let

Fun/C(C, C̃) g∗−→ Fun/C(B, C̃) f∗−→ Fun/C(A, C̃)

be the morphisms given by precomposition with g and f . Our assumption that f is left
cofinal guarantees that f∗ is a homotopy equivalence. It follows that g∗ is a homotopy
equivalence if and only if f∗ ◦ g∗ is a homotopy equivalence (Remark 3.1.6.7).

Corollary 7.2.1.7.02N7 Let f : A ↪→ B and g : B ↪→ C be monomorphisms of simplicial sets. If
both f and g ◦ f are left anodyne, then g is left anodyne. If f and g ◦ f are right anodyne,
then g is right anodyne.

https://kerodon.net/tag/02N6
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Proof. Combine Propositions 7.2.1.6 and 7.2.1.3.

Warning 7.2.1.8. 02N8Let g : ∆1 → ∆0 be the projection map and let f : {1} ↪→ ∆1 be the
inclusion. Then g and g ◦ f are left cofinal (Proposition 7.2.1.5). However, the morphism
f is not left cofinal, since it is not left anodyne (see Example 4.2.4.7). Consequently, the
collection of left cofinal morphisms does not satisfy the two-out-of-three property.

Corollary 7.2.1.9. 043ELet F : C → D be a functor of ∞-categories, and let X be an initial
object of C. Then F is left cofinal if and only if F (X) is an initial object of D.

Proof. Combine Proposition 7.2.1.6 with Example 7.2.1.4.

Proposition 7.2.1.10. 02N9Let A be a simplicial set, let W be a collection of edges of A, and
let f : A→ B be a morphism of simplicial sets which exhibits B as a localization of A with
respect to W (see Definition 6.3.1.9). Then f is both left and right cofinal.

Proof. We will show that f is left cofinal; the proof that f is right cofinal is similar. Let
q : B̃ → B be a left fibration; we wish to show that composition with f induces a homotopy
equivalence f∗ : Fun/B(B, B̃) → Fun/B(A, B̃). Applying Corollary 5.6.7.3 (and Remark
5.6.7.4), we deduce that there exists a pullback diagram of simplicial sets

B̃ //

q

��

C̃

Q

��
B

g // C,

where Q is a left fibration of ∞-categories. Let Fun(A[W−1], C) denote the full subcategory
of Fun(A, C) spanned by those diagrams which carry each edge of W to an isomorphism in
C (Notation 6.3.1.1), and define Fun(A[W−1], C̃) similarly. We have a commutative diagram
of ∞-categories

Fun(B, C̃)

Q◦

��

◦f // Fun(A[W−1], C̃) //

Q◦

��

Fun(A, C̃)

Q◦

��
Fun(B, C) ◦f // Fun(A[W−1], C) // Fun(A, C),

where the vertical maps on both sides are left fibrations (Corollary 4.2.5.2). Since Q is
a left fibration of ∞-categories, it is conservative (Proposition 4.4.2.11), so the right side
of the diagram is a pullback square. In particular, the vertical map in the middle is also

https://kerodon.net/tag/02N8
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a left fibration. Our assumption that f exhibits B as a localization of A with respect to
W guarantees that the left horizontal maps are equivalences of ∞-categories. Applying
Corollary 4.5.2.32, we conclude that the map of fibers

Fun/B(B, B̃) ≃ {g} ×Fun(B,C) Fun(B, C̃) → {g ◦ f} ×Fun(A[W−1],C) Fun(A[W−1], C̃)
= {g ◦ f} ×Fun(A,C) Fun(A, C̃)
≃ Fun/B(A, B̃)

is an equivalence of ∞-categories, and therefore a homotopy equivalence of Kan complexes
(Example 4.5.1.13).

Corollary 7.2.1.11.02NA Let f : A↠ B be a universally localizing morphism of simplicial sets
(see Definition 6.3.6.1). Then f is both left and right cofinal.

Corollary 7.2.1.12.02NB Let C be a simplicial set. Then there exists a partially ordered set
(A,≤) and a morphism of simplicial sets F : N•(A)→ C which is both left and right cofinal.
Moreover, if the simplicial set C is finite, then we can arrange that the partially ordered set
(A,≤) is finite.

Proof. Combine Theorem 6.3.7.1 (and Variant 6.3.7.17) with Corollary 7.2.1.11.

Corollary 7.2.1.13.02NC Let f : A→ B be a categorical equivalence of simplicial sets. Then f

is left cofinal and right cofinal.

Proof. Combine Proposition 7.2.1.10 with Example 6.3.1.12.

Corollary 7.2.1.14.02ND Let q : X → S be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism q is left cofinal and a left fibration.

(2) The morphism q is right cofinal and a right fibration.

(3) The morphism q is a trivial Kan fibration.

Proof. If q is a trivial Kan fibration, then it is both a left fibration and a right fibration
(Example 4.2.1.5). Moreover, q is also a categorical equivalence of simplicial sets (Proposition
4.5.3.11), hence left and right cofinal by virtue of Corollary 7.2.1.13. This proves the
implications (3)⇒ (1) and (3)⇒ (2).

We will complete the proof by showing that (1) ⇒ (3) (the proof of the implication
(2) ⇒ (3) is similar). Assume that q is a left cofinal left fibration. Then composition
with q induces a homotopy equivalence of Kan complexes Fun/S(S,X)→ Fun/S(X,X). In
particular, the morphism q admits a section f : S → X such that idX and f ◦ q belong to the

https://kerodon.net/tag/02NA
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same connected component of Fun/S(X,X). For each vertex s ∈ S, let Xs = {s} ×S X be
the fiber of q over s. Then the identity map id : Xs → Xs is homotopic to the constant map
Xs → {f(s)} ↪→ Xs. It follows that the Kan complex Xs is contractible. Allowing s to vary,
we conclude that the left fibration q is a trivial Kan fibration (Proposition 4.4.2.14).

Corollary 7.2.1.15. 02NELet f : X → Z be a morphism of simplicial sets. Then f is left cofinal

if and only if it factors as a composition X
f ′−→ Y

f ′′−→ Z, where f ′ is left anodyne and f ′′ is
a trivial Kan fibration.

Proof. Suppose first that we can write f = f ′′ ◦ f ′, where f ′ is left anodyne and f ′′ is a
trivial Kan fibration. Proposition 7.2.1.3 guarantees that f ′ is left cofinal, and Proposition
7.2.1.5 guarantees that f ′′ is left cofinal. Applying Proposition 7.2.1.6, we conclude that f is
also left cofinal.

We now prove the converse. Assume that f : X → Z is left cofinal. Applying Proposition
4.2.4.8, we can write f as a composition X

f ′−→ Y
f ′′−→ Z, where f ′ is left anodyne and f ′′

is a left fibration. Then f ′ is also left cofinal (Proposition 7.2.1.3). Applying Proposition
7.2.1.6, we deduce that f ′′ is left cofinal. It then follows from Corollary 7.2.1.14 that f ′′ is a
trivial Kan fibration.

Corollary 7.2.1.16. 02NFSuppose we are given a categorical pushout diagram of simplicial sets

02NGX
f //

��

Z

��
X ′

f ′ // Z ′.

(7.8)

If f is left cofinal, then f ′ is also left cofinal.

Proof. By virtue of Corollary 7.2.1.15, we may assume that f factors as a composition
X

g−→ Y
h−→ Z, where g is left anodyne and h is a trivial Kan fibration. Setting Y ′ = Y

∐
XX

′,
we can expand (7.8) to a commutative diagram

X
g //

��

Y
h //

��

Z

��
X ′

g′ // Y ′
h′ // Z ′.

Note that the square on the left is a pushout diagram in which the horizontal maps are
monomorphisms, and therefore a categorical pushout diagram (Example 4.5.4.12). Applying
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Proposition 4.5.4.8, we deduce that the square on the right is also a categorical pushout
diagram. Since h is a categorical equivalence (Proposition 4.5.3.11), it follows that h′ is also
a categorical equivalence (Proposition 4.5.4.10). In particular, h′ is left cofinal (Corollary
7.2.1.13). The morphism g′ is left anodyne (since it is a pushout of g), and is therefore also
left cofinal (Proposition 7.2.1.3). Applying Proposition 7.2.1.6, we deduce that f ′ = h′ ◦ g′ is
also left cofinal.

Corollary 7.2.1.17.02NH The collection of left cofinal morphisms of simplicial sets is closed
under the formation of filtered colimits (when regarded as a full subcategory of the arrow
category Fun([1], Set∆)).

Proof. For every morphism of simplicial sets f : X → Z, let X f ′−→ Q(f) f ′′−→ Y be the
factorization of Proposition 4.2.4.8, so that f ′ is left anodyne, f ′′ is a left fibration, and
the construction f 7→ Q(f) is a functor which commutes with filtered colimits. Using
Propositions 7.2.1.5, 7.2.1.6, and Corollary 7.2.1.14, we see that f is left cofinal if and only
if the morphism f ′′ : Q(f)→ Z is a trivial Kan fibration. Since the collection of trivial Kan
fibrations is closed under filtered colimits (Remark 1.5.5.3), it follows that the collection of
left cofinal morphisms is also closed under filtered colimits.

Corollary 7.2.1.18.02NJ The collection of left anodyne morphisms of simplicial sets is closed
under the formation of filtered colimits (when regarded as a full subcategory of the arrow
category Fun([1], Set∆)).

Proof. Combine Corollary 7.2.1.17 with Proposition 7.2.1.3.

Corollary 7.2.1.19.02NK Let f : X → Z be a left cofinal morphism of simplicial sets. Then, for
every simplicial set K, the product map (f × idK) : X ×K → Z ×K is left cofinal.

Proof. By virtue of Corollary 7.2.1.15, the morphism f factors as a composition X f ′−→ Y
f ′′−→

Z, where f ′ is left anodyne and f ′′ is a trivial Kan fibration. It follows that f × idK factors
as a composition

X ×K f ′×idK−−−−→ Y ×K f ′′×idK−−−−−→ Z ×K.

We now note that f ′ × idK is left anodyne (Proposition 4.2.5.3) and f ′′ × idK is a trivial
Kan fibration (Remark 1.5.5.2). Applying Corollary 7.2.1.15, we deduce that f × idK is left
cofinal.

Corollary 7.2.1.20.02NL Let f : X → Y and f ′ : X ′ → Y ′ be left cofinal morphisms of simplicial
sets. Then the product map (f × f ′) : X ×X ′ → Y × Y ′ is left cofinal.

Proof. Factoring f × f ′ as a composition

X ×X ′ f×idX′−−−−→ Y ×X ′ idY ×f ′−−−−−→ Y × Y ′,
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the desired result follows by combining Corollary 7.2.1.19 with Proposition 7.2.1.6.

We now prove that cofinality is invariant under categorical equivalence.

Proposition 7.2.1.21. 02NMLet f : A→ B and g : B → C be morphisms of simplicial sets, and
suppose that g is a categorical equivalence. Then f is left cofinal if and only if g ◦ f is left
cofinal.

Proof. Since g is a categorical equivalence, the construction C̃ 7→ B×C C̃ induces a bijection
from equivalence classes of left fibrations over C to equivalence classes of left fibrations over
B (Corollary 5.6.0.6). It follows that f is left cofinal if and only if it satisfies the following
condition:

(∗) For every left fibration q : C̃ → C, the restriction map f∗ : Fun/C(B, C̃)→ Fun/C(A, C̃)
is a homotopy equivalence of Kan complexes.

It will therefore suffice to show that, for every left fibration q : C̃ → C, the restriction map
f∗ : Fun/C(B, C̃) → Fun/C(A, C̃) is a homotopy equivalence if and only if the restriction
map (g ◦ f)∗ : Fun/C(C, C̃)→ Fun/C(A, C̃) is a homotopy equivalence. This is clear, since
our assumption that g is a categorical equivalence guarantees that the restriction map
g∗ : Fun/C(C, C̃)→ Fun/C(B, C̃) is a homotopy equivalence (Corollary 7.2.1.13).

Corollary 7.2.1.22. 02NNSuppose we are given a commutative diagram of simplicial sets

A
f //

g

��

B

g′

��
A′

f ′ // B′,

where g and g′ are categorical equivalences. Then f is left cofinal if and only if f ′ is left
cofinal.

Proof. By virtue of Proposition 7.2.1.21, the morphism f is left cofinal if and only if the
composite morphism g′ ◦ f is left cofinal. Similarly, Proposition 7.2.1.6 guarantees that f ′ is
left cofinal if and only if f ′◦g is left cofinal. We conclude by observing that g′◦f = f ′◦g.

Corollary 7.2.1.23. 02NPLet C be an ∞-category and suppose we are given a pair of diagrams
f0, f1 : K → C indexed by a simplicial set K. Suppose that f0 and f1 are isomorphic as
objects of the ∞-category Fun(K, C). Then f0 is left cofinal if and only if f1 is left cofinal.
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Proof. Let Isom(C) ⊆ Fun(∆1, C) be the full subcategory spanned by the isomorphisms of C
(see Example 4.4.1.14). Let ev0, ev1 : Isom(C)→ C be the morphisms given by evaluation at
the vertices 0, 1 ∈ ∆1, so that ev0 and ev1 are trivial Kan fibrations (Corollary 4.4.5.10). Fix
an isomorphism of f0 with f1, which we identify with a diagram F : K → Isom(C) satisfying
ev0 ◦F = f0 and ev1 ◦F = f1. Applying Corollary 7.2.1.22 to the diagram

K
F //

id

��

Isom(C)

ev0

��
K

f0 // C,

we deduce that f0 is left cofinal if and only if F is left cofinal. By the same reasoning, this
is equivalent to the condition that f1 is left cofinal.

7.2.2 Cofinality and Limits

02NQ Let C be an∞-category. In §7.1.2, we introduced the notion of a limit lim←−(G) and colimit
lim−→(G) for a diagram G : B → C (Definition 7.1.1.11). Our goal in this section is to show
that, if F : A→ B is a left cofinal morphism of simplicial sets, then the limit lim←−(G) (if it
exists) can be identified with the limit lim←−(G ◦ F ). Similarly, if F : A→ B is right cofinal,
then the colimit lim−→(G) (if it exists) can be identified with the colimit lim−→(G ◦F ). Our proof
is based on the following characterization of (left) cofinality:

Proposition 7.2.2.1.02NR Let F : A → B be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism F is left cofinal (in the sense of Definition 7.2.1.1).

(2) The diagram

04K0 A //

F

��

A◁

F ◁

��
B // B◁

(7.9)

is a categorical pushout square of simplicial sets.

https://kerodon.net/tag/02NQ
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(3) The diagram
04K1A //

F

��

∆0 ⋄A

��
B // ∆0 ⋄B

(7.10)

is a categorical pushout square (here ⋄ denotes the blunt join introduced in Notation
4.5.8.3).

(4) For every ∞-category C and every diagram G : B → C, composition with F induces an
equivalence of ∞-categories

C ×̃Fun(B,C){G} → C ×̃Fun(A,C){G ◦ F}.

(5) For every∞-category C and every diagram G : B → C, the restriction map C/G → C/(G◦F )
is an equivalence of ∞-categories.

(6) For every ∞-category C, every diagram G : B → C, and every object X ∈ C, precomposi-
tion with F induces a homotopy equivalence of Kan complexes

HomFun(B,C)(X,G)→ HomFun(A,C)(X ◦ F,G ◦ F );

here X : B → C denotes the constant diagram taking the value X.

(7) For every ∞-category C, every diagram G : B → C, and every object X ∈ C, precomposi-
tion with F induces a homotopy equivalence of Kan complexes

Fun/ C(B, CX/)→ Fun/ C(A, CX/).

Proof. We first show that (1) implies (2). Let F : A → B be a left cofinal morphism of
simplicial sets; we wish to show that the diagram (7.9) is a categorical pushout square.
By virtue of Corollary 7.2.1.15 (and Proposition 4.5.4.8), we may assume that F is either
left anodyne or a trivial Kan fibration. In the second case, the vertical morphisms in the
diagram (7.9) are categorical equivalences (see Corollary 4.5.8.9), so the desired result is a
special case of Proposition 4.5.4.10. In the second case, Example 4.3.6.5 guarantees that the
induced map B∐

AA
◁ ↪→ B◁ is inner anodyne, so the desired result follows from Proposition

4.5.4.11.
Notation 4.5.8.3 supplies a comparison map from the diagram (7.10) to the diagram (7.9),

whcih is a levelwise categorical equivalence by virtue of Theorem 4.5.8.8. The equivalence
(2)⇔ (3) now follows from Proposition 4.5.4.9.

https://kerodon.net/tag/04K1
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We next show that (3) implies (4). Let C be an ∞-category and let G : B → C be a
diagram. If condition (3) is satisfied, then the diagram of ∞-categories

Fun(∆0 ⋄B, C) //

��

Fun(∆0 ⋄A, C)

��
Fun(B, C) ◦F // Fun(A, C)

is a categorical pullback square. Corollary 4.4.5.3 guaranteees that the vertical maps in this
diagram are isofibrations. Invoking Corollary 4.5.2.31 (together with the definition of the
blunt join), we deduce that the induced map

C ×̃Fun(B,C){G} ≃ Fun(∆0 ⋄B, C)×Fun(B,C) {G}
→ Fun(∆0 ⋄A, C)×Fun(A,C) {G ◦ F}
≃ C ×̃Fun(A,C){G ◦ F}

is an equivalence of ∞-categories.
We next prove the equivalences (4) ⇔ (5) ⇔ (6) ⇔ (7). Let G : B → C be as above.

Applying Construction 4.6.4.13, we obtain a commutative diagram of ∞-categories

C/G //

θ

��

C ×̃Fun(B,C){G}

θ′

��
C/(G◦F ) // C ×̃Fun(A,C){G ◦ F},

where the horizontal maps are equivalences of ∞-categories (Theorem 4.6.4.17). It follows
that θ is an equivalence of ∞-categories if and only if θ′ is an equivalence of ∞-categories.
This proves the equivalence (4) ⇔ (5). Note that the functor θ′ fits into a commutative
diagram

C ×̃Fun(B,C){G}

$$

θ′ // C ×̃Fun(A,C){G ◦ F}

yy
C,

where the vertical maps are right fibrations (Corollary 4.6.4.12). Applying Corollary 5.1.7.15
and Proposition 5.1.7.5, we see that θ′ is an equivalence of ∞-categories if and only if it
induces a homotopy equivalence

θ′X : {X} ×̃Fun(B,C){G} → {X ◦ F} ×̃Fun(A,C){G ◦ F}
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for each object X ∈ C, which proves the equivalence (4)⇔ (6). Unwinding the definitions,
we can identify θ′ with the lower horizontal map appearing in the diagram

Fun/ C(B, CX/)
θ′′X //

��

Fun/ C(A, CX/)

��
Fun/ C(B, {X} ×̃C C)

θ′X // Fun/ C(A, {X} ×̃C C),

where the vertical maps are given by postcomposition with the coslice diagonal morphism
ρ : CX/ → {X} ×̃C C. Theorem 4.6.4.17 guarantees that ρ is an equivalence of ∞-categories.
It is therefore also an an equivalence of left fibrations over C (Proposition 5.1.7.5), so that
the vertical maps are homotopy equivalences. It follows that θ′X is a homotopy equivalence
if and only if θ′′X is a homotopy equivalence, which proves the equivalence (6)⇔ (7).

We now complete the proof by showing that (7) implies (1). Assume that condition (7)
is satisfied; we wish to show that F is left cofinal. Let q : B̃ → B be a left fibration; we must
show that composition with F induces a homotopy equivalence Fun/B(B, B̃)→ Fun/B(A, B̃).
To prove this, we are free to replace q : B̃ → B by any other left fibration which is equivalent
to it (in the sense of Definition 5.1.7.1). We may therefore assume without loss of generality
that there exists a pullback diagram of simplicial sets

B̃ //

q

��

S∗

quniv

��
B

G // S,

where quniv : S∗ → S is the universal left fibration of Corollary 5.6.0.6. We are then reduced
to proving that F induces a homotopy equivalence Fun/S(B,S∗)→ FunS(A,S∗), which is a
special case of (7) (applied to the ∞-category C = S and the object X = ∆0).

Corollary 7.2.2.2. 02XQLet U : C → D be a functor of ∞-categories and let e : A→ B be a left
cofinal morphism of simplicial sets. Then a morphism of simplicial sets f : B◁ → C is a
U -limit diagram if and only if the composite map

A◁
e◁

−→ B◁ f−→ C

is a U -limit diagram.

https://kerodon.net/tag/02XQ
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Proof. Set f = f |B and apply Remark 7.1.4.9 to the commutative diagram of ∞-categories

C/f //

��

C/(f◦e)

��
D/(U◦f) // D/(U◦f◦e),

noting that the horizontal maps are equivalences by virtue of Proposition 7.2.2.1.

Corollary 7.2.2.3.02XR Let C be an ∞-category and let e : A→ B be a left cofinal morphism of
simplicial sets. Then a morphism of simplicial sets f : B◁ → C is a limit diagram if and
only if the composite map

A◁
e◁

−→ B◁ f−→ C

is a limit diagram.

Proof. Apply Corollary 7.2.2.2 in the special case D = ∆0 (see Example 7.1.5.3).

Remark 7.2.2.4.02NT The converse of Corollary 7.2.2.3 is also true: if e : A→ B is a morphism
of simplicial sets having the property that precomposition with the induced map e◁ : A◁ → B◁

carries limit diagrams to limit diagrams, then e is left cofinal. Moreover, it suffices check
this condition for diagrams in the ∞-category S of spaces (see Corollary 7.4.5.14).

Corollary 7.2.2.5.02XV Let U : D → E be an inner fibration of ∞-categories and let C be an
∞-category containing an object Y . Then:

• If Y is an initial object of C, then a diagram C◁ → D is a U -limit diagram if and only
if it carries {Y }◁ ≃ ∆1 to a U -cartesian morphism of D.

• If Y is a final object of K, then a diagram C◁ → D is a U -colimit diagram if and only
if it carries {Y }▷ ≃ ∆1 to a U -cocartesian morphism of D.

Proof. If Y is an initial object of C, then the inclusion map {Y } ↪→ C is left cofinal (Corollary
4.6.7.24). The first assertion now follows by combining Corollary 7.2.2.2 with Example
7.1.5.9. The second assertion follows by a similar argument.

Corollary 7.2.2.6.02XW Let C and D be ∞-categories. Then:

• If C has an initial object Y , then a functor C◁ → D is a limit diagram if and only if it
carries {Y }◁ ≃ ∆1 to an isomorphism in the ∞-category D.

• If C has a final object Y , then a functor C▷ → D is a colimit diagram if and only if it
carries {Y }▷ ≃ ∆1 to an isomorphism in the ∞-category D.

https://kerodon.net/tag/02XR
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Proof. Apply Corollary 7.2.2.5 in the special case E = ∆0 (and use Example 5.1.1.4).

Corollary 7.2.2.7. 02XSLet C be an ∞-category containing an object C ∈ C and let e : A→ B

be a left cofinal morphism of simplicial sets. Suppose we are given a diagram f : B → C and
a natural transformation α : C → f , where C ∈ Fun(B, C) denotes the constant diagram
taking the value C. Then α exhibits C as a limit of f (in the sense of Definition 7.1.1.1) if
and only if the induced natural transformation α|A : C|A → f |A exhibits C as a limit of the
diagram f |A.

Proof. By virtue of Remark 7.1.1.7, we are free to modify the natural transformation α by
a homotopy and may therefore assume that it corresponds to a morphism of simplicial sets
∆0 ⋄B → C which factors through the categorical equivalence ∆0 ⋄B ↠ ∆0 ⋆ B of Theorem
4.5.8.8. In this case, the desired result follows from Corollary 7.2.2.3 and Remark 7.1.2.6.

Corollary 7.2.2.8. 02NVLet e : A→ B be a morphism of simplicial sets and let F : C → D be a
functor of ∞-categories. If e is left cofinal and the functor F preserves A-indexed limits,
then F preserves B-indexed limits. If e is right cofinal and the functor F preserves A-indexed
colimits, then the functor F preserves B-indexed colimits.

Proposition 7.2.2.9. 02XTSuppose we are given a commutative diagram of simplicial sets

B
f //

��

C

U

��
B◁ g // D,

where U is an inner fibration of ∞-categories. Let e : A→ B be a left cofinal morphism of
simplicial sets. The following conditions are equivalent:

(1) There exists a U -limit diagram f : B◁ → C satisfying f |B = f and U ◦ f = g.

(2) There exists a U -limit diagram f0 : A◁ → C satisfying f0|A = f ◦ e and U ◦ f0 = g ◦ e◁.

Proof. The implication (1) ⇒ (2) follows by observing that if f : B◁ → C is a U -limit
diagram, then the left cofinality of e guarantees that f ◦ e◁ is also a U -limit diagram
(Corollary 7.2.2.2). We will complete the proof by showing that (2) implies (1). By virtue of
Corollary 7.2.1.15, we can assume that the morphism e is either left anodyne or a trivial
Kan fibration. We first treat the case where e is a trivial Kan fibration. Let s : B → A be a
section of e, and let f0 : A◁ → C satisfy the requirements of (2). Let f denote the composite
map

B◁ s◁

−→ A◁
f0−→ C .

https://kerodon.net/tag/02XS
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It follows immediately from the construction that f |B = f and U ◦ f = g. Moreover, the
composition f ◦ e◁ is isomorphic to f0 (as an object of the ∞-category Fun(B◁, C)), and is
therefore also a U -limit diagram (Proposition 7.1.5.13). Since e is left cofinal, it follows that
f is also a U -limit diagram (Corollary 7.2.2.2).

We now treat the case where e is left anodyne. In this case, the induced map A◁∐AB ↪→
B◁ is inner anodyne. Since U is an inner fibration, we can extend f to a morphism f : B◁ → C
satisfying U ◦ f = g and f ◦ e◁ = f0. Since e is left cofinal, the morphism f is automatically
a U -limit diagram (Corollary 7.2.2.2).

Corollary 7.2.2.10.02NS Let C be an ∞-category and let e : A→ B be a left cofinal morphism
of simplicial sets. Then a diagram f : B → C has a limit if and only if the composite diagram
(f ◦ e) : A→ C has a limit.

Proof. If f : B◁ → C is a colimit diagram extending f , then Corollary 7.2.2.3 guarantees that
f ◦ e◁ : A◁ → C is a colimit diagram extending f ◦ e. Conversely, if f ◦ e can be extended to
a colimit diagram, then Proposition 7.2.2.9 (applied in the special case D = ∆0) guarantees
that f can also be extended to a colimit diagram.

Corollary 7.2.2.11.02XU Let C be an ∞-category, let e : A→ B be a left cofinal morphism of
simplicial sets, and let f : B → C be a diagram. Then an object X ∈ C is a limit of f if and
only if it is a limit of the diagram (f ◦ e) : A→ C.

Proof. If an object X ∈ C is a limit of f , then we can choose a limit diagram f : B◁ → C
carrying the cone point of f◁ to the object X. Applying Corollary 7.2.2.10, we deduce that
f ◦ e◁ exhibits X as a limit of the diagram f ◦ e. Conversely, if X is a limit of the diagram
f ◦ e, then Corollary 7.2.2.10 guarantees that the diagram f admits a limit Y ∈ C. The
preceding argument shows that Y is also a limit of the diagram f ◦ e. Applying Proposition
7.1.1.12, we deduce that Y is isomorphic to X, so that X is also a limit of the diagram
f .

Corollary 7.2.2.12.02NU Let e : A → B be a morphism of simplicial sets and let C be an
∞-category. If e is left cofinal and C admits A-indexed limits, then C also admits B-indexed
limits. If e is right cofinal and C admits A-indexed colimits, then C also admits B-indexed
colimits.

Corollary 7.2.2.13.02NW Let e : A → B be a morphism of simplicial sets and let F : C → D
be a functor of ∞-categories. If e is left cofinal and the functor F creates A-indexed limits,
then F creates B-indexed limits. If e is right cofinal and the functor F creates A-indexed
colimits, then the functor F creates B-indexed colimits.
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Corollary 7.2.2.14. 039BSuppose we are given lifting problem

039CC f //

��

D

U

��
C◁ //

f

??

E ,

(7.11)

where C is an ∞-category and U is a cartesian fibration of ∞-categories. If C has a final
object C, then (7.11) admits a solution f : C◁ → D which is a U -limit diagram.

Proof. Using Proposition 7.2.2.9 and Corollary 4.6.7.24, we can replace C by the simplicial
set {C} ≃ ∆0, in which case the desired result follows from our assumption that U is a
cartesian fibration (see Example 7.1.5.9).

7.2.3 Quillen’s Theorem A for ∞-Categories

02NXThe following result provides a concrete criterion for establishing the cofinality of a
functor between ∞-categories.

Theorem 7.2.3.1 (Joyal). 02NYLet F : C → D be a morphism of simplicial sets, where D is an
∞-category. Then:

(1) The morphism F is left cofinal if and only if, for every object X ∈ D, the simplicial set
C ×D D/X is weakly contractible.

(2) The morphism F is right cofinal if and only if, for every object X ∈ D, the simplicial
set C ×D DX/ is weakly contractible.

Remark 7.2.3.2. 02NZLet F : C → D be a morphism of simplicial sets, where D is an∞-category.
For every object X ∈ D, the slice and coslice diagonal morphisms of Construction 4.6.4.13
induce categorical equivalences

C ×D D/X ↪→ C ×̃D{X} C ×D DX/ ↪→ {X} ×̃D C

(Example 5.1.7.7). We can therefore reformulate Theorem 7.2.3.1 as follows:

(1′) The morphism F is left cofinal if and only if, for every object X ∈ D, the simplicial set
C ×̃D{X} is weakly contractible.

(2′) The morphism F is right cofinal if and only if, for every object X ∈ D, the simplicial
set {X} ×̃D C is weakly contractible.

https://kerodon.net/tag/039B
https://kerodon.net/tag/039C
https://kerodon.net/tag/02NX
https://kerodon.net/tag/02NY
https://kerodon.net/tag/02NZ


7.2. COFINALITY 1431

Example 7.2.3.3 (Quillen’s Theorem A).02P0 Let F : C → D be a functor between categories.
Suppose that, for every object X ∈ D, the category C ×D DX/ has weakly contractible
nerve. Applying Theorem 7.2.3.1, we deduce that the induced morphism of simplicial sets
N•(F ) : N•(C)→ N•(D) is right cofinal. In particular, it is a weak homotopy equivalence
(Proposition 7.2.1.5). This recovers a classical result of Quillen (see [45]).

Corollary 7.2.3.4.03U2 Let (S,≤) and (T,≤) be linearly ordered sets, and let f : S → T be a
nondecreasing function. The following conditions are equivalent:

(1) The function f : S → T is cofinal in the sense of Definition 4.7.1.26. That is, for every
element t ∈ T , there exists an element s ∈ S satisfying t ≤ f(s).

(2) The induced morphism of simplicial sets N•(S)→ N•(T ) is right cofinal, in the sense of
Definition 7.2.1.1.

Proof. For each t ∈ T , set S≥t = {s ∈ S : t ≤ f(s)}, which we regard as a linearly ordered
subset of S. Using Theorem 7.2.3.1, we can rewrite conditions (1) and (2) as follows:

(1′) For each element t ∈ T , the linearly ordered set S≥t is nonempty.

(2′) For each element t ∈ T , the linearly ordered set S≥t has weakly contractible nerve.

The implication (2′)⇒ (1′) is immediate, and the reverse implication follows from Corollary
3.2.8.5.

Corollary 7.2.3.5.02XX Let C be an ∞-category and let f : A◁ → C be a diagram, where A is a
weakly contractible simplicial set. The following conditions are equivalent:

(1) The diagram f carries each edge of A◁ to an isomorphism in C.

(2) The restriction f = f |A carries each edge of A to an isomorphism in C, and f is a limit
diagram.

Proof. Without loss of generality, we may assume that f carries each edge of A to an
isomorphism in C. Under this assumption, we can restate (1) and (2) as follows:

(1′) For every vertex a ∈ A, the edge

∆1 ≃ {a}◁ ↪→ A◁
f−→ C

is an isomorphism in the ∞-category C.

(2′) The morphism f is a limit diaram.

https://kerodon.net/tag/02P0
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Using Corollary 3.1.7.2, we can choose an anodyne morphism i : A ↪→ B, where B is a
Kan complex. Note that f can be regarded as a morphism from A to the core C≃, which is
also a Kan complex (Corollary 4.4.3.11). We can therefore extend f to a morphism of Kan
complexes g : B → C≃. Moreover, the morphism i is left cofinal (Proposition 7.2.1.5) and
therefore left anodyne (Proposition 7.2.1.3). It follows that the induced map B∐

AA
◁ ↪→ B◁

is inner anodyne (Example 4.3.6.5), so that we can choose a functor g : B◁ → C satisfying
g|B = g and g|A◁ = f .

It follows from Corollary 7.2.2.3 that f is a limit diagram if and only if g is a limit
diagram. Since A is weakly contractible, the Kan complex B is contractible. In particular,
every vertex a ∈ A can be regarded as a final object of B. The equivalence of (1′) and (2′)
now follows from Corollary 7.2.2.6.

Corollary 7.2.3.6. 02XYLet C be an ∞-category and let U : D → E be a functor of ∞-categories.
Then:

• If C has an initial object Y and F : C◁ → D is a functor which carries {Y }◁ ≃ ∆1 to
an isomorphism in D, then F is a U -limit diagram.

• If C has a final object Y and F : C▷ → D is a functor which carries {Y }▷ ≃ ∆1 to an
isomorphism in D, then F is a U -colimit diagram.

Proof. Combine Corollary 7.2.2.6 with Proposition 7.1.5.14.

Corollary 7.2.3.7. 02P3Let F : C → D be a functor of ∞-categories. Then:

(1) If F is a left adjoint, then it is left cofinal.

(2) If F is a right adjoint, then it is right cofinal.

Proof. We will prove (1); the proof of (2) is similar. Suppose that F admits a right G : D → C.
For every object X ∈ D, Corollary 6.2.4.2 guarantees that the ∞-category C ×D D/X has
a final object. In particular, the ∞-category C ×D D/X is weakly contractible (Corollary
4.6.7.25). Allowing X to vary and applying Theorem 7.2.3.1, we conclude that F is left
cofinal.

Example 7.2.3.8. 03J7Let C be an ∞-category. If C0 ⊆ C is a reflective subcategory (Definition
6.2.2.1), then the inclusion map ι : C0 ↪→ C is right cofinal (this is a special case of Corollary
7.2.3.7, since Proposition 6.2.2.11 guarantees that ι has a left adjoint). Similarly, if C0 is a
coreflective subcategory of C, then the inclusion ι is left cofinal.

Corollary 7.2.3.9. 02P4Let C be an ∞-category and let K be a simplicial set. The following
conditions are equivalent:

(1) The diagonal map δ : C → Fun(K, C) is right cofinal.

https://kerodon.net/tag/02XY
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(2) For every diagram f : K → C, the coslice ∞-category Cf/ is weakly contractible.

Proof. By virtue of Remark 7.2.3.2, condition (1) is equivalent to the requirement that for
every diagram f : K → C, the oriented fiber product {f} ×̃Fun(K,C) C is weakly contractible.
The equivalence of (1) and (2) now follows from Theorem 4.6.4.17.

Our proof of Theorem 7.2.3.1 will require some preliminaries.

Lemma 7.2.3.10.039D Let C be a category and let F : C → Set∆ be a diagram of simplicial sets
indexed by C. Suppose we are given morphisms of simplicial sets A f−→ B

g−→ N•(C), where f
is right anodyne. Then the induced map A×N•(C) holim

−→
(F )→ B ×N•(C) holim

−→
(F ) is right

anodyne.

Proof. Without loss of generality, we may assume that f is the inclusion map Λni ↪→ ∆n for
some 0 < i ≤ n. Using Remark 5.3.2.3, we can reduce to the case where C is the linearly
ordered set [n] = {0 < 1 < · · · < n} and g is the identity map. In this case, Remark 5.3.2.12
supplies a pushout diagram of simplicial sets

Λni ×F (0) //

��

Λni ×∆n holim
−→

(F )

��
∆n ×F (0) // holim

−→
(F ).

It will therefore suffice to show that the left vertical map is right anodyne, which follows
from Proposition 4.2.5.3.

Example 7.2.3.11.039E Let F : C → Set∆ be a diagram of simplicial sets, and suppose that
the category C contains a final object C. Combining Lemma 7.2.3.10 with Corollary 4.6.7.24,
we deduce that the inclusion map

F (C) ≃ {C} ×N•(C) holim
−→

(F ) ↪→ holim
−→

(F )

is right anodyne.

Proposition 7.2.3.12.02P6 Suppose we are given a pullback diagram of simplicial sets

C′

��

F // C

π

��
D′ F // D .

If π is a cocartesian fibration and F is right cofinal, then F is right cofinal.

https://kerodon.net/tag/039D
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Proof. By virtue of Corollary 7.2.1.15, it will suffice to prove Proposition 7.2.3.12 in the
special case where F is right anodyne. Let S be the collection of all morphisms of simplicial
sets F : D′ → D having the property that, for every cocartesian fibration π : C → D, the
induced map F : D′×D C → C is right anodyne. We wish to show show that every right
anodyne morphism belongs to S. It follows immediately from the definitions that S is weakly
saturated, in the sense of Definition 1.5.4.12. It will therefore suffice to show that S contains
every horn inclusion Λn

i ↪→ ∆n for 0 < i ≤ n. In other words, we are reduced to proving
Proposition 7.2.3.12 in the special case where D = ∆n is a standard simplex and F is the
inclusion of the horn Λni ⊆ ∆n.

Applying Corollary 5.3.4.9, we deduce that there exists a diagram of ∞-categories
G : [n]→ QCat and a scaffold λ : holim

−→
(G )→ C for the cocartesian fibration π. We then

have a commutative diagram of simplicial sets

Λni ×∆n holim
−→

(G ) //

F ′

��

Λni ×∆n C

F

��
holim
−→

(G ) λ // C,

where F ′ is right anodyne (Lemma 7.2.3.10) and therefore right cofinal (Proposition 7.2.1.3).
Lemma 5.3.6.4 guarantees that horizontal maps are categorical equivalences, so that F is
also right cofinal (Corollary 7.2.1.22).

Corollary 7.2.3.13. 02P7Suppose we are given a pullback diagram of simplicial sets

C′

��

F // C

π

��
D′ F // D .

If π is a cocartesian fibration and F is right anodyne, then F is right anodyne.

Proof. Combine Propositions 7.2.3.12 and 7.2.1.3.

Example 7.2.3.14. 03J8Let π : C → D be a cocartesian fibration of ∞-categories, let X be an
object of D, and set CX = {X} ×D C. If X is a final object of D, then the inclusion map
CX ↪→ C is right anodyne, and therefore right cofinal. This follows by combining Corollaries
7.2.3.13 and 4.6.7.24.

https://kerodon.net/tag/02P7
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Proof of Theorem 7.2.3.1. Let F : C → D be a morphism of simplicial sets, where D is an
∞-category. We will show that F is right cofinal if and only if, for every object X ∈ D, the
simplicial set C ×D DX/ is weakly contractible; the analogous characterization of left cofinal
morphisms follows by a similar argument.

Suppose first that F is right cofinal. For every object X ∈ D, the projection map
DX/ → D is a left fibration (Proposition 4.3.6.1), and therefore a cocartesian fibration
(Proposition 5.1.4.14). Applying Proposition 7.2.3.12, we conclude that the projection map
C ×D DX/ → DX/ is also right cofinal. In particular, it is a weak homotopy equivalence
(Proposition 7.2.1.5). Since the ∞-category DX/ has an initial object (Proposition 4.6.7.22),
it is weakly contractible, so that the fiber product C ×D DX/ is also weakly contractible.

We now prove the converse. Assume that, for every object X ∈ D, the simplicial set
C ×D DX/ is weakly contractible. We wish to show that F is right cofinal. Using Proposition
4.1.3.2, we can factor F as a composition

C F ′−→ C′ F
′′
−−→ D,

where F ′ is inner anodyne and F ′′ is an inner fibration. Since F ′ is right cofinal (Proposition
7.2.1.3), it will suffice to show that F ′′ is right cofinal (Proposition 7.2.1.6). For every object
X ∈ D, Proposition 5.3.6.1 guarantees that the induced map C ×D DX/ ↪→ C′×D DX/ is a
categorical equivalence. In particular, it is a weak homotopy equivalence (Remark 4.5.3.4),
so that C′×D DX/ is also weakly contractible. We may therefore replace C by C′ and thereby
reduce to the case where F : C → D is an inner fibration, so that C is also an ∞-category
(Remark 4.1.1.9).

Let ev0, ev1 : Fun(∆1,D)→ D denote the functors given by evaluation at the vertices
0, 1 ∈ ∆1, and let δ : D ↪→ Fun(∆1,D) be the diagonal map. Note that there is a unique
natural transformation from id∆1 to the constant map ∆1 ↠ {1} ↪→ ∆1, which induces a
natural transformation h : idFun(∆1,D) → δ ◦ ev1. Let M denote the oriented fiber product
D ×̃D C = Fun(∆1,D) ×Fun({1},D) Fun({1}, C) of Construction 4.6.4.1, so that ev0 and ev1
lift to functors

D ẽv0←−−M ẽv1−−→ C,

the diagonal map δ lifts to a functor δ̃ : C ↪→M, and h lifts to a natural transformation
h̃ : idM → δ̃ ◦ ẽv1. Note that h̃ can be identified with a morphism of simplicial sets
∆1 ×M→M which fits into a commutative diagram

{0} × C //

δ̃

��

(∆1 × C)∐({1}×C)({1} ×M) //

ι

��

C

δ̃

��
{0} ×M // ∆1 ×M h̃ //M,
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where the horizontal compositions are the identity. It follows that δ̃ is a retract of ι. Since ι
is right anodyne (Proposition 4.2.5.3), δ̃ is also right anodyne, and therefore right cofinal
(Proposition 7.2.1.3).

The functor ẽv0 :M→D is a cartesian fibration (Corollary 5.3.7.3). Moreover, for each
object X ∈ D, the fiber ẽv−1

0 {X} ≃ {X} ×̃D C is equivalent to the ∞-category C ×D DX/
(Example 5.1.7.7), and is therefore weakly contractible. Applying Corollary 6.3.5.3, we
deduce that the functor ẽv1 exhibits D as a localization of D ×̃D C, and is therefore right
cofinal (Proposition 7.2.1.10). We now observe that the functor F : C → D factors as a
composition

C δ̃−→M ẽv1−−→ D,

and is therefore also right cofinal (Proposition 7.2.1.6).

Combining Theorem 7.2.3.1 with Proposition 7.2.3.12, we obtain the following:

Corollary 7.2.3.15 (Fiberwise Cofinality Criterion). 03LRSuppose we are given a commutative
diagram of simplicial sets

E ′

U ′

��

F // E

U

��
C

where U and U ′ are cartesian fibrations, and the morphism F carries U ′-cartesian edges of
E ′ to U -cartesian edges of E. The following conditions are equivalent:

(1) The morphism F is right cofinal.

(2) For every vertex C ∈ C, the induced map of fibers FC : E ′C → EC is right cofinal.

Proof. We first reduce to the case where C is an ∞-category. Using Corollary 4.1.3.3, we can
choose an inner anodyne morphism ι : C ↪→ C, where C is an ∞-category. Using Proposition
5.6.7.2, we can extend U and U ′ to cocartesian fibrations of ∞-categories U : E → C and
U
′ : E ′ → C. Then the inclusion maps E ↪→ E and E ′ ↪→ E ′ are categorical equivalences

(Lemma 5.3.6.5). Since U is an isofibration (Proposition 5.1.4.8), we can extend F to a
functor F : E ′ → E satisfying U ◦ F = U

′ (Proposition 4.5.5.1). It follows from Remark
5.3.1.12 that the functor F carries U ′-cartesian morphisms of E ′ to U -cartesian morphisms
of E . Moreover, the morphism F is right cofinal if and only if F is right cofinal (Corollary
7.2.1.22). Consequently, we can replace C by C and thereby reduce to proving Corollary
7.2.3.15 in the case where C is an ∞-category.

https://kerodon.net/tag/03LR
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Fix an object X ∈ E , let C = U(X) denote its image in C, and wlet EC and E ′C denote
the fibers {C} ×C E and {C} ×C E ′, respectively. We will prove that the following conditions
are equivalent:

(1X) The ∞-category E ′×E EX/ is weakly contractible.

(2X) The ∞-category E ′C ×EC
(EC)X/ is weakly contractible.

Corollary 7.2.3.15 will then follow by allowing the object X to vary and applying the criterion
of Theorem 7.2.3.1.

To complete the proof, it will suffice to show that the inclusion map

E ′C ×EC
(EC)X/ ↪→ E ′×E EX/

is a weak homotopy equivalence. In fact, we will show that it is left anodyne. Unwinding
the definitions, we have a pullback diagram

E ′C ×EC
(EC)X/ //

��

E ′×E EX/

��
{idC} // CC/,

where the right vertical map is a cartesian fibration (Corollary 5.1.4.21). By virtue of
Proposition 7.2.3.12, we are reduced to showing that the inclusion map {idC} ↪→ CC/ is left
anodyne, or equivalently that {idC} is an initial object of the ∞-category CC/ (Corollary
4.6.7.23). This is a special case of Proposition 4.6.7.22.

7.2.4 Filtered ∞-Categories

02P8 We begin by recalling the classical notion of a filtered category.

Definition 7.2.4.1.02P9 Let C be a category. We say that C is filtered if it satisfies the following
conditions:

• The category C is nonempty.

• For every pair of objects X,Y ∈ C, there exists an object Z ∈ C and a pair of morphisms
u : X → Z and v : Y → Z.

• For every pair of objects X,Y ∈ C and every pair of morphisms f0, f1 : X → Y , there
exists a morphism v : Y → Z in C satisfying v ◦ f0 = v ◦ f1.

https://kerodon.net/tag/02P8
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Exercise 7.2.4.2. 02PAWe say that a partially ordered set (A,≤) is directed if every finite subset
A0 ⊆ A has an upper bound. Show that (A,≤) is directed if and only if it is filtered, when
regarded as a category.

Our goal in this section is to introduce an∞-categorical counterpart of Definition 7.2.4.1:

Definition 7.2.4.3. 02PBLet C be an ∞-category. We say that C is filtered if, for every finite
simplicial set K, every diagram f : K → C admits an extension f : K▷ → C.

In §7.2.5, we will show that Definition 7.2.4.3 is a generalization of Definition 7.2.4.1:
that is, a category C is filtered if and only if the ∞-category N•(C) is filtered (Corollary
7.2.5.8).

Variant 7.2.4.4. 02PCLet C be an ∞-category. We say that C is cofiltered if, for every finite
simplicial set K, every diagram f : K → C admits an extension f : K◁ → C. Equivalently, C
is cofiltered if the opposite ∞-category Cop is filtered.

Example 7.2.4.5. 02PDLet C be an ∞-category which contains a final object X. Then every
morphism of simplicial sets f : K → C can be extended to a morphism f : K▷ → C which
carries the cone point of K▷ to the object X. In particular, the ∞-category C is filtered. For
a more general statement, see Proposition 7.2.7.1.

Remark 7.2.4.6. 02PELet {Cα} be a filtered diagram of simplicial sets, where each Cα is a
filtered ∞-category. Then the colimit C = lim−→α

Cα is also a filtered ∞-category. To prove
this, we first observe that C is an ∞-category (Remark 1.4.0.9). If K is a finite simplicial
set, then any morphism f : K → C factors through fα : K → Cα for some index α (see
Proposition 3.6.1.9). Our assumption that Cα is filtered guarantees that fα extends to a
diagram fα : K▷ → Cα, from which it follows that f extends to a diagram f : K▷ → C.

Remark 7.2.4.7. 02PFLet C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C is filtered.

(2) For every finite simplicial set K and every diagram f : K → C, the coslice ∞-category
Cf/ is nonempty.

(3) For every finite simplicial set K and every diagram f : K → C, the oriented fiber product
{f} ×̃Fun(K,C) C is nonempty.

(4) For every finite simplicial set K and every diagram f : K → C, there exists a morphism
f → f ′ in the ∞-category Fun(K, C), where f ′ : K → C is a constant diagram.

The equivalences (1)⇔ (2) and (3)⇔ (4) follow immediately from the definitions, and the
equivalence (2)⇔ (3) follows from Theorem 4.6.4.17.
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https://kerodon.net/tag/02PB
https://kerodon.net/tag/02PC
https://kerodon.net/tag/02PD
https://kerodon.net/tag/02PE
https://kerodon.net/tag/02PF


7.2. COFINALITY 1439

Proposition 7.2.4.8.02PG Let C be a filtered ∞-category and let f : K → C be a diagram, where
K is a finite simplicial set. Then the ∞-category Cf/ is also filtered.

Proof. By virtue of Remark 7.2.4.7, it will suffice to show that for every finite simplicial set
L and every morphism g : L→ Cf/, the ∞-category (Cf/)g/ is nonempty. Unwinding the
definitions, we can identify g with a morphism of simplicial sets f : K ⋆ L→ C satisfying
f |K = f . This identification supplies an isomorphism (Cf/)g/ ≃ Cf/. We are therefore
reduced to showing that the coslice ∞-category Cf/ is nonempty. This follows from Remark
7.2.4.7, since the simplicial set K ⋆ L is finite (Remark 4.3.3.19).

Proposition 7.2.4.9.02PH Let C be a filtered ∞-category. Then C is weakly contractible.

Proof. By virtue of Proposition 3.1.7.1, there exists a functor Q : Set∆ → Set∆ and a natural
transformation u : idSet∆ → Q with the following properties:

• The functor Q commutes with filtered colimits.

• For every simplicial set X, the simplicial set Q(X) is a Kan complex.

• For every simplicial set X, the morphism uX : X → Q(X) is a weak homotopy
equivalence.

To show that C is weakly contractible, it will suffice to show that the Kan complex Q(C)
is contractible. Note that C is nonempty, so that Q(C) is also nonempty. It will therefore
suffice to show that for every integer n ≥ 0, every morphism of simplicial sets σ : ∂∆n →
Q(C) is nullhomotopic (see Variant 3.2.4.13). Since the simplicial set ∂∆n is finite and
the functor Q commutes with filtered colimits, the morphism σ factors as a composition
∂∆n → Q(K) Q(ι)−−→ Q(C), where K is a finite simplicial subset of C and ι : K ↪→ C denotes
the inclusion map. We will complete the proof by showing that Q(ι) is nullhomotopic. Since
uK : K → Q(K) is a weak homotopy equivalence, this is equivalent to assertion that the
composite morphism Q(ι) ◦ uK = uC ◦ ι is nullhomotopic. This is clear: our assumption
that C is filtered guarantees that there exists a natural transformation from ι to a constant
diagram K → C (Remark 7.2.4.7).

Proposition 7.2.4.10.02PJ Let C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C is filtered.

(2) For every finite simplicial set K and every morphism f : K → C, the ∞-category Cf/ is
filtered.

(3) For every finite simplicial set K and every morphism f : K → C, the ∞-category Cf/ is
weakly contractible.
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(4) For every finite simplicial set K, the diagonal map δ : C → Fun(K, C) is right cofinal.

Proof. The implication (1)⇒ (2) follows from Proposition 7.2.4.8, the implication (2)⇒ (3)
from Proposition 7.2.4.9, and the implication (3)⇒ (1) is immediate from the definitions
(Remark 7.2.4.7). The equivalence (3)⇔ (4) is a special case of Corollary 7.2.3.9.

Corollary 7.2.4.11. 02PKLet F : C → D be an equivalence of ∞-categories. Then C is filtered if
and only if D is filtered.

Proof. By virtue of Proposition 7.2.4.10, it will suffice to show that for every (finite) simplicial
set K, the diagonal map δC : C → Fun(K, C) is right cofinal if and only if the diagonal map
δD : D → Fun(K,D) is right cofinal. This follows by applying Corollary 7.2.1.22 to the
commutative diagram of ∞-categories

C δC //

F

��

Fun(K, C)

F◦

��
D δD // Fun(K,D).

Corollary 7.2.4.12. 02PLLet C be a Kan complex. Then C is filtered if and only if it is
contractible.

Proof. If C is a contractible Kan complex, then there exists a categorical equivalence
C → ∆0, so that C is filtered by virtue of Corollary 7.2.4.11. The converse is a special case
of Proposition 7.2.4.9.

7.2.5 Local Characterization of Filtered ∞-Categories

02PMLet C be an ∞-category and let hC denote the homotopy category of C, which we view
as enriched over the homotopy category hKan of Kan complexes (see Construction 4.6.9.13).
In this section, we show that the condition that C is filtered can be formulated entirely in
terms of hC, together with its hKan-enrichment (Theorem 7.2.5.5).

Definition 7.2.5.1. 02PNLet hKan denote the homotopy category of Kan complexes (Construc-
tion 7.2.1.22), and let C be a category which is enriched over hKan. We will say that C is
homotopy filtered if it is nonempty and satisfies the following condition for each n ≥ 1:
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(∗n) For every pair of objects X,Y ∈ C and for every morphism of simplicial sets σ :
∂∆n−1 → HomC(X,Y ), there exists a morphism v : Y → Z for which the composite
morphism

∂∆n−1 σ−→ HomC(X,Y ) v◦−→ HomC(X,Z)

is nullhomotopic.

Warning 7.2.5.2.02PP In the formulation of condition (∗n) of Definition 7.2.5.1, postcomposition
with v defines a map of Kan complexes V : HomC(X,Y )→ HomC(X,Z) which is only well-
defined up to homotopy. However, the condition that V ◦ σ is nullhomotopic depends only
on the homotopy class of V .

Example 7.2.5.3.02PQ Let C be an ordinary category, which we regard as an hKan-enriched
category in which each of the Kan complexes HomC(X,Y ) is equal to HomC(X,Y ) (regarded
as a constant simplicial set). In this case, condition (∗n) of Definition 7.2.5.1 is automatically
satisfied for n ≥ 3. Moreover, we can state conditions (∗1) and (∗2) more concretely as
follows:

(∗1) For every pair of objects X,Y ∈ C, there exists an object Z ∈ C equipped with
morphisms u : X → Z and v : Y → Z.

(∗2) For every pair of objects X,Y ∈ C and every pair of morphisms f0, f1 : X → Y , there
exists a morphism v : Y → Z satisfying v ◦ f0 = v ◦ f1.

It follows that C is homotopy filtered (in the sense of Definition 7.2.5.1) if and only if is
filtered (in the sense of Definition 7.2.4.1).

Remark 7.2.5.4.02PR Let C be an hKan-enriched category. If C is homotopy filtered (in the
sense of Definition 7.2.5.1), then it is filtered when regarded as an ordinary category (in
the sense of Definition 7.2.4.1). Beware that the converse is false in general (see Warning
7.2.5.7).

We can now state the main result of this section:

Theorem 7.2.5.5.02PS Let C be an ∞-category. Then C is filtered (in the sense of Definition
7.2.4.3) if and only if the homotopy category hC is homotopy filtered (in the sense of Definition
7.2.5.1), when regarded as an hKan-enriched category by means of Construction 4.6.9.13.

Before giving the proof of Theorem 7.2.5.5, let us note some of its consequences.

Corollary 7.2.5.6.02PT Let C be a filtered ∞-category (in the sense of Definition 7.2.4.3). Then
hC is a filtered category (in the sense of Definition 7.2.4.1).

Proof. Combine Theorem 7.2.5.5 with Remark 7.2.5.4.
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Warning 7.2.5.7. 02PUThe converse of Corollary 7.2.5.6 is false. For example, if C is a simply
connected Kan complex, then the homotopy category hC is automatically filtered. However,
C is filtered if and only if it is contractible (Corollary 7.2.4.12).

Corollary 7.2.5.8. 02PVLet C be a category. Then the category C is filtered (in the sense of
Definition 7.2.4.1) if and only if the ∞-category N•(C) is filtered (in the sense of Definition
7.2.4.3).

Proof. Combine Theorem 7.2.5.5 with Example 7.2.5.3.

Example 7.2.5.9. 02PWLet (A,≤) be a partially ordered set. Combining Exercise 7.2.4.2 with
Corollary 7.2.5.8, we see that the ∞-category N•(A) is filtered if and only if the partially
ordered set (A,≤) is directed.

Corollary 7.2.5.10. 02PXLet C be a locally Kan simplicial category. Then the ∞-category Nhc
• (C)

is filtered if and only if the homotopy category hC is homotopy filtered, when regarded as an
hKan-enriched category.

Proof. Combine Theorem 7.2.5.5 with Corollary 4.6.9.20.

Exercise 7.2.5.11. 02PYLet C be a (2, 1)-category (Definition 2.2.8.5). Show that the Duskin
nerve ND

• (C) is a filtered ∞-category if and only if C satisfies the following conditions:

• The 2-category C is nonempty.

• For every pair of objects X,Y ∈ C, there exists an object Z ∈ C and a pair of
1-morphisms f : X → Z and g : Y → Z.

• For every pair of objects X,Y ∈ C and every pair of 1-morphisms f, g : X → Y ,
there exists a 1-morphism h : Y → Z such that the 1-morphisms h ◦ f and h ◦ g are
isomorphic (when viewed as objects of the category HomC(X,Z)).

• For every 1-morphism f : X → Y in C and every 2-morphism γ : f ⇒ f , there exists
a 1-morphism g : Y → Z for which the horizontal composition idg ◦γ is equal to the
identity 2-morphism idg◦f .

We now turn to the proof of Theorem 7.2.5.5. The easy part is to show that if C is a
filtered ∞-category, then the homotopy category hC is homotopy filtered. Condition (∗n) of
Definition 7.2.5.1 is a special case of the following assertion:

Lemma 7.2.5.12. 02PZLet C be a filtered ∞-category containing objects X and Y , and let K be
a finite simplicial set equipped with a morphism f : K → HomC(X,Y ). Then there exists a
morphism v : Y → Z of C for which the composition K

f−→ HomC(X,Y ) v◦−→ HomC(X,Z) is
nullhomotopic.
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Proof. Let Σ(K) denote the iterated coproduct

{x}
∐

({0}×K)
(∆1 ×K)

∐
({1}×K)

{y},

so that we can identify f with a morphism of simplicial sets F : Σ(K) → C satisfying
F (x) = X and F (y) = Y . Our assumption that C is filtered guarantees that we can extend
F to a morphism of simplicial set F : Σ(K) ⋆ {z} → C. Set Z = F (z). Then F carries
{x} ⋆ {z} and {y} ⋆ {z} to morphisms u : X → Z and v : Y → Z in C. Moreover, the natural
map ∆1×K → Σ(K) admits a unique extension q : ∆2×K → Σ(K) ⋆ {z} carrying {2}×K
to the vertex z, and the composition

∆2 ×K q−→ Σ(K) ⋆ {z} F−→ C

determines a morphism of simplicial sets g : K → HomC(X,Y, Z). Unwinding the definitions,
we see that the diagram of simplicial sets

K

g

''

(v,f) //

��

HomC(Y,Z)×HomC(X,Y )

HomC(X,Y, Z)

OO

��
∆0 u // HomC(X,Z)

is strictly commutative, from which we immediately deduce (from the definition of the
composition law on C) that the composition K f−→ HomC(X,Y ) v◦−→ HomC(X,Z) is homotopic
to the constant map taking the value u.

The difficult half of Theorem 7.2.5.5 will require some further preliminaries. We first note
that, to verify that an ∞-category C is filtered, it suffices to verify the extension condition
of Definition 7.2.4.3 in the special case where K = ∂∆n is the boundary of a simplex.

Lemma 7.2.5.13.02Q0 An ∞-category C is filtered if and only if it satisfies the following
condition for every integer n ≥ 0:

(∗′n) Every morphism of simplicial sets ∂∆n → C can be extended to a morphism (∂∆n)▷ → C.

Proof. The necessity of condition (∗′n) is clear. For the converse, suppose that C satisfies
(∗′n) for each n ≥ 0. We wish to prove that C is filtered. Let f : K → C be a diagram where

https://kerodon.net/tag/02Q0
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K is a finite simplicial set; we wish to show that the ∞-category Cf/ is nonempty. If K = ∅,
then this follows immediately from assumption (∗′0). Otherwise, the simplicial set K has
dimension m for some integer m ≥ 0. We proceed by induction on m and on the number of
nondegenerate m-simplices of K. Choose a nondegenerate m-simplex σ : ∆m → K. Using
Proposition 1.1.4.12, we can choose a pushout diagram

∂∆m //

��

∆m

σ

��
K ′ // K

where K ′ ⊆ K is a simplicial subset having a smaller number of nondegenerate m-simplices.
Set f ′ = f |K′ , f0 = f ◦ σ, and f ′0 = f ◦ σ|∂∆m , so that we have a pullback diagram of
∞-categories

Cf/ //

��

Cf ′/

Φ

��
Cf0/

Ψ // Cf ′0/ .

Applying our inductive hypothesis, we deduce that the ∞-category Cf ′/ is nonempty.
Choose an object X of Cf ′/, so that Φ(X) ∈ Cf∂∆/ can be identified with a morphism of
simplicial sets g : (∂∆m)▷ → C. Amalgamating f ◦ σ with g, we obtain a morphism of
simplicial sets

g : ∂∆m+1 ≃ (∂∆m)▷
∐

∂∆m∆m → C .

Invoking (∗m+1), we conclude that g can be extended to a morphism of simplicial sets
(∂∆m+1)▷ → C. Unwinding the definitions, we see that this extension supplies an object
Y ∈ Cf0/ together with a morphism u : Φ(X)→ Ψ(Y ) in the ∞-category Cf ′0/.

Note that the projection maps Cf ′/ → C ← Cf ′0/ are left fibrations (Proposition 4.3.6.1).
Let X denote the image of X in the ∞-category C, so that Corollary 4.3.7.13 guarantees
that the vertical maps in the diagram

(Cf ′/)X/
ΦX/ //

""

(Cf ′0/)U(X)/

{{
CX/
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are trivial Kan fibrations. In particular, they are equivalences of ∞-categories, so that the
functor ΦX/ is also an equivalence of∞-categories. It follows that we can choose a morphism
w : X → Z in the ∞-category Cf ′/ and a 2-simplex

Ψ(Y )

v

""
Φ(X)

u

<<

Φ(w) // Φ(Z)

in the ∞-category Cf ′0/, where v is an isomorphism. Since Ψ is a left fibration (Corollary
4.3.6.11), we can lift v to a morphism ṽ : Y → Z̃ of the ∞-category Cf0/. The pair (Z, Z̃)
can then be regarded as an object of the ∞-category Cf/ = Cf ′/×Cf ′0/

Cf0/.

Remark 7.2.5.14.02Q1 Let C be an ∞-category and let n ≥ 0 be a nonnegative integer.
Condition (∗′n) of Lemma 7.2.5.13 is equivalent to the assertion that, for every morphism
of simplicial sets f : ∂∆n → C, the coslice ∞-category Cf/ is nonempty. By virtue of
Theorem 4.6.4.17, this is equivalent to the requirement that the oriented fiber product
{f} ×̃Fun(∂∆n,C) C is nonempty. We can therefore reformulate (∗′n) as follows:

(∗′n) For every diagram f : ∂∆n → C, there exists an object C ∈ C and a natural trans-
formation f → C, where C : ∂∆n → C is the constant morphism taking the value
C.

For each integer n ≥ 1, let us identify the standard simplex ∆n−1 with its image in
∂∆n ⊂ ∆n (given by the face opposite the nth vertex).

Lemma 7.2.5.15.02Q2 Let C be an ∞-category and let n ≥ 1 be an integer. Then condition (∗′n)
of Lemma 7.2.5.13 is equivalent to the following:

(∗′′n) Let f : ∂∆n → C be a morphism of simplicial sets for which the restriction f |∆n−1 is
constant. Then f can be extended to a morphism f : (∂∆n)▷ → C.

Proof. The implication (∗′n) ⇒ (∗′′n) is immediate. We will prove the converse. Assume
that (∗′′n) is satisfied, and let g : ∂∆n → C be an arbitrary morphism of simplicial sets;
we wish to show that g can be extended to a morphism g : (∂∆n) → C. If n = 1, this
follows immediately form (∗′′n); we will therefore assume that n ≥ 2. Note that we can
write ∂∆n as the union of ∆n−1 and the horn Λnn, whose intersection is the simplicial subset
∂∆n−1 ⊂ ∆n−1. Set

g− = g|∆n−1 g± = g|∂∆n−1 g+ = g|Λn
n
.
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Let X = g(0) and Y = g(n) and let π : C/Y → C denote the projection map, so that we can
identify g+ with a morphism g̃± : ∂∆n−1 → C/Y satisfying π ◦ g̃± = g±.

Let f− : ∆n−1 → C be the constant morphism taking the value X, and let h− : f− → g−
be the natural transformation given by the composite map

∆1 ×∆n−1 (i,j) 7→ij−−−−−→ ∆n−1 g−−→ C .

Set f± = f−|∂∆n−1 and h± = h−|∆1×∂∆n−1 , so that h± can be regarded as a natural
transformation from f± to g±. Since π is a right fibration, we can lift h± to a natural
transformation h̃± : f̃± → g̃± in the ∞-category Fun(∂∆n−1, C/Y ). Let us identify f̃± with
a morphism of simplicial sets f+ : Λn

n → C satisfying f+(n) = Y . Then h̃± determines a
natural transformation h+ : f+ → g+, given by the composition

∆1 × Λnn ≃ ∆1 × (∂∆n−1)▷ → (∆1 × ∂∆n−1)▷ h̃±−−→ (C/Y )▷ → C .

Note that f− and f+ can be amalgamated to a morphism f : ∂∆n → C, and that h− and h+
can be amalgamated to a natural transformation h : f → g in Fun(∂∆n, C).

Invoking hypothesis (∗′′n), we see that f can be extended to a morphism f : (∂∆n)▷ → C.
Let Z ∈ C denote the image under f of the cone point and let φ : C/Z → C denote the
projection map, so that f can be identified with a morphism of simplicial sets f ′ : ∂∆n → C/Z
satisfying φ ◦ f ′ = f . Let us identify the vertex f ′(n) ∈ C/Z with a morphism v : Y → Z in
the ∞-category C, so that we have a commutative diagram

C/v
φ′ //

π′

��

C/Y

π

��
C/Z

φ // C .

Set f ′+ = f ′|Λn
n

and f ′± = f ′|∂∆n−1 , so that we can identify f ′+ with a morphism f̃ ′± :
∂∆n−1 → C/v satisfying π′ ◦ f̃ ′± = f ′+. Since the inclusion {0} ↪→ ∆1 is left anodyne, the
morphism φ′ : C/v → C/Y is a trivial Kan fibration (Corollary 4.3.6.13). We can therefore lift
h̃± to a natural transformation h̃′± : f̃ ′± → g̃′± for some morphism g̃′± : ∂∆n−1 → C/v. Let us
identify g̃′± with a morphism g′+ : Λnn → C/Z satisfying φ ◦ g′+ = g+. Then h̃′± determines a
natural transformation h′+ : f ′+ → g′+, given by the composition

∆1 × Λnn ≃ ∆1 × (∂∆n−1)▷ → (∆1 × ∂∆n−1)▷
h̃′±−−→ (C/v)▷ → C/Z .

Let e denote the restriction h′+|∆1×{0}, which we regard as an edge of the simplicial set
C/Z . By construction, φ(e) is the degenerate edge idX of C. Since φ is a right fibration
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(Proposition 4.3.6.1), it follows that e is an isomorphism in C/Z (Proposition 4.4.2.11).
Applying Proposition 4.4.5.8, we deduce that the lifting problem

(∆1 × Λnn)∐({0}×Λn
n)({0} × ∂∆n)

(h′+,f ′) //

��

C/Z

φ

��
∆1 × ∂∆n h //

h′

77

C

admits a solution. The morphism h′ is then a natural transformation from f ′ to a morphism
g′ : ∂∆n → C/Z , which we can identify with a map g : (∂∆n)▷ → C satisfying g|∂∆n = g.

Proof of Theorem 7.2.5.5. Let C be an∞-category and suppose that the homotopy category
hC is homotopy filtered; we wish to show that C is filtered (the reverse implication follows
from Lemma 7.2.5.12). By virtue of Lemma 7.2.5.13, it will suffice to show that for every
integer n ≥ 0, every morphism of simplicial sets f : ∂∆n → C can be extended to a morphism
f : (∂∆n)▷ → C. For n = 0, this follows from our assumption that hC is nonempty. We will
therefore assume that n > 0. By virtue of Lemma 7.2.5.15, we may assume without loss of
generality that the restriction f− = f |∆n−1 is the constant map taking the value X for some
object X ∈ C. Set Y = f(n) and let HomR

C (X,Y ) = {X} ×C C/Y denote the right-pinched
morphism space of Construction 4.6.5.1, so that we can identify f |Λn

n
with a morphism of

simplicial sets g : ∂∆n−1 → HomR
C (X,Y ). Invoking assumption (∗n) of Definition 7.2.5.1,

we deduce that there exists a morphism v : Y → Z in C for which the composite map

∂∆n−1 g−→ HomR
C (X,Y ) ↪→ HomC(X,Y ) [v]◦−−→ HomC(X,Z)

is nullhomotopic. Since the projection map C/f → C/Y is a trivial Kan fibration (Corollary
4.3.6.13), we can lift g to a morphism g̃ : ∂∆n−1 → {X} ×C C/f . Combining Propositions
5.2.8.7 and 4.6.9.16, we deduce that the diagram of Kan complexes

{X} ×C C/Y

ιRX,Y

��

{X} ×C C/f //oo {X} ×C C/Z

ιRX,Z

��
HomC(X,Y ) [v]◦ // HomC(X,Z)

commutes up to homotopy, where ιRX,Y and ιRX,Z are the right-pinch inclusion morphisms
of Construction 4.6.5.7. Since ιRX,Z is a homotopy equivalence (Proposition 4.6.5.10), it

follows that the composite map ∂∆n−1 g̃−→ {X} ×C C/f → {X} ×C C/Z is nullhomotopic,
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and can therefore be extended to an (n − 1)-simplex g′ : ∆n−1 → {X} ×C C/Z (Variant
3.2.4.13). Unwinding the definitions, we can identify g̃ and g′ with morphisms (Λnn)▷ → C and
(∆n−1)▷ → C, which can be amalgamated to a single morphism f : (∂∆n)▷ → C extending
f .

Exercise 7.2.5.16. 02Q3Let C be an ∞-category and let n ≥ 1 be an integer. Show that the
homotopy category hC satisfies condition (∗n) of Definition 7.2.5.1 if and only if C satisfies
condition (∗′n) of Lemma 7.2.5.13.

7.2.6 Left Fibrations over Filtered ∞-Categories

02Q4Our goal in this section is to prove the following:

Theorem 7.2.6.1. 02Q5Let U : C̃ → C be a left fibration of ∞-categories, where the ∞-category C
is filtered. For each object X ∈ C, let C̃X denote the fiber {X}×C C̃. The following conditions
are equivalent:

(1) The ∞-category C̃ is filtered.

(2) The ∞-category C̃ is weakly contractible.

(3) For every object X ∈ C and every diagram e : K → C̃X where K is a finite simplicial set,
there exists a morphism f : X → Y in C for which the composite map K e−→ C̃X

f!−→ C̃Y
is nullhomotopic; here f! : C̃X → C̃Y is given by covariant transport along f (see
Notation 5.2.2.9).

(4) For every object X ∈ C, every integer n ≥ 0, and every diagram e : ∂∆n → C̃X , there
exists a morphism f : X → Y in C for which the composite map ∂∆n e−→ C̃X

f!−→ C̃Y is
nullhomotopic.

Proof. The implication (1) ⇒ (2) follows from Proposition 7.2.4.9 and the implication
(3)⇒ (4) is immediate. We next show that (4) implies (1). Assume that condition (4) is
satisfied; we wish to prove that C̃ is filtered. By virtue of Lemma 7.2.5.13 (and Remark
7.2.5.14), it will suffice to show that for every integer n ≥ 0 and every diagram e : ∂∆n → C̃,
there exists a natural transformation from e to a constant diagram. Set e = U ◦ e, which we
regard as an object of the∞-category Fun(∂∆n, C). Since C is filtered, there exists an object
X ∈ C and a morphism α : e → X in the ∞-category Fun(∂∆n, C), where X : ∂∆n → C
denotes the constant morphism taking the value X. Since U is a left fibration, we can lift
α to a morphism α : e→ e′ in Fun(∂∆n, C̃), where e′ is a morphism from ∂∆n to the Kan
complex C̃X (see Remark 4.2.6.3). Invoking assumption (4), we can choose a morphism
f : X → Y in C and a covariant transport functor f! : C̃X → C̃Y for which the composite
map f! ◦u′ is nullhomotopic. It follows that there exists a natural transformation β : e′ → e′′
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in Fun(∂∆n, C̃), where e′′ : ∂∆n → C̃Y is a constant map. Any choice of composition of α
and β then determines a natural transformation from e to the constant diagram e′′.

We now complete the proof by showing that (2) implies (3). Assume that the∞-category
C̃ is weakly contractible, and suppose that we are given an object X ∈ C and a diagram
e : K → C̃X , where the simplicial set K is finite. We wish to show that there exists a
morphism f : X → Y in C for which the composite map K

e−→ C̃X
f!−→ C̃Y is nullhomotopic.

Choose an embedding K ↪→ L, where L is another finite simplicial set which is weakly
contractible (for example, we can take L = K▷). Let Ex∞(C̃) be the simplicial set given
by Construction 3.3.6.1, so that Ex∞(C̃) is a Kan complex (Proposition 3.3.6.9). Let
ρ∞ : C̃ → Ex∞(C̃) be the weak homotopy equivalence of Proposition 3.3.6.7. Since C̃ is
weakly contractible, the Kan complex Ex∞(C̃) is contractible. It follows that the composite
map K e−→ C̃X

ρ∞−−→ Ex∞(C̃) can be extended to a map e+ : L→ Ex∞(C̃). Since the simplicial
set L is finite, the morphism e factors through Exm(C̃) for some m ≫ 0 (see Proposition
3.6.1.9). By virtue of Proposition 3.3.4.8, we can replace K and L by the iterated subdivisions
subdivision Sdm(K) and Sdm(L) (and e by the composite map Sdm(K) ↠ K

e−→ C̃X) and
thereby reduce to the case m = 0, so that e admits an extension e+ : L→ C̃.

Set e+ = U ◦ e+, which we regard as an object of the ∞-category Fun(L, C). Since C
is filtered, there exists an object Y ∈ C and a natural transformation α : e+ → Y , where
Y ∈ Fun(L, C) denotes the constant diagram taking the value Y (Remark 7.2.4.7). Let α0
denote the image of α in Fun(K, C). Then α0 can be identified with a morphism from K

to the morphism space HomC(X,Y ). Since C is filtered, Theorem 7.2.5.5 guarantees the
existence of a morphism g : Y → Z of C for which the composite map

K
α0−→ HomC(X,U) g◦−→ HomC(X,Z)

is nullhomotopic. Let Z : L→ C denote the constant diagram taking the value Z, so that g
determines a morphism g : Y → Z in the∞-category Fun(L, C). Replacing Y by Z and α by
its composition with g, we can reduce to the case where the morphism α0 : K → HomC(X,Y )
is nullhomotopic. Note that the restriction map Fun(L, C)→ Fun(K, C) is an isofibration
of ∞-categories (Corollary 4.4.5.3), and therefore induces a Kan fibration of morphism
spaces HomFun(L,C)(e+, Y )→ HomFun(K,C)(e+|K , Y K) (Exercise 4.6.1.24). We may therefore
modify α by a homotopy and thereby reduce to the case where α0 : K → HomC(X,Y ) is
the constant map taking some value f ∈ HomC(X,Y ). Since U is a left fibration, we can
lift α to a natural transformation α : e+ → e′+, for some diagram e′+ : L → C̃Y ⊆ C̃. Set
e′ = e′+|K , so that α restricts to a natural transformation α0 : e→ e′ which witnesses e′ as
given by covariant transport along f , in the sense of Definition 5.2.2.4. To complete the
proof, it will suffice to show that the morphism e′ : K → C̃Y is nullhomotopic. This is clear:
already the morphism e′+ : L→ C̃Y is nullhomotopic, since L is weakly contractible and C̃Y
is a Kan complex (see Remark 3.2.4.11).
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Corollary 7.2.6.2. 02Q6Suppose we are given a pullback diagram of simplicial sets

E ′ //

U ′

��

E

U

��
C′ V // C,

where U and V are left fibrations. If C, C′, and E are filtered ∞-categories, then E ′ is also a
filtered ∞-category.

Proof. Since U ′ : E ′ → C′ is a pullback of U , it is a left fibration. It will therefore suffice
to show that U ′ satisfies condition (4) of Theorem 7.2.6.1. Suppose we are given an object
X ′ ∈ C′ and a morphism of simplicial sets e : ∂∆n → E ′X′ = {X ′} ×C′ E ′. Set X = V (X ′),
so that we can identify e with a morphism from ∂∆n to the fiber EX = {X} ×C E . Since E
and C are filtered, Theorem 7.2.6.1 guarantees that we can choose a morphism f : X → Y

in C for which the composite map ∂∆n e−→ EX
f!−→ EY is nullhomotopic, where f! is given by

covariant transport along f . Since V is a left fibration, we can write f = V (f ′) for some
morphism f ′ : X ′ → Y ′ in the ∞-category C′. Under the canonical isomorphisms E ′X′ ≃ EX
and E ′Y ′ ≃ EY , the morphism f! : EX → EY corresponds to a functor f ′! : E ′X′ → E ′Y ′ given by
covariant transport along f ′ (Remark 5.2.8.5 ), so that the composition (f ′! ◦ e) : ∂∆n → E ′Y ′
is also nullhomotopic.

Using Corollary 7.2.6.2, we obtain another characterization of the class of filtered ∞-
categories:

Corollary 7.2.6.3. 02Q7Let C be an ∞-category. Then C is filtered if and only if it satisfies the
following pair of conditions:

(a) The ∞-category C is weakly contractible.

(b) Let U : C̃ → C, V0 : C̃0 → C̃, and V1 : C̃1 → C̃ be left fibrations of ∞-categories. If
C̃, C̃0, and C̃1 are weakly contractible, then the fiber product C̃0 ×C̃ C̃1 is also weakly
contractible.

Proof. Suppose first that C is filtered. Assertion (a) follows from Proposition 7.2.4.9. To
prove (b), suppose we are given left fibrations U : C̃ → C, V0 : C̃0 → C̃, and V1 : C̃1 → C̃,
where C̃, C̃0, and C̃1 are weakly contractible. Applying Theorem 7.2.6.1, we deduce that the
∞-categories C̃, C̃0, and C̃1 are filtered. Applying Corollary 7.2.6.2 to the diagram of left
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fibrations
C̃0 ×C̃ C̃1 //

��

C̃0

V0

��
C̃1

V1 // C̃,

we conclude that the fiber product C̃0 ×C̃ C̃1 is also filtered; in particular, it is weakly
contractible (Proposition 7.2.4.9).

We now prove the converse. Assume that C satisfies conditions (a) and (b); we wish to
show that C is filtered. We will prove this using the criterion of Lemma 7.2.5.13. Fix an
integer n ≥ 0 and a diagram e : ∂∆n → C; we wish to show that the coslice ∞-category
Ce/ is nonempty. In fact, we will prove the following stronger assertion: for every simplicial
subset K ⊆ ∂∆n, the coslice ∞-category CeK/ is weakly contractible, where eK denotes the
restriction e|K . Our proof proceeds by induction on the number of nondegenerate simplices
of K. If K = ∅, then the desired result follows from assumption (a). If K is not isomorphic to
a standard simplex, then we can use Proposition 1.1.4.12 to write K as a union K(0)∪K(1),
where K(0),K(1) ⊊ K are proper simplicial subsets. Setting K(01) = K(0)∩K(1), we have
a pullback diagram of left fibrations

CeK/
//

��

CeK(0)/

��
CeK(1)/

// CeK(01)/,

where the ∞-categories CeK(0)/, CeK(1)/, and CeK(01)/ are weakly contractible by virtue of
our inductive hypothesis. Applying (b), we deduce that CeK/ is weakly contractible. We
may therefore assume without loss of generality that K ≃ ∆m is a standard simplex. In
particular, K contains a final vertex v for which the inclusion {v} ↪→ K is right anodyne
(Example 4.3.7.11), so that the restriction map CeK/ → Ce(v)/ is a trivial Kan fibration
(Corollary 4.3.6.13). It will therefore suffice to show that the ∞-category Ce(v)/ is weakly
contractible. This follows from Corollary 4.6.7.25, since the ∞-category Ce(v)/ has an initial
object (Proposition 4.6.7.22).

7.2.7 Cofinal Approximation

02Q8

https://kerodon.net/tag/02Q8
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Let C be an ∞-category. Recall that an object X ∈ C is final if and only if the inclusion
map {X} ↪→ C is right cofinal (Corollary 4.6.7.24). If this condition is satisfied, then the
∞-category C is filtered (Example 7.2.4.5). We now establish a generalization:

Proposition 7.2.7.1. 02Q9Let F : C → D be a functor of ∞-categories. If C is filtered and F is
right cofinal, then D is filtered.

Proof. We will show that the ∞-category D satisfies conditions (a) and (b) of Corollary
7.2.6.3. Since C is weakly contractible (Proposition 7.2.4.9) and F is a weak homotopy
equivalence (Proposition 7.2.1.5), we deduce immediately that D is weakly contractible.
Suppose we are given left fibrations U : D̃ → D, V0 : D̃0 → D̃, and V1 : D̃1 → D̃, where
the ∞-categories D̃, D̃0, and D̃1 are weakly contractible. We wish to show that the fiber
product D̃0×D̃ D̃1 is also weakly contractible. Set C̃ = C ×DD̃, and define C̃0 and C̃1 similarly.
Applying Proposition 7.2.3.12, we deduce that the projection maps

C̃0 → D̃0 C̃ → D̃ C̃1 → D̃1

are right cofinal; in particular, they are weak homotopy equivalences (Proposition 7.2.4.9).
It follows that the ∞-categories C̃, C̃0, and C̃1 are weakly contractible. Since C is filtered,
Corollary 7.2.6.3 guarantees that the fiber product C̃0 ×C̃ C̃1 is weakly contractible. The
projection map

C̃0 ×C̃ C̃1 → D̃0 ×D̃ D̃1

is also right cofinal (Proposition 7.2.3.12) and therefore a weak homotopy equivalence
(Proposition 7.2.4.9). It follows that D̃0 ×D̃ D̃1 is also weakly contractible, as desired.

We now establish a partial converse of Proposition 7.2.7.1.

Theorem 7.2.7.2. 02QALet C be an ∞-category. The following conditions are equivalent:

• The ∞-category C is filtered.

• There exists a directed partially ordered set (A,≤) and a right cofinal functor F :
N•(A)→ C.

We first prove the following:

Lemma 7.2.7.3. 02QBLet C be a filtered ∞-category. Then there exists a trivial Kan fibration of
simplicial sets π : C̃ → C, where C̃ is an ∞-category having the following property:

(∗) For every finite simplicial subset K ⊆ C̃, the inclusion map K ↪→ C̃ extends to a
monomorphism K▷ ↪→ C.
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Proof. Let J be an infinite set, and let J be the corresponding indiscrete category (that is,
the category having object set Ob(J ) = J and HomJ (j, j′) = ∗ for every pair of elements
j, j′ ∈ J). Then the nerve N•(J ) is a contractible Kan complex. Setting C̃ = N•(J )× C, it
follows that the projection map π : C̃ → C is a trivial Kan fibration. We will complete the
proof by showing that C̃ satisfies condition (∗). Let K be a finite simplicial subset of C̃, so
that the inclusion map K ↪→ C̃ can be identified with a pair of diagrams

f : K → N•(J ) g : K → C .

Since J is infinite, we can choose an element j ∈ J which is not of the form f(x) for any
vertex x ∈ K. It follows that f admits a unique extension f : K▷ → N•(J ) which carries
the cone point of K▷ to the element j ∈ J . Our assumption that C is filtered guarantees
that g admits an extension g : K▷ → C. We complete the proof by observing that the pair
(f, g) determines a monomorphism of simplicial sets K▷ → C̃.

Proof of Theorem 7.2.7.2. Let C be a filtered ∞-category; we wish to show that there
exists a directed partially ordered set (A,≤) and a right cofinal functor N•(A) → C (the
reverse implication follows from Proposition 7.2.7.1 and Example 7.2.5.9). Choose a trivial
Kan fibration π : C̃ → C which satisfies condition (∗) of Lemma 7.2.7.3. Then π is right
cofinal (Corollary 7.2.1.13). Since the collection of right cofinal morphisms is closed under
composition (Proposition 7.2.1.6), we can replace C by C̃ and thereby reduce to proving
Theorem 7.2.1.6 in the special case where the ∞-category C satisfies condition (∗) of Lemma
7.2.7.3.

Let A be the collection of all simplicial subsets L ⊆ C which are isomorphic to K▷, for
some finite simplicial set K. To avoid confusion, we use the symbol α to represent an element
of A, and we will write Lα for the corresponding simplicial subset of C. By assumption, we
can write Lα as a join Kα ⋆ {Cα}, where Kα is a finite simplicial subset of C̃ and Cα is an
object of C.

Note that condition (∗) of Lemma 7.2.7.3 can be restated as follows:

(∗′) Every finite simplicial subset K ⊆ C is equal to Kα, for some element α ∈ A.

Let us regard A as a partially ordered set, where elements α, β ∈ A satisfy α ≤ β if and
only if Lα is contained in Lβ (as simplicial subsets of C). If A0 is any finite subset of A, it
follows from (∗′) that we have ⋃

α∈A0 Lα = Kβ ⊂ Lβ for some element β ∈ A. In particular,
we have α < β for each α ∈ A0. Allowing A0 to vary, we conclude that the partially ordered
set A is directed.

To every n-simplex σ = (α0 ≤ · · · ≤ αn) of N•(A), we associate an n-simplex F (σ) of
Lαn ⊆ C by the following recursive procedure:

• If n = 0, so that σ can be identified with an element α ∈ A, then F (σ) is the object
Cα ∈ C.
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• Suppose that n > 0, and let σ′ = dnn(σ) denote the (n− 1)-simplex (α0 ≤ · · · ≤ αn−1)
of N•(A). Then F (σ) is the unique n-simplex ∆n → Lαn whose restriction to ∆n−1

coincides with F (σ′) and which carries vertex n ∈ ∆n to the cone point Cαn ∈ Lαn .

Regarding each F (σ) as a simplex of the ∞-category C, we observe that the construction
σ 7→ F (σ) is compatible with face and degeneracy operators and therefore determines a
functor of ∞-categories F : N•(A)→ C.

We will complete the proof by showing that the functor F is right cofinal. To verify
this, we will use the criterion of Theorem 7.2.3.1. Let C be an object of C; we wish to show
that the ∞-category N•(A)×C CC/ is weakly contractible. We will prove something a bit
stronger: the ∞-category N•(A)×C CC/ is filtered (this is sufficient, by virtue of Proposition
7.2.4.9). To prove this, let S be any finite simplicial set and suppose that we are given a
diagram g : S → N•(A) ×C CC/; we wish to show that g can be extended to a morphism
g : S▷ → N•(A)×C CC/. Unwinding the definitions, we can identify g with a pair of diagrams

g0 : S → N•(A) g1 : S◁ → C

satisfying g1|S = F ◦ g0, where g1 carries the cone point of S◁ to the object C ∈ C. Note
that the union K = im(g1) ∪⋃

s∈S Lg0(s) is a finite simplicial subset of C. Since C satisfies
condition (∗) of Lemma 7.2.7.3, we can write K = Kα for some element α ∈ A. Since the
image of g1 is contained in Kα, it admits a canonical extension

g1 : (S◁)▷ → K▷
α = Lα ⊆ C .

Similarly, the inclusion Lg0(s) ⊆ Kα ⊂ Lα guarantees that g0 can be extended uniquely to
a morphism g0 : S▷ → N•(A) carrying the cone point of S▷ to the element α ∈ A. We
conclude by observing that the pair (g0, g1) determines a diagram g : S▷ → N•(A)×C CC/
satisfying g|S = g.

Definition 7.2.7.4. 039FLet C be an ∞-category. We say that C admits small filtered colimits
it admits K-indexed colimits, for every small filtered ∞-category K. We say that a functor
F : C → D preserves small filtered colimits if it preserves K-indexed colimits, for every small
filtered ∞-category K.

Corollary 7.2.7.5. 039GLet C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C admits small filtered colimits.

(2) For every small filtered category K, the ∞-category C admits N•(K)-indexed colimits.

(3) For every directed partially ordered set (A,≤), the ∞-category C admits N•(A)-indexed
colimits.
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Proof. The implication (1)⇒ (2) follows from Corollary 7.2.5.8 and the implication (2)⇒ (3)
follows from Exercise 7.2.4.2. The implication (3)⇒ (1) follows from Theorem 7.2.7.2 and
Corollary 7.2.2.3.

Variant 7.2.7.6.039H Let F : C → D be a functor of ∞-categories. The following conditions are
equivalent:

(1) The functor F preserves small filtered colimits.

(2) For every small filtered category K, the functor F preserves N•(K)-indexed colimits.

(3) For every directed partially ordered set (A,≤), the functor F preserves N•(A)-indexed
colimits.

We close this section by recording another consequence of Lemma 7.2.7.3.

Proposition 7.2.7.7.02QC Let C be an ∞-category. The following conditions are equivalent:

(1) There exists a filtered diagram of simplicial sets {Cα}, where each Cα is an ∞-category
with a final object, and an equivalence of ∞-categories F : C → lim−→α

Cα.

(2) There exists a filtered diagram of simplicial sets {Cα}, where each Cα is a filtered
∞-category, and an equivalence of ∞-categories F : C → lim−→α

Cα.

(3) There exists an equivalence of ∞-categories F : C → C′, where C′ is filtered.

(4) The ∞-category C is filtered.

Proof. The implication (1)⇒ (2) follows from Example 7.2.4.5, the implication (2)⇒ (3)
from Remark 7.2.4.6, and the implication (3)⇒ (4) from Corollary 7.2.4.11. We will complete
the proof by showing that every filtered ∞-category C satisfies condition (1). Without loss
of generality, we may assume that C satisfies condition (∗) of Lemma 7.2.7.3. Let A be
the directed partially ordered set defined in the proof of Theorem 7.2.7.2. For each α ∈ A,
let Lα ⊆ C denote the corresponding subset of C. By virtue of Corollary 4.1.3.3, we can
choose an ∞-category Cα and an inner anodyne morphism Fα : Lα ↪→ Cα, which depend
functorially on α. Applying Corollary 4.5.7.2, we see that the morphisms Fα induce an
equivalence of ∞-categories

C ≃ lim−→
α∈A

Lα
{Fα}α∈A−−−−−−→ lim−→

α∈A
Cα .

To complete the proof, it will suffice to show that each of the ∞-categories Cα contains a
final object. By construction, there exists an isomorphism of simplicial sets u : Lα ≃ K▷, for
some finite simplicial set K. Using Corollary 4.1.3.3, we can choose a categorical equivalence
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v : K → D, where D is an ∞-category. Applying Corollary 4.5.8.9, we deduce that the
map v▷ : K▷ → D▷ is also a categorical equivalence of simplicial sets. Since Fα is inner
anodyne, there exists a functor G : Cα → D▷ satisfying G ◦ Fα = v▷ ◦ u. Applying the
two-out-of-three property (Remark 4.5.3.5), we see that G is an equivalence of ∞-categories.
Since the ∞-category D▷ has a final object (given by the cone point; see Example 4.6.7.5),
it follows that Cα also has a final object (Corollary 4.6.7.21).

7.2.8 Sifted Simplicial Sets

02QDWe now introduce a useful enlargement of the class of filtered ∞-categories.

Definition 7.2.8.1. 02QELet K be a simplicial set. We say that K is sifted if, for every finite set
I, the diagonal map K → KI is right cofinal. If C is an ∞-category, we say that a diagram
K → C is sifted if the simplicial set K is sifted.

Warning 7.2.8.2. 02QFDefinition 7.2.8.1 has a counterpart in classical category theory. In [1],
Adámek and Rosický define a sifted category to be a nonempty category C which satisfies
the following condition:

(∗) For every pair of objects X,Y ∈ C, the nerve of the category CX/×C CY/ is connected.

It follows from Corollary 7.2.8.9 below that if the simplicial set N•(C) is sifted (in the sense
of Definition 7.2.8.1), then the category C satisfies condition (∗). Beware that the converse
is false (see Exercise 7.2.8.11). In other words, Definition 7.2.8.1 is not a generalization of
the classical notion of a sifted category (instead, it generalizes the notion of a homotopy
sifted category, introduced by Rosický in [48]).

Variant 7.2.8.3. 02QGLet K be a simplicial set. We say that K is cosifted if, for every finite set
I, the diagonal map K → KI is left cofinal. Equivalently, K is cosifted if and only if the
opposite simplicial set Kop is sifted.

Example 7.2.8.4. 02QHEvery filtered ∞-category C is sifted (see Proposition 7.2.4.10). In
particular, if C is an ∞-category which contains a final object, then C is sifted (see Example
7.2.4.5).

Proposition 7.2.8.5. 02QJLet f : K → K ′ be a right cofinal morphism of simplicial sets. If K
is sifted, then K ′ is also sifted.

Proof. Fix a finite set I. We have a commutative diagram of simplicial sets

K
δK //

f

��

KI

fI

��
K ′

δK′ // K ′I ,
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where the vertical maps are right cofinal (Corollary 7.2.1.20). Our assumption that K
is sifted guarantees that δK is right cofinal, so that δK′ is also right cofinal (Proposition
7.2.1.6).

Proposition 7.2.8.6.02QK Let f : K → K ′ be a categorical equivalence of simplicial sets. Then
K is sifted if and only if K ′ is sifted.

Proof. It will suffice to show that, for every finite set I, the diagonal map δK : K → KI is
right cofinal if and only if the diagonal map δK′ : K → K ′I is right cofinal. This follows by
applying Corollary 7.2.1.22 to the commutative diagram

K
δK //

f

��

KI

fI

��
K ′

δK′ // K ′I .

Proposition 7.2.8.7.02QL Every sifted simplicial set is weakly contractible.

Proof. Let K be a sifted simplicial set. Taking I = ∅ in Definition 7.2.8.1, we conclude that
the projection map K → ∆0 is right cofinal, so that K is weakly contractible by virtue of
Proposition 7.2.1.5.

Proposition 7.2.8.8.02QM Let K be a simplicial set. Then K is sifted if and only if it is
nonempty and the diagonal map δ : K ↪→ K ×K is right cofinal.

Proof. It follows immediately from the definition that if K is sifted, then the diagonal map
δ : K ↪→ K ×K is right cofinal. Moreover, Proposition 7.2.1.5 guarantees that K is weakly
contractible, and therefore nonempty.

For the converse, assume that K is nonempty and that δ is right cofinal. We wish
to prove that, for every finite set I, the map δI : K → KI is right cofinal. The proof
proceeds by induction on the cardinality of I. We first treat the case where I = ∅. Note
that our assumption that δ is right cofinal guarantees in particular that it is a weak
homotopy equivalence (Proposition 7.2.1.5). Since K is nonempty, it follows that K is
weakly contractible (Corollary 3.5.1.33). Applying Proposition 7.2.1.5 again, we deduce that
the projection map K → ∆0 is right cofinal, as desired.

We now carry out the inductive step. Assume that the set I is nonempty. Choose an
element i ∈ I, and set J = I \{i}. Unwinding the definitions, we see that δI can be identified
with the composition

K
δ−→ K ×K idK ×δJ−−−−−→ K ×KJ .
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Our inductive hypothesis guarantees that δJ is right cofinal, so that the product map idK ×δJ
is also right cofinal (Corollary 7.2.1.19). Since the collection of right cofinal morphisms is
closed under composition (Proposition 7.2.1.6), it follows that δI is also right cofinal.

Corollary 7.2.8.9. 02QNLet C be an ∞-category. Then C is sifted if and only if it is nonempty
and, for every pair of objects X,Y ∈ C, the ∞-category CX/×C CY/ is weakly contractible.

Proof. Combine Proposition 7.2.8.8 with Theorem 7.2.3.1.

We now consider an important example.

Proposition 7.2.8.10. 02QPLet ∆ be the simplex category (Definition 1.1.0.2). Then the
∞-category N•(∆) is cosifted.

Proof. We use the criterion of Corollary 7.2.8.9. Since the category ∆ is nonempty, it will
suffice to show that for every pair of nonnegative integers m,n ≥ 0, the simplicial set

N(∆)/[m] ×N(∆) N(∆)/[n] ≃ N(∆/[m]×∆ ∆/[n])

is weakly contractible. Unwinding the definitions, we can identify ∆/[m]×∆ ∆/[n] with the
category of simplices ∆S of Construction 1.1.3.9, where S is the product ∆m ×∆n. Note
that S can be identified with the nerve of a partially ordered set, and is therefore a braced
simplicial set (Exercise 3.3.1.2). Let ∆nd

S denote the full subcategory of ∆S spanned by the
nondegenerate simplices of S (Notation 3.3.3.11), so that the inclusion ∆nd

S ↪→∆S admits
a left adjoint (Exercise 3.3.3.15). It follows that the inclusion map N•(∆nd

S ) ↪→ N•(∆S) is
a homotopy equivalence of simplicial sets (Proposition 3.1.6.9). It will therefore suffice to
show that the nerve N•(∆nd

S ) is weakly contractible. Using Proposition 3.3.3.16, we can
identify N•(∆nd

S ) with the subdivision Sd(S), so that Construction 3.3.4.3 supplies a weak
homotopy equivalence λS : N•(∆nd

S )→ S. We conclude by observing that the simplicial set
S = ∆m ×∆n is weakly contractible (in fact, it is contractible, since it is the nerve of a
partially ordered set having a smallest element).

Exercise 7.2.8.11. 02QQLet ∆≤1 denote the full subcategory of ∆ spanned by the objects [0]
and [1], which we depict informally as a diagram

[0] //
// [1].oo

Show that:

• The opposite category ∆op
≤1 satisfies condition (∗) of Warning 7.2.8.2 (that is, it is a

sifted category in the sense of [1]).

• The simplicial set N•(∆op
≤1) is not sifted.
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7.3 Kan Extensions

02Y1 Let F : C → D be a functor between categories. In practice, it is often possible
to reconstruct the functor F (at least up to isomorphism) from its restriction to a full
subcategory C0 ⊆ C. To make this more precise, it will be convenient to introduce some
terminology.

Definition 7.3.0.1.02Y2 Let F : C → D be a functor between categories and let C0 ⊆ C be a
full subcategory. We say that F is left Kan extended from C0 if, for every object C ∈ C, the
collection of morphisms {F (u) : F (C0)→ F (C)}u:C0→C exhibits F (C) as a colimit of the
diagram

(C0×C C/C)→ C0 ↪→ C F−→ D .

The central features of Definition 7.3.0.1 can be summarized as follows:

Exercise 7.3.0.2 (Uniqueness of Kan Extensions).02Y3 Let F,G : C → D be functors between
categories, and suppose that F is left Kan extended from a full subcategory C0 ⊆ C. Show
that the restriction map

{Natural transformations from F to G}

��
{Natural transformations from F |C0 to G|C0}

is a bijection. In particular, the functor F can be recovered (up to canonical isomorphism)
from the restriction F |C0 .

Exercise 7.3.0.3 (Existence of Kan Extensions).02Y4 Let C be a category, let C0 ⊆ C be a full
subcategory, and let F0 : C0 → D be a functor between categories. Show that the following
conditions are equivalent;

(1) There exists a functor F : C → D which is left Kan extended from C0 and satisfies
F |C0 = F0.

(2) For every object C ∈ C, the diagram

02Y5 (C0×C C/C)→ C0 F0−→ D (7.12)

has a colimit in D.

Stated more informally, if the diagram (7.12) has a colimit in D, then that colimit depends
functorially on the object C ∈ C.
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In this section, we adapt the theory of Kan extensions to the ∞-categorical setting. Let
F : C → D be a functor of ∞-categories, and let C0 ⊆ C be a full subcategory. We will say
that F is left Kan extended from C0 if it satisfies an ∞-categorical analogue of the condition
appearing in Definition 7.3.0.1, which we formulate in §7.3.2 (see Definition 7.3.2.1). Our
main results are ∞-categorical counterparts of Exercises 7.3.0.2 and 7.3.0.3, which we prove
in §7.3.6 and §7.3.5, respectively (see Corollary 7.3.6.9 and Corollary 7.3.5.8).

For many applications, it will be useful to consider a different generalization of Definition
7.3.0.1, where we replace the inclusion map C0 ↪→ C by an arbitrary functor δ : K → C.
Suppose we are given functors F : C → D, δ : K → C, and F0 : K → D, together with a
natural transformation β : F0 → F ◦ δ, as indicated in the diagram

C

F

  

KS

β

K

δ

??

F0
// D .

We will say that β exhibits F as a left Kan extension of F0 along δ if, for every object
C ∈ C, the collection of morphisms {(F (u) ◦ βX) : F0(X)→ F (C)}u:δ(X)→C exhibits F (C)
as a colimit of the diagram K×C C/C → K

F0−→ D. This notion also has an ∞-categorical
generalization which we introduce in §7.3.1 (Variant 7.3.1.5), for which we have counterparts
of Exercises 7.3.0.2 and 7.3.0.3 (see Propositions 7.3.6.1 and 7.3.5.1). In the special case
where K = C0 is a full subcategory of C and δ is the inclusion map, the Kan extension
condition guarantees that β is an isomorphism, and therefore essentially reduces to the
notion of Kan extension introduced in Definition 7.3.0.1 (see Corollary 7.3.2.7 for a precise
statement). In §7.3.4 we study a different extreme, where the functor δ is assumed to be a
cocartesian fibration: in this case, the left Kan extension F of a functor F0 : K → D along δ
is given concretely by the formula

F (C) = lim−→
δ(X)=C

(F0(X))

where the colimit is taken over the fiber KC = K×C{C} (see Proposition 7.3.4.1 and Corollary
7.3.4.2).

In §7.3.3 we consider another variant of Definition 7.3.0.1, where we replace colimits in D
by the more general notion of U -colimit for an auxiliary functor U : D → E (see §7.1.5). The
extra generality afforded by the relative setting is quite convenient in practice: for example,
in §7.3.6 we show that relative Kan extensions satisfy a universal property (Proposition
7.3.6.7, analogous to Exercise 7.3.0.2) which can be formally deduced from an existence
criterion (Proposition 7.3.5.5, analogous to Exercise 7.3.0.3).
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In §7.3.8, we study the transitivity properties of Kan extensions. Let F : C → D be a
functor of ∞-categories, and suppose we are given full subcategories C0 ⊆ C ⊆ C such that
F = F |C is left Kan extended from C0. We will show that F is left Kan extended from C if
and only if it is left Kan extended from C0 (Corollary 7.3.8.8). Moreover, we prove analogous
statements for relative left Kan extensions (Proposition 7.3.8.6) and for Kan extensions
along more general functors (Proposition 7.3.8.18). In §7.3.9, we apply these ideas to give a
characterization of U -colimit diagrams in the special case where U : D → E is a cocartesian
fibration of ∞-categories.

Remark 7.3.0.4.02Y6 In the summary above, we considered only the notion of left Kan
extensions. There is also a dual theory of right Kan extensions, which can be obtained from
the theory of left Kan extensions by passing to opposite categories.

7.3.1 Kan Extensions along General Functors

02Y7 We begin by introducing some notation.

Notation 7.3.1.1.02Y8 Let C be an ∞-category and let δ : K → C be a diagram. For each
object C ∈ C, we let K/C denote the fiber product K ×C C/C . Note that the slice diagonal
of Construction 4.6.4.13 determines a map K/C → K ×̃C{C}, which we can identify with
a natural transformation of diagrams γ : δ|K/C

→ C; here δ|K/C
denotes the composition

K/C → K
δ−→ C, while C denotes the constant diagram K/C → C taking the value C.

Similarly, we let KC/ denote the fiber product CC/×CK, so that the coslice diagonal of
Construction 4.6.4.13 determines a natural transformation γ′ : C → δ|KC/

.

Definition 7.3.1.2 (Right Kan Extensions).02Y9 Let F : C → D be a functor of ∞-categories.
Suppose we are given a simplicial set K together with diagrams δ : K → C and F0 : K → D
and a natural transformation α : F ◦ δ → F0, as indicated in the diagram

C

F

  

α

��

K

δ

??

F0
// D .

We will say that α exhibits F as a right Kan extension of F0 along δ if, for every object
C ∈ C, the following condition is satisfied:

(∗C) Let αC denote a composition of the natural transformations

F (C) F (γ′)−−−→ (F ◦ δ)|KC/

α−→ F0|KC/

https://kerodon.net/tag/02Y6
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(formed in the ∞-category Fun(KC/,D)), where γ′ : C → δ|KC/
is defined in Notation

7.3.1.1. Then αC exhibits F (C) as a limit of the diagram

KC/ = CC/×CK → K
F0−→ D,

in the sense of Definition 7.1.1.1.

Remark 7.3.1.3. 02YAStated more informally, a diagram

C

F

  

α

��

K

δ

??

F0
// D .

exhibits F as a right Kan extension of F0 along δ if, for every object C ∈ C, we can calculate
the value F (C) ∈ D as a limit of the diagram

KC/ = CC/×CK → K
F0−→ D .

Note that this requirement characterizes the object F (C) ∈ D up to isomorphism (see
Proposition 7.1.1.12). We will later prove a stronger assertion: if the diagrams δ : K → C
and F0 : K → D are fixed, then a right Kan extension of F0 along δ is uniquely determined
(up to isomorphism) as an object of the ∞-category Fun(C,D) (Remark 7.3.6.6).

Warning 7.3.1.4. 02YBIn the situation of Definition 7.3.1.2, the natural transformation αC
appearing in condition (∗C) is defined as a composition of morphisms in the ∞-category
Fun(K/C ,D), which is only well-defined up to homotopy. However, the condition that αC
exhibits F (C) as a colimit of the diagram F0|K/C

depends only on the homotopy class [βC ]
(Remark 7.1.1.7).

Variant 7.3.1.5 (Left Kan Extensions). 02YCLet F : C → D be a functor of ∞-categories.
Suppose we are given a simplicial set K together with diagrams δ : K → C and F0 : K → D
and a natural transformation β : F0 → F ◦ δ, as indicated in the diagram

C

F

  

KS

β

K

δ

??

F0
// D .

We will say that β exhibits F as a left Kan extension of F0 along δ if, for every object C ∈ C,
the following condition is satisfied:

https://kerodon.net/tag/02YA
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(∗C) Let βC denote a composition of the natural transformations

F0|K/C

β−→ (F ◦ δ)|K/C

F (γ)−−−→ F (C)

(formed in the ∞-category Fun(K/C ,D)), where γ : δ|K/C
→ C is defined in Notation

7.3.1.1. Then βC exhibits F (C) as a colimit of the diagram

K/C = K ×C C/C → K
F0−→ D,

in the sense of Definition 7.1.1.1.

Remark 7.3.1.6.02YD In the situation of Variant 7.3.1.5, the natural transformation β : F0 →
F ◦ δ exhibits F as a left Kan extension of F0 along δ if and only if it exhibits F op as a
right Kan extension of F op

0 along δop, when regarded as a morphism in the ∞-category
Fun(Kop,Dop) ≃ Fun(K,D)op.

Example 7.3.1.7.02YE Let D be an ∞-category, let F0 : K → D be a diagram. Let δ : K → ∆0

be the projection map and let F : ∆0 → D be the functor corresponding to an object Y ∈ D.
Then:

• A natural transformation α : Y = (F ◦ δ) → F0 exhibits Y as a limit of F0 (in the
sense of Definition 7.1.1.1) if and only if it exhibits F as a right Kan extension of F0
along δ (in the sense of Definition 7.3.1.2).

• A natural transformation β : F0 → (F ◦ δ) = Y exhibits Y as a colimit of F0 (in the
sense of Definition 7.1.1.1) if and only if it exhibits F as a left Kan extension of F0
along δ (in the sense of Variant 7.3.1.5).

Example 7.3.1.8.02YF Let C and D be ∞-categories, and let α : F → G be a morphism in the
∞-category Fun(C,D). The following conditions are equivalent:

(1) The natural transformation α is an isomorphism in the ∞-category Fun(C,D).

(2) The natural transformation α exhibits F as a right Kan extension of G along the identity
functor idC : C → C.

(3) The natural transformation α exhibits G as a left Kan extension of F along the identity
functor idC : C → C.

To prove the equivalence of (1) and (2), fix an object C ∈ C. Since the identity morphism idC
is an initial object of the∞-category CC/ (Proposition 4.6.7.22), the natural transformation α
satisfies condition (∗C) of Definition 7.3.1.2 if and only if the induced map αC : F (C)→ G(C)
is an isomorphism in D (Corollary 7.2.2.6). The equivalence (1)⇔ (2) now follows from the
criterion of Theorem 4.4.4.4. The equivalence (1)⇔ (3) follows by a similar argument.

https://kerodon.net/tag/02YD
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Remark 7.3.1.9. 02YGLet F : C → D be a functor of ∞-categories and let δ : K → C and
F0 : K → D be diagrams. Then:

• The condition that a natural transformation α : F ◦ δ → F0 exhibits F as a right Kan
extension of F0 along δ depends only on the homotopy class [α] (as a morphism in the
∞-category Fun(K,D)).

• The condition that a natural transformation β : F0 → F ◦ δ exhibits F as a left Kan
extension of F0 along δ depends only on the homotopy class [β] (as a morphism in the
∞-category Fun(K,D)).

See Remark 7.1.1.7.

Remark 7.3.1.10. 02YHLet F : C → D be a functor of∞-categories, let δ : K → C be a diagram,
and let ρ : F0 → F ′0 be an isomorphism in the ∞-category Fun(K,D). Then:

• A natural transformation α : F ◦ δ → F0 exhibits F as a right Kan extension of F0
along δ if and only if the composite natural transformation

F ◦ δ α−→ F0
ρ−→ F ′0

exhibits F as a right Kan extension of F ′0 along δ (note that this condition is independent
of the composition chosen, by virtue of Remark 7.3.1.9).

• A natural transformation β : F ′0 → F ◦ δ exhibits F as a left Kan extension of F ′0 along
δ if and only if the composite natural transformation

F0
ρ−→ F ′0

β−→ F ◦ δ

exhibits F as a left Kan extension of F0 along δ.

See Remark 7.1.1.8.

Remark 7.3.1.11. 03J9Let F : C → D be a functor of ∞-categories, let F0 : K → D be a
diagram, and let ρ : δ′ → δ be an isomorphism in the ∞-category Fun(K, C). Then:

• A natural transformation α : F ◦ δ → F0 exhibits F as a right Kan extension of F0
along δ if and only if the composite natural transformation

F ◦ δ′ ρ−→ F ◦ δ α−→ F0

exhibits F as a right Kan extension of F0 along δ′ (note that this condition is indepen-
dent of the composition chosen, by virtue of Remark 7.3.1.9).

https://kerodon.net/tag/02YG
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• A natural transformation β : F0 → F ◦ δ′ exhibits F as a left Kan extension of F0
along δ′ if and only if the composite natural transformation

F0
β−→ F ◦ δ′ ρ−→ F ◦ δ

exhibits F as a left Kan extension of F0 along δ.

See Remark 7.1.1.8.

Remark 7.3.1.12.02YJ Suppose we are given a diagram

C

F

��

α

��

K

δ

??

F0
// D

as in Definition 7.3.1.2. Let ρ : F ′ → F be a morphism in the ∞-category Fun(C,D). Then
any two of the following conditions imply the third:

• The natural transformation α exhibits F as a right Kan extension of F0 along δ.

• The composite natural transformation

δ ◦ F ′ ρ−→ δ ◦ F α−→ F0

exhibits F ′ as a right Kan extension of F0 along δ (note that this condition does not
depend on the composition chosen, by virtue of Remark 7.3.1.9).

• The morphism ρ is an isomorphism in the ∞-category Fun(C,D).

This follows by combining Remark 7.1.1.9 with Theorem 4.4.4.4.

Remark 7.3.1.13 (Change of Target).02YK Suppose we are given a diagram

C

F

��

α

��

K

δ

??

F0
// D

as in Definition 7.3.1.2, and let G : D → E be a functor of ∞-categories. Then:

https://kerodon.net/tag/02YJ
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• If G is fully faithful and G(α) : (G ◦ F ) ◦ δ → G ◦ F0 exhibits G ◦ F as a right Kan
extension of G ◦ F0 along δ, then α exhibits F as a right Kan extension of F0 along δ.

• If G is an equivalence of ∞-categories and α exhibits F as a right Kan extension of F0
along δ, then G(α) exhibits G ◦ F as a right Kan extension of G ◦ F0 along δ.

See Remark 7.1.1.10.

Proposition 7.3.1.14 (Change of Diagram). 02YLLet F : C → D be a functor of ∞-categories,
let δ : K → C and F0 : K → D be diagrams, and let ϵ : K ′ → K be a categorical equivalence
of simplicial sets. Then:

(1) A natural transformation α : F ◦ δ → F0 exhibits F as a right Kan extension of F0 along
δ if and only if the induced transformation α′ : F ◦ (δ ◦ ϵ) → F0 ◦ ϵ exhibits F as a
right Kan extension of F0 ◦ ϵ along δ ◦ ϵ.

(2) A natural transformation β : F0 → F ◦ δ exhibits F as a left Kan extension of F0 along
δ if and only if the induced transformation β′ : F0 ◦ ϵ→ F ◦ (δ ◦ ϵ) exhibits F as a left
Kan extension of F0 ◦ ϵ along δ ◦ ϵ.

Proof. We will prove (1); the proof of (2) is similar. Fix an object C ∈ C. Since ϵ is a
categorical equivalence and the projection map CC/ → C is a left fibration (Proposition
4.3.6.1), it follows that the induced map ϵC/ : K ′ ×C CC/ → K ×C CC/ is also a categorical
equivalence of simplicial sets (Corollary 5.6.7.6). In particular, ϵC/ is left cofinal (Corollary
7.2.1.13). Applying Corollary 7.2.2.3, we see that the natural transformation α satisfies
condition (∗C) of Definition 7.3.1.2 if and only if α′ satisfies condition (∗C). The desired
result now follows by allowing the object C ∈ C to vary.

Proposition 7.3.1.15. 02YMSuppose we are given a diagram

C

F

��

α

��

K

δ

??

F0
// D

as in Definition 7.3.1.2, where δ factors as a composition

K
δ0
−→ C0 G−→ C

for some ∞-category C0. Then:

https://kerodon.net/tag/02YL
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(1) If G is fully faithful and α exhibits F as a right Kan extension of F0 along δ, then it
also exhibits F ◦G as a right Kan extension of F0 along δ0.

(2) If G is an equivalence of ∞-categories and α exhibits F ◦G as a right Kan extension of
F0 along δ0, then it exhibits F as a right Kan extension of F0 along δ.

Proof. Assume that G is fully faithful. Then, for every pair of objects X,Y ∈ C0, the induced
map of left-pinched morphism spaces

C0
X/×C{Y } = HomL

C0(X,Y )→ HomL
C (G(X), G(Y )) = CG(X)/×C{G(Y )}

is a homotopy equivalence. Allowing Y to vary and applying Corollary 5.1.7.15, we see that
the natural map C0

X/ → CG(X)/×C C0 is an equivalence of left fibrations over C0. It follows
that the induced map

C0
X/×C0K → CG(X)/×CK

is an equivalence of left fibrations over K. In particular it is a categorical equivalence of
simplicial sets (Proposition 5.1.7.5) and therefore left cofinal (Corollary 7.2.1.13). Applying
Corollary 7.2.2.3, we see that the natural transformation α satisfies condition (∗X) of
Definition 7.3.1.2 if and only if it satisfies condition (∗G(X)). Assertion (1) now follows by
allowing the object X ∈ C0 to vary.

We now prove (2). Assume that G is an equivalence of ∞-categories and that α exhibits
F ◦G as a right Kan extension of F0 along δ0; we wish to show that α exhibits F as a right
Kan extension of F0 along δ. Let H : C → C0 be a homotopy inverse of G. Then H is left
adjoint to G, so we can choose natural transformations

η : idC → G ◦H ϵ : H ◦G→ idC0

which are compatible up to homotopy in the sense of Definition 6.2.1.1. Note that η
and ϵ are isomorphisms (Proposition 6.1.4.1). Let α′ denote a composition of the natural
transformations

F ◦G ◦H ◦G ◦ δ0 ϵ−→ F ◦G ◦ δ0 α−→ F0.

Using Remark 7.3.1.11, we see that α′ exhibits F ◦G as a right Kan extension of F0 along
H ◦G◦δ0 = H ◦δ. Applying assertion (1) to the fully faithful functor H : C → C0, we deduce
that α′ also exhibits δ as a right Kan extension of F0 along F ◦G ◦H. The compatibility of
η and ϵ guarantees that α is a composition of the natural transformations

F ◦ δ η−→ F ◦G ◦H ◦ δ α′−→ F0.

Applying Remark 7.3.1.12, we conclude that α exhibits F as a right Kan extension of F0
along δ, as desired.
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Corollary 7.3.1.16. 02YNLet G : C0 → C, F0 : C0 → D, and F : C → D be functors of
∞-categories, where G is fully faithful. Then:

• If α : F ◦G→ F0 is a natural transformation which exhibits F as a right Kan extension
of F0 along G, then α is an isomorphism in the ∞-category Fun(C0,D).

• If β : F0 → F ◦G is a natural transformation which exhibits F as a left Kan extension
of F0 along G, then β is an isomorphism in the ∞-category Fun(C0,D).

Proof. Let α : F ◦ G → F0 be a natural transformation which exhibits F as a right Kan
extension of F0 along G. Applying Proposition (in the special case where K = C0), we
deduce that α also exhibits F ◦G as a right Kan extension of F0 along the identity functor
idC0 : C0 → C0. Invoking Example 7.3.1.8, we see that α is an isomorphism. This proves the
first assertion; the second follows by a similar argument.

Proposition 7.3.1.17. 039NSuppose we are given a diagram

C

F

��

α

��

K

δ

??

F0
// D

as in Definition 7.3.1.2. Assume that δ exhibits C as a localization of K (with respect to
some collection of edges of K) and that α is an isomorphism in the ∞-category Fun(K,D).
Then α exhibits F as a right Kan extension of F0 along δ.

Proof. Fix an object C ∈ C. Since α is an isomorphism, it will suffice to show that the
tautological map F (C)→ (F ◦ δ)|KC/

exhibits F (C) as a limit of the diagram (F ◦ δ)|KC/
.

Since the projection map CC/ → C is a left fibration (Proposition 4.3.6.1), the map δC/ :
KC/ → CC/ exhibits the∞-category CC/ as a localization of the simplicial set KC/ (Corollary
6.3.5.5). In particular, δC/ is left cofinal (Proposition 7.2.1.10). We can therefore replace
K by C (Corollary 7.2.2.7), in which case the desired result follows from the criterion of
Corollary 7.2.2.6.

7.3.2 Kan Extensions along Inclusions

02YPLet C be an ∞-category and let δ : K → C be a diagram. In §7.3.1, we introduced the
notion of a functor F : C → D being a left Kan extension of another diagram F0 : K → D
along δ (Variant 7.3.1.5). Beware that this terminology is potentially misleading: if F is a
left Kan extension of F0 along δ, then the composition F ◦δ need not be equal to F0. Instead,
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it is equipped with a natural transformation β : F0 → F ◦ δ satisfying a certain universal
property. In this section, we specialize to the case where K = C0 is a full subcategory of C
and δ : C0 ↪→ C is the inclusion map. In this case, the natural transformation β is necessarily
an isomorphism (Corollary 7.3.1.16). Consequently, the Kan extension condition can be
substantially simplified: it can be regarded as a property of the functor F , which can be
formulated without reference to the diagram F0 or the natural transformation β.

Definition 7.3.2.1.02YQ Let F : C → D be a functor of ∞-categories and let C0 ⊆ C be a full
subcategory. Fix an object C ∈ C. We will say that F is left Kan extended from C0 at C if
the composite map

(C0
/C)▷ ↪→ (C/C)▷ c−→ C F−→ D

is a colimit diagram in the ∞-category D. Here C0
/C denotes the fiber product C0×C C/C

(Notation 7.3.1.1), and c is the slice contraction morphism of Construction 4.3.5.12. Similarly,
we say that F is right Kan extended from C0 at C if the composite map

(C0
C/)◁ ↪→ (CC/)◁

c′−→ C F−→ D

is a limit diagram in D. We say that F is left Kan extended from C0 if it is left Kan extended
from C0 at every object C ∈ C. We say that F is right Kan extended from C0 if it is right
Kan extended from C0 at every object C ∈ C.

Remark 7.3.2.2.02YR Let F : C → D be a functor of ∞-categories and let C0 ⊆ C be a full
subcategory. Then F is right Kan extended from C0 if and only if the opposite functor
F op : Cop → Dop is left Kan extended from C0.

Exercise 7.3.2.3.02YS Let F : C → D be a functor of ∞-categories and let C0 ⊆ C be a full
subcategory. Show that, for every object C ∈ C0, the functor F is both left and right Kan
extended from C0 at C. For a more general statement, see Proposition 7.3.3.7.

Remark 7.3.2.4.04K2 Let F : B ⋆ C → D be a functor of ∞-categories and set G = F |B, so that
F can be identified with a functor f : C → DG/. If C0 is a full subcategory of C, then f is
left Kan extended from C0 at an object C ∈ C if and only if F is left Kan extended from
B ⋆ C0 at C (see Remark 7.1.2.11). Combining this observation with Exercise 7.3.2.3, we see
that f is left Kan extended from C0 if and only if F is left Kan extended from B ⋆ C0.

Example 7.3.2.5.02YT Let F : C → D be a functor of ordinary categories, and let C0 ⊆ C be a
full subcategory. Then F is left Kan extended from C0 (in the sense of Definition 7.3.0.1) if
and only if the induced functor of∞-categories N•(F ) : N•(C)→ N•(D) is left Kan extended
from N•(C0) (in the sense of Definition 7.3.2.1).

We now show that Definition 7.3.2.1 can be regarded as a special case of the notions
introduced in §7.3.1:
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Proposition 7.3.2.6. 02YULet F : C → D be a functor of ∞-categories, let F0 denote the
restriction of F to a full subcategory C0 ⊆ C, and let ι : C0 ↪→ C denote the inclusion functor.
Then:

• The functor F is left Kan extended from C0 (in the sense of Definition 7.3.2.1) if and
only if the identity transformation id : F0 → F ◦ ι exhibits F as a left Kan extension
of F0 along ι (in the sense of Variant 7.3.1.5).

• The functor F is right Kan extended from C0 (in the sense of Definition 7.3.2.1) if
and only if the identity transformation idF0 : F ◦ ι → F0 exhibits F as a right Kan
extension of F0 along ι (in the sense of Definition 7.3.1.2).

Proof. Fix an object C ∈ C. It follows from Remark 7.1.2.6 that the composition

(C0
/C)▷ ↪→ (C/C)▷ → C F−→ D

is a colimit diagram in D if and only if the natural transformation idF0 satisfies condition
(∗C) of Variant 7.3.1.5. The first assertion follows by allowing the object C to vary, and the
second follows by a similar argument.

Corollary 7.3.2.7. 02YVLet F : C → D be a functor of ∞-categories, let C0 ⊆ C be a full
subcategory, and let β : F0 → F |C0 be a natural transformation of functors from C0 to D.
Then β exhibits F as a left Kan extension of F0 along the inclusion map ι : C0 ↪→ C (in the
sense of Variant 7.3.1.5) if and only if the following pair of conditions is satisfied:

(1) The functor F is left Kan extended from C0 (in the sense of Definition 7.3.2.1).

(2) The natural transformation β is an isomorphism in the ∞-category Fun(C0,D).

Proof. By virtue of Corollary 7.3.1.16, we may assume that condition (2) is satisfied. Using
Remark 7.3.1.10, we can reduce further to the special case where F0 = F |C0 and β is the
identity transformation, in which case the desired result is a restatement of Proposition
7.3.2.6.

Corollary 7.3.2.8. 02YWLet C be an ∞-category, let C0 ⊆ C be a full subcategory, and let
F0 : C0 → D be a functor of ∞-categories. The following conditions are equivalent:

(1) There exists a functor F : C → D and a natural transformation β : F0 → F |C0 which
exhibits F as a left Kan extension of F0 along the inclusion functor C0 ↪→ C.

(2) There exists a functor F : C → D which is left Kan extended from C0 and satisfies
F0 = F |C0.
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Proof. We will show that (1) implies (2); the converse is an immediate consequence of
Proposition 7.3.2.6. Let β : F0 → F ′|C0 exhibit F ′ as a left Kan extension of F0 along
the inclusion functor C0 ↪→ C. Then β is an isomorphism in the ∞-category Fun(C0,D)
(Corollary 7.3.1.16). Using Corollary 4.4.5.9, we can lift β to an isomorphism β̃ : F → F ′

in the ∞-category Fun(C,D), where F satisfies F |C0 = F0. Applying Remark 7.3.1.12, we
deduce that the identity transformation idF0 exhibits F as a left Kan extension of F0 along
the inclusion map C0 ↪→ C. Invoking Proposition 7.3.2.6, we conclude that F is left Kan
extended from C0.

Definition 7.3.2.9.02YX Let C be an ∞-category, let C0 ⊆ C be a full subcategory, and suppose
we are given functors F : C → D and F0 : C0 → D. We will say that F is a left Kan extension
of F0 if F is left Kan extended from C0 and satisfies F |C0 = F0. We will say that F is a
right Kan extension of F0 if F is right Kan extended from C0 and satisfies F |C0 = F0.

Warning 7.3.2.10.02YY Let C be an ∞-category, let ι : C0 ↪→ C be the inclusion of a full
subcategory, and let F0 : C0 → D. be a functor. We have given two definitions for the notion
of Kan extension:

(a) A functor F : C → D is a left Kan extension of F0 if it is left Kan extended from C0 and
satisfies F |C0 = F0 (Definition 7.3.2.9).

(b) A functor F : C → D is a left Kan extension of F0 along ι if there exists a natural
transformation β : F0 → F |C0 which exhibits F as a left Kan extension of F0 along ι,
in the sense of Variant 7.3.1.5.

These definitions are not quite equivalent. By virtue of Proposition 7.3.2.6, a functor
F : C → D satisfies condition (a) if and only if it satisfies a stronger version of condition (b),
where β is required to be an identity natural transformation. In particular, condition (a)
implies condition (b). However, the converse is false: if F is a left Kan extension of F0 along
ι, then the restriction F |C0 need not be equal to F0. However, it is necessarily isomorphic to
F0, by virtue of Corollary 7.3.2.7.

Let δ : K → C be a functor of ∞-categories. The preceding results show that, if δ is an
isomorphism from K to a full subcategory of C, then the theory of Kan extensions along δ
(in the sense of §7.3.1) can be reformulated in terms of Definition 7.3.2.1. We now extend
this observation to the case of a general functor, by identifying K with a full subcategory of
the relative join K ⋆C C of Construction 5.2.3.1.

Proposition 7.3.2.11.02YZ Let δ : K → C be a functor of ∞-categories, let F : K ⋆C C → D be
another functor having restrictions F0 = F |K and F1 = F |C, so that the composition

∆1 ×K ≃ K ⋆KK → K ⋆C C
F−→ D

determines a natural transformation β : F0 → F1 ◦δ. The following conditions are equivalent:
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(1) The functor F is left Kan extended from the full subcategory K ⊆ K ⋆C C (in the sense of
Definition 7.3.2.1).

(2) The natural transformation β exhibits F1 as a left Kan extension of F0 along δ (in the
sense of Variant 7.3.1.5).

Proof. By virtue of Exercise 7.3.2.3, it will suffice to show that for every object C ∈ C, the
following conditions are equivalent:
(1C) The functor F is left Kan extended from K at C (in the sense of Definition 7.3.2.1).

(2C) The natural transformation β satisfies condition (∗C) of Variant 7.3.1.5.
For the remainder of the proof, let us regard the object C ∈ C as fixed, and set K/C =
K×C C/C . Let π : ∆2×K/C → (∆1×K/C)▷ be the functor which is the identity on ∆1×K/C
and carries {2} × K/C to the cone point of (∆1 ×K/C)▷. Let σ denote the composite map

∆2 ×K/C
π−→ (∆1 ×K/C)▷

≃ ((K×∆1)×K ⋆C C (K ⋆C C)/C)▷

→ K ⋆C C
F−→ D .

We will regard σ as a 2-simplex in the ∞-category Fun(K/C ,D), which we display as a
diagram

(F1 ◦ δ)|K/C

$$
F0|K/C

::

// F1(C)

which witnesses the bottom horizontal map as the natural transformation βC appearing in
condition (∗C). By construction, this natural transformation βC is given by the composite
map

N•({0 < 2})×K/C → (K/C)▷ → K ⋆C C F−→ D,
so the equivalence (1C)⇔ (2C) is a special case of Remark 7.1.2.6.

Warning 7.3.2.12. 02Z0For a general diagram

C

F1

��

KS

β

K

δ

??

F0
// D,
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we cannot always arrange that there exists a functor F : K ⋆C C → D satisfying the
requirements of Proposition 7.3.2.11. However, we can always find a functor F ′ : K ⋆C C → D
which satisfies F ′|K = F0, F ′|C = F1, and the map

∆1 ×K ≃ K ⋆KK → K ⋆C C
F ′−→ D

determines a natural transformation β′ : F0 → F1 ◦ δ which is homotopic to β. To see this,
set M = (∆1 ×K)∐

({1}×K) C, so that the pair (β, F1) determines a morphism of simplicial
sets f : M → D. Proposition 5.2.4.5 supplies a categorical equivalence of simplicial sets
θ : M → K ⋆C C, so the induced map

FunK∐
C /(K ⋆C C,D) ◦θ−→ FunK∐

C /(M,D)

is an equivalence of ∞-categories (Corollary 4.5.4.5). It follows that there exists a functor
F ′ : K ⋆C C → D such that F ′|K = F0, F ′|C = F1, and F ′ ◦θ is isomorphic to f as an object of
the ∞-category FunK∐

C /(M,D). The last requirement is a reformulation of the condition
that β′ = F ′|∆1×K is homotopic to β.

Corollary 7.3.2.13.02Z1 Let δ : K → C, F0 : K → D, and F1 : C → D be functors of
∞-categories. The following conditions are equivalent:

(1) There exists a functor F : K ⋆C C → D which is left Kan extended from K which satisfies
F0 = F |K and F1 = F |C.

(2) There exists a natural transformation β : F0 → F1 ◦ δ which exhibits F1 as a left Kan
extension of F0 along δ.

Proof. The implication (1)⇔ (2) follows immediately from Proposition 7.3.2.11. Conversely,
suppose that there exists a natural transformation β : F0 → F1 ◦ δ which exhibits F1 as
a left Kan extension of F0 along δ. By virtue of Remark 7.3.1.9, we can modify β by
a homotopy and thereby arrange that there exists a functor F : K ⋆C C → D satisfying
F |K = F0, F |K = F1 and for which the induced map

∆1 ×K ≃ K ⋆KK → K ⋆C C
F−→ D

coincides with β (Warning 7.3.2.12). Applying Proposition 7.3.2.11, we see that F is left
Kan extended from K.

For later use, we record a slightly more general version of Proposition 7.3.2.11.

Corollary 7.3.2.14.03U3 Let F : C → D be a functor of ∞-categories, and let U : C → ∆1

be a cocartesian fibration having fibers C0 = {0} ×∆1 C and C1 = {1} ×∆1 C. Choose a
functor G : C0 → C1 and a natural transformation β : idC0 → G which exhibits G as given
by covariant transport along the nondegenerate edge of ∆1 (see Definition 5.2.2.4). The
following conditions are equivalent:

https://kerodon.net/tag/02Z1
https://kerodon.net/tag/03U3


1474 CHAPTER 7. LIMITS AND COLIMITS

(1) The functor F is left Kan extended from C0.

(2) The natural transformation F (β) : F |C0 → F |C1 ◦G exhibits F |C1 as a left Kan extension
of F |C0 along G.

Proof. Let us regard the functor G as fixed. Let M = (∆1×C0)∐({1}×C0) C1 be the mapping
cylinder of G, and let us abuse notation by identifying C0 ≃ {0} × C0 and C1 with (disjoint)
simplicial subsets of M . We can then identify α with a morphism of simplicial sets µ : M → C
which is the identity when restricted to C0 and C1.

Note that the tautological map

∆1 × C0 ≃ C0 ⋆C0 C0 → C0 ⋆C1 C1

extends to a morphism of simplicial sets λ : M → C0 ⋆C1 C1 which is the identity on C1;
moreover, λ is a categorical equivalence (Proposition 5.2.4.5). It follows that precomposition
with λ induces an equivalence of ∞-categories

FunC0
∐
C1 /

(C0 ⋆C1 C1, C)→ FunC0
∐
C1 /

(M, C).

We can therefore choose a functor G : C0 ⋆C1 C1 → C satisfying G|C0 = idC0 and G|C1 = idC1 ,
where G ◦ λ is isomorphic to µ as an object of the ∞-category FunC0

∐
C1 /

(M, C) Since
condition (2) depends only on the homotopy class of the natural transformation β (Remark
7.3.1.9), we are free to modify β and may therefore assume that G ◦ λ = µ. In this case,
Proposition 7.3.2.11 allows us to reformulate condition (2) as follows:

(2′) The functor (F ◦G) : C0 ⋆C1 C1 → D is left Kan extended from C0.

Since λ and µ are categorical equivalences of simplicial sets (Proposition 5.2.4.5), the functor
G is an equivalence of ∞-categories (Remark 4.5.3.5). The equivalence of (1) and (2′) is
now a special case of Proposition 7.3.3.18.

7.3.3 Relative Kan Extensions

02Z2For many applications, it will be convenient to work with a generalization of Definition
7.3.2.1. In what follows, we assume that the reader is familiar with the theory of relative
(co)limit diagrams introduced in §7.1.5.

Definition 7.3.3.1 (Relative Kan Extensions). 02Z3Let F : C → D and U : D → E be functors
of ∞-categories, let C0 ⊆ C be a full subcategory. For each object C ∈ C, we will say that F
is U -left Kan extended from C0 at C if the composite map

(C0
/C)▷ ↪→ (C/C)▷ c−→ C F−→ D
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is a U -colimit diagram in the ∞-category D. We say that F is U -right Kan extended from
C0 at C if the composite map

(C0
C/)◁ ↪→ (CC/)◁

c′−→ C F−→ D

is a U -limit diagram in D. Here c and c′ denote the slice and coslice contraction morphisms
of Construction 4.3.5.12. We say that F is U -left Kan extended from C0 if it is U -left Kan
extended from C0 at every object C ∈ C. We say that F is U -right Kan extended from C0 if
it is U -right Kan extended from C0 at every object C ∈ C.

Remark 7.3.3.2.02Z4 Let F : C → D be a functor of ∞-categories and let C0 ⊆ C be a full
subcategory. Then F is left Kan extended from C0 (in the sense of Definition 7.3.2.1) if
and only if it is U -left Kan extended from C0 (in the sense of Definition 7.3.3.1), where
U : D → ∆0 is the projection map. Similarly, F is right Kan extended from C0 if and only if
it is U -right Kan extended from C0. See Example 7.1.5.3.

Remark 7.3.3.3.03Y2 Let C be an ∞-category, let C0 ⊆ C be a full subcategory, and let
U : D → E be a functor of ∞-categories. Consider the evaluation functor

ev : C ×Fun(C,D)→ D (C,F ) 7→ F (C).

For every object C ∈ C and every functor F : C → D, the following conditions are equivalent:

(a) The functor F is U -left Kan extended from C0 at C.

(b) The evaluation functor ev is U -left Kan extended from C0×Fun(C,D) at (C,F ).

To prove this, it will suffice to show that the inclusion map

C0
/C ×{idF } ↪→ C0

/C ×Fun(C,D)/F

is right cofinal (Corollary 7.2.2.2). This follows from Corollary 7.2.1.19, since the inclusion
map {idF } ↪→ Fun(C,D)/F is right cofinal (the identity morphism idF is an isomorphism in
Fun(C,D), and therefore final when regarded as an object of the ∞-category Fun(C,D)/F
by virtue of Proposition 4.6.7.22).

Remark 7.3.3.4.02Z5 In the situation of Definition 7.3.3.1, the morphism F : C → D is U -right
Kan extended from C0 if and only if the opposite functor F op : Cop → Dop is Uop-left Kan
extended from (C0)op.

Example 7.3.3.5.02Z7 Let F : C → D and U : D → E be functors of ∞-categories. If U is fully
faithful, then F is U -left Kan extended and U -right Kan extended from any full subcategory
C0 ⊆ C (see Example 7.1.5.4).
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Example 7.3.3.6. 043FLet U : D → E be a functor of ∞-categories. Then a functor F : C → D
is U -left Kan extended from the empty subcategory ∅ ⊆ C if and only if it carries each
object of C to a U -initial object of D. Similarly, F is U -right Kan extended from the empty
subcategory if and only if it carries each object of C to a U -final object of D.

To verify the Kan extension conditions of Definition 7.3.3.1, it suffices to consider objects
C which do not belong to the full subcategory C0 ⊆ C.

Proposition 7.3.3.7. 02Z8Let F : C → D and U : D → E be functors of ∞-categories. Let
C0 ⊆ C be a full subcategory and let C ∈ C be an object which is isomorphic to an object of
C0. Then F is both U -left Kan extended from C0 and U -right Kan extended from C0 at C.

Proof. We will show that F is U -left Kan extended from C0 at C; the analogous statement
for the right Kan extension condition follows by a similar argument. Let c : (C0

/C)▷ → C be
the slice contraction morphism; we wish to show that the composition (F ◦ c) : (C0

/C)▷ → D
is a U -colimit diagram. Choose an object C ′ ∈ C0 and an isomorphism u : C ′ → C in the
∞-category C. Our assumption that u is an isomorphism guarantees that it is final when
viewed as an object of the slice ∞-category C/C (Proposition 4.6.7.22), and therefore also
when viewed as an object of the ∞-category C0

/C . The desired result now follows from
Corollary 7.2.3.6, since F (u) is an isomorphism in the ∞-category D.

Example 7.3.3.8. 03U4Let F : C → D and U : D → E be functors of ∞-categories. Then F is
U -left Kan extended and U -right Kan extended from the full subcategory C ⊆ C.

Example 7.3.3.9. 02Z9Let F : C▷ → D and U : D → E be functors of ∞-categories, and set
F = F |C. Then F is U -left Kan extended from a full subcategory C0 ⊆ C if and only if F
is U -left Kan extended from the cone (C0)▷ ⊆ C▷. To prove this, it suffices (by virtue of
Proposition 7.3.3.7) to show that F is U -left Kan extended from C0 at an object C ∈ C if
and only if F is U -left Kan extended from (C0)▷ at C, which follows immediately from the
definition.

Example 7.3.3.10. 02ZALet C be an∞-category and let U : D → E be a functor of∞-categories.
It follows from Proposition 7.3.3.7 that a functor F : C▷ → D is a U -colimit diagram (in the
sense of Definition 7.1.5.1) if and only if it is U -left Kan extended from C.

Proposition 7.3.3.11. 039RLet F : C → D be a functor of ∞-categories, let U : D → E be
an inner fibration of ∞-categories, and let C0 ⊆ C be a coreflective subcategory of C. The
following conditions are equivalent:

(1) The functor F is U -left Kan extended from C0.

(2) Let e : X → Y be a morphism in C which exhibits X as a C0-coreflection of Y (Definition
6.2.2.1). Then F (e) is a U -cocartesian morphism of D.
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(3) Let T : C → C0 be a right adjoint to the inclusion. If e is a morphism in C and T (e) is
an isomorphism in C0, then F (e) is a U -cocartesian morphism of D.

Proof. Let Y be an object of C. By assumption, there exists an object X ∈ C0 and a
morphism e : X → Y which exhibits X as a C0-coreflection of Y . Then e is final when
viewed as an object of the ∞-category C0×C C/Y . It follows that F is U -left Kan extended
from C0 at Y if and only if F (e) is U -cocartesian morphism of D; in particular, this condition
is independent of the choice of e. Allowing the object Y to vary, we deduce the equivalence
(1)⇔ (2).

Using Lemma 6.2.2.14, we can choose a functor T : C → C0 and a natural transformation
ϵ : T → idC which exhibits T as a C0-coreflection functor, so that T is right adjoint to
the inclusion of C0 into C (Proposition 6.2.2.15). Let e : X → Y be a morphism in C. If
e exhibits X as a C0-coreflection of Y , then T (e) is an isomorphism in C0, which shows
immediately that (3) implies (2). Conversely, suppose that (2) is satisfied and that T (e) is
an isomorphism in C0. We then have a commutative diagram

(F ◦ T )(X) (F◦T )(e) //

F (ϵX)

��

(F ◦ T )(Y )

F (ϵY )

��
F (X) F (e) // F (Y )

in the ∞-category D, where the upper horizontal map is an isomorphism and the vertical
maps are U -cocartesian. Using Corollary 5.1.2.4, we see that F (e) is also U -cocartesian.

Corollary 7.3.3.12.039S Let F : C → D be a functor of ∞-categories and let C0 ⊆ C be a
coreflective subcategory. The following conditions are equivalent:

(1) The functor F is left Kan extended from C0.

(2) Let e : X → Y be a morphism in C which exhibits X as a C0-coreflection of Y (Definition
6.2.2.1). Then F (e) is an isomorphism in D.

(3) Let T : C → C0 be a right adjoint to the inclusion. If e is a morphism in C and T (e) is
an isomorphism in C0, then F (e) is an isomorphism in D.

Proof. Combine Proposition 7.3.3.11 with Example 5.1.1.4 (for a closely related statement,
see Proposition 7.3.1.17).

Corollary 7.3.3.13.043G Let F : C → D be a functor of ∞-categories, let U : D → E be an
inner fibration of ∞-categories, and suppose that C contains an initial object. The following
conditions are equivalent:

https://kerodon.net/tag/039S
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(1) The functor F is U -left Kan extended from the full subcategory Cinit ⊆ C spanned by the
initial objects.

(2) The functor F carries every morphism of C to a U -cocartesian morphism of D.

Proof. Combine Proposition 7.3.3.11 with Example 6.2.2.5.

Corollary 7.3.3.14 (Constant Diagrams). 05E0Let C be an ∞-category which contains an initial
object, and let F : C → D be a functor of ∞-categories. The following conditions are
equivalent:

(1) The functor F is left Kan extended from the full subcategory Cinit ⊆ C spanned by the
initial objects.

(2) The functor F carries each morphism in C to an isomorphism in the ∞-category D.

(3) The functor F is isomorphic to a constant functor.

Proof. The equivalence (1)⇔ (2) follows from Corollary 7.3.3.13 by taking E = ∆0, and the
implication (3)⇒ (2) is immediate. To prove the converse, we observe that condition (2)
guarantees that F can be regarded as a morphism from C to the Kan complex D≃. Since
C has an initial object, it is weakly contractible (Corollary 4.6.7.25), so this morphism is
automatically nullhomotopic (Remark 3.2.4.11).

We now record some basic stability properties enjoyed by the class of relative Kan
extensions, which follow easily from the analogous stability properties of relative (co)limit
diagrams.

Remark 7.3.3.15. 02ZBSuppose we are given a commutative diagram of ∞-categories

D G //

U

��

D′

U ′

��
E // E ′,

where the horizontal functors are equivalence of ∞-categories. Let F : C → D be a functor
and let C0 ⊆ C be a full subcategory. Then F is U -left Kan extended from C0 if and only if
G ◦ F is U ′-left Kan extended from C0 (see Remark 7.1.5.6). Similarly, F is U -right Kan
extended from C0 if and only if G ◦ F is U ′-right Kan extended from C0.

https://kerodon.net/tag/05E0
https://kerodon.net/tag/02ZB


7.3. KAN EXTENSIONS 1479

Remark 7.3.3.16.02ZC Let F : C → D and U : D → E be functors of ∞-categories, and let
C0 ⊆ C be a full subcategory. Let V : D → E be a functor which is isomorphic to U (as
an object of the ∞-category Fun(D, E)). Then F is U -left Kan extended from C0 if and
only if it is V -left Kan extended from C0 (see Remark 7.1.5.7). Similarly, F is U -right Kan
extended from C0 if and only if it is V -right Kan extended from C0.

Remark 7.3.3.17.02ZD Let F : C → D and U : D → E be functors of ∞-categories, let
G : C → D be a functor which is isomorphic to F (as an object of the∞-category Fun(C,D)),
and let C0 ⊆ C be a full subcategory. Then F is U -left Kan extended from C0 if and only if
G is U -left Kan extended from C0 (see Proposition 7.1.5.13). Similarly, F is U -right Kan
extended from C0 if and only if G is U -right Kan extended from C0.

Proposition 7.3.3.18 (Change of Source).03U5 Let F : C → D and U : D → E be functors of
∞-categories and let C0 ⊆ C be a replete full subcategory. Let G : B → C be an equivalence
of ∞-categories, and set B0 = C0×C B. Then F is U -left Kan extended from C0 if and only
if F ◦G is U -left Kan extended from B0.

Proof. Assume first that F is U -left Kan extended from C0; we will show that F ◦G is U -left
Kan extended from B0. Fix an object B ∈ B and set B0

/B = B0×B B/B; we wish to show
that the composite map

θ : (B0
/B)▷ ↪→ B▷/B → B

F◦G−−−→ D

is a U -colimit diagram. Set C = G(B) and C0
/C = C0×C C0. Since G is an equivalence of

∞-categories, the induced map G/B : B/B → C/C is also an equivalence of ∞-categories
(Corollary 4.6.4.19). Our assumption that C0 is a replete subcategory of C guarantees that
C0
/C is a replete subcategory of C/C . In particular, the inclusion map C0

/C ↪→ C/C is an
isofibration, so that G/B restricts to an equivalence of ∞-categories G0

/B : B0
/B → C

0
/C . By

construction, the morphism θ is the composition of (G0
/B)▷ with the map

θ′ : (C0
/C)▷ ↪→ C▷/C → C

F−→ D,

which is a U -colimit diagram by virtue of our assumption that F is U -left Kan extended
from C0. Applying Corollary 7.2.2.2, we deduce that θ is also a U -colimit diagram.

We now prove the converse. Assume that F ◦G is U -left Kan extended from B0; we wish
to show that F is U -left Kan extended from C0. Let H : C → B be a homotopy inverse to G,
so that (G ◦H) : C → C is isomorphic to the identity functor idC. Since C0 ⊆ C is replete,
it coincides with the inverse image (G ◦H)−1 C0 = H−1 B0. Applying the first part of the
proof, we deduce that the functor (F ◦G ◦H) : C → D is U -left Kan extended from C0. The
functor F is isomorphic to F ◦ G ◦H, and is therefore also U -left Kan extended from C0

(Remark 7.3.3.17).

https://kerodon.net/tag/02ZC
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Remark 7.3.3.19 (Transitivity). 02ZELet F : C → D, U : D → E , and V : E → E ′ be functors
of ∞-categories, and let C0 ⊆ C be a full subcategory. Suppose that U ◦ F is V -left Kan
extended from C0. Then F is U -left Kan extended from C0 if and only if it is (V ◦ U)-left
Kan extended from C0 (see Proposition 7.1.5.14). Similarly, if U ◦F is V -right Kan extended
from C0, then F is U -right Kan extended from C0 if and only if it is (V ◦ U)-right Kan
extended from C0.

Remark 7.3.3.20. 02ZFLet F : C → D and U : D → E be functors of ∞-categories, and let
C0 ⊆ C be a full subcategory. Suppose that U ◦ F is left Kan extended from C0. Then F

is left Kan extended from C0 if and only if it is U -left Kan extended from C0; this follows
by applying Remark 7.3.3.19 in the special case E ′ = ∆0. Similarly, if U ◦ F is right Kan
extended from C0, then F is right Kan extended from C0 if and only if it is U -right Kan
extended from C0.

Proposition 7.3.3.21 (Base Change). 02ZGSuppose we are given a commutative diagram of
∞-categories

02ZHD′ H′ //

  
G

��

E ′

��

��

B′

��

D

U

  

H // E

V

~~
B

(7.13)

where each square is a pullback and the diagonal maps are inner fibrations. Let F : C → D′
be a functor of ∞-categories and C0 ⊆ C be a full subcategory. Then:

(1) If G ◦ F is H-left Kan extended from C0, then F is H ′-left Kan extended from C0.

(2) Assume that U and V are cartesian fibrations and that the functor G carries U -cartesian
morphisms of D to V -cartesian morphisms of E. If F is H ′-left Kan extended from C0,
then G ◦ F is an H-left Kan extended from C0.

Proof. Use Proposition 7.1.5.19.

https://kerodon.net/tag/02ZE
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Corollary 7.3.3.22.02ZJ Suppose we are given a pullback diagram of ∞-categories

D′

U ′

��

G // D

U

��
E ′ // E ,

where the vertical maps are inner fibrations. Let F : C → D′ be a functor of ∞-categories
and let C0 ⊆ C be a full subcategory. If G ◦ F is U-left Kan extended from C0, then F is
U ′-left Kan extended from C0. The converse holds if U is a cartesian fibration.

Proof. Apply Proposition 7.3.3.21 in the special case B = E .

Corollary 7.3.3.23.02ZK Let U : D → E be an inner fibration of∞-categories, let DE = {E}×ED
be the fiber of U over an object E ∈ E, let F : C → DE be a functor of ∞-categories, and
C0 ⊆ C be a full subcategory. If F is U-left Kan extended from C0 (when regarded as a
functor from C to D), then it is left Kan extended from C0 (when regarded as a functor from
C to DE). The converse holds if U is a cartesian fibration.

Proof. Apply Corollary 7.3.3.22 in the special case E ′ = {E}.

7.3.4 Kan Extensions along Fibrations

02ZL In this section, we study the formation of left Kan extension along cocartesian fibrations.
We can state a preliminary version of our main result as follows:

Proposition 7.3.4.1.02ZM Let δ : K → C be a cocartesian fibration of ∞-categories. Suppose we
are given functors of ∞-categories F0 : K → D and F : C → D and a natural transformation
β : F0 → F ◦ δ. The following conditions are equivalent:

(1) The natural transformation β exhibits F as a left Kan extension of F0 along δ.

(2) For each object C ∈ C, the restriction of β to the fiber KC = {C} ×C K determines a
natural transformation F0|KC

→ F (C) which exhibits F (C) as a colimit of the diagram
F0|KC

in the ∞-category D.

Proof. By virtue of Corollary 7.2.2.7, it will suffice to show that for each object C ∈ C, the
tautological map

KC = K×C{C} ↪→ K×C C/C
is right cofinal. Since δ is a cocartesian fibration, it will suffice to show that the inclusion map
{idC} ↪→ C/C is right cofinal (Proposition 7.2.3.12). This follows from Corollary 4.6.7.24,
since idC is a final object of the ∞-category C/C (Proposition 4.6.7.22).
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Corollary 7.3.4.2. 02ZNLet δ : K → C be a cocartesian fibration of ∞-categories and let
F : K ⋆C C → D be a functor of ∞-categories. The following conditions are equivalent:

(1) The functor F is left Kan extended from K.

(2) For every object C ∈ C, the functor

FC : K▷C ≃ KC ⋆{C}{C} ↪→ K ⋆C C
F−→ D

is a colimit diagram.

Proof. Combine Propositions 7.3.4.1 and 7.3.2.11.

Corollary 7.3.4.2 generalizes to the setting of relative Kan extensions:

Proposition 7.3.4.3. 02ZPLet δ : K → C be a cocartesian fibration of ∞-categories and let
F : K ⋆C C → D and U : D → E be functors. The following conditions are equivalent:

(1) The functor F is U -left Kan extended from K.

(2) For every object C ∈ C, the functor

FC : K▷C ≃ KC ⋆{C}{C} ↪→ K ⋆C C
F−→ D

is a U -colimit diagram.

Proof. By virtue of Proposition 7.3.3.7, it will suffice to show that for each object C ∈ C,
the following conditions are equivalent:

(1C) The functor F is U -left Kan extended from K at C.

(2C) The functor FC is a U -colimit diagram.

This follows from Corollary 7.2.2.3, since the tautological map

KC ≃ {idC} ×C/C
K/C ↪→ K/C

is right cofinal (as noted in the proof of Proposition 7.3.4.1).

Our next goal is establish a companion to Proposition 7.3.4.1, which provides necessary
and sufficient conditions for the existence of a left Kan extension.

Proposition 7.3.4.4. 02ZQLet δ : K → C be a cocartesian fibration of ∞-categories and let
F0 : K → D be a functor of ∞-categories. The following conditions are equivalent:

(1) The functor F0 admits a left Kan extension along δ.

https://kerodon.net/tag/02ZN
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(2) For every object C ∈ C, the induced diagram

KC = {C} ×C K ↪→ K
F0−→ D

has a colimit in the ∞-category D.

Note that the implication (1) ⇒ (2) of Proposition 7.3.4.4 follows immediately from
Proposition 7.3.4.1. To prove the converse, it will be convenient to again translate to a
question about the inclusion map K ↪→ K ⋆C C, which we will address in a more general form.
First, we need a variant of Corollary 7.1.6.6.

Lemma 7.3.4.5.02ZR Let δ : K → C be a cocartesian fibration of simplicial sets, let U : D → E
be an isofibration of ∞-categories, let C0 ⊆ C be a simplicial subset which contains every
vertex of C, and set K0 = C0×C K. Suppose we are given a lifting problem

02ZS K
∐
K0(K0 ⋆C0 C0) F0 //

��

D

U

��
K ⋆C C //

99

E

(7.14)

which satisfies the following condition:

(∗) Let σ : ∆n → C be an n-simplex which is not contained in C0 and set C = σ(0). Then
the composite map

K▷C ≃ KC ⋆{C}{C} ↪→ K0 ⋆C0 C0
F0−→ D

is a U -colimit diagram in the ∞-category D.

Then the lifting problem (7.14) admits a solution.

Proof. Without loss of generality, we may assume that C is an ∞-category (working one
simplex at a time, we could even assume that C = ∆m is a standard simplex and that
C0 = ∂∆m is its boundary). Set K = K ⋆C C, so that δ extends to a map

δ : K = K ⋆C C → C ⋆C C ≃ ∆1 × C → C .

Since δ is a cocartesian fibration, Lemma 5.2.3.17 guarantees that δ is also a cocartesian

https://kerodon.net/tag/02ZR
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fibration. Applying Corollary 5.3.6.8, we obtain a commutative diagram of ∞-categories

02ZTFun(K/ C,D) //

U◦

��

T

##

Fun(K / C,D)

U◦

��

zzC

Fun(K/ C, E) //

;;

Fun(K / C, E),

dd (7.15)

where the diagonal arrows are cartesian fibrations and the morphisms on the outside of
the diagram preserve cartesian morphisms. Applying Proposition 5.1.4.20, we see that the
induced map

T ′ : Fun(K / C,D))×Fun(K / C,E) Fun(K/ C, E)→ C

is also a cartesian fibration, and that the outer square of the diagram (7.15) determines a
functor

V : Fun(K/ C,D)→ Fun(K / C,D))×Fun(K / C,E) Fun(K/ C, E)→ C

which carries T -cartesian morphisms to T ′-cartesian morphisms.
We next claim that V is an isofibration. Fix a monomorphism of simplicial sets i : A ↪→ B

which is also a categorical equivalence; we wish to show that every diagram

A //

��

Fun(K/ C,D)

V

��
B //

66

Fun(K / C,D))×Fun(K / C,E) Fun(K/ C, E)

admits a solution. Note that this lifting problem determines a morphism of simplicial sets
B → C. Invoking the universal property of Proposition 4.5.9.5, we can rewrite this as a
lifting problem

(A×C K)∐(A×CK)(B ×C K) //

��

D

U

��
B ×C K

88

// E .

https://kerodon.net/tag/02ZT
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Since U is an isofibration, it will suffice to show that the left vertical map is a categorical
equivalence of simplicial sets, or equivalently that the diagram

A×C K //

��

B ×C K

��
A×C K // B ×C K

is a categorical pushout square (Proposition 4.5.4.11). This follows from Proposition 4.5.4.10,
since the horizontal maps are categorical equivalences (Corollary 5.6.7.6).

Unwinding the definitions, we can rewrite (7.14) as a lifting problem

C0
G0 //

��

Fun(K/ C,D)

V

��
C //

66

Fun(K / C,D))×Fun(K / C,E) Fun(K/ C, E).

By virtue of Corollary 7.1.6.6, to show that this lifting problem admits a solution, it will
suffice to verify the following:

(∗′) Let σ : ∆n → C be an n-simplex which is not contained in C0 and set C = σ(0). Then
G0(C) is a V -initial object of the ∞-category Fun(K/ C,D).

Unwinding the definitions, we see that the functor T−1{C} → T ′−1{C} induced by V can
be identified with the restriction map

VC : Fun(K▷C ,D)→ Fun(KC ,D)×Fun(KC ,E) Fun(K▷C , E).

Combining assumption (∗) with Proposition 7.1.6.3, we see that G0(C) is a VC-initial object
of the ∞-category Fun(K▷

C ,D). Proposition 7.1.4.19 then guarantees that G0(C) is also
V -initial when regarded as an object of the ∞-category Fun(K/ C,D).

Lemma 7.3.4.6.02ZU Let δ : K → C be a cocartesian fibration of simplicial sets, let U : D → E
be an isofibration of ∞-categories, and suppose we are given a lifting problem

02ZV K F0 //

��

D

U

��
K ⋆C C

F

==

G // E

(7.16)

https://kerodon.net/tag/02ZU
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with the following property:

(∗) For each vertex C ∈ C, the induced lifting problem

KC //

��

D

U

��
KC ⋆{C}{C}

FC

;;

// E

admits a solution FC : K▷C → D which is a U -colimit diagram.

Then (7.16) admits a solution F : K ⋆C C → D satisfying F |X▷
C

= FC for each vertex C ∈ C.

Proof. Let C0 = sk0(C) be the 0-skeleton of C and set K0 = C0×C K = ∐
C∈C KC , so that we

can amalgamate F0 with the morphisms {FC}C∈C to obtain a map F1 : K∐
K0(K0 ⋆C0 C0)→

D. To prove Lemma 7.3.4.6, we must show that the lifting problem

K
∐
K0(K0 ⋆C0 C0) F1 //

��

D

U

��
C ⋆C C

99

G // E

has a solution, which is a special case of Lemma 7.3.4.5.

Proposition 7.3.4.7. 02ZWLet δ : K → C be a cocartesian fibration of∞-categories, let U : D → E
be an isofibration of ∞-categories, and suppose we are given a lifting problem

02ZXK F0 //

��

D

U

��
K ⋆C C

F

<<

// E .

(7.17)

The following conditions are equivalent:

(1) The lifting problem (7.17) has a solution F : K ⋆C C → D which is U -left Kan extended
from K.
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(2) For every object C ∈ C, the associated lifting problem

KC //

��

D

U

��
K▷C

>>

// E

has a solution K▷C → D which is a U -colimit diagram.

Proof. Combine Lemma 7.3.4.6 with Proposition 7.3.4.3.

Corollary 7.3.4.8.02ZY Let δ : K → C be a cocartesian fibration of ∞-categories and let
F0 : K → D be a functor of ∞-categories. The following conditions are equivalent:

(1) There exists a functor F : K ⋆C C → D which is left Kan extended from K and satisfies
F |K = F0.

(2) For every object C ∈ C, the diagram

KC = {C} ×C K ↪→ K
F0−→ D

admits a colimit in the ∞-category D.

Proof of Proposition 7.3.4.4. Let δ : K → C be a cocartesian fibration of ∞-categories and
let F0 : K → D be a functor of ∞-categories. Suppose that, for every object C ∈ C, the
diagram

KC = {C} ×C K ↪→ K
F0−→ D

has a colimit in the ∞-category D. Applying Corollary 7.3.4.8, we deduce that there exists a
functor F : K ⋆C C → D which is left Kan extended from K and satisfies F |K = F0. Applying
Proposition 7.3.1.15, we see that the restriction F |C is a left Kan extension of F0 along δ.

7.3.5 Existence of Kan Extensions

02ZZ Our goal in this section is to establish the following existence criterion for Kan extensions:

Proposition 7.3.5.1.0300 Let C and D be ∞-categories, and suppose we are given diagrams
δ : K → C and F0 : K → D. Then:

• The diagram F0 admits a left Kan extension along δ if and only if, for every object
C ∈ C, the diagram

K/C = K ×C C/C → K
F0−→ D

has a colimit in the ∞-category D.

https://kerodon.net/tag/02ZY
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• The diagram F0 admits a right Kan extension along δ if and only if, for every object
C ∈ C, the diagram

KC/ = K ×C CC/ → K
F0−→ D

has a limit in the ∞-category D.

Corollary 7.3.5.2. 0301Let C and D be ∞-categories and let δ : K → C be a diagram. Assume
that, for every object C ∈ C, the ∞-category D admits K/C-indexed colimits. Then every
diagram F0 : K → D admits a left Kan extension along δ.

Corollary 7.3.5.3. 039TLet C be a category, let G : C → Set∆ be a diagram of simplicial sets,
let D be an ∞-category, and let F0 : holim

−→
(G )→ D be a diagram. The following conditions

are equivalent:

(1) The diagram F0 admits a left Kan extension along the projection map U : holim
−→

(G )→
N•(C).

(2) For every object C ∈ C, the diagram

G (C) ≃ {C} ×N•(C) holim
−→

(G ) ↪→ holim
−→

(G ) F0−→ D

admits a colimit in the ∞-category D.

Proof. For each object C ∈ C, the inclusion map

G (C) ↪→ N•(C/C)×N•(C) holim
−→

(G ) ≃ holim
−→

(G |C/C
)

is right anodyne (Example 7.2.3.11), and therefore right cofinal. The desired result now
follows by combining Proposition 7.3.5.1 with Corollary 7.2.2.10.

Remark 7.3.5.4. 039UIn the situation of Corollary 7.3.5.3, suppose we are given a functor
F : N•(C)→ D and a natural trnasformation β : F0 → F ◦ U . Then β exhibits F as a left
Kan extension of F along U if and only if, for every object C ∈ C, the induced natural
transformation βC : F0|G (C) → F (C) exhibits F (C) as a colimit of the diagram F0|G (C)

In the special case where δ is a cocartesian fibration, Proposition 7.3.5.1 is essentially a
reformulation of Proposition 7.3.4.4. We will proceed in general by reducing to this special
case (see [52] for a similar approach). With an eye toward future applications, we first
consider a variant of Proposition 7.3.5.1 in the setting of relative Kan extensions.
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Proposition 7.3.5.5.0302 Let C be an∞-category, let C0 ⊆ C be a full subcategory, let U : D → E
be an isofibration of ∞-categories, and suppose we are given a lifting problem

0303 C0 F0 //

��

D

U

��
C G //

F

??

E

(7.18)

Then (7.18) admits a solution F : C → D which is U -left Kan extended from C0 if and only
if, for every object C ∈ C, the following condition is satisfied:

(∗C) The induced lifting problem

0304 C0
/C

//

��

D

U

��
(C0
/C)▷ //

FC

77

C G // E

(7.19)

admits a solution FC : (C0
/C)▷ → D which is a U -colimit diagram.

Proof. Assume that condition (∗C) is satisfied for every object C ∈ C; we will show that
the lifting problem (7.18) admits a solution F : C → D which is U -left Kan extended from
C0 (the converse follows immediately from the definitions). Let K denote the oriented fiber
product C0 ×̃C C: that is, the full subcategory of Fun(∆1, C) spanned by those morphisms
e : X → Y of C such that X belongs to the subcategory C0. Let π : K → C0 and π′ : K → C
be the evaluation maps, given on objects by π(e) = X and π′(e) = Y , respectively. We
then have a natural transformation α : π → π′ (which carries each morphism e : X → Y

to itself). Regarding K as an object of (Set∆)/ C via the functor π′, let K ⋆C C denote the
relative join of Construction 5.2.3.1. We will write ιK : K ↪→ K ⋆C C and ιC : C ↪→ K ⋆C C for
the inclusion maps, and ιC0 for the restriction of ιC to the full subcategory C0 ⊆ C. The
natural transformation α then determines a functor S : K ⋆C C → C satisfying S ◦ ιK = π

and S ◦ ιC = idC . Consider the lifting problem

0305 K F0◦π //

��

D

U

��
K ⋆C C S //

F

66

C G // E .

(7.20)
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For each object C ∈ C, write KC for the fiber π′−1{C}, so that (7.20) restricts to a lifting
problem

0306KC //

��

D

U

��
KC ⋆{C}{C}

FC

;;

// E .

(7.21)

Note that KC can be identified with the oriented fiber product C0 ×̃C{C}. Moreover, after
precomposing with the slice diagonal equivalence C0

/C → C
0 ×̃C{C} of Theorem 4.6.4.17,

(7.21) recovers the lifting problem (7.19). Combining assumption (∗C) with Proposition
7.2.2.9, we deduce that the lifting problem (7.21) admits a solution FC : K▷C → D which is a
U -colimit diagram. Since π′ : K → C is a cocartesian fibration (Corollary 5.3.7.3), Proposition
7.3.4.7 guarantees that the lifting problem (7.20) admits a solution F : K ⋆C C → D which is
U -left Kan extended from K.

Note that the diagonal inclusion C ↪→ Fun(∆1, C) restricts to a map δ : C0 ↪→ K. Let β
denote the composite map

∆1 × C0 ≃ C0 ⋆C0 C0 δ⋆id−−→ K ⋆C C,

which we regard as a natural transformation from ιK ◦ δ to ιC0 . This natural transformation
carries each object X ∈ C0 to a morphism βX : ιK(idX)→ ιC(X) in the ∞-category K ⋆C C.
Since idX is a final object of the ∞-category KX ≃ C0 ×̃C0{X} (Proposition 4.6.7.22) and
F |K▷

X
is a U -colimit diagram (Proposition 7.3.4.3), the image F (βX) is a U -cocartesian

morphism of D (Corollary 7.2.2.5). Since U(F (βX)) = idG(X) is an isomorphism in E , we
conclude that F (βX) is an isomorphism in D. Applying Corollary 4.4.5.9, we deduce that
F (β) can be lifted to an isomorphism F → F ◦ ιC in the ∞-category Fun(C,D), where
F : C → D is a solution to the lifting problem (7.18). We will show F ◦ ιC is U -left Kan
extended from C0, so that F is also U -left Kan extended from C0 (Remark 7.3.3.17).

Fix an object C ∈ C, let c : (C0
/C)▷ → C be the slice contraction map and set T+ = ιC ◦ c;

we wish to show that T+ : (C0
/C)▷ → D is a U -colimit diagram. Let ψ : C/C ↪→ C ×̃C{C} be

the slice diagonal of Construction 4.6.4.13. Note that ψ is an equivalence of right fibrations
over C (Theorem 4.6.4.17 and Proposition 5.1.7.5), and therefore restricts to an equivalence
of full subcategories ψ0 : C0

/C → C
0 ×̃C{C} = KC . Let T− denote the composite functor

(C0
/C)▷

ψ▷
0−→ K▷C = KC ⋆{C}{C} ↪→ K ⋆C C .

Because F is U -left Kan extended from K, the F |K▷
C

is a U -colimit diagram in D (Proposition
7.3.4.3). Since the functor ψ0 is right cofinal (Corollary 7.2.1.13), the functor F ◦ T− is also
a U -colimit diagram (Corollary 7.2.2.2). Beware that the functors T−, T+ : (C0

/C)▷ → K ⋆C C

https://kerodon.net/tag/0306
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are not isomorphic: if X̃ is an object of the∞-category C/C given by a morphism e : X → C

in C, then we have T+(X̃) = ιC(X) and T−(X̃) = ιK(e). However, we will show that the
functors F ◦ T− and F ◦ T+ are isomorphic when regarded as objects of the ∞-category
Fun((C0

/C)▷,D), so that F ◦G+ a U -colimit diagram by virtue of Proposition 7.1.5.13.
Let b : (C0

/C)▷ → ∆1 be the map carrying C0
/C to the vertex 0 ∈ ∆1 and the cone point

of (C0
/C)▷ to the vertex 1 ∈ ∆1. Note that the map (b, c) : (C0

/C)▷ → ∆1 × C factors through
the full subcategory

C0 ⋆C C ⊆ C ⋆C C ⊆ ∆1 × C .

We let T : (C0
/C)▷ → K ⋆C C denote the composite functor

(C0
/C)▷ (b,c)−−→ C0 ⋆C C

δ⋆id−−→ K ⋆C C .

Concretely, the functor T carries the cone point of (C0
/C)▷ to the object ιC(C) ∈ K ⋆C C, and

carries an object (e : X → C) of C0
/C to the object ιK(idX) ∈ K ⋆C C. We will complete the

proof by verifying the following:

(a) There exists a natural transformation of functors γ+ : T → T+, which carries the cone
point of (C0

/C)▷ to the identity morphism ιC(idC), and carries each object (e : X →
C) ∈ C0

/C to the morphism βX .

(b) There exists a natural transformation of functors γ− : T → T−, which carries the cone
point of (C0

/C)▷ to the identity morphism ιC(idC) and carries each object (e : X → C)
to the morphism of K ⊆ Fun(∆1, C) given by a commutative diagram

X
idX //

idX

��

X

e

��
X

e // C

in the ∞-category C.

Assuming this has been done, we observe that the natural transformations F (γ−) and F (γ+)
carry each object of (C0

/C)▷ to an isomorphism in the ∞-category D and therefore supply

isomorphisms F ◦ T− ∼←− F ◦ T |sim−−−→ F ◦ T+ in the ∞-category Fun((C0
/C)▷,D).

We begin by constructing the natural transformation γ+. Let b′ : (C0
/C)▷ → ∆1 be

the constant map taking the value 1, so that there is a unique natural transformation
ξ : b → b′. Note that ξ induces a natural transformation from (b, c) to (b′, c) in the ∞-
category Fun((C0

/C)▷, C0 ⋆C C). Composing with the map (δ ⋆ id) : C0 ⋆C C → K ⋆C C, we
obtain a natural transformation γ+ : T → T+ satisfying the requirements of (a).
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We now construct the natural transformation γ−. Note that T and T− both carry C0
/C

into K and the cone point of (C0
/C)▷ to the object ιC(C) and can therefore be identified with

functors T0, T
−
0 : C0

/C → K×C C/C . Let σ be an n-simplex of the product ∆1×C0
/C , which we

identify with a pair (ϵ, τ) where ϵ : [n]→ [1] is a nondecreasing function and τ : ∆n+1 → C
has the property that τ |∆n factors through C0 and τ(n+ 1) = C. Let ρ : ∆1 ×∆n → ∆n+1

and ρ′ : ∆n+1 → ∆n+1 denote the maps given on vertices by the formulae

ρ(i, j) =

n+ 1 if i = 1 = ϵ(j)
j otherwise

ρ′(j) =

j if j ≤ n and ϵ(j) = 0
n+ 1 otherwise.

Then (ρ ◦ τ) : ∆1 × ∆n → C can be identified with an n-simplex of the simplicial set
K ⊆ Fun(∆1, C), so that (ρ ◦ τ, ρ′ ◦ τ) is an n-simplex of K×C C/C . The construction
σ 7→ (ρ ◦ τ, ρ′ ◦ τ) depends functorially on [n], and therefore determines a morphism of
simplicial sets

∆1 × C0
/C → K×C C/C

We can identify this map with a natural transformation γ−0 : T0 → T−0 , which then determines
a natural transformation γ− : T → T− satisfying the requirements of (b).

Example 7.3.5.6. 043HLet U : D → E be an isofibration of ∞-categories and let G : C → E be
a functor. Suppose that, for every object C ∈ C, the image G(C) ∈ E can be lifted to a
U -initial object of D. Applying Proposition 7.3.5.5 (in the special case C0 = ∅), we deduce
that G can be lifted to a functor F : C → D which carries each object of C to a U -initial
object of D (see Example 7.3.3.6).

Corollary 7.3.5.7. 043JLet U : D → C be a cartesian fibration of ∞-categories. Suppose that,
for every object C ∈ C, the fiber DC = {C} ×C D has an initial object. Then the ∞-category
Fun/ C(C, E) has an initial object. Moreover, an object F ∈ Fun/ C(C,D) is initial if and only
if it satisfies the following condition:

(∗) For each object C ∈ C, the image F (C) is an initial object of DC .

Proof. Since U is a cartesian fibration, an object D ∈ D is U -initial if and only if it is initial
when viewed as an object of the∞-category DC for C = U(D) (Corollary 7.1.4.21). It follows
from Example 7.3.5.6 that there exists a functor F ∈ Fun/ C(C,D) which satisfies condition
(∗). Proposition 7.1.6.9 then guarantees that F is an initial object of Fun/ C(C,D). Any
other initial object of Fun/ C(C,D) is isomorphic to F , and therefore also satisfies condition
(∗).

Corollary 7.3.5.8. 0307Let C be an ∞-category, let C0 ⊆ C be a full subcategory, let F0 : C0 → D
be a functor of ∞-categories. Then:
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• The functor F0 admits a left Kan extension F : C → D if and only if, for every object
C ∈ C, the diagram

C0×C C/C → C0 F0−→ D

has a colimit in the ∞-category D.

• The functor F0 admits a right Kan extension F : C → D if and only if, for every object
C ∈ C, the diagram

C0×C CC/ → C0 F0−→ D

has a limit in the ∞-category D.

Proof. The first assertion follows by applying the criterion of Proposition 7.3.5.5 in the
special case E = ∆0, and the second assertion follows by a similar argument.

Corollary 7.3.5.9.047U Let C be an ∞-category, let C0 ⊆ C be a coreflective full subcategory
and let U : D → E be an isofibration of ∞-categories. Suppose we are given a lifting problem

039W C0 F0 //

��

D

U

��
C G //

F

>>

E .

(7.22)

The following conditions are equivalent:

(1) The lifting problem (7.22) admits a solution F which is U -left Kan extended from C0.

(2) For every morphism u : C ′ → C of C which exhibits C ′ as a C0-coreflection of C, the
image G(u) can be lifted to a U -cocartesian morphism F0(C ′)→ D of D.

Proof. Fix an object C ∈ C, and choose a morphism u : C ′ → C which exhibits C ′ as a
C0-coreflection of C. By virtue of Proposition 7.3.5.5, it will suffice to show that the lifting
problem

C0
/C

//

��

D

U

��
(C0
/C)▷ //

FC

77

C G // E

admits a solution which is a U -colimit diagram if and only if G(u) can be lifted to a U -
cocartesian morphism F0(C ′) → D. This follows from Corollary 7.2.2.14, since u is final
when viewed as an object of the ∞-category C0

/C .

https://kerodon.net/tag/047U
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Corollary 7.3.5.10. 039VLet C be an ∞-category, let C0 ⊆ C be a coreflective full subcategory,
and let U : D → E be a cocartesian fibration of ∞-categories. Then every lifting problem

C0 F0 //

��

D

U

��
C G //

F

??

E

admits a solution F : C → D which is U -left Kan extended from C0.

Corollary 7.3.5.11. 043KLet C be an ∞-category which has an initial object and let U : D → E
be a cocartesian fibration of ∞-categories. Then every lifting problem

Cinit F0 //

��

D

U

��
C G //

F

>>

E

admits a solution F : C → D which is U -left Kan extended from the full subcategory Cinit ⊆ C
spanned by the initial objects.

Proof. Combine Corollary 7.3.5.10 with Example 6.2.2.5.

Proof of Proposition 7.3.5.1. Let C and D be ∞-categories, and suppose we are given di-
agrams δ : K → C and F0 : K → D with the property that, for every object C ∈ C, the
composite map

K/C = K ×C C/C → K
F0−→ D

has a colimit in the ∞-category D. We wish to show that F0 has a left Kan extension along
δ (the converse assertion is immediate from the definitions, and the analogous assertion for
right Kan extensions will follow by a similar argument). Using Corollary 4.1.3.3, we can
choose an inner anodyne morphism ι : K ↪→ K, where K is an∞-category. Since C and D are
∞-categories, we can extend δ and F0 to functors δ : K → C and F 0 : K → D, respectively
(Proposition 4.1.3.1). For every object C ∈ C, the induced map K ×C C/C ↪→ K×C C/C is a
categorical equivalence (Corollary 5.6.7.6), and therefore right cofinal (Corollary 7.2.1.13).
Applying Proposition 7.2.2.9, we deduce that the composite map

K×C C/C → K
F 0−−→ D

https://kerodon.net/tag/039V
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has a colimit in D. Corollary 7.3.5.8 now guarantees that the functor F 0 admits a left Kan
extension F : K ⋆C C → D. Set F = F |C . Applying Proposition 7.3.2.11, we obtain a natural
transformation β : F 0 → F ◦ δ which exhibits F as a left Kan extension of F 0 along δ.
Since ι is a categorical equivalence, it follows that β restricts to a natural transformation
F0 → F ◦ δ which exhibits F as a left Kan extension of F0 along δ (Proposition 7.3.1.14).

7.3.6 The Universal Property of Kan Extensions

0308 The goal of this section is to show that Kan extensions (when they exist) can be
characterized by a universal mapping property.

Proposition 7.3.6.1.0309 Let F : C → D be a functor of ∞-categories, let δ : K → C and
F0 : K → D be diagrams, and let β : F0 → F ◦ δ be a natural transformation which exhibits
F as a left Kan extension of F0 along δ. Then, for every functor G : C → D, the composite
map

HomFun(C,D)(F,G)→ HomFun(K,D)(F ◦ δ,G ◦ δ)
◦[β]−−→ HomFun(K,D)(F0, G ◦ δ)

is a homotopy equivalence of Kan complexes.

We will give the proof of Proposition 7.3.6.1 at the end of this section.

Warning 7.3.6.2.030A In classical category theory, some authors take the universal property
of Proposition 7.3.6.1 as the definition of a Kan extension. Beware that this is a slightly
different notion in general: it is possible for a natural transformation β : F0 → F ◦ δ to
satisfy the universal property of Proposition 7.3.6.1 without exhibiting F as a left Kan
extension of F0 along δ (in which case F0 cannot admit any other left Kan extension along
δ; see Corollary 7.3.6.5).

Corollary 7.3.6.3.030B Let C and D be ∞-categories, and let δ : K → C be a diagram. Suppose
that every diagram F0 : K → D has a left Kan extension along δ. Then the restriction
functor

Fun(C,D) ◦δ−→ Fun(K,D)

has a left adjoint, which carries each diagram F0 : K → D to a left Kan extension of F0
along δ.

Proof. Combine Propositions 7.3.6.1 and 6.2.4.1.

Corollary 7.3.6.4.030C Let C and D be ∞-categories and let δ : K → C be a diagram. Suppose
that, for every object C ∈ C, the ∞-category D admits colimits indexed by the simplicial set
K/C = K ×C C/C . Then the restriction functor

Fun(C,D) ◦δ−→ Fun(K,D)
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has a left adjoint, which carries each diagram F0 : K → D to a left Kan extension of F0
along δ.

Proof. Combine Corollaries 7.3.6.3 and 7.3.5.2.

Corollary 7.3.6.5. 030DLet C and D be ∞-categories equipped with diagrams δ : K → C and
F0 : K → D, and suppose that F0 admits a left Kan extension along δ. Let F : C → D be a
functor and let β : F0 → F ◦ δ be a natural transformation. The following conditions are
equivalent:

(1) The natural transformation β exhibits F as a left Kan extension of F0 along δ.

(2) For every functor G : C → D, the composite map

HomFun(C,D)(F,G)→ HomFun(K,D)(F ◦ δ,G ◦ δ)
◦[β]−−→ HomFun(K,D)(F0, G ◦ δ)

is a homotopy equivalence of Kan complexes.

(3) For every functor G : C → D, the composite map

HomhFun(C,D)(F,G)→ HomhFun(K ,D)(F ◦ δ,G ◦ δ))
◦[β]−−→ HomhFun(K ,D)(F0, G ◦ δ)

is a bijection of sets.

Proof. The implication (1) ⇒ (2) follows from Proposition 7.3.6.1 and the implication
(2) ⇒ (3) is immediate. We will complete the proof by showing that (3) ⇒ (1). By
assumption, there exists a functor F ′ : C → D and a natural transformation β′ : F0 → F ′ ◦ δ
which exhibits F ′ as a left Kan extension of F along δ. Applying Proposition 7.3.6.1, we
deduce that there exists a natural transformation γ : F ′ → F for which β is a composition of
β′ with the induced transformation γ|K : (F ′ ◦ δ)→ (F ◦ δ). For each object G ∈ Fun(C,D),
we have a commutative diagram

HomhFun(C,D)(F,G) ◦[γ] //

((

HomhFun(C,D)(F ′, G)

vv
HomhFun(K ,D)(F0, G ◦ δ),

where the right vertical map is bijective. If condition (3) is satisfied, then the left vertical
map is also bijective. Allowing the functor G to vary, it follows that the homotopy class [γ]
is an isomorphism in the homotopy category hFun(C,D), so that γ is an isomorphism in
Fun(C,D). Invoking Remark 7.3.1.12, we conclude that β exhibits F as a left Kan extension
of F0 along δ.

https://kerodon.net/tag/030D
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Remark 7.3.6.6.030E Let C and D be ∞-categories equipped with diagrams δ : K → C and
F0 : K → D. It follows from Corollary 7.3.6.5 that if F0 admits a left Kan extension
F : C → D along δ, then the isomorphism class of the functor F is uniquely determined: it
is characterized by the requirement that it corepresents the functor

hFun(C,D)→ Set G 7→ HomhFun(K ,D)(F0, G ◦ δ).

We will deduce Proposition 7.3.6.1 from a more general statement about relative Kan
extensions.

Proposition 7.3.6.7.030F Let C be an ∞-category, let U : D → E be a functor of ∞-categories,
and let C0 ⊆ C be a full subcategory. Let F,G : C → D be functors having restrictions
F0 = F |C0 and G0 = G|C0, so that we have a commutative diagram of Kan complexes

030G HomFun(C,D)(F,G) //

��

HomFun(C0,D)(F0, G0)

��
HomFun(C,E)(U ◦ F,U ◦G) // HomFun(C0,E)(U ◦ F0, U ◦G0).

(7.23)

If F is U -left Kan extended from C0 or G is U -right Kan extended from C0, then (7.23) is a
homotopy pullback square.

Remark 7.3.6.8.030H In the situation of Proposition 7.3.6.7, the horizontal maps in the diagram
(7.23) are Kan fibrations (Corollary 4.1.4.2 and Proposition 4.6.1.21). Consequently, the
diagram (7.23) is a homotopy pullback square if and only if the induced map

HomFun(C,D)(F,G)

θ

��
HomFun(C0,D)(F0, G0)×HomFun(C0,E)(UF0,UG0) HomFun(C,E)(UF,UG)

is a homotopy equivalence (Example 3.4.1.3). Writing M for the fiber product

Fun(C0,D)×Fun(C0,E) Fun(C, E)

and V : Fun(C,D)→M for the functor given by V (H) = (H|C0 , U ◦H), we can identify θ
with the map HomFun(C,D)(F,G)→ HomM(V (F ), V (G)) determined by V . We can therefore
restate Proposition 7.3.6.7 as follows:

• If the functor F : C → D is U -left Kan extended from C0 ⊆ C, then it is V -initial when
viewed as an object of the ∞-category Fun(C,D).
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• If the functor G : C → D is U -right Kan extended from C0 ⊆ C, then it is V -final when
viewed as an object of the ∞-category Fun(C,D).

Proof of Proposition 7.3.6.7. We will assume that the functor F is U -left Kan extended
from C0 (the proof in the case where G is U -right Kan extended from C0 is similar). Using
Corollary 4.5.2.23, we can factor the functor U as a composition D T−→ D′ U

′
−→ E , where U ′

is an isofibration and T is an equivalence of ∞-categories. Note that the functor T ◦ F is
U ′-left Kan extended from C0 (Remark 7.3.3.15), and that the natural maps

HomFun(C,D)(F,G)→ HomFun(C,D′)(T ◦ F, T ◦G)

HomFun(C0,D)(F0, G0)→ HomFun(C0,D′)(T ◦ F0, T ◦G0)

are homotopy equivalences. Consequently, we can replace D by D′ and thereby reduce to
proving Proposition 7.3.6.7 in the special case where the functor U : D → E is an isofibration
of ∞-categories.

Let V : Fun(C,D)→ Fun(C0,D)×Fun(C0,E) Fun(C, E) be as in Remark 7.3.6.8; we wish
to show that F is a V -initial object of the ∞-category Fun(C,D). Note that V is also an
isofibration (Proposition 4.4.5.1). By virtue of Corollary 7.1.4.17, it will suffice to show that
every lifting problem

030J∂∆n σ0 //

��

Fun(C,D)

V

��
∆n

77

// Fun(C0,D)×Fun(C0,E) Fun(C, E)

(7.24)

has a solution, provided that n ≥ 0 and σ0(0) = F . Unwinding the definitions, we can
rewrite (7.24) as a lifting problem

030KC0 G0 //

��

Fun(∆n,D)

V ′

��
C

G

66

// Fun(∂∆n,D)×Fun(∂∆n,E) Fun(∆n, E)

(7.25)

Note that V ′ is also an isofibration of ∞-categories (Proposition 4.4.5.1).
We will complete the proof by showing that the lifting problem (7.25) admits a solution

G : C → Fun(∆n,D) which is V ′-left Kan extended from C0. By virtue of Proposition 7.3.5.5,
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it will suffice to show that for each object C ∈ C, the induced lifting problem

030L C0
/C

//

��

Fun(∆n,D)

V ′

��
(C0
/C)▷

Q

66

// Fun(∂∆n,D)×Fun(∂∆n,E) Fun(∆n, E)

(7.26)

admits a solution Q : (C0
/C)▷ → Fun(∆n,D) which is a V ′-colimit diagram. Our assumption

that σ0(0) = F is U -left Kan extended from C0 guarantees that the composite map

(C0
/C)▷ → Fun(∂∆n,D)→ Fun({0},D) = D

is a U -colimit diagram. Applying Corollary 7.1.6.6, we conclude that the lifting problem
(7.26) admits a solution Q, and Proposition 7.1.6.9 guarantees that Q is automatically a
V ′-colimit diagram.

Corollary 7.3.6.9.030M Let F,G : C → D be functors of ∞-categories and let C0 ⊆ C be a full
subcategory. If F is left Kan extended from C0 or G is right Kan extended from C0, then the
restriction map

θ : HomFun(C,D)(F,G)→ HomFun(C0,D)(F |C0 , G|C0)

is a trivial Kan fibration.

Proof. Let F,G : C → D be functors of ∞-categories and let C0 be a full subcategory of C.
Assume either that F is left Kan extended from C0 or that G is right Kan extended from C0.
Applying Proposition 7.3.6.7 in the special case E = ∆0, we deduce that the restriction map

θ : HomFun(C,D)(F,G)→ HomFun(C0,D)(F |C0 , G|C0)

is a homotopy equivalence of Kan complexes. Since the restriction map Fun(C,D) →
Fun(C0,D) is an inner fibration of ∞-categories (Corollary 4.1.4.2), the map θ is also a
Kan fibration (Proposition 4.6.1.21), and therefore a trivial Kan fibration (Proposition
3.3.7.6).

Corollary 7.3.6.10.043M Let C be an∞-category containing an initial object C, let U : D → E be
a cocartesian fibration of ∞-categories, and let F,G : C → D be a pair of functors satisfying
U ◦ F = U ◦G. Suppose that F carries each morphism of C to a U -cocartesian morphism of
D. Then evaluation at C induces a homotopy equivalence

θ : HomFun/ E(C,D)(F,G)→ HomFun/ E({C},D)(F (C), G(C)).

https://kerodon.net/tag/030L
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Proof. Let Cinit denote the full subcategory of C spanned by its initial objects. The morphism
θ then factors as a composition

HomFun/ E(C,D)(F,G) θ′−→ HomFun/ E(Cinit,D)(F |Cinit , G|Cinit)
θ′′−→ HomFun/ E({C},D)(F (C), G(C)).

Our assumption guarantees that F is U -left Kan extended from Cinit (Corollary 7.3.3.13),
so that the morphism θ′ is a homotopy equivalence (Proposition 7.3.6.7). Since Cinit is a
contractible Kan complex (Corollary 4.6.7.14), the inclusion map {C} ↪→ Cinit is a categorical
equivalence of simplicial sets, which implies that θ′′ is also a homotopy equivalence.

Corollary 7.3.6.11. 043NLet F : C → E be a functor of ∞-categories and let U : D → E be a
cocartesian fibration. Suppose that C contains an initial object C having image E = F (C) and
that the ∞-category DE = {E}×E D has an initial object. Then the ∞-category Fun/ E(C,D)
has an initial object. Moreover, an object F ∈ Fun/ E(C,D) is initial if and only if it satisfies
the following conditions:

(1) The image F (C) is an initial object of the ∞-category DE.

(2) The functor F carries each morphism of C to a U -cocartesian morphism of D.

Proof. It follows from Corollary 7.3.6.10 that any object of Fun/ E(C,D) which satisfies
conditions (1) and (2) is initial. It will therefore suffice to show that there exists an object
F ∈ Fun/ E(C,D) satisfying (1) and (2) (any other initial object of Fun/ E(C,D) will be
isomorphic to F , and will therefore also satisfy (1) and (2)).

Let Cinit denote the full subcategory of C spanned by its initial objects, and let D be an
initial object of the ∞-category DE . Since Cinit is a contractible Kan complex, we can lift
F |Cinit to a functor F0 : Cinit → D satisfying F0(C) = D. Corollary 7.3.5.11 then guarantees
that F0 admits a U -left Kan extension F ∈ Fun/ E(C,D), which satisfies condition (2) by
virtue of Corollary 7.3.3.13.

Note that relative Kan extensions are characterized by the mapping property described
in Proposition 7.3.6.7:

Corollary 7.3.6.12. 030NSuppose we are given a commutative diagram of ∞-categories

030PC0 F0 //

��

D

U

��
C F //

??

E

(7.27)
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where C0 is a full subcategory of C. Assume that the lifting problem (7.27) admits a solution
given by a functor C → D which is U-left Kan extended from C0. Let F : C → D be an
arbitrary solution to the lifting problem (7.27). Then the following conditions are equivalent:

(1) The functor F is U -left Kan extended from C0.

(2) For every functor G : C → D, the diagram of Kan complexes

HomFun(C,D)(F,G) //

��

HomFun(C0,D)(F |C0 , G|C0)

��
HomFun(C,E)(U ◦ F,U ◦G) // HomFun(C0,E)(U ◦ F |C0 , U ◦G|C0).

is a homotopy pullback square.

Proof. The implication (1)⇒ (2) follows from Proposition 7.3.6.7. To prove the converse,
let F ′ : C → D be a solution to the lifting problem (7.27) which is U -left Kan extended
from C0, and let V : Fun(C,D)→ Fun(C0,D)×Fun(C0,E) Fun(C, E) be as in Remark 7.3.6.8.
If condition (2) is satisfied, then F and F ′ are both V -initial objects of Fun(C,D) satisfying
V (F ) = V (F ′). Applying Corollary 7.1.4.12, we see that F and F ′ are isomorphic as objects
of the ∞-category Fun(C,D), so that F is also U -left Kan extended from C0 (Remark
7.3.3.17).

Corollary 7.3.6.13.030Q Let F : C → D be a functor of ∞-categories, and let F0 = F |C0 be the
restriction of F to a full subcategory C0 ⊆ C. Suppose that the functor F0 admits a left Kan
extension to C. The following conditions are equivalent:

(1) The functor F is left Kan extended from C0.

(2) For every functor G : C → D, the restriction map

θ : HomFun(C,D)(F,G)→ HomFun(C0,D)(F |C0 , G|C0)

is a homotopy equivalence of Kan complexes.

(3) For every functor G : C → D, the restriction map

θ : HomFun(C,D)(F,G)→ HomFun(C0,D)(F |C0 , G|C0)

is a trivial Kan fibration of simplicial sets.

https://kerodon.net/tag/030Q
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Proof. The equivalence (1) ⇔ (2) follows by applying Corollary 7.3.6.12 in the special
case E = ∆0. The equivalence (2) ⇔ (3) is a special case of Proposition 3.3.7.6, since
the morphism θ is automatically a Kan fibration (see Corollary 4.1.4.2 and Proposition
4.6.1.21).

Combining Proposition 7.3.6.7 with the existence criterion of Proposition 7.3.5.5, we
obtain the following:

Theorem 7.3.6.14. 030RLet C be an ∞-category, let C0 ⊆ C be a full subcategory, and let
U : D → E be an isofibration of ∞-categories. Let Fun′(C,D) denote the full subcategory
of Fun(C,D) spanned by those functors which are U-left Kan extended from C0, and let B
denote the full subcategory of Fun(C0,D) ×Fun(C0,E) Fun(C, E) whose objects correspond to
lifting problems

C0 //

��

D

U

��
C //

??

E
with the following property:

(∗) For every object C ∈ C, the induced lifting problem

C0
/C

//

��

D

U

��
(C0
/C)▷

>>

// E

admits a solution which is a U -colimit diagram (C0
/C)▷ → D.

Then the restriction map

V : Fun(C,D)→ Fun(C0,D)×Fun(C0,E) Fun(C, E)

restricts to a trivial Kan fibration Fun′(C,D)→ B.

Stated more informally, Theorem 7.3.6.14 asserts that if we are given a lifting problem

C0 //

��

D

U

��
C //

F

??

E

https://kerodon.net/tag/030R
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which has a possibility to be solved by a functor F : C → D which is U -left Kan extended
from C0, then the functor F exists and is unique up to a contractible space of choices.

Proof of Theorem 7.3.6.14. Note that the functor V is an isofibration of∞-categories (Propo-
sition 4.4.5.1). It follows from Proposition 7.3.5.5 that B is the essential image of the functor
V |Fun′(C,D), and from Proposition 7.3.6.7 (together with Remark 7.3.6.8) that every object of
Fun′(C,D) is V -initial when regarded as an object of Fun(C,D). Applying Corollary 7.1.4.18,
we see that the functor V |Fun(C,D) : Fun′(C,D)→ B is a trivial Kan fibration.

Corollary 7.3.6.15.030S Let C and D be ∞-categories and let C0 ⊆ C be a full subcategory. Let
Fun′(C,D) denote the full subcategory of Fun(C,D) spanned by those functors which are left
Kan extended from C0, and let Fun′(C0,D) denote the full subcategory of Fun(C0,D) spanned
by those functors F0 which satisfy the following condition:

(∗) For every object C ∈ C, the diagram

C0
/C = C0×C C/C → C0 F0−→ D

has a colimit in the ∞-category D.

Then the restriction map Fun′(C,D)→ Fun′(C0,D) is a trivial Kan fibration of simplicial
sets.

Proof. Apply Theorem 7.3.6.14 in the special case E = ∆0.

We now return to the proof of Proposition 7.3.6.1.

Proof of Proposition 7.3.6.1. Let F,G : C → D be functors of ∞-categories. Suppose we
are given a simplicial set K equipped with diagrams δ : K → C and F0 : K → D, together
with a natural transformation β : F0 → F ◦ δ which exhibits F as a left Kan extension of F0
along δ. Let θ denote the composite map

HomFun(C,D)(F,G)→ HomFun(K,D)(F ◦ δ,G ◦ δ)
◦[β]−−→ HomFun(K,D)(F0, G ◦ δ).

We wish to show that θ is a homotopy equivalence.
It follows from Corollary 4.1.3.3 that there exists an inner anodyne morphism K ↪→ K,

where K is an ∞-category. Since C and D are ∞-categories, we can extend δ and F0
to functors δ′ : K → C and F ′0 : K → D, respectively (Proposition 1.5.6.7). Moreover,
the restriction functor Fun(K,D) → Fun(K,D) is a trivial Kan fibration (Proposition
1.5.7.6). We can therefore extend β to a natural transformation β′ : F ′0 → F ◦ δ′, which
induces a map of Kan complexes θ′ : HomFun(C,D)(F,G) → HomFun(K,D)(F ′0, G ◦ δ′). By
construction, the map θ is obtained (up to homotopy) by composing θ′ with the restriction
map HomFun(K,D)(F ′0, G ◦ δ′) → HomFun(K,D)(F0, G ◦ δ), which is a trivial Kan fibration.

https://kerodon.net/tag/030S
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Consequently, to show that θ is a homotopy equivalence, it will suffice to show that θ′ is a
homotopy equivalence. We may therefore replace K by K and thereby reduce to proving
Proposition 7.3.6.1 in the special case where K = K is an ∞-category.

Let C denote the relative join K ⋆C C. Note that the definition of θ (as a morphism in
the homotopy category hKan) depends only on the homotopy class of β. We may therefore
assume without loss of generality that there exists a functor F : C → D for which F |K = F0,
F |C = F , and the natural transformation β is given by the composition

∆1 ×K ≃ K ⋆KK → K ⋆C C
F−→ D .

Let G : C → D denote the functor given by the composition

K ⋆C C → C ⋆C C ≃ ∆1 × C → C G−→ D .

Our assumption on β guarantees that F is left Kan extended from the full subcategory
K ⊆ C (Proposition 7.3.2.11). Applying Corollary 7.3.6.9, we deduce that precomposition
with the inclusion K ↪→ C determines a trivial Kan fibration

φ− : HomFun(C,D)(F ,G)→ HomFun(K,D)(F0, G ◦ δ).

We claim that G is right Kan extended from the full subcategory C ⊆ C. To prove this,
it will suffice to show that for every object X ∈ K, the functor G is right Kan extended from
C at X (see Proposition 7.3.3.7). Let eX : X → δ(X) denote the morphism in C given by
the edge

∆1 ≃ {X} ⋆{δ(X)} {δ(X)} ↪→ K ⋆C C = C.
Note that eX is cocartesian with respect to the projection map C → ∆1 (Proposition 5.2.3.15),
and therefore exhibits δ(X) as a C-reflection of X in the ∞-category C (Lemma 6.2.3.1).
It will therefore suffice to show that G carries eX to an isomorphism in the ∞-category
D, which is clear (by construction, G(eX) is the identity morphism idD for D = G(δ(X))).
Applying Corollary 7.3.6.9 again, we deduce that precomposition with the inclusion map
C ↪→ C determines a trivial Kan fibration

φ+ : HomFun(C,D)(F ,G)→ HomFun(C,D)(F,G).

Let φ± : HomFun(C,D)(F ,G) → HomFun(K,D)(F ◦ δ,G ◦ δ) be given by precomposition
with the functor K δ−→ C ↪→ C. Consider the diagram of Kan complexes

030THomFun(C,D)(F ,G)

φ+

vv

φ±

��

φ−

((
HomFun(C,D)(F,G) // HomFun(K,C)(F ◦ δ,G ◦ δ)

◦[β] // HomFun(K,D)(F0, G ◦ δ).
(7.28)

https://kerodon.net/tag/030T
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Note that the diagonal maps are homotopy equivalences, and the triangle on the left is
commutative. Consequently, to show that θ is a homotopy equivalence, it will suffice to
show that the triangle on the right commutes up to homotopy.

Let HomFun(K,D)(F0, F ◦ δ,G ◦ δ) be the Kan complex introduced in Notation 4.6.9.1.
To verify the homotopy commutativity of the right triangle in the diagram (7.28), it
will suffice to show that there is exists map of Kan complexes ρ : HomFun(C,D)(F ,G) →
HomFun(K,D)(F0, F ◦ δ,G ◦ δ) satisfying the following conditions:

• The composition

HomFun(C,D)(F ,G) ρ−→ HomFun(K,D)(F0, F ◦ δ,G ◦ δ)→ HomFun(K,D)(F0, F ◦ δ)

is the constant map taking the value β.

• The composition

HomFun(C,D)(F ,G) ρ−→ HomFun(K,D)(F0, F ◦ δ,G ◦ δ)→ HomFun(K,D)(F0, G ◦ δ)

is equal to φ−.

• The composition

HomFun(C,D)(F ,G) ρ−→ HomFun(K,D)(F0, F ◦ δ,G ◦ δ)→ HomFun(K,D)(F ◦ δ,G ◦ δ)

is equal to φ±.

Let σ denote the 2-simplex of ∆1 ×∆1 given on vertices by the formulae

σ(0) = (0, 0) σ(1) = (0, 1) σ(2) = (1, 1),

and let T : ∆2 ×K → ∆1 × C be the functor given by the composition

∆2 ×K σ×idK−−−−→ ∆1 ×∆1 ×K
≃ ∆1 × (K ⋆KK)
→ ∆1 × (K ⋆C C)
= ∆1 × C.

More concretely, the functor T is given on objects by the formulae

T (0, X) = (0, X) T (1, X) = (0, δ(X)) T (2, X) = (1, δ(X)).

We conclude by observing that precomposition with T induces a map of Kan complexes

ρ : HomFun(C,D)(F ,G)→ HomFun(K,D)(F0, F ◦ δ,G ◦ δ)

having the desired properties.
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7.3.7 Kan Extensions in Functor ∞-Categories

047VLet U : C → B be an exponentiable inner fibration of ∞-categories (Definition 4.5.9.10).
For every ∞-category D, Corollary 4.5.9.18 guarantees that the simplicial set Fun(C /B,D)
is an ∞-category (see Construction 4.5.9.1). The goal of this section is to describe (relative)
Kan extensions of functors which take values in the ∞-category Fun(C /B,D). We can state
our main result as follows:

Theorem 7.3.7.1. 047WLet U : C → B be an exponentiable inner fibration of ∞-categories, let
V : D → E be a functor of ∞-categories, and let V ′ : Fun(C /B,D)→ Fun(C /B, E) denote
the functor given by postcomposition with V . Let f : A → Fun(C /B,D) be a functor of
∞-categories, corresponding to a morphism A → B and a functor F : A×B C → D. Let
A0 ⊆ A be a full subcategory. If F is V -left Kan extended from A0×B C, then f is V ′-left
Kan extended from A0.

We will give the proof of Theorem 7.3.7.1 at the end of this section.

Remark 7.3.7.2. 047XIn the situation of Theorem 7.3.7.1, suppose that the functor F 0 =
F |A0×B C admits a V -left Kan extension F ′ : A×B C satisfying V ◦ F ′ = V ◦ F . Then the
converse of Theorem 7.3.7.1 is also true: if f is V ′-left Kan extended from A0, then F is
V -left Kan extended from A0×B C. To prove this, it will suffice to show that the functors F
and F ′ are isomorphic (Remark 7.3.3.17). This is clear: we can identify F ′ with a functor
f ′ : A → Fun(C /B,D) satisfying V ′ ◦ f ′ = V ′ ◦ f , and Theorem 7.3.7.1 guarantees that
f ′ is V ′-left Kan extended from A0. Since the functors f and f ′ coincide on A0, they are
isomorphic by virtue of Theorem 7.3.6.14.

Corollary 7.3.7.3. 047YLet U : C → B be an exponentiable inner fibration of ∞-categories, let
D be an ∞-category, and let π : Fun(C /B,D) → B be the projection map. Let f : A →
Fun(C /B,D) be a functor of ∞-categories and let A0 ⊆ A be a full subcategory. If the
induced map A×B C → D is left Kan extended from A0×B C, then f is π-left Kan extended
from A0.

Proof. Apply Theorem 7.3.7.1 in the special case E = ∆0.

Corollary 7.3.7.4. 047ZLet C be an ∞-category, let V : D → E be a functor of ∞-categories,
and let V ′ : Fun(C,D)→ Fun(C, E) be the functor given by postcomposition with V ′. Suppose
we are given another functor f : A → Fun(C,D) and a full subcategory A0 ⊆ A. If the
induced map A×C → D is V -left Kan extended from A0×C, then f is V ′-left Kan extended
from A0.

Proof. Apply Theorem 7.3.7.1 in the special case B = ∆0.

https://kerodon.net/tag/047V
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Corollary 7.3.7.5.0480 Let C and D be ∞-categories and let f : A → Fun(C,D) be a functor of
∞-categories, corresponding to a functor F : A×C → D. Let A0 ⊆ A be a full subcategory.
If F is left Kan extended from A0×C, then f is left Kan extended from A0.

Proof. Apply Corollary 7.3.7.4 in the special case E = ∆0.

Corollary 7.3.7.6.0481 Let U : C → B be an exponentiable inner fibration of ∞-categories, let
V : D → E be an isofibration of ∞-categories, and let V ′ : Fun(C /B,D) → Fun(C /B, E)
be the isofibration given by postcomposition with V (see Proposition 4.5.9.17). Let e be
a morphism of the ∞-category Fun(C /B,D), corresponding to a pair (e, f) where e is a
morphism of B and f : ∆1 ×B C → D is a functor of ∞-categories. If f is V -left Kan
extended from {0} ×B C, then the morphism e is V ′-cocartesian.

Proof. Apply Theorem 7.3.7.1 in the special case A = ∆1 and A0 = {0} (see Example
7.1.5.9).

Example 7.3.7.7.0482 In the situation of Corollary 7.3.7.6, suppose that B = ∆0. Corollary
7.3.7.6 then asserts that a morphism e : X → Y in the functor ∞-category Fun(C,D)
is V ′-cocartesian if, for every object C ∈ C, the induced map eC : X(C) → Y (C) is a
V -cocartesian morphism of D. This is a special case of Lemma 5.2.1.5.

Example 7.3.7.8.0483 In the situation of Corollary 7.3.7.6, suppose that U is a cartesian
fibration. Let Ue : ∆1 ×B C → ∆1 denote the cartesian fibration given by projection onto
the first factor. By virtue of Proposition 7.3.3.11, the functor f is V -left Kan extended
from {0} ×B C if and only if it carries Ue-cartesian morphisms of ∆1 ×B C to V -cocartesian
morphisms of D. In this case, Corollary 7.3.7.6 is a special case of (the dual of) Lemma
5.3.6.11.

Corollary 7.3.7.9.0484 Let U : C → B be an exponentiable inner fibration of ∞-categories, let D
be an ∞-category, and let π : Fun(C /B,D)→ B be the projection map. Let e be a morphism
of the ∞-category Fun(C /B,D), corresponding to a pair (e, f) where e is a morphism of B
and f : ∆1 ×B C → D is a functor of ∞-categories. If f is left Kan extended from {0} ×B C,
then the morphism e is π-cocartesian.

Proof. Apply Corollary 7.3.7.6 in the special case E = ∆0.

The proof of Theorem 7.3.7.1 will require some preliminaries.

Lemma 7.3.7.10.0485 Let V : D → E be an isofibration of ∞-categories, let K be a simplicial
set equipped with a diagram f : K▷ → E, and let Fun′/ E(K▷,D) ⊆ Fun/ E(K▷,D) be a
full subcategory. Let Fun′/ E(K,D) denote the essential image of Fun′/ E(K▷,D) under the
restriction map Fun/ E(K▷,D)→ Fun/ E(K,D). Suppose that every simplicial set A satisfies
the following condition:

https://kerodon.net/tag/0480
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(∗A) For every extension of f to a morphism K▷ ⋆ A→ E, the restriction functor

Fun′/ E(K▷,D)×Fun/ E(K▷,D) Fun/ E(K▷ ⋆ A,D)

θA

��
Fun′/ E(K,D)×Fun/ E(K,D) Fun/ E(K ⋆ A,D)

is an equivalence of ∞-categories.

Then every object of Fun′/ E(K▷,D) is a V -colimit diagram in the ∞-category D.

Proof. Without loss of generality, we may assume that the full subcategory Fun′/ E(K▷,D)
is replete. For every extension of f to a morphism K▷ ⋆ A → E , let Fun′/ E(K▷ ⋆ A,D) ⊆
Fun/ E(K▷ ⋆ A,D) and Fun′/ E(K ⋆ A,D) ⊆ Fun/ E(K ⋆ A,D) denote the inverse images
of Fun′/ E(K▷,D) and Fun′/ E(K,D), respectively. For every monomorphism of simplicial
sets A ↪→ B, Proposition 4.4.5.1 guarantees that the restriction map Fun/ E(K ⋆ B,D)→
Fun/ E(K ⋆A,D) is an isofibration, and therefore induces an isofibration Fun′/ E(K ⋆B,D)→
Fun′/ E(K⋆A,D) Combining Corollary 4.5.2.30 with assumptions (∗A) and (∗B), we conclude
that the restriction map

θA,B : Fun′/ E(K▷ ⋆ B,D)→ Fun′/ E(K▷ ⋆ A,D)×Fun′
/ E(K⋆A,D) Fun′/ E(K ⋆ B,D)

is an equivalence of∞-categories. Proposition 4.4.5.1 implies that θA,B is also an isofibration,
and is therefore a trivial Kan fibration (Proposition 4.5.5.20). In particular, θA,B is surjective
on vertices. Unwinding the definitions, we conclude that every lifting problem

(K▷ ⋆ A)∐(K⋆A)(K ⋆ B) g //

��

D

V

��
K▷ ⋆ B //

88

E

admits a solution, provided that the restriction g|K▷ belongs to Fun′/ E(K▷,D). The desired
result now follows by invoking the criterion of Remark 7.1.5.11.

Exercise 7.3.7.11. 0486Prove the converse of Lemma 7.3.7.10.

Remark 7.3.7.12. 0487In the situation of Lemma 7.3.7.10, suppose we are given an inner
anodyne morphism of simplicial sets A ↪→ B. Then every diagram K▷ ⋆ A → E can be
extended to a morphism K▷ ⋆ B → E , so that condition (∗A) is satisfied if and only if
condition (∗B) is satisfied. Consequently, to show that every object of Fun′/ E(K▷,D) is a
V -colimit diagram, it suffices to verify condition (∗A) in the special case where A is an
∞-category (see Corollary 4.1.3.3).

https://kerodon.net/tag/0486
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We will deduce Theorem 7.3.7.1 from the following special case:

Proposition 7.3.7.13.0488 Let U : C → B be an exponentiable inner fibration of ∞-categories,
let V : D → E be a functor of ∞-categories, and let V ′ : Fun(C /B,D) → Fun(C /B, E)
denote the functor given by postcomposition with V . Let K be an ∞-category and let
f : K▷ → Fun(C /B,D) be a functor, corresponding to a morphism K▷ → B and a functor
F : K◁×B C → D. If F is V -left Kan extended from K×B C, then f is a V ′-colimit diagram.

Proof. Without loss of generality, we may assume that V is an isofibration, so that V ′ is
also an isofibration (Proposition 4.5.9.17). Fix a morphism f : K▷ → Fun(C /B, E), and let

Fun′/Fun(C /B,E)(K▷,Fun(C /B,D)) ⊆ Fun/Fun(C /B,E)(K▷,Fun(C /B,D))

denote the full subcategory spanned by those morphisms K▷ → Fun(C /B,D) which
correspond to functors K◁×B C → D which are V -left Kan extended from K, and let
Fun′/Fun(C /B,E)(K,Fun(C /B,D)) denote its essential image under the restriction map

Fun/Fun(C /B,E)(K▷,Fun(C /B,D))→ Fun/Fun(C /B,E)(K,Fun(C /B,D)).

We will complete the proof by showing that every object of Fun′/Fun(C /B,E)(K▷,Fun(C /B,D))
is a V ′-colimit diagram in the ∞-category Fun(C /B,D). By virtue of Remark 7.3.7.12, it
will suffice to verify condition (∗A) of Lemma 7.3.7.10 for every ∞-category A.

Fix a morphism K▷ ⋆A → Fun(C /B, E) extending f , which we identify with a diagram
K▷ ⋆A → B and a functor

G : (K▷ ⋆A)×B C → E .

Let Fun′/ E((K▷ ⋆A)×B C,D) denote denote the full subcategory of Fun/ E((K▷ ⋆A)×B C,D)
given by the inverse image of Fun′/Fun(C /B,E)(K▷,Fun(C /B,D)), and define Fun′/ E((K ⋆A)×B
C,D) similarly. We wish to show that the restriction map

θ : Fun′/ E((K▷ ⋆A)×B C,D)→ Fun′/ E((K ⋆A)×B C,D)

is an equivalence of ∞-categories. Unwinding the definitions (and using the existence
criterion of Proposition 7.3.5.5), we see that a functor G ∈ Fun/ E((K▷ ⋆A) ×B C,D)
belongs to the subcategory Fun′/ E((K▷ ⋆A) ×B C,D) if and only if it is V -left Kan ex-
tended from (K ⋆A) ×B C, and that a functor G0 ∈ Fun/ E((K▷ ⋆A) ×B C,D) belongs to
Fun′/Fun(C /B,E)(K▷,Fun(C /B,D)) if and only if admits a left Kan extension G : (K▷ ⋆A)×B
C → D satisfying V ◦G = G. Applying Theorem 7.3.6.14, we conclude that θ is a trivial
Kan fibration.

Example 7.3.7.14.0489 In the situation of Proposition 7.3.7.13, suppose that B = ∆0, so that
we can identify F with a functor from K◁×C to D. Let X denote the cone point of K▷. For
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each object C ∈ C, the inclusion map K×{idC} ↪→ K×C/C is right cofinal (see Corollary
7.2.1.19). Applying Corollary 7.2.2.2, we deduce that F is V -left Kan extended from K×C
if and only if the induced map

K◁ ≃ K◁×{C} ↪→ K◁×C F−→ D

is a V -colimit diagram for each C ∈ C. Proposition 7.3.7.13 asserts that, if this condition is
satisfied, then F determines a V ′-colimit diagram K◁ → Fun(C,D); this is a special case of
Corollary 7.1.6.11.

Proof of Theorem 7.3.7.1. Let U : C → B be an inner fibration of∞-categories, let V : D →
E be a functor of ∞-categories, and let V ′ : Fun(C /B,D) → Fun(C /B, E) be the functor
given by postcomposition with V ′. Suppose we are given a functor f : A → Fun(C /B,D)
and a full subcategory A0 ⊆ A. Assume that the induced map F : A×B C → D is V -left
Kan extended from A0×B C; we ish show that f is V ′-left Kan extended from A0. Fix an
object A ∈ A and set A0

/A = A0×AA/A; we wish to show that the composite map

(A0
/A)▷ ↪→ (A/A)▷ → A f−→ Fun(C /B,D)

is a V -colimit diagram. Let FA denote the composition

(A0
/A)▷ ×B C → A×B C F−→ D .

By virtue of Proposition 7.3.7.13, it will suffice to show that FA is V -left Kan extended
from A0

/A×B C. Let X denote the cone point of (A0
/A)▷, let B denote its image in B, and

let C ∈ C be an object satisfying U(C) = B. Unwinding the definitions, we see that FA is
V -left Kan extended from A0

/A×B C at the object (X,C) if and only if the diagram

(A0
/A×B/B

C/C)▷ → (A0
/A)▷ ×(B/B)▷ (C/C)▷ → A×B C F−→ D

is a V -colimit diagram. This follows from our assumption that F is V -left Kan extended
from the full subcategory A0×B C at the object (A,C).

7.3.8 Transitivity of Kan Extensions

030ULet C be an ∞-category equipped with full subcategories C0 ⊆ C ⊆ C. Our goal in this
section is to show that a functor of ∞-categories F : C → D is left Kan extended from C0 if
and only if it is left Kan extended from C and F C is left Kan extended from C0 (Corollary
7.3.8.8). We begin by analyzing the case special case where the ∞-category C has the form
C▷.
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Proposition 7.3.8.1.030V Let C be an ∞-category, let F : C▷ → D be a functor of ∞-categories,
and let U : D → E be another functor of ∞-categories. Assume that F = F |C is U -left Kan
extended from a full subcategory C0 ⊆ C. Then F is a U -colimit diagram if and only if the
composite map

(C0)▷ ↪→ C▷ F−→ D

is a U -colimit diagram.

Proof. For each object D ∈ D, let D ∈ Fun(C▷,D) denote the constant functor taking the
value D. By virtue of Proposition 7.1.5.12, the functor F is a U -colimit diagram if and only
if, for each D ∈ D, the upper half of the diagram

030W HomFun(C▷,D)(F ,D) //

��

HomFun(C▷,E)(U ◦ F ,U ◦D)

��
HomFun(C,D)(F,D|C)

��

// HomFun(C,E)(U ◦ F,U ◦D|C)

��
HomFun(C0,D)(F |C0 , D|C0) // HomFun(C0,E)(U ◦ F |C0 , U ◦D|C0)

(7.29)

is a homotopy pullback square. Since F is U -left Kan extended from C0, Proposition 7.3.6.7
shows that the right half of the diagram is a homotopy pullback square. It follows that F
is a U -colimit diagram if and only if the outer rectangle of (7.29) is a homotopy pullback
square for each D ∈ D (Proposition 3.4.1.11).

Let v denote the cone point of C▷. Let C1 denote the cone (C0)▷, which we regard as a
full subcategory of C▷. Note that the functors D, D|C1 , U ◦D and U ◦D|C1 are right Kan
extended from the cone point, so Corollary 7.3.6.9 implies that the restriction maps

HomFun(C▷,D)(F ,D)→ HomFun(C1,D)(F |C1 , D|C1)→ HomD(F (v), D)

HomFun(C▷,E)(U ◦F ,U ◦D)→ HomFun(C1,E)(U ◦F |C1 , U ◦D|C1)→ HomE((U ◦F (v))), U(D))

are homotopy equivalences. It follows that the restriction map from the outer rectangle of
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(7.29) to the diagram

030XHomFun(C1,D)(F |C1 , D|C1) //

��

HomFun(C0,D)(F |C0 , D|C0)

��
HomFun(C1,E)(U ◦ F |C1 , U ◦D|C1) // HomFun(C0,E)(U ◦ F,U ◦D|C0)

(7.30)

is a levelwise homotopy equivalence. In particular, the outer rectangle of (7.29) is a homotopy
pullback square if and only if (7.30) is a homotopy pullback square (Corollary 3.4.1.12). By
virtue of Proposition 7.1.5.12, this is satisfied for every object D ∈ D if and only if F 1 is a
U -colimit diagram.

Corollary 7.3.8.2. 030YLet C be an ∞-category and let F : C▷ → D be a functor of ∞-categories.
Suppose that F = F |C is left Kan extended from a full subcategory C0 ⊆ C. Then F is a
colimit diagram if and only if the composite map

(C0)▷ ↪→ C▷ F−→ D

is a U -colimit diagram.

Proof. Apply Proposition 7.3.8.1 in the special case E = ∆0.

Proposition 7.3.8.3. 030ZLet F : C → D and U : D → E be functors of ∞-categories and
let C0 ⊆ C be a full subcategory. Suppose we are given a right fibration of ∞-categories
V : B → C and set B0 = C0×C B. Then, for every object B ∈ B, the functor F ◦ V is U -left
Kan extended from B0 at B if and only if F is U -left Kan extended from C0 at V (B).

Proof. Set C = V (B), and let FC denote the composite map

(C0×C C/C)▷ → (C/C)▷ → C F−→ D .

We wish to show that FC is a U -colimit diagram if the composite map

(B0×B B/B)▷ → (B/B)▷ → B V−→ C F−→ D

is a U -colimit diagram. By virtue of Corollary 7.2.2.2, it will suffice to show that the natural
map

θ : B0×B B/B → C0×C C/C
is right cofinal. By construction, θ is a pullback of the map V/B : B/B → C/V (B). Our
assumption that V is a right fibration guarantees that V/B is a trivial Kan fibration (Corollary
4.3.7.13). It follows that θ is also a trivial Kan fibration, and therefore right cofinal by virtue
of Corollary 7.2.1.13.
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Corollary 7.3.8.4.0310 Let F : C → D and U : D → E be functors of ∞-categories and
let C0 ⊆ C be a full subcategory. Suppose we are given a right fibration of ∞-categories
V : B → C and set B0 = C0×C B. If F is U -left Kan extended from C0, then F ◦ V is U -left
Kan extended from B0. The converse holds if every fiber of V is nonempty.

Corollary 7.3.8.5.0311 Let F : C → D be a functor of ∞-categories and let C0 ⊆ C be a full
subcategory. Suppose we are given a right fibration of ∞-categories V : B → C and set
B0 = C0×C B. If F is left Kan extended from C0, then F ◦ V is left Kan extended from B0.
The converse holds if every fiber of V is nonempty.

Proof. Apply Corollary 7.3.8.4 in the special case E = ∆0.

Proposition 7.3.8.6 (Transitivity for Kan Extensions).0312 Let F : C → D and U : D → E
be functors of ∞-categories. Let C0 ⊆ C ⊆ C be full subcategories. Then F is U-left Kan
extended from C0 if and only if it satisfies the following pair of conditions:

(1) The functor F is U -left Kan extended from C.

(2) The restriction F |C is U -left Kan extended from C0.

Remark 7.3.8.7.0313 In the special case C = C▷, Proposition 7.3.8.6 is essentially a restatement
of Proposition 7.3.8.1 (see Example 7.3.3.10).

Proof of Proposition 7.3.8.6. It follows immediately from the definitions that if F is U -left
Kan extended from C0, then the functor F = F |C has the same property. We may therefore
assume that condition (2) is satisfied. Fix an object X ∈ C. We will complete the proof by
showing that F is U -left Kan extended from C0 at X if and only if it is U -left Kan extended
from C at X. Let FX denote the composite map

(C ×CC/X)▷(C/X)▷ → C F−→ D .

We wish to show that FX is a U -colimit diagram if and only if its restriction to (C0×CC/X)▷
is a U -colimit diagram. Let FX denote the restriction of FX to C ×CC/X . By virtue of
Proposition 7.3.8.1, it will suffice to show that FX is U -left Kan extended from C0×CC/X .
This follows by applying Corollary 7.3.8.4 to the right fibration C ×CC/X → C.

Corollary 7.3.8.8.0314 Let F : C → D be a functor of ∞-categories, and let C0 ⊆ C ⊆ C be full
subcategories. Then F is left Kan extended from C0 if and only if it satisfies the following
pair of conditions:

(1) The functor F is left Kan extended from C.

(2) The restriction F |C is left Kan extended from C0.
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Proof. Apply Proposition 7.3.8.6 in the special case E = ∆0.

Corollary 7.3.8.9. 0315Let F : C → D and U : D → E be functors of ∞-categories, let C0 ⊆ C
be a full subcategory, and let C,C ′ ∈ C be objects which are isomorphic. If F is U -left Kan
extended from C0 at C, then it is U -left Kan extended from C0 at C ′.

Proof. Let C1 ⊆ C be the full subcategory spanned by the objects of C0 together with the
object C, and let C2 ⊆ C be the full subcategory spanned by the objects of C together with
the objects C and C ′. If F is U -left Kan extended from C0 at C, then the functor F |C1 is
U -left Kan extended from C0. Since every object of C2 is isomorphic to an object of C1. the
functor F |C2 is automatically U -left Kan extended from C1 (Proposition 7.3.3.7). Applying
Proposition 7.3.8.6, we see that F |C2 is also U -left Kan extended from C0. In particular, F
is U -left Kan extended from C0 at the object C ′ ∈ C2.

We now prove a variant of Proposition 7.3.8.6, which gives a criterion for the existence
of relative Kan extensions.

Proposition 7.3.8.10. 0316Let F : C → D and U : D → E be functors of ∞-categories, and
suppose that F is U -left Kan extended from a full subcategory C0 ⊆ C. Set F0 = F |C0 . Then
the restriction map

θ : DF/ → DF0/×E(U◦F0)/
E(U◦F )/

is an equivalence of ∞-categories.

Proof. Note that the restriction maps

DF/ → DF0/ DF0/ → D E(U◦F )/ → E(U◦F0)/

are left fibrations of simplicial sets (Corollary 4.3.6.11). It follows that we can regard θ

as a functor of ∞-categories which are left-fibered over D. Consequently, to show that θ
is an equivalence of ∞-categories, it will suffice to show that for every object D ∈ D, the
commutative diagram

0317DF/×D{D} //

��

DF0/×D{D}

��
E(U◦F )/×E{U(D)} // {U(D)} ×E(U◦F0)/

×E{U(D)}

(7.31)

induces a homotopy equivalence of Kan complexes

DF/×D{D} → (DF0/×E(U◦F0)/
E(U◦F )/)×D {D}.

https://kerodon.net/tag/0315
https://kerodon.net/tag/0316
https://kerodon.net/tag/0317


7.3. KAN EXTENSIONS 1515

Note that the horizontal maps in the diagram (7.31) are left fibrations between Kan
complexes (Corollary 4.3.6.11), and therefore Kan fibrations (Corollary 4.4.3.8). We are
therefore reduced to showing that the diagram (7.31) is a homotopy pullback square (Example
3.4.1.3).

Let D ∈ Fun(C,D) denote the constant functor taking the value D. Using Theorem
4.6.4.17, we obtain a (termwise) homotopy equivalence from (7.31) to the diagram of
morphism spaces

0318 HomFun(C,D)(F,D) //

��

HomFun(C0,E)(F0, D|C0)

��
HomFun(C,E)(U ◦ F,U ◦D) // HomFun(C0,E)(U ◦ F0, U ◦D|C0).

(7.32)

Using Corollary 3.4.1.12, we are reduced to showing that the diagram (7.32) is a homotopy
pullback square, which is a special case of Proposition 7.3.6.7.

Corollary 7.3.8.11.0319 Let F : C → D and U : D → E be functors of ∞-categories, where
U is an inner fibration and F is U-left Kan extended from a full subcategory C0 ⊆ C. Set
F0 = F |C0. Then the restriction map

θ : DF/ → DF0/×E(U◦F0)/
E(U◦F )/

is a trivial Kan fibration.

Proof. It follows from Proposition 4.3.6.8 that θ is a left fibration, and therefore an isofibration
(Example 4.4.1.11). By virtue of Proposition 4.5.5.20, it will suffice to show that θ is an
equivalence of ∞-categories, which follows from Proposition 7.3.8.10.

Corollary 7.3.8.12.031A Let F : C → D be a functor of∞-categories which is Kan extended from
a full subcategory C0 ⊆ C, and set F0 = F |C0 . Then the restriction functor θ : CF/ → CF0/ is
a trivial Kan fibration.

Proof. Apply Corollary 7.3.8.11 in the special case E = ∆0.

Corollary 7.3.8.13.031B Let C be an ∞-category, let U : D → E be an inner fibration of
∞-categories, and suppose we are given a lifting problem

031C C

��

F // D

U

��
C▷ //

F

>>

E .

(7.33)
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Assume that F is U-left Kan extended from a full subcategory C0 ⊆ C. The following
conditions are equivalent:

(1) The lifting problem (7.33) admits a solution F : C▷ → D which is a U -colimit diagram.

(2) The induced lifting problem

031DC0

��

F |C0 // D

U

��
(C0)▷ //

F 0

==

E .

(7.34)

admits a solution F 0 : (C0)▷ → D which is a U -colimit diagram.

Proof. The implication (1) ⇒ (2) follows immediately from Proposition 7.3.8.1. For the
converse, suppose that F 0 : (C0)▷ → D is a U -colimit diagram which solves the lifting
problem (7.34). Applying Corollary 7.3.8.11, we see that F 0 can be extended to a functor
F : C▷ → D which solves the lifting problem (7.33). It then follows from Proposition 7.3.8.1
that F is a U -colimit diagram.

Corollary 7.3.8.14. 031ELet F : C → D be a functor of ∞-categories which is left Kan extended
from a full subcategory C0 ⊆ C. Then F has a colimit in D if and only if the restriction F |C0

has a colimit in D.

Proof. Apply Corollary 7.3.8.13 in the special case E = ∆0.

Remark 7.3.8.15. 03E5In the situation of Corollary 7.3.8.14, an object of D is a colimit of
the diagram F if and only if it is a colimit of the diagram F |C0 . This follows by combining
Corollaries 7.3.8.14 and 7.3.8.2.

Proposition 7.3.8.16. 031FLet C be an ∞-category, let C ⊆ C be a full subcategory, and let
U : D → E be an isofibration of ∞-categories. Suppose we are given a lifting problem

031GC

��

F // D

U

��
C //

F

??

E ,

(7.35)

where F is U-left Kan extended from a full subcategory C0 ⊆ C. The following conditions
are equivalent:
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(1) The lifting problem (7.35) admits a solution F : C → D which is U-left Kan extended
from C.

(2) The induced lifting problem

031H C0

��

F |C0 // D

U

��
C //

F

??

E ,

(7.36)

admits a solution F : C → D which is U -left Kan extended from C0.

Proof. The implication (1) ⇒ (2) follows immediately from Proposition 7.3.8.6. For the
converse, assume that (2) is satisfied. To prove (1), it will suffice to show that for each
object C ∈ C, the induced lifting problem

031J C/C

��

FC // D

U

��
(C/C)▷ //

FC

==

E

(7.37)

admits a solution FC : (C/C)▷ → D which is a U -colimit diagram (Proposition 7.3.5.5).
Arguing as in the proof of Proposition 7.3.8.6, we see that FC is U -left Kan extended from
the full subcategory C0

/C ⊆ C/C . Let F 0
C denote the restriction of FC to the subcategory

C0
/C ⊆ C/C . By virtue of Corollary 7.3.8.13, it will suffice to show that the induced lifting

problem

031K C0
/C

��

F 0
C // D

U

��
(C0
/C)▷ //

F
0
C

>>

E

(7.38)

has a solution F
0
C : (C0

/C)▷ → D which is a U -colimit diagram, which follows immediately
from assumption (2).

Corollary 7.3.8.17.031L Let C be an ∞-category, let C ⊆ C be a full subcategory, and let
F : C → D be a functor of ∞-categories which is left Kan extended from a full subcategory
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C0 ⊆ C. Then F admits a left Kan extension C → D if and only if the restriction F |C0

admits a left Kan extension C → D.

Proof. Apply Proposition 7.3.8.16 in the special case E = ∆0.

We close this section by establishing counterparts of Corollaries 7.3.8.8 and 7.3.8.14 for
Kan extensions along more general functors.

Proposition 7.3.8.18. 031MLet C0, C1, C2, and D be ∞-categories. Suppose we are given
functors Fi : Ci → D for 0 ≤ i ≤ 2, functors G : C0 → C1 and H : C1 → C2, and natural
transformations

α : F0 → F1 ◦G β : F1 → F2 ◦H,

where α exhibits F1 as a left Kan extension of F0 along G. The following conditions are
equivalent:

(1) The natural transformation β exhibits F2 as a left Kan extension of F1 along H.

(2) Let γ : F0 → F2 ◦ H ◦ G be a composition of α with β|C0 (formed in the ∞-category
Fun(C0,D)). Then γ exhibits F2 as a left Kan extension of F0 along H ◦G.

Proof. Let C denote the iterated relative join (C0 ⋆C1 C1)⋆C2 C2, so that we have a cocartesian
fibration of ∞-categories π : C → ∆2 having fibers π−1{i} = Ci for 0 ≤ i ≤ 2 (see Lemma
5.2.3.17). For 0 ≤ i < j ≤ 2, let Cij denote the fiber product N•({i < j})×∆2 C, which we
will identify with Ci ⋆Cj Cj . By virtue of Remark 7.3.1.9, we are free to replace α and β by
homotopic natural transformations. We can therefore assume that there exist functors

F01 : C01 → D F12 : C12 → D

satisfying F01|C0 = F0, F01|C1 = F1 = F12|C1 , and F12|C2 = F2, where α and β are given by
the composite maps

∆1 × C0 ≃ C0 ⋆C0 C0 → C0 ⋆C1 C1
F01−−→ D

∆1 × C1 ≃ C1 ⋆C1 C1 → C1 ⋆C2 C2
F12−−→ D

(see Warning 7.3.2.12). Note that F01 and F12 can be amalgamated to a morphism of
simplicial sets F ′ : Λ2

1 ×∆1 C → D. Since π is a cocartesian fibration, the inclusion map
Λ2

1 ×∆1 C ↪→ C is a categorical equivalence (Proposition 5.3.6.1). Applying Lemma 4.5.5.2,
we can extend F ′ to a functor F : C → D.

Let F02 denote the restriction of F to C02, and let γ : F0 → F2 ◦H ◦G denote the natural
transformation given by the composite map

∆1 × C0 ≃ C0 ⋆C0 C0 → C0 ⋆C2 C2
F02−−→ D .
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Note that the composite map

∆2 × C0 ≃ (C0 ⋆C0 C0) ⋆C0 C0 → (C0 ⋆C1 C1) ⋆C2 C2
F−→ D

can be regarded as a 2-simplex of the ∞-category Fun(C0,D), which witnesses γ as a
composition of α with β|C0 . Applying Proposition 7.3.2.11, we see that (1) and (2) can be
reformulated as follows:

(1′) The functor F12 : C12 → D is left Kan extended from C1.

(2′) The functor F02 : C02 → D is left Kan extended from C0.

By assumption, the natural transformation α exhibits F1 as a left Kan extension of F0
along G. Applying Proposition 7.3.2.11, we see that the functor F01 is left Kan extended
from C0. In particular, F is left Kan extended from C0 at every object of the full subcategory
C1 ⊆ C. It follows that (2′) is equivalent to the following:

(2′′) The functor F : C → D is left Kan extended from C0.

Using Corollary 7.3.8.8, we see that (2′′) is equivalent to the following:

(1′′) The functor F : C → D is left Kan extended from C01.

To complete the proof, it will suffice to show that conditions (1′) and (1′′) are equivalent.
We will prove something slightly more precise: for every object X ∈ C2, the conditions are
equivalent:

(1′X) The functor F12 : C12 → D is left Kan extended from C1 at X.

(1′′X) The functor F : C → D is left Kan extended from C01 at X.

Let us regard the object X as fixed, and let FX denote the composite map

(C01×C C/X)▷ ↪→ (C/X)▷ → C F−→ D .

We wish to show that FX is a colimit diagram in D if and only if its restriction to (C1×C C/X)▷
is a colimit diagram in D. By virtue of Corollary 7.2.2.3, it will suffice to show that the
inclusion map C1×C C/X ↪→ C01×C C/X is right cofinal. This follows by applying Proposition
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7.2.3.12 to the upper square of the pullback diagram

C1×C C/X //

��

{1}

��
C01×C C/X //

��

∆1

��
C/X

π′ // ∆2,

where π′ denotes the composite map C/X → C → ∆2 (which is a cocartesian fibration by
virtue of Proposition 5.1.4.19).

Proposition 7.3.8.19. 031NLet C0, C1, C2, and D be ∞-categories. Suppose we are given
functors F0 : C0 → D, F1 : C1 → D, G : C0 → C1, and H : C1 → C2, where F1 is a left Kan
extension of F0 along G. The following conditions are equivalent:

(1) The functor F1 admits a left Kan extension along H.

(2) The functor F0 admits a left Kan extension along H ◦G.

Proof. The implication (1) ⇒ (2) is immediate from Proposition 7.3.8.18. To prove the
converse, assume that (2) is satisfied. Define C as in the proof of Proposition 7.3.8.18. Using
the criterion of Corollary 7.3.5.8, we see that F0 admits a left Kan extension F : C → D.
It follows from Proposition 7.3.2.11 that F |C1 is a left Kan extension of F0 along G, and
is therefore isomorphic to F1 (Remark 7.3.6.6). We may therefore assume without loss of
generality that F1 = F |C1 (Remark 7.3.1.10). We will complete the proof by showing that
F12 = F |C12 is left Kan extended from C1, and therefore exhibits F |C2 as a left Kan extension
of F1 along H (Proposition 7.3.2.11).

Fix an object X ∈ C2, and let FX denote the composite map

(C01×C C/X)▷ ↪→ (C/X)▷ → C F−→ D .

We wish to show that the composite map

(C1×C C/X)▷ ↪→ (C01×C C/X)▷ FX−−→ D

is a colimit diagram in D. As in the proof of Proposition 7.3.8.18, the inclusion map
C1×C C/X ↪→ C01×C C/X is right cofinal. It will therefore suffice to show that FX is a colimit
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diagram in D (Corollary 7.2.2.3). This is clear: by construction, the functor F is left Kan
extended from the full subcategory C0 ⊆ C, and is therefore also left Kan extended from the
larger subcategory C01 ⊆ C (Proposition 7.3.8.6).

Corollary 7.3.8.20.039X Let F : C → D be a functor of ∞-categories, let δ : K → C and
F0 : K → D be diagrams, and let α : F0 → F ◦ δ be a natural transformation which exhibits
F as a left Kan extension of F0 along δ (see Variant 7.3.1.5). Then:

(1) The diagram F admits a colimit in D if and only if F0 admits a colimit in D.

(2) Let X be an object of D, let X : C → D denote the constant functor taking the value X.
Then a natural transformation β : F → X exhibits X as a colimit of the diagram F if
and only if the composite natural transformation

F0
α−→ F ◦ δ β|K−−→ X|K

exhibits X as a colimit of the diagram F0.

Proof. Using Corollary 4.1.3.3, we can choose an inner anodyne morphism i : K ↪→ K, where
K is an ∞-category. Since C is an ∞-category, we extend δ and F0 to functors δ : K → C
and F 0 : K → D, respectively. Similarly, we can extend α to a natural transformation
α : F 0 → F ◦ δ. It follows from Proposition 7.3.1.14 that we α exhibits F as a left Kan
extension of F 0 along δ. We may therefore replace K by K and thereby reduce to proving
Corollary 7.3.8.20 in the special case where K is an ∞-category. In this case, assertion (1)
is a special case of Proposition 7.3.8.19, and assertion (2) is a special case of Proposition
7.3.8.18 (see Example 7.3.1.7).

Exercise 7.3.8.21.031P Show that the conclusions of Propositions 7.3.8.18 and 7.3.8.19 hold if
we drop the assumption that the simplicial set C0 is an ∞-category.

7.3.9 Relative Colimits for Cocartesian Fibrations

031Q Let U : C → D be an inner fibration of ∞-categories, let D ∈ D be an object, and
suppose we are given a morphism

f : K▷ → CD = {D} ×D C ⊆ C .

If f is a U -colimit diagram in the ∞-category C, then it is a colimit diagram in the ∞-
category CD. The converse holds if U is a cartesian fibration (Corollary 7.1.5.20), but not in
general. In this section, we study the dual situation where U is a cocartesian fibrations. Our
main result asserts that f is a U -colimit diagram in C if and only if it is a transport-stable
colimit diagram in the ∞-category CD: that is, for every morphism e : D → D′ in D, the
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covariant transport functor e! : CD → CD′ carries f to a colimit diagram in the ∞-category
CD′ (Proposition 7.3.9.2). We begin by showing that the collection of U -colimit diagrams is
stable under covariant transport.

Proposition 7.3.9.1. 031RLet U : C → D be an inner fibration of ∞-categories, let K be a
simplicial set, and let α : F0 → F1 be a natural transformation between diagrams F0, F1 :
K▷ → C. Suppose that, for every vertex x ∈ K▷, the morphism αx : F0(x) → F1(x) is
U -cocartesian. Then:

(1) If F0 is a U -colimit diagram, then F1 is also a U -colimit diagram.

(2) If F1 is a U-colimit diagram and the natural transformation α carries the cone point
v ∈ K▷ to an isomorphism αv : F0(v)→ F1(v), then F0 is a U -colimit diagram.

Proof. Using Corollary 4.1.3.3, we can choose an inner anodyne morphism i : K ↪→ K,
where K is an ∞-category. It follows that the induced map i▷ : K▷ ↪→ K▷ is also inner
anodyne (Example 4.3.6.7), so that the restriction map Fun(K▷, C) → Fun(K▷,D) is a
trivial Kan fibration of simplicial sets (Proposition 1.5.7.6). We can therefore lift α to a
natural transformation α : F 0 → F 1 between natural transformations F 0, F 1 : K▷ → C.
Since i▷ is bijective on vertices, the natural transformation α carries each object of K▷ to
a U -cocartesian morphism of C. The morphism i▷ is right cofinal (Corollary 7.2.1.13), so
Corollary 7.2.2.2 guarantees that F0 is a U -colimit diagram if and only if F 0 is a U -colimit
diagram. Similarly, F1 is a U -colimit diagram if and only if F 1 is a U -colimit diagram. We
may therefore replace α by α in the statement of Proposition 7.3.9.1, and thereby reduce to
the case where K = K is an ∞-category.

Let us identify α with a functor of ∞-categories F : ∆1 × K▷ → C. For each object
x ∈ K▷, we can regard ∆1 × {x} with a morphism ex : (0, x) → (1, x) in the ∞-category
∆1×K▷. By construction, the functor F carries each ex to the U -cocartesian morphism αx of
C. By virtue of Proposition 4.6.7.22, ex is final when viewed as an object of the ∞-category

({0} × K▷)×(∆1×K▷) (∆1 ×K▷)/(1,x) ≃ (K▷)/x,

so that F is U -left Kan extended from {0} × K▷ at (1, x) (Corollary 7.2.2.5). Allowing the
object x to vary, we see that the functor F is U -left Kan extended from {0} × K▷.

We now prove (1). Suppose that F0 is a U -colimit diagram. Then F0 is U -left Kan
extended from K (Example 7.3.3.9). Applying Proposition 7.3.8.6, we see that the functor F
is U -left Kan extended from {0} × K, and therefore from the larger subcategory ∆1 ×K ⊆
∆1 ×K▷. It follows that the composite map

(∆1 ×K) ⋆ {(1, v)} ↪→ ∆1 × (K ⋆{v}) F−→ C
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is a U -colimit diagram. Since the inclusion map {1} × K ↪→ ∆1 × K is right cofinal
(Proposition 7.2.1.3), Corollary 7.2.2.2 guarantees that F1 = F |{1}×K▷ is also a U -colimit
diagram.

We now prove (2). Let π : K▷ → ∆1 be the functor carrying K to the vertex 0 ∈ ∆1 and
the cone point v ∈ K▷ to the vertex 1 ∈ ∆1, and let G : K▷ → C be the functor given by the
composition

K▷ (π,id)−−−→ ∆1 ×K▷ F−→ C .

Note that there is a natural transformation β : F0 → G which is the identity when restricted
to K and which carries the cone point v to the morphism αv : F0(v) → F1(v) = G(v). If
αv is an isomorphism, then the natural transformation β is also an isomorphism (Theorem
4.4.4.4). Consequently, to show that F0 is a U -colimit diagram, it will suffice to show that
G is a U -colimit diagram (Proposition 7.1.5.13). Arguing as above, we see that the functor
F |∆1×K is U -left Kan extended from the full subcategory {0} × K ⊆ ∆1 × K. Applying
Proposition 7.3.8.1, we see that G is a U -colimit diagram if and only if the composite map

(∆1 ×K) ⋆ {(1, v)} ↪→ ∆1 × (K ⋆{v}) F−→ C

is a U -colimit diagram. By virtue of Corollary 7.2.2.2, this is equivalent to the requirement
that F1 is a U -colimit diagram.

Proposition 7.3.9.2.031S Let U : C → D be a cocartesian fibration of ∞-categories, let D ∈ D
be an object, and let f : K▷ → CD = {D}×D C be a diagram. Then f is a U -colimit diagram
in the ∞-category C if and only if it satisfies the following condition:

(∗) Let e : D → D′ be a morphism in the ∞-category D and let e! : CD → CD′ be the
covariant transport functor of Notation 5.2.2.9. Then (e! ◦ f) : K▷ → CD′ is a colimit
diagram in the ∞-category

Example 7.3.9.3.031T In the situation of Proposition 7.3.9.2, suppose that that the cocartesian
fibration U is also a cartesian fibration. Then, for every morphism e : D → D′ of D, the
covariant transport functor e! has a right adjoint e∗, given by contravariant transport along e
(Proposition 6.2.3.4). In particular, the functor e! automatically preserves K-indexed colimits
(Corollary 7.1.3.21). We therefore recover the criterion of Corollary 7.1.5.20: the morphism
f is a U -colimit diagram in C if and only if it is a colimit diagram in the ∞-category CD.

Proof of Proposition 7.3.9.2. For every morphism e : D → D′ in D, we can choose a natural
transformation α : f → e! ◦ f carrying each vertex of K▷ to a U -cocartesian morphism of
C. It follows from Proposition 7.3.9.1 that if f is a U -colimit diagram, then e! ◦ f is also
a U -colimit diagram, and therefore a colimit diagram in the ∞-category CD′ (Corollary
7.1.5.20). This proves the necessity of condition (∗). For the converse, suppose that f satisfies
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condition (∗); we wish to show that f is a U -colimit diagram. By virtue of Proposition
7.1.5.12, this is equivalent to the assertion that for every object C ∈ C, the diagram of Kan
complexes

031UHomFun(K▷,C)(f, C) //

��

HomFun(K,C)(f |K , C|K)

��
HomFun(K▷,D)(U ◦ f, U ◦ C) // HomFun(K,D)(U ◦ f |K , U ◦ C|K)

(7.39)

is a homotopy pullback square, where C ∈ Fun(K▷, C) is the constant diagram taking the
value C. Since U is an inner fibration, the vertical maps in this diagram are Kan fibrations
(Proposition 4.6.1.21 and Corollary 4.1.4.3). Using the criterion of Example 3.4.1.4, it will
suffice to show that for every vertex u ∈ HomFun(K▷,D)(U ◦ f, U ◦ C), the induced map

{u} ×HomFun(K▷,D)(U◦f,U◦C) HomFun(K▷,C)(f, C)

θu

��
{u} ×HomFun(K,D)(U◦f |K ,U◦C|K) HomFun(K,C)(f |K , C|K)

is a homotopy equivalence of Kan complexes. Set D′ = U(C), so that u can be identified
with a morphism of simplicial sets K▷ → HomD(D,D′), and the condition that θu is a
homotopy equivalence depends only on the homotopy class of u. Since the simplicial set
K▷ is weakly contractible (Example 4.3.7.11), we may assume without loss of generality
that u : K▷ → HomD(D,D′) is the constant map taking the value e, for some morphism
e : D → D′ in D. In this case, we can use Proposition 5.1.3.11 to replace θu by the restriction
map

HomFun(K▷,CD′ )(e! ◦ f,D)→ HomFun(K,CD′ )(e! ◦ f |K , D|K),

which is a homotopy equivalence by virtue of assumption (∗) (see Proposition 7.1.5.12).

Using Proposition 7.3.9.2, we obtain a relative version of Corollary 7.2.3.5:

Corollary 7.3.9.4. 031VLet U : C → D be a cocartesian fibration of ∞-categories, let K be a
weakly contractible simplicial set, and let f : K▷ → C be a diagram. The following conditions
are equivalent:

(1) The diagram f carries each edge of K▷ to a U -cocartesian morphism of C.
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(2) The restriction f = f |K carries each edge of K to a U -cocartesian morphism of C, and
f is a U -colimit diagram.

Proof. Without loss of generality, we may assume that f carries each edge of K to a U -
cocartesian morphism of C. Let π : ∆1 ×K▷ → K▷ be the morphism which is the identity
on {0} ×K▷ and which carries {1} ×K▷ to the cone point v ∈ K▷. Set C = f(v) ∈ C and
D = U(C) ∈ D. Proposition 5.2.1.3 guarantees that the lifting problem

{0} ×K▷ f //

��

C

U

��
∆1 ×K▷ U◦f◦π //

α

<<

D

admits a solution α : ∆1 ×K▷ → C which carries ∆1 × {x} to a U -cocartesian morphism of
C, for each vertex x ∈ K▷. Set g = α|{1}×K▷ , which we regard as a morphism from K▷ to the
∞-category CD, and let us identify α with a natural transformation from f to g. Note that
αv : f(v)→ g(v) is a U -cocartesian morphism of C satisfying U(αv) = idD, and is therefore
an isomorphism (Proposition 5.1.1.8). Applying Proposition 7.3.9.1, we can reformulate (2)
as follows:

(2′) The morphism g : K▷ → CD is a U -colimit diagram in C.

Set g = g|K . For every edge u : x→ y of K, we have a commutative diagram

f(x) f(u) //

αx

��

f(y)

αy

��
g(x) g(u) // g(y)

where f(u), αx, and αy are U -cocartesian. Applying Corollary 5.1.2.4, we deduce that g(u)
is U -cocartesian when viewed as a morphism of C, and is therefore an isomorphism in the
∞-category CD (Proposition 5.1.1.8). Similarly, for every vertex x ∈ K, the unique edge
cx : x→ v of K▷ determines a commutative diagram

f(x) f(cx) //

αx

��

f(v)

αv

��
g(x) g(cx) // g(v),
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where αx is U -cocartesian and αv is an isomorphism. Combining Corollary 5.1.2.4, Corollary
5.1.2.5, and Proposition 5.1.1.8, we see that f(cx) is U -cocartesian if and only if g(cx) is an
isomorphism in the ∞-category CD. We can therefore reformulate condition (1) as follows:

(1′) The diagram g carries each edge of K▷ to an isomorphism in the ∞-category CD.

By virtue of Corollary 7.2.3.5, (1′) is equivalent to the requirement that g is a colimit diagram
in the ∞-category CD. In particular, the implication (2′) ⇒ (1′) follows from Corollary
7.1.5.20. To prove the converse, it will suffice to show that condition (1′) is satisfied, then for
every morphism e : D → D′ in D, the covariant transport functor e! : CD → CD′ carries g to
a colimit diagram in the ∞-category CD′ (Proposition 7.3.9.2). This follows immediately
from Corollary 7.2.3.5 (applied to the composite diagram K◁ g−→ CD

e!−→ CD′).

The criterion of Proposition 7.3.9.2 has a counterpart for the existence of U -colimit
diagrams.

Proposition 7.3.9.5. 031WLet U : C → D be a cocartesian fibration of ∞-categories, and suppose
we are given a lifting problem

031XK
f0 //

��

C

U

��
K▷ g //

f0

>>

D

(7.40)

Let v ∈ K▷ be the cone point and set D = g(v). Then there exists a diagram f1 : K → CD ⊆ C
and a natural transformation α : f0 → f1 which carries each vertex x ∈ K to a U -cocartesian
morphism αx : f0(x)→ f1(x) of C, whereU◦α is given by the composition ∆1×K c−→ K▷ g−→ D.
Moreover, the lifting problem (7.40) admits a solution f0 : K▷ → C which is a U-colimit
diagram if and only if the following pair of conditions is satisfied:

(1) The diagram f1 admits a colimit f1 : K▷ → CD in the ∞-category CD.

(2) Let e : D → D′ be a morphism in the ∞-category D and let e! : CD → CD′ be the
covariant transport functor of Notation 5.2.2.9. Then (e! ◦ f1) : K▷ → CD′ is a colimit
diagram in the ∞-category CD′.

Proof. The existence (and essential uniqueness) of the diagram f1 and the natural transfor-
mation α : f0 → f1 follow from Proposition 5.2.1.3. Let us first show that conditions (1) and
(2) are necessary. Suppose that the lifting problem (7.40) admits a solution f0 : K▷ → C
which is a U -colimit diagram. Using Proposition 5.2.1.3, we can extend f1 to a diagram
f1 : K▷ → CD and α to a natural transformation α : f0 → f1 which carries each vertex
x ∈ K▷ to a U -cocartesian morphism αx : f0(x) → f1(x). Proposition 7.3.9.1 guarantees
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that f1 is a U -colimit diagram in the ∞-category C, and therefore satisfies conditions (1)
and (2) by virtue of Proposition 7.3.9.2.

Now suppose that conditions (1) and (2) are satisfied. Let f1 : K▷ → CD be a colimit
diagram extending f1. It follows from (2) that f1 is a U -colimit diagram in the ∞-category
C. Let π : (∆1 ×K)▷ → K▷ denote the morphism which is the identity when restricted to
{0} ×K, and which carries ({1} ×K)▷ to the cone point of K▷. Since the inclusion map
{1}×K ↪→ ∆1×K is right cofinal (Proposition 7.2.1.3), Proposition 7.2.2.9 guarantees that
the lifting problem

∆1 ×K α //

��

C

U

��
(∆1 ×K)▷ g◦π //

α

<<

D

admits a solution α : (∆1 ×K)▷ → C which is a U -colimit diagram. Note that in this case
f
′
1 = α|({1}×K)▷ is also a U -colimit diagram (Corollary 7.2.2.2). Setting f0 = α|({0}×K)▷ , we

note that α determines a natural transformation of functors f0 → f
′
1 which carries each

vertex of x to a U -cocartesian morphism of C and carries the cone point to an identity
morphism of C. Applying the criterion of Proposition 7.3.9.1, we conclude that f0 is a
U -colimit diagram which solves the lifting problem (7.40).

Corollary 7.3.9.6.031Y Let U : C → D be a cocartesian fibration of ∞-categories and let K be
a simplicial set. The following conditions are equivalent:

(1) For every object D ∈ D, the ∞-category CD = {D} ×D C admits K-indexed colimits.
Moreover, for every morphism e : D → D′ in D, the covariant transport functor
e! : CD → CD′ preserves K-indexed colimits.

(2) Every lifting problem

031Z K
f //

��

C

U

��
K▷ //

f

>>

D

(7.41)

admits a solution f : K▷ → C which is a U -colimit diagram.

Proof. The implication (1)⇒ (2) follows immediately from Proposition 7.3.9.5. Conversely,
suppose that (2) is satisfied. For each object D ∈ D, condition (2) guarantees that every
diagram f : K → CD admits an extension f : K▷ → CD which is a U -colimit diagram in
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C. In particular, f is a colimit diagram in CD (Corollary 7.1.5.20) having the property
that for every morphism e : D → D′ in D, the composition e! ◦ f is a colimit diagram
in CD′ (Proposition 7.3.9.2). To complete the proof, we observe that if f ′ : K▷ → CD is
any other colimit diagram satisfying f ′|K = f , then f

′ is isomorphic to f as an object of
the ∞-category Fun(K▷, CD), so that e! ◦ f

′ is also a colimit diagram in CD′ (Corollary
7.1.2.14).

Corollary 7.3.9.7. 0320Let U : D → E be a cocartesian fibration of ∞-categories, let C be an
∞-category, and let C0 ⊆ C be a full subcategory. Suppose that the following conditions are
satisfied:

• For every object C ∈ C and every object E ∈ E, the ∞-category DE = {E}×ED admits
C0
/C-indexed colimits.

• For every object C ∈ C and every morphism e : E → E′ in E, the covariant transport
functor e! : DE → DE′ preserves C0

/C-indexed colimits.

Then every lifting problem
C0 F //

��

D

U

��
C //

F

??

E
admits a solution F : C → D which is U -left Kan extended from C0.

Proof. Combine Proposition 7.3.5.5 with Corollary 7.3.9.6.

7.4 Limits and Colimits of ∞-Categories

02SXRecall that the collection of (small) ∞-categories can be organized into a (large) ∞-
category QC (see Construction 5.5.4.1). Our goal in this section is to study limits and
colimits in the ∞-category QC. Fix a small ∞-category C, and suppose we are given a
diagram F : C → QC. We will show that the diagram F admits both a limit lim←−(F ) and a
colimit lim−→(F ), which can be described explicitly in terms of the ∞-category of elements∫
CF introduced in Definition 5.6.2.1:

(1) Let U :
∫
CF → C be the forgetful functor, and let FunCCart

/ C (C,
∫
CF ) denote the full

subcategory of Fun/ C(C,
∫
CF ) spanned by those functors F : C →

∫
CF which satisfy

U ◦F = idC and which carry each morphism of C to a U -cocartesian morphism of
∫
CF .

In §7.4.1, we show that the ∞-category FunCCart
/ C (C,

∫
CF ) is a limit of the diagram F

(Corollary 7.4.1.10).
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(2) Let W be the collection of all U -cocartesian morphisms of
∫
CF , and let (

∫
CF )[W−1]

denote a localization of
∫
CF with respect to W (Definition 6.3.1.9). In §7.4.3, we

show that (
∫
CF )[W−1] is a colimit of the diagram F (Corollary 7.4.3.12).

For many applications, it is not enough to describe the limit lim←−(F ) and colimit lim−→(F )
as abstract ∞-categories: we also need to understand their relationship to the diagram
F : C → QC. In other words, we would like to have criteria which can be used to detect
when an extension F : C◁ → QC is a limit diagram, and when an extension F : C▷ → QC
is a colimit diagram. To formulate these criteria, it will be convenient to slightly shift our
perspective. Fix a cocartesian fibration U : E → C having covariant transport representation
F (that is, a cocartesian fibration which is equivalent to the forgetful functor

∫
CF → C).

• Suppose U is obtained as the pullback of a cocartesian fibration U : E → C◁, and let
E0 denote the fiber of U over the cone point 0 ∈ C◁. In §7.4.1, we introduce a map

Df : E0 → Fun/ C(C, E),

which we will refer to as the covariant diffraction functor (Construction 7.4.1.3).
Roughly speaking, it is characterized by the requirement that for every object X ∈ E0
and every object C ∈ C, there is a U -cocartesian morphism X → Df(X)(C) (depending
functorially on X and C).

• Suppose U is obtained as the pullback of a cocartesian fibration U : E → C▷, and let
E1 denote the fiber of U over the cone point 1 ∈ C▷. In §7.4.3, we introduce a map

Rf : E → E1,

which we will refer to as the covariant refraction functor (Definition 7.4.3.1). Roughly
speaking, it is characterized by the requirement that for every object X ∈ E , there is a
U -cocartesian morphism X → Rf(X) (depending functorially on X).

We will deduce (1) and (2) from the following more precise assertions:

Diffraction Criterion: Suppose we are given a pullback diagram

E

U

��

// E

U

��
C // C◁,
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where U and U are cocartesian fibrations. Then the covariant transport representation
TrE/ E◁ : C◁ → QC is a limit diagram (in the∞-category QC) if and only if the covariant
diffraction functor Df : E0 → Fun/ C(C, E) is a fully faithful embedding, whose essential
image is the the ∞-category FunCCart

/ C (C, E) of cocartesian sections of U (see Theorem
7.4.1.1 and Remark 7.4.1.5).

Refraction Criterion: Suppose we are given a pullback diagram

E

U

��

// E

U

��
C // C▷,

where U and U are cocartesian fibrations. Then the covariant transport representation
TrE/ E▷ : C▷ → QC is a colimit diagram (in the ∞-category QC) if and only if the
covariant refraction functor Rf : E → E1 exhibits E1 as a localization of E with respect
to the collection of U -cocartesian morphisms (Theorem 7.4.3.6).

We will establish the diffraction and refraction criteria in §7.4.2 and §7.4.3, respectively.
In §7.4.5, we restrict our attention to the special case where U : E → C is a left fibration,
and apply the results described above to describe limits and colimits in the ∞-category S of
spaces.

Remark 7.4.0.1. 02SYIn the outline above, we have implicitly suggested that C is an∞-category.
This is not important: all of the results of this section can be applied to diagrams F : C → QC
indexed by an arbitrary (small) simplicial set C.

Remark 7.4.0.2. 02SZFor any cocartesian fibration U : E → C◁, the associated covariant
diffraction functor Df : E0 → Fun/ C(C, E) automatically factors through the full subcategory
FunCCart

/ C (C, E) (see Construction 7.4.1.3). Similarly, for any cocartesian fibration U : E → C▷,
the covariant refraction functor Rf : E → E1 automatically carries U -cocartesian edges of E
to isomorphisms in the ∞-category E1 (Remark 7.4.3.5).

7.4.1 Limits of ∞-Categories

02T0Let QC denote the ∞-category of (small) ∞-categories (Construction 5.5.4.1). Our goal
in this section (and §7.4.2) is to show that the∞-category QC admits small limits (Corollary
7.4.1.11). In fact, we will prove something more precise: if C is a small ∞-category, then
the limit of any diagram F : C → QC can be realized as explicitly as a full subcategory of
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the ∞-category of sections of the cocartesian fibration U :
∫
CF → C of Proposition 5.6.2.2

(Corollary 7.4.1.10).
Recall that, if U : E → C and U ′ : E ′ → C are cocartesian fibrations of simplicial sets,

then FunCCart
/ C (E , E ′) denotes the full subcategory of Fun/ C(E , E ′) spanned by those functors

F : E → E ′ which carry U -cocartesian edges of E to U ′-cocartesian edges of E ′ (Notation
5.3.1.10). Our main result can be stated as follows:

Theorem 7.4.1.1 (Diffraction Criterion).02T8 Suppose we are given a pullback diagram of small
simplicial sets

E

U

��

// E

U

��
C // C◁,

where U and U are cocartesian fibrations. The following conditions are equivalent:

(1) The restriction map
FunCCart

/ C◁ (C◁, E)→ FunCCart
/ C (C, E)

is an equivalence of ∞-categories.

(2) The covariant transport representation

TrE/ C◁ : C◁ → QC

of Notation 5.6.5.14 is a limit diagram in the ∞-category QC.

Remark 7.4.1.2.02T9 In the situation of Theorem 7.4.1.1, the restriction map FunCCart
/ C◁ (C◁, E)→

FunCCart
/ C (C, E) is automatically an isofibration of ∞-categories (Remark 5.3.1.18). Using

Proposition 4.5.5.20, we see that condition (1) of Theorem 7.4.1.1 is equivalent to the
following a priori stronger condition:

(1′) The restriction map
FunCCart

/ C◁ (C◁, E)→ FunCCart
/ C (C, E)

is a trivial Kan fibration of simplicial sets.

Construction 7.4.1.3 (Covariant Diffraction).02TD Suppose we are given a pullback diagram
of simplicial sets

E

U

��

// E

U

��
C // C◁,

https://kerodon.net/tag/02T8
https://kerodon.net/tag/02T9
https://kerodon.net/tag/02TD


1532 CHAPTER 7. LIMITS AND COLIMITS

where U and U are cocartesian fibrations. Let E0 denote the fiber of U over the cone point
0 ∈ C◁. We then have restriction maps

E0
ev←− FunCCart

/ C◁ (C◁, E) θ−→ FunCCart
/ C (C, E),

where ev is a trivial Kan fibration (Corollary 5.3.1.23). Composing θ with a section of ev,
we obtain a functor of ∞-categories Df : E0 → FunCCart

/ C (C, E) which is well-defined up to
isomorphism. We will refer to Df as the covariant diffraction functor associated to the
cocartesian fibration U .

Remark 7.4.1.4. 02TEIn the situation of Construction 7.4.1.3, let C ∈ C be a vertex and let
evC : FunCCart

/ C (C, E)→ EC be the evaluation functor, given on objects by evC(F ) = F (C).
Then the composition

E0
Df−→ FunCCart

/ C (C, E) evC−−→ EC
is given by covariant transport along the unique edge 0→ C of C◁.

Remark 7.4.1.5. 02TFSuppose we are given a pullback diagram of small simplicial sets

E

U

��

// E

U

��
C // C◁ .

Then the covariant diffraction functor Df : E0 → FunCCart
/ C (C, E) of Construction 7.4.1.3

is an equivalence of ∞-categories if and only if the covariant transport representation
TrE/ C◁ : C◁ → QC is a limit diagram in the∞-category QC (this is a restatement of Theorem
7.4.1.1).

We now show that there exists a good supply of cocartesian fibrations which satisfy the
hypotheses of Theorem 7.4.1.1.

Proposition 7.4.1.6. 02TGLet U : E → C be a cocartesian fibration of simplicial sets. Then
there exists a pullback diagram

E

U

��

// E

U

��
C // C◁,

where U is a cocartesian fibration and the restriction map

FunCCart
/ C◁ (C◁, E)→ FunCCart

/ C (C, E)

https://kerodon.net/tag/02TE
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is an equivalence of ∞-categories.

Proof. Let ev : FunCCart
/ C (C, E)× C → E denote the evaluation morphism (given on vertices

by the formula ev(F,C) = F (C)), and let

E ′ = (FunCCart
/ C (C, E)× C) ⋆E E

denote the relative join of Construction 5.2.3.1. Note that we have a canonical map

U ′ : E ′ = (FunCCart
/ C (C, E)× C) ⋆E E → C ⋆C C ≃ ∆1 × C .

Let π : FunCCart
/ C (C, E)×C → C be given by projection onto the second factor. Note that π is

a cocartesian fibration, and that an edge of the product FunCCart
/ C (C, E)× C is π-cocartesian

if and only if its image in FunCCart
/ C (C, E) is an isomorphism. It follows that the ev carries

π-cocartesian edges of FunCCart
/ C (C, E) × C to U -cocartesian edges of E . Applying Lemma

5.2.3.17, we deduce that U ′ is a cocartesian fibration. By construction, we can identify E
with the inverse image of {1} × C under U ′.

Let E ′′ denote the pushout

(FunCCart
/ C (C, E)× C◁)

∐
(FunCCart

/ C (C,E)×C◁)
E ′ .

Amalgamating U ′ with the projection map FunCCart
/ C (C, E)×C◁ → C◁, we obtain a morphism

of simplicial sets U ′′ : E ′′ → K, where K denotes the pushout ({0} × C)◁∐({0}×C)(∆1 × C).
It follows from Proposition 5.1.4.7 that U ′′ is also a cocartesian fibration.

Let us abuse notation by identifying K with its image in the simplicial set (∆1 × C)◁.
Since the inclusion map {0}×C ↪→ ∆1×C is left anodyne (Proposition 4.2.5.3), the inclusion
K ↪→ (∆1 × C)◁ is inner anodyne (Example 4.3.6.5). Applying Proposition 5.6.7.2, we can
write U ′′ as the pullback of a cocartesian fibration U ′′′ : E ′′′ → (∆1 × C)◁. We then have a
commutative diagram of simplicial sets

E //

U

��

E ′ //

U ′

��

E ′′ //

U ′′

��

E ′′′

U ′′′

��
{1} × C // ∆1 × C // K // (∆1 × C)◁,

where each square is a pullback and each vertical map is a cocartesian fibration. Let E
denote the pullback ({1} × C)◁ ×(∆1×C)◁ E ′′′, so that U ′′′ restricts to a cocartesian fibration
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U : E → ({1} × C)◁. We will complete the proof by showing that the commutative diagram

E

U

��

// E

U

��
{1} × C // ({1} × C)◁

satisfies the requirements of Proposition 7.4.1.6.
For every simplicial subset A ⊆ (∆1 × C)◁, let D(A) denote the ∞-category

FunCCart
/A (A,A×(∆1×C)◁ E ′′′).

Let 0 denote the cone point of (∆1 × C)◁. Note that we have a commutative diagram of
restriction functors

D((∆1 × C)◁) α′ //

β

��

D(({1} × C)◁)

α

��
D(K) β′ //

γ

��

D({1} × C)

D({0}).

We wish to show that α is an equivalence of∞-categories. Since the inclusion K ↪→ (∆1×C)◁
is inner anodyne (as noted above) and the inclusion ({1} × C)◁ ↪→ (∆1 × C)◁ is left anodyne
(Lemma 4.3.7.8), the morphisms α′ and β are trivial Kan fibrations (Proposition 5.3.1.21).
It will therefore suffice to show that β′ is an equivalence of ∞-categories.

Amalgamating the map

FunCCart
/ C (C, E)×∆1 × C ≃ (FunCCart

/ C (C, E)× C) ⋆(FunCCart
/ C (C,E)×C) (FunCCart

/ C (C, E)× C)

→ (FunCCart
/ C (C, E)× C) ⋆E E

= E ′

with the identity on FunCCart
/ C (C, E) × C◁, we obtain a morphism of simplicial sets F :

FunCCart
/ C (C, E)×K → E ′′. If e is an edge of the product FunCCart

/ C (C, E)×K whose image in
FunCCart

/ C (C, E) is an isomorphism, then F (e) is a U ′′-cocartesian edge of E ′′. We can therefore
identify F with a morphism of simplicial sets f : FunCCart

/ C (C, E)→ D(K). Unwinding the
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definitions, we see that β′ ◦ f is an isomorphism of simplicial sets. Consequently, to show
that β′ is an equivalence of ∞-categories, it will suffice to show that f is an equivalence of
∞-categories. Similarly, the composite map γ ◦ f is an isomorphism, so we are reduced to
proving that γ is an equivalence of ∞-categories. Since β is a trivial Kan fibration, this is
equivalent to the assertion that γ ◦ β is an equivalence of ∞-categories, which is a special
case of Corollary 5.3.1.23.

Remark 7.4.1.7.02TH If U : E → C is a cocartesian fibration of small simplicial sets, then the
simplicial set E constructed in the proof of Proposition 7.4.1.6 will also be small.

Remark 7.4.1.8.03E6 In the situation of Proposition 7.4.1.6, suppose that U : E → C is a left
fibration. Then the extension U : E → C◁ is also a left fibration. To prove this, it will suffice
to show that the fiber E0 is a Kan complex (Proposition 5.1.4.14). This follows from the
fact that the covariant diffraction functor

Df : E0 → FunCCart
/ C (C, E) = Fun/ C(C, E)

is an equivalence of ∞-categories, since the simplicial set Fun/ C(C, E) is a Kan complex by
(Corollary 4.4.2.5).

Corollary 7.4.1.9.02TJ Let U : E → C be a cocartesian fibration of small simplicial sets and
let TrE / C : C → QC be a covariant transport representation for U . Then the diagram TrE / C
has a limit in the ∞-category QC, given by the ∞-category FunCCart

/ C (C, E) of cocartesian
sections of U .

Proof. Using Proposition 7.4.1.6 (and Remark 7.4.1.7), we see that there exists a pullback
diagram of small simplicial sets

E

U

��

// E

U

��
C // C◁,

where U is a cocartesian fibration and the restriction map FunCCart
/ C◁ (C◁, E)→ FunCCart

/ C (C, E)
is a trivial Kan fibration. Using Corollary 5.6.5.11, we can extend TrE / C to a diagram
TrE/ C◁ : C◁ → QC which is a covariant transport representation for U . Let 0 denote
the cone point of C◁. It follows from Theorem 7.4.1.1 that TrE/ C◁ is a limit diagram in
the ∞-category QC, and therefore exhibits the ∞-category TrE/ C◁(0) ≃ E0 as a limit of
the diagram TrE / C. Using Remark 7.4.1.5, we see that covariant diffraction supplies an
equivalence of ∞-categories E0 → FunCCart

/ C (C, E), so that FunCCart
/ C (C, E) is also a limit of

the diagram TrE / C (Proposition 7.1.1.12).
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Corollary 7.4.1.10. 02TKLet C be a small simplicial set and let F : C → QC be a diagram
in the ∞-category QC. Then the ∞-category of cocartesian sections FunCCart

/ C (C,
∫
CF ) is a

limit of the diagram F .

Proof. Apply Corollary 7.4.1.9 to the cocartesian fibration U :
∫
CF → C.

Corollary 7.4.1.11. 02TLThe ∞-category QC is complete: that is, it admits small limits.

By inspecting the proof of Corollary 7.4.1.11, we can obtain more precise information.

Corollary 7.4.1.12. 05E1Let n be an integer, let C be a simplicial set and let F : C → QC be a
diagram. Suppose that, for every vertex C ∈ C, the ∞-category F (C) is locally n-truncated.
Then the limit lim←−(F ) is a locally n-truncated ∞-category.

Proof. Without loss of generality, we may assume that C is an ∞-category and that n ≥ −2.
Let E =

∫
CF denote the ∞-category of elements of F . It follows from Variant 5.1.5.17

that the projection map U : E → C is an essentially (n+ 1)-categorical cocartesian fibration.
Applying Corollary 4.8.6.21, we see that the ∞-category of sections Fun/ C(C, E) is locally
n-truncated. Since lim←−(F ) can be identified with a full subcategory of Fun/ C(C, E) (Corollary
7.4.1.10), it is also locally n-truncated (Remark 4.8.2.3).

Corollary 7.4.1.13. 03U6Let λ be an uncountable cardinal and let κ = ecf(λ) be the exponential
cofinality of λ. Suppose we are given a diagram F : C → QC, where C is a κ-small simplicial
set. If the ∞-category F (C) is essentially λ-small for each C ∈ C, then the limit lim←−(F ) is
also essentially λ-small.

Proof. Using Proposition 4.7.5.5, we can choose a categorical equivalence G : C → D, where
D is a λ-small ∞-category (if κ is uncountable, we can even arrange that D is κ-small).
Without loss of generality, we may assume that F is obtained as the restriction of the
covariant transport representation of some cocartesian fibration U : E → D. Using Corollary
7.4.1.9, we can identify lim←−(F ) with a full subcategory of the ∞-category Fun/D(C, E).
It will therefore suffice to show that the ∞-category Fun/D(C, E) is essentially λ-small
(Corollary 4.7.5.13). By construction, we have a pullback diagram of simplicial sets

03U7Fun/D(C, E) //

��

Fun(C, E)

U◦

��
{G} // Fun(C,D)

(7.42)

where the vertical maps are cocartesian fibrations (Theorem 5.2.1.1), and therefore isofi-
brations (Proposition 5.1.4.8). It follows that (7.42) is also a categorical pullback square
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(Corollary 4.5.2.27). Using Corollary 4.7.5.16, we are reduced to proving that the ∞-
categories Fun(C, E) and Fun(C,D) are essentially λ-small, which follows from Remark
4.7.5.10.

7.4.2 Proof of the Diffraction Criterion

02UG The goal of this section is to prove Theorem 7.4.1.1. We begin by treating a special case
(which is already sufficient for most applications).

Proposition 7.4.2.1.02UM Suppose we are given a pullback diagram of small ∞-categories

E

U

��

// E

U

��
C // C◁,

where U and U are cocartesian fibrations and the restriction map FunCCart
/ C◁ (C◁, E) →

FunCCart
/ C (C, E) is an equivalence of∞-categories. Then the covariant transport representation

TrE/ C◁ : C◁ → QC

is a limit diagram in the ∞-category QC.

Proof. Suppose we are given an integer n ≥ 1 and a diagram F0 : ∂∆n ⋆ C → QC with
the property that F0|{n}⋆C : {n} ⋆ C → QC is a covariant transport representation for the
cocartesian fibration U ; here we abuse notation by identifying {n} ⋆ C with the cone C◁.
We wish to show that F0 can be extended to a diagram F : ∆n ⋆ C → QC. Using Lemma
5.6.7.1, we can choose a pullback diagram

E

U

��

//

��

E+

U
+

��
{n} ⋆ C // ∂∆n ⋆ C,

where U+ is a cocartesian fibration having covariant transport representation F0. Fix an
auxiliary symbol c, so that the projection map C → {c} induces a cartesian fibration of
∞-categories T : ∆n ⋆C → ∆n ⋆ {c} (this follows by repeated application of Lemma 5.2.3.17).
Note that T restricts to a to a morphism of simplicial sets T0 : ∂∆n ⋆ C → ∂∆n ⋆{c} which

https://kerodon.net/tag/02UG
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is a pullback of T , and is therefore also a cartesian fibration. Let D be the cocartesian direct
image ResCCart

∂∆n ⋆ C / ∂∆n ⋆{c}(E
+) introduced in Notation 5.3.7.7, so that the projection map

π : D → ∂∆n ⋆{c} is a cocartesian fibration of simplicial sets (Proposition 5.3.7.9).
Applying Corollary 5.6.5.12, we can choose a covariant transport representation G0 :

∂∆n ⋆{c} → QC for the cocartesian fibration π. Note that the value of G0 on the edge
e = {n} ⋆ {c} ⊆ ∂∆n ⋆{c} can be identified with the composition

G0({n}) ≃ π−1{n}
s−→ FunCCart

/e (e, e×∂∆n ⋆{c} D)
u−→ π−1{c},

where u is given by evaluation on the final vertex {c} ⊆ e, and s is a section of the
trivial Kan fibration FunCCart

/e (e, e×∂∆n ⋆{c},D)→ π−1{n} given by evaluation at the initial
vertex {n} ⊆ e. Using Proposition 5.3.7.10, we can identify u with the restriction map
FunCCart

/ C◁ (C◁, E)→ FunCCart
/ C (C, E), which is an equivalence of ∞-categories (by assumption).

It follows that the diagram G0 carries the edge e to an isomorphism in the ∞-category QC.
Identifying ∂∆n ⋆{c} with the outer horn Λn+1

n+1 and applying Theorem 4.4.2.6, we deduce
that G0 can be extended to a diagram G : ∆n ⋆ {c} → QC.

Note that we have a commutative diagram of simplicial sets

(∂∆n ⋆ C)×(∂∆n ⋆{c}) D
ev //

π′

''

E+

U
+

||
∂∆n ⋆ C,

where π′ is given given by projection onto the first factor and ev is the restriction of the
evaluation map described in Construction 4.5.9.1. Note that ev carries π′-cocartesian edges
of (∂∆n ⋆ C)×(∂∆n ⋆{c}) D to U+-cocartesian edges of E+. Let E++ denote the relative join

(∂∆n ⋆ C)×(∂∆n ⋆{c}) D) ⋆E+ E+

of Construction 5.2.3.1. Applying Lemma 5.2.3.17, we see that π′ and U+ induce a cocartesian
fibration

U
++ : E++ → (∂∆n ⋆ C) ⋆(∂∆n ⋆ C) (∂∆n ⋆ C) ≃ ∆1 × (∂∆n ⋆ C).

Applying Corollary 5.6.5.11, we deduce that U++ admits a covariant transport representation
H0 : ∆1 × (∂∆n ⋆ C) → QC having the property that H0|{0}×(∂∆n ⋆ C) = G0 ◦ T0 and
H0|{1}×(∂∆n ⋆ C) = F0. Note that, for 0 ≤ i ≤ n, the evaluation map ev restricts to an
isomorphism of ∞-categories {i} ×(∂∆n ⋆{c}) D → {i} ×(∂∆n ⋆ C) E

+, so that the diagram
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H0 carries the edge ge ∆1 × {i} to an isomorphism in the ∞-category QC. Moreover, if
σ : ∆m → ∆n ⋆ C is any simplex which does not factor through ∂∆n ⋆ C, then the vertex
σ(0) must belong to ∂∆n. Applying Proposition 4.4.5.8, we can extend H0 to a diagram
H : ∆1 × (∆n ⋆ C) → QC satisfying H |{0}×(∆n⋆C) = G ◦ T . We complete the proof by
observing that the restriction F = H |{1}×(∆n⋆C) provides the desired extension of the
diagram F0.

Proof of Theorem 7.4.1.1. Suppose we are given a pullback diagram of small simplicial sets

E

U

��

// E

U

��
C // C◁,

where U and U are cocartesian fibrations. Assume first that the restriction map

θ : FunCCart
/ C◁ (C◁, E)→ FunCCart

/ C (C, E)

is an equivalence of∞-categories; we wish to show that the covariant transport representation
TrE/ C◁ : C◁ → QC is a limit diagram in the ∞-category QC.

Using Corollary 4.1.3.3, we can choose an inner anodyne morphism C ↪→ C′, where C′ is
an ∞-category. Note that the induced map C◁ ↪→ C′◁ is also inner anodyne (Proposition
4.3.6.4). Applying Corollary 5.6.7.3, we can realize U as the pullback of a cocartesian
fibration of ∞-categories U ′ : E ′ → C′◁. Set E ′ = C′×C′◁E

′, so that we have a commutative
diagram of restriction functors

FunCCart
/ C′◁ (C′◁, E ′) θ′ //

��

FunCCart
/ C′ (C′, E ′)

��
FunCCart

/ C◁ (C◁, E) θ // FunCCart
/ C (C, E),

where the vertical maps are trivial Kan fibrations (Proposition 5.3.1.21). It follows that θ′ is
also an equivalence of ∞-categories.

Using Corollary 5.6.5.11, we can extend TrE/ C◁ to a functor

TrE ′/ C′◁ : C′◁ → QC

which is a covariant transport representation for the cocartesian fibration U ′. Since C′ is an
∞-category, Proposition 7.4.2.1 guarantees that TrE ′/ C′◁ is a limit diagram in the∞-category
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QC. Since the inclusion map C ↪→ C′ is left cofinal (Proposition 7.2.1.3), it follows that
TrE/ C◁ is also a limit diagram in QC.

We now prove the converse. Assume that the covariant transport representation TrE/ C◁

is a limit diagram in the ∞-category QC; we wish to show that θ is an equivalence of
∞-categories. Using Proposition 7.4.1.6, we can choose another pullback diagram

E

U

��

// E+

U+

��
C // C◁,

where U+ is a cocartesian fibration for which the restriction map θ+ : FunCCart
/ C◁ (C◁, E+)→

FunCCart
/ C (C, E+) is an equivalence of ∞-categories. Applying Corollary 5.6.5.11, we see that

U+ admits a covariant transport representation TrE+ / C◁ : C◁ → QC satisfying (TrE+ / C◁)|C =
(TrE/ C◁)|C. The first part of the proof shows that TrE+ / C◁ is also a limit diagram in the
∞-category QC, and is therefore isomorphic to TrE/ C◁ as an object of the ∞-category
Fun(C◁,QC). Applying Theorem 5.6.0.2, we deduce that there exists a morphism F : E → E+

which is an equivalence of cocartesian fibrations over C◁. We have a commutative diagram
of ∞-categories

FunCCart
/ C◁ (C◁, E+) θ+

//

��

FunCCart
/ C (C, E ′)

��
FunCCart

/ C◁ (C◁, E) θ // FunCCart
/ C (C, E),

where the vertical maps are given by precomposition with F and are therefore equivalences
of ∞-categories. Since θ+ is an equivalence of ∞-categories, it follows that θ is also an
equivalence of ∞-categories.

7.4.3 Colimits of ∞-Categories

02UNLet QC denote the ∞-category of (small) ∞-categories (Construction 5.5.4.1). Our goal
in this section is to show that the ∞-category QC admits small colimits (Corollary 7.4.3.13).
In fact, we will prove something more precise: if C is a small ∞-category, then the colimit
of any diagram F : C → QC can be described explicitly as the localization (

∫
CF )[W−1],

where
∫
CF denotes the ∞-category of elements of F (Definition 5.6.2.4) and W is the

collection of all morphisms of
∫
CF which are cocartesian with respect to the forgetful functor

U :
∫
CF → C (Corollary 7.4.3.12).

https://kerodon.net/tag/02UN
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We begin with some general remarks. Let C▷ denote the right cone on on a simplicial set
C (Construction 4.3.3.26), and let 1 ∈ C▷ denote the cone point. For every vertex C ∈ C,
there is a unique edge eC : C → 1 in C▷. If U : E → C▷ is a cocartesian fibration of simplicial
sets, then covariant transport along eC determines a functor

eC! : EC = {C} ×C▷ E → {1} ×C▷ E = E1.

In what follows, it will be convenient to amalgamate the functors {eC!}C∈C into a single
morphism Rf : C ×C▷E → E1, which we will refer to as the covariant refraction diagram.

Definition 7.4.3.1.02UP Let C be a simplicial set, and let 1 denote the cone point of the
simplicial set C▷ ≃ C ⋆{1}. Suppose that we are given a cocartesian fibration U : E → C▷,
and set

E = C ×C▷E E1 = {1} ×C▷ E .

We will say that a morphism Rf : E → E1 is a covariant refraction diagram if there exists a
morphism of simplicial sets H : ∆1 × E → E satisfying the following conditions:

• The restriction H|{0}×E is the identity morphism from E to itself.

• The restriction H|{1}×E is equal to Rf.

• For every vertex X ∈ E , the restriction H|∆1×{X} is a U -cocartesian edge of E .

Remark 7.4.3.2.02UQ In the situation of Definition 7.4.3.1, suppose that Rf : E → E1 is a
covariant refraction diagram. Then, for every vertex C ∈ C, the restriction Rf|EC

: EC → E1
is given by covariant transport along the unique edge eC : C → 1 of C▷, in the sense of
Definition 5.2.2.4.

Proposition 7.4.3.3.02UR Let U : E → C▷ be a cocartesian fibration of simplicial sets, set
E = C ×C▷E, and let 1 denote the cone point of C▷. Then:

(1) There exists a covariant refraction diagram Rf : E → E1 (Definition 7.4.3.1).

(2) Let F : E → E1 be any morphism of simplicial sets. Then F is a covariant refraction
diagram if and only if it is isomorphic to Rf as an object of the ∞-category Fun(E , E1).

Proof. This is a special case of Lemma 5.2.2.13.

Example 7.4.3.4.02US Let C be an ∞-category and let 1 denote the cone point of C▷. Using
Example 5.2.3.18, we see that the tautological map V : C▷ → (∆0)▷ ≃ ∆1 is a cocartesian
fibration. If U : E → C▷ is another cocartesian fibration, then the ∞-categories E = C ×C▷E
and E1 = {1} ×C▷ E can be identified with the fibers of the composite map

(V ◦ U) : E → ∆1,
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which is also a cocartesian fibration (Proposition 5.1.4.13). In this case, the covariant
refraction diagram Rf : E → E1 of Proposition 7.4.3.3 is given by covariant transport for the
cocartesian fibration V ◦ U (along the nondegenerate edge of ∆1).

Remark 7.4.3.5. 02UTSuppose we are given a pullback diagram of simplicial sets

E

U

��

// E

U

��
C // C▷,

where U and U are cocartesian fibrations. Let 1 denote the cone point of C▷ and let
Rf : E → E1 be a covariant refraction diagram. For every U -cocartesian edge e : X → Y of
E , the image Rf(e) is an isomorphism in the ∞-category E1. To prove this, we observe that
there is a morphism ∆1 ×∆1 → E as indicated in the diagram

X //

e

��

Rf(X)

Rf(e)

��
Y // Rf(Y ),

where the horizontal maps are U -cocartesian. Applying Proposition 5.1.4.12, we deduce that
Rf(e) is an U -cocartesian edge of E , and therefore an isomorphism in the ∞-category E1
(Proposition 5.1.4.11).

Our study of colimits in the ∞-category QC will make use of the following recognition
principle for colimits in the ∞-category QC:

Theorem 7.4.3.6 (Refraction Criterion). 02UUSuppose we are given a pullback diagram of small
simplicial sets

E

U

��

// E

U

��
C // C▷,

where U and U are cocartesian fibrations. Let 1 denote the cone point of C▷ and let W be
the collection of all U -cocartesian edges of E. The following conditions are equivalent:

https://kerodon.net/tag/02UT
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(1) The covariant refraction diagram Rf : E → E1 of Proposition 7.4.3.3 exhibits E1 as a
localization of E with respect W .

(2) The covariant transport representation TrE/ C▷ : C▷ → QC of Notation 5.6.5.14 is a
colimit diagram in the ∞-category QC.

Remark 7.4.3.7.02UV In the statement of Theorem 7.4.3.6, the covariant refraction diagram
F : E → E1 and the covariant transport representation TrE/ C▷ : C▷ → QC are only well-
defined up to isomorphism (as objects of the ∞-categories Fun(E , E1) and Fun(C▷,QC),
respectively). However, conditions (1) and (2) depend only on their isomorphism classes
(see Exercise 6.3.1.11 and Corollary 7.1.2.14).

Exercise 7.4.3.8.02UW Let U : E → C▷ and U
′ : E ′ → C▷ be cocartesian fibrations of simplicial

sets which are equivalent as inner fibrations over C▷ (in the sense of Definition 5.1.7.1). Show
that U satisfies condition (1) of Theorem 7.4.3.6 if and only if U ′ satisfies condition (1) of
Theorem 7.4.3.6.

We will prove Theorem 7.4.3.6 in §7.4.4. The remainder of this section is devoted to
explaining some of its consequences. We begin by showing that there is a good supply of
cocartesian fibrations which satisfy the assumptions of Theorem 7.4.3.6.

Proposition 7.4.3.9.02UX Let U : E → C be a cocartesian fibration of simplicial sets and let 1
denote the cone point of C▷. Then there exists a pullback diagram

E

U

��

// E

U

��
C // C▷,

where U is a cocartesian fibration and a covariant refraction diagram Rf : E → E1 which
exhibits E1 as a localization of E with respect to the collection of all U -cocartesian edges of E.

Proof. Let W be the collection of all U -cocartesian edges of E . Applying Proposition 6.3.2.1,
we deduce that there exists an ∞-category E [W−1] and a diagram Rf : E → E [W−1] which
exhibits E [W−1] as a localization of E with respect to W . In particular, the diagram Rf
carries each U -cocartesian edge of E to an isomorphism in E [W−1]. Let E denote the relative
join E ⋆E[W−1] E [W−1] (Construction 5.2.3.1). Applying Lemma 5.2.3.17 to the commutative
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diagram

E Rf //

U

��

E [W−1]

��
C // ∆0,

we deduce that vertical maps induce a cocartesian fibration

U : E = E ⋆E[W−1] E [W−1]→ C ⋆∆0∆0 ≃ C▷ .

By construction, we have a pullback diagram of simplicial sets

E

U

��

// E

U

��
C // C▷,

and the fiber of U over the cone point 1 ∈ C▷ can be identified with the ∞-category E [W−1].
Moreover, Rf induces a morphism of simplicial sets

H : ∆1 × E ≃ E ⋆E E → E ⋆E[W−1] E [W−1] = E

for which H|{0}×E is the inclusion map E ↪→ E , and H|{1}×E is the diagram Rf : E → E [W−1].
For every vertex X ∈ E , the criterion of Lemma 5.2.3.17 guarantees that H|∆1×{X} is a
U -cocartesian edge of E , so that H exhibits Rf : E → E [W−1] as a covariant refraction
diagram.

Remark 7.4.3.10. 02UYIn the situation of Proposition 7.4.3.9, suppose that the simplicial sets
E and C are small. Then the localization E [W−1] supplied by Proposition 6.3.2.1 can also be
chosen to be small. It follows that the simplicial set E constructed in the proof is also small.

Corollary 7.4.3.11. 02UZLet U : E → C be a cocartesian fibration between small simplicial sets,
and let TrE / C : C → QC be a covariant transport representation of U . Then the diagram
TrE / C admits a colimit in QC. Moreover, an object D ∈ QC is a colimit of the diagram
TrE / C if and only if it is equivalent to the localization E [W−1], where W is the collection of
all U -cocartesian morphisms of E.

https://kerodon.net/tag/02UY
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Proof. Let 1 denote the cone point of C▷. By virtue of Proposition 7.4.3.9 (and Remark
7.4.3.10), there exists a pullback diagram of small simplicial sets

E //

U

��

E

U

��
C // C▷

where U is a cocartesian fibration, and a covariant refraction diagram Rf : E → E1 which
exhibits E1 as a localization of E with respect to W . Applying Corollary 5.6.5.11, we
see that TrE / C extends to a covariant transport representation TrE/ C▷ : C▷ → QC. By
virtue of Theorem 7.4.3.6, this extension is a colimit diagram carrying 0 to the ∞-category
E1 ≃ E [W−1].

Corollary 7.4.3.12.02V0 Let C be a small simplicial set, let F : C → QC be a diagram, let
U :

∫
CF → C denote the projection map, and let W be the collection of all U-cocartesian

morphisms of
∫
CF . Then the localization (

∫
CF )[W−1] is a colimit of the diagram F in the

∞-category QC.

Proof. Apply Corollary 7.4.3.11 to the cocartesian fibration
∫
CF → C.

Corollary 7.4.3.13.02V1 The ∞-category QC is cocomplete: that is, it admits small colimits.

By examining the proof of Corollary 7.4.3.13, we can obtain more precise information.

Corollary 7.4.3.14.03U8 Let κ be an uncountable regular cardinal, let C be a simplicial set which
is essentially κ-small, and suppose we are given a diagram F : C → QC with the property
that, for each vertex C ∈ C, the ∞-category F (C) is essentially κ-small. Then the colimit
lim−→(F ) (formed in the ∞-category QC) is essentially κ-small.

Proof. Without loss of generality, we may assume that F is a covariant transport represen-
tation for a cocartesian fibration U : E → C, so that the colimit lim−→(F ) can be identified
with the localization E [W−1], where W is the collection of U -cocartesian morphisms of E
(Corollary 7.4.3.11). By virtue of Variant 6.3.2.6, it will suffice to show that the simplicial
set E is essentially κ-small, which follows from Corollary 5.6.7.7.

Corollary 7.4.3.15.03U9 Let λ be an uncountable cardinal and let κ = cf(λ) be the cofinality of
λ. Let C be a κ-small simplicial set and let F : C → QC be a diagram. Suppose that, for
each object C ∈ C, the ∞-category F (C) is essentially λ-small. Then the colimit lim−→(F ) is
essentially λ-small.
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Proof. For each vertex C ∈ C, the ∞-category F (C) is essentially λ-small, and is therefore
essentially τ+

C -small for some infinite cardinal τC < λ (Corollary 4.7.6.17). Since λ has
cofinality κ, the supremum τ = sup{τC}C∈C satisfies τ < λ. Replacing λ by the cardinal
sup{τ+, κ}, we are reduced to proving Corollary 7.4.3.15 in the special case where λ is
regular. In this case, the desired result follows from Variant 7.4.3.14.

For strictly commutative diagrams, we can use the results of §5.3 to give an alternative
description of the colimit.

Corollary 7.4.3.16. 039JLet C be a small category and let F : C → QCat be a (strictly
commutative) diagram of ∞-categories indexed by C. Let U : NF

• (C) → N•(C) be the
cocartesian fibration of Definition 5.3.3.1, and let W be the collection of U-cocartesian
morphisms of NF

• (C). Then the localization NF
• (C)[W−1] is a colimit of the diagram Nhc

• (F ) :
N•(C)→ QC.

Proof. Combine Corollary 7.4.3.16 with Example 5.6.5.6.

Corollary 7.4.3.17. 039PLet C be an ∞-category, let U : E → C▷ be a cocartesian fibration,
and set E = C ×C▷E. Let F : E → D be a functor of ∞-categories which carries U-
cocartesian morphisms of E to isomorphisms in D. If the covariant transport representation
TrE/ C▷ : C▷ → QC is a colimit diagram, then F is left Kan extended from E.

Proof. Let Rf : E → E1 be a covariant refraction diagram, so that there exists a natural
transformation h : idE → Rf (in the ∞-category Fun(E , E)) which carries each object X ∈ E
to an U -cocartesian morphism hX : X → Rf(X). Our assumption that TrE/ C▷ is a colimit
diagram guarantees that the functor Rf exhibits E1 as a localization of E (Corollary 7.4.3.9).
Moreover, for each object X ∈ C, the functor F carries hX to an isomorphism in the
∞-category D. Set F0 = F |E and F1 = F |E1

. Applying Proposition 7.3.1.17, we deduce
that the natural transformation F (h) : F0 → F1 ◦Rf exhibits the functor F1 as a left Kan
extension of F0 along Rf. By virtue of Example 7.4.3.4, the natural transformation h exhibits
Rf as a covariant transport functor for the cocartesian fibration

E U−→ C▷ → (∆0)▷ ≃ ∆1.

Applying Corollary 7.3.2.14, we conclude that the functor F is left Kan extended from E .

7.4.4 Proof of the Refraction Criterion

02V2Our goal in this section is to prove Theorem 7.4.3.6. Our starting point is the following
extension property for outer horns of the ∞-category QC:

Lemma 7.4.4.1. 02V3Let n ≥ 2, let X : Λn
0 → QC be a diagram, and let W be a collection of

morphisms of the ∞-category X(0) which satisfies the following pair of conditions:
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(1) Let 1 ≤ i ≤ n, and let X(0 < i) : X(0) → X(i) be the functor obtained by evaluating
X on the edge N•({0 < i}) ⊆ Λn

0 . Then X(0 < i) carries each element of W to an
isomorphism in the ∞-category X(i).

(2) The functor X(0 < 1) : X(0)→ X(1) exhibits X(1) as a localization of X(0) with respect
to W .

Then X can be extended to an n-simplex ∆n → QC.

Proof. Set C = X(0), D = X(1), and let F : C → D be the functor X(0 < 1). Using the
isomorphism Λn

0 ≃ (∂∆n−1)◁, we can identify X with a diagram σ0 : ∂∆n−1 → QCC /. To
complete the proof, it will suffice to show that σ0 can be extended to an (n− 1)-simplex
of QCC /. Let us identify the objects of the ∞-category QCC / with pairs (E , G), where E
is a small ∞-category and G : C → E is a functor. Let QCWC / denote the full subcategory
of QCC / spanned by those pairs (E , G), where the functor G carries each element of W to
an isomorphism in E . It follows from assumption (1) that the diagram σ0 factors through
the subcategory QCWC / ⊆ QCC /. To prove the existence of σ, it will suffice (by virtue
of Corollary 4.6.7.13) to show that σ0(0) = (D, F ) is an initial object of the ∞-category
QCWC /. Fix another object (E , G) ∈ QCWC /; we wish to show that the morphism space
HomQCW

C /
((D, F ), (E , G)) = HomQCC /

((D, F ), (E , G)) is a contractible Kan complex. Using
Corollary 4.6.9.18 and Remark 5.5.4.6, we can identify HomQCC /

((D, F ), (E , G)) with the
homotopy fiber of the map of Kan complexes

Fun(D, E)≃ ◦F−−→ Fun(C, E)≃

over the vertex G ∈ Fun(C, E)≃. Assumption (2) guarantees that this map is a homotopy
equivalence onto the summand of Fun(C, E)≃ spanned by those functors C → E which carry
each element of W to an isomorphism in E . It will therefore suffice to show that this
summand contains the functor G, which follows from the definition of QCWC /.

We now prove a weak form of Theorem 7.4.3.6 (which is already sufficient for most of
our applications):

Proposition 7.4.4.2.02V4 Suppose we are given a pullback diagram of small ∞-categories

E //

U

��

E

U

��
C // C▷,

https://kerodon.net/tag/02V4
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where U and U are cocartesian fibrations. Let W be the collection of all U-cocartesian
morphism of E, let 0 denote the cone point of C▷ ≃ C ⋆{0}, and assume that the covariant
refraction diagram Rf : E → E0 of Proposition 7.4.3.3 exhibits E0 as a localization of E with
respect to W . Then the covariant transport representation TrE/ C▷ : C▷ → QC is a colimit
diagram in the ∞-category QC.

Proof. Fix an integer n > 0, and suppose we are given a diagram F0 : C ⋆ ∂∆n → QC for
which the restriction F0|C ⋆{0} coincides with TrE/ C▷ . We wish to show that F0 can be
extended to a functor F : C ⋆∆n → QC. Applying Lemma 5.6.7.1, we can choose a pullback
diagram

E

U

��

// E−

U
−

��
C ⋆{0} // C ⋆ ∂∆n,

where U− is a cocartesian fibration having covariant transport representation F0. For
0 ≤ i ≤ n, let us write E−i for the ∞-category given by the fiber of U− on the vertex
i ∈ ∂∆n.

Fix an auxiliary symbol c, so that the projection map C → {c} induces a cocartesian
fibration of ∞-categories V + : C ⋆∆n → {c} ⋆ ∆n (this follows by repeated application of
Lemma 5.2.3.17). Note that V + restricts to a morphism of simplicial sets V − : C ⋆ ∂∆n →
{c} ⋆ ∂∆n which is a pullback of V +, and therefore also a cocartesian fibration (Remark
5.1.4.6). Applying Proposition 5.1.4.13, we deduce that the composite map (V − ◦ U−) :
E− → {c} ⋆ ∂∆n ≃ Λn+1

0 is also a cocartesian fibration.
Let G0 : {c} ⋆ ∂∆n → QC be a covariant transport representation for the cocartesian

fibration V − ◦ U−. Let us identify G0(c) with the ∞-category E . For 0 ≤ i ≤ n, we can
identify G0(i) with the ∞-category E−i for 0 ≤ i ≤ n, and the restriction of G0 to the edge
{c} ⋆ {i} with a functor Gi : E → E−i . Applying Example 7.4.3.4 (and Remark 5.6.5.8), we
see that Gi is a covariant refraction diagram for the cocartesian fibration

(C ⋆{i})×C ⋆ ∂∆n E− → C ⋆{i}.

In particular, each of the functors Gi carries elements of W to isomorphisms in the ∞-
category E−i (Remark 7.4.3.5). Moreover, the functor G0 is isomorphic to Rf (Proposition
7.4.3.3), and therefore exhibits E−0 = E0 as a localization of E with respect to W (Exercise
6.3.1.11). Applying Lemma 7.4.4.1, we can extend G0 to a diagram G : {c} ⋆ ∆n → QC.
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Using Lemma 5.6.7.1, we can choose a pullback diagram

E− //

V −◦U−

��

E+

T

��
C ⋆ ∂∆n // C ⋆∆n,

where T is a cocartesian fibration having covariant transport representation G . Note that
we can write T uniquely as a composition

E+ U
+

−−→ C ⋆∆n V +
−−→ {c} ⋆∆n,

where U+ is a morphism of simplicial sets which fits into a pullback diagram

E− //

U
−

��

E+

U
+

��
C ⋆ ∂∆n // C ⋆∆n.

We will show that the morphism U
+ is a cocartesian fibration. Assuming this, we can

complete the proof by applying Corollary 5.6.5.11 to extend F0 to a diagram F : C ⋆∆n → QC
(which is a covariant transport representation for the cocartesian fibration U

+).
We first prove that U+ is an inner fibration of simplicial sets. Suppose we are given

integers 0 < i < m; we wish to show that every lifting problem

02V5 Λmi
σ0 //

��

E+

U
+

��
∆m σ //

σ

==

C ⋆∆n

(7.43)

admits a solution. If σ factors through C, then a solution exists by virtue of the fact that U
is an inner fibration. Let us therefore assume that σ does not factor through C. Since T is
an inner fibration, we can extend σ0 to an n-simplex σ of E+ satisfying T ◦ σ = V + ◦ σ. We
claim that the n-simplex σ solves the lifting problem (7.43). Set σ′ = U

+ ◦ σ; we wish to
show that σ′ coincides with σ (as m-simplices of the simplicial set C ⋆∆n). Note that we
have V + ◦ σ = V + ◦ σ′. It follows that σ and σ′ both carry the final vertex m ∈ ∆m to the

https://kerodon.net/tag/02V5
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same vertex of ∆n ⊆ C ⋆∆n. Consequently, it will suffice to show that σ and σ′ agree when
restricted to the face ∆m−1 ⊆ ∆m. This follows from the commutativity of the diagram
(7.43), since ∆m−1 is contained in the horn Λmi ⊆ ∆m.

Fix an object X of the ∞-category E+ having image X = U
+(X) and a morphism

e : X → Y in the ∞-category C ⋆∆m. We will complete the proof by showing that e can be
lifted to an U

+-cocartesian morphism e : X → Y of E . If X and Y belong to C, then we
take e : X → Y to be a U -cocartesian morphism of E satisfying U(e) = e (which exists by
virtue of our assumption that U is a cocartesian fibration). Otherwise, we take e : X → Y

to be a T -cocartesian morphism of E+ satisfying T (e) = V +(e) (which exists by virtue of
the fact that T is a cocartesian fibration). In either case, we will prove that the morphism e

is U+-cocartesian by verifying the criterion of Proposition 5.1.2.1. Choose another object
Z ∈ E+ having image Z = U

+(Z); we wish to show that the diagram of Kan complexes

02V6{c} ×Hom
E+ (X,Y ) HomE+(X,Y, Z) //

��

HomE+(X,Z)

��
{e} ×HomC ⋆∆n (X,Y ) HomC ⋆∆n(X,Y , Z) // HomC ⋆∆n(X,Z)

(7.44)

is a homotopy pullback square. We consider several cases:

• Suppose first that the object Z belongs to C. If X and Y belong to C, then we
deduce that (7.44) is a homotopy pullback square by applying Proposition 5.1.2.1
to the cocartesian fibration U : E → C (since, by construction, the morphism e is
U -cocartesian). Otherwise, each of the Kan complexes appearing in the diagram (7.44)
is empty, so there is nothing to prove.

• Suppose that the objects Y and Z belong to ∆n. In this case, we deduce that (7.44)
is a homotopy pullback square by applying Proposition 5.1.2.1 to the cocartesian
fibration T : E+ → {c} ⋆∆n (since, by construction, the morphism e is T -cocartesian).

• Suppose that the objects X and Y belong to C, but the object Z belongs to ∆n. In this
case, the Kan complexes on the bottom row of (7.44) are contractible (see Example
4.6.1.6; in fact, they are both isomorphic to ∆0). In particular, the bottom horizontal
map is a homotopy equivalence. To show that (7.44) is a homotopy pullback square,
we must show that the upper horizontal map is also a homotopy equivalence (Corollary
3.4.1.5). In other words, we must show that composition with the homotopy class [e]
induces an isomorphism θ : HomE+(Y,Z)→ HomE+(X,Z) in the homotopy category
hKan (see Notation 4.6.9.15). Let

G : E = {c} ×{c}⋆∆n E+ → {Z} ×{c}⋆∆n E+ = E+
Z

https://kerodon.net/tag/02V6
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be given by covariant transport for the cocartesian fibration T . Using Corollary 5.1.2.3,
we can identify θ with the morphism HomE+

Z

(G(Y ), Z)→ HomE+
Z

(G(X), Z) given by
precomposition with the morphism G(e) : G(X) → G(Y ). Since the morphism e is
U -cocartesian, its image G(e) is an isomorphism in the ∞-category E+

Z , so that θ is a
homotopy equivalence as desired.

To extend Proposition 7.4.4.2 to the case where C is not assumed to be an ∞-category,
we will need the following variant of Corollary 5.6.7.6:

Lemma 7.4.4.3.02V7 Suppose we are given a pullback diagram of simplicial sets

E0
F̃ //

U0

��

E

U

��
C0

F // C,

where U0 and U are cocartesian fibrations. Let W0 denote the collection of all U -cocartesian
edges of E0, and let W denote the collection of all U-cocartesian morphisms of E. If F is
inner anodyne, then F̃ induces an equivalence of ∞-categories E0[W−1

0 ]→ E [W−1].

Remark 7.4.4.4.02V8 Using Theorem 7.4.3.6, one can show that conclusion of Lemma 7.4.4.3
holds more generally under the assumption that F : C0 → C is a left cofinal morphism
of simplicial sets. For simplicity, let us assume that each of the simplicial sets appearing
in the statement of Lemma 7.4.4.3 is small. Using Proposition 7.4.3.9, we can assume
that U is the pullback of a cocartesian fibration U : E → C▷ for which the covariant
refraction diagram Rf : E → E1 exhibits the ∞-category E1 as a localization of E with
respect to W . Using Theorem 7.4.3.6, we deduce that the covariant transport representation
Tr = TrE/ C▷ : C▷ → QC is a colimit diagram. Since F is right cofinal, it follows that the
restriction Tr |C▷

0
is also a colimit diagram (Corollary 7.2.2.3). Applying Theorem 7.4.3.6

again, we conclude that Rf|E0 exhibits E1 as a localization of E0 with respect to W0, so that
F̃ induces an equivalence E0[W−1

0 ] ∼−→ E [W−1].

Proof of Lemma 7.4.4.3. Fix an∞-category D; we wish to show that precomposition with F̃
induces an equivalence of ∞-categories Fun(E [W−1],D)→ Fun(E0[W−1

0 ],D) (see Notation
6.3.1.1). Corollary 5.6.7.6 guarantees that F̃ is a categorical equivalence of simplicial sets, so
that precomposition with F̃ induces an equivalence of∞-categories Fun(E ,D)→ Fun(E0,D).
It will therefore suffice to prove the following:

https://kerodon.net/tag/02V7
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(∗) Let G : E → D be a morphism of simplicial sets with the property that G◦F̃ carries every
U0-cocartesian edge of E0 to an isomorphism in D. Then G carries each U -cocartesian
edge of E to an isomorphism in D.

Let us henceforth regard the ∞-category D and the functor G : E → D as fixed. For
every morphism of simplicial sets K → C, let EK denote the fiber product K ×C E , let
UK : EK → K be the projection map, and let GK denote the restriction of G to EK . Let us
say that a monomorphism of simplicial sets K ′ ↪→ K is good if, for every morphism K → C
with the property that GK′ carries UK′-cocartesian morphisms of EK′ to isomorphisms in D,
the morphism GK carries UK-cocartesian morphisms of EK to isomorphisms in D. To prove
(∗), it will suffice to show that F : C0 → C is weakly saturated. It is not difficult to see that
the collection of good morphisms is weakly saturated, in the sense of Definition 1.5.4.12.
It will therefore suffice to show that the horn inclusion Λn

i ↪→ ∆n is good for 0 < i < n.
In other words, it will suffice to prove (∗) in the special case where C = ∆n is a standard
simplex and F : Λni ↪→ ∆n is the inclusion of an inner horn.

If n ≥ 3, then every edge of C = ∆n is contained in the horn Λn
i ; it follows that the

morphism F̃ : E0 → E induces a bijection W0
∼−→W , so there is nothing to prove. We may

therefore assume without loss of generality that n = 2. Let w : X → Z be a U -cocartesian
of E which does not belong to the simplicial subset E0 = Λ2

1 ×∆2 E , so that U(X) = 0 and
U(Z) = 2. Since U is a cocartesian fibration, we can choose a U -cocartesian morphism
u : X → Y with U(Y ) = 1. Our assumption that u is U -cocartesian guarantees that there
exists a 2-simplex of E ′ whose boundary is indicated in the diagram

Y

v

  
X

u

??

w // Z.

Invoking Corollary 5.1.2.4, we see that v is also U -cocartesian, so that u and v can be
regarded as elements of W0. It now suffices to observe that if G : E → D is any functor
which carries both u and v to isomorphisms in D, then G also carries w to an isomorphism
in D.
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Proof of Theorem 7.4.3.6. Suppose we are given a pullback diagram of small simplicial sets

E //

U

��

E

U

��
C // C▷,

where U and U are cocartesian fibrations. Let W denote the collection of all U -cocartesian
edges of E , let 1 denote the cone point of C▷, let Rf : E → E1 be a covariant refraction diagram
(Definition 7.4.3.1). Assume first that Rf exhibits the ∞-category E1 as a localization
of E with respect to W . We wish to show that the covariant transport representation
TrE/ C▷ : C▷ → QC is a colimit diagram in the ∞-category QC.

Using Corollary 4.1.3.3, we can choose an inner anodyne morphism C ↪→ C′, where C′ is
an ∞-category. Note that the induced map C▷ ↪→ C′▷ is also inner anodyne (Proposition
4.3.6.4). Applying Corollary 5.6.7.3, we can realize U as the pullback of a cocartesian
fibration of ∞-categories U ′ : E ′ → C′▷. Form a pullback diagram

02V9 E ′

U ′

��

//

��

E ′

U
′

��
C′ // C′▷,

(7.45)

and let W ′ denote the collection of all U ′-cocartesian morphisms of E ′. Using Proposition
7.4.3.3, we can choose a covariant refraction diagram Rf ′ : E ′ → E ′1 = E1 for the cocartesian
fibration U ′. Note that the restriction Rf|E is a covariant refraction collapse diagram for the
cocartesian fibration U , and is therefore isomorphic to Rf as an object of the ∞-category
Fun(E , E1. It follows that Rf ′|E also exhibits the ∞-category E1 as a localization of E with
respect to W (Exercise 6.3.1.11). Applying Lemma 7.4.4.3, we see that Rf exhibits E1 as a
localization of E ′ with respect to W .

Using Corollary 5.6.5.11, we can extend TrE/ C▷ to a functor

TrE ′/ C′▷ : C′▷ → QC

which is a covariant transport representation for U ′. Applying Proposition 7.4.4.2 to the
diagram of ∞-categories (7.45), we deduce that TrE ′/ C′▷ is a colimit diagram in the ∞-
category QC. Since the inclusion map C ↪→ C′ is right cofinal (Proposition 7.2.1.3), it follows
that TrE/ C▷ is also a colimit diagram in QC, as desired.

https://kerodon.net/tag/02V9
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We now prove the converse. Assume that the covariant transport representation TrE/ C▷

is a colimit diagram in the ∞-category QC; we wish to show that the covariant refraction
diagram Rf exhibits E1 as a localization of E with respect to W . By virtue of Proposition
7.4.3.9 (and Remark 7.4.3.10), we can choose another pullback diagram

E

U

��

// E+

U+

��
C // C▷,

where U+ is a cocartesian fibration for which the covariant refraction diagram Rf+ : E → E+
1

exhibits E+
1 as a localization of E with respect to W . Applying Corollary 5.6.5.11, we

see that U+ admits a covariant transport representation TrE+ / C▷ : C▷ → QC satisfying
(TrE+ / C▷)|C = (TrE/ C▷)|C. The first part of the proof shows that TrE+ / C▷ is also a colimit
diagram in the ∞-category QC, and is therefore isomorphic to TrE/ C▷ as an object of the
∞-category Fun(C▷,QC). Applying Theorem 5.6.0.2, we see U : E → C▷ and U+ : E+ → C▷

are equivalent as cocartesian fibrations over C▷. Applying Exercise 7.4.3.8, we conclude that
Rf also exhibits E1 as a localization of E with respect to W , as desired.

7.4.5 Limits and Colimits of Spaces

02VALet S denote the ∞-category of spaces (Construction 5.5.1.1), which we regard as a full
subcategory of the ∞-category QC (Remark 5.5.4.8). Our goal in this section is to describe
limits and colimits in the ∞-category S. Given the results of §7.4.1 and §7.4.3, this is a
relatively formal exercise. We begin with an elementary observation:

Proposition 7.4.5.1. 02VBLet f : K → S be a diagram. Then:

• An extension f : K◁ → S is a limit diagram if and only if it is a limit diagram in the
∞-category QC.

• An extension f : K▷ → S is a colimit diagram if and only if it is a colimit diagram in
the ∞-category QC.

Proof. It follows immediately from the definitions that a diagram in S which is a limit (or
colimit) diagram in the larger ∞-category QC, then it is already a limit (or colimit) diagram
in S (see Variant 7.1.3.10). To prove the converse implications, we must show that the
inclusion functor ι : S → QC preserves all limits and colimits. This follows from Corollary
7.1.3.21, since the functor ι admits both left and right adjoints (Example 6.2.2.16).

https://kerodon.net/tag/02VA
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Corollary 7.4.5.2.02VC Let U : E → C be a left fibration between small simplicial sets and
let TrE / C : C → S be a covariant transport representation for U . Then the simplicial set
Fun/ C(C, E) of sections of U is a Kan complex, which is a limit of the diagram TrE / C in the
∞-category S.

Proof. Since U is a left fibration, Corollary 4.4.2.4 guarantees that the simplicial set
Fun/ C(C, E) is a Kan complex. Note that every edge of E is U -cocartesian (Example
5.1.1.3), so that Fun/ C(C, E) coincides with the ∞-category FunCCart

/ C (C, E) of cocartesian
sections of U . Applying Corollary 7.4.1.9, we see that the Kan complex Fun/ C(C, E) is a
limit of the diagram TrE / C in the ∞-category QC, and therefore also in the full subcategory
S ⊆ QC (Proposition 7.4.5.1).

Corollary 7.4.5.3.02VD Let C be a small simplicial set. Then any diagram F : C → S admits a
limit in the ∞-category S, given by the ∞-category Fun/ C(C,

∫
CF ).

Proof. Apply Corollary 7.4.5.2 to the left fibration U :
∫
CF → C of Example 5.6.2.9.

Corollary 7.4.5.4.02VE Let U : E → C be a left fibration between small simplicial sets and let
TrE / C : C → S be a covariant transport representation for U . Then the diagram TrE / C
admits a colimit in the ∞-category S. Moreover, a Kan complex X is a colimit of TrE / C if
and only if there exists a weak homotopy equivalence E → X.

Proof. Since U is a left fibration, every edge of E is U -cocartesian (Example 5.1.1.3). Let
W be the collection of all U -cocartesian edges of E . By virtue of Corollary 7.4.3.11, an
∞-category X is a colimit of TrE / C in the ∞-category QC if and only if there exists a
functor f : E → X which exhibits X as a localization of E with respect to W . By virtue of
Proposition 6.3.1.20, this is equivalent to the requirement that X is a Kan complex and that
f is a weak homotopy equivalence. In this case, X is also a colimit of the diagram TrE / C in
the full subcategory S ⊆ QC (Proposition 7.4.5.1).

Corollary 7.4.5.5.02VF Let C be a small simplicial set. Then any diagram F : C → S admits a
colimit in the ∞-category S. Moreover, a Kan complex X is a colimit of the diagram F if
and only if there exists a weak homotopy equivalence

∫
CF → X.

Proof. Apply Corollary 7.4.5.4 to the left fibration U :
∫
CF → C of Example 5.6.2.9.

Corollary 7.4.5.6.02VG The ∞-category S is complete and cocomplete.

Proof. Combine Corollaries 7.4.5.5 and 7.4.5.3

Remark 7.4.5.7 (Size Estimates for Colimits).03UA Let λ be an uncountable cardinal and let
κ = cf(λ) be its cofinality. Suppose we are given a diagram F : C → S, where C is a κ-small
simplicial set, and that the Kan complex F (C) is essentially λ-small for each C ∈ C. Then

https://kerodon.net/tag/02VC
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the colimit lim−→(F ) is also essentially λ-small. This follows from Corollary 7.4.3.15 and
Proposition 7.4.5.1.

Variant 7.4.5.8 (Size Estimates for Limits). 03UBLet λ be an uncountable cardinal and let
κ = ecf(λ) be its exponential cofinality. Suppose we are given a diagram F : C → S, where
C is a κ-small simplicial set, and that the Kan complex F (C) is essentially λ-small for
each C ∈ C. Then the limit lim←−(F ) is also essentially λ-small. This follows from Corollary
7.4.1.13 and Proposition 7.4.5.1.

Remark 7.4.5.9 (Limits of Truncated Spaces). 05E2Let n be an integer. Suppose we are
given a diagram F : C → S such that, for every vertex C ∈ C, the Kan complex F (C) is
n-truncated. Then the limit lim←−(F ) is n-truncated. For n ≥ −1, this follows by combining
Corollary 7.4.1.12 with Example 4.8.2.4. For n ≤ −2, our assumption ensures that each
of the Kan complexes F (C) is contractible, and we wish to show that the Kan complex
lim←−(F ) is also contractible. This follows from the description given in Corollary 7.4.5.3,
since the projection map U :

∫
CF → C is a trivial Kan fibration (see Proposition 4.4.2.14).

Corollary 7.4.5.10. 05E3Let n be an integer, let C be a simplicial set and let F : C → S be a
diagram. Suppose that, for every vertex C ∈ C, the Kan complex F (C) is n-truncated. Then
the limit lim←−(F ) is an n-truncated Kan complex.∞-category.

Proposition 7.4.5.11. 04K3Let C be an ∞-category and let f : K → C be a morphism of
simplicial sets. The following conditions are equivalent:

(1) The morphism f is right cofinal (Definition 7.2.1.1).

(2) For every corepresentable functor h : C → S, the composite map K
f−→ C h−→ S has a

contractible colimit.

Proof. Fix an object X ∈ C, and let hX : C → S<κ be a functor corepresented by X

(Theorem 5.6.6.13). Using Proposition 5.6.6.21, we see that f ◦ hX is a covariant transport
representation for the left fibration K ×C CX/ → K. Using Corollary 7.4.5.4, we can
reformulate condition (2) as follows:

(2′) For each object X ∈ C, the simplicial set K ×C CX/ is weakly contractible.

The equivalence (1)⇔ (2′) follows from Theorem 7.2.3.1.

For strictly commutative diagrams, we can use the results of §5.3 to give an alternative
construction.

Corollary 7.4.5.12. 039KLet C be a small category and let F : C → Kan be a (strictly
commutative) diagram of Kan complexes indexed by C. Then a Kan complex X is a colimit
of the functor Nhc

• (F ) : N•(C) → S if and only if it is weakly homotopy equivalent to the
weighted nerve NF

• (C) of Definition 5.3.3.1.
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Proof. Combine Corollary 7.4.5.4 with Example 5.6.5.6.

For many applications, it will be useful to have more precise versions of the preceding
results, which characterize limit and colimit diagrams in the ∞-category S.

Corollary 7.4.5.13.02VH Suppose we are given a pullback diagram of small simplicial sets

E //

U

��

E

U

�� ��
C // C◁,

where U and U are left fibrations. The following conditions are equivalent:

(1) The restriction map
Fun/ C◁(C◁, E)→ Fun/ C(C, E)

is a homotopy equivalence of Kan complexes.

(2) The covariant transport representation TrE/ C◁ : C◁ → S is a limit diagram in the
∞-category S.

Proof. Since U is a left fibration, every edge of E is U -cocartesian (Example 5.1.1.3). We
can therefore identify Fun/ C◁(C◁, E) and Fun/ C(C, E) with the ∞-categories FunCCart

/ C◁ (C◁, E)
and FunCCart

/ C (C, E), respectively. The desired result now follows by combining Theorem
7.4.1.1 with Proposition 7.4.5.1.

As an application, we prove a converse of Corollary 7.2.2.3:

Corollary 7.4.5.14.03E7 Let e : C′ → C be a morphism of simplicial sets. Then e is left cofinal
if and only if it satisfies the following condition:

(∗) For every limit diagram F : C◁ → S, the composition (F ◦ e◁) : C′◁ → S is also a limit
diagram.

Proof. Assume that condition (∗) is satisfied; we will show that e is left cofinal (the reverse
implication is a special case of Corollary 7.2.2.3). Fix a left fibration U : E → C; we wish to
show that the restriction map

e∗ : Fun/ C(C, E)→ Fun/ C(C′, E)

https://kerodon.net/tag/02VH
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is a homotopy equivalence of Kan complexes. Using Proposition 7.4.1.6 (together with
Remark 7.4.1.8), we can extend U to a left fibration U : E → C◁ for which the restriction
map

T : Fun/ C◁(C◁, E)→ Fun/ C(C, E)

is a homotopy equivalence.
Form a pullback diagram of simplicial sets

E ′ //

U
′

��

E

U

��
C′◁ e // C◁ .

Let F : C◁ → S be a covariant transport representation for the left fibration U , so that F ◦e◁
is a covariant transport representation for the left fibration U ′. It follows from the criterion
of Corollary 7.4.5.13 that F is a limit diagram in the ∞-category S. Applying assumption
(∗), we see that F ◦ e◁ is also a limit diagram in the ∞-category S. We therefore have a
commutative diagram of restriction maps

Fun/ C◁(C′◁, E) T ′ //

(e◁)∗

��

Fun/ C(C′, E)

e∗

��
Fun/ C◁(C◁, E) T // Fun/ C(C, E),

where the horizontal maps are homotopy equivalences (Corollary 7.4.5.13). Consequently,
to show that e∗ is a homotopy equivalence, it will suffice to show that (e◁)∗ is a homotopy
equivalence. We now observe that (e◁)∗ fits into a commutative diagram

Fun/ C◁(C′◁, E)

(e◁)∗

��

%%
{0} ×C◁ E

Fun/ C◁(C◁, E),

99
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where the horizontal maps are given by evaluation at the cone points of the simplicial sets
C◁ and C′◁ are are therefore trivial Kan fibrations (Corollary 5.3.1.23).

Corollary 7.4.5.15.02VJ Suppose we are given a pullback diagram of small simplicial sets

E //

U

��

E

U

�� ��
C // C▷,

where U and U are left fibrations. The following conditions are equivalent:

(1) The inclusion map E ↪→ E is a weak homotopy equivalence of simplicial sets.

(2) The inclusion map E ↪→ E is left cofinal.

(3) The covariant transport representation TrE/ C▷ : C▷ → S is a colimit diagram in the
∞-category S.

Proof. Let 1 denote the cone point of C▷, and let E1 = {1} ×C▷ E denote the corresponding
fiber of E . Since the inclusion map {1} ↪→ C▷ is right anodyne (Example 4.3.7.11), the
inclusion ι : E1 ↪→ E is also right anodyne (Corollary 7.2.3.13). In particular, ι is a weak
homotopy equivalence of simplicial sets. Let Rf : E → E1 be a covariant refraction diagram
(Proposition 7.4.3.3), so that the inclusion map E ↪→ E is homotopic to the composition
ι ◦ Rf. It follows that condition (1) can be reformulated as follows:

(1′) The covariant refraction diagram Rf : E → E1 is a weak homotopy equivalence.

The equivalence (1′)⇔ (3) follows by combining Proposition 7.4.5.1, Theorem 7.4.3.6, and
Proposition 6.3.1.20.

The implication (2)⇒ (1) follows from Proposition 7.2.1.5. We will complete the proof
by showing that (1′) implies (2). Choose an inner anodyne monomorphism C ↪→ C′, where
K ′ is an ∞-category. Then the induced map C▷ → C′▷ is also inner anodyne (Corollary
4.3.6.6); in particular, it is a categorical equivalence. Using Proposition 5.6.7.2 (and Remark
5.6.7.4), we can assume that U is the pullback of a left fibration U

′ : E ′ → C′▷. Setting
E ′ = C′×C′▷E

′, we have a commutative diagram of inclusion maps

E //

��

E

��

E ′ // E ′,

https://kerodon.net/tag/02VJ
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where the vertical maps are categorical equivalences (Corollary 5.6.7.6). Consequently, to
prove that the inclusion map E ↪→ E is left cofinal, it will suffice to show that the inclusion
E ′ ↪→ E ′ is left cofinal (Corollary 7.2.1.22). We may therefore replace U by the left fibration
U
′ : E ′ → C′▷, and thereby reduce to proving the implication (1′)⇒ (2) under the assumption

that C is an ∞-category.
Let E ×̃E E1 denote the oriented fiber product of Definition 4.6.4.1, and consider the

projection maps
E π←− E ×̃E E1

π′−→ E1.

The functor π is a trivial Kan fibration, and the refraction functor Rf is obtained by
composing π′ with a choice of section of π. Consequently, assumption (1′) guarantees that
π′ is a weak homotopy equivalence of simplicial sets. For each vertex X ∈ E1, we have a
pullback diagram of simplicial sets

048AE ×̃E{X} //

��

{X}

��
E ×̃E E1

π // E1.

(7.46)

Since π′ is an isofibration of ∞-categories (Corollary 5.3.7.3), the diagram( 7.46 ) is a
categorical pullback square (Corollary 4.5.2.27). Because E1 is a Kan complex, the diagram
( 7.46) is also a homotopy pullback square (Variant 4.5.2.11). Our assumption that π′ is
a weak homotopy equivalence guarantees that the upper horizontal map is also a weak
homotopy equivalence: that is, the simplicial set E ×̃E{X} is weakly contractible (Corollary
3.4.1.5). Condition (2) now follows by allowing the object X to vary and applying the
criterion of of Theorem 7.2.3.1 (together with Remark 7.2.3.2).

We conclude this section with an application of Corollary 7.4.5.13.

Proposition 7.4.5.16. 039LLet C be a locally small ∞-category and let K be a small simplicial
set. Then a morphism F : K◁ → C is a limit diagram if and only if, for every object X ∈ C,
the composition

K◁ F−→ C hX

−−→ S

is a limit diagram in the ∞-category of spaces; here hX denotes the functor corepresented by
X (Notation 5.6.6.14).

Proof. Applying Proposition 7.1.5.12, we see that F is a limit diagram if and only if, for
every object X ∈ C, the restriction map

θX : HomFun(K◁,C)(X,F )→ HomFun(K,C)(X|K , F |K)

https://kerodon.net/tag/048A
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is a homotopy equivalence of Kan complexes. Let E denote the oriented fiber product
{X} ×̃C C and let U : E → C be given by projection onto the second factor. Note that U is a
left fibration (Proposition 4.6.4.11) and that θX can be identified with the restriction map

Fun/ C(K◁, E)→ Fun/ C(K, E).

The identity morphism idX can be viewed as an initial object of E satisfying U(idX) = X

(Proposition 4.6.7.22), so the corepresentable functor hX : C → S is a covariant transport
representation for U (Proposition 5.6.6.21). Applying Corollary 7.4.5.13, we see that θX is a
homotopy equivalence if and only if hX ◦ F is a limit diagram in the ∞-category S.

Corollary 7.4.5.17.039M Let C be a locally small ∞-category. For every object X ∈ C, the
functors

hX : C → S hX : Cop → S

preserve K-indexed limits, for every small simplicial set K.

Remark 7.4.5.18.03V0 Let λ be an uncountable cardinal and let C be an ∞-category which is
locally λ-small. Let κ = ecf(λ) be the exponential cofinality of λ and let K be a κ-small
simplicial set. Then, in the statements of Proposition 7.4.5.16 and Corollary 7.4.5.17, we
can replace S by the ∞-category S<λ of λ-small spaces (see Variant 7.4.5.8).

7.5 Homotopy Limits and Colimits

039Y Let C be a small category, and let F : C → Kan be a diagram of Kan complexes indexed
by C. Recall that the diagram F has a limit lim←−(F ) in the category of simplicial sets, given
concretely by the formula

lim←−(F )(C)n = lim←−
C∈C

F (C)n

(Remark 1.1.0.8). However, from the perspective of homotopy theory, the construction
F 7→ lim←−(F ) is poorly behaved:

• Although each of the simplicial sets {F (C)}C∈C is assumed to be a Kan complex, the
inverse limit lim←−(F ) need not be a Kan complex.

• If α : F → G is a natural transformation between diagrams F ,G : C → Kan
which is a levelwise homotopy equivalence (Remark 4.5.6.2), then the induced map
lim←−(F )→ lim←−(G ) need not be a (weak) homotopy equivalence (see Warning 3.4.0.1).

These deficiencies can be remedied by working in the framework of ∞-categories. By
passing to the homotopy coherent nerve, every functor of ordinary categories F : C → Kan
determines a functor of ∞-categories Nhc

• (F ) : N•(C) → Nhc
• (Kan) = S. By virtue of

https://kerodon.net/tag/039M
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Corollary 7.4.5.6, the ∞-category of spaces S admits all (small) limits and colimits. In
particular, there exists a Kan complex X which is a limit of the diagram Nhc

• (F ). This
construction has the advantage of being homotopy invariant: if α : F → G is a levelwise
homotopy equivalence, then X is also a limit of the diagram Nhc

• (G ) (see Remark 7.1.1.8).
However, it has the disadvantage of being somewhat inexplicit: the Kan complex X is a
priori well-defined only up to homotopy equivalence, rather than up to isomorphism.

By combining the results of §7.4 and §5.3, we can obtain a more direct description of
the Kan complex X. Let NF

• (C) denote the F -weighted nerve of C (Definition 5.3.3.1).
It follows from Example 5.6.5.6 that Nhc

• (F ) is a covariant transport representation for
the left fibration U : NF

• (C) → N•(C). By virtue of Corollary 7.4.5.2, the Kan complex
Fun/N•(C)(N•(C),NF

• (C)) is a limit of the diagram Nhc
• (F ). We will denote this Kan complex

by holim
←−

(F ) and refer to it as the homotopy limit of the diagram F (Construction 7.5.1.1).
In §7.5.1, we give review some elementary properties of this construction (which goes back
to the work of Bousfield and Kan; see [6]).

In §7.5.2, we extend the definition of the homotopy limit holim
←−

(F ) to the case where
F : C → QCat is a diagram of ∞-categories (rather than a diagram of Kan complexes). In
this case, the projection map U : NF

• (C)→ N•(C) is a cocartesian fibration (rather than a
left fibration), and we define holim

←−
(F ) to be the ∞-category of cocartesian sections of U

(that is, sections which carry each morphism of C to a U -cocartesian morphism of NF
• (C):

see Construction 7.5.2.1). It follows from the results of §7.4 that holim
←−

(F ) is a limit of the
diagram of ∞-categories Nhc

• (F ) : N•(C)→ QC (Proposition 7.5.2.6).
In §7.5.3, we consider another perspective on the homotopy limit construction F 7→

holim
←−

(F ): it can be viewed as a right derived functor of the usual inverse limit F 7→ lim←−(F ).
More precisely, for every diagram of ∞-categories F : C → QCat, there is a canonical
isomorphism holim

←−
(F ) ≃ lim←−(F +), where F + : C → QCat is an isofibrant replacement for

the diagram F (see Construction 7.5.3.3 and Proposition 7.5.3.7). In particular, there is
a tautological map lim←−(F ) ↪→ holim

←−
(F ) (see Remark 7.5.2.12), which is an equivalence of

∞-categories when the diagram F is already isofibrant (Proposition 7.5.3.12). This condition
is satisfied, for example, when the diagram F corresponds to a tower of ∞-categories

· · · → E(3)→ E(2)→ E(1)→ E(0)

in which the transition functors are isofibrations (see Example 7.5.3.13).
Let F : C → Kan be a diagram of Kan complexes and let F : C◁ → Kan be an extension

of F , carrying the initial object of C◁ to a Kan complex X. We say that F is a homotopy
limit diagram if the composite map

X → lim←−(F ) ↪→ holim
←−

(F )
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is a homotopy equivalence (Definition 7.5.4.1). In §7.5.4, we show that this condition
is equivalent to the requirement that Nhc

• (F ) is a limit diagram in the ∞-category S
(Proposition 7.5.4.5). Moreover, we extend the definition of homotopy limit diagram to the
case where F is an arbitrary diagram of simplicial sets (Definition 7.5.4.8), and show that
it generalizes the notion of homotopy pullback diagram introduced in §3.4.1 (Proposition
7.5.4.13). In §7.5.5, we introduce the parallel (and closely related) notion of categorical limit
diagram (Definition 7.5.5.11), and show that it generalizes the notion of categorical pullback
square introduced in §4.5.2 (Corollary 7.5.5.10).

There is a close relationship between the homotopy limit construction F 7→ holim
←−

(F )
of this section and the homotopy colimit construction F 7→ holim

−→
(F ) introduced in §5.3.2.

If F : Cop → Set∆ is a diagram of simplicial sets and X is a Kan complex, then there is a
canonical isomorphism of simplicial sets

holim
←−

(XF )op ≃ Fun(holim
−→

(F op), Xop),

where XF : C → Kan denotes the functor given by C 7→ Fun(F (C), X) (Example 7.5.1.7;
see Example 7.5.2.11 for a generalization to the case where X is an ∞-category). Just
as the homotopy limit construction can be viewed as a right derived functor of the limit
functor lim←− : Fun(C,Set∆)→ Set∆, the homotopy colimit construction can be viewed as a
left derived functor of the colimit functor lim−→ : Fun(C,Set∆) → Set∆. More precisely, we
show in §7.5.6 that the homotopy colimit of a diagram F is isomorphic to the colimit lim−→(G ),
where G is a projectively cofibrant diagram of simplicial sets equipped with a levelwise weak
homotopy equivalence α : G → F (Construction 7.5.6.8).

In §7.5.7, we show that the homotopy colimit construction has a close relationship with
the formation of colimits in the ∞-category S. If F : C → Kan is a diagram of Kan
complexes, then a Kan complex is a colimit of the diagram Nhc

• (F ) if and only if it is
weakly homotopy equivalent to holim

−→
(F ) (Proposition 7.5.7.1). In fact, we can be more

precise: if F : C▷ → Kan is a diagram extending F which carries the final object of C▷
to a Kan complex X, then Nhc

• (F ) is a colimit diagram if and only if the composite map
holim
−→

(F ) ↠ lim−→(F ) → X is a weak homotopy equivalence (Corollary 7.5.7.7). If this
condition is satisfied, we will say that F is a homotopy colimit diagram (Definition 7.5.7.3).
In §7.5.8, we introduce the parallel notion of categorical colimit diagram (Definition 7.5.8.2),
which has a similar relationship with colimits in the ∞-category QC (Corollary 7.5.8.9).

7.5.1 Homotopy Limits of Kan Complexes

039Z In this section, we introduce the homotopy limit of a diagram of Kan complexes, following
Bousfield and Kan (see [6]).

https://kerodon.net/tag/039Z
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Construction 7.5.1.1 (Homotopy Limits of Kan Complexes). 03A0Let C be a category, let
F : C → Kan be a diagram of Kan complexes indexed by C, and NF

• (C) denote the weighted
nerve of F (Definition 5.3.3.1). We define

holim
←−

(F ) = Fun/N•(C)(N•(C),NF
• (C))

to be the simplicial set which parametrizes sections of the projection map NF
• (C)→ N•(C).

We will refer to holim
←−

(F ) as the homotopy limit of the diagram F .

Proposition 7.5.1.2. 03A1Let F : C → Kan be a diagram of Kan complexes. Then the homotopy
limit holim

←−
(F ) is a Kan complex.

Proof. This is a special case of Corollary 4.4.2.5, since the projection map U : NF
• (C)→ N•(C)

is a left fibration (Corollary 5.3.3.19).

Remark 7.5.1.3 (Homotopy Invariance). 03A2Let C be a category and let α : F → G be a
natural transformation between functors F ,G : C → Kan. Then α induces a morphism
of weighted nerves T : NF

• (C) → NG
• (C), and therefore a morphism of Kan complexes

holim
←−

(α) : holim
←−

(F ) → holim
←−

(G ). If α is a levelwise homotopy equivalence, then T is an
equivalence of left fibrations over N•(C) (Corollary 5.3.3.20), so holim

←−
(α) is a homotopy

equivalence.

Warning 7.5.1.4. 03A3In [6], Bousfield and Kan define the homotopy limit of an arbitrary
diagram F : C → Set∆ to be the simplicial set Fun/N•(C)(N•(C),NF

• (C)) appearing in
Construction 7.5.1.1. We will avoid this convention for two reasons:

• Many important features of the Bousfield-Kan construction (such as the homotopy
invariance property of Remark 7.5.1.3) are true for diagrams of Kan complexes, but
not for general diagrams of simplicial sets.

• In the case where F is a diagram of ∞-categories, it will be convenient to adopt a
slightly different definition of homotopy limit (Construction 7.5.2.1), which generally
does not agree with the Bousfield-Kan construction.

Note that every (strictly commutative) diagram of Kan complexes F : C → Kan
determines a diagram

Nhc
• : N•(C)→ Nhc

• (Kan) = S
in the ∞-category of spaces S.

Proposition 7.5.1.5. 03A4Let F : C → Kan be a diagram of Kan complexes. Then the Kan
complex holim

←−
(F ) is a limit of the diagram

Nhc
• (F ) : N•(C)→ Nhc

• (Kan) = S

in the ∞-category S.

https://kerodon.net/tag/03A0
https://kerodon.net/tag/03A1
https://kerodon.net/tag/03A2
https://kerodon.net/tag/03A3
https://kerodon.net/tag/03A4
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Proof. This is a special case of Corollary 7.4.5.2, since the functor Nhc
• (F ) is a covariant

transport representation for the projection map U : NF
• (C)→ N•(C) (Example 5.6.5.6).

We now give a more concrete description of the homotopy limit.

Remark 7.5.1.6.03A5 Let C be a category. For each object C ∈ C, let E (C) denote the simplicial
set N•(C/C). The construction C 7→ E (C) determines a functor E : C → Set∆, which we
view as an object of the functor category Fun(C, Set∆). For every diagram of Kan complexes
F : C → Kan, Proposition 5.3.3.24 supplies a canonical isomorphism

holim
←−

(F ) = HomFun(C,Set∆)(E ,F )•,

where the right hand side is defined using the simplicial enrichment of Fun(C,Set∆) described
in Example 2.4.2.2.

Stated more concretely, we can identify holim
←−

(F ) with a simplicial subset of the product∏
C∈C Fun(N•(C/C),F (C)), whose n-simplices are collections of maps {σC : ∆n×N•(C/C)→

F (C)} which satisfy the following condition:

(∗) For every morphism f : C → D in the category C, the diagram of simplicial sets

∆n ×N•(C/C) ◦f //

σC

��

∆n ×N•(C/D)

σD

��
F (C) F (f) // F (D)

is commutative.

In particular, we have an equalizer diagram of simplicial sets

holim
←−

(F )→
∏

C
Fun(N•(C/C),F (C)) ⇒

∏
f :C→D

Fun(N•(C/C),F (D)).

Example 7.5.1.7 (Duality with Homotopy Colimits).03A6 Let F : Cop → Set∆ be a diagram
of simplicial sets, let X be a Kan complex, and let XF : C → Kan be the diagram of Kan
complexes given by the formula XF (C) = Fun(F (C), X). Let us write F op : Cop → Set∆
for the functor given by the formula F op(C) = F (C)op, and let E : C → Set∆ denote the
functor given by E (C) = N•(C/C). Combining Remark 7.5.1.6 with Proposition 5.3.2.21, we
obtain canonical isomorphisms

holim
←−

(XF )op ≃ HomFun(C,Set∆)(E , XF )op
•

≃ HomFun(Cop,Set∆)(F , XE )op
•

≃ Fun(holim
−→

(F op), Xop).

https://kerodon.net/tag/03A5
https://kerodon.net/tag/03A6
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7.5.2 Homotopy Limits of ∞-Categories

03A7We now extend the definition of homotopy limit to diagrams taking values in the category
QCat.

Construction 7.5.2.1 (Homotopy Limits of ∞-Categories). 03A8Let F : C → QCat be a
(strictly commutative) diagram of ∞-categories, let NF

• (C) denote the weighted nerve of
F (Definition 5.3.3.1), and let U : NF

• (C) → N•(C) the cocartesian fibration of Corollary
5.3.3.16. We let holim

←−
(F ) denote the full subcategory

FunCCart
/N•(C)(N•(C),NF

• (C)) ⊆ Fun/N•(C)(N•(C),NF
• (C))

whose objects are functors G : N•(C) → NF
• (C) which satisfy U ◦ G = idN•(C) and which

carry each morphism of C to a U -cocartesian morphism of NF
• (C) (see Notation 5.3.1.10).

We will refer to holim
←−

(F ) as the homotopy limit of the diagram F .

Example 7.5.2.2 (Homotopy Limits of Kan Complexes). 03A9Let F : C → Kan be a (strictly
commutative) diagram of Kan complexes. Then the projection map U : NF

• (C) → N•(C)
is a left fibration of simplicial sets (Corollary 5.3.3.19). It follows that every morphism of
the ∞-category NF

• (C) is U -cocartesian, so the homotopy limit holim
←−

(F ) of Construction
7.5.2.1 coincides with the homotopy limit holim

←−
(F ) of Construction 7.5.1.1.

Remark 7.5.2.3. 03AALet F : C → QCat be a (strictly commutative) diagram of ∞-categories,
let K be a simplicial set, and let FK : C → QCat denote the functor given on objects by
the formula FK(C) = Fun(K,F (C)). Then there is a canonical isomorphism of simplicial
sets holim

←−
(FK) ≃ Fun(K,holim

←−
(F )) (see Remarks 5.3.3.5 and 5.3.1.19).

Variant 7.5.2.4 (Homotopy Limits of Ordinary Categories). 03Y3Let Cat denote the (ordinary)
category of categories, let F : C → Cat be a functor, and let

∫
CF denote the category

of elements of F . We let holim
←−

(F ) denote the category FunCCart
/ C (C,

∫
CF ) whose objects

are sections of the projection functor U :
∫
CF → C which carry each morphism of C to

a U -cocartesian morphism of
∫
CF . Let N•(F ) denote the QCat-valued functor given by

C 7→ N•(F (C)). Combining Proposition 1.5.3.3 with Example 5.6.1.8, we obtain a canonical
isomorphism of simplicial sets

holim
←−

(N•(F )) ≃ N•(holim
←−

(F )).

In particular, the formation of homotopy limits preserves the full subcategory of QCat
spanned by the (nerves of) ordinary categories.

Remark 7.5.2.5. 03Y4Let F : C → Cat be a functor of ordinary categories. Then the category
holim
←−

(F ) can be described more concretely as follows:

https://kerodon.net/tag/03A7
https://kerodon.net/tag/03A8
https://kerodon.net/tag/03A9
https://kerodon.net/tag/03AA
https://kerodon.net/tag/03Y3
https://kerodon.net/tag/03Y4
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(1) An M ∈ holim
←−

(F ) is a rule which assigns to each object C ∈ C an object M(C) ∈ F ),
and to each morphism u : C → D in C an isomorphism M(u) : F (u)(M(C)) ∼−→M(D),
subject to the following constraints:

• For each object C ∈ C, M(idC) is the identity morphism from M(C) to itself.
• For every pair of composable morphisms u : C → D and v : D → E of C, we have
M(v ◦ u) = M(v) ◦F (v)(M(u)).

(2) If M and N are objects of holim
←−

(F ), then a morphism α : M → N in holim
←−

(F ) is
a rule which assigns to each object C ∈ C a morphism αC : M(C) → N(C) in the
category F (C), subject to the following constraint:

• For every morphism u : C → D of C, the diagram

F (u)(M(C))

F (u)(αC)

��

M(u)
∼

//M(D)

αD

��
F (u)(N(C)) N(u)

∼
// N(D)

commutes (in the category F (D)).

Proposition 7.5.2.6.03AB Let F : C → QCat be a (strictly commutative) diagram of ∞-
categories. Then the homotopy limit holim

←−
(F ) is an ∞-category. Moreover, holim

←−
(F ) can

be identified with a limit of the diagram

Nhc
• (F ) : N•(C)→ Nhc

• (QCat) = QC

in the ∞-category QC.

Proof. By virtue of Example 5.6.5.6, the functor Nhc
• (F ) is a covariant transport represen-

tation for the cocartesian fibration U : NF
• (C)→ N•(C). Proposition 7.5.2.6 is therefore a

special case of Corollary 7.4.1.9.

Remark 7.5.2.7 (Homotopy Invariance).03AC Let C be a category and let α : F → G be
a natural transformation between functors F ,G : C → QCat. Then α determines a
commutative diagram of ∞-categories

NF
• (C)

U

##

T // NG
• (C)

V

||
N•(C).

https://kerodon.net/tag/03AB
https://kerodon.net/tag/03AC
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The functor T carries U -cocartesian morphisms of NF
• (C) to V -cocartesian morphisms of

NG
• (C) (see Corollary 5.3.3.16), and therefore induces a functor of ∞-categories holim

←−
(α) :

holim
←−

(F )→ holim
←−

(G ). If α is a levelwise categorical equivalence, then T is an equivalence
of cocartesian fibrations over N•(C) (Corollary 5.3.3.20), so holim

←−
(α) is an equivalence of

∞-categories.

Example 7.5.2.8 (Homotopy Limits of Cores). 03ADLet F : C → QCat be a diagram of
∞-categories, and let F≃ : C → Kan be the functor given on objects by the formula
F≃(C) = F (C)≃. Then the inclusion map F≃ ↪→ F induces a monomorphism of simplicial
sets holim

←−
(F≃) → holim

←−
(F ), whose image is the core of the ∞-category holim

←−
(F ) (see

Example 5.3.3.21 and Remark 5.3.1.20). In other words, there is a canonical isomorphism of
Kan complexes holim

←−
(F≃) ≃ holim

←−
(F )≃.

Remark 7.5.2.9. 03AELet F : C → QCat be a diagram of ∞-categories and let F0 = F |C0 be
the restriction of F to a subcategory C0 ⊆ C. Suppose that the inclusion N•(C0) ↪→ N•(C)
is left anodyne (this condition is satisfied, for example, if the inclusion map C0 ↪→ C has a
right adjoint: see Corollary 7.2.3.7). Then the restriction map holim

←−
(F )→ holim

←−
(F0) is a

trivial Kan fibration of ∞-categories (see Proposition 5.3.1.21).

Remark 7.5.2.10. 03AFLet F : C → QCat be a diagram of∞-categories. Arguing as in Remark
7.5.1.6, we can identify the homotopy limit holim

←−
(F ) with a simplicial subset of the product∏

C∈C Fun(N•(C/C),F (C)), whose n-simplices are collections of maps {σC : ∆n×N•(C/C)→
F (C)} which satisfy the following pair of conditions:

(∗) For every morphism f : C → D in the category C, the diagram of simplicial sets

∆n ×N•(C/C) ◦f //

σC

��

∆n ×N•(C/D)

σD

��
F (C) F (f) // F (D)

is commutative.

(∗′) For every object C ∈ C and every integer 0 ≤ i ≤ n, the composite map

{i} ×N•(C/C) ↪→ ∆n ×N•(C/C) σC−−→ F (C)

carries every morphism in the category C/C to an isomorphism in the ∞-category
F (C).

https://kerodon.net/tag/03AD
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7.5. HOMOTOPY LIMITS AND COLIMITS 1569

Example 7.5.2.11 (Duality with Homotopy Colimits).03AG Let C be a category, let F : Cop →
Set∆ be a diagram of simplicial sets, and let W denote the collection of horizontal edges of
the homotopy colimit holim

−→
(F op) (see Definition 5.3.4.1). Let D be an ∞-category and let

DF : C → QCat denote the functor given by the formula DF (C) = Fun(F (C),D). Arguing
as in Example 7.5.1.7, we obtain a canonical isomorphism

θ : Fun/N•(C)(N•(C),ND
F

• (C))op ≃ Fun(holim
−→

(F op),Dop).

Unwinding the definitions, we see that θ restricts to an isomorphism of ∞-categories
holim
←−

(DF )op ≃ Fun(holim
−→

(F op)[W−1],Dop).

Remark 7.5.2.12 (Comparison with the Limit).03AH Let F : C → QCat be a diagram of
∞-categories and let X = lim←−(F ) denote the limit of F , formed in the category of simplicial
sets. Let X : C → Set∆ denote the constant functor taking the value X. We then have a
tautological map X → F . The induced morphism of simplicial sets

X ×N•(C) ≃ NX
• (C)→ NF

• (C)

determines a comparison map ι : X = lim←−(F )→ holim
←−

(F ). Note that ι is a monomorphism
of simplicial sets (since each of the projection maps X = lim←−(F )→ F (C) factor through ι).

Proposition 7.5.2.13.03AJ Let F : C → QCat be a diagram of ∞-categories, and suppose that
the category C has an initial object. Then the comparison map ι : lim←−(F ) ↪→ holim

←−
(F ) of

Remark 7.5.2.12 is an equivalence of ∞-categories.

Proof. Let C ∈ C be an initial object, so that the inclusion map {C} → N•(C) is left
anodyne (Corollary 4.6.7.24). Applying Remark 7.5.2.9, we see that evaluation at C induces
an equivalence of ∞-categories evC : holim

←−
(F )→ F (C). Our assumption that C is initial

also guarantees that the composition (evC ◦ι) : lim←−(F ) → F (C) is an isomorphism of
simplicial sets, so that lim←−(F ) is an ∞-category and ι is an equivalence of ∞-categories.

Example 7.5.2.14.03AK Let I be a set, which we regard as a category having only identity
morphisms. Let F : I → QCat be a diagram, which we view as a collection of ∞-categories
{Ci}i∈I indexed by I. Then the comparison morphism∏

i∈I
Ci = lim←−(F )→ holim

←−
(F )

of Remark 7.5.2.12 is an isomorphism.

Exercise 7.5.2.15 (Homotopy Limits of Sets).03AL Let C be a category and let F : C → Set be
a diagram in the category of sets. Let us abuse notation by identifying Set with the full
subcategory of Kan spanned by the constant simplicial sets. Show that the comparison map
lim←−(F ) ↪→ holim

←−
(F ) of Remark 7.5.2.12 is an isomorphism.

https://kerodon.net/tag/03AG
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Beware that the comparison morphism of Remark 7.5.2.12 is not an isomorphism in
general.

Example 7.5.2.16. 03AMLet [1] denote the linearly ordered set {0 < 1} and let F : [1]→ QCat
be a diagram, which we identify with a functor of ∞-categories T : C → D. Then the
homotopy limit holim

←−
(F ) of Construction 7.5.1.1 can be identified with the homotopy fiber

product
C ×h
D D = C ×Fun({0},D) Isom(D)

of Construction 4.5.2.1. Under this identification, the comparison morphism lim←−(F ) →
holim
←−

(F ) of Remark 7.5.2.12 corresponds to the monomorphism

C ≃ C ×D D ↪→ C×h
D D

of Proposition 3.4.0.7. This morphism is usually not an isomorphism of simplicial sets,
though it is always an equivalence of ∞-categories (Proposition 7.5.2.13).

Example 7.5.2.17. 03ANLet K be the partially ordered set depicted in the diagram

• → • ← •

and suppose we are given a functor F : K → QCat, which we depict as a diagram of
∞-categories

C0
T0−→ C T1←− C1 .

Then the homotopy limit holim
←−

(F ) can be identified with the iterated homotopy pullback
C0×h

C(C1×h
C C). Applying Corollary 4.5.2.20, we see that the equivalence C1 ↪→ C1×h

C C of
Example 7.5.2.16 induces an equivalence of ∞-categories

C0×h
C C1 ↪→ C0×h

C(C1×h
C C) ≃ holim

←−
(F ).

In particular, the comparison map lim←−(F ) → holim
←−

(F ) is a categorical equivalence of
simplicial sets if and only if the inclusion C0×C C1 ↪→ C0×h

C C1 is a categorical equivalence of
simplicial sets. This condition is satisfied if either T0 or T1 is a isofibration of ∞-categories
(Corollary 4.5.2.28), but not in general.

7.5.3 The Homotopy Limit as a Derived Functor

03APLet C be a small category. In general, the inverse limit functor lim←− : Fun(C,QCat)→ Set∆
does not respect categorical equivalence: that is, if α : F → G is a levelwise categorical
equivalence of diagrams F ,G : C → QCat, then the induced map lim←−(α) : lim←−(F )→ lim←−(G )
need not be a categorical equivalence of simplicial sets. In §7.5.2 and §4.5.6, we discussed
two different ways of addressing this point:

https://kerodon.net/tag/03AM
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• We can replace the limit lim←−(F ) by the homotopy limit holim
←−

(F ) of Construction
7.5.2.1. If α : F → G is a levelwise categorical equivalence of diagrams F ,G , then
Remark 7.5.2.7 guarantees that the induced map holim

←−
(α) : holim

←−
(F )→ holim

←−
(G ) is

an equivalence of ∞-categories.

• We can restrict our attention to isofibrant diagrams of∞-categories (Definition 4.5.6.3).
If α : F → G is a levelwise categorical equivalence between isofibrant diagrams, then
Corollary 4.5.6.16 guarantees that the induced map lim←−(α) : lim←−(F )→ lim←−(G ) is an
equivalence of ∞-categories.

In this section, we will show that these perspectives are closely related: if F : C → QCat
is a diagram of ∞-categories, then the homotopy limit holim

←−
(F ) can be identified with

the limit of an isofibrant replacement for F . More precisely, we show that there exists
a canonical isomorphism holim

←−
(F ) ≃ lim←−(F +), where F + : C → QCat is an isofibrant

diagram of simplicial sets equipped with a levelwise categorical equivalence α : F ↪→ F +

(Construction 7.5.3.3 and Proposition 7.5.3.7). Moreover, we show that for any isofibrant
diagram G : C → QCat, the inclusion map lim←−(G ) ↪→ holim

←−
(G ) is an equivalence of ∞-

categories (Proposition 7.5.3.12). Consequently, if β : F → G is any levelwise categorical
equivalence from F to an isofibrant diagram G , then the maps

holim
←−

(F )
holim
←−

(β)
−−−−−→ holim

←−
(G )← lim←−(G )

are equivalences of ∞-categories; in particular, the ∞-categories holim
←−

(F ) and lim←−(G ) are
equivalent (see Remark 7.5.3.15).

We begin with some elementary observations.
Proposition 7.5.3.1.03AQ Let C be a small category and let U : E → N•(C) be an isofibration of
∞-categories. Then the weak transport representation

wTrE / C : C → Set∆ C 7→ Fun/N•(C)(N•(CC/), E)

of Construction 5.3.1.1 is an isofibrant diagram of simplicial sets.

Proof. Let F : C → Set∆ be a functor and let F0 ⊆ F be a subfunctor for which the
inclusion F0 ↪→ F is a levelwise categorical equivalence. We wish to show that every natural
transformation α0 : F0 → wTrE / C admits an extension α : F → wTrE / C . Using Corollary
5.3.2.23, we can reformulate this as a lifting problem

holim
−→

(F0) //

��

E

U

��
holim
−→

(F ) //

;;

N•(C)

https://kerodon.net/tag/03AQ
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in the category of simplicial sets. Since U is an isofibration, we are reduced to showing that
the inclusion map holim

−→
(F0) ↪→ holim

−→
(F ) is a categorical equivalence (Proposition 4.5.5.1),

which is a special case of Variant 5.3.2.19.

Corollary 7.5.3.2. 03ARLet C be a small category and let U : E → N•(C) be a cocartesian
fibration of ∞-categories. Then the strict transport representation

sTrE / C : C → Set∆ C 7→ FunCCart
/N•(C)(N•(CC/), E)

of Construction 5.3.1.5 is an isofibrant diagram of simplicial sets.

Proof. Let F : C → Set∆ be a functor and let F0 ⊆ F be a subfunctor for which the
inclusion F0 ↪→ F is a levelwise categorical equivalence. Suppose we are given a natural
transformation α0 : F0 → sTrE / C. It follows from Proposition 7.5.3.1 that α0 can be
extended to a natural transformation α : F → wTrE / C . To complete the proof, it will suffice
to show that α factors through the subfunctor sTrE / C . Equivalently, we must show that for
each object C ∈ C, the lifting problem

F0(C) //

��

sTrE / C(C)

��
F (C) //

::

wTrE / C(C)

admits a (unique) solution. This is clear, since the left vertical map is a categorical equivalence
and sTrE / C(C) is a replete subcategory of wTrE / C(C) (see Remark 5.3.1.15).

Construction 7.5.3.3 (Explicit Isofibrant Replacement). 03ASLet C be a small category and
let F : C → QCat be a (strictly commutative) diagram of ∞-categories. Let NF

• (C) denote
the F -weighted nerve of C (Definition 5.3.3.1), and let F + = sTrNF

• (C)/ C denote the strict
transport representation of the projection map NF

• (C) → N•(C). It follows from Remark
5.3.4.10 that there is a unique natural transformation α : F → F + for which the diagram
of simplicial sets

holim
−→

(F +)

λu

##
holim
−→

(F )

holim
−→

(α)
::

λt // NF
• (C),

https://kerodon.net/tag/03AR
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is commutative, where λu denotes the universal scaffold of Construction 5.3.4.7 and λt
denotes the taut scaffold of Construction 5.3.4.11. We will refer to F + as the isofibrant
replacement of F .

Proposition 7.5.3.4.03AT Let C be a small category, let F : C → QCat be a diagram of
∞-categories, and let α : F → F + be the natural transformation of Construction 7.5.3.3.
Then F + : C → QCat is an isofibrant diagram, and α is a levelwise categorical equivalence.
Moreover, α is also a monomorphism.

Proof. It follows from Corollary 7.5.3.2 that the diagram F + is isofibrant. To see that α is
a monomorphism, we observe that for each object C ∈ C, the functor

αC : F (C)→ F +(C) = FunCCart
/N•(C)(N•(CC/),NF

• (C))

has a left inverse, given by the evaluation map

evC : FunCCart
/N•(C)(N•(CC/),NF

• (C))→ {C} ×N•(C) NF
• (C) ≃ F (C).

Since evC is a trivial Kan fibration (Proposition 5.3.1.7), it follows that αC is an equivalence
of ∞-categories.

Corollary 7.5.3.5 (Existence of Isofibrant Replacements).03AU Let F : C → Set∆ be a diagram
of simplicial sets. Then there exists a monomorphism of diagrams α : F ↪→ G , where α is a
levelwise categorical equivalence and G : C → QCat is an isofibrant diagram of ∞-categories.

Proof. Using Proposition 4.1.3.2, we can reduce to the case where F is a diagram of ∞-
categories. In this case, we can take α to be the natural transformation F ↪→ F + of
Construction 7.5.3.3 (Proposition 7.5.3.4).

Variant 7.5.3.6.03AV Let F : C → Set∆ be a diagram of simplicial sets. Then there exists a
monomorphism of diagrams α : F ↪→ G , where α is a levelwise weak homotopy equivalence
and G : C → Kan is an isofibrant diagram of Kan complexes.

Proof. Using Proposition 3.1.7.1, we can reduce to the case where F is a diagram of Kan
complexes. In this case, we can again take α to be the natural transformation F ↪→ F + of
Construction 7.5.3.3 (since α is a levelwise categorical equivalence, it follows that F + is
also a diagram of Kan complexes: see Remark 4.5.1.21).

Proposition 7.5.3.7.03AW Let C be a small category, let F : C → QCat be a diagram, and
let F + : C → QCat be the isofibrant replacement of Construction 7.5.3.3. Then there is a

https://kerodon.net/tag/03AT
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canonical isomorphism of simplicial sets θ : holim
←−

(F ) ∼−→ lim←−(F +), which is characterized
by the following requirement: for each object C ∈ C, the composition

FunCCart
/N•(C)(N•(C),NF

• (C)) = holim
←−

(F )
θ−→ lim←−(F +)
→ F +(C)
= FunCCart

/N•(C)(N•(CC/),NF
• (C))

is given by precomposition with the projection map CC/ → C.

Proposition 7.5.3.7 is a consequence of the following concrete assertion:

Lemma 7.5.3.8. 03AXLet C be a category. Then the collection of projection maps {N•(CC/)→
N•(C)}C∈C exhibit N•(C) as the colimit of the diagram

Cop → Set∆ C 7→ N•(CC/).

Proof. Fix an integer n ≥ 0; we wish to show that the canonical map

ρ : lim−→
C∈Cop

Nn(CC/)→ Nn(C)

is an isomorphism in the category of sets. Let σ be an n-simplex of Nn(C), given by a
diagram

X0 → X1 → · · · → Xn

in the category C. Then the fiber ρ−1{σ} can be identified with the colimit

lim−→
C∈Cop

HomC(C,X0),

formed in the category of sets. This colimit consists of a single element, represented by the
identity morphism idX0 ∈ HomC(X0, X0).

Remark 7.5.3.9. 03AYLet C be a category, let U : E → N•(C) is a morphism of simplicial sets,
and let wTrE / C : C → Set∆ denote the weak transport representation of Construction 5.3.1.1,
given on objects by the formula wTrE / C(C) = Fun/N•(C)(N•(CC/), E). Then Lemma 7.5.3.8
supplies a canonical isomorphism of simplicial sets

Fun/N•(C)(N•(C), E) ∼−→ lim←−(wTrE / C).

Variant 7.5.3.10. 03AZLet C be a category, let U : E → N•(C) be a cocartesian fibration of
∞-categories, and let sTrE / C : C → Set∆ denote the strict transport representation of
Construction 5.3.1.5, given on objects by the formula sTrE / C(C) = FunCCart

/N•(C)(N•(CC/), E).
Then the isomorphism of Remark 7.5.3.9 restricts to an isomorphism of simplicial sets

FunCCart
/N•(C)(N•(C), E) ∼−→ lim←−(sTrE / C).

https://kerodon.net/tag/03AX
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Proof of Proposition 7.5.3.7. Apply Variant 7.5.3.10 in the special case where E = NF
• (C) is

the F -weighted nerve of the category C.

Remark 7.5.3.11.03B0 In the situation of Proposition 7.5.3.7, the isomorphism θ : holim
←−

(F ) ∼−→
lim←−(F +) fits into a commutative diagram

holim
←−

(F )

θ
∼

$$
lim←−(F )

ι

;;

lim←−(α)
// lim←−(F +),

where ι is the comparison map of Remark 7.5.2.12 and α : F ↪→ F + is the natural
transformation appearing in Construction 7.5.3.3.

Proposition 7.5.3.12.03B1 Let F : C → QCat be an isofibrant diagram of ∞-categories. Then
the inclusion map ι : lim←−(F ) ↪→ holim

←−
(F ) is an equivalence of ∞-categories.

Proof. Let α : F ↪→ F + be the isofibrant replacement of Construction 7.5.3.3. By
virtue of Proposition 7.5.3.7 (and Remark 7.5.3.11), it will suffice to show that the limit
lim←−(α) : lim←−(F ) ↪→ lim←−(F +) is an equivalence of ∞-categories. This is a special case of
Corollary 4.5.6.17, since α is a levelwise categorical equivalence between isofibrant diagrams
(Proposition 7.5.3.4).

Example 7.5.3.13 (Towers of Isofibrations).03B2 Suppose we are given a tower of ∞-categories

· · · → C(3)→ C(2)→ C(1)→ C(0),

which we identify with a functor F : Zop
≥0 → QCat. If each of the transition functors

C(n+1)→ C(n) is an isofibration, then the comparison map lim←−n C(n) = lim←−(F ) ↪→ holim
←−

(F )
is an equivalence of∞-categories. This follows by combining Example 4.5.6.8 with Proposition
7.5.3.12.

Warning 7.5.3.14.03B3 Let F : C → QCat be a strictly commutative diagram of ∞-categories
and let α : F ↪→ F + denote the isofibrant replacement of Construction 7.5.3.3, and let
θ : holim

←−
(F ) ∼−→ lim←−(F +) be the isomorphism of Proposition 7.5.3.7. We then have a

https://kerodon.net/tag/03B0
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diagram of simplicial sets

lim←−(F )
lim←−(α)

//

��

lim←−(F +)

��
holim
←−

(F )
holim
←−

(α)
//

θ
∼

::

holim
←−

(F +),

where the outer square and the upper left triangle are commutative (Remark 7.5.3.11).
Beware that the lower right triangle is usually not commutative. That is, holim

←−
(F ) and

lim←−(F +) are isomorphic when viewed as abstract simplicial sets, but do not coincide when
identified with simplicial subsets of holim

←−
(F +).

Remark 7.5.3.15 (The Homotopy Limit as a Right Derived Functor). 03B4The results of this
section can be interpreted in the language of model categories. For every small category C,
the category Fun(C,Set∆) can be equipped with a model structure in which the cofibrations
are monomorphisms and the weak equivalences are levelwise categorical equivalences (see
Example [?]). The inverse limit functor

lim←− : Fun(C,Set∆)→ Set∆

then admit a right derived functor Rlim
←−

: Fun(C,Set∆)→ Set∆, which carries a diagram F :
C → Set∆ to the limit of a fibrant replacement of F . It follows from Propositions 7.5.3.4 and
7.5.3.7 that, when restricted to the subcategory Fun(C,QCat) ⊂ Fun(C,Set∆), the functor
Rlim
←−

is (categorically) equivalent to the homotopy limit functor holim
←−

: Fun(C,QCat) →
QCat of Construction 7.5.2.1. We will return to this point in §[?].

7.5.4 Homotopy Limit Diagrams

03B5Let F : C → Kan be a diagram in the category of Kan complexes, and let

Nhc
• (F ) : N•(C)→ Nhc

• (Kan) = S

be the induced functor of ∞-categories. Then the homotopy limit lim←−(F ) is a Kan complex,
which can be regarded as a limit of the diagram Nhc

• (F ) in the ∞-category of spaces S
(Proposition 7.5.1.5). For many applications, this assertion is insufficiently precise: we would
like to have not only a Kan complex X which is known abstractly to be a limit of the diagram
Nhc
• (F ), but also a diagram N•(C◁)→ S which exhibits X as a limit of Nhc

• (F ).

https://kerodon.net/tag/03B4
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Definition 7.5.4.1.03B6 Let C be a category and let F : C◁ → Kan be a functor having
restriction F = F |C . We will say that F is a homotopy limit diagram if the composite map

F (0)→ lim←−(F ) ↪→ holim
←−

(F )

is a homotopy equivalence of Kan complexes; here 0 denotes the initial object of the cone
C◁ ≃ {0} ⋆ C, and the morphism on the right is the comparison map of Remark 7.5.2.12).

Example 7.5.4.2 (Limits of Isofibrant Diagrams).03B7 Let C be a small category and let
F : C◁ → Set∆ be a limit diagram in the category of simplicial sets. Suppose that the
diagram F = F |C is isofibrant (Definition 4.5.6.3) and that, for each object C ∈ C, the
simplicial set F (C) is a Kan complex. Then F is a homotopy limit diagram of Kan
complexes: this follows by combining Corollary 4.5.6.20 with Proposition 7.5.3.12.

Warning 7.5.4.3.03B8 For every diagram of Kan complexes F : C → Kan, the homotopy limit
holim
←−

(F ) of Construction 7.5.1.1 is well-defined. However, one cannot always extend F to
a homotopy limit diagram F : C◁ → Kan (see Warning 3.4.1.8). This is possible only if the
tautological map lim←−(F ) ↪→ holim

←−
(F ) has a left homotopy inverse. However, we can always

choose a levelwise homotopy equivalence α : F ↪→ G , where G is an isofibrant diagram of
Kan complexes (Variant 7.5.3.6). We can then extend G can be extended to a limit diagram
G : C◁ → Kan, which is also a homotopy limit diagram (Example 7.5.4.2). Moreover, if take
G = F + to be the isofibrant replacement of Construction 7.5.3.3, then G carries the initial
object of C◁ to the homotopy limit holim

←−
(F ) (Proposition 7.5.3.7).

Proposition 7.5.4.4 (Homotopy Invariance).03B9 Let C be a category and let α : F → G be a
natural transformation between diagrams F ,G : C◁ → Kan. Assume that, for every object
C ∈ C, the induced map αC : F (C)→ G (C) is a homotopy equivalence of Kan complexes.
Then any two of the following conditions imply the third:

(1) The functor F is a homotopy limit diagram.

(2) The functor G is a homotopy limit diagram.

(3) The natural transformation α induces a homotopy equivalence F (0)→ G (0), where 0
denotes the cone point of C◁.

Proof. Setting F = F |C and G = G |C , we observe that α determines a commutative diagram
of Kan complexes

F (0) //

��

G (0)

��
holim
←−

(F ) // holim
←−

(G ),

https://kerodon.net/tag/03B6
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where the bottom horizontal map is a homotopy equivalence (Remark 7.5.1.3). The desired
result now follows from the two-out-of-three property (Remark 3.1.6.7).

Proposition 7.5.4.5. 03BALet C be a small category and let F : C◁ → Kan be a diagram of Kan
complexes. Then F is a homotopy limit diagram (in the sense of Definition 7.5.4.1) if and
only if the induced functor of ∞-categories

Nhc
• (F ) : N•(C◁)→ Nhc

• (Kan) = S

is a limit diagram (in the sense of Definition 7.1.2.4).

Proof. Let NF
• (C◁) be the weighted nerve of the functor F (Definition 5.3.3.1) and let

U : NF
• (C◁) → N•(C◁) be the projection map. Then U is a left fibration, and Nhc

• (F ) is
a covariant transport representation for U (Example 5.6.5.6). Set F = F |C. Applying
Corollary 7.4.5.13, we deduce that Nhc

• (F ) is a limit diagram in the ∞-category S if and
only if the restriction map

ρ : Fun/N•(C◁)(N•(C◁),NF
• (C◁))→≃ Fun/N•(C)(N•(C),NF

• (C))

is a homotopy equivalence of Kan complexes. We then have a commutative diagram ρ fits
into a commutative diagram

lim←−(F ) ρ′ //

ι

��

lim←−(F )

ι

��
holim
←−

(F ) ρ // holim
←−

(F ),

where ι and ι are the comparison maps of Remark 7.5.2.12. Since the category C◁ has an
initial object, the morphism ι is a homotopy equivalence (Proposition 7.5.2.13). It follows
that ρ is a homotopy equivalence if and only if the composition ρ ◦ ι = ι ◦ ρ′ is a homotopy
equivalence. We conclude by observing that the composition ι ◦ ρ′ can be identified with the
map F (0)→ holim

←−
(F ) appearing in Definition 7.5.4.1.

Corollary 7.5.4.6. 03BBLet C be a small category, let D be a locally Kan simplicial category,
and let F : C◁ → D be a functor. The following conditions are equivalent:

(1) The functor
Nhc
• (F ) : N•(C)◁ ≃ N•(C◁)→ Nhc

• (D)

is a limit diagram in the ∞-category Nhc
• (D).

https://kerodon.net/tag/03BA
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(2) For every object D ∈ D, the functor

C◁ → Kan C 7→ HomD(D,F (C))•

is a homotopy limit diagram of Kan complexes.

Proof. By virtue of Proposition 7.4.5.16, condition (1) is satisfied if and only if, for every
object D ∈ D, the composition (hD ◦ Nhc

• (F )) : N•(C)◁ → S is a limit diagram in the
∞-category S, where hD : Nhc

• (D) → S denotes a functor corepresented by D. Using
Proposition 5.6.6.17, we can take hD to be the homotopy coherent nerve of the simplicial
functor HomD(D, •) : D → Kan. In this case, hD ◦Nhc

• (X) is the homotopy coherent nerve
of the functor C 7→ HomD(D,F (C))•. The equivalence (1) ⇔ (2) now follows from the
criterion of Proposition 7.5.4.5.

Corollary 7.5.4.7.03BC Let C be a small category and let F : C → Kan be an isofibrant diagram
of Kan complexes. Then F has a limit in the category Kan, which is preserved by the
inclusion functor N•(Kan) ↪→ Nhc

• (Kan) = S.

Proof. Combine Example 7.5.4.2 with Proposition 7.5.4.5.

For some applications, it is useful to extend Definition 7.5.4.1 to diagrams of simplicial
sets which do not take values in the full subcategory Kan ⊂ Set∆ of Kan complexes.

Definition 7.5.4.8 (Homotopy Limit Diagrams of Simplicial Sets).03BD Let C be a small category.
We say that a functor F : C◁ → Set∆ is a homotopy limit diagram if there exists a levelwise
weak homotopy equivalence α : F → G , where G : C◁ → Kan is a homotopy limit diagram
of Kan complexes (in the sense of Definition 7.5.4.1).

Remark 7.5.4.9.03BE Let C be a small category and let F : C◁ → Kan be a functor. The
following conditions are equivalent:

(1) The functor F is a homotopy limit diagram in the sense of Definition 7.5.4.1 (that is, it
induces a homotopy equivalence F (0)→ holim

←−
(F |C), where 0 denotes the cone point

of C◁).

(2) The functor F is a homotopy limit diagram in the sense of Definition 7.5.4.8: that is,
there exists a homotopy limit diagram of Kan complexes G : C◁ → Kan and a levelwise
weak homotopy equivalence α : F → G .

The implication (1)⇒ (2) is immediate, and the reverse implication follows from Proposition
7.5.4.4.

Proposition 7.5.4.10.03BF Let C be a small category and let F : C◁ → Set∆ be a functor. The
following conditions are equivalent:

https://kerodon.net/tag/03BC
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(1) The functor F is a homotopy limit diagram. That is, there exists a homotopy limit
diagram F

′ : C◁ → Kan and a levelwise weak homotopy equivalence α : F → F
′.

(2) Let F
′ : C◁ → Kan be any functor. If there exists a levelwise weak homotopy equivalence

α : F → F
′, then F

′ is a homotopy limit diagram.

Proof. Using Proposition 3.1.7.1, we can choose a functor G : C◁ → Kan and a natural
transformation β : F → G which carries each object C ∈ C◁ to an anodyne morphism of
simplicial sets βC : F (C) → G (C). We will show that (1) and (2) are equivalent to the
following:

(3) The functor G is a homotopy limit diagram.

The implications (2)⇒ (3)⇒ (1) are immediate. To prove the reverse implications, suppose
we are given another functor F

′ : C◁ → Kan and a levelwise weak homotopy equivalence
α : F → F

′. We will show that F
′ is a homotopy limit diagram if and only if G is a

homotopy limit diagram.
Applying Proposition 3.1.7.1 again, we can choose a functor G

′ : C◁ → Kan and a
commutative diagram

F
α //

β

��

F
′

β′

��

G
α′ // G

′

with the property that, for every object C ∈ C◁, the induced map

F
′(C)

∐
F (C)

G (C)→ G
′(C)

is anodyne (and, in particular, a weak homotopy equivalence). Applying Proposition 3.4.2.11,
we see that the diagram of simplicial sets

F (C) αC //

βC

��

F
′(C)

β′C

��

G (C)
α′C // G

′(C)

is a homotopy pushout square. Since αC and βC are weak homotopy equivalences, it follows
that α′C and β′C are also weak homotopy equivalences (Proposition 3.4.2.10). Applying
Proposition 7.5.4.4, we see that F

′ and G are homotopy limit diagrams if and only if G
′ is

a homotopy limit diagram.
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Corollary 7.5.4.11 (Homotopy Invariance).03BG Let C be a category, let F ,G : C◁ → Set∆ be
functors, and let α : F → G be a natural transformation. Suppose that, for every object
C ∈ C, the induced map αC : F (C)→ G (C) is a weak homotopy equivalence. Then any two
of the following conditions imply the third:

(1) The functor F is a homotopy limit diagram.

(2) The functor G is a homotopy limit diagram.

(3) The natural transformation α induces a weak homotopy equivalence F (0)→ G (0), where
0 denotes the cone point of C◁.

Proof. Using Proposition 3.1.7.1, we can choose functors F
′
,G
′ : C◁ → Kan and a commu-

tative diagram
F

α //

��

G

��

F
′ α′ // G

′
,

where the vertical maps are levelwise weak homotopy equivalences. Using Proposition
7.5.4.10, we can replace α by the natural transformation α′ : F

′ → G
′, in which case the

desired result follows from Proposition 7.5.4.4.

Corollary 7.5.4.12.03BH Let C be a category and let F : C◁ → Set∆ be a functor. Let
F

op : C◁ → Set∆ be the functor given on objects by F
op(C) = F (C)op. Then F is a

homotopy limit diagram if and only if F
op is a homotopy limit diagram.

Proof. For each object C ∈ C◁, let |F (C)| denote the geometric realization of the simplicial
set F (C) (Definition 1.2.3.1). Then the construction C 7→ Sing•(|F (C)|) determines a
functor G : C◁ → Kan, and the unit maps F (C) → Sing•(|F (C)|) determine a levelwise
weak homotopy equivalence α : F → G (Theorem 3.6.4.1). By virtue of Corollary 7.5.4.11,
it will suffice to show that the functor G is a homotopy limit diagram if and only if G

op is a
homotopy limit diagram. This is clear, since the functors G and G

op are isomorphic (see
Example 1.4.2.5).

The notion of homotopy pullback square (see §3.4.1) can be regarded as a special case of
the notion of homotopy limit diagram:

https://kerodon.net/tag/03BG
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Proposition 7.5.4.13. 03BJSuppose we are given a commutative diagram of simplicial sets

03BKX01 //

��

X0

��
X1 // X,

(7.47)

which we identify with a functor F : [1]× [1]→ Set∆. Then (7.47) is a homotopy pullback
square (in the sense of Definition 3.4.1.1) if and only if F is a homotopy limit diagram (in
the sense of Definition 7.5.4.8).

Proof. Using Proposition 3.1.7.1, we can choose a levelwise weak homotopy equivalence
α : F → F ′, where F ′ is a diagram of Kan complexes. Using Corollaries 3.4.1.12 and
7.5.4.11, we can replace F by F ′ and thereby reduce to the case where (7.47) is a diagram
of Kan complexes. By virtue of Corollary 3.4.1.6, the diagram (7.47) is a homotopy pullback
square if and only if it induces a homotopy equivalence f : X01 → X0×h

XX1, where X0×h
XX1

is the homotopy fiber product of Construction 3.4.0.3. On the other hand, F is a homotopy
limit diagram if and only if the composition ι ◦ f is a homotopy equivalence, where

ι : X0 ×h
X X1 ↪→ X0 ×h

X (X1 ×h
X X) ≃ holim

←−
(F )

is the comparison map described in Example 7.5.2.17. The desired result now follows from
the observation that ι is a homotopy equivalence (see Example 7.5.2.17).

7.5.5 Categorical Limit Diagrams

03BLThe theory of homotopy limit diagrams introduced in §7.5.4 should be regarded as
belonging to the “classical” homotopy theory of simplicial sets: for example, it is invariant
under weak homotopy equivalence (Corollary 7.5.4.11). When using simplicial sets to model
higher category theory (rather than homotopy theory), it is useful to work with slightly
different class of diagrams.

Definition 7.5.5.1 (Categorical Limit Diagrams of∞-Categories). 03BMLet C be a small category
and let F : C◁ → QCat be a functor having restriction F = F |C . We will say that F is a
categorical limit diagram if the composite map

F (0)→ lim←−(F ) ↪→ holim
←−

(F )

is an equivalence of ∞-categories; here 0 denotes the initial object of the cone C◁ ≃ {0} ⋆ C,
and the morphism on the right is the comparison map of Remark 7.5.2.12.
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Example 7.5.5.2.03BN Let C be a category. A diagram of Kan complexes F : C◁ → Kan is a
categorical limit diagram (in the sense of Definition 7.5.5.1) if and only if it is a homotopy
limit diagram (in the sense of Definition 7.5.4.1).

Example 7.5.5.3 (Limits of Isofibrant Diagrams).03BP Let C be a small category and let
F : C◁ → Set∆ be a limit diagram in the category of simplicial sets. Suppose that the
diagram F = F |C is isofibrant (Definition 4.5.6.3). Then F is a categorical limit diagram
of ∞-categories: this follows by combining Corollary 4.5.6.13 with Proposition 7.5.3.12.

Warning 7.5.5.4.03BQ Let C be a category and let F : C◁ → QCat be a diagram of∞-categories.
In general, the condition that F is a categorical limit diagram (in the sense of Definition
7.5.5.1) is independent of the condition that it is a homotopy limit diagram (in the sense of
Definition 7.5.4.8): see Exercises 4.5.2.12 and 4.5.2.13.

Remark 7.5.5.5.03BR Let C be a category, let F : C◁ → QCat be a categorical limit diagram of
∞-categories, and define F

≃ : C◁ → Kan by the formula F
≃(C) = F (C)≃. Then F

≃ is a
homotopy limit diagram. This follows by combining Example 7.5.2.8 with Remark 4.5.1.20.

Remark 7.5.5.6 (Homotopy Invariance).03BS Let C be a small category and let α : F → G

be a natural transformation between diagrams F ,G : C◁ → QCat. Assume that, for every
object C ∈ C, the induced map αC : F (C)→ G (C) is an equivalence of ∞-categories. Then
α determines a commutative diagram of ∞-categories

F (0) //

��

holim
←−

(F |C)

��
G (0) // holim

←−
(G |C),

where the right vertical map is an equivalence (Remark 7.5.2.7). It follows that any two of
the following conditions imply the third:

(1) The functor F is a categorical limit diagram.

(2) The functor G is a categorical limit diagram.

(3) The natural transformation α induces an equivalence of ∞-categories F (0) → G (0),
where 0 denotes the cone point of C◁.

Proposition 7.5.5.7.03BT Let C be a category and let F : C◁ → QCat be a functor. The
following conditions are equivalent:

https://kerodon.net/tag/03BN
https://kerodon.net/tag/03BP
https://kerodon.net/tag/03BQ
https://kerodon.net/tag/03BR
https://kerodon.net/tag/03BS
https://kerodon.net/tag/03BT


1584 CHAPTER 7. LIMITS AND COLIMITS

(1) The functor F is a categorical limit diagram, in the sense of Definition 7.5.5.1.

(2) For every simplicial set K, the functor

F
K : C◁ → QCat C 7→ Fun(K,F (C))

is a categorical limit diagram.

(3) For every simplicial set K, the functor

(FK)≃ : C◁ → Kan C 7→ Fun(K,F (C))≃

is a homotopy limit diagram.

(4) The functor (F ∆1
)≃ : C◁ → Kan is a homotopy limit diagram.

Proof. The implication (1)⇒ (2) follows from Remarks 7.5.2.3 and 4.5.1.16, the implication
(2)⇒ (3) from Remark 7.5.5.5, and the implication (3)⇒ (4) is immediate. Set F = F |C ,
and let 0 denote the initial object of C◁. Using Remark 7.5.2.3 and Example 7.5.2.8, we see
that condition (4) is equivalent to the requirement that the map F (0)→ holim

←−
(F ) induces

a homotopy equivalence of Kan complexes

Fun(∆1,F (0))≃ → Fun(∆1,holim
←−

(F ))≃ ≃ holim
←−

((F ∆1
)≃).

The implication (4)⇒ (1) now follows from Theorem 4.5.7.1.

Corollary 7.5.5.8. 03BULet C be a category and let F : C◁ → QCat be a functor. Then F is a
categorical limit diagram if and only if the induced functor of ∞-categories

Nhc
• (F ) : N•(C◁)→ Nhc

• (QCat) = QC

is a limit diagram in the ∞-category QC (in the sense of Definition 7.1.2.4).

Proof. By virtue of Corollary 7.5.4.6, the diagram Nhc
• (F ) is a limit diagram in the ∞-

category QC if and only if, for every ∞-category E , the diagram of Kan complexes

C◁ → Kan C 7→ HomQCat(E ,F (C))• = Fun(E ,F (C))≃

is a homotopy limit diagram. Using Proposition 7.5.5.7, we see that this is equivalent to the
requirement that F is a categorical limit diagram.

Corollary 7.5.5.9. 03BVLet C be a small category and let F : C → QCat be an isofibrant
diagram of ∞-categories Then F has a limit in the category QCat, which is preserved by
the inclusion functor N•(QCat) ↪→ Nhc

• (QCat) = QC.
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Proof. Combine Example 7.5.5.3 with Corollary 7.5.5.8.

Corollary 7.5.5.10.03BW Suppose we are given a commutative diagram of ∞-categories

03BX C01 //

��

C0

��
C1 // C,

(7.48)

which we identify with a functor F : [1]× [1]→ QC. The following conditions are equivalent:

(1) The diagram (7.48) is a categorical pullback square, in the sense of Definition 4.5.2.8.

(2) The functor F is a categorical limit diagram, in the sense of Definition 7.5.5.1.

Proof. Using Proposition 4.5.2.14, we can restate (2) as follows:

(2′) For every simplicial set K, the diagram of Kan complexes

Fun(K, C01)≃ //

��

Fun(K, C0)≃

��
Fun(K, C1)≃ // Fun(K, C)≃

is a homotopy pullback square.

The equivalence (1)⇔ (2′) follows by combining Propositions 7.5.4.13, and 7.5.5.7.

We now extend the scope of Definition 7.5.5.1 to arbitrary diagrams of simplicial sets.

Definition 7.5.5.11 (Categorical Limit Diagrams of Simplicial Sets).03BY Let C be a category.
We say that a functor F : C◁ → Set∆ is a categorical limit diagram if there exists a levelwise
categorical equivalence α : F → G , where G : C◁ → QCat is a categorical limit diagram (in
the sense of Definition 7.5.5.1).

Remark 7.5.5.12.03BZ Let C be a category and let F : C◁ → QCat be a functor. The following
conditions are equivalent:

(1) The functor F is a categorical limit diagram in the sense of Definition 7.5.5.1: that is,
it induces an equivalence of ∞-categories F (0)→ holim

←−
(F |C).
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(2) The functor F is a categorical limit diagram in the sense of Definition 7.5.5.11: that
is, there exists a levelwise categorical equivalence α : F → G , where G : C◁ → QCat
induces an equivalence of ∞-categories G (0)→ holim

←−
(G |C).

The implication (1)⇒ (2) is immediate, and the reverse implication follows from Remark
7.5.5.6.

Proposition 7.5.5.13. 03C0Let C be a category and let F : C◁ → Set∆ be a functor. The
following conditions are equivalent:

(1) The functor F is a categorical limit diagram. That is, there exists a categorical limit
diagram F

′ : C◁ → QCat and a levelwise categorical equivalence α : F → F
′.

(2) Let F
′ : C◁ → QCat be any functor. If there exists a levelwise categorical equivalence

α : F → F
′, then F

′ is a categorical limit diagram.

Proof. We proceed as in the proof of Proposition 7.5.4.10. Using Proposition 4.1.3.2, we can
choose a functor G : C◁ → QCat and a natural transformation β : F → G for which the
morphism of simplicial sets βC : F (C) → G (C) is inner anodyne for each object C ∈ C◁.
We will show that (1) and (2) are equivalent to the following:

(3) The functor G is a categorical limit diagram.

The implications (2)⇒ (3)⇒ (1) are immediate. To prove the reverse implications, suppose
we are given another functor F

′ : C◁ → QCat and a levelwise categorical equivalence
α : F → F

′. We will show that F
′ is a categorical limit diagram if and only if G is a

categorical limit diagram.
Applying Proposition 4.1.3.2 again, we can choose a functor G

′ : C◁ → QCat and a
commutative diagram

F
α //

β

��

F
′

β′

��

G
α′ // G

′

with the property that, for every object C ∈ C◁, the induced morphism of simplicial sets
F
′(C)∐F (C)G (C)→ G

′(C) is inner anodyne (and, in particular, a categorical equivalence).
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Applying Proposition 4.5.4.11, we see that the diagram of simplicial sets

F (C) αC //

βC

��

F
′(C)

β′C

��

G (C)
α′C // G

′(C)

is a categorical pushout square. Since αC and βC are categorical equivalences, it follows
that α′C and β′C are also categorical equivalences (Proposition 4.5.4.10). Applying Remark
7.5.5.6, we see that F

′ and G are categorical limit diagrams if and only if G
′ is a categorical

limit diagram.

Corollary 7.5.5.14.03C1 Let C be a category, let F ,F
′ : C◁ → Set∆ be functors, and let

α : F → F
′ be a natural transformation. Suppose that, for every object C ∈ C, the induced

map αC : F (C)→ F
′(C) is a categorical equivalence of simplicial sets. Then any two of

the following conditions imply the third:

(1) The functor F is a categorical limit diagram.

(2) The functor F
′ is a categorical limit diagram.

(3) The natural transformation α induces a categorical equivalence of simplicial sets F (0)→
F
′(0), where 0 denotes the initial object of C◁.

Proof. Using Proposition 4.1.3.2, we can choose functors G ,G
′ : C◁ → QCat and a commu-

tative diagram
F

α //

��

F
′

��

G
β // G

′
,

where the vertical maps are levelwise categorical equivalences. By virtue of Proposition
7.5.5.13, we can replace α by the natural transformation β : G → G

′. In this case, the
desired result follows from Remark 7.5.5.6.

Corollary 7.5.5.15.03C2 Let C be a small category and let F : C◁ → Set∆ be a functor. Let
F

op : C◁ → Set∆ be the functor given on objects by F
op(C) = F (C)op. Then F is a

categorical limit diagram if and only if F
op is a categorical limit diagram.
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Proof. Using Proposition 4.1.3.2, we can choose a functor G : C◁ → QCat and a levelwise
categorical equivalence α : F → G . By virtue of Corollary 7.5.5.14, it will suffice to show
that G is a categorical limit diagram if and only if G

op is a categorical limit diagram. This
follows by combining Proposition 7.5.5.7 with Corollary 7.5.4.12.

7.5.6 The Homotopy Colimit as a Derived Functor

03C3Let C be a small category and let F : C → QCat be a diagram of ∞-categories. In
§7.5.3, we showed that the homotopy limit holim

←−
(F ) can be identified with the limit of an

isofibrant replacement for F : that is, there exists an isomorphism holim
←−

(F ) ≃ lim←−(F +),
where F + : C → QCat is an isofibrant diagram equipped with a levelwise categorical
equivalence F ↪→ F + (Construction 7.5.3.3 and Proposition 7.5.3.7). Our goal in this
section is to present a parallel treatment of the homotopy colimit functor of Construction
5.3.2.1. More precisely, we show that the homotopy colimit of a diagram F : C → Set∆ can
be identified with the colimit of an auxiliary diagram F+ : C → Set∆ which is equipped
with a levelwise weak homotopy equivalence F+ ↠ F (Proposition 7.5.6.12).

We begin by introducing some terminology. Recall that a natural transformation
β : G̃ → G is a levelwise trivial Kan fibration if, for each object C ∈ C, the morphism
βC : G̃ (C)→ G (C) is a trivial Kan fibration of simplicial sets.

Definition 7.5.6.1. 03C4Let C be a small category. We say that a diagram of simplicial sets
F : C → Set∆ is projectively cofibrant if, for every levelwise trivial Kan fibration β : G ′ → G ,
the induced map

HomFun(C,Set∆)(F ,G ′)→ HomFun(C,Set∆)(F ,G )

is surjective. That is, every natural transformation α : F → G factors through β.

Example 7.5.6.2. 03C5Let C be a category and let U : E → N•(C) be a morphism of simplicial
sets. Then the diagram

FE : C → Set∆ FE(C) = N•(C/C)×N•(C) E

is projectively cofibrant, in the sense of Definition 7.5.6.1. To prove this, we must show that
for every levelwise trivial Kan fibration G ′ → G between functors G ′,G : C → Set∆, the
induced map

θ : HomFun(C,S)(FE ,G ′)→ HomFun(C,S)(GE ,G )

is surjective. Using Proposition 5.3.3.24, we can identify θ with a pullback of the map
HomSet∆(E ,NG ′

• (C))→ HomSet∆(E ,NG
• (C)), which is surjective by virtue of Exercise 5.3.3.11.

Exercise 7.5.6.3 (Well-Founded Diagrams). 03C6Let (Q,≤) be a well-founded partially ordered
set. Show that a diagram of simplicial sets F : Q→ Set∆ is projectively cofibrant if and
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only if, for each element q ∈ Q, the associated map lim−→p<q
F (p)→ F (q) is a monomorphism

of simplicial sets (compare with Proposition 4.5.6.6).

Example 7.5.6.4 (Projectively Cofibrant Sequences).03C7 A sequential diagram of simplicial
sets

X(0)→ X(1)→ X(2)→ X(3)→ · · ·

is projectively cofibrant (when regarded as a functor Z≥0 → Set∆) if and only if each of the
transition maps X(n)→ X(n+ 1) is a monomorphism.

Example 7.5.6.5 (Projectively Cofibrant Squares).03C8 A commutative diagram of simplicial
sets

03C9 A
f0 //

f1

��

A0

f1

��
A1

f0 // A01

(7.49)

is projectively cofibrant (when regarded as a functor [1] × [1] → Set∆) if and only if the
morphisms

f0 : A→ A0 f1 : A→ A1 (f ′1, f ′0) : A0
∐

A
A1 → A01

are monomorphisms of simplicial sets. Equivalently, (7.49) is projectively cofibrant if it is a
pullback square consisting of monomorphisms.

Remark 7.5.6.6 (Relationship to Isofibrant Diagrams).03CA Let F : C → Set∆ be a diagram
of simplicial sets, let D be an ∞-category, and let DF : Cop → Set∆ denote the functor
given by the construction C 7→ Fun(F (C),D). If F is projectively cofibrant (in the sense
of Definition 7.5.6.1), then DF is isofibrant (in the sense of Definition 4.5.6.3). That is, if
E : Cop → Set∆ is a diagram of simplicial sets and E0 ⊆ E is a subfunctor for which the
equivalence E0 ↪→ E is a levelwise categorical equivalence, then the restriction map

θ : HomFun(Cop,Set∆)(E ,DF )→ HomFun(Cop,Set∆)(E0,DF )

is surjective. This follows from the observation that θ can be identified with the map

HomFun(C,Set∆)(F ,DE )→ HomFun(C,Set∆)(F ,DE0)

given by composition with the restriction map DE → DE0 , which is a levelwise trivial Kan
fibration by virtue of Corollary 4.5.5.19.

Proposition 7.5.6.7.03CB Let C be a small category and let α : F → G be a natural transforma-
tion between projectively cofibrant diagrams F ,G : C → Set∆. If α is a levelwise categorical
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equivalence, then the induced map lim−→(α) : lim−→(F ) → lim−→(G ) is a categorical equivalence
of simplicial sets. If α is a levelwise weak homotopy equivalence, then lim−→(α) is a weak
homotopy equivalence.

Proof. We will prove the first assertion; the second follows by a similar argument. Assume
that α is levelwise categorical equivalence and let D be an ∞-category; we wish to show that
precomposition with lim←−(α) induces an equivalence of ∞-categories α∗ : Fun(lim−→(G ),D)→
Fun(lim−→(F ),D). α is a levelwise categorical equivalence, precomposition with α induces a
levelwise categorical equivalence β : DG → DF in the category Fun(Cop, Set∆). Unwinding
the definitions, we see that α∗ can be identified with the limit lim←−(β). Since DF and DG are
isofibrant diagrams (Remark 7.5.6.6), the functor lim←−(β) is an equivalence of ∞-categories
(Corollary 4.5.6.17).

We now show that every diagram of simplicial sets F : C → Set∆ admits a weak
homotopy equivalence from a projectively cofibrant diagram (for a stronger statement, see
Proposition 7.5.9.7).

Construction 7.5.6.8 (Explicit Cofibrant Replacement). 03CCLet C be a small category, let
F : C → Set∆ be a diagram of simplicial sets, and let holim

−→
(F ) denote the homotopy colimit

of F (Construction 5.3.2.1). For each object C ∈ C, we let F+(C) denote the simplicial set
given by the fiber product

N•(C/C)×N•(C) holim
−→

(F ) = holim
−→

(F |C/C
).

The construction C 7→ F+(C) determines a diagram of simplicial sets F+ : C → Set∆. This
diagram is equipped with a natural transformation α : F+ ↠ F , which carries each object
C ∈ C to the comparison map

F+(C) = holim
−→

(F |C/C
) ↠ lim−→(F |C/C

) ≃ F (C)

of Remark 5.3.2.9.

Proposition 7.5.6.9. 03CDLet C be a small category and let F : C → Set∆ be a diagram of
simplicial sets. Then the diagram F+ : C → Set∆ of Construction 7.5.6.8 is projectively
cofibrant, and the natural transformation α : F+ → F is a levelwise weak homotopy
equivalence. Moreover, α is also an epimorphism.

Proof. Example 7.5.6.2 shows that the diagram F+ is projectively cofibrant and Remark
5.3.2.9 shows that α is an epimorphism. To complete the proof, it will suffice to show that
for each object C ∈ C, the map αC : F+(C) → F (C) is a weak homotopy equivalence of
simplicial sets. Replacing C by the slice category C/C , we can reduce to the case where C is
a final object of C; in this case, we wish to prove that the comparison map

holim
−→

(F )→ lim−→(F ) ≃ F (C)
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is a weak homotopy equivalence. Note that this map admits a section, given by the inclusion
map

ι : F (C) ≃ {C} ×N•(C) holim
−→

(F )→ holim
−→

(F ).

We complete the proof by that our assumption that C ∈ C is a final object guarantees that ι
is right anodyne (Example 7.2.3.11).

Warning 7.5.6.10.03CE In the situation of Proposition 7.5.6.9, the natural transformation
α : F+ ↠ F is usually not a levelwise categorical equivalence. For example, if F is the
constant functor taking the value ∆0, then F+ is given by the construction C 7→ N•(C/C).

Remark 7.5.6.11.03CF Constructions 7.5.6.8 and 7.5.3.3 are closely related. Let C be a small
category, let F : C → Set∆ be a diagram of simplicial sets, and let G : C → Kan be a
diagram of Kan complexes. Combining Corollary 5.3.2.24 with Proposition 5.3.3.24, we
obtain canonical isomorphisms of Kan complexes

HomFun(C,Set∆)(F ,G +)• = HomFun(C,Set∆)(F , sTrNG
• (C)/ C)

≃ Fun/N•(C)(holim
−→

(F ),NG
• (C))

≃ HomFun(C,Set∆)(F+,G )•.

More generally, if G is a diagram of ∞-categories, we can identify HomFun(C,Set∆)(F ,G +)•
with the full subcategory of HomFun(C,Set∆)(F+,G )• spanned by those natural transforma-
tions α : F+ → G having the property that, for each object C ∈ C, the diagram

αC : F+(C) = holim
−→

(F |C/C
)→ G (C)

carries horizontal edges of holim
−→

(F |C/C
) to isomorphisms in the ∞-category G (C).

Proposition 7.5.6.12.03CG Let C be a small category, let F : C → Set∆ be a diagram of
simplicial sets, and let F+ : C → Set∆ be the diagram of Construction 7.5.6.8. Then there is
a canonical isomorphism of simplicial sets λ : lim−→(F+)→ holim

−→
(F ) which is characterized

by the following requirement: for each object C ∈ C, the composition

N•(C/C)×N•(C) holim
−→

(F ) = F+(C)
→ lim−→(F+)
λ−→ holim

−→
(F )

is given by projection onto the second factor.

Proof. It follows from the definition of the colimit that there is a unique morphism of
simplicial sets λ : lim−→(F+) → holim

−→
(F ) having the desired property. Using the dual of

Lemma 7.5.3.8, we deduce that λ is an isomorphism.
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Remark 7.5.6.13. 03CHLet F : C → Set∆ be a diagram of simplicial sets, let θ : holim
−→

(F ) ↠
lim−→(F ) be the comparison map of Remark 5.3.2.9, and let λ : lim−→(F+) ∼−→ holim

−→
(F ) be the

isomorphism of Proposition 7.5.6.12. Then the composition (θ ◦ λ) : lim−→(F+)→ lim−→(F ) is
induced by the natural transformation α : F+ ↠ F appearing in Construction 7.5.6.8.

Corollary 7.5.6.14. 03CJLet C be a small category and let F : C → Set∆ be a projectively
cofibrant diagram of simplicial sets. Then the comparison map holim

−→
(F ) ↠ lim−→(F ) of

Remark 5.3.2.9 is a weak homotopy equivalence.

Proof. By virtue of Remark 7.5.6.13, it will suffice to show that the natural transformation
α : F+ ↠ F of Construction 7.5.6.8 induces a weak homotopy equivalence lim−→(α) :
lim−→(F+)→ lim−→(F ). This is a special case of Proposition 7.5.6.7, since α is a levelwise weak
homotopy equivalence between projectively cofibrant diagrams (Proposition 7.5.6.9).

Warning 7.5.6.15. 03CKLet F : C → QCat be a diagram of simplicial sets, let α : F+ ↠ F be
the natural transformation of Construction 7.5.6.8, and let λ : lim−→(F+) ∼−→ holim

−→
(F ) be the

isomorphism of Proposition 7.5.6.12. Then we have a diagram of simplicial sets

holim
−→

(F+)
holim
−→

(α)
//

��

holim
−→

(F )

��
lim−→(F+)

lim−→(α)
//

λ
∼

::

lim−→(F ),

where the outer square and the lower right triangle are commutative (Remark 7.5.6.13).
Beware that the upper left triangle is usually not commutative. That is, holim

−→
(F ) and

lim−→(F+) are isomorphic when viewed as abstract simplicial sets, but not when viewed as
quotients of the simplicial set holim

−→
(F+) (compare with Warning 7.5.3.14).

Remark 7.5.6.16 (The Homotopy Colimit as a Left Derived Functor). 03CLThe preceding
results can be interpreted in the language of model categories. For every small category C,
the category Fun(C,Set∆) can be equipped with a model structure in which the fibrations
are levelwise Kan fibrations and weak equivalences are levelwise weak homotopy equivalences
(see Example [?]). Combining Propositions 7.5.6.9 and 7.5.6.12, we deduce that the homotopy
colimit functor holim

−→
: Fun(C,Set∆)→ Set∆ can be viewed as a left derived functor of the

usual colimit lim−→ : Fun(C,Set∆)→ Set∆ (see Definition [?]).
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7.5.7 Homotopy Colimit Diagrams

03CM Let C be a (small) category and let F : C → Kan be a (strictly commutative) diagram of
Kan complexes indexed by C. Passing to the homotopy coherent nerve, we obtain a functor
of ∞-categories

Nhc
• (F ) : N•(C)→ Nhc

• (Kan) = S .

By virtue of Corollary 7.4.5.6, this functor admits a colimit in the ∞-category S. This
colimit admits a classical description, using the homotopy colimit of Construction 5.3.2.1.

Proposition 7.5.7.1.03CN Let C be a small category and let F : C → Kan be a (strictly
commutative) diagram of ∞-categories indexed by C. Then a Kan complex X is a colimit of
the functor Nhc

• (F ) if and only if it is weakly homotopy equivalent to the homotopy colimit
holim
−→

(F ).

Proof. Let λt : holim
−→

(F ) → NF
• (C) be the taut scaffold of Construction 5.3.4.11. Then

λt is a categorical equivalence of simplicial sets (Corollary 5.3.5.9), and therefore a weak
homotopy equivalence (Remark 4.5.3.4). The desired result now follows from Corollary
7.4.5.12.

Example 7.5.7.2.03CP Let C be a groupoid and let F : C → Kan be a diagram of Kan complexes
indexed by C. Then the homotopy colimit holim

−→
(F ) is a Kan complex (Corollary 5.3.4.23).

In this case, Proposition 7.5.7.1 guarantees that holim
−→

(F ) is a colimit of the diagram Nhc
• (F )

in the ∞-category S. For example, if X is a Kan complex equipped with an action of a
group G, then the homotopy quotient XhG is a colimit of the associated diagram B•G→ S
(Example 5.3.4.24).

Our goal in this section is to formulate a companion to Proposition 7.5.7.1, which
provides concrete models for colimit diagrams in the ∞-category S (rather than colimits in
the abstract).

Definition 7.5.7.3.03CQ Let C be a category and let F : C▷ → Set∆ be a diagram of simplicial
sets restriction F = F |C . We will say that F is a homotopy colimit diagram if the composite
map

holim
−→

(F ) ↠ lim−→(F )→ F (1)

is a weak homotopy equivalence of simplicial sets. Here 1 denotes the final object of the
cone C▷ ≃ C ⋆{1}, and the morphism on the left is the comparison map of Remark 5.3.2.9.

Example 7.5.7.4.03CR Let C be a small category and let F : C▷ → Set∆ be a colimit diagram
in the category of simplicial sets. If the diagram F = F |C is projectively cofibrant, then F

is a homotopy colimit diagram: this is a reformulation of Corollary 7.5.6.14 (for a stronger
statement, see Corollary 7.5.8.7).
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Proposition 7.5.7.5 (Homotopy Invariance). 03CSLet C be a category and let α : F → G be a
natural transformation between diagrams F ,G : C▷ → Set∆. Assume that, for every object
C ∈ C, the induced map αC : F (C)→ G (C) is a weak homotopy equivalence of simplicial
sets. Then any two of the following conditions imply the third:

(1) The functor F is a homotopy colimit diagram.

(2) The functor G is a homotopy colimit diagram.

(3) The natural transformation α induces a weak homotopy equivalence F (1)→ G (1), where
1 denotes the cone point of C▷.

Proof. Setting F = F |C and G = G |C , we observe that α determines a commutative diagram
of simplicial sets

holim
−→

(F ) //

��

holim
−→

(G )

��
F (1) // G (1)

where the upper horizontal map is a weak homotopy equivalence (Proposition 5.3.2.18). The
desired result now follows from the two-out-of-three property (Remark 3.1.6.16).

There is a close relationship between homotopy colimit diagrams (in the sense of Definition
7.5.7.3) and homotopy limit diagrams (in the sense of Definition 7.5.4.1).

Proposition 7.5.7.6. 03CTLet C be a category and let F : C▷ → Set∆ be a diagram of simplicial
sets. Then F is a homotopy colimit diagram if and only if, for every Kan complex X, the
functor

XF : (C▷)op → Kan C 7→ Fun(F (C), X)

is a homotopy limit diagram.

Proof. Set F = F |C, let 1 denote the final object of C▷, and let θ : holim
−→

(F )→ F (1) be
the map appearing in Definition 7.5.7.3. Then F is a homotopy colimit diagram if and only
if, for every Kan complex X, precomposition with θ induces a homotopy equivalence of Kan
complexes

θ∗ : Fun(F (1), X)→ Fun(holim
−→

(F ), X).

Setting G = F op, G = F
op, and Y = Xop, Example 7.5.1.7 identifies θ∗ with the opposite

of the restriction map Y G (1)→ holim
←−

(Y G ) appearing in Definition 7.5.4.1. In particular, θ∗

is a homotopy equivalence if and only if Y G is a homotopy limit diagram of Kan complexes.
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By virtue of Corollary 7.5.4.12, this is equivalent to the requirement that XF is a homotopy
limit diagram.

Corollary 7.5.7.7.03CU Let C be a small category and let F : C▷ → Kan be a diagram of Kan
complexes. Then F is a homotopy colimit diagram (in the sense of Definition 7.5.7.3) if
and only if the induced functor of ∞-categories

Nhc
• (F ) : N•(C▷)→ Nhc

• (Kan) = S

is a colimit diagram (in the sense of Variant 7.1.2.5).

Proof. Combine Proposition 7.5.7.6 with Corollary 7.5.4.6 (applied to the simplicial category
Kanop).

Corollary 7.5.7.8.03CV Let C be a category and let F : C▷ → Set∆ be a functor. Let F
op :

C▷ → Set∆ be the functor given on objects by F
op(C) = F (C)op. Then F is a homotopy

colimit diagram if and only if F
op is a homotopy colimit diagram.

Proof. Combine Proposition 7.5.7.6 with Corollary 7.5.7.8.

Corollary 7.5.7.9.03CW Suppose we are given a commutative diagram of simplicial sets

03CX A //

��

A0

��
A1 // A01,

(7.50)

which we identify with a functor F : [1]× [1]→ Set∆. Then (7.50) is a homotopy pushout
square (in the sense of Definition 3.4.2.1) if and only if F is a homotopy colimit diagram
(in the sense of Definition 7.5.7.3).

Proof. Combine Propositions 7.5.7.6 and 7.5.4.13.

7.5.8 Categorical Colimit Diagrams

03CY In §7.5.7, we introduced the notion of a homotopy colimit diagram (Definition 7.5.7.3),
and showed that one can use homotopy colimit diagrams to compute colimits in the ∞-
category S of spaces (Corollary 7.5.7.7). In this section, we introduce the closely related
notion of categorical colimit diagram, which can be used to compute colimits in the larger
∞-category QC ⊃ S.
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Proposition 7.5.8.1. 03CZLet C be a small category and let F : C → QCat be a (strictly
commutative) diagram of ∞-categories indexed by C, and let W denote the collection of
horizontal edges of the homotopy colimit holim

−→
(F ) (Definition 5.3.4.1). Then an ∞-category

D is a colimit of the diagram

Nhc
• (F ) : N•(C)→ Nhc

• (QCat) = QC

if and only if it is a localization of holim
−→

(F ) with respect to W , in the sense of Remark
6.3.2.2.

Proof. Let U : NF
• (C) → N•(C) be the projection map of Definition 5.3.3.1 and let W ′

denote the collection of all U -cocartesian morphisms of NF
• (C). Choose a functor of ∞-

categories T : NF
• (C)→ D which exhibits D as a localization of NF

• (C) with respect to W ′.
Let λt : holim

−→
(F ) → NF

• (C) denote the taut scaffold of Construction 5.3.4.11. Then λt

is a categorical equivalence of simplicial sets (Corollary 5.3.5.9). Moreover, a morphism
of NF

• (C) belongs to W ′ if and only if it is isomorphic (as an object of the ∞-category
Fun(∆1,NF

• (C)) to an element of λt(W ) (see Corollary 5.3.3.16). It follows that the composite
map holim

−→
(F ) λt−→ NF

• (C) T−→ D exhibits D as a localization of holim
−→

(F ) with respect to W .
We conclude by observing that D is a colimit of the diagram Nhc

• (F ) (Corollary 7.4.3.16).

Motivated by Proposition 7.5.8.1, we introduce the following variant of Definition 7.5.7.3:

Definition 7.5.8.2. 03D0Let C be a category and let F : C▷ → Set∆ be a diagram of simplicial
sets. Set F = F |C, and let W denote the collection of horizontal edges of holim

−→
(F )

(Definition 5.3.4.1). We will say that F is a categorical colimit diagram if the composite map

holim
−→

(F ) ↠ lim−→(F )→ F (1)

exhibits F (1) as a localization of holim
−→

(F ) with respect to W . (see Definition 6.3.1.9).
Here 1 denotes the final object of the cone C▷ ≃ C ⋆{1}, and the morphism on the left is the
comparison map of Remark 5.3.2.9.

Remark 7.5.8.3. 03D1Let F : C▷ → Set∆ be a categorical colimit diagram of simplicial sets.
Then F is also a homotopy colimit diagram of simplicial sets, in the sense of Definition
7.5.7.3. This follows from the observation that every localization of simplicial sets is a weak
homotopy equivalence (Remark 6.3.1.16).

Proposition 7.5.8.4. 03D2Let C be a category and let F : C▷ → Set∆ be a diagram of simplicial
sets. The following conditions are equivalent:

(1) The diagram F is a categorical colimit diagram.
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(2) For every ∞-category D, the diagram of ∞-categories

(C▷)op → QCat C 7→ Fun(F (C),D)

is a categorical limit diagram (Definition 7.5.5.1).

(3) For every ∞-category D, the diagram of Kan complexes

(C▷)op → Kan C 7→ Fun(F (C),D)≃

is a homotopy limit diagram (Definition 7.5.4.1).

Proof. The equivalence of (1) and (2) follows by combining Example 7.5.2.11 with Corollary
7.5.5.15. The equivalence with (3) follows by combining the same results with Proposition
6.3.1.13 and Example 7.5.2.8.

Corollary 7.5.8.5.03D3 Suppose we are given a commutative diagram of simplicial sets

03D4 A //

��

A0

��
A1 // A01,

(7.51)

which we identify with a functor F : [1]× [1]→ Set∆. Then (7.51) is a categorical pushout
square (in the sense of Definition 4.5.4.1) if and only if F is a categorical colimit diagram
(in the sense of Definition 7.5.8.2).

Corollary 7.5.8.6 (Homotopy Invariance).03D5 Let C be a category and let α : F → G be a
natural transformation between diagrams F ,G : C▷ → Set∆. Assume that, for every object
C ∈ C, the induced map αC : F (C)→ G (C) is a categorical equivalence of simplicial sets.
Then any two of the following conditions imply the third:

(1) The functor F is a categorical colimit diagram.

(2) The functor G is a categorical colimit diagram.

(3) The natural transformation α induces a categorical equivalence F (1)→ G (1), where 1
denotes the cone point of C▷.

Proof. By virtue of Proposition 7.5.8.4 (and Proposition 4.5.3.8), it will suffice to show that
for every ∞-category D, any two of the following conditions imply the third:
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(1D) The functor
(C▷)op → QCat C 7→ Fun(F (C),D)

is a categorical limit diagram.

(2D) The functor
(C▷)op → QCat C 7→ Fun(G (C),D)

is a categorical limit diagram.

(3D) The natural transformation α induces an equivalence of ∞-categories Fun(G (1),D)→
Fun(F (1),D).

This follows from Remark 7.5.5.6.

Corollary 7.5.8.7. 03D6Let C be a small category and let F : C▷ → Set∆ be a colimit diagram
in the category of simplicial sets. If the diagram F = F |C is projectively cofibrant, then F

is a categorical colimit diagram.

Proof. Let D be an ∞-category and define G : (C▷)op → QCat by the formula G (C) =
Fun(F (C),D). By virtue of Proposition 7.5.8.4, it will suffice to show that the diagram of
Kan complexes G

≃ is a homotopy limit diagram. Setting G = G |Cop , our assumption that
F is projectively cofibrant guarantees that the diagram G is isofibrant (Remark 7.5.6.6).
It follows that the diagram of Kan complexes G≃ is also isofibrant, and that G

≃ is a limit
diagram (Corollary 4.5.6.21). The desired result now follows from Example 7.5.4.2.

Corollary 7.5.8.8. 03D7Let F : C → Set∆ be a diagram of simplicial sets, let θ : holim
−→

(F )→
lim−→(F ) be the comparison map of Remark 5.3.2.9, and let W denote the collection of all
horizontal edges of the homotopy colimit holim

−→
(F ) (Definition 5.3.4.1). If F is projectively

cofibrant (Definition 7.5.6.1), then θ exhibits lim−→(F ) as a localization of holim
−→

(F ) with
respect to W .

Proof. This is a restatement of Corollary 7.5.8.7.

Corollary 7.5.8.9. 03D8Let C be a small category and let F : C▷ → QCat be a diagram of
∞-categories. Then F is a categorical colimit diagram (in the sense of Definition 7.5.7.3)
if and only if the induced functor of ∞-categories

Nhc
• (F ) : N•(C▷)→ Nhc

• (QCat) = QC

is a colimit diagram (in the sense of Variant 7.1.2.5).

Proof. Combine Proposition 7.5.8.4 with Corollary 7.5.4.6 (applied to the simplicial category
QCatop).
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Corollary 7.5.8.10.03D9 Let C be a small category and let F : C▷ → Kan be a diagram of Kan
complexes. Then F is a categorical colimit diagram if and only if it is a homotopy colimit
diagram.

Proof. Combine Corollary 7.5.8.9, Corollary 7.5.7.7, and Proposition 7.4.5.1.

Corollary 7.5.8.11.03DA Let C be a category and let F : C▷ → Set∆ be a functor. Let
F

op : C▷ → Set∆ be the functor given on objects by F
op(C) = F (C)op. Then F is a

categorical colimit diagram if and only if F
op is a categorical colimit diagram.

Proof. Combine Proposition 7.5.8.4 with Corollary 7.5.5.15.

We close this section with an application of the formalism of categorical colimit diagrams.

Proposition 7.5.8.12 (Rewriting Colimits).03DB Let C be a small category and let F : C▷ → Set∆
be a categorical colimit diagram which carries the final object of C▷ to a simplicial set K. Let
D be an ∞-category equipped with a diagram q : K → D satisfying the following condition:

(∗) For each object C ∈ C, the composite map

qC : F (C)→ K
q−→ D

admits a colimit in the ∞-category D.

Then there exists a functor Q : N•(C)→ D with the following properties:

(1) For each object C ∈ C, the object Q(C) ∈ D is a colimit of the diagram qC .

(2) An object X ∈ D is a colimit of the diagram q if and only if it is a colimit of Q. In
particular, the diagram q has a colimit in D if and only if the diagram Q has a colimit
in D.

(3) Let G : D → E be a functor of ∞-categories which preserves the colimit of each of the
diagrams qC , and suppose that the diagrams q and Q admit colimits in D. Then G

preserves the colimit of q if and only if it preserves the colimit of Q.

Proof. Set F = F |C , let U : holim
−→

(F )→ N•(C) be the projection map, and let W be the
collection of all horizontal edges of holim

−→
(F ). The diagram F then determines a morphism

of simplicial sets T : holim
−→

(F )→ K which exhibits K as a localization of holim
−→

(F ) with
respect to W . It follows from assumption (∗) that for each object C ∈ C, the composite map

F (C) ≃ {C} ×N•(C) holim
−→

(F ) ↪→ holim
−→

(F ) T−→ K
q−→ D

admits a colimit in D. Applying Corollary 7.3.5.3, we conclude that there is a functor
Q : N•(C)→ D and a natural transformation β : T ◦ q → Q ◦ U which exhibits Q as a left
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Kan extension of T ◦ q along U . We will complete the proof by showing that Q satisfies
conditions (1), (2), and (3) of Proposition 7.5.8.12. Condition (1) follows immediately from
Remark 7.3.5.4.

We now prove (2). Assume first that X ∈ D is a colimit of the diagram Q. For
every simplicial set S, we let XS denote the image of X in the ∞-category Fun(S,D).
Choose a natural transformation α : Q→ XN•(C) which exhibits X ∈ D as a colimit of the
diagram Q, let α̃ : Q ◦ U → Xholim

−→
(F ) denote the image of α in Fun(holim

−→
(F ),D), and let

γ̃ : q ◦ T → Xholim
−→

(F ) = XK ◦ T be a composition of β with α̃ in Fun(holim
−→

(F ),D). Since
precomposition with T induces a fully faithful functor Fun(K,D) → Fun(holim

−→
(F ),D),

we may assume without loss of generality that γ̃ is the image of a natural transformation
γ : q → XK . Note that γ̃ exhibits X as a colimit of the diagram q ◦ T (Corollary 7.3.8.20).
Since T is right cofinal (Proposition 7.2.1.10), it follows that γ exhibits X as a colimit of
the diagram q (Corollary 7.2.2.7).

To prove the reverse implication, it will suffice to show that if the diagram q : K → D
admits a colimit, then Q also admits a colimit. Since T is right cofinal, the diagram q ◦ T
also admits a colimit in D (Corollary 7.2.2.11), so the desired result is immediate from
Corollary 7.3.8.20.

We now prove (3). Let G : D → E be a functor of ∞-categories which preserves the
colimit of the diagram qC , for each object C ∈ C. Let α : Q→ XN•(C) and γ : q → XK be
defined as above; we wish to show that G(α) exhibits G(X) as a colimit of the diagram
G ◦Q if and only if G(γ) exhibits G(X) as a colimit of the diagram G ◦ q. Using Corollary
7.2.2.7, we see that latter condition is equivalent to the requirement that G(γ̃) exhibits G(X)
as a colimit of the diagram G ◦ q ◦ T . By virtue of Corollary 7.3.8.20, we are reduced to
showing that the natural transformation G(β) exhibits G ◦ Q as a left Kan extension of
G ◦ q ◦ T along U . This follows from the criterion of Remark 7.3.5.4.

Corollary 7.5.8.13. 03DCLet C be a small category and let F : C▷ → Set∆ be a categorical
colimit diagram carrying the final object of C▷ to a simplicial set K. Let D be an ∞-category
which admits N•(C)-indexed colimits and F (C)-indexed colimits, for each object C ∈ C.
Then D also admits K-indexed colimits. Moreover, if G : D → E is a functor of ∞-categories
which preserves N•(C)-indexed colimits and F (C)-indexed colimits for each C ∈ C, then G

also preserves K-indexed colimits.

7.5.9 Application: Filtered Colimits of ∞-Categories

03DDLet C be a small filtered category, let F : C → Set∆ be a diagram, and let E = lim−→(F )
denote the colimit of F in the category of simplicial sets. If each of the simplicial sets F (C)
is an ∞-category, then the simplicial set E is also an ∞-category (Remark 1.4.0.9). Our goal
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in this section is to show that, in this case, we can also regard E as a colimit of the diagram
Nhc
• (F ) : N•(C)→ QC. This is a consequence of the following more general result:

Proposition 7.5.9.1.03DE Let C be a small filtered category and let F : C▷ → Set∆ be a colimit
diagram in the category of simplicial sets. Then F is a categorical colimit diagram.

Remark 7.5.9.2.03DF Let F : C → Set∆ be a diagram of simplicial sets and let W denote
the collection of horizontal edges of the homotopy colimit holim

−→
(F ). Proposition 7.5.9.1

asserts that, if the category C is filtered, then the comparison map θ : holim
−→

(F ) ↠ lim−→(F )
exhibits lim−→(F ) as a localization of holim

−→
(F ) with respect to W . In particular, θ is a weak

homotopy equivalence.

Before giving the proof of Proposition 7.5.9.1, let us record some of its consequences.

Corollary 7.5.9.3.03DG Let C be a small filtered category. Then the inclusion map

N•(QCat) ↪→ Nhc
• (QCat) = QC

preserves N•(C)-indexed colimits.

Proof. We first observe that the full subcategory QCat ⊆ Set∆ is closed under filtered
colimits (Remark 1.4.0.9), so the category QCat admits C-indexed colimits. Fix a colimit
diagram F : C▷ → QCat in the ordinary category QCat. We wish to show that the induced
map Nhc

• (F ) : N•(C) → QC is a colimit diagram in the ∞-category QC. By virtue of
Corollary 7.5.8.9, this is equivalent to the requirement that F is a categorical colimit
diagram, which follows from Proposition 7.5.9.1.

Variant 7.5.9.4.03DH Let C be a small filtered category. Then the inclusion map

N•(Kan) ↪→ Nhc
• (Kan) = S

preserves N•(C)-indexed colimits.

Corollary 7.5.9.5.03DJ Let C be a small filtered category and let F : C → Set∆ be a diagram of
simplicial sets having colimit K = lim−→(F ). Let D be an ∞-category which admits N•(C)-
indexed colimits and which admits F (C)-indexed colimits, for each C ∈ C. Then D also
admits K-indexed colimits. Moreover, if G : D → E is a functor which preserves both
N•(C)-indexed colimits and F (C)-indexed colimits for each C ∈ C, then G also preserves
K-indexed colimits.

Proof. Combine Proposition 7.5.9.1 with Corollary 7.5.8.13.
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Corollary 7.5.9.6. 03DKLet D be an ∞-category which admits finite colimits and small filtered
colimits. Then D admits all small colimits. Moreover, if G : D → E is a functor of ∞-
categories which preserves finite colimits and small filtered colimits, then G preserves all
small colimits.

Proof. This is a special case of Corollary 7.5.9.5, since every small simplicial set K can be
realized as a (small) filtered colimit of finite simplicial sets. For example, we can write K as
the union of all finite simplicial subsets of itself.

Our proof of Proposition 7.5.9.1 will require a brief digression. Let C be a small category
and let G : C → Set∆ be a diagram of simplicial sets. In §7.5.6, we showed that there exists
a projectively cofibrant diagram F : C → Set∆ equipped with a levelwise weak homotopy
equivalence α : F → G (Proposition 7.5.6.9). Using a somewhat less explicit construction,
we can obtain a better approximation to G :

Proposition 7.5.9.7. 03DLLet C be a small category and let G : C → Set∆ be a diagram of
simplicial sets. Then there exists a projectively cofibrant diagram F : C → Set∆ and a
levelwise trivial Kan fibration α : F → G .

Proof of Proposition 7.5.9.1 from Proposition 7.5.9.7. Let C be a small filtered category and
let F : C▷ → Set∆ be a colimit diagram in the category of simplicial sets; we wish to show
that F is a categorical colimit diagram. Set F = F |C . Using Proposition 7.5.9.7, we can
choose a levelwise categorical equivalence α : E → F , where E : C → Set∆ is projectively
cofibrant. Let E : C▷ → Set∆ be a colimit diagram extending E , so that α extends uniquely
to a natural transformation α : E → F . Applying Corollary 4.5.7.2, we deduce that α is also
a levelwise categorical equivalence. Consequently, to show that F is a categorical colimit
diagram, it will suffice to show that E is a categorical colimit diagram (Corollary 7.5.8.6).
This follows from Corollary 7.5.8.7, since E is projectively cofibrant.

It will be useful to formulate a slightly stronger version of Proposition 7.5.9.7. First, we
need some terminology.

Definition 7.5.9.8. 03DMLet C be a small category and let α : F ′ → F be a natural transfor-
mation between diagrams F ,F ′ : C → Set∆. We say that α is a projective cofibration if it
is left semiorthgonal to all levelwise trivial Kan fibrations (see Remark 4.5.6.2). That is, α
is a projective cofibration if every lifting problem

F ′

α

��

// G ′

β

��
F //

>>

G

https://kerodon.net/tag/03DK
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admits a solution, under the assumption that β is a levelwise trivial Kan fibration between
diagrams G ,G ′ : C → Set∆.

Example 7.5.9.9.03DN Let C be a small category. Then a diagram of simplicial sets F : C → Set∆
is projectively cofibrant (in the sense of Definition 7.5.6.1) if and only if the unique natural
transformation ∅ → F is a projective cofibration (in the sense of Definition 7.5.9.8). Here
∅ : C → Set∆ denotes the initial object of the category Fun(C, Set∆), which carries every
object of C to the empty simplicial set.

Example 7.5.9.10.03DP Let C be a small category. For each object C ∈ C, let hC : C → Set de-
note the functor corepresented by C (given on objects by the formula hC(D) = HomC(C,D)).
If A ↪→ B is a monomorphism of simplicial sets, then the natural transformation A× hC ↪→
B × hC is a projective cofibration in Fun(C, Set∆); here A and B denote the constant
simplicial sets taking the values A and B, respectively.

Remark 7.5.9.11.03DQ Let C be a small category. Then the collection of projective cofibrations
in Fun(C,Set∆) is weakly saturated, in the sense of Definition 1.5.4.12. That is, it is closed
under retracts, pushouts, and transfinite composition. See Proposition 1.5.4.13.

Proposition 7.5.9.12.03DR Let C be a small category and let α0 : F0 → G be a natural
transformation between diagrams F0,G : C → Set∆. Then α0 factors as a composition

F0
β−→ F

α−→ G ,

where β is a projective cofibration and α is a levelwise trivial Kan fibration.

Proof. We will construct F as the colimit of a diagram of projective cofibrations

F0 → F1 → F2 → F3 → · · ·

in the category Fun(C,Set∆)/G . Fix n ≥ 0, and suppose that we have constructed an object
Fn ∈ Fun(C, Set∆)/G , which we identify with a natural transformation αn : Fn → G . For
each object C ∈ C, Exercise 3.1.7.11 guarantees that αn,C factors as a composition

Fn(C)
α′n,C−−−→ F ′n(C)

α′′n,C−−−→ G (C),

where α′n,C is a monomorphism and α′′n,C is a trivial Kan fibration (beware that F ′n(C) does
not depend functorially on C). Form a pushout diagram∐

C∈CFn(C)× hC //

��

∐
C∈CF ′n(C)× hC

��
Fn

// Fn+1

https://kerodon.net/tag/03DN
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in the category Fun(C, Set∆)/G , where the upper horizontal map is the coproduct of the
projective cofibrations described in Example 7.5.9.10. Using Remark 7.5.9.11, we see that
each of the maps

F0 → F1 → F2 → F3 → · · ·

is a projective cofibration. Setting F = lim−→n
Fn, we obtain a factorization of α0 as a

composition F0
β−→ F

α−→ G , where β is a projective cofibration. We complete the proof by
observing that for each object C ∈ C, the morphism αC : F (C) → G (C) is a trivial Kan
fibration, since it can be written as a filtered colimit (in the arrow category Fun([1],Set∆))
of the trivial cofibrations α′′n,C : F ′n(C)→ G (C) (see Remark 1.5.5.3).

Proof of Proposition 7.5.9.7. Apply Proposition 7.5.9.12 in the special case F0 = ∅ (see
Example 7.5.9.9).

Corollary 7.5.9.13. 03DSLet C be a small category, and let S be the collection of all projective
cofibrations in the category Fun(C,Set∆). Then S is the smallest weakly saturated collection
of morphisms which contains each of the inclusion maps ιn,C : ∂∆n × hC ↪→ ∆n × hC , for
each n ≥ 0 and each object C ∈ C.

Proof. It follows from Remark 7.5.9.11 that S is weakly saturated. Let S′ be the smallest
weakly saturated collection of morphisms of Fun(C, Set∆) which contains each ιn,C . Using
Example 7.5.9.10, we see that S′ is contained in S. For every monomorphism of simplicial
sets A ↪→ B and every object C ∈ C, Proposition 1.5.5.14 guarantees that the projective
cofibration A× hC ↪→ B × hC is contained in S′. It follows from the proof of Proposition
7.5.9.12 that every morphism α0 : F0 → G in Fun(C, Set∆) factors as a composition
F0

β−→ F
α−→ G , where β belongs to S′ and α is a trivial Kan fibration. If α0 is projective

cofibration, then the lifting problem

F0

α0

��

β // F

α

��
G

>>

G

admits a solution. It follows that α0 is a retract of the morphism β, and therefore belongs
to S′.

7.6 Examples of Limits and Colimits

03E8
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Let C be an ∞-category. In §7.1, we introduced the notion of limit and colimit for an
arbitrary morphism of simplicial sets σ : K → C. Our goal in this section is to make the
general theory more explicit for some special classes of diagrams which arise frequently in
practice.

We begin in §7.6.1 by considering the case where K is a discrete simplicial set. In
this case, specifying a functor σ : K → C is equivalent to specifying a collection of objects
{Yk ∈ C}k∈K , indexed by the collection of vertices of K. We say that an object of C is a
product of the collection {Yk}k∈K if it is a limit of the diagram σ, and a coproduct of the
collection {Yk}k∈K if it is a colimit of the diagram σ. These conditions can be formulated
purely in terms of the homotopy category hC, provided that we regard hC as enriched over
the homotopy category of Kan complexes hKan (see Remark 7.6.1.5). In particular, the
forgetful functor from C to (the nerve of) its homotopy category hC preserves products and
coproducts (Warning 7.6.1.2).

In §7.6.2, we allow K to be an arbitrary simplicial set, but require σ : K → C to be
a constant diagram taking some value Y ∈ C. In this case, we will denote a limit of σ (if
it exists) by Y K and a colimit of σ (if it exists) by K ⊗ Y (Notation 7.6.2.5). We refer
to Y K as a power of Y by K, and K ⊗ Y as a tensor product of Y by K. These notions
can again be formulated purely at the level of the homotopy category hC, regarded as an
hKan-enriched category (Definition 7.6.2.1 and Remark 7.6.2.6).

In §7.6.3, we study limit and colimit diagrams indexed by the simplicial set K = ∆1×∆1.
Let σ : ∆1 ×∆1 → C be a functor of ∞-categories, which we depict as a diagram

X01 //

��

X0

f0

��
X1

f1 // X.

We say that σ is a pullback square if it is a limit diagram, and a pushout square if it is a
colimit diagram (Definition 7.6.3.1). Beware that these conditions cannot be formulated at
the level of the homotopy category hC, even if its hKan-enrichment is accounted for: see
Warning 7.6.3.3 Example 7.6.3.4.

It follows from Proposition 7.5.4.13 that a (strictly commutative) diagram of Kan
complexes

X01 //

��

X0

��
X1 // X
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determines a pullback square in the ∞-category S if and only if it is a homotopy pullback
square. However, not every pullback square in the ∞-category S arises in this way. In
§7.6.4, we give a detailed classification of all pullback squares in the∞-category S (Corollary
7.6.4.10). In particular, for every pair of morphisms of Kan complexes f0 : X0 → X and
f1 : X1 → X, we construct a pullback diagram

X0 ×h
X X1 //

��

X0

f0

��
X1

f1 // X

in the∞-category S (Example 7.6.4.12); beware that this diagram usually does not commute
in the ordinary category of simplicial sets. Our analysis can be applied more generally to
any ∞-category which arises as the homotopy coherent nerve of a locally Kan simplicial
category (Corollary 7.6.4.14); in particular, it can be applied to the ∞-category C = QC of
small ∞-categories (see Proposition 7.6.4.8 and Corollary 7.6.4.9).

Let (• ⇒ •) denote the simplicial set given by the coproduct ∆1∐
∂∆1∆1 (Notation

7.6.5.1). In §7.6.5, we study limits and colimits of diagrams indexed by (•⇒ •). For any
∞-category C, functors σ : (• ⇒ •) → C can be identified with pairs f0, f1 : Y → X of
morphisms in C having the same source and target. In this case, we denote a limit of σ (if it
exists) by Eq(f0, f1), and a colimit of σ (if it exists) by Coeq(f0, f1) (Notation 7.6.5.5). We
refer to Eq(f0, f1) as an equalizer of the pair (f0, f1), and to Coeq(f0, f1) as a coequalizer of
(f0, f1) (Definition 7.6.5.4). Beware that, as with pullbacks and pushouts, the notions of
equalizer and coequalizer cannot be formulated purely in terms of the homotopy category
hC; in particular, the forgetful functor from C to (the nerve of) its homotopy category need
not preserve equalizers and coequalizers.

Let Z≥0 denote the set of nonnegative integers, endowed with its usual linear ordering.
In §7.6.6, we study colimits of diagram X : N•(Z≥0)→ C, which we represent informally as

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3) f3−→ X(4)→ · · ·

In the special case where C = S is the ∞-category of spaces, we show that the colimit
lim−→X(n) (formed in the ordinary category of simplicial sets, using the transition morphisms
fi) is also a colimit in the ∞-category S (Variant 7.6.6.9). Similarly, if Y : N•(Zop

≥0)→ S is
a diagram which we depict informally as

· · · → Y (4) g3−→ Y (3) g2−→ Y (2) g1−→ Y (1) g0−→ Y (0),

then the usual inverse limit lim←−Y (n) (formed in the category of simplicial sets, using the
transition morphisms gn) is also a limit in the∞-category S, provided that each of the maps
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gn is a Kan fibration (Variant 7.6.6.11). These assertions have counterparts for sequential
limits and colimits in the ∞-category QC: see Examples 7.6.6.8 and 7.6.6.10.

Though the classes of diagrams we study in this section are of a very restricted type,
they are nonetheless useful for analyzing limits and colimits in general. If K is a complicated
simplicial set which can be decomposed into simpler constituents, then we can often use
Proposition 7.5.8.12 to reduce questions about K-indexed (co)limits to questions about
(co)limits indexed by those constituents. We will consider several variants on this theme:

• If a simplicial set K decomposes as a disjoint union ∐
j∈JKj , then we can often rewrite

K-indexed limits as products; see Proposition 7.6.1.18.

• If a simplicial set K fits into a categorical pushout diagram

K01 //

��

K0

��
K1 // K,

then we can often rewrite K-indexed limits as pullbacks; see Proposition 7.6.3.26.

• If C is an ∞-category which admits finite products, then an equalizer of a pair of
morphisms f0, f1 : Y → X (if it exists) is characterized by the existence of a pullback
diagram

Eq(f0, f1) //

��

Y

(f0,f1)

����
X

δX // X ×X;
see Proposition 7.6.5.22.

• If C is an ∞-category which admits finite products, then a pullback of a diagram
X0

f0−→ X
f1←− X1 can be rewritten as the equalizer of a diagram X0 × X1 ⇒ X

(Proposition 7.6.5.23).

• If C is an ∞-category which admits countable products, then the limit of a tower

· · · → X(3) f2−→ X(2) f1−→ X(1) f0−→ X(0)

can be rewritten as an equalizer Eq(f, idX), where X is the product ∏
n≥0X(n) and

f : X → X is the endomorphism of X determined by the sequence {fn}n≥0; see
Proposition 7.6.6.16.
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• If K is a simplicial set which can be written as the colimit of a sequence

K(0)→ K(1)→ K(2)→ K(3)→ · · · ,

then we can often rewrite K-indexed limits as sequential limits (Corollary 7.6.6.14).

By applying these observations iteratively, one can build arbitrarily complicated limits
(and colimits) out of the constructions studied in this section. For example, we show that
an ∞-category C admits finite limits if and only if it admits pullbacks and has a final object
(Corollary 7.6.3.27).

7.6.1 Products and Coproducts

03E9We now study limits and colimits of diagrams which are indexed by discrete simplicial
sets. In this case, the definitions of limit and colimit can be formulated entirely at the level
of the (enriched) homotopy category.

Definition 7.6.1.1. 03EALet hKan denote the homotopy category of Kan complexes and let C
be an hKan-enriched category. We say that a collection of morphisms {qi : Y → Yi}i∈I of C
exhibits Y as an hKan-enriched product of the collection {Yi}i∈I if, for every object X ∈ C,
the collection of maps HomC(X,Y ) qi◦−−→ HomC(X,Yi) induces an isomorphism

HomC(X,Y )→
∏

i∈I
HomC(X,Yi)

in the homotopy category hKan.
We say that a collection of morphisms {ei : Yi → Y }i∈I exhibits Y as an hKan-

enriched coproduct of the collection {Yi}i∈I if, for every object Z ∈ C, the collection of maps
HomC(Y,Z) ◦ei−−→ HomC(Yi, Z) induces an isomorphism

HomC(X,Y )→
∏

i∈I
HomC(X,Yi)

Warning 7.6.1.2. 03EBLet C be an hKan-enriched category, and let {qi : Y → Yi}i∈I be a
collection of morphisms in C. If {qi}i∈I exhibits Y as an hKan-enriched product of {Yi}i∈I ,
then it also exhibits Y as a product of the collection {Yi}i∈I in the underlying category C
(where we neglect its hKan-enrichment). Beware that the converse is false in general (see
Warning 7.6.1.11).

Definition 7.6.1.3. 03ECLet C be an ∞-category. We say that a collection of morphisms
{qi : Y → Yi}i∈I in C exhibits Y as a product of the collection {Yi}i∈I if the collection of
homotopy classes {[qi] : Y → Yi}i∈I exhibits Y as an hKan-enriched product {Yi}i∈I in
the homotopy category hC (equipped with the hKan-enrichment described in Construction

https://kerodon.net/tag/03E9
https://kerodon.net/tag/03EA
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4.6.9.13). In other words, the collection of morphisms {qi}i∈I exhibits Y as a product of the
collection of objects {Yi}i∈I if, for every object X ∈ C, the induced map

HomC(X,Y )→
∏

i∈I
HomC(X,Yi)

is a homotopy equivalence of Kan complexes. Similarly, we say that a collection of morphisms
{ei : Yi → Y }i∈I of C exhibits Y as a coproduct of the collection {Yi}i∈I if, for every object
Z ∈ C, the induced map

HomC(Y, Z)→
∏

i∈I
HomC(Yi, Z)

is a homotopy equivalence of Kan complexes.

Remark 7.6.1.4.03ED Let {fi : Y → Yi}i∈I be a collection of morphisms in an ∞-category C.
Then the collection {qi}i∈I exhibits Y as a product of the collection {Yi}i∈I in the category C
if and only if it exhibits Y as a coproduct of the collection {Yi}i∈I in the opposite∞-category
Cop.

Remark 7.6.1.5.03EE Let C be an ∞-category and let {Yi}i∈I be a collection of objects of C,
which we will identify with a diagram

F : I → C F (i) = Yi

indexed by the constant simplicial set associated to I (Remark 1.1.5.3). Suppose we are
given another object Y ∈ C together with a collection of morphisms {qi : Y → Yi}i∈I . The
following conditions are equivalent:

(1) The collection of morphisms {qi}i∈I exhibits Y as a product of the collection {Yi}i∈I , in
the sense of Definition 7.6.1.3.

(2) Let Y : I → C denote the constant diagram taking the value Y , so that the collection
{qi}i∈I can be identified with a natural transformation q : Y → F . Then q exhibits Y
as a limit of the diagram F , in the sense of Definition 7.1.1.1.

(3) Let F : I◁ → C be the diagram carrying each edge {i}◁ ⊆ I◁ to the morphism qi. Then
F is a limit diagram in C, in the sense of Definition 7.1.2.4.

The equivalence (1)⇔ (2) is immediate from the definitions (see Remark 4.6.1.9) and the
equivalence (2)⇔ (3) follows from Remark 7.1.2.6.

Remark 7.6.1.6.03EF Let C be an ordinary category, and let {qi : Y → Yi}i∈I be a collection
of morphisms in C. Then {qi}i∈I exhibits Y as a product of the collection {Yi}i∈I in the
category C (in the sense of classical category theory) if and only if it exhibits Y as a product
of the collection {Yi}i∈I in the ∞-category N•(C) (in the sense of Definition 7.6.1.3).

https://kerodon.net/tag/03ED
https://kerodon.net/tag/03EE
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Notation 7.6.1.7. 03EGLet C be an ∞-category and let {Yi}i∈I be a collection of objects of
C. We will say that an object Y ∈ C is a product of the collection {Yi}i∈I if there exists
a collection of morphisms {qi : Y → Yi} which exhibits Y as a product of {Yi}i∈I . If this
condition is satisfied, then the object Y is uniquely determined up to isomorphism (see
Proposition 7.1.1.12). To emphasize this uniqueness, we will sometimes denote the object Y
by ∏

i∈IYi, and refer to it as the product of the collection {Yi}i∈I . Similarly, we say that Y is
a coproduct of the collection {Yi}i∈I if there exists a collection of morphisms {ei : Yi → Y }∈I
which exhibits Y as a coproduct of {Yi}i∈I . In this case, we sometimes denote the object Y
by ∐

i∈IYi and refer to it as the coproduct of the collection {Yi}i∈I .

Example 7.6.1.8 (Initial and Final Objects). 03EHLet C be an ∞-category. An object Y ∈ C
is initial (in the sense of Definition 4.6.7.1) if and only if it is the coproduct of the empty
collection of objects of C (see Example 7.1.1.6). Similarly, Y is final if and only if it is a
product of the empty collection of objects.

Example 7.6.1.9 (Isomorphisms). 03EJLet f : X → Y be a morphism in an ∞-category C. The
following conditions are equivalent:

(1) The morphism f is an isomorphism.

(2) The morphism f exhibits X as a product of the one-element collection of objects {Y }.

(3) The morphism f exhibits Y as a coproduct of the one-element collection of objects {X}.

Notation 7.6.1.10. 03EKIn practice, we will use Definition 7.6.1.3 most often in the case where
the set I has exactly two elements, so that the collection {Yi}i∈I can be identified with an
ordered pair (Y0, Y1) of objects of C. In this case, we say that morphisms q0 : Y → Y0 and
q1 : Y → Y1 exhibit Y as a product of Y0 with Y1 if they satisfy the requirement of Definition
7.6.1.3: that is, for every object X ∈ C, the induced map

HomC(X,Y )→ HomC(X,Y0)×HomC(X,Y1)

is a homotopy equivalence. If this condition is satisfied, then we will often denote the object
Y by Y0 × Y1 and refer to it as the product of Y0 with Y1. Similarly, we say that a pair of
morphisms e0 : Y0 → Y and e1 : Y1 → Y exhibit Y as a coproduct of Y0 with Y1 if, for every
object Z ∈ C, the induced map

HomC(Y,Z)→ HomC(Y0, Z)×HomC(Y1, Z)

is a homotopy equivalence; in this case, we denote Y by Y0
∐
Y1 and refer to it as the

coproduct of Y0 with Y1.

https://kerodon.net/tag/03EG
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Warning 7.6.1.11.03EL Let C be an∞-category. if {qi : Y → Yi}i∈I is a collection of morphisms
of C which exhibits Y as a product of the collection of objects {Yi}i∈I in the ∞-category C,
then the collection of homotopy classes {[qi] : Y → Yi}i∈I exhibits Y as a product of the
collection {Yi}i∈I in the ordinary category hC. The converse holds if the collection {Yi}i∈I
admits a products in the ∞-category C. However, the converse need not hold in general,
even in the special case where the set I is empty: see Warning 4.6.7.18.

Proposition 7.6.1.12.04Q7 Let C be an ∞-category containing an object X. The following
conditions are equivalent:

(1) For every object Y ∈ C, there exists a product of X × Y in the ∞-category C.

(2) The forgetful functor U : C/Y → C admits a right adjoint.

If these conditions are satisfied, then the right adjoint of U is given on objects by the
construction Y 7→ X × Y .

Proof. If Y is an object of C, then a product X × Y (if it exists) can be identified with a
final object of the ∞-category C/X ×C C/Y . The equivalence of (1) and (2) is therefore a
special case of the criterion of Corollary 6.2.4.2.

Example 7.6.1.13 (Homotopy Products).03EM Let C be a locally Kan simplicial category, and
let {qi : Y → Yi}i∈I be a collection of morphisms in C. By virtue of Theorem 4.6.8.5 (and
Proposition 4.6.9.19), the following conditions are equivalent:

(1) The morphisms qi exhibit Y as a product of the collection {Yi}i∈I in the ∞-category
Nhc
• (C).

(2) For every object X ∈ C, composition with the morphisms qi determines a homotopy
equivalence of Kan complexes

HomC(X,Y )• →
∏

i∈I
HomC(X,Yi)•.

Example 7.6.1.14 (Products in S).03EN Let {Yi}i∈I be a collection of Kan complexes and let
Y = ∏

i∈IYi denote their product, formed in the ordinary category of simplicial sets. For
each i ∈ I, let qi : Y → Yi denote the projection map. Applying Example 7.6.1.13 to the
simplicial category category Kan, we deduce that the morphisms qi also exhibit Y as a
product of the collection {Yi}i∈I in the ∞-category of spaces S = Nhc

• (Kan). Similarly, if
Y ′ = ∐

i∈IYi is the coproduct of the collection {Yi}i∈I in the ordinary category of simplicial
sets, then the inclusion maps Yi ↪→ Y ′ exhibit Y ′ as a coproduct of {Yi}i∈I in the∞-category
S.

https://kerodon.net/tag/03EL
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Example 7.6.1.15 (Products in QC). 03EPLet {Ci}i∈I be a collection of ∞-categories and let
C = ∏

i∈I Ci denote their product, formed in the ordinary category of simplicial sets. For
each i ∈ I, let qi : C → Ci denote the projection map. Applying Example 7.6.1.13 to the
simplicial category QCat (see Construction 5.5.4.1), we deduce that the morphisms qi also
exhibit C as a product of the collection {Ci}i∈I in the ∞-category QC = Nhc

• (QCat) (this is
a special case of the diffraction criterion of Theorem 7.4.1.1). Similarly, if C′ = ∐

i∈I Ci is
the coproduct of the collection {Ci}i∈I in the ordinary category of simplicial sets, then the
inclusion maps Ci ↪→ C′ exhibit C′ as a coproduct of {Ci}i∈I in the ∞-category QCat (this
is a special case of the refraction criterion of Theorem 7.4.3.6).

Example 7.6.1.16 (Products in a Duskin Nerve). 03EQLet C be a (2, 1)-category and let
{qi : Y → Yi} be a collection of 1-morphisms in C. Then the following conditions are
equivalent:

(1) The morphisms qi exhibit Y as a product of the collection {Yi}i∈I in the ∞-category
ND
• (C).

(2) For every object X ∈ C, horizontal composition with the 1-morphisms qi induces an
equivalence of categories

HomC(X,Y )→
∏

i∈I
HomC(X,Yi).

This follows from the explicit description of pinched morphism spaces in ND
• (C) supplied by

Example 4.6.5.13.

Example 7.6.1.17 (Products in a Differential Graded Nerve). 03ERLet C be a differential graded
category and let {qi : Y → Yi} be a collection of morphisms in the underlying category of C
(that is, each qi is a 0-cycle of the chain complex HomC(Y, Yi)∗). Using Example 4.6.5.15
(together with Exercise 3.2.2.22), we see that the following conditions are equivalent:

(1) The morphisms qi exhibit Y as a product of the collection {Yi}i∈I in the ∞-category
Ndg
• (C).

(2) For every object X ∈ C, the map of chain complexes

HomC(X,Y )∗ →
∏

i∈I
HomC(X,Yi)∗

induces an isomorphism on homology in degrees ≥ 0.

Proposition 7.6.1.18 (Rewriting Limits as Products). 03ESLet C be an ∞-category, and let
{fi : Ki → C}i∈I be a collection of diagrams, each of which admits a limit Xi = lim←−(fi).
Set K = ∐

i∈IKi, so that the collection {fi}i∈I determines a diagram f : K → C. Then an
object of C is a limit of the diagram f if it is a product of the collection of objects {Xi}i∈I .

https://kerodon.net/tag/03EP
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Proof. This is a special case of (the dual of) Proposition 7.5.8.12.

Remark 7.6.1.19.03ET In the situation of Proposition 7.6.1.18, let F : C → D be a functor
which preserves the limits of each of the diagrams fi. Suppose that the collection {Xi}i∈I
admits a product in C. Then the product of {Xi}i∈I is preserved by the functor F if and
only if the limit of f is preserved by the functor F .

Corollary 7.6.1.20.03EU Let {Ki}i∈I be a collection of simplicial sets having coproduct K =∐
i∈IKi, and let C be an ∞-category. Suppose that C admits I-indexed products and Ki-

indexed limits for each i ∈ I. Then C admits K-indexed limits. Moreover, if F : C → D is a
functor which preserves I-indexed products and Ki-indexed colimits for each i ∈ I, then F

also preserves K-indexed limits.

Corollary 7.6.1.21.03EV Let C be an ∞-category. Then C admits finite products if and only if
it satisfies the following pair of conditions:

(1) The ∞-category C has a final object 1.

(2) The ∞-category C admits pairwise products. That is, every pair of objects X,Y ∈ C have
a product X × Y in C.

Proof. The necessity of conditions (1) and (2) is clear (see Example 7.6.1.8). Conversely,
suppose that (1) and (2) are satisfied, and let I be a finite set. We wish to show that C
admits I-indexed limits. We proceed by induction on the cardinality of I. If I is empty, then
the desired result follows from assumption (1). If I is a singleton, then the desired result
is obvious (see Example 7.6.1.9). Otherwise, we can write I as a disjoint union of proper
subsets I−, I+ ⊂ I. Our inductive hypothesis then guarantees that C admits I−-indexed
limits and I+-indexed limits. Combining assumption (2) with Corollary 7.6.1.20, we deduce
that C admits limits indexed by I = I−

∐
I+.

Remark 7.6.1.22.03EW Let F : C → D be a functor of ∞-categories, where C admits finite
products. Then F preserves finite products if and only if it preserves final objects and
pairwise products.

7.6.2 Powers and Tensors

03EX We now study limits and colimits which are indexed by constant diagrams of simplicial
sets. Like products and coproducts, these can be characterized by universal properties in
the (enriched) homotopy category.

Definition 7.6.2.1.03EY Let C be an ∞-category containing a pair of objects X and Y , and
let e : K → HomC(X,Y ) be a morphism of simplicial sets. We will say that e exhibits X
as a power of Y by K if, for every object W ∈ C, the composition law ◦ : HomC(X,Y ) ×
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HomC(W,X) → HomC(W,Y ) of Construction 4.6.9.9 induces a homotopy equivalence of
Kan complexes HomC(W,X)→ Fun(K,HomC(W,Y )).

We will say that e exhibits Y as a tensor product of X by K if, for every object Z ∈ C,
the composition law ◦ : HomC(Y, Z) × HomC(X,Y ) → HomC(X,Z) induces a homotopy
equivalence of Kan complexes HomC(Y, Z)→ Fun(K,HomC(X,Z)).

Warning 7.6.2.2. 03EZIn the situation of Definition 7.6.2.1, the composition law

◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z)

is only well-defined up to homotopy. However, the requirement that it induces a homotopy
equivalence HomC(Y,Z)→ Fun(K,HomC(X,Z)) depends only on its homotopy class.

Remark 7.6.2.3. 03F0In the situation of Definition 7.6.2.1, the condition that e : K →
HomC(X,Y ) exhibits X as a power of Y by K (or Y as a tensor product of X by K)
depends only on the homotopy class [e] ∈ π0(Fun(K,HomC(X,Y ))).

Remark 7.6.2.4 (Duality). 03F1In the situation of Definition 7.6.2.1, the morphism e : K →
HomC(X,Y ) exhibits X as a power of Y by K in the ∞-category C if and only if the
morphism

eop : Kop → HomC(X,Y )op ≃ HomCop(Y,X)

exhibits X as a tensor product of Y by Kop in the opposite ∞-category Cop.

Notation 7.6.2.5. 03F2Let C be an∞-category, let Y be an object of C, and let K be a simplicial
set. Suppose that there exists an object X ∈ C and a morphism e : K → HomC(X,Y ) which
exhibits X as a power of Y by K. In this case, the object X is uniquely determined up to
isomorphism. To emphasize this uniqueness, we will sometimes denote the object X by Y K .

Similarly, if there exists an object Z ∈ C and a morphism e : K → HomC(Y,Z) which
exhibits Z as a tensor product of Y by K, then Z is uniquely determined up to isomorphism.
We will sometimes emphasize this dependence by denoting the object Z by K ⊗ Y .

Remark 7.6.2.6 (Powers as Limits). 03F3Let C be an ∞-category containing objects X and Y .
Then a morphism of simplicial sets e : K → HomC(X,Y ) can be identified with a natural
transformation α : X → Y , where X,Y : K → C denote the constant diagrams taking the
values X and Y , respectively. In this case:

• The natural transformation α exhibits the object X as a limit of the diagram Y (in
the sense of Definition 7.1.1.1) if and only if e exhibits X as a power of Y by K (in
the sense of Definition 7.6.2.1).

• The natural transformation α exhibits the object Y as a colimit of the diagram X (in
the sense of Definition 7.1.1.1) if and only if e exhibits Y as a tensor product of X by
K (in the sense of Definition 7.6.2.1).
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Example 7.6.2.7.03F4 Let C be an∞-category containing objects X and Y , and suppose we are
given a collection of morphisms {fj : X → Y }j∈J indexed by a set J . If we abuse notation
by identifying J with the corresponding discrete simplicial set, then the collection {fj}j∈J
can be identified with a map e : J → HomC(X,Y ). In this case:

• The morphism e exhibits X as a power of Y by J (in the sense of Definition 7.6.2.1)
if and only if the collection {fj}j∈J exhibits X as a product of the collection {Y }j∈J
(in the sense of Definition 7.6.1.3). Stated more informally, we have a canonical
isomorphism Y J ≃

∏
j∈JY (provided that either side is defined).

• The morphism e exhibits Y as a tensor product of X by J (in the sense of Definition
7.6.2.1) if and only if the collection {fj}j∈J exhibits Y as a coproduct of the collection
{X}j∈J (in the sense of Definition 7.6.1.3). Stated more informally, we have a canonical
isomorphism J ⊗X ≃

∐
j∈JX (provided that either side is defined).

Example 7.6.2.8.03F5 Let C be an ∞-category containing objects X and Y . Then the unique
morphism e : ∅ → HomC(X,Y ) exhibits X as a power of Y by the empty simplicial set if
and only if X is a final object of C. Similarly, e exhibits Y as a tensor product of X by the
empty simplicial set if and only if Y is an initial object of C.

Notation 7.6.2.9 (Diagonal Morphisms).04K4 Let C be an ∞-category containing a pair of
objects X and Y , and let e : K → HomC(X,Y ) be a morphism of simplicial sets which
exhibits X as a power of Y by K. Then there exists a morphism δ : Y → X which is
characterized (up to homotopy) by the requirement that the diagram of simplicial sets

K
e //

��

HomC(X,Y )

◦[δ]
��

{idY } // HomC(Y, Y )

commutes up to homotopy. We will refer to δ as the diagonal morphism.
We will be particularly interested in the special case where K = ∂∆1, so that X can be

identified with the product Y × Y (Example 7.6.2.7). In this case, we will often denote δ by
δY : Y → Y × Y and refer to it as the diagonal of Y .

Proposition 7.6.2.10.03F6 Let C be a locally Kan simplicial category, let X and Y be objects
of C, and let e : K → HomC(X,Y )• be a morphism of simplicial sets. Let Nhc

• (C) denote the
homotopy coherent nerve of C, and let θX,Y : HomC(X,Y )• → HomNhc

• (C)(X,Y ) denote the
comparison map of Remark 4.6.8.6. Then:

(1) The morphism θX,Y ◦e exhibits X as a power of Y by K in the ∞-category Nhc
• (C) if and

only if, for every object W ∈ C, composition with e induces a homotopy equivalence of
Kan complexes

cW : HomC(W,X)• → Fun(K,HomC(W,Y )•).
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(2) The morphism θX,Y ◦ e exhibits Y as a tensor product of X by K in the ∞-category
Nhc
• (C) if and only if, for every object Z ∈ C, precomposition with e induces a homotopy

equivalence of Kan complexes

HomC(Y, Z)• → Fun(K,HomC(X,Z)•).

Proof. We will prove (1); the proof of (2) is similar. Fix an object W ∈ C, so that the
composition law

◦ : HomNhc
• (C)(X,Y )×HomNhc

• (C)(W,X)→ HomNhc
• (C)(W,Y )

of Construction 4.6.9.9 determines a morphism of Kan complexes c′W : HomNhc
• (C)(W,X)→

Fun(K,HomNhc
• (C)(W,Y )•) (which is well-defined up to homotopy). To prove Proposition

7.6.2.10, it will suffice to show that c′W is a homotopy equivalence if and only if cW is a
homotopy equivalence. Proposition 4.6.9.19 guarantees that the diagram

HomC(W,X)•
cW //

θW,X

��

Fun(K,HomC(W,Y )•)

θW,Y ◦

��
HomNhc

• (C)(W,X)
c′W // Fun(K,HomNhc

• (C)(W,Y )•

commutes up to homotopy. We conclude by observing that the horizontal maps are homotopy
equivalences, by virtue of Theorem 4.6.8.5 (and Remark 4.6.8.6).

Example 7.6.2.11. 03F7Let X and Y be essentially small Kan complexes, let e0 : K →
Fun(X,Y ) be a morphism of simplicial sets, and let e : K → HomS(X,Y ) denote the
composition of e0 with the homotopy equivalence Fun(X,Y ) → HomS(X,Y ) of Remark
5.5.1.5. Then:

• The morphism e exhibits X as a power of Y by K in the ∞-category S and only the
induced map X → Fun(K,Y ) is a homotopy equivalence of Kan complexes.

• The morphism e exhibits Y as a tensor product of X by K in the ∞-category S if and
only if the induced map K ×X → Y is a weak homotopy equivalence of simplicial sets.

Example 7.6.2.12. 03F8Let Y be an essentially small Kan complex. Suppose we are given
a morphism of simplicial sets f : K → HomS(∆0, Y ), which we identify with a morphism
f̃ : ∆0

K → Y K in the ∞-category Fun(K,S). Then f is a weak homotopy equivalence if
and only if f̃ exhibits Y as a tensor product of ∆0 by K (in the ∞-category S). To prove
this, we are free to modify the morphism f by a homotopy (see Remark 7.6.2.3). We may
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therefore assume without loss of generality that f factors through the homotopy equivalence
e : Fun(∆0, Y )→ HomS(∆0, Y ) of Remark 5.5.1.5, in which case the desired result follows
from the criterion of Example 7.6.2.11 (applied in the case X = ∆0). Taking K = Y and
f = e, we see that every Kan complex Y can be viewed as a colimit of the constant diagram
Y → {∆0} ↪→ S (see Remark 7.6.2.6).

Remark 7.6.2.13 (Cofinality and Kan Extensions).03LS Let C be an ∞-category and let
δ : K → C be a morphism of simplicial sets. The following conditions are equivalent:

(1) The morphism δ is left cofinal.

(2) The identity transformation id : ∆0
K → ∆0

C ◦ δ exhibits the constant functor ∆0
C :

C → S as a left Kan extension of the constant diagram ∆0
K : K → S along δ.

By virtue of Theorem 7.2.3.1 and Example 7.6.2.12, both conditions are equivalent to the
requirement that, for every object C ∈ C, the simplicial set K/C = K ×C C/C is weakly
contractible.

Example 7.6.2.14.03F9 Let C and D be ∞-categories, let e0 : K → Fun(C,D)≃ be a morphism
of Kan complexes, and let e denote the composition of e0 with the homotopy equivalence
Fun(C,D)≃ → HomQC(C,D) of Remark 5.5.4.5. Combining Propositions 7.6.2.10 and
4.4.3.22, we obtain the following:

• The morphism e exhibits C as a power of D by K in the ∞-category QC if and only if
the induced map C → Fun(K,D) is an equivalence of ∞-categories.

• The morphism e exhibits C as a tensor product of D by K in the ∞-category QC if
and only if the induced map K × C → D is an equivalence of ∞-categories.

Warning 7.6.2.15.03FA In the statement of Example 7.6.2.14, the assumption that K is a Kan
complex cannot be omitted.

Examples 7.6.2.11 and 7.6.2.14 show that the ∞-categories S and QC admit powers
and tensor products by any small simplicial set K. Beware that it is very rare for a small
∞-category to have the same property:

Proposition 7.6.2.16.048B Let S be an infinite set of cardinality κ and let C be an ∞-category
which is locally κ+-small. The following conditions are equivalent:

(1) The ∞-category C is equivalent to the nerve of a partially ordered set.

(2) For every nonempty simplicial set K and every object X ∈ C, the constant map

K → {idX} ↪→ HomC(X,X)

exhibits X as a power of itself by K.
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(3) Every object X ∈ C admits a power by S.

Proof. The implications (1)⇒ (2)⇒ (3) are immediate from the definitions. We will show
that (3) implies (1). Assume that condition (3) is satisfied and fix a pair of objects X,Y ∈ C;
we wish to show that the morphism space M = HomC(Y,X) is either empty or contractible.
Assume otherwise: then there exists a morphism f : Y → X in C and an integer n ≥ 0 such
that the homotopy set πn(M,f) has at least two elements. Using assumption (3), we can
choose an object X ′ ∈ C and a collection of morphisms {gs : X ′ → X} which exhibit X ′ as
a power of X by S. Choose a morphism f ′ : Y → X such that gs ◦ f ′ is homotopic to f for
each s ∈ S. Then πn(M ′, f ′) can be identified with the product ∏

s∈Sπn(M,f). This set
has cardinality larger than κ (Proposition 4.7.2.8), contradicting our assumption that C is
locally κ+-small.

We can use Example 7.6.2.11 to give an alternative proof of the univerality of the left
fibration S∗ → S (see Corollary 5.6.0.6).

Proposition 7.6.2.17 (Covariant Transport as a Kan Extension). 03LTLet U : E → C be an
essentially small left fibration of ∞-categories, let ∆0

E denote the constant functor E → S
taking the value ∆0, and let F : C → S be any functor. Suppose we are given a natural
transformation β : ∆0

E → F ◦ U . The following conditions are equivalent:

(1) The natural transformation β exhibits F as a left Kan extension of ∆0
E along U (in the

sense of Variant 7.3.1.5).

(2) The commutative diagram

03LUE

U

��

β // {∆0} ×̃S S

��
C F // S

(7.52)

is a categorical pullback square.

Proof. Fix an object C ∈ C and let EC denote the fiber {C}×C E , so that the restriction of β
to EC can be identified with a morphism of Kan complexes eC : EC → HomS(∆0,F (C)). By
virtue of Proposition 7.3.4.1 and Corollary 5.1.7.15, it will suffice to show that the following
conditions are equivalent:

(1C) The morphism eC exhibits F (C) as a tensor product of ∆0 by EC (as an object of the
∞-category S).

(2C) The morphism eC is a homotopy equivalence.
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This is a special case of Example 7.6.2.12.

Corollary 7.6.2.18.03LV Let U : E → C be an essentially small left fibration of ∞-categories.
Then a functor F : C → S is a covariant transport representation for U (in the sense of
Definition 5.6.5.1) if and only if it is a left Kan extension of the constant functor ∆0

E along
U .

Proof. Combine Proposition 7.6.2.17 with the equivalence S∗ ↪→ {∆0} ×̃S S of Theorem
4.6.4.17.

Variant 7.6.2.19.03V1 Let U : E → C be a left fibration of ∞-categories, and suppose that the
fibers of U are essentially κ-small for some uncountable cardinal κ. Then, in the statements
of Proposition 7.6.2.17 and Corollary 7.6.2.18, we can replace S by the ∞-category S<κ of
κ-small spaces (see Variant 5.5.4.12).

We now consider a variant of Proposition 7.6.2.10. Suppose we are given a differential
graded category C containing objects X and Y . Let

ρX,Y : K(HomC(X,Y )∗) ↪→ HomNdg
• (C)(X,Y )

denote the composition of the isomorphism K(HomC(X,Y )∗) ≃ HomL
Ndg
• (C)(X,Y ) of Exam-

ple 4.6.5.15 with the pinch inclusion morphism HomL
Ndg
• (C)(X,Y ) ↪→ HomL

Ndg
• (C)(X,Y ) of

Construction 4.6.5.7.

Proposition 7.6.2.20.03FB Let C be a differential graded category, let X and Y be objects
of C, and suppose we are given a morphism of simplicial sets e0 : S → K(HomC(X,Y )∗),
which we identify with a morphism of chain complexes f : N∗(S; Z)→ HomC(X,Y )∗. Let
e : S → HomNdg

• (C)(X,Y ) denote the composition of e0 with the morphism ρX,Y . The
following conditions are equivalent:

(1) The morphism e exhibits Y as a tensor product of X by S in the ∞-category Ndg
• (C).

(2) Let Z be an object of C, so that f induces a morphism of chain complexes

θ : HomC(Y,Z)∗ → HomCh(Z)(N∗(S; Z),HomC(X,Z)∗)∗.

Then θ is an isomorphism on homology in degrees ≥ 0.

Proof of Proposition 7.6.2.20. Fix an object Z ∈ C. Using Proposition 4.6.9.21, we see that
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the diagram of Kan complexes

K(HomC(Y,Z)∗)
K(θ) //

ρY,Z

��

K(HomCh(Z)(N∗(S; Z),HomC(X,Z)∗)∗)

ψ

��
Fun(S,K(HomC(X,Z)∗))

ρX,Z◦

��
HomNdg

• (C)(Y, Z) // Fun(S,HomNdg
• (C)(X,Z))

commutes up to homotopy, where ψ is the homotopy equivalence of Example 3.1.6.11 and the
bottom horizontal map is given by combining e with the composition law on the ∞-category
Ndg
• (C). Note that condition (1) is equivalent to the requirement that the bottom horizontal

map is a homotopy equivalence (for each object Z ∈ C). Since the map ρY,Z and ρX,Z are
also homotopy equivalences (Proposition 4.6.5.10), this is equivalent to the requirement that
K(θ) is a homotopy equivalence (for each object Z ∈ C). The equivalence of (1) and (2) now
follows from the criterion of Corollary 3.2.7.4.

Example 7.6.2.21 (Homology as a Colimit). 03FCLet C = Ch(Z) denote the category of chain
complexes of abelian groups, which we regard as a differential graded category (see Example
2.5.2.5). Let A be an abelian group, and let us abuse notation by identifying A with its
image in C (by regarding it as a chain complex concentrated in degree zero). For every
simplicial set S, let N∗(S;A) denote the normalized chain complex of S with coefficients in
A, given by the tensor product N∗(S; Z) ⊠A. Then the tautological map

f : N∗(S; Z)→ HomCh(Z)(A,N∗(S;A))∗

satisfies condition (2) of Proposition 7.6.2.20: in fact, for every object M∗ ∈ C, precomposition
with f induces an isomorphism of chain complexes

HomC(N∗(S;A),M∗)∗ → HomC(N∗(S; Z),HomC(A,M∗)∗)∗.

It follows that the induced map S → HomNdg
• (C)(A,N∗(S;A)) exhibits N∗(S;A) as a tensor

product of A by S in the ∞-category Ndg
• (C). In particular, the chain complex N∗(S;A) can

be viewed as a colimit of the constant diagram S → {A} ↪→ Ndg
• (Ch(Z)).

Variant 7.6.2.22 (Cohomology as a Limit). 03FDLet A be an abelian group, let S be a simplicial
set, and let

N∗(S;A) = HomCh(Z)(N∗(S; Z), A)
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denote the normalized cochain complex of S with coefficients in A. Applying Proposition
7.6.2.20 to the differential graded category Ch(Z)op (and using Remark 7.6.2.4), we see
that the tautological chain map N∗(S; Z)→ HomCh(Z)(N∗(S;A), A)∗ induces a morphism of
simplicial sets

e : S → HomNdg
• (Ch(Z))(N

∗(S;A), A)

which exhibits N∗(S;A) as a power of A by S in the ∞-category Ndg
• (Ch(Z)). In particular,

N∗(S;A) can be viewed as a limit of the constant diagram S → {A} ↪→ Ndg
• (Ch(Z)).

7.6.3 Pullbacks and Pushouts

03FE Let C be an ∞-category. Recall that a commutative square in C is a morphism of
simplicial sets ∆1 ×∆1 → C which we represent informally by a diagram

X ′ //

��

Y ′

��
X // Y

(see Example 1.5.2.15). Note that the simplicial set ∆1 ×∆1 ≃ N•([1]× [1]) can be regarded
both as a left cone (on the nerve of the partially ordered set [1] × [1] \ {(0, 0)}) and as a
right cone (on the nerve of the partially ordered set [1]× [1] \ {(1, 1)}).

Definition 7.6.3.1.03FF Let C be an ∞-category and let σ : ∆1 ×∆1 → C be a commutative
square. We say that σ is a pullback square if it is a limit diagram in C (see Definition 7.1.2.4),
and that σ is a pushout square if it is a colimit diagram in C.

Example 7.6.3.2.03FG Let C be an ordinary category. Then diagram σ : [1] × [1] → C is a
pullback square in C (in the sense of classical category theory) if and only if the induced map

N•(σ) : ∆1 ×∆1 → N•(C)

is a pullback square in the ∞-category N•(C) (in the sense of Definition 7.6.3.1); this follows
from Example 7.1.1.4 and Remark 7.1.2.6. Similarly, σ is a pushout square in C if and only
if N•(σ) is a pushout square in the ∞-category N•(C).

Warning 7.6.3.3.03FH Let C be an ∞-category and let σ : ∆1 ×∆1 → C be a morphism, which
we depict as a diagram

X01
g0 //

g1

��

X0

f0

��
X1

f1 // X.
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Beware that, if σ is a pullback square in the ∞-category C, then the associated diagram

X01
[g0] //

[g1]

��

X0

[f0]

��
X1

[f1] // X

need not be a pullback square in the homotopy category hC (see Example 7.6.3.4 and
Exercise 7.6.3.5). If Y is an object of C, then the map of sets

HomhC(Y,X01) ([g0],[g1])◦−−−−−−→ HomhC(Y,X0)×HomhC(Y,X) HomhC(Y,X1)

is surjective, but need not be injective. Given a commutative diagram

03FJY
[g0] //

[g1]

��

X0

[f0]

��
X1

[f1] // X

(7.53)

in the homotopy category hC, we can always find a morphism g01 : Y → X01 satisfying
g01 : Y → X01 satisfying [g0] = [f ′0] ◦ [g01] and [g1] = [f ′1] ◦ [g01]. However, the homotopy
class [g01] is not uniquely determined: roughly speaking, to construct g01, we need to lift
(7.53) to a commutative diagram in the ∞-category C. Such a lift always exists (Exercise
1.5.2.10), but is not unique (even up to homotopy).

Example 7.6.3.4. 03FKLet q : X → S be a Kan fibration between Kan complexes, let s ∈ S be
a vertex, and let Xs denote the fiber {s}×S X. Then the commutative diagram of simplicial
sets

03FLXs
//

��

X

q

��
{s} // S

(7.54)

is a homotopy pullback square (Example 3.4.1.3), and therefore induces a pullback square in
the ∞-category S = Nhc

• (Kan) (see Example 7.6.4.2). However, if X is contractible and Xs

is not, then (7.54) is not a pullback square in the homotopy category hKan.
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Exercise 7.6.3.5.03FM Let G be a group and let H ⊆ G be a commutative normal subgroup, so
that we have a commutative diagram of Kan complexes

03FN B•H //

��

B•G

��
∆0 // B•(G/H)

(7.55)

• Show that (7.55) is a pullback diagram in the ordinary category of Kan complexes, and
that it determines a pullback diagram in the ∞-category S = Nhc

• (Kan) (see Example
7.6.4.2).

• Show that, if H is contained in the center of G, then the diagram (7.55) is also pullback
square in the homotopy category hKan.

• Show that, if H is not contained in the center of G, then the diagram B•G →
B•(G/H)← ∆0 does not have a limit in the homotopy category hKan. In particular,
the diagram (7.55) is not a pullback square in hKan.

Variant 7.6.3.6.048C Let U : C → D be a functor of ∞-categories. We say that a diagram
σ : ∆1 ×∆1 → C is a U-pullback square if it is a U -limit diagram in C (Definition 7.1.5.1).
We say that σ is a U -pushout square if it is a U -colimit diagram in the ∞-category C.

Remark 7.6.3.7.048D Let C be an ∞-category and let σ : ∆1 ×∆1 → C be a commutative
square in C. Then σ is a pullback square if and only if it is U -pullback square, where
U : C → ∆0 is the projection map (see Example 7.1.5.3).

Remark 7.6.3.8 (Symmetry).03FP Let C be an ∞-category, let σ : ∆1 × ∆1 → C be a
commutative square in C, and let σ′ : ∆1 ×∆1 → C denote the commutative square which is
obtained from σ by precomposing with the automorphism of ∆1 ×∆1 given by permuting
the factors. Then σ is a pullback square if and only if σ′ is a pullback square, and σ is a
pushout square if and only if σ′ is a pushout square.

More generally, if U : C → D is a functor of ∞-categories, then σ is a U -pullback square
if and only if σ′ is a U -pullback square, and σ is a U -pushout square if and only if σ′ is a
U -pushout square.

Remark 7.6.3.9.03FQ Let C be an ∞-category and let σ : ∆1 ×∆1 → C be a commutative
diagram in C. Then σ is a pushout diagram in C if and only if the opposite diagram
σop : ∆1 × ∆1 → Cop is a pullback diagram in the ∞-category Cop; here we implicitly
identify the simplicial set ∆1 ×∆1 with its opposite (beware that there are two possible
identifications we could choose, but the choice does not matter by virtue of Remark 7.6.3.8).
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More generally, if U : C → D is a functor of∞-categories, then σ is a U -pushout diagram
if and only if σop is a Uop-pullback diagram.

Remark 7.6.3.10. 03FRLet C be an ∞-category and let σ, σ′ : ∆1×∆1 → C be square diagrams
which are isomorphic (when viewed as objects of the ∞-category Fun(∆1 ×∆1, C)). Then σ
is a pullback square if and only if σ′ is a pullback square, and a pushout square if and only
if σ′ is a pushout square.

More generally, if U : C → D is a functor of ∞-categories, then then σ is a U -pullback
square if and only if σ′ is a U -pullback square, and σ is a U -pushout square if and only if σ′
is a U -pushout square (see Proposition 7.1.5.13).

Notation 7.6.3.11 (Fiber Products). 03FSLet C be an ∞-category, and suppose we are given a
pair of morphisms f0 : X0 → X and f1 : X1 → X of C having the same target. It follows
from Proposition 7.1.1.12 that if there exists a pullback diagram

X01 //

��

X0

f0

��
X1

f1 // X

in C, then the object X01 is determined up to isomorphism by f0 and f1. To emphasize this,
we will often denote the object X01 by X0 ×X X1 and refer to it as the fiber product of X0
with X1 over X. Similarly, if there exists a pushout diagram

Y
g0 //

g1

��

Y0

��
Y1 // Y01

in C, then the object Y01 is determined up to isomorphism by g0 and g1. To emphasize this,
we often denote the object Y01 by Y0

∐
Y Y1 and refer to it as the pushout of Y0 with Y1 along

Y .

Definition 7.6.3.12. 03FTLet C be an ∞-category. We will say that C admits pullbacks if, for
every pair of morphisms f0 : X0 → X and f1 : X1 → X having the same target, there exists
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a pullback diagram
X01 //

��

X0

f0

��
X1

f1 // X.

We say that a functor F : C → D preserves pullbacks if, for every pullback square σ :
∆1 ×∆1 → C in the ∞-category C, the composition (F ◦ σ) : ∆1 ×∆1 → D is a pullback
square in the ∞-category D.

We say that C admits pushouts if, for every pair of morphisms g0 : Y → Y0 and
g1 : Y → Y1 having the same source, there exists a pushout diagram

Y
g0 //

g1

��

Y0

��
Y1 // Y01.

We say that a functor F : C → D preserves pushouts if, for every pushout square σ :
∆1 ×∆1 → C in the ∞-category C, the composition (F ◦ σ) : ∆1 ×∆1 → D is a pushout
square in the ∞-category D.

Remark 7.6.3.13.04Q8 Let U : C → D be a right fibration of ∞-categories, and suppose that D
admits pullbacks. Then C also admits pullbacks, and the functor U preserves pullbacks. See
Corollary 7.1.5.18.

Proposition 7.6.3.14.03FU Let C be an ∞-category and let σ : ∆1 ×∆1 → C be a commutative
square, which we represent by a diagram

X01 //

��

X0

��
X1 // X.

Then σ is a pullback diagram in C if and only if it exhibits X01 as a product of X0 with X1
in the slice ∞-category C/X .

Proof. This is a special case of Remark 7.1.2.11.

We now give an alternative characterization of the fiber product construction.

https://kerodon.net/tag/04Q8
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Definition 7.6.3.15. 04Q9Let C be an ∞-category and let f : X → Y be a morphism of C. We
will say that a functor f∗ : C/Y → C/X is given by pullback along f if it is a right adjoint to
the functor C/X → C/Y given by postcomposition with f (see Example 4.3.6.14). Note that
this condition characterizes the functor f∗ up to isomorphism (see Remark 6.2.1.19).

Proposition 7.6.3.16. 04QALet C be an ∞-category and let f : X → Y be a morphism of C.
The following conditions are equivalent:

(1) There exists a functor f∗ : C/Y → C/X given by pullback along f (in the sense of
Definition 7.6.3.15).

(2) For every morphism u : Y ′ → Y , there exists a pullback diagram

X ′ //

��

Y ′

u
��

X
f // Y

in the ∞-category C.

Moreover, if these conditions are satisfied, then the pullback functor f∗ carries each object
Y ′ ∈ C/Y to the fiber product X ×Y Y ′.

Proof. Let e0 : C/f → C/X and e1 : C/f → C/Y denote the restriction map. Then e0 is a
trivial Kan fibration (Corollary 4.3.6.13), and postcomposition with f is defined as the
composition of e1 with a section of e0 (Example 4.3.6.14). We can therefore reformulate (1)
as follows:

(1′) The restriction functor e1 : C/f → C/Y admits a right adjoint.

Let us identify the morphism f with an object X̃ ∈ C/Y . Using Proposition 7.6.3.14, we can
reformulate condition (2) as follows:

(2′) For every object Ỹ ′ ∈ C/Y , there exists a product of X̃ with Ỹ ′ in C/Y .

The equivalence of (1′) and (2′) now follows from Proposition 7.6.1.12, applied to the slice
∞-category C/Y .

Corollary 7.6.3.17. 04QBLet C be an ∞-category. Then C admits fiber products if and only if,
for every morphism f : X → Y in C, the postcomposition functor

C/X → C/Y e 7→ (f ◦ e)

of Example 4.3.6.14 admits a right adjoint.
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Notation 7.6.3.18 (Relative Diagonals).04K5 Let C be an ∞-category and let f : Y → X be a
morphism in C. Suppose that there exists a pullback square

04K6 Y ×X Y
π //

π′

��

Y

f
��

Y
f // X

(7.56)

in the ∞-category C. Let us abuse notation by identifying Y with an object of the slice
∞-category C/X , so that Y ×X Y can be viewed as a product of Y with itself in C/X
(Proposition 7.6.3.14). Applying the construction of Notation 7.6.2.9, we obtain a morphism
δY/X : Y → Y ×X Y , which we will refer to as the relative diagonal of f . It is characterized
(up to homotopy) by the requirement that ( 7.56) can be extended to a commutative diagram

Y
δY/X

$$

idY

))idY

��

Y ×X Y
π //

π′

��

Y

f
��

Y
f // X,

where the outer square is the commutative diagram given by the composition

∆1 ×∆1 (i,j)7→ij−−−−−→ ∆1 f−→ C .

Variant 7.6.3.19 (Relative Codiagonals).04K7 Let C be an ∞-category, let f : Y → X be a
morphism of C, and suppose that there exists a pushout square

Y
f //

f
��

X

��
X // X

∐
Y X.

Applying the construction of Notation 7.6.3.18 in the opposite ∞-category Cop, we obtain
a morphism γY/X : X ∐

Y X → X which we will refer to as the relative codiagonal of the
morphism f .

Stated more informally, a fiber product X0 ×X X1 (formed in an ∞-category C) is a
product of X0 with X1 in the ∞-category C/X .

Corollary 7.6.3.20.03FV Let C be an ∞-category. Then C admits pullbacks if and only if, for
each object X ∈ C, the slice ∞-category C/X admits finite products.
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Proof. By virtue of Proposition 7.6.3.14, the ∞-category C admits pullbacks if and only if,
for every object X ∈ C, the ∞-category C/X admits pairwise products. Since C/X has an
initial object (given by the identity morphism idX : X → X; see Proposition 4.6.7.22), this
is equivalent to the requirement that C/X admits finite products (Corollary 7.6.1.21).

Remark 7.6.3.21. 03FWLet F : C → D be a functor between ∞-categories, where C admits
pullbacks. Then F preserves pullbacks if and only if, for each object X ∈ C, the induced
functor C/X → D/F (X) preserves finite products.

Corollary 7.6.3.22. 03FXLet C be an ∞-category and let σ : ∆1 ×∆1 → C be a commutative
square, which we represent by a diagram

X
f0 //

f1

��

X0

��
X1 // 1.

Suppose that 1 is a final object of C. Then σ is a pullback square if and only if the morphisms
f0 and f1 exhibit X as a coproduct of X0 with X1 in the ∞-category C.

Proof. The assumption that 1 is final guarantees that the projection map C/1 → C is a trivial
Kan fibration (Proposition 4.6.7.10), so that the desired result follows from the criterion of
Proposition 7.6.3.14.

Proposition 7.6.3.23. 048ELet U : C → D be an inner fibration of ∞-categories and let
σ : ∆1 ×∆1 → C be a commutative square, represented informally by the diagram

X ′
f ′ //

��

Y ′

��
X

f // Y.

Then:

(1) If f is U -cartesian, then σ is a U -pullback square if and only if f ′ is also U -cartesian.

(2) If f ′ is U -cocartesian, then σ is a U -pushout square if and only if f is also U -cocartesian.

Proof. We will prove (1); the proof of (2) is similar. Note that σ restricts to a diagram

σ0 : N•({(0, 1) < (1, 1) > (1, 0)})→ C
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satisfying σ0(0, 1) = X, σ0(1, 1) = Y , and σ0(1, 0) = Y ′. The assumption that f is
U -cartesian guarantees that σ0 is U -right Kan extended from the full subcategory

{1} ×∆1 ⊆ N•({(0, 1) < (1, 1) > (1, 0)}).

It follows that σ is a U -pullback diagram if and only if the restriction σ|N•({(0,0)<(1,0)<(1,1)})
is a U -limit diagram (Proposition 7.3.8.1) By virtue of Corollary 7.2.2.5, this is equivalent
to the requirement that f ′ is U -cartesian.

Corollary 7.6.3.24.048F Let C be an ∞-category and let σ : ∆1 ×∆1 → C be a commutative
square, represented informally by the diagram

X ′
f ′ //

��

Y ′

��
X

f // Y.

Then:

(1) If f is an isomorphism, then σ is a pullback square if and only if f ′ is also an isomor-
phism.

(2) If f ′ is an isomorphism, then σ is a pushout square if and only if f is also an isomorphism.

Proof. Combine Proposition 7.6.3.23 with Remark 7.6.3.7 (and Example 5.1.1.4).

Proposition 7.6.3.25 (Transitivity).03FZ Let U : C → D be a functor of ∞-categories and let
σ : ∆2 ×∆1 → C be diagram, which we depict informally as

03G0 X ′ //

��

Y ′ //

��

Z ′

��
X // Y // Z.

(7.57)

Then:

(1) Assume that the right square of (7.57) is a U-pullback. Then the left square is a
U -pullback if and only if the outer rectangle is a U -pullback.

(2) Assume that the left square of (7.57) is a U -pushout. Then the left square is a U -pushout
if and only if the outer rectangle is a U -pushout.
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Proof. We will prove (1); the proof of (2) is similar. Let A denote the partially ordered set
([2]× [1]) \ {(0, 0)}. Note that the inclusion maps

A \ {(2, 0), (2, 1)} ↪→ A A \ {(1, 0), (1, 1)} ↪→ A \ {(1, 0)}

admit right adjoints, and therefore induce left cofinal morphisms

N•(A \ {(2, 0), (2, 1)}) ↪→ N•(A) N•(A \ {(1, 0), (1, 1)}) ↪→ N•(A \ {(1, 0)})

(Corollary 7.2.3.7). Applying Corollary 7.2.2.2, we obtain the following:

• The left square of (7.57) is a U -pullback diagram if and only if σ is a U -limit diagram.

• The outer rectangle of (7.57) is a U -pullback diagram if and only if the restriction
σ|N•(([2]×[1])\{(1,0)}) is a U -limit diagram.

If the right square of (7.57) is a U -pullback diagram, then σ|N•(A) is U -right Kan extended
from σ|N•(A\{(1,0)}), so the desired equivalence follows from Proposition 7.3.8.1.

Proposition 7.6.3.26 (Rewriting Limits as Pullbacks). 03G1Suppose we are given a categorical
pushout square of simplicial sets

K //

��

K0

��
K1 // K01.

Let C be an ∞-category which admits pullbacks. If C admits K-indexed limits, K0-indexed
limits, and K1-indexed limits, then it also admits K01-indexed limits. Moreover, if F : C → D
is a functor of ∞-categories which preserves pullback squares, K-indexed limits, K0-indexed
limits, and K1-indexed limits, then F also preserves K-indexed limits.

Proof. Combine Corollary 7.5.8.5 with (the dual of) Corollary 7.5.8.13.

Corollary 7.6.3.27. 03G2Let C be an ∞-category. Then C admits finite limits if and only if
it admits pullbacks and has a final object. If these conditions are satisfied, then a functor
F : C → D preserves finite limits if and only if it preserves pullbacks and final objects.

Proof. We will prove the first assertion; the second follows by a similar argument. Assume
that the ∞-category C admits pullbacks and has a final object; we wish to show that C
admits K-indexed limits for every finite simplicial set K (the converse is immediate from
the definitions). We proceed by induction on the dimension of K. If K is empty, then the
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desired result follows from our assumption that C has a final object. Let us therefore assume
that K has dimension n ≥ 0, and proceed also by induction on the number of nondegenerate
n-simplices of K. It follows from Proposition 1.1.4.12 that there exists a pushout square of
simplicial sets

∂∆n //

��

∆n

��
K ′ // K,

where K ′ is a simplicial subset of K. Since the horizontal maps are monomorphisms,
this pushout square is also a categorical pushout square (Example 4.5.4.12). By virtue of
Proposition 7.6.3.26, it will suffice to show that the ∞-category C admits K ′-indexed limits,
∂∆n-indexed limits, and ∆n-indexed limits. In the first two cases, this follows from our
inductive hypothesis. To handle the third case, we observe that the inclusion {0} ↪→ ∆n is
left cofinal (Example 4.3.7.11). Using Corollary 7.2.2.12, we are reduced to proving that C
admits ∆0-indexed limits, which is immediate (see Example 7.1.1.5).

Example 7.6.3.28.05E4 Let C be an∞-category which admits pullbacks. Then, for every object
X ∈ C, the slice ∞-category C/X admits finite limits. This follows from Corollary 7.6.3.27,
since C/X also admits finite pullbacks (Remark 7.6.3.13), and has a final object given by the
identity morphism idX : X → X (Proposition 4.6.7.22). Similarly, if F : C → D is a functor
which preserves pullbacks, then the induced functor F/X : C/X → D/F (X) preserves finite
limits.

7.6.4 Examples of Pullback and Pushout Squares

03G3 We now give some examples of ∞-categorical pullback diagrams.

Proposition 7.6.4.1.03G4 Let C be a locally Kan simplicial category and let σ :

X01 //

��

X0

��
X1 // X

be a commutative diagram in C. The following conditions are equivalent:

(1) The composite map
∆1 ×∆1 N•(σ)−−−→ N•(C) ↪→ Nhc

• (C)
is a pullback square in the ∞-category Nhc

• (C) (in the sense of Definition 7.6.3.1).
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(2) For every object Y ∈ C, the diagram of Kan complexes

HomC(Y,X01)• //

��

HomC(Y,X0)•

��
HomC(Y,X1)• // HomC(Y,X)•

is a homotopy pullback square (in the sense of Definition 3.4.1.1).

Proof. Combine Corollary 7.5.4.6 with Proposition 7.5.4.13.

Example 7.6.4.2. 03G5A (strictly) commutative diagram of Kan complexes

X01 //

��

X0

��
X1 // X

is a homotopy pullback square (in the sense of Definition 3.4.1.1) if and only if the induced
diagram ∆1×∆1 → Nhc

• (Kan) = S is a pullback square in the ∞-category of spaces S. This
follows by combining Propositions 7.5.4.13 and 7.5.4.5.

Example 7.6.4.3. 03G6A (strictly) commutative diagram of Kan complexes

A //

��

A0

��
A1 // A01

is a homotopy pushout square (in the sense of Definition 3.4.2.1) if and only if the induced
diagram ∆1 ×∆1 → Nhc

• (Kan) = S is a pushout square in the ∞-category of spaces S. This
follows by combining Corollaries 7.5.7.7 and 7.5.7.9.

Example 7.6.4.4. 03G7A (strictly) commutative diagram of ∞-categories

C01 //

��

C0

��
C1 // C
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is a categorical pullback square (in the sense of Definition 4.5.2.8) if and only if the induced
diagram ∆1 ×∆1 → Nhc

• (QCat) = QC is a pullback square in the ∞-category QC. This
follows by combining Corollaries 7.5.5.8 and 7.5.5.10.

Example 7.6.4.5.03G8 A (strictly) commutative diagram of ∞-categories

C //

��

C0

��
C1 // C01

is a categorical pushout square (in the sense of Definition 4.5.4) if and only if the induced
diagram ∆1 ×∆1 → Nhc

• (QCat) = QC is a pushout square in the ∞-category QC. This
follows by combining Corollaries 7.5.8.5 and 7.5.8.9.

Recall that the ∞-category of spaces S admits small limits and colimits (Corollary
7.4.5.6). In particular, if f0 : X0 → X and f1 : X1 → X are morphisms of Kan complexes,
then there exists a pullback diagram σ :

X01 //

��

X0

f0

��
X1

f1 // X

in the ∞-category S. However, it is not always possible to obtain σ from a commutative
diagram in the ordinary category Kan. It will therefore be useful to have a generalization of
Proposition 7.6.4.1, which applies to homotopy coherent squares.

Remark 7.6.4.6 (Homotopy Coherent Squares).03G9 Let C be a simplicial category and let
Nhc
• (C) denote the homotopy coherent nerve of C. Combining Examples 1.5.2.9, 2.4.3.9, and

2.4.3.10, we see that morphisms from ∆1×∆1 to Nhc
• (C) can be identified with the following

data:

(a) A collection of objects X01, X0, X1, and X of the category C.

(b) A collection of morphisms f0 : X0 → X, f1 : X1 → X, g0 : X01 → X0, g1 : X01 → X1.

(c) A morphism h : X01 → X in C together with a pair of edges α0 : f0 ◦ g0 → h and
α1 : f1 ◦ g1 → h in the simplicial set HomC(X01, X)•.
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We can summarize this data in a diagram

X01
g0 //

g1

��

h

  

X0

f0

��

α0

{�

X1
f1

//

α1
;C

X.

Here we can regard (a) and (b) as supplying a (potentially) non-commutative square diagram
in the category C, and (c) as supplying a witness to the fact that it commutes up to homotopy.

Example 7.6.4.7 (Square Diagrams in QC). 03GALet F0 : C0 → C and F1 : C1 → C be functors
of ∞-categories. Using Remark 7.6.4.6, we see that the data of a commutative diagram

C01 //

��

C0

F0

��
C1

F1 // C

in the ∞-category QC is equivalent to the data of an ∞-category C01 equipped with functors

G0 : C01 → C0 G1 : C01 → C1 H : C01 → C

together with natural isomorphisms α0 : (F0 ◦ G0) ∼−→ H and α1 : (F1 ◦ G1) ∼−→ H. In
this case, we can identify the data of the tuple (G0, α0, G1, α1, H) with a single functor of
∞-categories

G : C01 → C0×h
C(C1×h

C C).

Proposition 7.6.4.8. 03GBSuppose we are given a commutative diagram

03GCC01 //

��

C0

F0

��
C1

F1 // C

(7.58)
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in the ∞-category QC, corresponding to a functor

G : C01 → C0×h
C(C1×h

C C).

Then (7.58) is a pullback square in QC if and only if the functor G is an equivalence of
∞-categories.

Proof. Let us identify the diagram (7.58) with a functor of simplicial categories F : Path[[1]×
[1]]• → QCat. Using Corollary 4.5.2.23, we can factor the functor F0 as a composition
C0

T−→ C′0
F ′0−→ C, where T is an equivalence of ∞-categories and F ′0 is an isofibration. Let C′01

denote the iterated homotopy fiber product C′0×h
C(C1×h

C C). Then Example 7.6.4.7 supplies
a commutative diagram

03GD C′01 //

��

C′0

F ′0

��
C1

F1 // C

(7.59)

in the ∞-category QC, which we view as a functor of simplicial categories F ′ : Path[[1]×
[1]]• → QCat. The morphisms G and T determine a natural transformation of simplicial
functors F → F ′, which induces a natural transformation from the diagram (7.58) to the
diagram (7.59) in the ∞-category Fun(∆1 ×∆1,QC). By virtue of Corollary 4.5.2.20, this
natural transformation is an isomorphism of diagrams if and only if the functor G is an
equivalence of ∞-categories. Consequently, Proposition 7.6.4.8 is equivalent to the assertion
that (7.59) is a pullback square in the ∞-category QC (see Proposition 7.1.2.13).

Note that we have a (strictly) commutative diagram of simplicial sets

03GE C′0×C C1 //

��

C′0

F ′0

��
C1

F ′1 // C,

(7.60)

which determines a subfunctor F ′′ ⊆ F ′. Since F ′0 is an isofibration, it follows from
Corollaries 4.5.2.28, 4.5.2.22, and 4.5.2.29 that the inclusion maps

C′0×C C1 ↪→ C′0×h
C C1

↪→ C′0×h
C(C1×h

C C)

are equivalences of ∞-categories. Consequently, the inclusion F ′′ ↪→ F ′ is a levelwise
categorical equivalence of simplicial functors and therefore induces an isomorphism from the

https://kerodon.net/tag/03GD
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diagram ( 7.60 ) to the diagram ( 7.59 ) in the ∞-category Fun(∆1 ×∆1, C). By virtue of
Proposition 7.1.2.13, it will suffice to show that the diagram (7.60) is a pullback square in
the ∞-category QC. This is a special case of Example 7.6.4.4, since (7.60) is a categorical
pullback square (see Corollary 4.5.2.27).

Corollary 7.6.4.9. 03GFLet F0 : C0 → C and F1 : C1 → C be functors of ∞-categories, let let
C0×h

C C1 denote the homotopy fiber product of Construction 4.5.2.1, and let

G0 : C0×h
C C1 → C0 G1 : C0×h

C C1 → C1

denote the projection maps, so that we have a canonical isomorphism α : F0 ◦G0 → F1 ◦G1
in the ∞-category Fun(C0×h

C C1, C). Then the diagram

C0×h
C C1

G0 //

G1

��

F1◦G1

!!

C0

F0

��

α

{�

C1
F1

//

id
;C

C

corresponds to a pullback square in the ∞-category QC. In particular, C0×h
C C1 is a fiber

product of C0 with C1 over C in the ∞-category QC.

Proof. By virtue of Proposition 7.6.4.8, it will suffice to show that the inclusion

δ : C1 ≃ C1×C C ↪→ C1×h
C C

induces an equivalence of homotopy fiber products

C0×h
C C1 ↪→ C0×h

C(C1×h
C C).

This is a special case of Corollary 4.5.2.20, since δ is an equivalence of∞-categories (Corollary
4.5.2.22).

Corollary 7.6.4.10. 03GGSuppose we are given a commutative diagram

03GHX01 //

��

X0

��
X1 // X

(7.61)
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in the ∞-category S, classified by a map of Kan complexes

g : X01 → X0 ×h
X (X1 ×h

X X).

Then (7.61) is a pullback square in S if and only if g is a homotopy equivalence.

Proof. Combine Propositions 7.6.4.8 and 7.4.5.1.

Corollary 7.6.4.11.05E5 Let n be an integer and suppose we are given a pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

in the ∞-category S. If f is n-truncated, then f ′ is n-truncated. If f is n-connective, then
f ′ is n-connective.

Proof. Combine Corollaries 7.6.4.10, 3.5.9.12, and 3.5.1.25.

Example 7.6.4.12.03GJ Let f0 : X0 → X and f1 : X1 → X be morphisms of Kan complexes.
Applying the construction of Corollary 7.6.4.9, we obtain a pullback square

X0 ×h
X X1 //

��

X0

f0

��
X1

f1 // X

in the ∞-category S.

Exercise 7.6.4.13.04K8 Let F : C → D be a functor of ∞-categories, so that Corollary 7.6.4.9
supplied an identification of C ×h

D C with the fiber product of C with itself over D in the
∞-category QC. Show that, under this identification, the relative diagonal of F (in the sense
of Notation 7.6.3.18) is represented by the inclusion map C ↪→ C×h

D C. Moreover, if F is an
isofibration, then we can replace the homotopy fiber product C ×h

D C with the fiber product
C ×D C (formed in the ordinary category of simplicial sets); see Corollary 4.5.2.27.
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Corollary 7.6.4.14. 03GKLet C be a locally Kan simplicial category, and suppose we are given a
commutative diagram σ : ∆1 ×∆1 → Nhc

• (C), corresponding to a diagram

X01
g0 //

g1

��

h

  

X0

f0

��

α0

{�

X1
f1

//

α1
;C

X

in the ∞-category C (see Remark 7.6.4.6). Then σ is a pullback square in the ∞-category
Nhc
• (C) if and only if, for every object Y ∈ C, the induced map

HomC(Y,X01)• → HomC(Y,X0)• ×h
HomC(Y,X)• (HomC(Y,X1)• ×h

HomC(Y,X)• HomC(Y,X)•)

is a homotopy equivalence of Kan complexes.

Proof. Combine Corollary 7.6.4.10 with Proposition 7.4.5.16.

7.6.5 Equalizers and Coequalizers

03GLWe now study (co)limits of a particularly simple shape.

Notation 7.6.5.1. 03GMLet (•⇒ •) denote the simplicial set given by the pushout ∆1∐
∂∆1∆1.

For any ∞-category C, we will identify morphisms from (• ⇒ •) to C with pairs (f0, f1),
where f0 : Y → X and f1 : Y → X are morphisms of C having the same source and target.

Remark 7.6.5.2. 03GNThe simplicial set (•⇒ •) of Notation 7.6.5.1 is isomorphic to the nerve
of its homotopy category J , which can be described concretely as follows:

• The category J has exactly two objects Y and X.

• There are exactly two non-identity morphisms in J , both of which have source Y and
target X.

Remark 7.6.5.3. 03GPThere is a tautological epimorphism of simplicial sets

(•⇒ •) = ∆1∐
∂∆1∆1

↠ ∆1∐
∂∆1∆0

= ∆1/ ∂∆1 .
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It follows from Example 6.3.4.4 that this epimorphism exhibits ∆1/ ∂∆1 as a localization of
(•⇒ •). In particular, it is both left and right cofinal (Proposition 7.2.1.10).

Definition 7.6.5.4 (Equalizers and Coequalizers).03GQ Let C be an ∞-category and let f0, f1 :
Y → X be morphisms of C having the same source and target, which we identify with functor
σ : (•⇒ •)→ C. An equalizer of f0 and f1 is a limit of the diagram σ. A coequalizer of f0
and f1 is a colimit of the diagram σ. We say that the∞-category C admits equalizers if every
pair of morphisms f0, f1 : Y → X have an equalizer in C, and that C admits coequalizers if
every pair of morphisms f0, f1 : Y → X have a coequalizer in C.

Notation 7.6.5.5.03GR Let C be an ∞-category and let f0, f1 : Y → X be morphisms of C
having the same source and target. If there exists an object Z ∈ C which is an equalizer
of f0 and f1, then Z is uniquely determined up to isomorphism (Proposition 7.1.1.12). To
emphasize this uniqueness, we denote the object Z (if it exists) by Eq(f0, f1). Similarly,
if there exists an object W ∈ C which is a coequalizer of f0 and f1, then W is uniquely
determined up to isomorphism; to emphasize this, we denote W by Coeq(f0, f1).

Remark 7.6.5.6 (Duality).03GS The simplicial set (• ⇒ •) is canonically isomorphic to its
opposite (• ⇒ •)op. Consequently, if f0, f1 : Y → X are morphisms in an ∞-category C
which admit an equalizer Z = Eq(f0, f1), then Z can be regarded as a coequalizer of f0 and
f1 in the opposite ∞-category Cop.

Remark 7.6.5.7 (Symmetry).03GT The simplicial set (•⇒ •) has a unique nontrivial automor-
phism, which exchanges its nondegenerate edges. It follows that, if f0, f1 : Y → X are a pair
of morphisms in an ∞-category C, then we can identify (co)equalizers of the pair (f0, f1)
with (co)equalizers of the pair (f1, f0).

Example 7.6.5.8 (Fixed Points of Endomorphisms).03GU Let C be an ∞-category and let X
be an object of C. An endomorphism of X is a morphism f : X → X from the object X
to itself. Note that the pair (X, f) can be identified with a morphism of simplicial sets
σ : (∆1/ ∂∆1)→ C. It follows from Remark 7.6.5.3 (together with Corollary 7.2.2.11) that
an object of C is a limit of the diagram σ if and only if it is an equalizer of the pair of
morphisms f, idX : X → X. Similarly, an object of C is a colimit of σ if and only if it is a
coequalizer of the pair (f, idX).

Variant 7.6.5.9.03GV Let Z≥0 denote the collection of nonnegative integers, which we regard as
a commutative monoid under addition, and let B• Z≥0 denote the classifying simplicial set of
Construction 1.3.2.5. The simplicial set B• Z≥0 is an ∞-category which contains a (unique)
objectX, and the generator 1 ∈ Z≥0 determines an endomorphism e : X → X. We can regard
B• Z≥0 as freely generated by the endomorphism e: more precisely, the pair (X, e) determines
a morphism of simplicial sets σ : ∆1/ ∂∆1 ↪→ B• Z≥0 which is inner anodyne (see Example
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1.5.7.10), and therefore induces a trivial Kan fibration Fun(B• Z≥0, C)→ Fun(∆1/ ∂∆1, C)
for every ∞-category C. In particular, the morphism σ is both left and right cofinal
(Proposition 7.2.1.3).

If F : B• Z≥0 → C is a functor of ∞-categories, then Corollary 7.2.2.11 guarantees that
an object of C is a limit of the functor F if and only if it is a limit of the diagram F ◦ σ:
that is, if and only if it is an equalizer of the pair of morphisms F (e), idF (X) : F (X)→ F (X)
(see Example 7.6.5.8). Similarly, an object of C is a colimit of the functor F if and only if it
is a coequalizer of the pair (F (e), idF (X)).

Warning 7.6.5.10. 03GXLet C be an ∞-category and suppose we are given an equalizer di

Definition 7.6.5.11 (Equalizer and Coequalizer Diagrams). 03GWLet C be an ∞-category. An
equalizer diagram in C is a limit diagram (•⇒ •)◁ → C. A coequalizer diagram is a colimit
diagram (•⇒ •)▷ → C.

agram

03GYZ
g // Y

f0 //
f1

// X (7.62)

in C. Then the image of (7.62) in the homotopy category hC need not be an equalizer
diagram. In other words, the forgetful functor C → N•(hC) does not preserve equalizer
diagrams in general.

Example 7.6.5.12. 03GZLet X be a Kan complex containing vertices x and y. Then there
exists an equalizer diagram

03H0{x} ×h
X {y}

f // ∆0 x //
y

// X (7.63)

in the ∞-category S (for a more general statement, see Corollary 7.6.5.21). However, unless
the homotopy fiber product {x} ×h

X {y} is either empty or contractible, the image of (7.63)
in the homotopy category hKan is not an equalizer diagram (since the homotopy class [f ] is
not a monomorphism in hKan).

Exercise 7.6.5.13. 03H1Let C be an ∞-category and suppose we are given an equalizer diagram

03H2Z
g // Y

f0 //
f1

// X (7.64)

in C. Show that, for every object C ∈ C, the map of sets

HomhC(C,Z) [g]◦−−→ Eq(HomhC(C, Y ) ⇒ HomhC(C,X))

is surjective (though it is generally not injective).
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We now give some examples of (co)equalizer diagrams.

Proposition 7.6.5.14.03H3 Let F0, F1 : D → C be functors of ∞-categories, and let G : E → D
be a functor of ∞-categories satisfying F0 ◦ G = F1 ◦ G. The following conditions are
equivalent:

(1) The resulting diagram of ∞-categories (•⇒ •)◁ → QC is an equalizer diagram.

(2) The commutative diagram
03H4 E G //

��

D

(F0,F1)

��
C

(id,id) // C ×C

(7.65)

is a categorical pullback square (Definition 4.5.2.8).

Proof. Let us identify the pair (F0, F1) with a functor of ordinary categories F : J → QCat,
where J is the category described in Remark 7.6.5.2. The functor G then induces a map
E → holim

←−
(F ), which can be identified with the map

E → C ×h
(C ×C)D

determined by the diagram (7.65). Proposition 7.6.5.14 now follows from the criterion of
Corollary 7.5.5.8.

Corollary 7.6.5.15.03H5 Let f0, f1 : Y → X be morphisms of Kan complexes and let g : Z → Y

be a morphism of Kan complexes satisfying f0 ◦ g = f1 ◦ g. The following conditions are
equivalent:

(1) The resulting diagram of ∞-categories (•⇒ •)◁ → S is an equalizer diagram.

(2) The commutative diagram of Kan complexes

Z
g //

��

Y

(f0,f1)

��
X

(id,id) // X ×X

is a homotopy pullback square.

Proof. Combine Propositions 7.6.5.14 and 7.4.5.1.
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Corollary 7.6.5.16. 03H6Let C be a locally Kan simplicial category and suppose we are given
morphisms

Z
g // Y

f0 //
f1

// X

in C satisfying f0 ◦ g = f1 ◦ g. The following conditions are equivalent:

(1) The induced diagram (• ⇒ •)◁ → Nhc
• (C) is an equalizer diagram in the ∞-category

Nhc
• (C), in the sense of Definition 7.6.5.11.

(2) For every object C ∈ C, the diagram of Kan complexes

HomC(C,Z)• //

g

��

HomC(C, Y )•

��
HomC(C,X)•

(f0,f1) // HomC(C,X)• ×HomC(C,X)•

is a homotopy pullback square.

Proof. Combine Corollary 7.6.5.15 with Proposition 7.4.5.16.

Let f0, f1 : Y → X be morphisms of Kan complexes. By virtue of Corollary 7.4.5.6, the
morphisms f0 and f1 have an equalizer in the ∞-category S. Beware that this equalizer
generally cannot be obtained from Corollary 7.6.5.15. For example, if f0 and f1 have disjoint
images, then the existence of a morphism g : Z → Y satisfying f0 ◦ g = f1 ◦ g guarantees
that the simplicial set Z is empty. In such cases, to extend the pair (f0, f1) to an equalizer
diagram in S, we are forced to consider homotopy coherent diagrams which do not strictly
commute.

Remark 7.6.5.17. 03H7Let F0, F1 : D → C be functors of ∞-categories, which we identify with
a diagram σ : (•⇒ •)→ QC. Unwinding the definitions, we see that extensions of σ to a
diagram σ : (•⇒ •)◁ → QC can be identified with the following data:

• An ∞-category E equipped with functors G : E → D and H : E → C.

• Isomorphisms α0 : F0 ◦G
∼−→ H and α1 : F1 ◦G

∼−→ H in the ∞-category Fun(E , C).

In this case, we can identify the quadruple (G,H,α0, α1) with a single functor of∞-categories

U : E → D×h
(C ×C) C .
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Proposition 7.6.5.18.03H8 Let F0, F1 : D → C be functors of ∞-categories, which we identify
with a diagram σ : (•⇒ •)→ QC. Suppose we are given an extension σ : (•⇒ •)◁ → QC of
σ, corresponding to a functor of ∞-categories

T : E → D×h
(C ×C) C .

Then σ is an equalizer diagram in the ∞-category QC if and only if T is an equivalence of
∞-categories.

Proof. We proceed as in the proof of Proposition 7.6.4.8, with minor modifications. Let
A denote the simplicial path category of (• ⇒ •)◁, so that we can identify σ with a
simplicial functor F : A → QCat. Using Corollary 4.5.2.23, we can factor the functor
(F0, F1) : D → C ×C as a composition

D U−→ D′
(F ′0,F ′1)
−−−−→ C ×C,

where U is an equivalence of ∞-categories and (F ′0, F ′1) is an isofibration. The pair (F ′0, F ′1)
can be identified with a morphism of simplicial sets σ′ : (•⇒ •)→ QC. Applying Remark
7.6.5.17, we can extend σ′ to a diagram σ′ : (• ⇒ •)◁ → QC, carrying the cone point
to the ∞-category E ′ = D′×h

(C ×C) C. The diagram σ′ corresponds to a simplicial functor
F ′ : A → QCat. The morphisms T and U determine a natural transformation of simplicial
functors F → F ′, hence also a morphism σ → σ′ in the ∞-category Fun((• ⇒ •)◁,QC).
By virtue of Corollary 4.5.2.20, this natural transformation is an isomorphism of diagrams
if and only if the functor T is an equivalence of ∞-categories. Consequently, Proposition
7.6.5.18 is equivalent to the assertion that σ′ is an equalizer diagram in QC (Proposition
7.1.2.13).

Invoking Remark 7.6.5.17 again, we obtain another diagram σ′′ extending σ′, which
carries the cone point of (• ⇒ •)◁ to the equalizer Eq(F ′0, F ′1) = D′×(C ×C) C (formed in
the category of simplicial sets). The diagram σ′′ corresponds to another simplicial functor
F ′′ : A → QCat. Note that there is a natural inclusion map F ′′ ↪→ F ′, which carries the
cone point to the inclusion

ι : D′×(C ×C) C ⊆ D′×h
(C ×C) C .

Since (F ′0, F ′1) is an isofibration, the functor ι is an equivalence of ∞-categories (Corollary
4.5.2.28). It follows that the inclusion F ′′ ↪→ F ′ induces an isomorphism σ′′ → σ′ in the
∞-category Fun((•⇒ •)◁,QC). By virtue of Proposition 7.1.2.13, we are reduced to showing
that σ′′ is an equalizer diagram in QC. This follows from the criterion of Proposition 7.6.5.14
(since ι is an equivalence of ∞-categories).

It follows from Proposition 7.6.5.18 that, if F0, F1 : D → C are functors of ∞-categories,
then the homotopy fiber product D×h

(C ×C) C is an equalizer of F0 and F1 in the ∞-category

https://kerodon.net/tag/03H8
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QC (this can also be viewed as a special case of Proposition 7.5.2.6). However, it is possible
to be more efficient.

Construction 7.6.5.19 (The Homotopy Equalizer). 03H9Let F0, F1 : D → C be functors of
∞-categories, and form a pullback diagram of simplicial sets

hEq(F0, F1) //

G

��

Isom(C)

��
D

(F0,F1) // C ×C .

Note that the right vertical map is an isofibration (Corollary 4.4.5.5), so the left vertical
map is also an isofibration; in particular, hEq(F0, F1) is an ∞-category. We will refer
to hEq(F0, F1) as the homotopy equalizer of the functors F0 and F1. By construction,
objects of hEq(F0, F1) can be identified with pairs (X,u), where X is an object of D and
u : F0(X)→ F1(X) is an isomorphism in the ∞-category C.

Set H = G ◦ F1, so that the construction (X,u) 7→ u determines an isomorphism
α0 : G ◦ F0

∼−→ H in the ∞-category Fun(Eq(F0, F1), C). Taking α1 to be the identity
morphism id : G ◦ F1

∼−→ H, we see that the quadruple (G,H,α0, α1) determines a diagram
σ : (• ⇒ •)◁ → QC, carrying the cone point to the homotopy equalizer hEq(F0, F1) (see
Remark 7.6.5.17).

Corollary 7.6.5.20. 03HALet F0, F1 : D → C and F1 : D → C be functors of ∞-categories. Then
the morphism σ : (• ⇒ •)◁ → QC of Construction 7.6.5.19 is an equalizer diagram. In
particular, the homotopy equalizer hEq(F0, F1) is an equalizer of F0 and F1 in the∞-category
QC.

Proof. The diagram σ can be identified with a functor U : hEq(F0, F1)→ D×h
(C ×C) C. By

virtue of Proposition 7.6.5.18, it will suffice to show that U is an equivalence of ∞-categories.
Unwinding the definitions, we see that U fits into a commutative diagram

hEq(F0, F1) U //

��

D×h
(C ×C) C //

��

D×h
C C

��
D // D×h

C C // D×C,

where the homotopy fiber product on the upper right is formed using the functor F0, and
the homotopy fiber product on the lower middle is formed using the functor F1. Each of the
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squares in this diagram is a pullback, and the right vertical map is an isofibration (Remark
4.5.2.2). It follows that the left side of the diagram is a categorical pullback square (Corollary
4.5.2.27). Since the functor on the lower left is an equivalence of ∞-categories (Corollary
4.5.2.22), it follows that U is an equivalence of ∞-categories.

Corollary 7.6.5.21.03HB Let f0, f1 : Y → X be morphisms of Kan complexes. Then the
homotopy equalizer hEq(f0, f1) is a Kan complex, which is an equalizer of f0 and f1 in the
∞-category S.

Proof. Combine Corollary 7.6.5.20 with Proposition 7.4.5.1.

Corollaries 7.6.5.20 and 7.6.5.21 illustrate a general phenomenon: if C is an ∞-category
which admits pairwise products, then equalizers in C can be viewed as a special kind of fiber
product.

Proposition 7.6.5.22 (Rewriting Equalizers as Pullbacks).03HC Let C be an ∞-category, let
f0, f1 : Y → X be morphisms of C. Let X×X be a product of X with itself in the ∞-category
C, so that f0 and f1 determine a morphism (f0, f1) : Y → X ×X, and let δX : X → X ×X
be the diagonal map (Notation 7.6.2.9). Then an object of C is an equalizer of f0 and f1 if
and only if it is a fiber product of Y with X over X ×X.

Proof. Let K denote the simplicial set given by the product (•⇒ •)◁ ×∆1. Then K is an
∞-category, which we depict informally by the diagram

z //

��

y // //

��

x

��
z′ // y′ //// x′.

We now proceed in several steps.

• Let K0 denote the full subcategory of K spanned by the objects x and y. Then K0
is isomorphic to the simplicial set (• ⇒ •). In particular, the pair of morphisms
f0, f1 : Y → X can be identified with a functor σ0 : K0 → C, satisfying σ0(x) = X and
σ0(y) = Y . By definition, an object of C is an equalizer of the pair (f0, f1) if and only
if it is a limit of the diagram σ0.

• Let K1 denote the full subcategory of K spanned by the objects x, x′, and y. Note
that the identity map idK0 extends uniquely to a retraction r : K1 → K0, carrying the
object x′ ∈ K1 to x ∈ K0. Let σ1 : K1 → C be the composition σ0 ◦ r. Note that that
the inclusion map K0 ↪→ K1 admits a right adjoint (given by the retraction r), and is
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therefore left cofinal (Corollary 7.2.3.7). It follows that an object of C is a limit of the
diagram σ0 if and only if it is a limit of the diagram σ1 (Corollary 7.2.2.11).

• Choose a pair of morphisms π0, π1 : X ×X → X in the ∞-category C which exhibit
X ×X as a product of X with itself. The morphism (f0, f1) : Y → X is characterized
(up to homotopy) by the requirement that there exist 2-simplices σ0 and σ1 of C, where
σi exhibits fi as a composition of πi with (f0, f1). Let K2 denote the full subcategory
of K spanned by the objects x, x′, y, and y′. Then the pair (σ0, σ1) determines an
extension of σ1 to a functor σ2 : K2 → C satisfying σ2(y′) = X ×X.

• The diagonal morphism δX : X → X ×X is characterized (up to homotopy) by the
requirement that there exist 2-simplices τ0 and τi of C, where τi exhibits idX as a
composition of πi with δX . Let K3 denote the full subcategory of K spanned by the
objects x, x′, y, and y′, and z′. Then the pair (τ0, τ1) determines an extension of σ2
to a functor σ3 : K3 → C satisfying σ3(z′) = X. The diagram σ3 can be represented
informally by the diagram

• //

��

Y
f0 //
f1

//

(f0,f1)

��

X

idX

��
X

δX // X ×X
π0 //
π1

// X.

Note that σ3 is right Kan extended from the full subcategory K1 ⊆ K3. Consequently,
an object of C is a limit of the diagram σ1 if and only if it is a limit of the diagram σ3
(Remark 7.3.8.15).

• Let K4 denote the full subcategory of K spanned by the objects x′, y, y′, and z′. Note
that the functor σ3 is right Kan extended from K4. It follows that an object of C is a
limit of the functor σ3 if and only if it is a limit of the functor σ4 = σ3|K4 .

• Let K5 denote the full subcategory of K spanned by the objects y, y′, and z′. Using
the criterion of Theorem 7.2.3.1, we see that the inclusion K5 ↪→ K4 is left cofinal. It
follows that an object of C is a limit of the diagram σ4 if and only if it is a limit of the
diagram σ5 = σ4|K5 (Corollary 7.2.2.11).

Combining these steps, we deduce that an object of C is an equalizer of f0 and f1 if and
only if it is a limit of the diagram σ5: that is, if and only if it is a fiber product of Y with X
over X ×X (along the morphisms (f0, f1) and δX).

In an∞-category which admits finite products, we can use a similar argument to describe
pullbacks in terms of equalizers.
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Proposition 7.6.5.23 (Rewriting Pullbacks as Equalizers).03HD Let C be an ∞-category and let
f0 : X0 → X and f1 : X1 → X be morphisms of C. Suppose that X0 and X1 admit a product
X0 ×X1, and let π0 : X0 ×X1 → X0 and π1 : X0 ×X1 → X1 denote the projection maps.
For i ∈ {0, 1}, let gi : X0 ×X1 → X denote a composition of πi with fi in the ∞-category C.
Then an object of C is a pullback of X0 with X1 over X if and only if it is an equalizer of
the pair of morphisms (g0, g1).

Proof. Let K denote the category which is freely generated by a non-commutative square,
as indicated in the diagram

Y01 //

��     

Y0

��
Y1 // Y.

Note that the upper right and lower left regions of this diagram determine monomorphisms
τ0, τ1 : ∆2 ↪→ N•(K). The images of τ0 and τ1 are simplicial subsets of N•(K), whose union
is N•(K) and whose intersection is the discrete simplicial set {Y01, Y }. It follows that τ0 and
τ1 induce an isomorphism of simplicial sets (τ0, τ1) : ∆2∐

{0,2}∆2 ≃ N•(K).
For i ∈ {0, 1}, let σi be a 2-simplex of C which witnesses gi as a composition of πi with

fi (in the sense of Definition 1.4.4.1). Then there is a unique morphism of simplicial sets
q : N•(K)→ C satisfying q ◦ τi = σi, which we indicate as a diagram

X0 ×X1
π0 //

π1

��

g0

""

g1

""

X0

f0

��
X1

f1 // X.

Let K+ ⊆ K denote the full subcategory spanned by the objects Y01 and Y . Then the
nerve N•(K+) can be identified with the simplicial set (• ⇒ •) of Notation 7.6.5.1, and
the restriction q+ = q|N•(K+) corresponds to the pair of morphisms g0, g1 : X0 ×X1 → X.
Note that the full subcategory N•(K+) ⊂ N•(K) is coreflective, so the inclusion map
N•(K+) ↪→ N•(K) is left cofinal (Corollary 7.2.3.7). It follows that an object of C is an
equalizer of g0 and g1 if and only if it is a limit of the diagram q (Corollary 7.2.2.11).

To complete the proof, it will suffice to show that an object of C is a limit of q if and
only if it is a fiber product of X0 with X1 over X. Let K− ⊆ K denote the full subcategory

https://kerodon.net/tag/03HD
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spanned by the objects Y0, Y1, and Y . By virtue of Corollaries 7.3.8.2 and 7.3.8.14, it will
suffice to show that the functor q is right Kan extended from N•(K−). E quivalently, we
wish to show that the natural map

N•(K−×KKY01/)
◁ → N•(K) q−→ C

is a limit diagram in C. Unwinding the definitions, we see that K−×KKY01/ can be written as
a disjoint union of subcategories having initial objects Y0 and Y1, respectively. In particular,
the inclusion map

{Y0, Y1} ↪→ N•(K−×KKY01/)

is left cofinal. The desired result now follows from Corollary 7.2.2.3, together with our
assumption that the maps π0 and π1 exhibit X0 ×X1 as a product of X0 with X1.

Exercise 7.6.5.24. 03HEIn the situation of Proposition 7.6.5.23, suppose that X0 and X1 admit
a fiber product over X. Let F : C → D be a functor of ∞-categories which preserves the
product of X0 and X1 (that is, F (π0) and F (π1) exhibit F (X0 ×X1) as a product of F (X0)
with F (X1) in the ∞-category D). Show that F preserves the fiber product of X0 with X1
over X if and only if it preserves the equalizer of the morphisms g0 and g1.

Corollary 7.6.5.25. 03HFLet C be an ∞-category. Then C admits finite limits if and only if
it admits finite products and equalizers. If these conditions are satisfied, then a functor
F : C → D preserves finite limits if and only if it preseves finite products and equalizers.

Proof. Combine Corollary 7.6.3.27 with Proposition 7.6.5.23 (and Exercise 7.6.5.24).

7.6.6 Sequential Limits and Colimits

03HGThroughout this section, we let Z≥0 denote the set of nonnegative integers, endowed
with its usual ordering.

Definition 7.6.6.1 (Towers). 03HHLet C be an∞-category. A tower in C is a functor N•(Zop
≥0)→

C. We say that C admits sequential limits if every tower in C has a limit, and that C admits
sequential colimits if every diagram N•(Z≥0) → C has a colimit. We say that a functor
of ∞-categories F : C → D preserves sequential limits if it preserves limits indexed by
the simplicial set N•(Zop

≥0), and that it preserves sequential colimits if it preserves colimits
indexed by the simplicial set N•(Z≥0).

Notation 7.6.6.2. 03HJLet C be an ∞-category. We will generally abuse notation by identifying
a functor X : N•(Z≥0) → C with the collection of objects {X(n)}n≥0 and morphisms
fn : X(n+ 1)→ X(n) obtained by the evaluating X on the edges of N•(Z≥0) corresponding

https://kerodon.net/tag/03HE
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to ordered pairs of the form (n, n+ 1); we will depict the pair ({X(n)}n≥0, {fn}n≥0) as a
diagram

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3) f3−→ X(4)→ · · ·

Similarly, we abuse notation by identifying towers X : N•(Zop
≥0)→ C with diagrams

· · · → X(4) f3−→ X(3) f2−→ X(2) f1−→ X(1) f0−→ X(0).

Beware that the convention of Notation 7.6.6.2 is slightly abusive: the simplicial set
N•(Z≥0) has nondegenerate simplices in every dimension, so a functor X : N•(Z≥0)→ C is
not literally determined by its underlying diagram

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3) f3−→ X(4)→ · · ·

However, the abuse is essentially harmless:

Remark 7.6.6.3.03HK Let Spine[Z≥0] denote the simplicial subset of N•(Z≥0) whose k-simplices
are sequences of nonnegative integers (n0, n1, · · · , nk) satisfying n0 ≤ n1 ≤ · · · ≤ nk ≤ n0 +1.
Then Spine[Z≥0] is a 1-dimensional simplicial set, which corresponds (under the equivalence
of Proposition 1.1.6.9) to the directed graph G indicated in the diagram

0→ 1→ 2→ 3→ · · · .

Moreover, the linearly ordered set (Z≥0,≤) can be identified with the path category Path[G]
of Construction 1.3.7.1. It follows that the inclusion map Spine[Z≥0] ↪→ N•(Z≥0) is inner
anodyne (Proposition 1.5.7.3).

In particular, for any ∞-category C, the restriction map

Fun(N•(Z≥0), C)→ Fun(Spine[Z≥0], C)

is a trivial Kan fibration (Theorem 1.5.7.1). Stated more informally, every sequence of
composable morphisms

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3) f3−→ X(4)→ · · ·

admits an essentially unique extension to a functor N•(Z≥0)→ C.

Example 7.6.6.4.03HL Let C be a locally Kan simplicial category, and suppose we are given a
collection of objects {X(n)}n≥0 and morphisms fn : X(n)→ X(n+ 1) in C. It follows from
Remark 7.6.6.3 that the diagram

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3) f3−→ X(4)→ · · ·

can be extended to a functor N•(Z≥0)→ Nhc
• (C). In fact, there is a preferred choice of such

an extension, which is uniquely determined by the requirement that it factors through the
inclusion map N•(C) ↪→ Nhc

• (C).

https://kerodon.net/tag/03HK
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Remark 7.6.6.5. 03HMLet C be an∞-category, and suppose we are given a tower X : N•(Zop
≥0)→

C, which we depict as a diagram

· · · → X(4) f3−→ X(3) f2−→ X(2) f1−→ X(1) f0−→ X(0),

having a limit lim←−(X). Then, for every object Y ∈ C, the map of sets

θ : HomhC(Y, lim←−(X))→ lim←−(HomhC(Y,X(n)))

is surjective. To prove this, suppose we are given a collection of morphisms gn : Y → X(n)
satisfying [fn] ◦ [gn+1] = [gn] in the homotopy category hC. Then, for each n ≥ 0, we can
choose a 2-simplex σn in C as indicated in the diagram

X(n+ 1)

fn

##
Y

gn+1

<<

gn // X(n).

Let X0 denote the restriction of X to the spine Spine[Zop
≥0] ⊂ N•(Zop

≥0). Then the collection
of 2-simplices {σn}n≥0 determines an extension of X0 to a diagram X0 : Spine[Zop

≥0]◁ → C
carrying the cone point to the object Y . The isomorphism class of this extension can be
identified with a morphism [g] : Y → lim←−(X0) ≃ lim←−(X) in the homotopy category hC, which
is a preimage of the sequence {[gn]}n≥0 under the function θ.

Warning 7.6.6.6. 03HNIn the situation of Remark 7.6.6.5, the map

θ : HomhC(Y, lim←−(X))→ lim←−(HomhC(Y,X(n)))

need not be injective. That is, the forgetful functor C → N•(hC) generally does not preserve
sequential limits (or colimits).

Example 7.6.6.7. 03HPFix a prime number p. For every integer n ≥ 0, let pn Z denote the
cyclic subgroup of Z generated by pn, so that we have a tower of classifying simplicial sets

03HQ· · · // B•(p3 Z) // B•(p2 Z) // B•(pZ) // B•(Z). (7.66)

Then:

• The tower (7.66) has a limit in the ordinary category of simplicial sets, given by the
simplicial set ∆0 (which we can identify with the classifying simplicial set for the
trivial group (0) = ⋂

n≥0 p
n Z).

https://kerodon.net/tag/03HM
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• The simplicial set ∆0 is also a limit of the tower (7.66) in the homotopy category
hKan.

• In the ∞-category S, the tower (7.66) has a different limit, which has uncountably
many connected components (see Remark [?]).

We now give some easy examples of sequential limits and colimits.

Example 7.6.6.8 (Sequential Colimits in QC).03HR Suppose we are given a collection of ∞-
categories {C(n)}n≥0 and functors Fn : C(n)→ C(n+ 1), which we view as a diagram

C(0) F0−→ C(1) F1−→ C(2) F2−→ C(3)→ · · ·

Let lim−→n
C(n) denote the colimit of this diagram (formed in the ordinary category of simplicial

sets). Then lim−→n
C(n) is also an∞-category, which is also a colimit of the associated diagram

N•(Z≥0)→ QC. This is a special case of Corollary 7.5.9.3.

Variant 7.6.6.9 (Sequential Colimits in S).03HS Suppose we are given a collection of Kan
complexes {X(n)}n≥0 and morphisms fn : X(n)→ X(n+ 1), which we view as a diagram

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3)→ · · ·

Let lim−→n
X(n) denote the colimit of this diagram (formed in the ordinary category of

simplicial sets). Then lim−→n
X(n) is also a Kan complex, which is also a colimit of the

associated diagram N•(Z≥0)→ S. See Variant 7.5.9.4.

Example 7.6.6.10 (Towers of Isofibrations).03HT Suppose we are given a collection of ∞-
categories {C(n)}n≥0 and functors Fn : C(n+ 1)→ C(n), which we view as a tower

· · · → C(4) F3−→ C(3) F2−→ C(2) F1−→ C(1) F0−→ C(0)

If each of the functors Fn is an isofibration, then the limit lim←−n C(n) (formed in the ordinary
category of simplicial sets) is also an ∞-category, which can be also be viewed as a limit of
the associated tower N•(Zop

≥0)→ QC. This follows by combining Example 4.5.6.8, Example
7.5.5.3, and Proposition 7.5.5.7.

Variant 7.6.6.11 (Towers of Kan Fibrations).03HU Suppose we are given a collection of Kan
complexes {X(n)}n≥0 and morphisms fn : X(n+ 1)→ X(n), which we view as a tower

· · · → X(4) f3−→ X(3) f2−→ X(2) f1−→ X(1) f0−→ X(0).

If each of the morphisms fn is a Kan fibration, then the limit lim←−nX(n) (formed in the
ordinary category of simplicial sets) is also a Kan complex, which can be also be viewed as
a limit of the associated tower N•(Zop

≥0)→ S (combine Example 7.6.6.10 with Proposition
7.4.5.1).

https://kerodon.net/tag/03HR
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Variant 7.6.6.12 (Limits of General Towers). 03HVSuppose we are given a sequence of ∞-
categories {C(n)}n≥0 and functors Fn : C(n+ 1)→ C(n), which we view as a tower

03HW· · · → C(4) F3−→ C(3) F2−→ C(2) F1−→ C(1) F0−→ C(0) (7.67)

If the functors Fn are not assumed to be isofibrations, then the limit lim←−n C(n) (formed in
the ordinary category of simplicial sets) might not be a limit of the associated tower in
QC (for example, lim←−n C(n) might fail to be an ∞-category). Nevertheless, we can always
compute the relevant limit in QC by replacing (7.67) by a levelwise equivalent diagram of
∞-categories in which the transition functors are isofibrations. For example, we can replace
(7.67) by the isofibrant tower of iterated homotopy fiber products

· · · → C(2)×h
C(1) (C(1)×h

C(0) C(0))→ C(1)×h
C(0) C(0)→ C(0).

Let us denote the limit of this tower (in the category of simplicial sets) by

· · · ×h
C(3) C(3)×h

C(2) C(2)×h
C(1) C(1)×h

C(0) C(0).

It is an ∞-category whose objects can be identified with sequences of pairs {(Cn, αn)}n≥0,
where each Cn is an object of the ∞-category C(n) and each αn : Fn(Cn+1) ∼−→ Cn is an
isomorphism in the ∞-category C(n). Combining Example 7.6.6.10 with Remark 7.1.1.8, we
see that it can be identified with a limit of the diagram (7.67) in the ∞-category QC.

Sequential limits are useful for building more complicated types of limits.

Proposition 7.6.6.13. 03HXSuppose we are given a diagram of simplicial sets

K(0)→ K(1)→ K(2)→ K(3)→ · · ·

having colimit K. Let C be an ∞-category and let f : K → C be a diagram, corresponding
to a compatible sequence of diagrams fn : K(n) → C. Suppose that each of the diagrams
fn admits a limit in C. Then there exists a tower X : N•(Zop

≥0) → C with the following
properties:

(1) For each n ≥ 0, the object X(n) ∈ C is a limit of the diagram fn.

(2) An object of C is a limit of the diagram f if and only if it is a limit of the tower X. In
particular, the diagram f has a limit if and only if the tower X has a limit.

(3) Let F : C → D be a functor of ∞-categories which preserves the limits of each of the
diagrams fn. Then F preserves limits of the diagram f if and only if it preserves limits
of the tower X.

Proof. Combine Propositions 7.5.8.12 and 7.5.9.1.
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Corollary 7.6.6.14.03HY Suppose we are given a diagram of simplicial sets

K(0)→ K(1)→ K(2)→ K(3)→ · · ·

having colimit K, and let C be an ∞-category which admits sequential limits and K(n)-
indexed limits, for each n ≥ 0. Then C admits K-indexed colimits. If F : C → D is a functor
of ∞-categories which preserves sequential limits and K(n)-indexed limits for each n ≥ 0,
then it also preserves K-indexed limits.

Example 7.6.6.15.03HZ Let C be an ∞-category which admits finite products. If C admits
sequential limits, then it also admits countable products. More precisely, for any countable
collection of objects {Xn}n≥0 of C, the product ∏

n≥0Xn can be computed as the limit of a
tower

· · · → X2 ×X1 ×X0 → X1 ×X0 → X0.

We now establish a partial converse to Example 7.6.6.15. Let C be an ∞-category which
admits countable products, and suppose that we are given a tower

· · · → X(3) f2−→ X(2) f1−→ X(1) f0−→ X(0)

in C. Then the collection of morphisms {fn}n≥0 determine an endomorphism f of the
product P = ∏

n≥0X(n), given informally by the composition

P =
∏

n≥0
X(n)

→
∏

n>0
X(n)

=
∏

m≥0
X(m+ 1)∏

m≥0fm

−−−−−−→
∏

m≥0
X(m)

= P.

In this case, we can identify limits of the tower X with equalizers of the pair of morphisms
f, idP : P → P . We can formulate this assertion more precisely as follows:

Proposition 7.6.6.16 (Sequential Limits as Equalizers).03J0 Let C be an ∞-category and let
X : N•(Zop

≥0)→ C be a tower, which we identify with the diagram

· · · → X(3) f2−→ X(2) f1−→ X(1) f0−→ X(0).

Suppose that there exists an object P ∈ C equipped with morphisms {qn : P → X(n)}n≥0
which exhibits P as a product of the collection {X(n)}n≥0. Then:
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(1) There exists a morphism f : P → P with the property that, for each n ≥ 0, the diagram

03J1P
[f ] //

[qn+1]

��

P

[qn]

��
X(n+ 1) [fn] // X(n)

(7.68)

commutes in the homotopy category hC. Moreover, the morphism f is uniquely
determined up to homotopy.

(2) An object of C is a limit of the tower X if and only if it is an equalizer of the pair of
morphisms f, idP : P → P .

Proof. Assertion (1) follows immediately from the definitions (see Warning 7.6.1.11). To
prove (2), let M = Z≥0 denote the set of nonnegative integers, which we regard as a
commutative monoid with respect to addition. Let BM denote the associated category
(consisting of a single object E having endomorphism monoid HomBM (E,E) = M) and
let B•M denote the nerve of BM (Construction 1.3.2.5). There is a functor of ordinary
categories (Z≥0,≤)op → BM which is characterized by the requirement that, for every pair
of nonnegative integers m ≤ n, the induced map

HomZ≥0(m,n)→ HomBM (E,E) = M

carries the unique element of HomZ≥0(m,n) to the difference n − m ∈ M . Passing to
nerves, we obtain a functor of ∞-categories U : N•(Zop

≥0) → B•M . The functor U is a
cartesian fibration, whose fiber over the vertex E ∈ B•M can be identified with the discrete
simplicial set {0, 1, 2, · · · }. Applying Corollary 7.3.4.8, we deduce that there exists a functor
Y : B•M → C and a natural transformation α : Y ◦U → X which exhibits Y as a right Kan
extension of X along U .

For every nonnegative integer n, α induces a morphism αn : Y (E) → X(n) in the
∞-category C. Using the criterion of Proposition 7.3.4.1, we see that the collection of
morphisms {αn}n≥0 exhibit Y (E) as a product of the collection of objects {X(n)}n≥0. We
may therefore assume without loss of generality that P = Y (E) and qn = αn, for each n ≥ 0.
Let f : P → P be the morphism obtained by evaluating the functor Y on the generator
1 ∈M . For each n ≥ 0, the natural transformation α carries the edge n+ 1→ n of N•(Z≥0)

https://kerodon.net/tag/03J1
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to a commutative diagram

P
f //

qn+1

��

P

qn

��
X(n+ 1) fn // X(n)

in the ∞-category C, which witnesses the commutativity of the diagram (7.68) in the
homotopy category hC. Moreover, an object C ∈ C is an equalizer of the pair of morphisms
f, idP : P → P if and only if it is a limit of the diagram Y (Variant 7.6.5.9). To prove (2), it
suffices to observe that this is equivalent to the requirement that C is a limit of the tower
X, which follows from Corollary 7.3.8.20.

Remark 7.6.6.17.03J2 In the situation of Proposition 7.6.6.16, suppose that F : C → D is a
functor of ∞-categories which preserves the product of the collection {X(n)}n≥0. Then F

preserves limits of the tower X if and only if it preserves equalizers of the pair of morphisms
f, idP : P → P .

7.6.7 Small Limits

03UC We now study limits and colimits indexed by diagrams of bounded size.

Definition 7.6.7.1.03UD Let κ be an infinite cardinal and let C be an ∞-category. We say that
C is κ-complete if admits K-indexed limits, for every κ-small simplicial set K.

We say that a functor of ∞-categories F : C → D preserves κ-small limits if it preserves
K-indexed limits, for every κ-small simplicial set K (Definition 7.1.3.4).

Remark 7.6.7.2.03UE Let C be an ∞-category and let λ be an infinite cardinal. If C is λ-
complete, then it is also κ-complete for each infinite cardinal κ < λ. Similarly, if a functor
F : C → D preserves λ-small limits, then it also preserves κ-small limits for each κ < λ. In
both cases, the converse holds if λ is an uncountable limit cardinal (since, in that case, every
λ-small simplicial set K is κ-small for some κ < λ).

Example 7.6.7.3.03UF An ∞-category C is ℵ0-complete if and only if it admits finite limits.
Similarly, a functor F : C → D preserves ℵ0-small limits if and only if it preserves finite
limits.

Example 7.6.7.4.03UG Let λ be an uncountable regular cardinal and let κ = ecf(λ) be its
exponential cofinality (Definition 4.7.3.16). Let S<λ denote the∞-category of λ-small spaces
(Variant 5.5.4.12) and let QC<λ denote the ∞-category of λ-small ∞-categories (Variant
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5.5.4.10). Then the ∞-categories S<λ and QC<λ are κ-complete. Moreover, the inclusion
maps

S<λ ↪→ S QC<λ ↪→ QC

preserve κ-small limits. See Corollary 7.4.1.13 and Variant 7.4.5.8. In particular, if κ = λ is
a strongly inaccessible cardinal, then the ∞-categories S<κ and QC<κ are κ-complete.

Remark 7.6.7.5. 048GLet C be an ∞-category which is κ-complete for some infinite cardinal κ.
Then, for every simplicial set K, the∞-category Fun(K, C) is also κ-complete. See Corollary
7.1.6.2.

Remark 7.6.7.6. 03UHLet κ be an uncountable cardinal and let C be an ∞-category. The
following conditions are equivalent:

• The ∞-category C is κ-complete: that is, it admits K-indexed limits for every κ-small
simplicial set K.

• The ∞-category C admits K-indexed limits, for every simplicial set K which is
essentially κ-small.

Moreover, in either case, it suffices to consider the case where K is an ∞-category. See
Remark 7.1.1.15 and Proposition 4.7.5.5. Similarly, a functor F : C → D preserves κ-small
limits if and only if it preserves K-indexed limits, for every simplicial set K which is
essentially κ-small (and it again suffices to consider the case where K is an ∞-category).

Variant 7.6.7.7. 03UJLet κ be an infinite cardinal. We say that an∞-category C is κ-cocomplete
if it admits K-indexed colimits, for every κ-small simplicial set K. Equivalently, the
∞-category C is κ-cocomplete if the opposite ∞-category Cop is κ-complete.

We say that a functor of∞-categories F : C → D preserves κ-small colimits if it preserves
K-indexed colimits, for every κ-small simplicial set K. Equivalently, F preserves κ-small
colimits if the opposite functor F op : Cop → Dop preserves κ-small limits.

Example 7.6.7.8. 03UKLet λ be an uncountable regular cardinal and let κ = cf(λ) denote its
cofinality. Then the ∞-categories S<λ and QC<λ are κ-complete. Moreover, the inclusion
maps

S<λ ↪→ S QC<λ ↪→ QC

preserve κ-small colimits. See Corollary 7.4.3.15 and Remark 7.4.5.7. In particular, if κ = λ

is an uncountable regular cardinal, then the ∞-categories S<κ and QC<κ are κ-complete.

Proposition 7.6.7.9. 03ULLet C be an ∞-category and let κ be an infinite cardinal. Then C is
κ-complete if and only if it satisfies the following conditions:
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(1) The ∞-category C admits κ-small products. That is, every collection of objects {Xj}j∈J
indexed by a κ-small set J admits a product in C.

(2) The ∞-category C admits finite limits.

Proof. Assume that C satisfies conditions (1) and (2); we wish to show that C is κ-complete
(the converse is immediate from the definitions). Let S be a κ-small simplicial set; we wish
to show that C admits S-indexed limits. If κ = ℵ0, this follows immediately from assumption
(2) (Example 7.6.7.3). We may therefore assume that κ is uncountable, so that C admits
countable products.

For each n ≥ 0, let skn(S) denote the n-skeleton of S (Construction 1.1.4.1), so that S =⋃
n skn(S). It follows from Proposition 7.6.6.16 that C admits sequential limits. Consequently,

to show that C admits S-indexed limits, it will suffice to show that it admits skn(S)-indexed
limits, for each n ≥ 0 (Corollary 7.6.6.14). We may therefore assume without loss of
generality that the simplicial set S has finite dimension. We proceed by induction on the
dimension n of S. If n = −1, then S is empty and the desired result is immediate. Assume
that n ≥ 0 and let {σj}j∈J denote the collection of nondegenerate n-simplices of S, so that
Proposition 1.1.4.12 supplies a pushout diagram of simplicial sets∐

j∈J
∂∆n //

��

∐
j∈J

∆n

��
skn−1(S) // skn(S).

Since the horizontal maps in this diagram are monomorphisms, it is also a categorical
pushout square (Example 4.5.4.12). By virtue of Proposition 7.6.3.26, it will suffice to show
that C admits limits indexed by the simplicial sets skn−1(S), J × ∂∆n, and J ×∆n. In the
first two cases, this follows from our inductive hypothesis. To handle the third case, we
can use assumption (1) and Corollary 7.6.1.20 to reduce to showing that the ∞-category
C admits ∆n-indexed limits. This is clear, since the simplicial set ∆n is an ∞-category
containing an initial object (see Corollary 7.2.2.12).

Remark 7.6.7.10.03UM In the situation of Proposition 7.6.7.9, we can replace (2) by either of
the following a priori weaker conditions:

(2′) The ∞-category C admits pullbacks.

(2′′) The ∞-category C admits equalizers.

See Corollary 7.6.3.27 and 7.6.5.25.

https://kerodon.net/tag/03UM
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Exercise 7.6.7.11. 03J4Let κ be an infinite cardinal, let F : C → D be a functor of∞-categories,
and suppose that C is κ-complete. Show that F preserves κ-small limits if and only if it
preserves finite limits and κ-small products.

Corollary 7.6.7.12. 03UNLet C be an ∞-category and let λ be an infinite cardinal which is not
regular. The following conditions are equivalent:

(1) The ∞-category C is λ-complete.

(2) For every infinite cardinal κ < λ, the ∞-category C is κ-complete.

(3) The ∞-category C is λ+-complete, where λ+ denotes the successor cardinal of λ.

By virtue of Corollary 7.6.7.12, little information is lost by restricting the use of Definition
7.6.7.1 to the case where κ is a regular cardinal.

Proof of Corollary 7.6.7.12. The equivalence (1)⇔ (2) and the implication (3)⇒ (1) follow
from Remark 7.6.7.2. We will complete the proof by showing that (1) implies (3). Assume
that C is λ-complete; we wish to show that it is λ+-complete. By virtue of Proposition
7.6.7.9, it will suffice to show that every collection of objects {Xi}i∈I admits a product in C,
provided that the index set I has cardinality ≤ λ. Our assumption that λ is not regular
guarantees that we can decompose I as a disjoint union of λ-small subsets {Ij ⊆ I}j∈J ,
where the index set J is λ-small. It follows from (1) that C admits J-indexed products
and also that it admits Ij-indexed products for each j ∈ J , and therefore admits I-indexed
products by virtue of Corollary 7.6.1.20.

The existence of κ-small limits can be used to prove the existence of a large class of Kan
extensions.

Proposition 7.6.7.13. 03UPLet κ be an uncountable regular cardinal and let K be a simplicial
set which is essentially κ-small. Suppose we are given a pair of ∞-categories C and D,
together with diagrams δ : K → C and F0 : K → D. Suppose that C is locally κ-small and
that D is κ-complete. Then F0 admits a right Kan extension along δ.

Proof. By virtue of Proposition 7.3.5.1, it will suffice to show that for every object C ∈ C,
the composite map

K ×C CC/ → K
F0−→ D

admits a limit in the ∞-category D. Note that the projection map K ×C CC/ is a left
fibration of simplicial sets (Proposition 4.3.6.1), whose fiber over each vertex x ∈ K can
be identified with the Kan complex HomL

C (C, δ(x)). Invoking Proposition 4.6.5.10, we see
that HomL

C (C, δ(x) is homotopy equivalent to the morphism space HomC(C, δ(x)), and is
therefore essentially κ-small (by virtue of our assumption that C is locally κ-small). Since K
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is essentially κ-small, Corollary 5.6.7.7 implies that the simplicial set K ×C CC/ is essentially
κ-small. The desired result now follows from our assumption that D is κ-complete (Remark
7.6.7.6).



Chapter 8

The Yoneda Embedding

03JA8.1 Twisted Arrows and Cospans

03JBLet C be an ∞-category. In §4.6.1, we associated to every pair of objects X,Y ∈ C a
Kan complex HomC(X,Y ), whose vertices are morphisms from X to Y . In §8.3.3, we will
see that the construction (X,Y ) 7→ HomC(X,Y ) can be refined to a functor of ∞-categories

HomC(•, •) : Cop×C → S = Nhc
• (Kan).

It is somewhat cumbersome to give an explicit description of this functor. It will therefore be
more convenient to specify it implicitly by realizing it as the covariant transport representation
of a left fibration over Cop×C. We begin by discussing the counterpart of this fibration in
the setting of classical category theory.

Construction 8.1.0.1 (The Twisted Arrow Category). 00AZLet C be a category. We define a
new category Tw(C) as follows:

• An object of Tw(C) is a morphism f : X → Y in C.

• Let f : X → Y and f ′ : X ′ → Y ′ be objects of Tw(C). A morphism from f to f ′ in
Tw(C) is a pair of morphisms u : X ′ → X, v : Y → Y ′ in C satisfying f ′ = v ◦ f ◦ u, so
that we have a commutative diagram

X

f

��

X ′
uoo

f ′

��
Y

v // Y ′.

1660
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• Let f : X → Y , f ′ : X ′ → Y ′, and f ′′ : X ′′ → Y ′′ be objects of Tw(C). If (u, v) is a
morphism from f to f ′ in Tw(C) and (u′, v′) is a morphism from f ′ to f ′′ in C, then
the composition (u′, v′) ◦ (u, v) in Tw(C) is the pair (u ◦ u′, v′ ◦ v).

We will refer to Tw(C) as the twisted arrow category of C.

Remark 8.1.0.2.00B1 Let C be a category. Then the construction (f : X → Y ) 7→ (X,Y )
determines a forgetful functor λ : Tw(C)→ Cop×C. Moreover, λ is a left covering functor,
in the sense of Definition 4.2.3.1.

Remark 8.1.0.3 (Tw(C) as a Category of Elements).03JC Let C be a category. Then the
construction (X,Y ) 7→ HomC(X,Y ) determines a functor HomC(•, •) : Cop×C → Set. The
twisted arrow category Tw(C) of Construction 8.1.0.1 can be identified with the category of
elements

∫
Cop×C HomC(•, •) (see Construction 5.2.6.1).

It follows that the functor HomC(•, •) is determined (up to canonical isomorphism)
by the datum of the twisted arrow category Tw(C) together with the forgetful functor
λ : Tw(C)→ Cop×C of Remark 8.1.0.2 (see Corollary 5.2.7.5).

Warning 8.1.0.4 (Untwisted Arrow Categories).03JD Let [1] = {0 < 1} denote a linearly ordered
set with two elements. For any category C, we can identify morphisms of C with functors
F : [1] → C. The collection of such functors can be organized into a category Fun([1], C),
which we refer to as the arrow category of C. The arrow category Fun([1], C) has the same
objects as the twisted arrow category Tw(C). However, the morphisms are different: if
f : X → Y and f ′ : X ′ → Y ′ are morphisms of C, then morphisms from f to f ′ in Fun([1], C)
can be identified with commutative diagrams

X

f

��

// X ′

f ′

��
Y // Y ′,

where the horizontal maps are oriented in the same direction.

Example 8.1.0.5.00B2 Let Q be a partially ordered set, which we regard as a category. Then
the twisted arrow category Tw(Q) can be identified (via the forgetful functor of Remark
8.1.0.2) with the partially ordered set

{(p, q) ∈ Qop ×Q : p ≤ q} ⊆ Qop ×Q.

Remark 8.1.0.6.03JE Let C be a category. For every object X ∈ C, the fiber {X} ×Cop Tw(C)
can be identified with the coslice category CX/ of Variant 4.3.1.4. Similarly, the fiber
Tw(C)×C {X} can be identified with the opposite of the slice category C/X of Construction
4.3.1.1.
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In §8.1.1, we generalize Construction 8.1.0.1 to the setting of ∞-categories. To every
simplicial set C, we associate another simplicial set Tw(C), whose n-simplices can be identified
with (2n + 1)-simplices of C (Construction 8.1.1.1). This construction has the following
features:

• If C = N•(C0) is (the nerve of) an ordinary category C0, then Tw(C) can be identified
with the nerve of the twisted arrow category Tw(C0) (Proposition 8.1.1.10). Conse-
quently, the twisted arrow construction of §8.1.1 can be regarded as a generalization
of Construction 8.1.0.1.

• The simplicial set Tw(C) is equipped with a projection map λ : Tw(C)→ Cop×C. If C
is an ∞-category, then λ is a left fibration (Proposition 8.1.1.11); in particular, Tw(C)
is also an ∞-category (Corollary 8.1.1.12).

Let C be an ∞-category. In §8.1.2, we study the fibers of the left fibration λ : Tw(C)→
Cop×C. Our main result asserts that if f : X → Y is an isomorphism in the ∞-category C,
then f is initial when viewed as an object of the∞-category {X}×Cop Tw(C) (see Proposition
8.1.2.1, and Corollary 8.1.2.21 for the converse). From this, we deduce an analogue of Remark
8.1.0.6: there is a canonical equivalence of∞-categories CX/ ↪→ {X}×Cop Tw(C) (Proposition
8.1.2.9), which induces a homotopy equivalence of Kan complexes

HomC(X,Y ) ≃ {X} ×Cop Tw(C)×C {Y }

for each object Y ∈ C (Notation 8.1.2.14). Moreover, we show that these homotopy
equivalences are compatible with covariant transport for the left fibration λ (Corollary
8.1.2.18).

The twisted arrow construction S 7→ Tw(S) determines a functor from the category
of simplicial sets to itself. In particular, to every simplicial set T we can associate a new
simplicial set Cospan(T ), whose n-simplices are given by maps Tw(∆n)→ T . We will refer
to Cospan(T ) as the simplicial set of cospans in T (Construction 8.1.3.1). This construction
has the following features:

• The construction T 7→ Cospan(T ) determines a functor from the category of simplicial
sets to itself, which is right adjoint to the twisted arrow functor S 7→ Tw(S) (Corollary
8.1.3.8).

• Let C be an ordinary category which admits pushouts, and let Cospan(C) denote the
2-category of cospans in C (Example 2.2.2.1). Then there is a canonical isomorphism
of simplicial sets

Cospan(N•(C)) ∼−→ ND
• (Cospan(C)),

which we construct in §8.1.3 (see Corollary 8.1.3.15).
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• Let C be a 2-category containing a pair of objects X and Y , and let HomC(X,Y ) denote
the category of 1-morphisms from X to Y . Then there is a canonical isomorphism of
simplicial sets

Cospan(N•HomC(X,Y )) ∼−→ HomND
• (C)(X,Y ),

which we construct in §8.1.8 (see Corollary 8.1.8.6).

• If C is an ∞-category which admits pushouts, then the simplicial set Cospan(C) is
an (∞, 2)-category (Proposition 8.1.4.1). We prove this in §8.1.4 using an explicit
characterization of the collection of thin 2-simplices of Cospan(C) (Proposition 8.1.4.2),
which we prove in §8.1.5.

8.1.1 The Twisted Arrow Construction

03JF We now describe an ∞-categorical generalization of Construction 8.1.0.1.

Construction 8.1.1.1 (Twisted Arrows in Simplicial Sets).03JG Let ∆ denote the simplex
category (Definition 1.1.0.2) and let C be a simplicial set. We let Tw(C) : ∆op → Set denote
the functor given by the construction

(J ∈∆op) 7→ HomSet∆(N•(Jop ⋆ J), C).

We will refer to Tw(C) as the simplicial set of twisted arrows of C.

Remark 8.1.1.2.03JH For every integer n ≥ 0, there is a unique isomorphism of simplicial sets
N•([n]op ⋆ [n]) ≃ ∆2n+1. It follows that, for every simplicial set C, we can identify n-simplices
σ of Tw(C) with (2n+ 1)-simplices σ of C. In terms of these identifications, the face and
degeneracy operators of Tw(C) are given explicitly by the formulae

dni σ = d2n
n−id

2n+1
n+1+iσ sni σ = s2n+2

n−i s
2n+1
n+1+iσ.

Remark 8.1.1.3.03JJ Let C be a simplicial set. We will generally use Remark 8.1.1.2 to identify
vertices of the simplicial set Tw(C) with edges f : X → Y of C. More generally, it will be
useful to think of n-simplices of Tw(C) as encoding diagrams

X0

f0

��

X1oo

f1

��

X2oo

f2

��

· · ·oo

��

Xn
oo

fn

��
Y0 // Y1 // Y2 // · · · // Yn.

Remark 8.1.1.4.00B3 The construction C 7→ Tw(C) determines a functor from the category of
simplicial sets to itself, which preserves all limits and colimits (this follows from Remark
8.1.1.2, since limits and colimits in the category Set∆ are computed levelwise).
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Remark 8.1.1.5. 03Y5Let κ be an uncountable cardinal. If C is a κ-small simplicial set, then
Tw(C) is also κ-small. To prove this, we may assume without loss of generality that κ is
the smallest uncountable cardinal for which C is κ-small. In particular, κ is regular. It will
therefore suffice to show that, for every integer n, the set of n-simplices of Tw(C) is κ-small
(Proposition 4.7.4.9). This follows from the κ-smallness of the set of (2n+ 1)-simplices of C
(Remark 8.1.1.2).

Notation 8.1.1.6 (Projection Maps). 03JKLet C be a simplicial set. Then the simplicial set
Tw(C) is equipped with projection maps

λ− : Tw(C)→ Cop λ+ : Tw(C)→ C .

Here λ+ carries an n-simplex σ of Tw(C) to the n-simplex of C given by the composition

∆n = N•([n]) ↪→ N•([n]op ⋆ [n]) σ−→ C,

while λ− carries σ to the n-simplex of Cop given by the composite map

(∆n)op = N•([n]op) ↪→ N•([n]op ⋆ [n]) σ−→ C .

Concretely, λ− and λ+ are given on vertices by the formulae λ−(f : X → Y ) = X and
λ+(f : X → Y ) = Y .

Remark 8.1.1.7 (Duality). 03JLLet C be a simplicial set. Then there is a canonical isomorphism
of simplicial sets ι : Tw(C) ≃ Tw(Cop), given on n-simplices by precomposition with the
unique isomorphism

N•([n]op ⋆ [n])op ≃ N•([n]op ⋆ [n]).

The isomorphism ι interchanges the projection maps λ− and λ+ of Notation 8.1.1.6.

Exercise 8.1.1.8 (Slices of Twisted Arrows). 03JMLet C be a simplicial set and let f : X → Y

be an edge of C, which we regard as a vertex of the simplicial set Tw(C). Show that there is
a canonical isomorphism of simplicial sets

Tw(C)/f ≃ Tw(CX//Y ).

Here CX//Y denotes the simplicial set (CX/)/Y ≃ (C/Y )X/, obtained either by promoting Y
to a vertex of CX/ or X to a vertex of C/Y by means of the edge f (see Remark 4.6.6.2).

Warning 8.1.1.9. 03LWLet C be a simplicial set. Then there is a tautological map T : C →
Tw(Cop ⋆ C), which carries an n-simplex σ : ∆n → C to the n-simplex T (σ) of Tw(Cop ⋆ C)
given by the composition

N•([n]op ⋆ [n]) σop⋆σ−−−−→ Cop ⋆ C .
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If D is another simplicial set, then precomposition with T induces a comparison map

HomSet∆(Cop ⋆ C,D)→ HomSet∆(Tw(Cop ⋆ C),Tw(D)) ◦T−→ HomSet∆(C,Tw(D)).

Beware that, in general, this map is not a bijection. However, it is a bijection whenever C
is isomorphic to the nerve of a linearly ordered set Q. To prove this, we can write Q as a
filtered colimit of its finite subsets and thereby reduce to the case where Q is finite. In this
case, the linearly ordered set Q is either empty (in which case the desired result is obvious)
or isomorphic to [n] for some integer n ≥ 0 (in which case the desired result follows from
the definition of the Tw(D)).

We now show that Construction 8.1.1.1 can be regarded as a generalization of Construction
8.1.0.1.

Proposition 8.1.1.10.03JN Let C be a category. Then there is a canonical isomorphism of
simplicial sets T : N•(Tw(C)) ∼−→ Tw(N•(C)), which is uniquely determined by the following
requirements:

(1) For every morphism f : C → D in the category C, the map T carries f (regarded as an
object of Tw(C)) to itself (regarded as a vertex of Tw(N•(C))).

(2) The diagram

N•(Tw(C))

��

T // Tw(N•(C))

(λ−,λ+)

��
N•(Cop×C) ∼ // N•(C)op ×N•(C)

commutes, where the right vertical map is given by Notation 8.1.1.6 and the left vertical
map is the nerve of the forgetful functor

Tw(C)→ Cop×C (f : X → Y ) 7→ (X,Y ).

Proof. Let σ be an n-simplex of the simplicial set N•(Tw(C)), which we identify with a
diagram

(f0 : X0 → Y0) (u1,v1)−−−−→ (f1 : X1 → Y1) (u2,v2)−−−−→ · · · (un,vn)−−−−→ (fn : Xn → Yn)

in the category Tw(C). Here each fi : Xi → Yi denotes a morphism in C, and each (ui, vi) is

https://kerodon.net/tag/03JN
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a pair of morphisms in C which determine a commutative diagram

Xi−1

fi−1

��

Xi
uioo

fi

��
Yi−1

vi // Yi.

In this case, we can regard the chain of morphisms

03JPX0

f0

��

X1
u1oo X2

u2oo · · ·oo Xn
unoo

Y0
v1 // Y1

v2 // Y2 // · · · vn // Yn

(8.1)

as a (2n + 1)-simplex of N•(C), which we identify with an n-simplex T (σ) of Tw(N•(C)).
The construction σ 7→ T (σ) then determines a morphism of simplicial sets T : N•(Tw(C))→
Tw(N•(C)), which satisfies conditions (1) and (2) by construction.

We now claim that T is an isomorphism of simplicial sets. Let τ be an n-simplex of
Tw(N•(C)); we wish to show that there is a unique n-simplex σ of N•(Tw(C)) satisfying
T (σ) = τ . Let us identify τ with a diagram of the form (8.1) in the category C. We wish
to show that there is a unique collection of morphisms {fi : Xi → Yi}1≤i≤n satisfying the
identities fi = vi ◦ fi−1 ◦ ui, which follows immediately by induction on i.

We now complete the proof by establishing the uniqueness of T . Suppose that T ′ :
N•(Tw(C)) ∼−→ Tw(N•(C)) is another morphism of simplicial sets satisfying conditions (1)
and (2). Then T−1 ◦ T ′ determines a functor F from the twisted arrow category Tw(C)
to itself. Because T and T ′ both satisfy condition (1), the functor F carries each object
of Tw(C) to itself. Since the forgetful functor Tw(C) → Cop×C is faithful, condition (2)
guarantees that F also carries each morphism of Tw(C) to itself. It follows that F is the
identity functor, so that T ′ = T .

Let C be a simplicial set. It follows from Proposition 8.1.1.10 that if C is isomorphic to
the nerve of a category, then the simplicial set Tw(C) is also isomorphic to the nerve of a
category. Moreover, the projection maps of Notation 8.1.1.6 determine a left covering map
Tw(C)→ Cop×C (see Remark 8.1.0.2). This observation has an ∞-categorical counterpart:

Proposition 8.1.1.11. 03JQLet C be an ∞-category. Then the projection maps of Notation
8.1.1.6 determine a left fibration of simplicial sets

(λ−, λ+) : Tw(C)→ Cop×C .
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Corollary 8.1.1.12.03JR Let C be an ∞-category. Then the simplicial set Tw(C) is also an
∞-category.

Proof. Combine Proposition 8.1.1.11 with Remark 4.1.1.9.

Corollary 8.1.1.13.048H Let C be a Kan complex. Then the projection map (λ−, λ+) : Tw(C)→
Cop×C is a Kan fibration. In particular, Tw(C) is a Kan complex.

Proof. Combine Proposition 8.1.1.11 with Corollary 4.4.3.8.

In the situation of Corollary 8.1.1.12, we will refer to Tw(C) as the twisted arrow
∞-category of C.

Corollary 8.1.1.14.03JS Let C be an ∞-category. Then the projection maps λ− : Tw(C)→ Cop

and λ+ : Tw(C)→ C are cocartesian fibrations of ∞-categories. Moreover, a morphism f of
Tw(C) is λ−-cocartesian if and only if λ+(f) is an isomorphism, and λ+-cocartesian if and
only if λ−(f) is an isomorphism.

Proof. Let π− : Cop×C → Cop and π+ : Cop×C → C denote the projection maps. Then
π− and π+ are cocartesian fibrations of simplicial sets. Moreover, a morphism (e−, e+) of
Cop×C is π−-cocartesian if and only if e+ is an isomorphism in C, and π+-cocartesian if
and only if e− is an isomorphism in Cop (this follows immediately from Remark 5.1.4.6 and
Example 5.1.1.4). Corollary 8.1.1.14 now follows by applying Proposition 8.1.1.11 to left
and right sides of the diagram

Tw(C)

λ−

||

λ+

!!

(λ−,λ+)

��
Cop Cop×C

π−oo π+ // C,

since the vertical map in the center is a left fibration (Proposition 8.1.1.11).

Proposition 8.1.1.11 is a special case of the following more general assertion:

Proposition 8.1.1.15.03JT Let U : C → D be an inner fibration of simplicial sets. Then the
projection maps of Notation 8.1.1.6 determine a left fibration of simplicial sets

Tw(C)→ (Cop×C)×(Dop×D) Tw(D).
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Proof. Fix a pair of integers 0 < i ≤ n; we wish to show that every lifting problem

03JUΛnn−i //

��

Tw(C)

��
∆n //

77

(Cop×C)×(Dop×D) Tw(D)

(8.2)

admits a solution.
For each nonempty subset S ⊆ [2n + 1] = {0 < 1 < · · · < 2n + 1}, let σS denote the

corresponding nondegenerate simplex of ∆2n+1. Let us say that S is basic if it satisfies one
of the following conditions:

(a) The set S is contained in {0 < 1 < · · · < n}.

(b) The set S is contained in {n+ 1 < n+ 2 < · · · < 2n+ 1}.

(c) There exists an integer j ̸= i such that 0 ≤ j ≤ n and S ∩ {j, 2n+ 1− j} = ∅.

Let K0 ⊆ ∆2n+1 be the simplicial subset whose nondegenerate simplices have the form σS ,
where S is basic. Unwinding the definitions, we can rewrite (8.2) as a lifting problem

K0

��

// C

U

��
∆2n+1 //

<<

D .

Since U is an inner fibration, it will suffice to show that the inclusion K0 ↪→ ∆2n+1 is an
inner anodyne map of simplicial sets.

We now introduce two more collections of subsets of [2n+ 1].

• We say that a subset S ⊆ [2n + 1] is primary if it is not basic, the intersection
S ∩ {0, 1, · · · , i− 1} is empty, and 2n+ 1− i ∈ S.

• We say that a subset S ⊆ [2n + 1] is secondary if it is not basic, the intersection
S ∩ {0, 1, · · · , i− 1} is nonempty, and i ∈ S.

Let {S1, S2, · · · , Sm} be an ordering of the collection of all subsets of [2n+ 1] which are
either primary or secondary, satisfying the following conditions:

• The sequence of cardinalities |S1|, |S2|, · · · , |Sm| is nondecreasing. That is, for 1 ≤ p ≤
q ≤ m, we have |Sp| ≤ |Sq|.

https://kerodon.net/tag/03JU
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• If |Sp| = |Sq| for p ≤ q and Sq is primary, then Sp is also primary.

For 1 ≤ q ≤ m, let σq ⊆ ∆2n+1 denote the simplex spanned by the vertices of Sq, and let
Kq denote the union of K0 with the simplices {σ1, σ2, · · · , σq}. We have inclusion maps

K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Km.

Note that we have σm = Km = ∆2n+1 (since the set [2n+ 1] is secondary). It will therefore
suffice to show that for 1 ≤ q ≤ m, the inclusion map Kq−1 ↪→ Kq is inner anodyne.

In what follows, we regard q as fixed. Let d be the dimension of the simplex σq. Let us
abuse notation by identifying σq with a morphism of simplicial sets ∆d → Kq ⊆ ∆2n+1, and
set L = σ−1

q Kq−1 ⊆ ∆d. To complete the proof, it will suffice to show that L is an inner
horn of ∆d, so that the diagram of simplicial sets

L //

��

Kq−1

��
∆d σq // Kq.

is a pushout square by virtue of Lemma 3.1.2.11.
We first consider the case where the set Sq = {j0 < j1 < · · · < jd} is primary, so that

we have j0 ≥ i and jk = 2n + 1 − i for some 0 ≤ k ≤ d. Note that we must have k > 0
(otherwise Sq satisfies condition (b)) and k < d (otherwise, Sq satisfies condition (c), since it
is disjoint from {0, 2n+ 1}). In this case, we will show that L coincides with the inner horn
Λdk ⊂ ∆d. This can be restated as follows:

(∗) Let j be an element of Sq, and set S′ = Sq \ {j}. Then σS′ is contained in Kq−1 if and
only if j ̸= 2n+ 1− i.

Assume first that j ̸= 2n + 1 − i. Then the set S′ contains 2n + 1 − i and satisfies
S′ ∩ {0, 1, · · · , i− 1} = ∅. Consequently, the set S′ is either primary (and therefore coincides
with Sq′ for some q′ < q) or basic. In either case, the simplex σS′ belongs to the simplicial
subset Kq−1 ⊆ ∆2n+1.

We now prove (∗) in the case j = 2n + 1 − i. Since Sq does not satisfy conditions (b)
or (c), the set S′ also does not satisfy conditions (b) or (c). It also cannot satisfy condition
(a): if S′ were contained in the set {0, 1, · · · , n}, then Sq would be contained in the set
{i, i+ 1, · · · , n, 2n+ 1− i}, and would therefore satisfy condition (c). It follows that S′ is not
basic. Assume, for a contradiction, that σS′ is contained in Kq−1. We then have σS′ ⊆ σq′
for some q′ < q. Since S′ is neither primary nor secondary, this must be a proper inclusion:
that is, we must have

dim(σq)− 1 = dim(σS′) < dim(σq′) ≤ dim(σq).
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It follows that the second inequality must be an equality: that is, we have |Sq′ | = |Sq| and
therefore Sq′ is also primary. In particular, the set Sq′ contains 2n+ 1− i, and therefore
contains the union S′ ∪ {2n+ 1− i} = Sq. Since Sq and Sq′ have the same cardinality, it
follows that Sq = Sq′ and therefore q = q′, contradicting our assumption that q′ < q.

We now consider the case where Sq = {j0 < j1 < · · · < jd} is secondary, so that we have
j0 < i and jk = i for some 0 < k ≤ d. Note that we must have k < d (otherwise, Sq satisfies
condition (a)). In this case, we will show that L coincides with the inner horn Λd

k ⊂ ∆d.
This can be restated as follows:

(∗′) Let j ∈ Sq and set S′ = Sq \ {j}. Then the simplex σS′ is contained in Kq−1 if and only
if j = i.

We first treat the case where j ̸= i, so that i ∈ S′. If S′ is basic, then σS′ ⊆ K ⊆ Kq−1.
We may therefore assume that S′ is not basic. If the intersection S′ ∩ {0, 1, · · · , i − 1} is
nonempty, then S′ is secondary and has smaller cardinality than Sq. It follows that S′ = Sq′

for some q′ < q, so that σS′ ⊆ Kq′ ⊆ Kq−1. We may therefore assume that the intersection
S′ ∩ {0, 1, · · · , i − 1} is empty. In this case, the union S′ ∪ {2n + 1 − i} is a primary set
of cardinality ≤ |Sq|, and therefore has the form Sq′ for some q′ < q. From this, we again
conclude that σS′ ⊆ Kq′ ⊆ Kq−1.

We now prove (∗′) in the case j = i. Since Sq does not satisfy conditions (a) or (c), it
follows that S′ also does not satisfy conditions (a) or (c). The set S′ also does not satisfy
condition (b), since the intersection S′ ∩ {0, · · · , i− 1} is nonempty. It follows that S′ is not
basic. Assume, for a contradiction, that σS′ is contained in Kq−1. We then have σS′ ⊆ σq′
for some q′ < q. Since the intersection Sq′ ∩ {1, · · · , i− 1} is nonempty, the set Sq′ cannot
be primary and is therefore secondary. In particular, the set Sq′ contains the element i and
therefore contains the union S′ ∪ {i} = Sq. Combining this observation with the inequality
|Sq′ | ≤ |Sq|, we deduce that Sq′ = Sq and therefore q′ = q, contradicting our assumption
that q′ < q.

8.1.2 Homotopy Transport for Twisted Arrows

03JVLet C be an ∞-category and let Tw(C) denote its twisted arrow ∞-ategory. For every
pair of objects X,Y ∈ C, Proposition 8.1.1.11 guarantees that the fiber product

{X} ×Cop Tw(C)×C {Y }

is a Kan complex, whose vertices can be identified with morphisms f : X → Y . Our goal in
this section is to show that this identification can be promoted to a homotopy equivalence
of Kan complexes

HomL
C (X,Y ) ↪→ {X} ×Cop Tw(C)×C {Y },

https://kerodon.net/tag/03JV
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where HomL
C (X,Y ) = CX/×C{Y } denotes the left-pinched morphism space of Construction

4.6.5.1 (see Corollary 8.1.2.10). Our starting point is the following result:

Proposition 8.1.2.1.03JW Let C be an ∞-category and let f : X → Y be an isomorphism in C.
Then f is initial when viewed as an object of the ∞-category {X} ×Cop Tw(C).

Remark 8.1.2.2.03JX The converse of Proposition 8.1.2.1 is also true: see Corollary 8.1.2.21.

We will prove Proposition 8.1.2.1 at the end of this section. First, let us record some
consequences.

Corollary 8.1.2.3.048J Let C be a Kan complex. Then the projection maps

Cop λ−←−− Tw(C) λ+−−→ C

are trivial Kan fibrations of simplicial sets.

Proof. It follows from Corollary 8.1.1.13 that λ− and λ+ are Kan fibrations. By virtue of
Proposition 3.3.7.6, it will suffice to show that the fibers of λ− and λ+ are contractible
Kan complexes, which is an immediate consequence of Proposition 8.1.2.1 (see Corollary
4.6.7.11).

Corollary 8.1.2.4.048K Let C be a simplicial set. Then the projection map λ+ : Tw(C)→ C is
universally localizing (see Definition 6.3.6.1).

Proof. Writing C as the filtered colimit of its skeleta skn(C) and using Proposition 6.3.6.12,
we can reduce to the case where C has dimension ≤ n for some integer n ≥ 0. We proceed
by induction on n. If n = 0, the morphism λ+ is an isomorphism. Let us therefore assume
that n is positive. Let S denote the collection of nondegenerate n-simplices of C, so that
Proposition 1.1.4.12 supplies a pushout square

S × ∂∆n //

��

S ×∆n

��
skn−1(C) // C,

where the horizontal maps are monomorphisms. Combining our inductive hypothesis with
Proposition 6.3.6.13, we can replace C by S ×∆n and thereby reduce to the case where C is
an ∞-category. In this case, λ+ is a cocartesian fibration (Corollary 8.1.1.14) having weakly
contractible fibers (Proposition 8.1.2.1 and Corollary 4.6.7.25), and is therefore universally
localizing by virtue of Example 6.3.6.2.

https://kerodon.net/tag/03JW
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Corollary 8.1.2.5. 048LLet C be a simplicial set. Then the projection map λ+ : Tw(C)→ C is a
weak homotopy equivalence.

Proof. Combine Corollary 8.1.2.4 with Remark 6.3.6.5.

Corollary 8.1.2.6. 048MLet F : C → D be a morphism of simplicial sets. Then F is a weak
homotopy equivalence if and only if the induced map Tw(F ) : Tw(C) → Tw(D) is a weak
homotopy equivalence.

Proof. We have a commutative diagram of simplicial sets

Tw(C) Tw(F ) //

��

Tw(D)

��
C // D,

where the vertical maps are weak homotopy equivalences by virtue of Corollary 8.1.2.4.

Construction 8.1.2.7. 03JYLet C be a simplicial set and let X be a vertex of C. Let σ be an
n-simplex of the coslice simplicial set CX/, which we identify with a morphism of simplicial
sets {x} ⋆∆n → C satisfying σ(x) = X. Then the composite map

(∆n)op ⋆∆n ↠ {x} ⋆∆n σ−→ C

can be identified with an n-simplex of the twisted arrow simplicial set Tw(C), which we
will denote by ιX(σ). The construction σ 7→ ιX(σ) is compatible with the formation of
face and degeneracy operators, and therefore determines a morphism of simplicial sets
ιX : CX/ → Tw(C). Moreover, the diagram

CX/
ιX //

��

Tw(C)

λ−

��
{X} // Cop

commutes, where λ− is the projection map of Notation 8.1.1.6. It follows that ιX can be
regarded as a morphism of simplicial sets from CX/ to the fiber {X} ×Cop Tw(C). We will
refer to this morphism as the coslice inclusion.

https://kerodon.net/tag/048L
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Remark 8.1.2.8.03JZ Let C be a simplicial set and let X ∈ C be a vertex. Then an n-simplex
σ of CX/ can be identified with an (n+ 1)-simplex of C, which we represent informally as a
diagram

X
f−→ Y0

v1−→ Y1
v2−→ Y2 → · · ·

vn−→ Yn.

The morphism ιX of Construction 8.1.2.7 carries σ to a (2n+ 1)-simplex τ of C, which can
be represented informally by the diagram

X

f

��

X
idoo X

idoo · · ·idoo X
idoo

Y0
v1 // Y1

v2 // Y2 // · · · vn // Yn.

Note that σ can be recover from τ (by composing with the inclusion map ∆n+1 ↪→ ∆2n+1,
given on vertices by i 7→ i + n). It follows that ιX is a monomorphism of simplicial sets
CX/ ↪→ {X} ×Cop Tw(C) (as suggested by our terminology).

Proposition 8.1.2.9.03K0 Let C be an ∞-category. For every object X ∈ C, the coslice inclusion

ιX : CX/ ↪→ {X} ×Cop Tw(C)

is an equivalence of ∞-categories.

Proof. By construction, we have a commutative diagram

CX/
ιX //

  

{X} ×Cop Tw(C)

λ+

zz
C,

where the vertical maps are left fibrations of∞-categories (Propositions 4.3.6.1 and 8.1.1.11).
Moreover, the ∞-category CX/ has an initial object X̃, given by the identity morphism
idX : X → X (Proposition 4.6.7.22). Proposition 8.1.2.1 guarantees that ιX(X̃) is an initial
object of the ∞-category {X} ×Cop Tw(C), so that ιX is an equivalence of ∞-categories by
virtue of Corollary 5.6.6.20.

Corollary 8.1.2.10.03K1 Let C be an ∞-category. For every pair of objects X,Y ∈ C, the coslice
inclusion ιX restricts to a homotopy equivalence of Kan complexes

HomL
C (X,Y ) ↪→ {X} ×Cop Tw(C)×C {Y }.

https://kerodon.net/tag/03JZ
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Proof. Combine Proposition 8.1.2.9 with Corollary 5.1.6.4.

Corollary 8.1.2.11. 03K2Let C be an ∞-category and let f, f ′ : X → Y be morphisms of C.
Then f and f ′ are homotopic (in the sense of Definition 1.4.3.1) if and only they belong to
the same connected component of the Kan complex {X} ×Cop Tw(C)×C {Y }. Consequently,
we have a canonical isomorphism of sets

HomhC(X,Y ) ≃ π0({X} ×Cop Tw(C)×C {Y }).

Exercise 8.1.2.12. 03K3Prove Corollary 8.1.2.11 directly from the definitions.

Exercise 8.1.2.13. 03K4Let C be an ∞-category containing morphisms u : X ′ → X and
v : Y → Y ′, so that covariant transport for the left fibration Tw(C)→ Cop×C determines a
morphism of Kan complexes

T : {X} ×Cop Tw(C)×C {Y } → {X ′} ×Cop Tw(C)×C {Y ′}.

Show that, under the identifications supplied by Corollary 8.1.2.11, the induced map of
connected components π0(T ) : HomhC(X,Y )→ HomhC(X ′, Y ′) is given by the construction
[f ] 7→ [v] ◦ [f ] ◦ [u].

We now apply Proposition 8.1.2.9 to describe the left fibration (λ−, λ+) : Tw(C)→ Cop×C
of Proposition 8.1.1.15.

Notation 8.1.2.14. 03K5Let C be an∞-category. For every pair of objects X,Y ∈ C, Proposition
4.6.5.10 and Corollary 8.1.2.10 supply homotopy equivalences of Kan complexes

HomC(X,Y )←↩ HomL
C (X,Y ) ↪→ {X} ×Cop Tw(C)×C {Y }.

Passing to homotopy, we obtain an isomorphism

αX,Y : HomC(X,Y ) ∼−→ {X} ×Cop Tw(C)×C {Y }

in the homotopy category hKan.

Corollary 8.1.2.15. 03LXLet F : C → D be a functor of ∞-categories. Then F is fully faithful
if and only if the diagram

03LYTw(C) Tw(F ) //

��

Tw(D)

��
Cop×C F op×F // Dop×D

(8.3)

is a categorical pullback square.
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https://kerodon.net/tag/03K3
https://kerodon.net/tag/03K4
https://kerodon.net/tag/03K5
https://kerodon.net/tag/03LX
https://kerodon.net/tag/03LY


8.1. TWISTED ARROWS AND COSPANS 1675

Proof. Since the vertical maps in the diagram (8.3) are left fibrations (Proposition 8.1.1.11),
it is a categorical pullback square if and only if, for every pair of objects X,Y ∈ C, the
induced map

{X} ×Cop Tw(C)×C {Y } → {F (X)} ×Dop Tw(D)×D {F (Y )}

is a homotopy equivalence of Kan complexes (Corollary 5.1.7.15). Using Notation 8.1.2.14,
we see that this is equivalent to the requirement that F induces a homotopy equivalence
HomC(X,Y )→ HomD(F (X), F (Y )).

Corollary 8.1.2.16.03K9 Let F : C → D be an equivalence of ∞-categories. Then the induced
map Tw(F ) : Tw(C)→ Tw(D) is also an equivalence of ∞-categories.

Proof. Combine Corollary 8.1.2.15 with Proposition 4.5.2.21.

Corollary 8.1.2.17.03Y6 Let C be an uncountable cardinal and let C be an ∞-category. If C is
essentially κ-small, then Tw(C) is essentially κ-small.

Proof. Choose an equivalence of ∞-categories C′ → C, where C′ is a κ-small simplicial set. It
follows from Corollary 8.1.2.16 that the induced map Tw(C′)→ Tw(C) is also an equivalence
of ∞-categories. We conclude by observing that Tw(C′) is also a κ-small simplicial set
(Remark 8.1.1.5).

Corollary 8.1.2.18.03K6 Let C be an ∞-category, let hC be its homotopy category, and let

HomhC : hCop × hC → hKan (X,Y ) 7→ HomC(X,Y )

denote the functor determined by the hKan-enrichment of Construction 4.6.9.13. Then the
assignment (X,Y ) 7→ αX,Y of Notation 8.1.2.14 determines an isomorphism from HomhC to
the homotopy transport representation of the left fibration (λ−, λ+) : Tw(C)→ Cop×C.

Proof. Let H : h(Cop)× hC → hKan denote the homotopy transport representation for the
left fibration (λ−, λ+), given on objects by the formula H(X,Y ) = {X} ×Cop Tw(C)×C {Y }.
For every pair of objects X,Y ∈ C, Notation 8.1.2.14 determines an isomorphism

αX,Y : HomhC(X,Y ) ∼−→ H(X,Y )

in the homotopy category hKan. We wish to show that αX,Y depends functorially on X

and Y .
We first establish a strong form of functoriality in Y . Fix an object X ∈ C, and let hX :

hC → hKan denote the hKan-enriched functor corepresented by X, given concretely by the
formula hX(Y ) = HomhC(X,Y ) = HomC(X,Y ). Let HX : hC → hKan denote the restriction
H|{X}×hC , which we also regard as an hKan-enriched functor (using Variant 5.2.8.11). Note

https://kerodon.net/tag/03K9
https://kerodon.net/tag/03Y6
https://kerodon.net/tag/03K6


1676 CHAPTER 8. THE YONEDA EMBEDDING

that hX can be identified with the (enriched) homotopy transport representation of the left
fibration {X} ×̃C C → C (see Example 5.2.8.13). Corollary 4.6.4.18 and Proposition 8.1.2.9
supply equivalences

{X} ×̃C C ←↩ CX/ ↪→ {X} ×Cop Tw(C)

of left fibrations over C, which induce an isomorphism of hKan-enriched functors αX,− : hX ∼−→
HX . By construction, this isomorphism carries each object Y ∈ hC to the isomorphism
αX,Y : Hom(X,Y ) ∼−→ H(X,Y ) of Notation 8.1.2.14, which proves that αX,Y depends
functorially on Y .

We now show that αX,Y depends functorially on X. Fix a morphism f : W → X in the
∞-category C. We then have a diagram of hKan-enriched functors

03K7hX

��

αX,− // HX

��
hW

αX,− // HW ,

(8.4)

where the vertical maps are induced by the homotopy class [f ] ∈ HomhCop(X,W ). To com-
plete the proof, it will suffice to show that this diagram commutes. Using the corepresentabil-
ity of the hKan-enriched functor hX , we are reduced to showing that clockwise and counter-
clockwise composition around the diagram (8.4) carry [idX ] ∈ π0(hX(X)) = HomhC(X,X)
to the same element of π0(HW (X)). We conclude by observing that under the identification
π0(HW (X)) ≃ HomhC(W,X) supplied by Corollary 8.1.2.11, both constructions carry [idX ]
to [f ] (Exercise 8.1.2.13).

Warning 8.1.2.19. 03K8Let C be an ∞-category. Our proof of Corollary 8.1.2.18 shows that the
isomorphism αX,Y : HomhC(X,Y )→ H(X,Y ) is compatible with the hKan-enrichment in
the second variable. Beware that things are a bit more subtle if we wish to view HomhC(X,Y )
and H(X,Y ) as hKan-enriched functors of the first variable. The functor HomhC is defined
using the enrichment of the category hC, and can therefore be viewed an hKan-enriched
functor

(hC)op × hC → hKan.

On the other hand, the functor H is defined as the enriched homotopy transport rep-
resentation of the left fibration (λ−, λ+) : Tw(C) → Cop×C, which is an hKan-enriched
functor

h(Cop)× hC → hKan.

The hKan-enriched categories (hC)op and h(Cop) are a priori different objects: to a pair of
objects X,Y ∈ C, they assign morphism spaces HomC(X,Y ) and HomC(X,Y )op, respectively.

https://kerodon.net/tag/03K7
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It is possible to address this point (since HomC(X,Y ) and HomC(X,Y )op are canonically
isomorphic as objects of the homotopy category hKan), but we will not pursue the matter
here.

We can use Proposition 8.1.2.9 to deduce a stronger form of Proposition 8.1.2.1.

Corollary 8.1.2.20.03KA Let U : C → D be an inner fibration of ∞-categories and let f : X → Y

be a morphism of C, which we regard as an object of the twisted arrow ∞-category Tw(C).
Then:

• The morphism f is U-cocartesian if and only if it is V -initial, where V denotes the
induced map

{X} ×Cop Tw(C)→ {U(X)} ×Dop Tw(D).

• The morphism f is U-cartesian if and only if it is V ′-initial, where V ′ denotes the
induced map

Tw(C)×C {Y } → Tw(D)×D {U(Y )}.

Proof. We will prove the first assertion; the proof of the second is similar. Construction
8.1.2.7 supplies a commutative diagram of ∞-categories

CX/

UX/

��

ιX // {X} ×Cop Tw(C)

V

��
DU(X)/

ιU(X) // {U(X)} ×Dop Tw(D),

where the horizontal maps are equivalences of ∞-categories (Proposition 8.1.2.9). By virtue
of Remark 7.1.4.9, it will suffice to show that f is U -cocartesian if and only if it is a
UX/-initial object of the ∞-category CX/, which is a special case of Example 7.1.5.9.

Corollary 8.1.2.21.03KB Let C be an ∞-category and let f : X → Y be a morphism of C. The
following conditions are equivalent:

(1) The morphism f is an isomorphism in the ∞-category C.

(2) The morphism f is initial when regarded as an object of the ∞-category {X}×Cop Tw(C).

(3) The morphism f is initial when regarded as an object of the ∞-category Tw(C)×C {Y }.

Proof. Apply Corollary 8.1.2.20 in the special case D = ∆0 (together with Examples 7.1.4.2
and 5.1.1.4).

https://kerodon.net/tag/03KA
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Proof of Proposition 8.1.2.1. Let C be an∞-category and let f : X → Y be an isomorphism
in C; we wish to show that f is initial when viewed as an object of the ∞-category
{X}×Cop Tw(C). Fix an integer n > 0 and a morphism ρ0 : ∂∆n → {X}×Cop Tw(C) satisfying
ρ0(0) = f ; we wish to show that ρ0 can be extended to an n-simplex of {X} ×Cop Tw(C).

We now use a variation on the proof of Proposition 8.1.1.15. For every nonempty subset
S ⊆ [2n+ 1], let σS denote the corresponding nondegenerate simplex of ∆2n+1. Let us say
that S is basic if it satisfies one of the following conditions:

(a) The set S is contained in {0 < 1 < · · · < n}.

(b) There exists an integer 0 ≤ i ≤ n such that S ∩ {i, 2n+ 1− i} = ∅.

Let K0 ⊆ ∆2n+1 be the simplicial subset whose nondegenerate simplices have the form σS ,
where S is basic. Unwinding the definitions, we can identify ρ0 with a morphism of simplicial
sets θ0 : K → C, where the composition ∆n ↪→ K

θ0−→ C is the constant map taking the value
X and the composition

∆1 ≃ N•({n < n+ 1}) ↪→ K
θ0−→ C

is the morphism f . To complete the proof, we must show that θ0 admits an extension
θ : ∆2n+1 → C.

Let S be a nonempty subset of [2n+ 1] which is not basic. Then there exists an integer
0 ≤ i ≤ n such that 2n+ 1− i belongs to S. We denote the largest such integer by pr(S) and
refer to it as the priority of S. We say that S is prioritized if it also contained the integer
pr(S). Let {S1, S2, · · · , Sm} be an ordering of the collection of all prioritized (non-basic)
subsets of [2n+ 1] which satisfies the following conditions:

• The sequence of priorities pr(S1), pr(S2), · · · ,pr(Sm) is nondecreasing. That is, if
1 ≤ p ≤ q ≤ m, then we have pr(Sp) ≤ pr(Sq).

• If pr(Sp) = pr(Sq) for p ≤ q, then |Sp| ≤ |Sq|.

For 1 ≤ q ≤ m, let σq ⊆ ∆2n+1 denote the simplex spanned by the vertices of Sq, and let
Kq ⊆ ∆2n+1 denote the union of K0 with the simplices {σ1, σ2, · · · , σq}, so that we have
inclusion maps

K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Km.

Note that the set S = [2n + 1] is prioritized (with priority n), and is therefore equal to
Sm. It follows that Km = ∆2n+1. We will complete the proof by showing that θ0 admits a
compatible sequence of extensions {θq : Kq → C}0≤q≤m, so that θ = θm is an extension of θ0
to ∆2n+1.

For the remainder of the proof, we fix an integer 1 ≤ q ≤ m, and suppose that the
morphism θq−1 : Kq−1 → C has already been constructed. Let d denote the dimension of
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the simplex σq, let us abuse notation by identifying σq with a morphism of simplicial sets
∆d → Kq ⊆ ∆2n+1, and set L = σ−1

q Kq−1 ⊆ ∆d. Let i = pr(Sq) denote the priority of Sq,
so that Sq contains both i and 2n+ 1− i. Write Sq = {j0 < j1 < · · · < jd}, so that i = jk
for some integer 0 ≤ k ≤ d. We will prove below that L is equal to the horn Λd

k ⊆ ∆d, so
that the diagram of simplicial sets

L //

��

Kq−1

��
∆d σq // Kq

is a pushout square (Lemma 3.1.2.11). Let τ0 denote the composite map L σq−→ Kq−1
θq−1−−−→ C.

We will complete the proof by showing that τ0 admits an extension τ : ∆d → C (which then
determines a morphism θq : Kq → C extending θq−1). The proof splits into four cases:

• Suppose that 0 < k < d. Then Λd
k ⊆ ∆d is an inner horn, so that τ0 admits an

extension τ : ∆d → C by virtue of our assumption that C is an ∞-category.

• Suppose that k = d. Then Sq is contained in {0, 1, · · · , n}, contradicting our assumption
that Sq is not basic.

• Suppose k = 0 and i < n, so that i is the least element of Sq. Our assumption
pr(Sq) = i guarantees that 2n− i /∈ S. Since Sq does not satisfy (b), we must also have
i+ 1 ∈ Sq. It follows that d ≥ 2 (otherwise, Sq would satisfy (a)), and that τ0 : Λd0 → C
carries the initial edge N•({0 < 1}) to the identity morphism idX . In this case, the
existence of the extension τ follows from Theorem 4.4.2.6.

• Suppose k = 0 and i = n, so that i = n is the least element of Sq. Since Sq has priority
n, the element n+ 1 also belongs to Sq. We must then have d ≥ 2 (otherwise, Sq would
satisfy condition (b)). It follows that τ0 : Λd0 → C carries the initial edge N•({0 < 1})
to the morphism f , which is an isomorphism in C. In this case, the existence of the
extension τ again follows from Theorem 4.4.2.6.

It remains to prove that L = Λdk, which we can formulate more concretely as follows:

(∗) Let j be an element of Sq, and set S′ = Sq \ {j}. Then σS′ is contained in Kq−1 if and
only if j ̸= i.

We first treat the case j = i; in this case, we wish to show that σS′ is not contained
in Kq−1. Note that S′ cannot be basic: it cannot be contained in {0, 1, · · · , n} (otherwise
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Sq = S′ ∪ {i} would have the same property) and cannot have empty intersection with a set
of the form {i′, 2n+ 1− i′} (otherwise Sq would have the same property; here we use the
fact that 2n+ 1− i is contained in Sq). Moreover, we have pr(S′) = i /∈ S′, so that S′ is not
prioritized. Assume, for a contradiction, that σS′ is contained in Kq−1. Then we must have
S′ ⊆ Sq′ , for some 1 ≤ q′ < q. Note that 2n+ 1− i ∈ S′ ⊆ Sq′ , so that Sq′ has priority ≥ i.
Since q′ < q, it follows that Sq′ has priority i and that |Sq′ | ≤ |Sq|. Since Sq′ is prioritized,
it contains the element i, and therefore contains Sq = S′ ∪ {i}. It follows that Sq′ = Sq,
contradicting our assumption that q′ < q.

We now treat the case j ̸= i; in this case, we wish to show that σS′ is contained in Kq−1.
We may assume without loss of generality that S′ is not basic (otherwise, the simplex σS′ is
already contained in K0). Let i′ = pr(S′) denote the priority of S′; note that the inclusion
S′ ⊆ Sq guarantees that i′ ≤ i. If i′ < i, then S′ ∪ {i′} is a prioritized set of priority < i,
and therefore of the form Sq′ for some q′ < q. If i′ = i, then S′ is a prioritized set of priority
i and cardinality |Sq| − 1, and therefore of the form Sq′ for some q′ < q. In either case, we
obtain σS′ ⊆ σq′ ⊆ Kq−1.

8.1.3 The Cospan Construction

00AYLet C0 be a category which admits pushouts. In §2.2.1, we introduced a 2-category
Cospan(C0) having the same objects, where 1-morphisms from X to Y in Cospan(C0) are
cospans from X to Y : that is, diagrams X f−→ B

g←− Y in the category C0 (see Example
2.2.2.1). In this section, we introduce a generalization of this construction, which will allow
us to replace the ordinary category C0 by an∞-category. More precisely, we will associate to
every simplicial set C a simplicial set Cospan(C) of cospans in C (Construction 8.1.3.1). In
the special case where C = N•(C0) is the nerve of a category C0 which admits pushouts, we
show that Cospan(C) can be identified with the Duskin nerve of the 2-category Cospan(C0)
(Corollary 8.1.3.15).

Construction 8.1.3.1. 03KNLet C be a simplicial set. For every integer n ≥ 0, we let Cospann(C)
denote the collection of morphisms Tw(∆n) → C in the category of simplicial sets. The
construction [n] 7→ Cospann(C) depends functorially on the set [n] = {0 < 1 < · · · < n}
as an object of the category ∆op, and can therefore be viewed as a simplicial set. We will
denote this simplicial set by Cospan(C) and refer to it as the simplicial set of cospans in C.

Remark 8.1.3.2. 03KPLet n ≥ 0 be an integer. Then the simplicial set Tw(∆n) can be identified
with the nerve of the partially ordered set Q = {(i, j) ∈ [n]op × [n] : i ≤ j} (see Example
8.1.0.5). Consequently, if C is an arbitrary simplicial set, then n-simplices of Cospan(C) can

https://kerodon.net/tag/00AY
https://kerodon.net/tag/03KN
https://kerodon.net/tag/03KP
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be identified with morphisms N•(Q)→ C, which we depict informally as diagrams

X0,0

��

X1,1

����

· · · Xn−1,n−1

��}}

Xn,n

��
· · ·

��

· · ·

!!��

· · ·

��
X0,n−1

��

X1,n

~~
X0,n.

Example 8.1.3.3.03KQ Let C be a simplicial set. Then:

• Vertices of the simplicial set Cospan(C) can be identified with vertices of C.

• Let X and Y be vertices of C. Then edges of Cospan(C) joining X to Y can be
identified with pairs (f, g), where f : X → B and g : Y → B are edges of C having the
same target.

Remark 8.1.3.4 (Symmetry).03KR Let C be a simplicial set and let σ be an n-simplex of
Cospan(C), which we identify with a morphism of simplicial sets Tw(∆n)→ C. Composing
with the automorphism

Tw(∆n) ∼−→ Tw(∆n) (i, j) 7→ (n− j, n− i),

we obtain a new n-simplex σ of Cospan(C). The construction σ 7→ σ determines an
isomorphism of simplicial sets τ : Cospan(C) ≃ Cospan(C)op, which can be described
concretely as follows:

• For every vertex X ∈ C, the morphism τ carries X (regarded as a vertex of Cospan(C))
to itself.

• Let X and Y be vertices of C, and let e : X → Y be an edge of Cospan(C), given
by a pair of edges (f : X → B, g : Y → B) of C. Then τ(e) : Y → X is the edge of
Cospan(C) given by the pair (g, f).

Note that τ is involutive: that is, the composition

Cospan(C) τ−→ Cospan(C)op τop
−−→ Cospan(C)

is the identity automorphism of Cospan(C).

https://kerodon.net/tag/03KQ
https://kerodon.net/tag/03KR
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Construction 8.1.3.5. 03KTLet D be a simplicial set and let σ : ∆n → D be an n-simplex
of D. Invoking the functoriality of the twisted arrow construction, we obtain a map
Tw(∆n) Tw(σ)−−−−→ Tw(D), which we can identify with an n-simplex u(σ) of the simplicial
set Cospan(Tw(D)). The construction σ 7→ u(σ) is compatible with face and degeneracy
operators, and therefore determines a morphism of simplicial sets u : D → Cospan(Tw(D))
which we will refer to as the unit map.

Example 8.1.3.6 (Tautological Cospans). 048NLet D be a simplicial set and let e : X → Y

be an edge of D, which we also view as a vertex of the simplicial set Tw(D). Then the
morphism D → Cospan(Tw(D)) carries e to an edge of the simplicial set Cospan(Tw(D)),
which we can identify with a pair of edges

idX
eL−→ e

eR←− idY

in the simplicial set Tw(D). Here eL and eR can be identified with degenerate 3-simplices of
D, which we depict informally in the diagrams

X

idX

��

X
idX

oo Y

idY

��

X
f

oo

X
f // Y Y

idY // Y.

Proposition 8.1.3.7. 03KULet D be a simplicial set and let u : D → Cospan(Tw(D)) be the unit
map of Construction 8.1.3.5. For every simplicial set C, the composite map

HomSet∆(Tw(D), C) → HomSet∆(Cospan(Tw(D)),Cospan(C))
◦u−→ HomSet∆(D,Cospan(C))

is a bijection.

Proof. Let us regard the simplicial set C as fixed. For every simplicial set D, the unit map u
of Construction 8.1.3.5 determines a function

θD : HomSet∆(Tw(D), C)→ HomSet∆(D,Cospan(C)).

Using Remark 8.1.1.4, we see that the construction D 7→ θD carries colimits (in the category
of simplicial sets) to limits (in the arrow category Fun([1],Set)). Consequently, to show
that θD is a bijection, we may assume without loss of generality that D = ∆n is a standard
simplex (see Remark 1.1.3.13). In this case, the desired result follows immediately from the
definition of the simplicial set Cospan(C).

https://kerodon.net/tag/03KT
https://kerodon.net/tag/048N
https://kerodon.net/tag/03KU
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Corollary 8.1.3.8.03KV The twisted arrow functor

Tw : Set∆ → Set∆ D 7→ Tw(D)

has a right adjoint, given on objects by the construction C 7→ Cospan(C).

Remark 8.1.3.9.048P Let C and D be simplicial sets. Using Proposition 8.1.3.7, we obtain
bijections

HomSet∆(∆n,Fun(C,Cospan(D)) ≃ HomSet∆(∆n × C,Cospan(D))
≃ HomSet∆(Tw(∆n × C),D)
≃ HomSet∆(Tw(∆n)× Tw(C),D)
≃ HomSet∆(Tw(∆n),Fun(Tw(C),D))
≃ HomSet∆(∆n,Cospan(Fun(Tw(C),D))).

These bijections depend functorially on [n] ∈∆, and therefore determine an isomorphism of
simplicial sets Fun(C,Cospan(D)) ≃ Cospan(Fun(Tw(C),D)).

Corollary 8.1.3.10.048Q Let U : C → D be a Kan fibration of simplicial sets. Then the induced
map Cospan(U) : Cospan(C)→ Cospan(D) is also a Kan fibration.

Proof. Let i : A ↪→ B be a monomorphism of simplicial sets which is a weak homotopy
equivalence. We wish to show that every lifting problem

048R A //

i

��

Cospan(C)

Cospan(U)

��
B //

;;

Cospan(D)

(8.5)

admits a solution. Using Proposition 8.1.3.7, we can rewrite (8.5) as a lifting problem of the
form

Tw(A) //

Tw(i)

��

C

U

��
Tw(B) //

==

D .

Our assumption that U is a Kan fibration guarantees that this lifting problem has a solution,
since the monomorphism Tw(i) : Tw(A) ↪→ Tw(B) is also a weak homotopy equivalence
(Corollary 8.1.2.6).

https://kerodon.net/tag/03KV
https://kerodon.net/tag/048P
https://kerodon.net/tag/048Q
https://kerodon.net/tag/048R
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Corollary 8.1.3.11. 048SLet C be a Kan complex. Then the simplicial set Cospan(C) is also a
Kan complex.

Proof. Apply Corollary 8.1.3.10 in the special case D = ∆0.

We now study the relationship between Construction 8.1.3.1 with the classical cospan
construction (Example 2.2.2.1).

Construction 8.1.3.12. 00B4Let C be a category which admits pushouts, and let Cospan(C)
denote the 2-category of Example 2.2.2.1. Suppose we are given another category D and a
functor F : Tw(D)→ C. We define a strictly unitary lax functor F+ : D → Cospan(C) as
follows:

• For each X ∈ D, we define F+(X) = F (idX); here we regard the identity morphism
idX : X → X as an object of the twisted arrow category Tw(C).

• For each morphism f : X → Y in D, we define F+(f) to be the 1-morphism of
Cospan(C) given by the cospan

F (idX) F (idX ,f)−−−−−→ F (f) F (f,idY )←−−−−− F (idY ).

Note that this determines the values of F+ on 2-morphisms, since every 2-morphism
in D is an identity 2-morphism.

• For every pair of composable morphisms X f−→ Y
g−→ Z in D, the composition constraint

µg,f : F+(g) ◦ F+(f)⇒ F+(g ◦ f) is the 2-morphism of Cospan(C) corresponding to
the map F (f)⨿F (idY ) F (g)→ F (g ◦ f) classifying the commutative diagram

F (idY ) F (f,idY ) //

F (idY ,g)

��

F (f)

F (idX ,g)

��
F (g) F (f,idZ) // F (g ◦ f)

in the category C.

Example 8.1.3.13. 03KWLet C be a category which admits pushouts and let n be a nonnegative
integer. Applying Construction 8.1.3.12 in the special case where D = [n], we obtain a
function

{Functors Tw([n])→ C} ∼−→ {Strictly unitary lax functors [n]→ Cospan(C)}.

https://kerodon.net/tag/048S
https://kerodon.net/tag/00B4
https://kerodon.net/tag/03KW
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Using Propositions 1.3.3.1 and 8.1.1.10, we can identify the left hand side with the collection
of n-simplices of the simplicial set Cospan(N•(C)). This construction depends functorially
on n, and therefore determines a morphism of simplicial sets from Cospan(N•(C)) to the
Duskin nerve ND

• (Cospan(C)).

We can now formulate our main result.

Theorem 8.1.3.14.00B5 Let C and D be categories, where C admits pushouts. Then Construction
8.1.3.12 induces a bijection of sets

{Functors F : Tw(D)→ C} ∼−→ {Strictly unitary lax functors F+ : D → Cospan(C)}.

Corollary 8.1.3.15.00B6 Let C be a category which admits pushouts. Then the comparison map
of Example 8.1.3.13 determines an isomorphism of simplicial sets

Cospan(N•(C))→ ND
• (Cospan(C)).

Exercise 8.1.3.16.03KX Show that Corollary 8.1.3.15 implies Theorem 8.1.3.14. That is, to
prove Theorem 8.1.3.14 in general, it suffices to treat the special case where D is a category
of the form [n] = {0 < 1 < · · · < n} for n ≥ 0.

Remark 8.1.3.17.03KY Let C be a category which admits pushouts. The construction of the
2-category Cospan(C) of Example 2.2.2.1 involves some auxiliary choices: if X → B ← Y

and Y → C ← Z are cospans in C, then their composition (as 1-morphisms of Cospan(C))
is given by X → (B ⨿Y C) ← Z, where the pushout B ⨿Y C is only well-defined up to
(canonical) isomorphism. Corollary 8.1.3.15 supplies a description of the Duskin nerve
ND
• (Cospan(C)) which does not depend on these choices. This shows, in particular, that the

2-category Cospan(C) is well-defined up to (non-strict) isomorphism; see Example 2.2.6.13.

Example 8.1.3.18.00B8 Let C be a category which admits pushouts. Then 2-simplices σ of the
Duskin nerve ND

• (Cospan(C)) can be identified with commutative diagrams

X0,0

!!

X1,1

!!}}

X2,2

}}
X0,1

!!

X1,2

}}
X0,2

https://kerodon.net/tag/00B5
https://kerodon.net/tag/00B6
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in the category C. It follows from Theorem 2.3.2.5 that the 2-simplex σ is thin (in the sense
of Definition 2.3.2.3) if and only if the square appearing in the diagram is a pushout: that
is, it induces an isomorphism X0,1 ⨿X1,1 X1,2 → X0,2 in the category C.

Proof of Theorem 8.1.3.14. Let C and D be categories, where C admits pushouts, and let
G : D → Cospan(C) be a strictly unitary lax functor of 2-categories. For every morphism
f : X → Y in the category D, we can identify G(f) with a cospan from G(X) to G(Y ) in
the category C, given by a diagram we will denote by G(X) b−(f)−−−→ B(f)← b+(f)G(Y ). Our
assumption that G is strictly unitary guarantees the following:

(∗) For each object X ∈ D, the object B(idX) is equal to G(X), and the maps b−(idX) :
G(X) → B(idX) and b+(idX) : G(X) → B(idX) are the identity morphisms from
G(X) to itself in the category C.

For every pair of composable 1-morphisms X f−→ Y
g−→ Z, the composition constraint µg,f for

the lax functor G can be identified with a morphism from the pushout B(f)⨿G(Y ) B(g) to
B(g ◦ f), or equivalently with a pair of morphisms

p(g, f) : B(f)→ B(g ◦ f) q(g, f) : B(g)→ B(g ◦ f)

satisfying p(g, f) ◦ b+(f) = q(g, f) ◦ b−(g). The axioms for a lax functor (Definition 2.2.4.5)
then translate to the following additional conditions:

(a) For every morphism f : X → Y in the category D, p(idY , f) is the identity morphism
from B(f) to itself.

(b) For every morphism f : X → Y in the category D, q(f, idX) is the identity morphism
from B(f) to itself.

(c) For every composable triple of 1-morphisms W f−→ X
g−→ Y

h−→ Z in the category D, we
have

p(h ◦ g, f) = p(h, g ◦ f) ◦ p(g, f) q(h, g ◦ f) = q(h ◦ g, f) ◦ q(h, g)

p(h, g ◦ f) ◦ q(g, f) = q(h ◦ g, f) ◦ p(h, g).

We wish to show that there exists a unique functor of ordinary categories F : Tw(D)→ C
such that G = F+, where F+ is the lax functor associated to F by Construction 8.1.3.12.
For this condition to be satisfied, the functor F must satisfy the following conditions:

(0) For each object X ∈ D, we have F (idX) = G(X) (this guarantees that G and F+

coincide on objects).
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(1) For each morphism f : X → Y in D (regarded as an object of Tw(D)), we have
F (f) = B(f), and the morphisms b−(f) and b+(f) are given by F (idX , f) and
F (f, idY ), respectively (this guarantees that G and F+ coincide on 1-morphisms, and
therefore also on 2-morphisms).

(2) For every pair of composable 1-morphisms X f−→ Y
g−→ Z, the morphisms p(g, f) : B(f)→

B(g ◦ f) and q(g, f) : B(g) → B(g ◦ f) are given by F (idX , g) : F (f) → F (g ◦ f)
and F (f, idZ) : F (g)→ F (g ◦ f), respectively (this guarantees that the composition
constraints on G and F+ coincide).

Note that the value of F on each object of Tw(D) is determined by condition (1). Moreover,
if (u, v) is a morphism from f : X → Y to f ′ : X ′ → Y ′ in the category Tw(D), then
condition (2) guarantees that F (u, v) must be equal to the composition

F (f) = B(f) q(f,u)−−−→ B(f ◦ u) p(v,f◦u)−−−−−→ B(v ◦ f ◦ u) = B(f ′) = F (f ′).

This proves the uniqueness of the functor F .
To prove existence, we define F on objects f of Tw(D)op by the formula F (f) = B(f),

and on morphisms (u, v) : f → f ′ by the formula F (u, v) = p(v, f ◦ u) ◦ q(f, u). For any
morphism f : X → Y in C, we can use (a) and (b) to compute

F (idX , idY ) = p(idX , f) ◦ q(f, idY ) = idB(f) ◦ idB(f) = idB(f),

so that F carries identity morphisms in Tw(D) to identity morphisms in C. To complete the
proof that F is a functor, we note that for every pair of composable morphisms

(f : X → Y ) (u,v)−−−→ (f ′ : X ′ → Y ′) (u′,v′)−−−−→ (f ′′ : X ′′ → Y ′′)

in the twisted arrow category Tw(D), the identities given in (c) allow us to compute

F (u′, v′) ◦ F (u, v) = p(v′, f ′ ◦ u′) ◦ q(f ′, u′) ◦ p(v, f ◦ u) ◦ q(f, u)
= p(v′, v ◦ f ◦ u ◦ u′) ◦ q(v ◦ f ◦ u, u′) ◦ p(v, f ◦ u) ◦ q(f, u)
= p(v′, v ◦ f ◦ u ◦ u′) ◦ p(v, f ◦ u ◦ u′) ◦ q(f ◦ u, u′) ◦ q(f, u)
= p(v′ ◦ v, f ◦ u ◦ u′) ◦ q(f, u ◦ u′)
= F (u ◦ u′, v′ ◦ v).

We now complete the proof by showing that the functor F satisfies conditions (0), (1),
and (2). Condition (0) is an immediate consequence of (∗). To prove (2), we note that for
any pair of composable morphisms X f−→ Y

g−→ Z in D, identities (a) and (b) yield equalities

F (idX , g) = p(g, f) ◦ q(f, idX) = p(g, f) F (f, idZ) = p(idZ , g ◦ f) ◦ q(g, f) = q(g, f).
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To prove (1), we note that if f : X → Y is a morphism in D, then we have

F (idX , f) = p(f, idX ◦ idX) ◦ q(idX , idX)
= p(f, idX) ◦ idG(X)

= p(f, idX) ◦ b+(idX)
= q(f, idX) ◦ b−(f)
= idB(f) ◦b−(f)
= b−(f),

and a similar calculation yields F (f, idY ) = b+(f).

8.1.4 Cospans in ∞-Categories

03L4Let C be an ∞-category, and let Cospan(C) denote the simplicial set of cospans in C
(Construction 8.1.3.1). In the special case where C = N•(C0) is the nerve of an ordinary
category C0 which admits pushouts, Corollary 8.1.3.15 supplies an isomorphism of Cospan(C)
with the Duskin nerve of the 2-category Cospan(C0) of Example 2.2.2.1. In particular,
Cospan(C) is an (∞, 2)-category (see Proposition 5.4.1.5). Our goal in this section is to
prove an ∞-categorical generalization of this result.

Proposition 8.1.4.1. 03L5Let C be an ∞-category. Then the simplicial set Cospan(C) is an
(∞, 2)-category if and only if C admits pushouts.

Our proof of Proposition 8.1.4.1 will require several steps. The main ingredient is the
following characterization of thin 2-simplices of Cospan(C), which we will establish in §8.1.5:

Proposition 8.1.4.2. 03L6Let C be an ∞-category and let σ be a 2-simplex of Cospan(C), which
we identify with a diagram

03L7X0,0

!!

X1,1

!!}}

X2,2

}}
X0,1

!!

X1,2

}}
X0,2

(8.6)

in the ∞-category C. Then σ is thin (in the sense of Definition 2.3.2.3) if and only if the
inner region is a pushout square in the ∞-category C.

https://kerodon.net/tag/03L4
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Corollary 8.1.4.3.03L8 Let C be an ∞-category. Then every degenerate 2-simplex of Cospan(C)
is thin.

Proof. Let σ be a 1-simplex of CospanL,R(C), corresponding to a diagram X
f−→ B

g←− Y

in the ∞-category C where f belongs to L and g belongs to R. We will show that the
left-degenerate 2-simplex s1

0(σ) is thin; a similar argument will show that the right-degenerate
2-simplex s1

1(σ) is thin (see Remark 8.1.3.4). Unwinding the definitions, we see that s1
0(σ)

corresponds to a diagram in C of the form

X

idX

  

X

idX

~~

f

  

Y

g

��
X

f

  

B

idB

~~
B.

By virtue of Proposition 8.1.4.2, it will suffice to show that the inner region of the diagram
is a pushout square in C. This follows from Corollary 7.6.3.24, since idB and idX are
isomorphisms in C.

Lemma 8.1.4.4.048T Let C be an ∞-category and let σ0 : Λ2
1 → Cospan(C) be a morphism of

simplicial sets, corresponding to a diagram

03LA X0,0

!!

X1,1

u

}}

v

!!

X2,2

}}
X0,1 X1,2

(8.7)

in the ∞-category C. Then any commutative diagram

048U X1,1
u //

v

��

X1,2

��
X0,1 // X0,2

(8.8)

can be obtained from an extension of σ0 to a 2-simplex of Cospan(C). In particular, if X1,2
and X0,1 admit a pushout along X1,1, then σ0 can be extended to a thin 2-simplex of C.

https://kerodon.net/tag/03L8
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Proof. Let us identify Tw(∆2) with the simplicial set N•(Q), where Q denotes the partially
ordered set {(i, j) ∈ [2]op × [2] : i ≤ j}. Under this identification, Tw(Λ2

1) corresponds to
the simplicial subset N•(Q) ⊆ N•(Q), where Q = Q \ {(0, 2)}, so σ0 determines a diagram
τ : N•(Q)→ C.

Set Q0 = Q \ {(0, 0), (2, 2)} and τ0 = τ |N•(Q0). Lemma 8.1.4.4 is equivalent to the
assertion that the restriction map Cτ/ → Cτ0/ is surjective on vertices. To prove this, it
will suffice to show that the inclusion map N•(Q0) ↪→ N•(Q) is right anodyne (Corollary
4.3.6.13), or equivalently that it is right cofinal (Proposition 7.2.1.3). This is a special case of
Corollary 7.2.3.7, since the inclusion map Q0 ↪→ Q has a left adjoint (given by (0, 0) 7→ (0, 1)
and (2, 2) 7→ (1, 2)).

Remark 8.1.4.5. 03LBLet C be an∞-category and suppose we are given a morphism of simplicial
sets φ : Tw(∆2)→ C, which we display as a diagram

X0,0

!!

X1,1

}} !!

X2,2

}}
X0,1

!!

X1,2

}}
X0,2.

The proof of Lemma 8.1.4.4 shows that φ is a colimit diagram if and only if the inner region
is a pushout square.

We now study the problem of filling outer horns in simplicial sets of the form Cospan(C).

Lemma 8.1.4.6. 048VLet U : C → D be an inner fibration of simplicial sets. Suppose we are
given an integer n ≥ 3 and a lifting problem

048WΛn0
σ0 //

��

Cospan(C)

Cospan(U)

��
∆n σ //

;;

Cospan(D),

(8.9)

where σ0 corresponds to a morphism of simplicial sets F0 : Tw(Λn0 )→ C with the following
properties:

https://kerodon.net/tag/03LB
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(a) The morphism F0 carries the edge (0, 0)→ (0, 1) of Tw(Λn0 ) to a U -cocartesian edge of
C.

(b) The morphism F0 carries the edge (1, n)→ (0, n) to a U -cartesian edge of C.

Then the lifting problem (8.9) admits a solution.

Proof. Using Proposition 8.1.3.7, we can rewrite (8.9) as a lifting problem

048X Tw(Λn0 ) F0 //

��

C

U

��
Tw(∆n) F //

<<

D .

(8.10)

Let P denote the set of all ordered pairs (i, j), where i and j are integers satisfying
0 ≤ i ≤ j ≤ n. We regard P as a partially ordered set by identifying it with its image in
the product [n]op × [n] (so that (i, j) ≤ (i′, j′) if and only if i′ ≤ i and j ≤ j′). In what
follows, we will identify Tw(∆n) with the nerve N•(P ); under this identification, Tw(Λn

0 )
corresponds to a simplicial subset K0 ⊆ N•(P ).

Let S = {(i0, j0) < (i1, j1) < · · · < (id, jd)} be a nonempty linearly ordered subset of P ,
so that we have inequalities 0 ≤ id ≤ id−1 ≤ · · · ≤ i0 ≤ j0 ≤ j1 ≤ · · · ≤ jd ≤ n. In this case,
we write τS for the corresponding nondegenerate d-simplex of N•(P ). We will say that S is
basic if τS is contained in K0. Equivalently, S is basic if the set {i0, i1, · · · , id, j0, j1, · · · , jd}
does not contain {1 < 2 < · · · < n}. If S is not basic, we let pr(S) denote the largest integer
j such that S contains the pair (i, j) for some i ≠ 0. If no such integer exists, we define
pr(S) = 0. We will refer to pr(S) as the priority of S. We say that S is prioritized if it is
not basic and contains the pair (0,pr(S)).

Let {S1, S2, · · · , Sm} be an enumeration of the collection of all prioritized linearly ordered
subsets of P which satisfies the following conditions:

• The sequence of priorities pr(S1), pr(S2), · · · ,pr(Sm) is nondecreasing. That is, if
1 ≤ k ≤ ℓ ≤ m, then we have pr(Sk) ≤ pr(Sℓ).

• If pr(Sk) = pr(Sℓ) for k ≤ ℓ, then |Sk| ≤ |Sℓ|.

For 1 ≤ ℓ ≤ m, let τℓ ⊆ N•(P ) denote the simplex τSℓ
and let Kℓ ⊆ N•(P ) denote the union

of K0 with the simplices {τ1, τ2, · · · , τℓ}, so that we have inclusion maps

K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Km.

We claim that Km = N•(P ): that is, Km contains τS for every nonempty linearly ordered
subset S ⊆ P . If S is basic, there is nothing to prove. We may therefore assume that S

https://kerodon.net/tag/048X
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has priority p for some integer p ≥ 0. The union S ∪ {(0, p)} is then a prioritized linearly
ordered subset of P , and therefore coincides with Sℓ for some 1 ≤ ℓ ≤ m. In this case, we
have τS ⊆ τℓ ⊆ Kℓ ⊆ Km.

We will complete the proof by constructing a compatible sequence of maps Fℓ : Kℓ → C
extending F0 and satisfying U ◦Fℓ = F |Kℓ

. Fix an integer 1 ≤ ℓ ≤ m, and suppose that Fℓ−1
has already been constructed. Write Sℓ = {(i0, j0) < (i1, j1) < · · · < (id, jd)}, so that the
simplex τℓ has dimension d. Let p be the priority of Sℓ. Since Sℓ is prioritized, it contains
(0, p); we can therefore write (0, p) = (id′ , jd′) for some integer 0 ≤ d′ ≤ d. Let L ⊆ ∆d

denote the inverse image of Kℓ−1 under the map τℓ : ∆d → N•(P ). We will show that L
coincides with the horn Λdd′ , so that the pullback diagram of simplicial sets

L //

��

Kℓ−1

��
∆d τℓ // Kℓ.

is also a pushout square (Lemma 3.1.2.11). This can be stated more concretely as follows:

(∗) Let (i, j) be an element of Sℓ, and set S′ = Sℓ\{(i, j)}. Then the simplex τS′ is contained
in Kℓ−1 if and only if (i, j) ̸= (0, p).

We first prove (∗) in the case where (i, j) ̸= (0, p); in this case, we wish to show that τS′ is
contained in Kℓ−1. If S′ is basic, then τS′ is contained in K0 and there is nothing to prove.
Let us therefore assume that S′ is not basic. Let p′ = pr(S′) denote the priority of S′. Then
the union S′ ∪ {(0, p′)} is a prioritized subset of P , and therefore has the form Sk for some
1 ≤ k ≤ m. By construction, we have pr(Sk) = p′ ≤ p = pr(Sℓ). Moreover, if p′ = p, then
our assumption (i, j) ̸= (0, p) guarantees that Sk = S′, so that |Sk| < |Sℓ|. It follows that
k < ℓ, so that we have τS′ ⊆ τk ⊆ Kk ⊆ Kℓ−1.

We now prove (∗) in the case (i, j) = (0, p); in this case, we wish to show that τS′ is not
contained in Kℓ−1. Assume otherwise. Then, since S′ is not basic, it is contained in Sk for
some k < ℓ. The inequalities

p = pr(S′) ≤ pr(Sk) ≤ pr(Sℓ) = p.

ensure that Sk has priority p. Since Sk is prioritized, it contains (0, p), and therefore contains
the union Sℓ = S′ ∪ {(0, p)}. The inequality |Sk| ≤ |Sℓ| then forces k = ℓ, contradicting our
assumption that k < ℓ. This completes the proof of (∗).

Let ρ0 denote the composite map Λd
d′ = L

τℓ−→ Kℓ−1
Fℓ−1−−−→ C. To complete the proof, it
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will suffice to show that the lifting problem

048Y Λdd′
ρ0 //

��

C

U

��
∆d

??

F◦τℓ // D

(8.11)

admits a solution. We consider three cases:

• If 0 < d′ < d, then the lifting problem (8.11) admits a solution by virtue of our
assumption that U is an inner fibration of simplicial sets.

• Suppose that d′ = 0: that is, the pair (0, p) is the smallest element of Sℓ. Then Sℓ
does not contain any pairs (i, j) with i ̸= 0, so we have p = 0. Since the set Sℓ is not
basic, we must have Sℓ = {(0, 0) < (0, 1) < · · · < (0, n− 1) < (0, n)}. In this case, the
lifting problem (8.11) admits a solution by virtue of assumption (a).

• Suppose that d′ = d: that is, the pair (0, p) is the largest element of Sℓ. Our assumption
that Sℓ is not basic then guarantees that p = n and (1, n) ∈ Sℓ: that is, we have
Sℓ = {(i0, j0) < (i1, j1) < · · · < (1, n) < (0, n)}. In this case, the lifting problem (8.11)
admits a solution by virtue of assumption (b).

Specializing Lemma 8.1.4.6 to the case D = ∆0, we obtain the following:

Lemma 8.1.4.7.03LC Let C be an ∞-category and let σ0 : Λn0 → Cospan(C) be a morphism of
simplicial sets, which we identify with a diagram X : Tw(Λn

0 )→ Cospan(C). Assume that
n ≥ 3 and that the morphisms X(0, 0)→ X(0, 1) and X(1, n)→ X(0, n) are isomorphisms
in C. Then σ0 can be extended to an n-simplex of Cospan(C).

Proof of Proposition 8.1.4.1. Let C be an ∞-category. By virtue of Lemma 8.1.4.7 and
Corollary 8.1.4.3, the simplicial set Cospan(C) satisfies conditions (2) and (3) of Definition
5.4.1.1. Since Cospan(C) is isomorphic to Cospan(C)op (Remark 8.1.3.4), it also satisfies
condition (4) of Definition 5.4.1.1. It follows that Cospan(C) is an (∞, 2)-category if and
only if it satisfies the following condition:

(∗) Every morphism of simplicial sets Λ2
1 → Cospan(C) can be extended to a thin 2-simplex

of Cospan(C).

Using Lemma 8.1.4.4, we can rewrite condition (∗) as follows:

https://kerodon.net/tag/048Y
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(∗′) For every diagram

X

��

Y

�� ��

Z

��
B C

in the ∞-category C, there exists a pushout of B and C along Y .

It is clear that if the ∞-category C admits pushouts, then it satisfies condition (∗′). The
converse follows by applying condition (∗′) to diagrams of the form

X

idX

  

Y

��   

Z

idZ

��
X Z.

Corollary 8.1.4.8. 03LDLet F : C → D be a functor of ∞-categories, where C and D admit
pushouts. The following conditions are equivalent:

(1) The functor F carries pushout squares in C to pushout squares in D.

(2) The induced map Cospan(F ) : Cospan(C)→ Cospan(D) is a functor of (∞, 2)-categories,
in the sense of Definition 5.4.7.1.

Proof. The implication (1) ⇒ (2) follows immediately from the criterion of Proposition
8.1.4.2. For the converse implication, suppose that Cospan(F ) : Cospan(C)→ Cospan(D) is
a functor of 2-categories, and let σ : ∆1 ×∆1 → C be a pushout square, which we display as
a diagram

X //

��

X0

��
X1 // X01.

Let ρ : Tw(∆2)→ ∆1 ×∆1 denote the morphism of simplicial sets given on vertices by the
formula ρ(i, j) = (max(0, 1− i),max(0, j− 1)). Then σ ◦ ρ can be identified with a 2-simplex

https://kerodon.net/tag/03LD
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τ of Cospan(C), corresponding to a diagram

X0

id

  

X

}} !!

X1

id

~~
X0

!!

X1

}}
X01

in the ∞-category C. It follows from the criterion of Proposition 8.1.4.2 that τ is a thin
2-simplex of Cospan(C). If Cospan(F ) is a functor of (∞, 2)-categories, then it carries τ
to a thin 2-simplex of Cospan(D). Applying the criterion of Proposition 8.1.4.2 again, we
conclude that F (σ) is a pushout square in D.

8.1.5 Thin 2-Simplices of Cospan(C)

03LE Let C be an ∞-category. Our goal in this section is to prove Proposition 8.1.4.2, which
provides necessary and sufficient conditions for a 2-simplex of the simplicial set Cospan(C) to
be thin. By virtue of Remark 8.1.4.5, it will suffice to prove the following pair of assertions:

Lemma 8.1.5.1.03LF Let C be an ∞-category and let σ be a 2-simplex of Cospan(C), which we
identify with a diagram φ : Tw(∆2)→ C. If σ is thin, then φ is a colimit diagram.

Lemma 8.1.5.2.03LG Let C be an ∞-category and let σ be a 2-simplex of Cospan(C), which we
identify with a diagram φ : Tw(∆2)→ C. If φ is a colimit diagram, then σ is thin.

Proof of Lemma 8.1.5.1. Let Q denote the partially ordered set appearing in the proof of
Lemma 8.1.4.4, so that we can identify Tw(Λ2

1) with the nerve of Q. Set φ0 = φ|N•(Q).
Assume that σ is thin. We wish to show that the restriction map Cφ/ → Cφ0/ is a trivial
Kan fibration: that is, every lifting problem

03LH ∂∆n //

��

Cφ/

��
∆n

==

// Cφ0/

(8.12)

admits a solution.

https://kerodon.net/tag/03LE
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Let K denote the coproduct (Tw(∆2) ⋆ ∂∆n)∐(N•(Q)⋆∂∆n)(N•(Q) ⋆∆n), which we regard
as a simplicial subset of Tw(∆2) ⋆∆n. Unwinding the definitions, we can identify the lifting
problem (8.12) with a morphism of simplicial sets τ0 : K → C satisfying τ0|Tw(∆2) = φ. We
wish to show that τ0 can be extended to a morphism τ : Tw(∆2) ⋆∆n → C.

Let ι : Tw(∆2) ⋆∆n → Tw(∆n+3) be the morphism of simplicial sets given on vertices
by the formula

ι(x) =

(i, j) if x = (i, j) ∈ Tw(∆2)
(0, x+ 3) if x ∈ ∆n.

The morphism ι has a left inverse ρ : Tw(∆n+3)→ Tw(∆2) ⋆∆n, given on vertices by the
formula

ρ(i, j) =

(i, j) ∈ Tw(∆2) if j ≤ 2
j − 3 ∈ ∆n otherwise.

We observe that ι and ρ restrict to morphisms of simplicial subsets

ι0 : K → Tw(Λn+3
1 ) ρ0 : Tw(Λn+3

1 )→ K,

so that we have a commutative diagram of simplicial sets

K
ι0 //

��

Tw(Λn+3
1 ) ρ0 //

��

K

��
Tw(∆2) ⋆∆n ι // Tw(∆n+3) ρ // Tw(∆2) ⋆∆n

where the horizontal compositions are equal to the identity.
The composition τ0 ◦ρ0 can be identified with a morphism of simplicial sets ψ0 : Λm+3

1 →
Cospan(C) having the property that the composition

∆2 ≃ N•({0 < 1 < 2}) ψ0−→ Cospan(C)

coincides with σ. Since σ is thin, we can extend ψ0 to an (n+ 3)-simplex ψ of Cospan(C),
which we identify with a map τ ′ : Tw(∆n+3)→ C. It follows that the composition τ = τ ′ ◦ ι
is a morphism Tw(∆2) ⋆∆n → C satisfying τ |K = τ0.

Proof of Lemma 8.1.5.2. Let C be an ∞-category and let σ be a 2-simplex of Cospan(C),
which we identify with a diagram φ : Tw(∆2)→ C. Assume that φ is a colimit diagram. We
wish to show that σ is thin. We proceed by a (somewhat more complicated) variation on
the proof of Lemma 8.1.4.7.



8.1. TWISTED ARROWS AND COSPANS 1697

Fix integers 0 < q < n with n ≥ 3, and suppose that we are given a morphism
f0 : Λnq → Cospan(C) for which the composition

∆2 ≃ N•({q − 1 < q < q + 1}) ↪→ Λnq
f0−→ Cospan(C)

is equal to σ; we wish to show that f0 can be extended to an n-simplex of Cospan(C). Using
Proposition 8.1.3.7, we can identify f0 with a morphism of simplicial sets F0 : Tw(Λnq )→ C;
we wish to show that F0 admits an extension Tw(∆n)→ C.

Let P denote the set of all ordered pairs (i, j), where i and j are integers satisfying
0 ≤ i ≤ j ≤ n. We regard P as a partially ordered set by identifying it with its image in
the product [n]op × [n] (so that (i, j) ≤ (i′, j′) if and only if i′ ≤ i and j ≤ j′). In what
follows, we will identify Tw(∆n) with the nerve N•(P ); under this identification, Tw(Λn

q )
corresponds to a simplicial subset K0 ⊆ N•(P ).

Let S = {(i0, j0) < (i1, j1) < · · · < (id, jd)} be a nonempty linearly ordered subset
of P , so that we have inequalities 0 ≤ id ≤ id−1 ≤ · · · ≤ i0 ≤ j0 ≤ j1 ≤ · · · ≤ jd ≤ n.
In this case, we write τS for the corresponding nondegenerate d-simplex of N•(P ). Let
C(S) denote the set of integers {i0, i1, · · · , id, j0, j1, · · · , jd}, which we regard as a subset of
[n] = {0 < 1 < · · · < n}; we will refer to C(S) as the content of S.

• We will say that S is basic if C(S) ∪ {q} ≠ [n]. Equivalently, S is basic if the simplex
τS is contained in K0.

• Suppose that S is not basic and that it contains an ordered pair of the form (p, q + 1).
We will say that S is low if the largest such integer p satisfies p ≤ q − 2. In this case,
we will denote p by pr(S) and refer to it as the priority of S.

• Suppose that S is not basic and that it contains an ordered pair of the form (q − 1, r).
We will say that S is high if the smallest such integer r satisfies r ≥ q + 2.

Note that the set S cannot be both low and high, since the elements (p, q + 1) and (q − 1, r)
are incomparable in P when p < q < r. Moreover, if S is low, then any nonempty subset
S′ ⊆ S is either low (and satisfies pr(S′) ≤ pr(S)) or satisfies q + 1 /∈ C(S′), so that S′
is basic (the set S′ cannot contain any elements of the form (q + 1, r), since these are
incomparable with (p, q+ 1)). Consequently, the collection of simplices of the form τS where
S is either basic or low determine a simplicial subset Klow ⊆ N•(P ). Similarly, the collection
of simplices of the form τS where S is either basic or high determine a simplicial subset
Khigh ⊆ N•(P ), and the intersection Klow ∩Khigh is equal to K0.

We will prove the following:

(∗) The inclusion maps K0 ↪→ Klow and K0 ↪→ Khigh are inner anodyne.
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We will prove that the inclusion map K0 ↪→ Klow is inner anodyne; the analogous assertion
for the inclusion K0 ↪→ Khigh follows by a similar argument. Let us say that a linearly
ordered subset S ⊆ P is prioritized if it low and contains the ordered pair (p, q), where
p = pr(S) denotes the priority of S.

Let {S1, S2, · · · , Sm} be an enumeration of the collection of all prioritized low subsets of
P which satisfies the following conditions:

• The sequence of priorities pr(S1), pr(S2), · · · ,pr(Sm) is nondecreasing. That is, if
1 ≤ k ≤ ℓ ≤ m, then we have pr(Sk) ≤ pr(Sℓ).

• If pr(Sk) = pr(Sℓ) for k ≤ ℓ, then |Sk| ≤ |Sℓ|.

For 1 ≤ ℓ ≤ m, let τℓ ⊆ N•(P ) denote the simplex τSℓ
and let Kℓ denote the union of K0

with the simplices {τ1, τ2, · · · , τℓ}, so that we have inclusion maps

K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Km.

We claim that Km = Klow: that is, every low subset S ⊆ P is contained in Sℓ for some
1 ≤ ℓ ≤ m. This is clear: if p = pr(S) is the priority of S, then the union S ∪ {(p, q)} is a
prioritized low subset of P (having the same priority p).

We will prove (∗) by showing that, for 1 ≤ ℓ ≤ m, the inclusion map Kℓ−1 ↪→ Kℓ is
inner anodyne. Set Sq = {(i0, j0) < (i1, j1) < · · · < (id, jd)}. Let p denote the priority of Sℓ.
Since Sℓ is prioritized, it contains the ordered pair (p, q). We therefore have (p, q) = (ic, jc)
for some 0 ≤ c ≤ d. Note that since p ≤ q − 2, we must have c > 0: otherwise, we have
q − 1 /∈ C(Sℓ), contradicting our assumption that Sℓ is not basic. Since Sℓ also contains
(p, q + 1), we must also have c < d. Let L ⊆ ∆d denote the inverse image of Kℓ−1 under the
map τℓ : ∆d → N•(P ). We will complete the proof of (∗) by showing that L coincides with
the inner horn Λdc , so that the pullback diagram of simplicial sets

L //

��

Kℓ−1

��
∆d τℓ // Kℓ

is also a pushout square (Lemma 3.1.2.11). This can be stated more concretely as follows:

(∗′) Let (i, j) be an element of Sℓ, and set S′ = Sℓ \ {(i, j)}. Then the simplex τS′ is
contained in Kℓ−1 if and only if (i, j) ̸= (p, q).

We first prove (∗′) in the case where (i, j) ̸= (p, q); in this case, we wish to show that τS′ is
contained in Kℓ−1. If S′ is basic, then τS′ is contained in K0 and there is nothing to prove.
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We may therefore assume that S′ is not basic, and is therefore low. If (i, j) ̸= (p, q + 1),
then S′ is a prioritized low subset of P satisfying pr(S′) = p = pr(Sℓ) and |S′| < |Sℓ|. It
follows that S′ = Sk for some k < ℓ, so that τS′ is contained in Kk ⊆ Kℓ−1. In the case
(i, j) = (p, q + 1), the set S′ has priority p′ = pr(S′) < p. It follows that S′ ∪ {(p′, q)} is a
prioritized low subset of P having priority p′ < pr(Sq), and is therefore of the form Sk for
some k < ℓ. In this case, we again conclude that τS′ is contained in Kk ⊆ Kℓ−1.

We now prove (∗′) in the case where (i, j) = (p, q); in this case, we wish to show that
τS′ is not contained in Kℓ−1. Note that, since S′ contains (p, q + 1), we have C(S′) ∪ {q} =
C(Sℓ)∪{q}. Since Sℓ is not basic, it follows that S′ is not basic. Assume, for a contradiction,
that τS′ is contained in Kℓ−1; it follows that we have S′ ⊆ Sk for some 1 ≤ k ≤< ℓ. We
then have pr(Sk) ≤ pr(Sℓ) = p. Since Sk contains (p, q+ 1), we must have pr(Sk) = p. Since
Sk is prioritized, it contains (p, q), and therefore contains S′ ∪ {(p, q)} = Sℓ. The inequality
k < ℓ guarantees that |Sk| ≤ |Sℓ|. It follows that Sk = Sℓ, contradicting our assumption
that k < ℓ. This completes the proof of (∗).

Since C is an ∞-category, assertion (∗) guarantees that the morphism F0 : K0 → C
admits an extension Flow : Klow → C (Proposition 1.5.6.7). Similarly, the morphism F0
admits an extension Fhigh : Khigh → C. Let K denote the union of Klow with Khigh (as
simplicial subsets of N•(P )). Since the intersection Klow ∩Khigh coincides with K0, we can
amalgamate Flow with Fhigh to obtain a morphism of simplicial sets F : K → C. We will
complete the proof of Proposition 8.1.4.2 by showing that F can be extended to a morphism
N•(P )→ C.

Set P− = {(i, j) ∈ P : (i, j) < (q−1, q+ 1)} and P+ = {(i, j) ∈ P : (i, j) > (q−1, q+ 1)}.
Let us say that a nonempty linearly ordered subset S ⊆ P is decomposable if the union
S ∪ {(q − 1, q + 1)} is also linearly ordered. In this case, we can write S (uniquely) as a
union S− ∪ S0 ∪ S+, where S− ⊆ P−, S0 ⊆ {(q − 1, q + 1)}, and S+ ⊆ P+. The collection of
simplices τS , where S is decomposable, span a simplicial subset of N•(P ) which will identify
with the join N•(P−) ⋆ {(q − 1, q + 1)} ⋆N•(P+).

We next claim that N•(P ) is the union of K with the join N•(P−)⋆{(q−1, q+1)}⋆N•(P+).
In other words, if a nonempty linearly ordered subset S ⊆ P is not decomposable, then τS
is contained in K. Choose an element (i, j) ∈ S which is incomparable with (q − 1, q + 1)
in the partially ordered set P . Without loss of generality, we may assume that i < q − 1
and j < q + 1. If S is basic, there is nothing to prove. We may therefore assume that q + 1
belongs to the content C(S). Note that ordered pairs of the form (q+ 1, r) are incomparable
with (i, j), and therefore cannot be contained in S. It follows that S contains an element of
the form (p, q+1). Since (p, q+1) is comparable with (i, j) in P , we must have p ≤ i ≤ q−2.
It follows that S is low, so that τS is contained in Klow ⊆ K.

Let K ′ ⊆ K denote the intersection of K with the join N•(P−) ⋆ {(q− 1, q+ 1)} ⋆N•(P+),
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so that we have a pushout diagram of simplicial sets

K ′ //

��

K

��
N•(P−) ⋆ {(q − 1, q + 1)} ⋆N•(P+) // N•(P ).

Set F ′ = F |K′ . To complete the proof, it will suffice to show that F ′ can be extended to a
morphism of simplicial sets N•(P−) ⋆ {(q − 1, q + 1)} ⋆N•(P+)→ C.

We now give a more explicit description of K ′. Let us say that a linearly ordered subset
S+ ⊆ P+ is old if the simplex τS+∪{(q−1,q+1)} is contained in K. Let S ⊆ P be an arbitrary
decomposable subset, and write S = S− ∪ S0 ∪ S+ as above. We then make the following
observations:

(a) Suppose that S0 = {(q − 1, q + 1)}. Then replacing S by the subset S0 ∪ S+ does not
change the set C(S) ∪ {q}. In particular, S is basic if and only if S0 ∪ S+ is basic.
Moreover, since S− does not contain any pairs of the form (p, q + 1) for p ≤ q − 1, it
follows that S is low if and only if S0 ∪ S+ is low. Similarly, S is high if and only if
S0 ∪ S+ is high. It follows that τS is contained in K if and only if τS0∪S+ is contained
in K: that is, if and only if S+ is old.

(b) Suppose that S0 = ∅. In this case, we claim that τS is automatically contained in K.
Assume otherwise. Then S is not basic, so the set C(S) contains the element q + 1.
Since ordered pairs of the form (q + 1, q′) are incomparable with (q − 1, q + 1) for
q′ > q + 1, it follows that S contains an ordered pair of the form (p, q + 1) for some
p ≤ q + 1. Since S is not low, we must have p ≥ q − 1. By assumption, S does not
contain (q − 1, q + 1), so we must have p ∈ {q, q + 1}. By the same reasoning (using
the fact that C(S) contains q − 1 and S is not high), we conclude that S contains an
element of the form (q − 1, r) for r ∈ {q − 1, q}. This is a contradiction, since S is
linearly ordered and the ordered pairs (p, q + 1) and (q − 1, r) are incomparable in P .

Let A ⊆ N•(P+) denote the simplicial subset spanned by the simplices τS+ , where S+ is old.
Combining (a) and (b), we deduce that K ′ can be identified with the pushout

(N•(P−) ⋆ {(q − 1, q + 1)} ⋆ A)
∐

N•(P−)⋆A
(N•(P−) ⋆N•(P+)).

Note that, since the restriction of f0 to the simplex N•({q − 1 < q < q + 1}) coincides
with σ, the restriction of F ′ to the simplicial subset N•(P−) ⋆ {(q − 1, q + 1)} ⊆ K can
be identified with the diagram φ : Tw(∆2) → C. Let φ0 denote the restriction of φ to
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N•(P−). Unwinding the definitions, we see that the problem of extension of F ′ to a morphism
N•(P−) ⋆ {(q − 1, q + 1)} ⋆N•(P+)→ C can be rewritten as a lifting problem

A //

��

Cφ/

��
N•(P+) //

<<

Cφ0/ .

This lifting problem admits a solution by virtue of our assumption that φ is a colimit diagram
in C.

8.1.6 Restricted Cospans

048Z Let C be an ∞-category, and let Cospan(C) be the simplicial set introduced in Construc-
tion 8.1.3.1. By definition, the edges of Cospan(C) correspond to cospans in the ∞-category
C: that is, pairs of morphisms X f−→ B

g←− Y having a common target. In practice, it will
sometimes be useful to consider a variant of this construction, where we place additional
restrictions on the morphisms f and g.

Definition 8.1.6.1 (Restricted Cospans).0490 Let C be a simplicial set and let L and R be
collections of edges of C. We let CospanL,R(C) denote the simplicial subset of Cospan(C)
whose n-simplices are given by diagrams X : Tw(∆n) → C which satisfy the following
condition:

• For every pair of integers 0 ≤ i ≤ j ≤ n, the edge Xi,i → Xi,j belongs to L and the
edge Xj,j → Xi,j belongs to R.

Remark 8.1.6.2 (Symmetry).0491 Let C be a simplicial set and let L and R be collections of
edges of C. Then the isomorphism Cospan(C) ∼−→ Cospan(C)op of Remark 8.1.3.4 restricts to
an isomorphism of simplicial subsets CospanL,R(C) ∼−→ CospanR,L(C)op.

Remark 8.1.6.3.0492 Let C be a simplicial set and let L and R be collections of edges of C.
Suppose we are given a morphism of simplicial sets f : D → Cospan(C), corresponding to
a morphism F : Tw(D)→ C (see Proposition 8.1.3.7). For every edge e : X → Y of D, let
eL : idX → e and eR : idY → e be the edges of Tw(D) described in Example 8.1.3.6. Then f
factors through the simplicial subset CospanL,R(C) if and only if the edge F (eL) belongs to
L and the edge F (eR) belongs to R, for every edge e of D.

Remark 8.1.6.4.0493 Let C be a simplicial set, let L and R be collections of edges of C, and let
CospanL,R(C) denote the restricted cospan construction of Definition 8.1.6.1. Note that a

https://kerodon.net/tag/048Z
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morphism of simplicial sets K → Cospan(C) factors through CospanL,R(C) if and only if its
restriction to the 1-skeleton sk1(K) factors through CospanL,R(C). In particular, if σ is a
2-simplex of CospanL,R(C) which is thin when viewed as a 2-simplex of Cospan(C), then it is
also thin when viewed as a 2-simplex of CospanL,R(C). For a partial converse, see Corollary
8.1.6.8.

We now formulate a criterion which guarantees that the simplicial set CospanL,R(C) is
an (∞, 2)-category.

Definition 8.1.6.5. 0494Let C be an ∞-category and let L and R be collections of morphisms
of C. We will say that L and R are pushout-compatible if, for every morphism f0 : X → X0
of C which belongs to L and every morphism f1 : X → X1 of C which belongs to R, there
exists a pushout diagram

X
f0 //

f1

��

X0

f ′1

��
X1

f ′0 // X01

where f ′0 belongs to L and f ′1 belongs to R.

Example 8.1.6.6. 0495Let C be an ∞-category, let L be a collection of morphisms of C, and let
R be the collection of all isomorphisms in C. Assume that L is stable under isomorphism
(that is, if f if a morphism of C which is isomorphic to an element of L in the ∞-category
Fun(∆1, C), then f also belongs to L). Then L and R are pushout-compatible.

Proposition 8.1.6.7. 0496Let C be an ∞-category and let L and R denote collections of
morphisms of C which are closed under composition. If L and R are pushout-compatible (in
the sense of Definition 8.1.6.5), then the simplicial set CospanL,R(C) is an (∞, 2)-category.

Proof. We will show that CospanL,R(C) satisfies each condition of Definition 5.4.1.1:

(1) Let σ0 : Λ2
1 → CospanL,R(C) be a morphism of simplicial sets; we wish to show that

σ0 can be extended to a thin 2-simplex of CospanL,R(C). Let us identify σ0 with a
diagram

0497X0,0

u

!!

X1,1

u′

}}

v

!!

X2,2

v′

}}
X0,1 X1,2

(8.13)

https://kerodon.net/tag/0494
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in the ∞-category C, where the morphisms u and v belong to L and the morphisms u′
and v′ belong to R. Combining our assumption that L and R are pushout-compatible
with Lemma 8.1.4.4, we can enlarge (8.13) to a commutative diagram

X0,0

u

!!

X1,1

u′

}}

v

!!

X2,2

v′

}}
X0,1

w

!!

X1,2

w′

}}
X0,2,

where w belongs to L, w′ belongs to R, and the lower square is a pushout. By virtue of
Proposition 8.1.4.2, this extension can be viewed as a thin 2-simplex of the simplicial
set Cospan(C). Using our assumption that L and R are closed under composition, we
see that σ belongs to the simplicial subset CospanL,R(C), and is therefore also thin
when regarded as a 2-simplex of CospanL,R(C) (Remark 8.1.6.4).

(2) Every degenerate 2-simplex of CospanL,R(C) is thin; this follows from Corollary 8.1.4.3
and Remark 8.1.6.4.

(3) Let n ≥ 3 and let σ0 : Λn
0 → CospanL,R(C) be a morphism of simplicial sets with the

property that the 2-simplex σ0|N•({0<1<n}) is left-degenerate. Using Lemma 8.1.4.7,
we can extend σ0 to an n-simplex σ of Cospan(C). Since every edge of ∆n is contained
in Λn0 , the extension σ is automatically contained in CospanL,R(C) (Remark 8.1.6.4).

(4) Let n ≥ 3 and let σ0 : Λn
n → CospanL,R(C) be a morphism of simplicial sets with the

property that the 2-simplex σ0|N•({0<n−1<n}) is right-degenerate. Then σ0 can be
extended to an n-simplex of CospanL,R(C); this follows by applying (3) to the opposite
simplicial set CospanL,R(C)op ≃ CospanR,L(C) (see Remark 8.1.6.2).

Corollary 8.1.6.8.0498 Let C be an ∞-category and let L and R denote collections of morphisms
of C which are closed under composition. If L and R are pushout-compatible, then a 2-simplex
of CospanL,R(C) is thin if and only if it is thin when viewed as a 2-simplex of the simplicial
set Cospan(C).

https://kerodon.net/tag/0498
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Proof. Let σ be a thin 2-simplex of CospanL,R(C); we will show that σ is also thin when
viewed as a 2-simplex of Cospan(C) (the reverse implication follows from Remark 8.1.6.4).
Choose a fully faithful functor f : C → D, where D is an ∞-category which admits pushouts
and the functor f preserves all pushout squares which exist in C (see Corollary 8.3.3.17).
Then f induces a morphism of simplicial sets F : CospanL,R(C)→ Cospan(D). The proof
of Proposition 8.1.6.7 shows that every morphism τ0 : Λ2

1 → CospanL,R(C) can be extended
to a 2-simplex τ of CospanL,R(C) which is thin when viewed as a 2-simplex of Cospan(C).
Since f preserves pushout squares, the criterion of Proposition 8.1.4.2 guarantees that F (τ)
is a thin 2-simplex of Cospan(D). Allowing τ0 to vary and invoking Proposition 5.4.7.9, we
deduce that F is a functor of (∞, 2)-categories. In particular, F (σ) is a thin 2-simplex of
Cospan(D). Using the criterion of Proposition 8.1.4.2 and the assumption that f is fully
faithful, we deduce that σ is also thin when viewed as a 2-simplex of Cospan(C).

Remark 8.1.6.9. 0499In the situation of Proposition 8.1.6.7, let σ be an n-simplex of the
(∞, 2)-category CospanL,R(C), corresponding to a diagram

049AX0,0

��

X1,1

����

· · · Xn−1,n−1

��~~

Xn,n

��
· · ·

��

· · ·

  ��

· · ·

��
X0,n−1

��

X1,n

~~
X0,n

(8.14)

in the ∞-category C. Then σ is contained in the pith Pith(CospanL,R(C)) if and only if
each of the rectangular regions in the diagram (8.14) is a pushout square in the ∞-category
C. This follows from the thinness criterion of Corollary 8.1.6.8 (together with Proposition
7.6.3.25).

Corollary 8.1.6.10 (Invertible Cospans). 049BLet C be an∞-category. Let L and R be collections
of morphisms of C which contain all isomorphisms and are closed under composition. Assume
that L and R are pushout-compatible and let e : X → Y be a morphism in the (∞, 2)-category
CospanL,R(C), which we identify with a diagram X

f−→ B
g←− Y in the ∞-category C. Then e

is an isomorphism in CospanL,R(C) if and only if f and g are isomorphisms in C.

https://kerodon.net/tag/0499
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Proof. Let C≃ denote the core of C (Construction 1.3.5.4). If f and g are isomorphisms,
then e can be regarded as an edge of the simplicial set Cospan(C≃). Since C≃ is a Kan
complex (Corollary 4.4.3.11), the simplicial set Cospan(C≃) is also a Kan complex (Corollary
8.1.3.11), so e is automatically an isomorphism when viewed as a morphism of Cospan(C≃)
(Proposition 1.4.6.10). Since the inclusion map Cospan(C≃) ↪→ CospanL,R(C) is a functor of
(∞, 2)-categories (Corollary 8.1.6.8), it follows that e is also an isomorphism when regarded
as a morphism of CospanL,R(C) (Remark 5.4.7.5).

Now suppose that e is an isomorphism in the (∞, 2)-category CospanL,R(C). Arguing as
in the proof of Proposition 5.4.6.6, we can produce a 3-simplex σ : ∆3 → Pith(CospanL,R(C)),
where σ|N•({0<1}) is the morphism e, σ|N•({0<2}) is the identity morphism idX , and σ|N•({1<3})
is the identity morphism idY . Let us identify σ with a diagram

X

f

��

Y

∼
g

�� ��

X

  ��

Y

��
B

u

��

C

�� ��

D

~~
X

v

��

Y

��
Z

in the ∞-category C. This diagram exhibits the identity morphism idX as a composition
of u with f . Since σ|N•({0<1<3}) is a thin 2-simplex of CospanL,R(C), the outer rectangular
region on the left is a pushout square in C (Corollary 8.1.6.8). It follows that the composition
of v with u is an isomorphism in C (since it is a pushout of the identity morphism idY ; see
Corollary 7.6.3.24). Applying the two-out-of-six property to the 3-simplex of C given by
the left edge of the diagram, we conclude that f is an isomorphism in C (see Proposition
5.4.6.5). A similar argument shows that g is an isomorphism in C.

Exercise 8.1.6.11.049C Show that, if the conditions of Corollary 8.1.6.10 are satisfied, then the
diagram Y

g−→ B
f←− X is a homotopy inverse of e, when regarded as a morphism from Y to

X in the (∞, 2)-category CospanL,R(C).

Corollary 8.1.6.12.049D Let C be an ∞-category containing objects X and Y . Let L and R be
collections of morphisms of C which are pushout-compatible, contain all isomorphisms of C,

https://kerodon.net/tag/049C
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and are closed under composition. Then X and Y are isomorphic as objects of the∞-category
C if and only if they are isomorphic as objects of the (∞, 2)-category CospanL,R(C).

8.1.7 Comparing C with Cospan(C)

049ELet C be a category which admits pushouts. Then there is a functor from C to the
2-category Cospan(C) of Example 2.2.2.1, which carries each object of C to itself and each
morphism f : X → Y to the cospan X f−→ Y

idY←−− Y . This observation has an ∞-categorical
counterpart:

Construction 8.1.7.1. 049FLet C be a simplicial set and let λ+ : Tw(C)→ C be the projection
map of Notation 8.1.1.6, carrying each vertex (f : X → Y ) of Tw(C) to the vertex Y ∈ C.
Under the bijection supplied by Proposition 8.1.3.7, we can identify λ+ with a morphism of
simplicial sets ρ+ : C → Cospan(C). If σ is an n-simplex of C, which we display informally
as a diagram

X0
f1−→ X1

f2−→ X2 → · · ·
fn−→ Xn,

then ρ+(σ) is an n-simplex of Cospan(C) which can be depicted informally as a diagram

X0
f1

!!

X1
f2

""id}}

· · ·

{{ ##

Xn−1
fn

##idzz

Xn

id}}
X1

f2

""

X2

id{{

f3

$$

· · · Xn−1

idzz

fn

%%

Xn

id{{
· · ·

fn−1

##

· · ·

idzz
fn

$$

· · ·

idyy
Xn−1

fn

##

Xn

id{{
Xn.

Note that ρ+ is a monomorphism of simplicial sets.

Our goal in this section is to study the behavior of Construction 8.1.7.1 in the case
where the simplicial set C is an ∞-category. In this case, we will show that ρ+ induces an
equivalence of C with a certain restricted cospan construction (Proposition 8.1.7.6).

Construction 8.1.7.2. 049GLet C be an∞-category. We let Cospanall,iso(C) denote the simplicial

https://kerodon.net/tag/049E
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subset of Cospan(C) whose n-simplices are diagrams

X0,0

��

X1,1

��

∼

��

· · · Xn−1,n−1

��

∼

}}

Xn,n

∼

��
· · ·

��

· · ·

!!

∼

��

· · ·

∼

��
X0,n−1

��

X1,n

∼

~~
X0,n,

where each of the leftward-directed arrows is an isomorphism in C.

Remark 8.1.7.3.049H Let C be an ∞-category. Then the simplicial set Cospanall,iso(C) of
Construction 8.1.7.2 coincides with the restricted cospan construction CospanL,R(C) of
Definition 8.1.6.1, where we take L to be the collection of all morphisms of C and R to be
the collection of all isomorphisms in C (see Example 8.1.7.10 for a more general statement).

Variant 8.1.7.4.049J Let C be a simplicial set and let R be a collection of edges of C. We
let Cospanall,R(C) denote the simplicial subset CospanA,R(C) ⊆ Cospan(C), where A is the
collection of all edges of C. Similarly, if L is a collection of edges of C, we let CospanL,all(C)
denote the simplicial subset CospanL,A(C) ⊆ Cospan(C). Note that the simplicial set
CospanL,R(C) of Definition 8.1.6.1 can be recovered as the intersection CospanL,all(C) ∩
Cospanall,R(C).

Proposition 8.1.7.5.049K Let C be an ∞-category. Then the simplicial set Cospanall,iso(C) is
an ∞-category.

https://kerodon.net/tag/049H
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Proof. Let σ be a 2-simplex of Cospanall,iso(C), which we identify with a diagram

X0,0

!!

X1,1

∼

}} !!

X2,2

∼

}}
X0,1

!!

X1,2

∼

}}
X0,2

in the ∞-category C where the leftward-directed morphisms are isomorphisms. Using
Corollary 7.6.3.24, we deduce that the inner region is a pushout square in C. It follows that
σ is automatically thin when regarded as a 2-simplex of Cospan(C) (Proposition 8.1.4.2),
and therefore also when regarded as a 2-simplex of Cospanall,iso(C) (Remark 8.1.6.4). To
complete the proof, it will suffice to show that every diagram Λ2

1 → Cospanall,iso(C) can be
extended to a 2-simplex of Cospanall,iso(C) (see Example 2.3.2.4). Using Lemma 8.1.4.4, we
can restate this as follows: for every pair of morphisms f : X1,1 → X1,2 and u : X1,1 → X0,1
of C where u is an isomorphism, there exists a commutative diagram

X1,1

u

}}

f

!!
X0,1

!!

X1,2

v

}}
X0,2

where v is also an isomorphism. This follows immediately from the definitions (or from
Corollary 4.4.5.9).

Let C be an ∞-category and let ρ+ : C ↪→ Cospan(C) the morphism described in
Construction 8.1.7.1. Note that ρ+ carries each object of C to itself, and each morphism
f : X → Y of C to the edge of Cospan(C) given by the diagram X

f−→ Y
idY←−−. Since every

identity morphism in C is an isomorphism, ρ+ factors through the∞-category Cospanall,iso(C).
The remainder of this section is devoted to the proof of the following:



8.1. TWISTED ARROWS AND COSPANS 1709

Proposition 8.1.7.6.049L Let C be an ∞-category. Then the functor ρ+ : C ↪→ Cospanall,iso(C)
is an equivalence of ∞-categories.

Example 8.1.7.7.049M Let X be a Kan complex. Applying Proposition 8.1.7.6 (and noting
that every edge of X is an isomorphism), we see that ρ+ : X → Cospan(X) is a homotopy
equivalence of Kan complexes (see Corollary 8.1.3.11).

Our proof of Proposition 8.1.7.6 will require some preliminaries.

Definition 8.1.7.8.049N Let C be a simplicial set and let W be a collection of morphisms of
C. We say that W has the left two-out-of-three property if, for every 2-simplex of C with
boundary indicated in by the diagram

X
h //

f

��

Z

Y,

g

??

where f belongs to W , g belongs to W if and only if h belongs to W .

Lemma 8.1.7.9.049P Let C and D be ∞-categories and let F : Tw(D) → C be a functor,
corresponding to a morphism of simplicial sets f : D → Cospan(C). Let L and R be
collections of morphisms of C which satisfy the left two-out-of-three property. Then f factors
through CospanL,R(C) if and only if F satisfies the following pair of conditions:

(1) For each object X in D, the morphism F carries every morphism of {X} ×Dop Tw(D)
to a morphism of C which belongs to L.

(2) For each vertex Y in D, the morphism F carries every morphism of Tw(D)×D {Y } to
a morphism of C which belongs to R.

Proof. For every morphism e : X → Y of D, let idX
eL−→ e

eR←− idY be the tautological
cospan in Tw(D) described in Example 8.1.3.6. By virtue of Remark 8.1.6.3, the morphism
f factors through CospanL,R(C) if and only if it satisfies the following pair of conditions:

(1′) For every morphism e : X → Y of D, the functor F carries eL to a morphism of C
which belongs to L.

(2′) For every morphism e : X → Y of D, the functor F carries eR to a morphism of C
which belongs to R.

https://kerodon.net/tag/049L
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The implications (1)⇒ (1′) and (2)⇒ (2′) are immediate (if e : X → Y is any morphism of
D, then eL is contained to the fiber {X}×Dop Tw(D), and eR is contained in Tw(D)×D {Y }
). We will complete the proof by showing that (1′) implies (1); a similar argument shows
that (2′) implies (2).

Assume that condition (1′) is satisfied, let X be an object of D, and let u : X → Y

and v : X → Z be morphisms of D. Suppose we are given a morphism g : u → v in the
∞-category E = {X} ×Dop Tw(D); we wish to show that F (g) belongs to L. Since idX is
initial when viewed as an object of E (Proposition 8.1.2.1), there is a 2-simplex of E whose
boundary is indicated in the diagram

idX

uL

~~

vL

  
u

g // v.

Assumption (1′) guarantees that F (uL) and F (vL) belong to L. Since L satisfies the left
two-out-of-three property, it follows that F (g) also belongs to L.

Example 8.1.7.10. 049QLet C be an ∞-category and let σ be an n-simplex of the simplicial set
Cospan(C), corresponding to a diagram

049RX0,0

��

X1,1

����

· · · Xn−1,n−1

��}}

Xn,n

��
· · ·

��

· · ·

!!��

· · ·

��
X0,n−1

��

X1,n

~~
X0,n.

(8.15)

Let L and R be collections of morphisms of C which contain all identity morphisms and
have the left two-out-of-three property. Then σ belongs to CospanL,R(C) if and only if
each of the rightward-pointing morphisms displayed in (8.15) belong to L, and each of the
leftward-pointing morphisms displayed in (8.15) belong to R.

Remark 8.1.7.11. 049SLet C be an ∞-category, let R be a collection of morphisms of C which
has the left two-out-of-three property, and let D be a simplicial set. Suppose we are given

https://kerodon.net/tag/049Q
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a pair of morphisms f, g : D → Funall,R(C), corresponding to diagrams F,G : Tw(D)→ C.
If α : F → G is a natural transformation of diagrams, then the following conditions are
equivalent:

(a) For every edge u : D′ → D of D, the morphism αu : F (u)→ G(u) belongs to R.

(b) For every degenerate edge u : D → D of D, the morphism αu : F (u)→ G(u) belongs to
R.

The implication (a)⇒ (b) is immediate. To prove the reverse implication, let u : D′ → D

be an edge of D and let uR : idD → u be the edge of Tw(D) described in Example 8.1.3.6.
Evaluating α on the morphism uR, we obtain a commutative diagram

F (idD)
αidD //

��

G(idD)

��
F (u) αu // G(u)

in the ∞-category C, where the vertical maps belong to R by virtue of our assumption
that f and g factor through Cospanall,R(C). Applying the left two-out-of-three property, we
conclude that if the upper horizontal map belongs to R, then the lower horizontal map also
belongs to R.

Lemma 8.1.7.12.049T Let C be an ∞-category, let L and R be collections of morphisms of
C which have the left two-out-of-three property, and let Fun′(Tw(D), C) denote the full
subcategory of Fun(Tw(D), C) spanned by those objects which correspond to diagrams D →
CospanL,R(C) ⊆ Cospan(C). Let R′ be the collection of morphisms in Fun′(Tw(D), C) which
satisfy the equivalent conditions of Remark 8.1.7.11, and define L′ similarly. Then the
isomorphism Fun(D,Cospan(C)) ≃ Cospan(Fun(Tw(D), C)) of Remark 8.1.3.9 restricts to
an isomorphism of simplicial subsets Fun(D,CospanL,R(C)) ≃ CospanL′,R′(Fun′(Tw(D), C)).

Proof. Writing CospanL,R(C) as the intersection CospanL,all(C)∩Cospanall,R(C) (see Variant
8.1.7.4), we can reduce to the case where either L or R is the collection of all morphisms of
C. Let us assume that L is the collection of all morphisms of C, so that L′ is the collection
of all morphisms of Fun′(Tw(D), C). Suppose we are given another simplicial set E and a
diagram F : Tw(D) × Tw(E) → C. We can identify F with a morphism of simplicial sets
E → Fun(D,Cospan(C)). By virtue of Remark 8.1.6.3, this morphism factors through the
simplicial subset Fun(D,CospanL,R(C)) if and only if, for every edge u : D′ → D of D and
every edge v : E′ → E of E , the morphism F satisfies the following condition:

https://kerodon.net/tag/049T
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(1u,v) Let uR : idD → u and vR : idE → v be the edges of Tw(D) and Tw(E) described in
Example 8.1.3.6. Then the morphism F (uR, vR) belongs to R.

Identifying F with a morphism f : E → Cospan(Fun(Tw(D), C)), we see that f factors
through Cospan(Fun′(Tw(D), C)) if and only if it satisfies condition (1u,v) whenever v is a
degenerate edge of E . Under this assumption, f factors through CospanL′,R′(Fun′(Tw(D), C))
if and only if, for every edge u : D′ → D of D and every edge v : E′ → E of E , the diagram
F satisfies the following condition:

(2u,v) The morphism F (idu, v) belongs to R.

To complete the proof, it suffices to observe that if condition (1u,idE
) is satisfied, then

condition (1u,v) is equivalent to condition (2u,v). This follows by applying the left two-out-
of-three property to the upper triangle appearing in the diagram

F (idD, idE) F (uR,id) //

F (id,vR)

��

F (uR,vR)

%%

F (u, idE)

F (idu,vR)

��
F (idD, v) F (uR,idv) // F (u, v).

Lemma 8.1.7.13. 049ULet C be an∞-category, let D be a simplicial set, and suppose we are given
a pair of diagrams f, g : D → Cospanall,iso(C), corresponding to diagrams F,G : Tw(D)→ C.
The following conditions are equivalent:

(1) The diagrams f and g are isomorphic when viewed as objects of the∞-category Fun(D,Cospanall,iso(C)).

(2) The diagrams F and G are isomorphic when viewed as objects of the ∞-category
Fun(Tw(D), C).

Proof. Let Fun′(Tw(D), C) denote the full subcategory of Fun(Tw(D), C) spanned by those
functors Tw(D)→ C which correspond to diagrams D → Cospanall,iso(C). Lemma 8.1.7.12,
identifies Fun(D,Cospanall,iso(C)) with the ∞-category Cospanall,iso(Fun′(Tw(D), C)). We
are therefore reduced to proving that F and G are isomorphic when viewed as objects of the
∞-category Fun′(Tw(D), C) if and only if they are isomorphic when viewed as objects of the
∞-category Cospanall,iso(Fun′(Tw(D), C)). This is a special case of Corollary 8.1.6.12.

Proof of Proposition 8.1.7.6. Let C be an ∞-category. We wish to show that the com-
parison map ρ+ : C ↪→ Cospanall,iso(C) of Construction 8.1.7.1. Let D be a simplicial

https://kerodon.net/tag/049U
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set; we will show that composition with ρ+ induces a bijection θ : π0(Fun(D, C)≃) →
π0(Fun(D,Cospanall,iso(C))≃).

Let λ+ : Tw(D)→ D denote the projection map, and let W be the collection of all edges
e of Tw(D) such that λ+(e) is a degenerate edge of D. Let Fun(Tw(D)[W−1], C) denote
the full subcategory of Fun(Tw(D), C) spanned by those diagrams F : Tw(D) → C which
carry each edge of W to an isomorphism in C (Notation 6.3.1.1). Using Lemmas 8.1.7.9
and 8.1.7.13, we can identify θ with the map π0(Fun(D, C)≃)→ π0(Fun(Tw(D)[W−1], C)≃)
given by composition λ+. To complete the proof, it will suffice to show that λ+ exhibits
D as a localization of Tw(D) with respect to W , in the sense of Definition 6.3.1.9. This
follows from Corollary 6.3.6.4, since the morphism λ+ is universally localizing (Corollary
8.1.2.4).

Variant 8.1.7.14.049V Let C be a simplicial set. Then the projection map λ− : Tw(C)→ Cop

determines a morphism of simplicial sets ρ− : Cop → Cospan(C). If σ is an n-simplex of Cop,
which we display informally as a diagram

X0
f1←− X1

f2←− X2 ← · · ·
fn←− Xn,

then ρ−(σ) is an n-simplex of Cospan(C) which is depicted informally by the diagram

X0
id
!!

X1
id
!!f1}}

· · ·

}} ##

Xn−1
id
$$fn−1zz

Xn

fn{{
X0

id

""

X1

f1||

id

""

· · · Xn−2

fn−2zz

id

%%

Xn−1

fn−1yy
· · ·

id
""

· · ·

f1||
id
$$

· · ·

f2yy
X0

id
!!

X1

f1{{
X0.

If C is an ∞-category, then ρ− restricts an equivalence Cop ↪→ Cospaniso,all(C), where
Cospaniso,all(C) is the simplicial subset CospanL,R(C) ⊆ Cospan(C) where L is the collection
of isomorphisms in C, and R is the collection of all morphisms of C.

8.1.8 Morphisms in the Duskin Nerve

03KZ Let S be a simplicial set. Recall that, for every pair of vertices X,Y ∈ S, the morphism
space HomS(X,Y ) is defined by the formula

HomS(X,Y ) = {X} ×̃S{Y } = {X} ×Fun({0},S) Fun(∆1, S)×Fun({1},S) {Y }.

https://kerodon.net/tag/049V
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In this section, we specialize to the case where S = ND
• (C) is the Duskin nerve of a 2-

category C. In this case, we will see that there is close relationship between the simplicial set
HomS(X,Y ) and the category HomC(X,Y ) of 1-morphisms from X to Y . More precisely,
we will construct a comparison map

Cospan(N•HomC(X,Y ))→ HomND
• (C)(X,Y ),

and show that it is an isomorphism of simplicial sets (Corollary 8.1.8.6).

Warning 8.1.8.1. 03L0Let C be a 2-category. If every 2-morphism in C is invertible, then the
Duskin nerve ND

• (C) is an ∞-category (Theorem 2.3.2.1). It follows that, for every pair of
objects X,Y ∈ C, the simplicial set HomND

• (C)(X,Y ) is a Kan complex. Beware that, in
the case where C contains non-invertible 2-morphisms, the simplicial set HomND

• (C)(X,Y ) is
generally not an ∞-category (in fact, it is not even an (∞, 2)-category unless the category
HomC(X,Y ) admits pushouts: see Proposition 8.1.4.1). In such cases, it may be more useful
to consider the pinched morphism spaces of ND

• (C): see Example 4.6.5.13 and Remark 8.1.8.8.

Construction 8.1.8.2. 01G9Let A be a category, let C be a 2-category containing objects X
and Y , and let F : Tw(A) → HomC(X,Y ) be a functor. We define a strictly unitary lax
functor UF : [1]×A → C as follows:

(1) The lax functor UF is given on objects by UF (0, A) = X and UF (1, A) = Y for each
object A ∈ A.

(2) Let f : A→ B be a morphism in the category A, which we also regard as an object of the
twisted arrow category Tw(A). For 0 ≤ i ≤ j ≤ 1, we let fji denote the corresponding
morphism from (i, A) to (j, B) in the product category [1]×A. Then the lax functor
UF is given on 1-morphisms by the formula

UF (fji) =


idX if i = j = 0
idY if i = j = 1
F (f) if 0 = i < j = 1.

(3) Let f : A → B and v : B → C be composable morphisms in the category A, and let
0 ≤ i ≤ j ≤ k ≤ 1. Then the composition constraint µgkj ,fji

for the lax functor UF is
given as follows:

• If i = j = k = 0, then µgkj ,fji
is the unit constraint υX : idX ◦ idX

∼=⇒ idX of the
2-category C.

• If i = 0 and j = k = 1, then µgkj ,fji
is given by the composition

idY ◦F (f)
λF (f)====⇒ F (f) F (idA,g)=====⇒ F (g ◦ f),

https://kerodon.net/tag/03L0
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where λF (f) is the left unit constraint of Construction 2.2.1.11 and we regard the
pair (idA, g) as an element of HomTw(A)(f, g ◦ f).

• If i = j = 0 and k = 1, then µgkj ,fji
is given by the composition

F (g) ◦ idX
ρF (g)===⇒ F (g) F (f,idC)======⇒ F (g ◦ f),

where ρF (g) is the right unit constraint of Construction 2.2.1.11 and we regard
the pair (f, idC) as an element of HomTw(A)(g, g ◦ f).

• If i = j = k = 1, then µgkj ,fji
is equal to the unit constraint υY : idY ◦ idY

∼=⇒ idY
of the 2-category C.

Exercise 8.1.8.3.01GA Show that Construction 8.1.8.2 is well-defined. That is, given a functor
F : Tw(A)→ HomC(X,Y ) as in Construction 8.1.8.2, show that there is a unique strictly
unitary lax functor UF satisfying properties (1), (2), and (3) of Construction 8.1.8.2.

We can now formulate the main result of this section.

Theorem 8.1.8.4.01GB Let A be a category and let C be a 2-category containing objects X and
Y . Then the assignment F 7→ UF of Construction 8.1.8.2 induces a monomorphism of sets

{Functors F : Tw(A)→ HomC(X,Y )}

��
{Strictly unitary lax functors U : [1]×A → C}.

The image of this monomorphism consists of those strictly unitary lax functors U : [1]×C → D
having the property that U |{0}×A and U |{1}×A are the constant functors taking the values X
and Y , respectively.

Remark 8.1.8.5.03L1 Let C be a 2-category containing objects X and Y . For every category
A, we can use Theorem 2.3.4.1 to identify strictly unitary lax functors U : [1] × A → C
with morphisms of simplicial sets G : ∆1 ×N•(A)→ ND

• (C). Consequently, Theorem 8.1.8.4
supplies a bijection

{Functors F : Tw(A)→ HomC(X,Y )}

∼

��
{Morphisms of simplicial sets N•(A)→ HomND

• (C)(X,Y )}.

https://kerodon.net/tag/01GA
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Note that the bijection of Remark 8.1.8.5 depends functorially on the simplicial set A.
Specializing to categories of the form A = [n], we obtain the following:

Corollary 8.1.8.6. 01GCLet C be a 2-category containing objects X and Y . Then Construction
8.1.8.2 induces an isomorphism of simplicial sets

Cospan(N•HomC(X,Y )) ∼−→ HomND
• (C)(X,Y ).

Exercise 8.1.8.7. 03L2Show that Theorem 8.1.8.4 follows from Corollary 8.1.8.6. In other
words, to prove Theorem 8.1.8.4, there is no loss of generality in assuming that A has the
form {0 < 1 < · · · < n} for some integer n ≥ 0.

Remark 8.1.8.8. 03L3Let C be a 2-category containing a pair of objects X and Y . Then we
have a commutative diagram of simplicial sets

N•HomC(X,Y ) ρ+ //

∼

��

Cospan(N•HomC(X,Y ))

∼

��

N•HomC(X,Y )opρ−oo

∼

��
HomL

ND
• (C)(X,Y ) ιL // HomND

• (C)(X,Y ) HomR
ND
• (C)(X,Y )ιRoo

where the upper horizontal maps are the inclusions of Construction 8.1.7.1 and Variant
8.1.7.14, the lower horizontal maps are the pinch inclusion maps of Construction 4.6.5.7, the
outer vertical maps are the isomorphisms of Example 4.6.5.13, and the inner vertical map is
the isomorphism of Corollary 8.1.8.6.

Stated more concretely, Corollary 8.1.8.6 asserts that we can identify n-simplices of the
simplicial set HomND

• (C)(X,Y ) with commutative diagrams

f0,0

�&

f1,1

w� !)

· · ·

u}  (

fn−1,n−1

u} !)

fn,n

x�
· · ·

�'

· · ·

!)u}

· · ·

v~ !)

· · ·

u}
f0,n−2

 (

f1,n−1

v~ �'

f2,n

v~
f0,n−1

 (

f1,n

w�
f0,n

in the category of 1-morphisms HomC(X,Y ). The image of the left-pinch inclusion morphism

ιL : HomL
ND
• (C)(X,Y ) ↪→ HomND

• (C)(X,Y )

https://kerodon.net/tag/01GC
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consists of those simplices which correspond (under this identification) to commutative
diagrams in which each of the leftward pointing 2-morphisms fi,j ⇒ fi−1,j is an identity map.
In this case, the entire diagram is determined by the sequence of composable morphisms
f0,0 ⇒ f0,1 ⇒ f0,2 ⇒ · · · ⇒ f0,n in the category HomC(X,Y ). Similarly, the image of the
right-pinch inclusion morphism

ιR : HomR
ND
• (C)(X,Y ) ↪→ HomND

• (C)(X,Y )

consists of those simplices which correspond to commutative diagrams in which the rightward
pointing 2-morphisms fi,j ⇒ fi,j+1 are identity maps, which ensures that the entire diagram is
determined by the sequence of composable morphisms fn,n ⇒ fn−1,n ⇒ fn−2,n ⇒ · · · ⇒ f0,n
in HomC(X,Y ).

Proof of Theorem 8.1.8.4. Let A be an ordinary category, let C be a 2-category containing
objects X and Y , and let U : [1] × A → C be a strictly unitary lax functor having the
property that U |{0}×A and U |{1}×A are the constant functors taking the values X and Y ,
respectively. We wish to show that there exists a unique functor of ordinary categories
F : Tw(A)→ HomC(X,Y ) such that U is equal to the strictly unitary lax functor UF given
by Construction 8.1.8.2. To prove this, we may assume without loss of generality that the
2-category C is strictly unitary (Proposition 2.2.7.7). Given a morphism f : A → B in
the category A and a pair of integers 0 ≤ i ≤ j ≤ 1, we write fji : (i, A) → (j, B) for the
corresponding morphism in the product category [1]×A. Unwinding the definitions, we see
that the identity U = UF imposes the following requirements on the functor F :

(1) Let f : A→ B be a morphism in the category C, which we identify with an object of
the twisted arrow category Tw(A). Then F (f) is equal to U(f10) ∈ HomC(X,Y ).

(2) Let f : A→ B and g : B → C be composable morphisms in the category A, and regard
the pairs (idA, g) and (f, idC) as elements of HomTw(A)(f, g◦f) and HomTw(A)(g, g◦f),
respectively. Then F (idA, g) and F (f, idC) are equal to the composition constraints
µg11,f10 and µg10,f00 for the lax functor U , respectively.

We now establish the uniqueness of the functor F . The value of F on objects is
determined by condition (1). If f : A → B and f ′ : A′ → B′ are objects of the twisted
arrow category Tw(A), then an element of HomTw(A)(f, f ′) can be identified with a pair
(u, v) where u ∈ HomA(A′, A) and v ∈ HomA(B,B′) satisfy f ′ = v ◦ f ◦ u. In this case, the
morphism (u, v) factors as a composition (u, idB′) ◦ (idA, v), so condition (2) guarantees the
identity

F (u, v) = F (u, idB′) ◦ F (idA, v) = µ(vf)10,u00 ◦ µv11,f10 .

This proves the uniqueness of F on morphisms.
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To prove existence, we define the functor F on objects f ∈ Tw(A) by setting F (f) =
U(f10), and on morphisms (u, v) ∈ HomTw(A)(f, f ′) by the formula

F (u, v) = µ(vf)10,u00 ◦ µv11,f10 .

Note that this prescription automatically satisfies condition (1). Since U is a strictly unitary
functor between strictly unitary 2-categories, its composition constraints µg,h are the identity
whenever either g or h is an identity morphism (Remark 2.2.7.5), which shows that F
satisfies condition (2) and that it carries identity morphisms to identity morphisms. We
will complete the proof by showing that F is compatible with composition. Let f : A→ B,
f ′ : A′ → B′, and f ′′ : A′′ → B′′ be objects of the twisted arrow category Tw(A), and
suppose we are given morphisms (u, v) ∈ HomTw(A)(f, f ′) and (u′, v′) ∈ HomTw(A)(f ′, f ′′).
We wish to prove an equality F (u ◦ u′, v′ ◦ v) = F (u′, v′) ◦ F (u, v) of morphisms from F (f)
to F (f ′′) in the category HomC(X,Y ). Unwinding the definitions, this is equivalent to the
commutativity of the outer cycle of the diagram

F (vfu)

µv′11,(vfu)10

 (
F (vf)

µ(vf)10,u00

7?

µv′11,(vf)10

�'

F (v′vfu)

µ(v′vfu)10,u′00

!)
F (f)

µv11,f10

8@

µ(v′v)11,f10 +3 F (v′vf)

µ(v′vf)10,u00

6>

µ(v′vf)10,(uu′)00 +3 F (v′vfuu′)

in the category HomC(X,Y ). In fact, the entire diagram commutes. The commutativity of
the upper square follows by applying property (c) of Definition 2.2.4.5 to the composable
triple of morphisms

(0, A′) u00−−→ (0, A) (vf)10−−−−→ (1, B′)
v′11−−→ (1, B′′)

in the product category [1] × A. The commutativity of the lower left triangle follows by
applying property (c) to the composable triple of morphisms

(0, A) f10−−→ (1, B) v11−−→ (1, B′)
v′11−−→ (1, B′′)

and noting that the composition constraint µv′11,v11 is equal to the identity (by virtue of our
assumption that the lax functor U |{1}×A is constant). Similarly, the commutativity of the
lower right triangle follows by applying (c) to the compostable triple of morphisms

(0, A′′)
u′00−−→ (0, A′) u00−−→ (0, A) (v′vf)10−−−−−→ (1, B′′)
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and noting that the composition constraint µu00,u′00
is equal to the identity (by virtue of our

assumption that the lax functor U |{0}×A is constant).

8.1.9 Cospan Fibrations

049W Let U : E → C be an inner fibration of simplicial sets. Beware that the induced map
Cospan(U) : Cospan(E)→ Cospan(C) is usually not an inner fibration. For example, in the
special case C = ∆0, the morphism U is an inner fibration if and only if E is an ∞-category.
In this case, the simplicial set Cospan(E) is usually not an ∞-category (unless E is a Kan
complex). However, it contains an ∞-category Cospanall,iso(E) ⊆ Cospan(E) (Construction
8.1.7.2), which is canonically equivalent to the ∞-category E (Proposition 8.1.7.6). In this
section, we describe a generalization which applies to any simplicial set C. Our main result
can be stated as follows:

Proposition 8.1.9.1.049X Let U : E → C be a cocartesian fibration of simplicial sets and let W
denote the collection of all U -cocartesian edges of E. Then the induced map Cospanall,W (E)→
Cospan(C) is an inner fibration of simplicial sets.

We will give the proof of Proposition 8.1.9.1 at the end of this section.

Remark 8.1.9.2.049Y In the situation of Proposition 8.1.9.1, let C be a vertex of C and let EC
denote the fiber {C}×C E . Note that a morphism u in the∞-category EC is an isomorphism
if and only if it is U -cocartesian when viewed as a morphism in E (Proposition 5.1.4.11). It
follows that the fiber {C} ×Cospan(C) Cospanall,W (E) can be identified with the ∞-category
Cospanall,iso(EC). In particular, Proposition 8.1.7.6 supplies an equivalence of ∞-categories

ρ+ : {C} ×C E ↪→ {C} ×Cospan(C) Cospanall,W (E).

Remark 8.1.9.3.049Z Let U : E → C be a cocartesian fibration of ∞-categories and let W be
the collection of all U -cocartesian morphisms of E . Then we have a commutative diagram

E //

U

��

Cospanall,iso(E) //

��

Cospanall,W (E)

��
C // Cospanall,iso(C) // Cospan(C),

where the horizontal maps on the left are equivalences of ∞-categories (Proposition 8.1.7.6),
and the right half of the diagram is a pullback square (Proposition 5.1.1.8). It follows
that from Proposition 8.1.9.1 that map Cospanall,iso(E) → Cospanall,iso(C) is an inner
fibration of ∞-categories. In fact, it is even an isofibration: this follows easily from the
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description of isomorphisms in the∞-categories Cospanall,iso(C) and Cospanall,iso(E) supplied
by Corollary 8.1.6.10 (together with the fact that U is an isofibration; see Proposition
5.1.4.8). Applying Theorem 5.1.6.1 to the right side of the diagram, we conclude that
the map Cospanall,iso(E)→ Cospanall,iso(C) is also a cocartesian fibration of simplicial sets.
Moreover, Corollary 4.5.2.29 guarantees that the induced map

E ↪→ C×Cospanall,iso(C) Cospanall,iso(E) ≃ C ×Cospan(C) Cospanall,W (E)

is an equivalence of ∞-categories.

Remark 8.1.9.4. 04FNLet U : E → C be a cocartesian fibration of ∞-categories and let W
be the collection of all U -cocartesian morphisms of E . It follows from Proposition 8.1.9.1
that U also induces an inner fibration CospanW,all(E) → Cospan(C), whose fiber over an
object C ∈ C is equivalent to the opposite of the ∞-category EC (see Variant 8.1.7.14). This
construction will play an important role in §8.6.

For later use, it will be convenient to have a generalization of Proposition 8.1.9.1, where
we impose some additional constraints on the cospans that we consider.

Definition 8.1.9.5. 04A0Let U : E → C be an inner fibration of simplicial sets and let f : X → Y

be an edge of C. We say that f admits U -cartesian lifts if, for every vertex Y ∈ E satisfying
U(Y ) = Y , there is a U -cartesian edge f : X → Y of E satisfying U(f) = f . We say that
f admits U-cocartesian lifts if, for every vertex X ∈ E satisfying U(X) = X, there is a
U -cocartesian edge f : X → Y of E satisfying U(f) = f .

Remark 8.1.9.6. 04A1In the situation of Definition 8.1.9.5, the edge f admits U -cocartesian
lifts if and only if it it admits Uop-cartesian lifts, when regarded as an edge of the opposite
simplicial set Eop.

Example 8.1.9.7. 04A2Let U : E → C be an inner fibration of simplicial sets. Then U is a
cocartesian fibration if and only if every edge of C admits U -cocartesian lifts. Similarly, U is
a cartesian fibration if and only if every edge of C admits U -cartesian lifts.

Example 8.1.9.8. 04A3Let U : E → C be an inner fibration of ∞-categories. The following
conditions are equivalent:

• The morphism U is an isofibration of ∞-categories.

• Every isomorphism of C admits U -cocartesian lifts.

• Every isomorphism of C admits U -cartesian lifts.

Proposition 8.1.9.9. 04A4Let U : E → C be an inner fibration of simplicial sets, let R be a
collection of edges of C which admits U-cocartesian lifts, and let R̃ denote the collection
of all U-cocartesian edges f of E such that U(f) belongs to R. Then the induced map
Cospanall,R̃(E)→ Cospanall,R(C) is an inner fibration of simplicial sets.
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Proof. Replacing C by a full simplicial subset if necessary, we may assume that R contains
every degenerate edge of C. Choose integers 0 < i < n; we wish to show that every lifting
problem

04A5 Λni
f0 //

��

Cospanall,R̃(E)

��
∆n

::

f // Cospanall,R(C)

(8.16)

admits a solution. Using Proposition 8.1.3.7, we can rewrite (8.16) as a lifting problem

Tw(Λni ) F0 //

��

E

U

��
Tw(∆n)

F

<<

F // C,

where the morphism F is required to satisfy the following additional condition:

(∗) For every pair of integers 0 ≤ i ≤ j ≤ n, the morphism F carries (j, j) → (i, j) to a
U -cocartesian edge of E .

Replacing E by the fiber product Tw(∆n)×C E , we can reduce to the case where C = Tw(∆n),
and F is the identity morphism. Since U is an inner fibration, it follows that E is an ∞-
category.

Suppose first that n ≥ 3. In this case, F0 determines a commutative diagram

04A6 F0(i, i) //

��

F0(i− 1, i)

��
F0(i, i+ 1) // F0(i− 1, i+ 1)

(8.17)

in the ∞-category E . Using our assumption that f0 factors through Cospanall,R̃(E) ⊆
Cospan(E) (together with Corollary 5.1.2.4), we deduce that the horizontal maps the
diagram (8.17) are U -cocartesian. In particular, (8.17) is a U -colimit diagram (Proposition
7.6.3.23). Since the image of (8.17) in Tw(∆n) is a pushout square, it is a pushout diagram
in E (Corollary 7.1.5.15). Applying Proposition 8.1.4.2, we deduce that f0|N•({i−1<i<i+1})

is a thin 2-simplex of Cospan(E), and therefore also of Cospanall,R̃(E) (Remark 8.1.6.4). It

https://kerodon.net/tag/04A5
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follows that f0 can be extended to an n-simplex σ of Cospanall,R̃(E), which we can identify
with a functor F : Tw(∆n) → E satisfying condition (∗) and the identity F |Tw(Λn

i ) = F0.
The equality U ◦ F = F is automatic, since Tw(∆n) is the nerve of a partially ordered set
and Tw(Λni ) contains every vertex of Tw(∆n).

We now treat the case n = 2 (so that i = 1). In this case, we can identify F0 with a
diagram

X0,0
r−→ X0,1

u←− X1,1
s−→ X1,2 ← vX2,2

in the ∞-category E , where the morphisms u and v are U -cocartesian. Our assumption that
f factors through Cospanall,R(C) guarantees that the morphism (2, 2)→ (0, 2) belongs to R.
Since morphisms of R admit U -cocartesian lifts, we can choose a U -cocartesian morphism
w′ : X2,2 → X0,2 in E , where X0,2 belongs to the fiber over the object (0, 2) ∈ C. Since v
is also U -cocartesian, we can choose a 2-simplex σ0 of E with boundary indicated in the
diagram

X2,2
w′ //

v

!!

X0,2

X1,2.

w

==

Since E is an ∞-category, we can choose another 2-simplex σ1 of E with boundary indicated
in the diagram

X1,1
q //

s

!!

X0,2

X1,2.

w′

==

Invoking our assumption that u is U -cocartesian, we can choose another 2-simplex σ2 of E
with boundary indicated in the diagram

X1,1
q //

u

!!

X0,2

X0,1.

t

==

Using the fact that E is an ∞-category, we obtain another 2-simplex σ3 of E with boundary
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indicated in the diagram

X0,0 //

r

!!

X0,2

X0,1.

t

==

The 2-simplices σ0, σ1, σ2, and σ3 determine a functor F : Tw(∆2)→ C extending F0, which
we display informally as a diagram

X0,0

r

!!

X1,1

u

}}

s

!!

X2,2

v

}}
X0,1

t

!!

X1,2

w

}}
X0,2.

Since the morphism w′ is U -cocartesian, the functor F satisfies condition (∗) and can
therefore be viewed as a solution to the lifting problem (8.16).

Proof of Proposition 8.1.9.1. Combine Proposition 8.1.9.9 with Example 8.1.9.7.

Proposition 8.1.9.10.04A7 Let U : E → C be an inner fibration of ∞-categories, let L and R be
collections of morphisms of C which are pushout-compatible, and assume that morphisms of
R admit U -cocartesian lifts. Let L̃ denote the collection of all morphisms f of E such that
U(f) ∈ L, and let R̃ denote the collection of all U -cocartesian morphisms f of E such that
U(f) ∈ R. Then the collections L̃ and R̃ are also pushout-compatible.

Proof. Let f : X → X1 be a morphism of E which belongs to L̃, and let g′ : X → X0 be a
morphism of E which belongs to R̃. We wish to show that there exists a pushout diagram

04A8 X
g′ //

f

��

X0

f ′

��
X1

g // X01

(8.18)
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in the ∞-category E , where f ′ belongs to L̃ and g belongs to R̃. Since L and R are pushout
compatible, there exists a pushout diagram

04A9U(X) U(g′) //

U(f)

��

U(X0)

f
′

����
U(X1) g // X01

(8.19)

in the ∞-category C, where f ′ belongs to L and g belongs to R. Our assumption on U

guarantees that g can be lifted to a U -cocartesian morphism g : X0 → X01 of E . Since U is
an inner fibration, the lower left half of (8.19) can be lifted to a 2-simplex σ of E which we
display as a diagram

X

f

��

h

!!
X1

g // X01.

Since g′ is U -cocartesian, we can then lift the upper right half of (8.19) to a 2-simplex τ of
E which we display as a diagram

X
g′ //

h

  

X0

f ′

��
X01.

Amalgamating σ and τ , we obtain a diagram of the form (8.18), where f ′ ∈ L̃ and g ∈ R̃. We
will complete the proof by showing that this diagram is a pushout square in the ∞-category
E . Since (8.19) is a pushout square in C, it will suffice to show that 8.18 is a U -pushout
square (Corollary 7.1.5.16). This is a special case of Proposition 7.6.3.23, since the horizontal
morphisms appearing in the diagram are U -cocartesian.

Remark 8.1.9.11. 04AAIn the situation of Proposition 8.1.9.10, suppose that the collections
L and R are closed under composition. Then L̃ and R̃ are also closed under composition
(see Corollary 5.1.2.4). Applying Proposition 8.1.6.7, we deduce that the simplicial sets
CospanL,R(C) and CospanL̃,R̃(E) are (∞, 2)-categories. Moreover, it follows from the proof

https://kerodon.net/tag/04A9
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of Proposition 8.1.9.10 that for every pushout diagram σ :

X
g′ //

f

��

X0

f ′

��
X1

g // X01

in E where f belongs to L̃ and g belongs to R̃, the image U(σ) is a pushout diagram in
C. Combining this observation with Corollary 8.1.6.8 and Proposition 8.1.4.2, we see that
a 2-simplex of CospanL̃,R̃(E) is thin if and only if its image in CospanL,R(C) is thin. In
particular:

• The induced map V : CospanL̃,R̃(E)→ CospanL,R(C) is a functor of (∞, 2)-categories.

• The functor V is an inner fibration (since it is a pullback of the inner fibration
Cospanall,R̃(E)→ Cospanall,R(C) of Proposition 8.1.9.9).

• The underlying functor V : Pith(CospanL̃,R̃(E))→ Pith(CospanL,R(C)) is also an inner
fibration (since it is a pullback of V ).

8.1.10 Beck-Chevalley Fibrations

04AB Let U : E → C be an inner fibration of ∞-categories. For each object C ∈ C, we let
EC = {C} ×C E denote the corresponding fiber of U . If U is a cartesian fibration, then
every morphism f : C → B in C determines a functor f∗ : EB → EC , given by contravariant
transport along f (Definition 5.2.2.14). If U is a cocartesian fibration, then every morphism
morphism f ′ : C ′ → B determines a functor f ′! : EC′ → EB, given by covariant transport
along f ′ (Definition 5.2.2.4). If both of these conditions are satisfied, then every cospan
C

f−→ B
f ′←− C ′ in C determines a functor from EC′ to EC , given by the composition f∗ ◦ f ′! .

Our goal in this section is to show that, under some mild assumptions, the construction
(f, f ′) 7→ f∗ ◦f ′! is compatible with the composition law on cospans, up to coherent homotopy.
More precisely, we will show that this construction is given by contravariant transport for
a certain cartesian fibration between cospan constructions (Theorem 8.1.10.3 and Remark
8.1.10.4). First, we need some terminology.

Definition 8.1.10.1.04AC Let C be an ∞-category which admits pushouts. We will say that an
inner fibration U : E → C is a dual Beck-Chevalley fibration if the following conditions are
satisfied:

(1) The morphism U is a cartesian fibration.

https://kerodon.net/tag/04AB
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(2) The morphism U is a cocartesian fibration.

(3) Suppose we are given a morphism σ : ∆1 ×∆1 → E , which we display informally as a
diagram

X
f //

g

��

X0

g′

��
X1

f ′ // X01.

Assume that f is U -cartesian, that g′ is U -cocartesian, and that U(σ) is a pushout
square in C. Then f ′ is U -cartesian if and only if g is U -cocartesian.

Example 8.1.10.2. 04ADLet E = Mod(Ab) denote the category of pairs (A,M), where A is a
commutative ring and M is an A-module (see Example 5.0.0.2). Let C denote the category
of commutative rings and let U : E → C be the forgetful functor (A,M) 7→ A. Then (the
nerve of) U is a dual Beck-Chevalley fibration, in the sense of Definition 8.1.10.1. To see
this, suppose we are given a commutative diagram σ :

(A,M) f //

g

��

(A0,M0)

g′

��
(A1,M1) f ′ // (A01,M01)

in the category E . Then:

• The morphism f is U -cartesian if and only if the underlying map M → M1 is an
isomorphism of A-modules.

• The morphism g′ is U -cocartesian if and only if it exhibits M01 as obtained from M1
by extending scalars along the ring homomorphism A1 → A01: that is, if and only if it
induces an isomorphism A01 ⊗A1 M1 →M01.

• The image of σ is a pushout diagram in C if and only if the induced map A0⊗AA1 → A01
is an isomorphism.

If all three of these conditions are satisfied, then the composite map A0⊗AM →M0 →M01
is an isomorphism. Using the two-out-of-three property, we conclude that f ′ is U -cartesian
if and only if g is U -cocartesian.

We can now formulate our main result, which we prove at the end of this section.

https://kerodon.net/tag/04AD
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Theorem 8.1.10.3.04AE Let C be an ∞-category which admits pushouts, let U : E → C be a
dual Beck-Chevalley fibration and let R denote the collection of all U -cocartesian morphisms
of E. Then the map Cospan(U) : Cospan(E)→ Cospan(C) restricts to a cartesian fibration
of ∞-categories

V : Pith(Cospanall,R(E))→ Pith(Cospan(C)).

Moreover, a morphism of Pith(Cospanall,R(E)) is V -cartesian if and only if it corresponds to
a cospan X

f−→ B
g←− Y in the ∞-category E, where f is U -cartesian and g is U -cocartesian.

Remark 8.1.10.4 (Contravariant Transport for Cospan Fibrations).04AF In the situation
of Theorem 8.1.10.3, let C and C ′ be objects of C, so that Proposition 8.1.7.6 supplies
equivalences of ∞-categories

ρC+ : EC ↪→ Cospanall,iso(EC) = V −1{C} ρC
′

+ : EC′ ↪→ Cospanall,iso(EC′) = V −1{C ′}.

Let e be a morphism from C to C ′ in the (∞, 2)-category Cospan(C), which we identify with
a pair of morphisms C f−→ B

f ′←− C ′ in the ∞-category C. Choose functors f∗ : EB → EC ,
f ′! : EC′ → EB and diagrams

∆1 × EB H //

��

E

U

��

∆1 × EC′
H′oo

��
∆1 f // C ∆1f ′oo

which exhibit f∗ and f ′! as given by contravariant and covariant transport along f and f ′,
respectively (see Definitions 5.2.2.4 and 5.2.2.14). Then the composition

Tw(∆1 × EC′) ≃ Tw(∆1)× Tw(EC′)
→ Tw(∆1)× EC′
≃ (N•({(0, 0) < (0, 1)})

∐
N•({(0,1)})

N•({(1, 1) < (0, 1)}))× EC′
(H◦(id×f ′! ),H′)
−−−−−−−−−−→ E

can be identified with a functor T : ∆1 × EC′ → Cospan(E) which fits into a commutative
diagram

∆1 × EC′

��

T // Pith(Cospanall,W (E))

V

��
∆1 e // Pith(Cospan(C)).

https://kerodon.net/tag/04AE
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For each object X ∈ EC′ , the characterization of V -cartesian morphisms given in Theorem
8.1.10.3 shows that T |∆1×{X} is a V -cartesian morphism of Pith(Cospanall,R(E)). It follows
that the diagram

EC′
f ′! //

ρC′
+

��

EB
f∗ // EC

ρC
+

��
V −1{C ′} e∗ // V −1{C}

commutes up to homotopy, where the functor e∗ is given by contravariant transport along e
(for the cartesian fibration V ).

Corollary 8.1.10.5. 04AGLet C be an ∞-category which admits pushouts, let U : E → C be a dual
Beck-Chevalley fibration, let L be the collection of all U -cartesian morphisms of C, and let R be
the collection of all U -cocartesian morphisms of C. Then CospanL,R(E) is an (∞, 2)-category,
and U induces a right fibration of ∞-categories Pith(CospanL,R(E))→ Pith(Cospan(C)).

Proof. The collections L and R are closed under composition (Corollary 5.1.2.4) and pushout-
compatible by virtue of our assumption that U is a Beck-Chevalley fibration. Using
Proposition 8.1.6.7, we see that CospanL,R(E) is an (∞, 2)-category. Moreover, the pith of
CospanL,R(E) can be identified with the subcategory of Pith(Cospanall,R(E)) spanned by
those morphisms which are cartesian with respect to the fibration V : Pith(Cospanall,R(E))→
Pith(Cospan(C)) of Theorem 8.1.10.3. The desired result now follows from Corollary
5.1.4.15.

For later use, we will prove a more general form of Theorem 8.1.10.3, where we place
some restrictions on the cospans under consideration. This will allow us to loosen the
requirements of Definition 8.1.10.1.

Definition 8.1.10.6. 04AHLet C be an ∞-category and let L and R be collections of morphisms
of C which are pushout-compatible (Definition 8.1.6.5). We will say that an inner fibration
U : E → C is a dual Beck-Chevalley fibration relative to (L,R) if the following conditions are
satisfied:

(1) Every morphism of C which belongs to L admits U -cartesian lifts (Definition 8.1.9.5).

(2) Every morphism of C which belongs to R admits U -cocartesian lifts.

(3) Suppose we are given a morphism σ : ∆1 ×∆1 → E , which we display informally as a

https://kerodon.net/tag/04AG
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diagram
X

f //

g

��

X0

g′

��
X1

f ′ // X01.

Assume that f is U -cartesian, that g is U -cocartesian, that U(f) belongs to L, that
U(g) belongs to R, and that U(σ) is a pushout square in C. Then f ′ is U -cartesian if
and only if g is U -cocartesian.

Example 8.1.10.7.04AJ Let C be an ∞-category which admits pushouts and let A denote the
collection of all morphisms of C. Then an inner fibration U : E → C is a dual Beck-Chevalley
fibration (in the sense of Definition 8.1.10.6) if and only if if it is a dual Beck-Chevalley
fibration relative to (A,A) (in the sense of Definition 8.1.10.6).

Example 8.1.10.8.04AK In the situation of Definition 8.1.10.6, suppose that L is the collection
of all isomorphisms in C. Then condition (1) is equivalent to the requirement that U is an
isofibration (Example 8.1.9.8), and condition (3) is automatic. Similarly, if R is the collection
of all isomorphisms in C, then condition (2) is the requirement that U is an isofibration, and
condition (3) is automatic.

Theorem 8.1.10.9.04AL Let C be an ∞-category, let L and R be collections of morphisms of
C which are closed under composition and pushout-compatible. Let U : E → C be a dual
Beck-Chevalley fibration with respect to (L,R) and define L̃ and R̃ as in Proposition 8.1.9.10.
Then the functor V : Pith(CospanL̃,R̃(E)) → Pith(CospanL,R(E)) of Remark 8.1.9.11 is a
cartesian fibration of ∞-categories. Moreover, a morphism e of CospanL̃,R̃(E) is V -cartesian
if and only if it satisfies the following condition:

(∗) The morphism e corresponds to a cospan X
f−→ B

g←− Y in the ∞-category E, where f is
U -cartesian and g is U -cocartesian.

Proof. Let us say that a morphism e of CospanL̃,R̃(E) is special if it satisfies condition (∗).
We first show that every special morphism e of CospanL̃,R̃(E) is V -cartesian. Suppose we
are given an integer n ≥ 2 and a lifting problem

04AM Λnn
h0 //

��

Pith(CospanL̃,R̃(E))

U ′

��
∆n

h

99

h // Pith(CospanL,R(C),

(8.20)
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where the composition

∆1 ≃ N•({n− 1 < n}) ⊆ Λnn
h0−→ CospanL̃,R̃(E)

coincides with the edge e; we wish to show that (8.20) admits a solution. Let us identify
h with a diagram F : Tw(∆n) → E and h0 with a diagram H0 : Tw(Λn

n) → C satisfying
U ◦H0 = H|Tw(Λn

n). We first treat the case n = 2. In this case, we can identify F0 with a
pair of cospans

X0,0
f ′−→ X0,2

g′←− X2,2 X1,1
f−→ X1,2

g←− X2,2

in the ∞-category E , where f, f ′ ∈ L̃ and g, g′ ∈ R̃. Since g is U -cocartesian, we can lift
H((2, 2)→ (1, 2)→ (0, 2)) to a 2-simplex σ0 of E whose boundary we display in the diagram

X2,2
g′ //

g

!!

X0,2

X1,2.

g′′

==

Since g and g′ are U -cocartesian by assumption, Corollary 5.1.2.4 guarantees that g′′ is also
U -cocartesian. Since U is an inner fibration, we can lift H((1, 1) → (1, 2) → (0, 2)) to a
2-simplex σ1 of E , whose boundary we display in the diagram

X1,1
s //

f

!!

X0,2

X1,2.

g′′

==

Since morphisms of R admit U -cocartesian lifts, we can lift H((1, 1)→ (0, 1)→ (0, 2)) to a
2-simplex σ2 of E displayed in the diagram

X1,1
s //

g′′′

!!

X0,2

X0,1,

f ′′

==
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where g′′′ is U -cocartesian. Applying condition (3) of Definition 8.1.10.6 to the diagram

X1,1
f //

g′′′

��

X1,2

g′′

��
X0,1

f ′′ // X0,2,

we deduce that the morphism f ′′ is U -cartesian. We can therefore lift H((0, 0)→ (0, 1)→
(0, 2)) to a 2-simplex σ3 of E which we display as a diagram

X0,0
f ′ //

f ′′′

!!

X0,2

X0,1,

f ′′

==

The 2-simplices σ0, σ1, σ2, and σ3 can then be amalgamed into a functor H : Tw(∆2)→ E
which we display informally as a diagram

X0,0

f ′′′

!!

X1,1

f

!!

g′′′

}}

X2,2

g

}}
X0,1

f ′′

!!

X1,2

g′′

}}
X0,2,

which is a solution to the lifting problem (8.20).
We now treat the case n ≥ 3. By virtue of Lemma 8.1.4.6, it will suffice to show that

the following conditions are satisfied:

(a) The functor F0 carries the edge (n, n)→ (n− 1, n) of Tw(Λnn) to a U -cocartesian edge
of E .

(b) The functor F0 carries the edge (0, n− 1)→ (0, n) of Tw(Λnn) to a U -cartesian edge of E .
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Assertion (a) follows immediately from our requirement that f0 factors through CospanL̃,R̃(E).
To prove (b), we observe that F0 determines a commutative diagram τ :

F0(n− 1, n− 1) f //

g

��

F0(n− 1, n)

g′

��
F0(0, n− 1) f ′ // F0(0, n)

in the ∞-category E , where f ∈ L̃ and g ∈ R̃. Our assumption that e is special guarantees
that f is U -cartesian, and our assumption that h factors through the pith of CospanL,R(C)
guarantees that U(τ) is a pushout diagram in C. Applying Corollary 5.1.2.4 to the diagram

F0(n, n)

%%

// F0(0, n)

F0(n− 1, n),

g′

99

we see that g′ is U -cocartesian. Condition (3) of Definition 8.1.10.6 then guarantees that
f ′ is U -cartesian, as desired. This completes the proof that every special morphism of
CospanL̃,R̃(E) is V -cartesian.

It follows from Remark 8.1.9.11 that V is an inner fibration of ∞-categories. To show
that V is a cartesian fibration, it will suffice to show that for every object Y ∈ E and every
morphism e : X → U(Y ) in the ∞-category Pith(CospanL,R(C)), there exists a special
morphism e : X → Y in Pith(CospanL̃,R̃(E)) satisfying V (e) = e. Let us identify e with
a cospan X

f−→ B
g←− U(Y ) in the ∞-category C. Then g belongs to R, and can therefore

be lifted to a U -cocartesian morphism g : Y → B in the ∞-category E . Since f belongs
to L, it can be lifted to a U -cartesian morphism f : X → B in the ∞-category E . The
cospan X f−→ B

g←− Y then determines a special morphism e : X → Y of Pith(CospanL̃,R̃(E))
satisfying V (e) = e.

We now complete the proof of Theorem 8.1.10.3 by showing that every V -cartesian
morphism e : X → Y of Pith(CospanL̃,R̃(E)) is special. Let e denote the image of e in
Pith(CospanL,R(C)). Arguing as above, we can lift e to a special morphism e′ : X ′ → Y

of Pith(CospanL̃,R̃(E)). Then e′ is also V -cartesian. Applying Remark 5.1.3.8, we can
choose a 2-simplex σ of Pith(CospanL,R(C) which exhibits e as the composition of e′ with
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an isomorphism in the ∞-category Pith(CospanL̃,R̃(E)). Let us identify σ with a diagram

X

u

  

X ′

f

  

v

~~

Y

��
X ′′

f ′

  

B′

w

~~
B

in the ∞-category E . Corollary 8.1.6.10 implies that u and v are isomorphisms in E . Since
the inner region is a pushout diagram in E , it follows that w is also an isomorphism (Corollary
7.6.3.24). Our assumption that e′ is special guarantees that f is U -cartesian. Applying
Corollary 5.1.2.5, we deduce that f ′ is U -cartesian. It follows that any composition of f ′
with u is U -cartesian (Corollary 5.1.2.4), so that the morphism e is also special.

Proof of Theorem 8.1.10.3. Apply Theorem 8.1.10.9 in the special case L = A = R, where
A is the collection of all morphisms in the ∞-category C (Example 8.1.10.7).

Remark 8.1.10.10.04AN In the situation of Theorem 8.1.10.9, the morphism

V : CospanL̃,R̃(E)→ CospanL,R(C)

is a locally cartesian fibration. To prove this, we observe that Remark 8.1.9.11 guarantees
that V is an inner fibration of (∞, 2)-categories and that the diagram

Pith(CospanL̃,R̃(E))

V

��

// CospanL̃,R̃(E)

V

��
Pith(CospanL,R(C)) // CospanL,R(C)

is a pullback square. Since every morphism of CospanL,R(C) is contained in the pith
Pith(CospanL,R(C)), the desired result follows from Theorem 8.1.10.9 (see Remark 5.1.5.6).

Remark 8.1.10.11.04AP In the situation of Theorem 8.1.10.9, suppose that CospanL,R(C) is an
∞-category (this condition is satisfied, for example, if either L or R consists of isomorphisms;
see Proposition 8.1.7.5). Then every 2-simplex of CospanL,R(C) is thin. Applying Remark

https://kerodon.net/tag/04AN
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8.1.9.11, we deduce that every 2-simplex of CospanL̃,R̃(E) is thin, so that CospanL̃,R̃(E)
is also an ∞-category (Example 2.3.2.4). In this case, Theorem 8.1.10.9 asserts that the
projection map V : CospanL̃,R̃(E)→ CospanL,R(E) is a cartesian fibration.

We also have the following variant of Corollary 8.1.10.5:

Corollary 8.1.10.12. 04AQLet C be an ∞-category, let L and R be collections of morphisms
of C which are closed under composition and pushout-compatible. Let U : E → C be a dual
Beck-Chevalley fibration with respect to (L,R), let L̃ denote the collection of all U -cartesian
morphisms f of E such that U(f) ∈ L, and let R̃ denote the collection of all U -cocartesian
morphisms f of E such that U(f) ∈ R. Then:

(1) The simplicial set CospanL̃,R̃(E) is an (∞, 2)-category.

(2) The morphism U induces a right fibration Pith(CospanL̃,R̃(E))→ Pith(CospanL,R(C)).

(3) If CospanL,R(C) is an ∞-category, then CospanL̃,R̃(E) is an ∞-category, and U induces
a right fibration CospanL̃,R̃(E)→ CospanL,R(C).

Example 8.1.10.13. 04ARLet U : E → C be an inner fibration of ∞-categories and let L and R
be collections of morphisms of C which are closed under composition and pushout-compatible.
Assume that the following conditions are satisfied:

(0) Let f : X → Y be a morphism of E . If U(f) belongs to L, then f is U -cartesian. If
U(f) belongs to R, then f is U -cocartesian.

(1) For every object Y ∈ E and every morphism f : X → U(Y ) of C which belongs to L,
there exists a morphism f : X → Y of E satisfying U(f) = f .

(2) For every object X ∈ E and every morphism f : U(X) → Y of C which belongs to R,
there exists a morphism f : X → Y of E satisfying U(f) = f .

Then U is a dual Beck-Chevalley fibration relative to (L,R). Applying Remark 8.1.10.10,
we deduce that the projection map

V : Cospan(E)×Cospan(C) CospanL,R(C)→ CospanL,R(C)

is a locally cartesian fibration. Corollary 8.1.10.12 guarantees that each fiber of V is a Kan
complex, so that V is a right fibration (Corollary 5.1.5.12).

https://kerodon.net/tag/04AQ
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8.2 Couplings of ∞-Categories

043P We now axiomatize an essential feature of the twisted arrow construction introduced in
§8.1.

Definition 8.2.0.1.043Q Let C− and C+ be ∞-categories. A coupling of C+ with C− is an
∞-category C equipped with a left fibration λ : C → Cop

− ×C+.

In the situation of Definition 8.2.0.1, we will often refer to the functor λ : C → Cop
− ×C+

as a coupling of ∞-categories. This terminology signifies both that λ is a left fibration and
that its target is equipped with a specified factorization as a product of ∞-categories Cop

−
and C+.

Example 8.2.0.2 (The Twisted Arrow Coupling).043R Let C be an ∞-category. Then the map
λ : Tw(C)→ Cop×C of Notation 8.1.1.6 is a coupling of C with itself (Proposition 8.1.1.11).
We will refer to λ as the twisted arrow coupling of the ∞-category C.

Construction 8.2.0.3.043S Let G : C+ → C− be a functor of ∞-categories. Pulling back
the left fibration Tw(C−)→ Cop

− ×C− of Proposition 8.1.1.11, we obtain a left fibration of
∞-categories

λG : Tw(C−)×C− C+ → Cop
− ×C+,

which we regard as a coupling of C+ with C−. We will refer to λG as the coupling associated
to the functor G.

We say that a coupling λ : C → Cop
− ×C+ is representable if, for every object C+ ∈ C+, the

∞-category C ×C+{C+} has an initial object (Definition 8.2.1.3). It is not difficult to show
that, for every functor G : C+ → C−, the coupling λG of Construction 8.2.0.3 is representable
(Variant 8.2.1.6). Our primary goal in this section is to prove the converse:

Theorem 8.2.0.4.043T Let C− and C+ be ∞-categories. Then the assignment G 7→ λG of
Construction 8.2.0.3 induces a bijection

{Functors G : C+ → C−}/Isomorphism

��
{Representable couplings λ : C → Cop

− ×C+}/Equivalence.

Remark 8.2.0.5.043U Let C− be a (locally small) ∞-category. For every ∞-category C+,
Corollary 5.6.0.6 supplies an identification of equivalence classes of couplings λ : C →
Cop
− ×C+ (having essentially small fibers) with isomorphism classes of functors T : C+ →

https://kerodon.net/tag/043P
https://kerodon.net/tag/043Q
https://kerodon.net/tag/043R
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Fun(Cop
− ,S). Moreover, λ is representable if and only if T factors through the full subcategory

Funrep(Cop
− ,S) ⊆ Fun(Cop

− ,S) spanned by the representable functors (see Proposition 5.6.6.21).
Consequently, Theorem 8.2.0.4 supplies a bijection

HomhQCat(C+, C−) ∼−→ HomhQCat(C+,Funrep(Cop
− ,S)).

It is not hard to see that this bijection depends functorially on C+, and is therefore induced
by an isomorphism C− ≃ Funrep(Cop

− ,S) in the homotopy category hQCat. We can therefore
regard Theorem 8.2.0.4 as an “implicit” version of Yoneda’s lemma. We will give a more
precise formulation in §8.3 (see Theorem 8.3.3.13).

Let us outline our approach to Theorem 8.2.0.4. Let λ : C → Cop
− ×C+ be a coupling

of ∞-categories. For a functor G : C+ → C−, we say that λ is representable by G if it is
equivalent to the coupling λG of Construction 8.2.0.3 (Definition 8.2.3.1). Theorem 8.2.0.4
asserts that every representable coupling is representable by some functor G : C+ → C−,
which is uniquely determined up to isomorphism. To prove this, we need to construct a
commutative diagram

043VC G̃ //

λ

��

Tw(C−)

��
Cop
− ×C+

id×G // Cop
− ×C−

(8.21)

which is a categorical pullback square; in this case, we say that (8.21) exhibits λ as represented
by G (Definition 8.2.3.5).

It will be useful to place this problem in a somewhat larger context. Suppose that
µ : D → Dop

− ×D+ is another coupling of ∞-categories. We will refer to a commutative
diagram

043WC F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+

(8.22)

as a morphism of couplings from λ to µ (Definition 8.2.2.1). The collection of such diagrams
can be organized into an ∞-category Fun±(C,D), which is equipped with a forgetful functor

Φ : Fun±(C,D)→ Fun(C−,D−)op × Fun(C+,D+).

It is not difficult to see that Φ is also a left fibration: that is, it can be regarded as a
coupling of the ∞-category Fun(C+,D+) with the ∞-category Fun(C−,D−) (Proposition

https://kerodon.net/tag/043V
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8.2.2.2). Suppose now that the coupling λ is representable, and that the coupling µ is
corepresentable (that is, for every object D− ∈ D−, the ∞-category {D−} ×Dop

−
D has an

initial object). In §8.2.2, we show these these assumptions imply that the coupling Φ is
also corepresentable (Theorem 8.2.2.11). In particular, every functor F− : C− → D− has a
canonical promotion to a commutative diagram of the form (8.22), which is characterized
(up to isomorphism) by the requirement that it represents an initial object of the∞-category
{F−}×Fun(C−,D−)op Fun±(C,D). In §8.2.3, we specialize this assertion to the situation where
µ is the twisted arrow coupling Tw(C−)→ Cop

− ×C+ and F− is the identity functor from C−
to itself. In this case, we obtain a diagram of the form (8.21) and use it to deduce Theorem
8.2.0.4.

Every assertion in the preceding discussion has a dual counterpart, where the assumption
of representability is replaced by corepresentability (and vice versa). If λ : C → Cop

− ×C+ is
a corepresentable coupling of ∞-categories, then Theorem 8.2.0.4 guarantees the existence
of a categorical pullback square

C F̃ //

λ

��

Tw(C+)

��
Cop
− ×C+

F op×id // Cop
+ ×C+ .

for some functor F : C− → C+, which is uniquely determined up to isomorphism; in this case,
we say that the coupling λ is corepresentable by F (Variant 8.2.3.8). In §8.2.5, we study
couplings which are simultaneously representable and corepresentable. Our main result
asserts that if a coupling λ : C → Cop

− ×C+ is representable by a functor G : C+ → C−, then
it is corepresentable by a functor F : C− → C+ if and only if F is left adjoint to G (Theorem
8.2.5.1). Our proof is based on an alternative characterization of the corepresenting functor
F , which we explain in §8.2.4.

Let C be an ∞-category. Then the twisted arrow coupling λ : Tw(C)→ Cop×C has the
following features:

(a) The coupling λ is corepresentable. That is, for every object X ∈ C, the ∞-category
{X} ×Cop Tw(C) has an initial object.

(b) The coupling λ is representable. That is, for every object Y ∈ C, the ∞-category
Tw(C)×C {Y } has an initial object.

(c) Let f be an object of the ∞-category Tw(C), which we regard as a morphism X → Y

in the ∞-category C. Then f is initial when viewed as an object of the ∞-category
{X} ×Cop Tw(C) if and only if it is initial when viewed as an object of the ∞-category
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Tw(C)×C {Y } (by virtue of Corollary 8.1.2.21, both conditions are equivalent to the
requirement that f corresponds to an isomorphism in the ∞-category C).

In §8.2.6, we show that twisted arrow couplings are characterized (up to equivalence) by these
properties. More precisely, we show that a coupling µ : D → Dop

− ×D+ satisfies conditions
(a), (b) and (c) if and only if it is representable (or corepresentable) by an equivalence of
∞-categories (Theorem 8.2.6.5), and therefore equivalent to the twisted arrow ∞-category
associated to the∞-category D− (or D+). In this case, we say that the coupling λ is balanced
(Definition 8.2.6.1).

8.2.1 Representable Couplings

043XWe now axiomatize an essential feature of the couplings that can be obtained from
Construction 8.2.0.3.

Definition 8.2.1.1. 043YLet λ : C → Cop
− ×C+ be a coupling of ∞-categories and let C be an

object of C, having image λ(C) = (C−, C+) ∈ Cop
− ×C+. We say that X is universal if it is

an initial object of the ∞-category C ×C+{C+}, and couniversal if it is an initial object of
the ∞-category {C−} ×Cop

−
C.

Remark 8.2.1.2 (Uniqueness). 043ZLet λ = (λ+, λ−) : C → Cop
− ×C+ be a coupling of ∞-

categories, let C be a universal object of C, and let D be another object of C. The following
conditions are equivalent:

• The object C is isomorphic to D (as an object of the ∞-category C).

• The object D is universal, and λ+(D) is isomorphic to λ+(C) (as an object of the
∞-category C+).

Definition 8.2.1.3. 0440Let λ = (λ−, λ+) : C → Cop
− ×C+ be a coupling of ∞-categories.

• We say that λ is representable if, for every object C+ ∈ C+, there exists a universal
object C ∈ C satisfying λ+(C) = C+.

• We say that λ is corepresentable if, for every object C− ∈ C−, there exists a couniversal
object C ∈ C satisfying λ−(C) = C−.

Remark 8.2.1.4 (Symmetry). 0441Let C− and C+ be ∞-categories, and let λ = (λ−, λ+) :
C → Cop

− ×C+ be a coupling of C+ with C−. Then the transposition λ′ = (λ+, λ−) can be
regarded as a coupling of Cop

− with Cop
+ . In this situation:

• An object C ∈ C is universal for the coupling λ if and only if it is couniversal for the
coupling λ′.
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• The coupling λ is representable if and only if the coupling λ′ is corepresentable.

Example 8.2.1.5.0442 Let C be an ∞-category and let λ : Tw(C) → Cop×C be the twisted
arrow coupling of Example 8.2.0.2. For every morphism f : X → Y in the ∞-category C,
Corollary 8.1.2.21 asserts that the following conditions are equivalent:

(1) The morphism f is an isomorphism in C.

(2) As an object of Tw(C), f is couniversal with respect to the coupling λ.

(3) As an object of Tw(C), f is universal with respect to the coupling λ.

In particular, the coupling λ is both representable and corepresentable.

Variant 8.2.1.6.0443 Let G : C+ → C− be a functor of ∞-categories, set C = Tw(C−)×C− C+,
and let λG : C → Cop

− ×C+ denote the coupling of Construction 8.2.0.3. Unwinding the
definitions, we see that objects of C can be identified with pairs (e, C+), where C+ is an
object of the ∞-category C+ and e : C− → G(C+) is a morphism in the ∞-category C−.
It follows from Example 8.2.1.5 that an object (e, C+) ∈ C is universal if and only if e is
an isomorphism in the ∞-category C−. Note that every object C+ ∈ C+ can be lifted to
a universal object of C (for example, we can choose e to be the identity morphism from
G(C+) to itself), so that the coupling λG is representable. In §8.2.3, we will prove the
converse: every representable coupling of ∞-categories can be obtained (up to equivalence)
from Construction 8.2.0.3(Theorem 8.2.0.4).

Our goal in this section is to establish a universal mapping property of (co)representable
couplings (Proposition 8.2.1.8). First, we give a reformulation of Definition 8.2.0.1 (compare
with Corollary 8.1.1.14).

Proposition 8.2.1.7.0444 Let C− and C+ be ∞-categories. Then a morphism of simplicial
sets λ = (λ−, λ+) : C → Cop

− ×C+ is a left fibration if and only if it satisfies the following
conditions:

(1) The morphism λ is an isofibration; in particular, C is an ∞-category.

(2) The functor λ− : C → Cop
− is a cocartesian fibration. Moreover, a morphism u of C is

λ−-cocartesian if and only if λ+(u) is an isomorphism in C+.

(3) The functor λ+ : C → C+ is a cocartesian fibration. Moreover, a morphism u of C is
λ+-cocartesian if and only if λ−(u) is an isomorphism in Cop

− .

Proof. Suppose first that λ is a left fibration. Then λ is a cocartesian fibration, and every
morphism of C is λ-cocartesian (Proposition 5.1.4.14). In particular, λ is an isofibration.
Let π− : Cop

− ×C+ → Cop
− and π+ : Cop

− ×C+ → C+ denote the projection maps. Note that

https://kerodon.net/tag/0442
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π− is a cocartesian fibration, and that a morphism (u−, u+) of Cop
− ×C+ is π−-cocartesian if

and only if u+ = π+(u−, u+) is an isomorphism in the ∞-category C+ (see Remark 5.1.4.6).
Applying Proposition 5.1.4.13, we see that λ− = π− ◦ λ is also a cocartesian fibration, and
that a morphism u of C is λ−-cocartesian if and only if π+(λ(u)) = λ+(u) is an isomorphism
in C+. This proves assertion (2), and assertion (3) follows by a similar argument.

We now prove the converse. Suppose that λ satisfies conditions (1), (2), and (3); we wish
to show that λ is a left fibration. We first show that λ is a cocartesian fibration. Fix an
object X ∈ C having image X = λ(X), together with a morphism w : X → Z in the product
C−×C+. We wish to show that we can write u = λ(w) for some λ-cocartesian morphism
w : X → Z in C. Invoking assumption (2), we can choose a λ−-cocartesian morphism
u : X → Y of C satisfying λ−(u) = π−(w). Set Y = λ(Y ) and u = λ(u). Note that the
morphism λ+(u) = π+(u) is an isomorphism in the ∞-category C+. We can therefore choose
a 2-simplex σ of Cop

− ×C+ as indicated in the diagram

Y

v

��
X

u

??

w // Z,

for which the image π−(σ) is a right-degenerate 2-simplex of Cop
− . Note that, if v can be

lifted to a λ-cocartesian morphism v : Y → Z of C, then assumption (1) guarantees that we
can lift σ to a diagram

Y

v

��
X

u

??

w // Z

in the∞-category C, where w is λ-cocartesian by virtue of Proposition 5.1.4.12. Consequently,
to prove the existence of w, we can replace w by v and thereby reduce to the case where λ−(w)
is an isomorphism in the∞-category Cop

− . Repeating this argument with the roles of Cop
− and

C+ interchanged, we may also assume that λ+(w) is an isomorphism in the ∞-category C+.
In this case, assumption (1) guarantees that we can lift w to an isomorphism w : X → Z in
the ∞-category C, which is λ-cocartesian by virtue of Proposition 5.1.1.8. This completes
the proof that λ is a cocartesian fibration.

To complete the proof that λ is a left fibration, it will suffice to show that every morphism
w : X → Z in C is λ-cocartesian (see Proposition 5.1.4.14). Arguing as in Remark 5.1.3.8,
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we can choose a diagram
Y

v

��
X

u

??

w // Z

in C, where u is λ-cocartesian and λ(v) is an isomorphism in Cop
− ×C+. It follows from

(2) that v is λ−-cocartesian. Since λ−(v) is an isomorphism in Cop
− , it follows that v is

an isomorphism in C (Proposition 5.1.1.8). In particular, v is λ-cocartesian (Proposition
5.1.1.8), so that w = v ◦ u is also λ-cocartesian (Proposition 5.1.4.12).

Proposition 8.2.1.8.0445 Let λ = (λ−, λ+) : C → Cop
− ×C+ be a corepresentable coupling and

let U : E → C+ be a cocartesian fibration of ∞-categories. Suppose that, for every object
Y ∈ C+, the fiber {Y } ×C+ E has an initial object. Then the ∞-category Fun/ C+(C, E) has
an initial object. Moreover, an object F ∈ Fun/ C+(C, E) is initial if and only if it satisfies
the following pair of conditions:

(1) For every couniversal object C ∈ C, the image F (C) is initial when viewed as an object
of the ∞-category {λ+(C)} ×C+ E.

(2) The functor F carries λ+-cocartesian morphisms of C to U -cocartesian morphisms of E.

Remark 8.2.1.9.0446 By virtue of Proposition 8.2.1.7, we can restate condition (2) of Proposition
8.2.1.8 as follows:

(2′) Let e be a morphism of C having the property that λ−(e) is an isomorphism in the
∞-category Cop

− . Then F (e) is a U -cocartesian morphism of E .

Proof of Proposition 8.2.1.8. The functor λ− : C → Cop
− is a cocartesian fibration (Proposi-

tion 8.2.1.7) and is therefore exponentiable (Proposition 5.3.6.1). Let Fun(C / Cop
− , E) and

Fun(C / Cop
− , C+) be the relative exponentials introduced in Construction 4.5.9.1. Composi-

tion with U induces a functor V : Fun(C / Cop
− , E)→ Fun(C / Cop

− , C+), which is an isofibration
by virtue of Proposition 4.5.9.17. Let us identify the functor λ+ : C → C+ with a section s

of the projection map Fun(C / Cop
− , C+)→ Cop

− , and form a pullback diagram

D //

V ′

��

Fun(C / Cop
− , E)

V

��
Cop
−

s // Fun(C / Cop
− , C+).

https://kerodon.net/tag/0445
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Since V ′ is a pullback of V , it is also an isofibration (Remark 4.5.5.11). Moreover, the
∞-category Fun/ C+(C, E) can be identified with the ∞-category Fun/ Cop

−
(Cop
− ,D) of sections

of V ′.
For each object X ∈ C−, let CX denote the fiber {X}×Cop

−
C. Unwinding the definitions, we

can identify objects of D with pairs (X,FX), where X is an object of C− and FX : CX → E is a
functor satisfying U ◦f = λ+|CX

. For fixed X ∈ C−, our assumption that λ is corepresentable
guarantees that the ∞-category CX has an initial object C. Set Y = λ+(C). By assumption,
the ∞-category {Y } ×C+ E also has an initial object. Invoking the criterion of Corollary
7.3.6.11, we see that the ∞-category {X}×Cop

−
D ≃ Fun/ C+(CX , E) also has an initial object.

Moreover, an object FX ∈ Fun/ C+(CX , E) is initial if and only if it satisfies the following
pair of conditions:

(1X) For every initial object C ∈ CX , the image FX(C) is an initial object of the∞-category
{Y } ×C+ E .

(2X) The functor FX carries each morphism in CX to a U -cocartesian morphism of E .

We will prove below that the functor V ′ is a cartesian fibration. Assuming this Corollary
7.3.5.7, we guarantees that the ∞-category

Fun/ C+(C, E) ≃ Fun/ Cop
−

(Cop
− ,D)

has an initial object. Moreover, an object F ∈ Fun/ C+(C, E) is initial if and only if, for
every object X ∈ C−, the restriction FX = F |CX

satisfies conditions (1X) and (2X) above.
Unwinding the definitions, this is equivalent to the requirement that F satisfies condition
(1) and the following variant of condition (2′) of Remark 8.2.1.9:

(2′′) If e is a morphism of C such that λ−(e) is an identity morphism of Cop
− , then F (e) is a

U -cocartesian morphism of E .

The implication (2′)⇒ (2′′) is immediate. The reverse implication follows from the observa-
tion that if λ−(e) is an isomorphism in Cop

− , then e is isomorphic (as an object of Fun(∆1, C))
to a morphism e′ such that λ−(e′) is an identity morphism of Cop

− .
We now complete the proof by showing that V ′ is a cartesian fibration. Fix an object

(X,FX) ∈ D, and a morphism u : X ′ → X in the ∞-category Cop
− . We wish to show that

u can be lifted to a V ′-cartesian morphism ũ : (X ′, FX′) → (X,FX) in the ∞-category
D. We will prove a slightly stronger assertion: we can arrange that the image of ũ in the
∞-category Fun(C / Cop

− , E) is V -cartesian. Let us identify u with a morphism ∆1 → Cop
−

and set Cu = ∆1 ×Cop
−
C, so that CX can be identified with the fiber {1} ×∆1 Cu. By virtue
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of Corollary 7.3.7.6, it will suffice to show that the lifting problem

CX
FX // E

U

�� ��
Cu

Fu

>>

// C+

admits a solution having the property that Fu is U -right Kan extended from CX .
Let π : Cu → ∆1 denote the projection map. Since π is a pullback of λ−, it is a cocartesian

fibration of ∞-categories (Proposition 8.2.1.7). In particular, CX is a reflective subcategory
of Cu. Moreover, if C is an object of CX , then a morphism v : C ′ → C in Cu is π-cocartesian
if and only if it exhibits C as a CX -reflection of C ′ (see Proposition 6.2.2.22). By virtue of
Corollary 7.3.5.9, it will suffice to show that if this condition is satisfied, then λ+(v) can be
lifted to a U -cartesian morphism E → FX(C) in E . This is clear: our assumption that v is
π-cocartesian guarantees that λ+(v) is an isomorphism in the ∞-category C+ (Proposition
8.2.1.7), and can therefore be lifted to an isomorphism in E by virtue of the fact that U is
an isofibration (Proposition 5.1.4.8).

Corollary 8.2.1.10.0447 Let U : E → C be a cocartesian fibration of ∞-categories. Suppose
that, for every object C ∈ C, the ∞-category EC = E ×C{C} has an initial object. Then the
∞-category Fun/ C(Tw(C), E) has an initial object. Moreover, an object F ∈ Fun/ C(Tw(C), E)
is initial if and only if it satisfies the following pair of conditions:

(1) For every object C ∈ C, the image F (idC) is an initial object of the ∞-category EC .

(2) Let e be a morphism of Tw(C) whose image in Cop is an isomorphism. Then F (e) is a
U -cocartesian morphism of E.

Stated more informally, Corollary 8.2.1.10 asserts that the twisted arrow ∞-category
Tw(C) is universal among ∞-categories E equipped with a cocartesian fibration U : E → C
having the property that each fiber of U has an initial object.

8.2.2 Morphisms of Couplings

0448 We begin by introducing a companion of Definition 8.2.0.1.

Definition 8.2.2.1.0449 Let λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be couplings of ∞-
categories. A morphism of couplings from λ to µ is a triple of functors

F− : C− → D− F : C → D F+ : C+ → D+

https://kerodon.net/tag/0447
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for which the diagram
C F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+

is commutative. Note that such diagrams can be identified with the vertices of a simplicial
set Fun±(C,D), defined by the formula

Fun±(C,D) = Fun(C−,D−)op ×Fun(C,Dop
− ) Fun(C,D)×Fun(C,D+) Fun(C+,D+).

Proposition 8.2.2.2. 044ALet λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be couplings of
∞-categories. Then the projection maps

Φ− : Fun±(C,D)→ Fun(C−,D−)op Φ+ : Fun±(C,D)→ Fun(C+,D+)

induce a left fibration

(Φ−,Φ+) : Fun±(C,D)→ Fun(C−,D−)op × Fun(C+,D+).

Proof. By construction, there is a pullback diagram of simplicial sets

Fun±(C,D) //

(Φ−,Φ+)

��

Fun(C,D)

µ◦

��
Fun(C−,D−)op × Fun(C+,D+) ◦λ // Fun(C,Dop

− ×D+).

It will therefore suffice to show that the right vertical map is a left fibration (Remark 4.2.1.8),
which follows from our assumption that µ is a left fibration (Corollary 4.2.5.2).

Remark 8.2.2.3 (Functor Couplings). 044BLet λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be
couplings of ∞-categories. Proposition 8.2.2.2 asserts that the induced map

Φ = (Φ−,Φ+) : Fun±(C,D)→ Fun(C−,D−)op × Fun(C+,D+)

is also a coupling of ∞-categories. Moreover, it is characterized by a universal property:
for every coupling of ∞-categories κ : B → Bop

− ×B+, there is a canonical isomorphism of
simplicial sets

Fun±(B,Fun±(C,D)) ≃ Fun±(B×C,D),

where the right hand side is defined using the product coupling

B×C κ×λ−−→ (B−×C−)op × (B+×C+).

https://kerodon.net/tag/044A
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Remark 8.2.2.4.044C Let λ = (λ−, λ+) : C → Cop
− ×C+ and µ = (µ−, µ+) : D → Dop

− ×D+ be
couplings of ∞-categories, and suppose we are given a morphism of couplings

C F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+ .

It follows from Proposition 8.2.1.7 that the functor F carries λ−-cocartesian morphisms of C
to µ−-cocartesian morphisms of D, and λ+-cocartesian morphisms of C to µ+-cocartesian
morphisms of D.

Corollary 8.2.2.5.044D Let λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be couplings of ∞-
categories. Then the simplicial set Fun±(C,D) is an ∞-category.

Proof. Combine Proposition 8.2.2.2 with Remark 4.2.1.4.

Example 8.2.2.6.044E The canonical isomorphism λ : ∆0 ∼−→ (∆0)op × ∆0 can be regarded
as a coupling of the 0-simplex ∆0 with itself. For every coupling of ∞-categories µ : D →
Dop
− ×D+, the ∞-category Fun±(∆0,D) can be identified with the ∞-category D.

Exercise 8.2.2.7.04AS Let λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be couplings of∞-categories,
and suppose we are given a morphism of couplings

04AT C F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+

(8.23)

Show that the following conditions are equivalent:

• The functors F−, F , and F+ are equivalences of ∞-categories.

• There exists a morphism of couplings (G−, G,G+) ∈ Fun±(D, C) which is a homotopy
inverse to (F−, F, F+), in the sense that the compositions (G− ◦ F−, G ◦ F,G+ ◦ F+)
and (F− ◦G−, F ◦G,F+ ◦G+) are isomorphic to (idC− , idC , idC+) and (idD− , idD, idD+)
as objects of the ∞-categories Fun±(C, C) and Fun±(D,D), respectively.

If these conditions are satisfied, we will say that the diagram (8.23) is an equivalence of
couplings.

https://kerodon.net/tag/044C
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Remark 8.2.2.8. 04AUSuppose we are given a morphism of couplings

C F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+

which is an equivalence (in the sense of Exercise 8.2.2.7). Then:

• The coupling λ is representable if and only if the coupling µ is representable.

• The coupling λ is corepresentable if and only if the coupling µ is corepresentable.

• An object C ∈ C is universal (with respect to the coupling λ) if and only if F (C) is
universal D (with respect to the coupling µ).

• An object C ∈ C is universal (with respect to the coupling λ) if and only if F (C) is
universal D (with respect to the coupling µ).

See Corollaries 4.6.7.21 and 4.6.7.20.

Beware that, in the situation of Definition 8.2.2.1, the ∞-category Fun±(C,D) depends
not only on C and D, but also on the left fibrations λ : C → C−×C+ and µ : D → D−×D+.
Our goal in this section is to show that, nevertheless, it can often be identified with a full
subcategory of Fun(C,D) (Proposition 8.2.2.9).

Proposition 8.2.2.9. 044FLet λ = (λ−, λ+) : C → Cop
− ×C+ and µ = (µ−, µ+) : D → Dop

− ×D+
be couplings of ∞-categories. Let E− ⊆ Fun(C,D) be the full subcategory spanned by those
functors F : C → D which carry λ+-cocartesian morphisms of C to µ+-cocartesian morphisms
of D, define E+ ⊆ Fun(C,D) similarly, and set E± = E− ∩E+. Then:

(1) Suppose that, for every object C− ∈ C−, the∞-category {C−}×Cop
−
C is weakly contractible.

Then the forgetful functor

Fun±(C,D)→ E−×Fun(C,D+) Fun(C+,D+)

is an equivalence of ∞-categories.

(2) Suppose that, for every object C+ ∈ C+, the∞-category C ×C+{C+} is weakly contractible.
Then the forgetful functor

Fun±(C,D)→ Fun(C−,D−)op ×Fun(C,Dop
− ) E+

is an equivalence of ∞-categories.

https://kerodon.net/tag/04AU
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(3) If the hypotheses of both (1) and (2) are satisfied, then the forgetful functor Fun±(C,D)→
E± is an equivalence of ∞-categories.

Proof. We first prove (1). Let W be the collection of all λ+-cocartesian morphisms of C.
Note that a morphism u of C belongs to W if and only if λ−(u) is an isomorphism in the ∞-
category Cop

− (Proposition 8.2.1.7). Suppose that, for every object C− ∈ C−, the ∞-category
{C−} ×C− C is weakly contractible. Applying Corollary 6.3.5.3, we deduce that the functor
λ− exhibits Cop

− as a localization of C with respect to W . It follows that precomposition
with λ− induces an equivalence of ∞-categories Fun(C−,D−)op → Fun(C[W−1],Dop

− ), where
Fun(C[W−1],Dop

− ) denotes the full subcategory of Fun(C,Dop
− ) spanned by those functors

which carry each element of W to an isomorphism in Dop
− (Notation 6.3.1.1). We have a

commutative diagram of ∞-categories

044G Fun±(C,D) //

��

Fun(C−,D−)op

◦λ−

��
E−×Fun(C,D+) Fun(C+,D+) //

��

Fun(C[W−1],Dop
− )

��
Fun(C,D)×Fun(C,D+) Fun(C+,D+) θ // Fun(C,Dop

− )

(8.24)

in which both squares are pullbacks. To prove (1), it will suffice to show that the upper
square is a categorical pullback diagram (Proposition 4.5.2.21). In fact, we will show that θ
is an isofibration, so that both squares are categorical pullback diagrams (Corollary 4.5.2.27).
This follows by observing that θ factors as a composition

Fun(C,D)×Fun(C,D+) Fun(C+,D+) θ′−→ Fun(C,Dop
− )× Fun(C+,D+) θ′′−→ Fun(C,Dop

− ),

where θ′ is a pullback of the composition map Fun(C,D) µ◦−→ Fun(C,Dop
− ×D+) (hence a

left fibration by virtue of Corollary 4.2.5.2) and θ′′ is a pullback of the projection map
Fun(C+,D+)→ ∆0. This completes the proof of assertion (1).

Assertion (2) follows by a similar argument. We now prove (3). Suppose that λ
satisfies the hypotheses of both (1) and (2); we wish to prove that the forgetful functor
T : Fun±(C,D)→ E± is an equivalence of∞-categories. Note that T factors as a composition

Fun±(C,D) T ′−→ Fun(C−,D−)op ×Fun(C,Dop
− ) E+

T ′′−−→ E±,

https://kerodon.net/tag/044G
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where T ′ is an equivalence of ∞-categories by virtue of (2). It will therefore suffice to show
that T ′′ is an equivalence of ∞-categories. We have a commutative diagram

Fun(C−,D−)op ×Fun(C,Dop
− ) E+

T ′′

��

// Fun(C−,D−)op

◦λ−

��
E±

µ−◦ //

��

Fun(C[W−1],Dop
− )

��
E+

ρ // Fun(C,Dop
− ),

where both squares are pullbacks and the upper right vertical map is an equivalence of
∞-categories. It will therefore suffice to show that the upper square is a categorical pullback
diagram (Proposition 4.5.2.21). In fact, we claim that ρ is an isofibration, so that both
squares are categorical pullback diagrams (Corollary 4.5.2.27). This follows by observing
that ρ is the restriction of the map Fun(C,D) µ−◦−−→ Fun(C,Dop

− ) (which is a cocartesian
fibration by virtue of Proposition 8.2.1.7 and Theorem 5.2.1.1) to a replete subcategory
E+ ⊆ Fun(C,D).

Corollary 8.2.2.10. 044HLet λ = (λ−, λ+) : C → Cop
− ×C+ and µ = (µ−, µ+) : D → Dop

− ×D+
be couplings of ∞-categories. Fix a functor F+ : C+ → D+. If λ is corepresentable, then the
forgetful functor

Fun±(C,D)×Fun(C+,D+) {F+} → Fun/D+(C,D)

is fully faithful, and its essential image is the full subcategory Fun0
/D+

(C,D) ⊆ Fun/D+(C,D)
spanned by those functors which carry λ+-cocartesian morphisms of C to µ+-cocartesian
morphisms of D.

Proof. Let E− ⊆ Fun(C,D) be the full subcategory defined in Proposition 8.2.2.9. We then

https://kerodon.net/tag/044H
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have a commutative diagram of ∞-categories

044J Fun±(C,D)×Fun(C+,D+) {F+} //

��

Fun±(C,D)

��
Fun0

/D+
(C,D) //

��

E−×Fun(C,D+) Fun(C+,D+)

��
{F+} // Fun(C+,D+),

(8.25)

where both squares are pullback diagrams. Note that the vertical map on the lower right
is a pullback of the functor E− → Fun(C,D+) obtained by restricting the cocartesian
fibration Fun(C,D) µ+◦−−→ Fun(C,D+) (see Proposition 8.2.1.7 and Theorem 5.2.1.1) to the
replete subcategory E− ⊆ Fun(C,D), and is therefore an isofibration. Moreover, the right
vertical composition Fun±(C,D)→ Fun(C+,D+) is a cocartesian fibration (see Proposition
8.2.1.7 and Remark 8.2.2.3), and therefore an isofibration. It follows that the bottom
square and outer rectangle of (8.25) are categorical pullback diagrams (Corollary 4.5.2.27),
so that the upper square is also a categorical pullback diagram (Proposition 4.5.2.18).
Our assumption that λ is corepresentable guarantees that for each object X− ∈ C−, the
fiber {X−} ×Cop

−
C has an initial object, and is therefore weakly contractible. Applying

Proposition 8.2.2.9, we deduce that the vertical map on the upper right is an equivalence
of ∞-categories. Invoking Proposition 4.5.2.21, we conclude that the forgetful functor
Fun±(C,D)×Fun(C+,D+) {F+} → Fun0

/D+
(C,D) is also an equivalence of ∞-categories.

We can now formulate the main result of this section.

Theorem 8.2.2.11.044K Let λ = (λ−, λ+) : C → Cop
− ×C+ be a representable coupling of ∞-

categories and let µ : D → Dop
− ×D+ be a corepresentable coupling of ∞-categories. Then

the functor coupling

Φ = (Φ−,Φ+) : Fun±(C,D)→ Fun(C−,D−)op × Fun(C+,D+)

is corepresentable. Moreover, an object (F−, F, F+) ∈ Fun±(C,D) is couniversal if and only
if the functor F : C → D carries universal objects of C to couniversal objects of D.

Proof. Fix a functor F− : C− → D−; we wish to show that it can be extended to a couniversal
object (F−, F, F+) ∈ Fun)±(C,D). Set E = Cop

− ×Dop
−
D. Then projection onto the first factor

determines a cocartesian fibration U : E → Cop
− (Proposition 8.2.1.7). Let FunCCart

/ Cop
−

(C, E)

https://kerodon.net/tag/044J
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denote the full subcategory of Fun/ Cop
−

(C, E) spanned by those functors which carry λ−-
cocartesian morphisms of C to U -cocartesian of E (Notation 5.3.1.10). Corollary 8.2.2.10
guarantees that the forgetful functor

{F−} ×Fun(C−,D−)op Fun±(C,D)→ FunCCart
/ Cop
−

(C, E)

is an equivalence of ∞-categories. Theorem 8.2.2.11 can therefore be restated as follows:

(1) The ∞-category FunCCart
/ Cop
−

(C, E) has an initial object.

(2) An object F ∈ FunCCart
/ Cop
−

(C, E) is initial if and only if, for universal object C ∈ C, the
image F (C) is an initial object of the ∞-category

Eλ−(C) ≃ {F−(λ−(C))} ×Dop
−
D .

Our assumption that µ is corepresentable guarantees that, for each object C ∈ C, the
∞-category Eλ−(C) has an initial object. Consequently, assertions (1) and (2) follow from
(the dual of) Proposition 8.2.1.8.

Example 8.2.2.12. 044LLet F : C → D be a functor of ∞-categories. Then the commutative
diagram

044MTw(C) Tw(F ) //

��

Tw(D)

��
Cop×C F op×F // Dop×D

(8.26)

is a morphism of couplings. It follows from Theorem 8.2.2.11 that this morphism is initial
when viewed as an object of the ∞-category {F} ×Fun(C,D)op Fun±(Tw(C),Tw(D)).

Corollary 8.2.2.13. 044NLet C and D be ∞-categories, and suppose we are given a pair of
functors F−, F+ : C → D. Then F− and F+ are isomorphic (as objects of the ∞-category
Fun(C,D)) if and only if there exists a morphism of couplings

044PTw(C) F̃ //

��

Tw(D)

��
Cop×C

F op
− ×F+ // Dop×D

(8.27)

having the property that the functor F̃ carries isomorphisms of C (regarded as objects of
Tw(C)) to isomorphisms of D (regarded as objects of Tw(D)).
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Proof. Suppose first that there exists an isomorphism of functors α : F− → F+. Since the
projection map Tw(D)→ Dop×D is an isofibration, we can use Corollary 4.4.5.6 to lift the
natural transformation

(id×α) : F op
− × F+ → F op

− × F−
to an isomorphism F̃ → Tw(F−) in the ∞-category Fun(Tw(C),Tw(D)), so that we have a
commutative diagram

Tw(C) F̃ //

��

Tw(D)

��
Cop×C

F op
− ×F+ // Dop×D

where F̃ carries isomorphisms of C to isomorphisms of D.
We now prove the converse. Suppose we are given a commutative diagram (8.27),

where F̃ carries isomorphisms of C to isomorphisms of D. Applying Theorem 8.2.2.11, we
deduce that the triple (F−, F̃ , F+) is initial when viewed as an object of the ∞-category
{F−}×Fun(C,D)op Fun±(Tw(C),Tw(D)). Applying Example 8.2.2.12 (and Corollary 4.6.7.15),
we deduce that (F−, F̃ , F+) is isomorphic to (F−,Tw(F−), F−) as an object of the∞-category
{F−} ×Fun(C,D)op Fun±(Tw(C),Tw(D)). In particular, F+ is isomorphic to F− as an object
of Fun(C,D).

8.2.3 Representations of Couplings

044Q We now apply Theorem 8.2.2.11 to give a classification of representable couplings.

Definition 8.2.3.1.044R Let G : C+ → C− be a functor of ∞-categories. We will say that a
coupling λ : C → Cop

− ×C+ is representable by G if it is equivalent (as a left fibration over
Cop
− ×C+) to the coupling λG of Construction 8.2.0.3.

Remark 8.2.3.2.044S Let G,G′ : C+ → C− be functors which are isomorphic (as objects of the
∞-category Fun(C+, C−)). Then a coupling λ : C → Cop

− ×C+ is representable by G if and
only if it is representable by G′. See Proposition 5.1.7.5.

Example 8.2.3.3.044T Let C be an ∞-category. Then the twisted arrow coupling λ : Tw(C)→
Cop×C of of Example 8.2.0.2 is representable by the identity functor id : C → C.

Our goal is to prove the following restatement of Theorem 8.2.0.4:

Theorem 8.2.3.4.044U Let λ : C → Cop
− ×C+ be a coupling of ∞-categories. Then λ is

representable (in the sense of Definition 8.2.1.3) if and only there exists a functor G : C+ →
C− such that λ is representable by G (in the sense of Definition 8.2.3.1). If this condition is
satisfied, then the functor G is uniquely determined up to isomorphism.
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Before giving the proof of Theorem 8.2.3.4, it will be useful to formulate a more precise
version of Definition 8.2.3.1.

Definition 8.2.3.5. 044VLet λ : C → Cop
− ×C+ be a coupling of∞-categories and letG : C+ → C−

be a functor. We say that a morphism of couplings

044WC G̃ //

λ

��

Tw(C−)

��
Cop
− ×C+

id×G // Cop
− ×C−,

(8.28)

exhibits the coupling λ as represented by G if it is a categorical pullback square. Note that λ
is representable by G if and only if there exists a morphism of couplings which exhibits λ as
represented by G.

We now describe an alternative formulation of Definition 8.2.3.5.

Lemma 8.2.3.6. 044XSuppose we are given a morphism of couplings

044YC F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+,

(8.29)

where λ is representable and F− is an equivalence of ∞-categories. The following conditions
are equivalent:

(1) The diagram (8.29) is a categorical pullback square.

(2) For every object Y ∈ C+, the functor F induces an equivalence of ∞-categories

FY : C ×C+{Y } → D×D+{F+(Y )}.

(3) For every universal object C ∈ C, the image F (C) ∈ D is universal.

Proof. The equivalence (1) ⇔ (2) follows from Theorem 5.1.6.1 and Remark 8.2.2.4. To
complete the proof, it will suffice to show that for each object Y ∈ C+, the following
conditions are equivalent:

(2Y ) The functor FY is an equivalence of ∞-categories.
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(3Y ) The functor FY carries initial objects of C ×C+{Y } to initial objects of D×D+{F+(Y )}.

Replacing D by the ∞-category Cop
− ×Dop

−
D, we can assume that F− is an isomorphism. In

this case, the equivalence of (2Y ) and (3Y ) is a special case of Corollary 4.6.7.21.

Proposition 8.2.3.7.044Z Suppose we are given a morphism of couplings

0450 C G̃ //

λ

��

Tw(C−)

µ

��
Cop
− ×C+

id×G // Cop
− ×C−,

(8.30)

The following conditions are equivalent:

(1) The diagram (8.30) exhibits the coupling λ as represented by the functor G (in the sense
of Definition 8.2.3.1).

(2) For every object C ∈ C+, the functor G̃ induces an equivalence of ∞-categories

G̃C : C ×C+{C} → Tw(C−)×C− {G(C)}.

(3) The coupling λ is representable and, for every universal object C ∈ C, the image
G̃(C) ∈ Tw(C−) is an isomorphism (when viewed as a morphism of the ∞-category
C−).

(4) The coupling λ is representable and the triple (id, G̃, G) is initial when viewed as an
object of the ∞-category {id} ×Fun(C−,C−)op Fun±(C,Tw(C−)).

Proof. The implication (1)⇒ (2) is immediate. Note that, if condition (2) is satisfied, then
the coupling λ is representable; the implications (2)⇒ (3)⇒ (1) then follow from Lemma
8.2.3.6 (using the characterization of universal objects of Tw(C−) given by Example 8.2.1.5).
The equivalence (3)⇔ (4) follows from Theorem 8.2.2.11.

Proof of Theorem 8.2.3.4. Let λ : C → Cop
− ×C+ be a coupling of ∞-categories. It follows

from Proposition 8.2.3.7 that λ is representable by a functor G : C+ → C− if and only
if it is representable and G can be lifted to an initial object of the ∞-category E =
{id}×Fun(C−,C−)op Fun±(C,Tw(C−)). This immediately shows that G is uniquely determined
up to isomorphism. To prove existence, it suffices to show that if λ is representable then E
has an initial object. This follows from Theorem 8.2.2.11.
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Variant 8.2.3.8. 0451Let λ : C → Cop
− ×C+ be a coupling of ∞-categories and let F : C− → C+

be a functor. We say that λ is corepresentable by F if there exists a categorical pullback
square

0452C F̃ //

λ

��

Tw(C+)

��
Cop
− ×C+

F op×id // Cop
+ ×C+ .

(8.31)

In this case, we will say that the diagram (8.31) exhibits the coupling λ as corepresented
by F . It follows from Theorem 8.2.3.4 that λ is corepresentable (in the sense of Definition
8.2.1.3) if and only if it is corepresentable by F , for some functor F : C− → C+. Moreover,
if this condition is satisfied, then the functor F is uniquely determined up to isomorphism.

Couplings representable by a functor G : C+ → C− can be characterized by a universal
mapping property.

Proposition 8.2.3.9. 0453Let µ = (µ−, µ+) : D → Dop
− ×D+ be a coupling of ∞-categories, let

G : D+ → D− be a functor, and suppose we are given a morphism of couplings

0454D G̃ //

��

Tw(D−)

��
Dop
− ×D+

id×G // Dop
− ×D− .

(8.32)

The following conditions are equivalent:

(1) The diagram (8.32) exhibits µ as represented by G (in the sense of Definition 8.2.3.5).

(2) For every coupling of ∞-categories λ : C → Cop
− ×C+ and every pair of functors F− :

C− → D− and F+ : C+ → D+, composition with G̃ induces a homotopy equivalence of
Kan complexes

{F−} ×Fun(C−,D−)op Fun±(C,D)×Fun(C+,D+) {F+}

��
{F−} ×Fun(C−,D−)op Fun±(C,Tw(D−))×Fun(C+,D−) {G ◦ F+}

https://kerodon.net/tag/0451
https://kerodon.net/tag/0452
https://kerodon.net/tag/0453
https://kerodon.net/tag/0454


8.2. COUPLINGS OF ∞-CATEGORIES 1755

(3) For every coupling of ∞-categories λ : C → Cop
− ×C+ and every functor F+ : C+ → D+,

composition G̃ induces an equivalence of ∞-categories

Fun±(C,D)×Fun(C+,D+) {F+} → Fun±(C,Tw(D−))×Fun(C+,D−) {G ◦ F+}.

Proof. We first show that (1) ⇒ (2). Let λ = (λ−, λ+) : C → Cop
− ×C+ be a coupling of

∞-categories and let F− : C− → D− and F+ : C+ → D+ be functors. If condition (1) is
satisfied, then Remark 4.5.2.9 guarantees that the diagram

Fun(C,D) G̃◦ //

µ◦

��

Fun(C,Tw(D−))

��
Fun(C,Dop

− )× Fun(C,D+) // Fun(C,Dop
− )× Fun(C,D−)

is a categorical pullback square, where the vertical maps are left fibrations (Corollary 4.2.5.2).
Assertion (2) now follows by applying Corollary 4.5.2.31 to the object (F op

− ◦ λ−, F+ ◦ λ+) ∈
Fun(C,Dop

− )× Fun(C,D+). The implication (2)⇒ (3) follows by applying Corollary 5.1.6.4
to the commutative diagram of ∞-categories

Fun±(C,D)×Fun(C+,D+) {F+} //

##

Fun±(C,Tw(D−))×Fun(C+,D−) {G ◦ F+}

xx
Fun(C−,D−)op,

since the vertical maps are left fibrations (Proposition 8.2.2.2). We complete the proof by
showing that (3) implies (1). Specializing assertion (3) to the coupling λ : ∆0 ∼−→ (∆0)op×∆0,
we deduce that G̃ induces an equivalence of∞-categories D×D+{D} → Tw(D−)×D−{G(D)}
for each object D ∈ D+, so that (8.32) is a categorical pullback square by virtue of Proposition
8.2.3.7.

8.2.4 Presentations of Representable Couplings

0455 For some applications, it is convenient to work with a variant of Definition 8.2.3.5.
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Definition 8.2.4.1. 0456Let λ = (λ−, λ+) : C → Cop
− ×C+ be a coupling of ∞-categories and let

G : C+ → C− be a functor. We will say that a morphism of couplings

0457Tw(C+) G̃ //

��

C

λ

��
Cop

+ ×C+
Gop×id // Cop

− ×C+

(8.33)

exhibits λ as represented by G if, for every object C ∈ C+, the image G̃(idC) is a universal
object of C.

Remark 8.2.4.2. 0458In the situation of Definition 8.2.4.1, if the diagram (8.33) exhibits λ as
represented by G if and only if the functor G̃ carries each isomorphism in C+ (regarded as
an object of the ∞-category Tw(C+)) to a universal object of C. This follows from Remark
8.2.1.2, since every isomorphism in C+ is isomorphic to an identity morphism (when viewed
as an object of Tw(C+)).

Proposition 8.2.4.3. 0459Let λ : C → Cop
− ×C+ be a coupling of ∞-categories and let G : C+ →

C− be a functor. The following conditions are equivalent:

(1) The coupling λ is representable by G (in the sense of Definition 8.2.3.1).

(2) There exists a morphism of couplings

Tw(C+) G̃ //

��

C

λ

��
Cop

+ ×C+
Gop×id // Cop

− ×C+

which exhibits λ as represented by G (in the sense of Definition 8.2.4.1).

Proof. We first show that (2) implies (1). Suppose that there exists a morphism of couplings

045ATw(C+) G̃ //

��

C

λ

��
Cop

+ ×C+
Gop×id // Cop

− ×C+

(8.34)
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which exhibits λ as represented by G (in the sense of Definition 8.2.4.1). For each object
C+ ∈ C+, the functor G̃ carries idC to a universal object of C ∈ C satisfying λ+(C) = C+.
It follows that the coupling λ is representable. Theorem 8.2.3.4, guarantees that there exists
a functor G′ : C+ → C− such that λ is representable by G′. Choose morphism of couplings

045B C G̃′ //

λ

��

Tw(C−)

��
Cop
− ×C+

id×G′ // Cop
− ×C−,

(8.35)

which exhibits λ as represented by G′ (in the sense of Definition 8.2.3.5). Composing (8.35)
with (8.34), we obtain a morphism of twisted arrow couplings

Tw(C+) G̃′◦G̃ //

��

Tw(C−)

��
Cop

+ ×C+
Gop×G′ // Cop

− ×C+

where the functor G̃′ ◦ G̃ carries isomorphisms of C+ to isomorphisms of C−. Invoking
Corollary 8.2.2.13, we deduce that the functors G and G′ are isomorphic, so that λ is also
representable by G (Remark 8.2.3.2).

We now show that (1) implies (2). Assume that λ is representable by G. Setting
G′ = G, we can choose a diagram (8.35) which exhibits λ as represented by G. Applying
Proposition 8.2.3.9, we deduce that composition with G̃′ induces a homotopy equivalence of
Kan complexes

{G} ×Fun(C+,C−)op Fun±(Tw(C+), C)×Fun(C+,C+) {id}

θ

��
{G} ×Fun(C+,C−)op Fun±(Tw(C+),Tw(C−))×Fun(C+,C−) {G}.

In particular, there exists an object (G, G̃, id) ∈ Fun±(Tw(C+), C) such that (id, G̃′, G) ◦
(G, G̃, id) is isomorphic to (G,Tw(G), G) in the ∞-category Fun±(Tw(C+),Tw(C−)). In
particular, the functor G̃′ ◦ G̃ : Tw(C+)→ Tw(C−) is isomorphic to the functor Tw(G), and
therefore carries isomorphisms of C+ to isomorphisms of C−. It follows that the functor
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G̃ : Tw(C+)→ C carries isomorphisms in C+ to universal objects of C, so that the diagram
(8.34) exhibits λ as represented by G.

Corollary 8.2.4.4. 045CLet λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be couplings of ∞-
categories which are representable by functors G : C+ → C− and H : D+ → D−, respectively.
Let F− : C− → D− and F+ : C+ → D+ be functors. The following conditions are equivalent:

(1) The functors H◦F+ and F−◦G are isomorphic (as objects of the∞-category Fun(C+,D−).
That is, the diagram of ∞-categories

C+
F+ //

G

��

D+

H

��
C−

F− // D−

commutes up to isomorphism.

(2) There is a morphism of couplings

045DC F̃ //

λ

��

D

µ

��
Cop
− ×C+ F op

− ×F+ // Dop
− ×D+,

(8.36)

where the functor F̃ carries universal objects of C to universal objects of D.

Proof. Choose morphisms of couplings

045ETw(C+) G̃ //

��

C

λ

��

D H̃ //

µ

��

Tw(D−)

��
Cop

+ ×C+
Gop×id // Cop

− ×C+ Dop
− ×D+

id×H // Dop
− ×D−,

(8.37)

which exhibit λ and µ as represented by G and H, respectively. We first prove that (2)
implies (1). Suppose there exists a diagram (8.36), where F̃ carries universal objects of C to
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universal objects of D. Composing with the morphisms (8.37), we obtain a morphism of
twisted arrow couplings

Tw(C+) H̃◦F̃◦G̃ //

��

Tw(D−)

��
Cop

+ ×C+
(F−◦G)op×(H◦F+) // Dop

− ×D−,

where the functor H̃ ◦ F̃ ◦ G̃ carries isomorphisms in C+ to isomorphisms in D−. Applying
Corollary 8.2.2.13, we deduce that the functors F− ◦G and H ◦ F+ are isomorphic.

We now show that (1) implies (2). Since λ is representable and the twisted arrow pairing
Tw(D−) → Dop

− ×D− is corepresentable, Theorem 8.2.2.11 guarantees that there exists a
morphism of pairings

045F C

λ

��

T̃ // Tw(D−)

��
Cop
− ×C+

F op
− ×T+ // Dop

− ×D−,

(8.38)

where T̃ carries universal objects of C to isomorphisms in the ∞-category D−. Composing
with the pairing on the left half of (8.37), we obtain a morphism of twisted arrow pairings

Tw(C+) T̃◦G̃ //

��

Tw(D−)

��
Cop

+ ×C+
(F−◦G)op×T+ // Dop

− ×D− .

Applying Corollary 8.2.2.13, we conclude that T+ is isomorphic to the functor F− ◦G. If
condition (1) is satisfied, then T+ is also isomorphic to the functor H ◦ F+. Replacing (8.38)
by an isomorphic objects of ∞-category {F−} ×Fun(C−,D−)op ×Fun±(C,Tw(D−)), we may
assume without loss of generality that T+ is equal to H ◦F+. Invoking the universal property
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of Proposition 8.2.3.9, we can further assume that (8.38) factors as a composition

C

λ

��

F̃ // D H̃ //

µ

��

Tw(D−)

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+
id×H // Dop

− ×D− .

Since T̃ = H̃ ◦ F̃ carries universal objects of D to isomorphisms in D−, the functor F̃ carries
universal objects of C to universal objects of D.

Variant 8.2.4.5. 045GLet λ = (λ−, λ+) : C → Cop
− ×C+ be a coupling of ∞-categories and let

F : C− → C+ be a functor. We will say that a morphism of couplings

045HTw(C−) F̃ //

��

C

λ

��
Cop
− ×C−

id×F // Cop
− ×C+

(8.39)

exhibits λ as corepresented by F if, for every object X− ∈ C−, the image F̃ (idX−) is a
couniversal object of C. Equivalently, the diagram (8.39) exhibits λ as corepresented by F
if exhibits the coupling λ′ : C → C+×Cop

− of Remark 8.2.1.4 as represented by the functor
F op : Cop

− → C
op
+ .

We now apply these ideas to prove a more precise version of Theorem 8.2.2.11. To
(slightly) simplify the notation, we state the result in a dual form.

Theorem 8.2.4.6. 045JLet λ : C → Cop
− ×C+ and µ : D → Dop

− ×D+ be couplings of ∞-
categories. Assume that λ is corepresentable by a functor F : C− → C+ and that µ is
representable by a functor G : D+ → D−. Then:

(1) The coupling
Φ : Fun±(C,D)→ Fun(C−,D−)op × Fun(C+,D+)

of Remark 8.2.2.3 is representable by the functor

Fun(C+,D+)→ Fun(C−,D−) T+ 7→ G ◦ T+ ◦ F.

(2) An object (T−, T, T+) ∈ Fun±(C,D) is universal if and only if the functor T carries
couniversal objects of C to universal objects of D.
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Remark 8.2.4.7.045K Stated more informally, Theorem 8.2.4.6 states that if a coupling λ : C →
Cop
− ×C+ is corepresented by a functor F : C− → C+ and a coupling µ : D → Dop

− ×D+ is
represented by a functor G : D+ → D−, then the objects of Fun±(C,D) can be identified
with triples (T−, T+, α) where T+ is a functor from C+ to D+, and α : T− → G ◦ T+ ◦ F is a
natural transformation of functors from C− to D−. Moreover, the natural transformation α
is an isomorphism if and only if the corresponding functor C → D carries couniversal objects
to universal objects.

Example 8.2.4.8.045L Let C and D be ∞-categories, let (λ−, λ+) : Tw(C) → Cop×C and
(µ−, µ+) : Tw(D)→ Dop×D be the twisted arrow couplings of Example 8.2.0.2, and let

ev : Fun(C,D)× C → D (F,C) 7→ F (C)

be the evaluation functor. Passing to twisted arrow ∞-categories, we obtain a map

Tw(ev) : Tw(Fun(C,D))× Tw(C)→ Tw(D),

which we can identify with a functor Ẽ : Tw(Fun(C,D)) → Fun(Tw(C),Tw(D)). By
construction, the functor Ẽ fits into a commutative diagram

Fun(C,D)op

◦λ−

��

Tw(Fun(C,D))oo

T̃

��

// Fun(C,D)

◦λ+

��
Fun(Tw(C),Dop) Fun(Tw(C),Tw(D))µ−◦oo µ+◦ // Fun(Tw(C),D),

and therefore determines a functor E : Tw(Fun(C,D)) → Fun±(Tw(C),Tw(D)). The
commutative diagram

Tw(Fun(C,D)) E //

��

Fun±(Tw(C),Tw(D))

Φ

��
Fun(C,D)op × Fun(C,D) id× id // Fun(C,D)op × Fun(C,D)

exhibits the coupling Φ as represented by the identity functor Fun(C,D)→ Fun(C,D).

Proof of Theorem 8.2.4.6. Let λ : C → Cop
− ×C+ be a coupling which is corepresented by a

functor F : C− → C+, and let µ : D → Dop
− ×D+ be a coupling which is represented by a

functor G : D+ → D−. It follows from Theorem 8.2.2.11 that the coupling

Φ : Fun±(C,D)→ Fun(C−,D−)op × Fun(C+,D+)
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of Remark 8.2.2.3 is representable, and that an object (T−, T, T+) ∈ Fun±(C,D) is universal
if and only if the functor T carries couniversal objects of C to universal objects of D. We
will complete the proof by showing that the coupling Φ is representable by the functor

H : Fun(C+,D+)→ Fun(C−,D−) T+ 7→ G ◦ T+ ◦ F.

Choose a morphism of couplings

045MC F̃ //

λ

��

Tw(C+)

��
Cop
− ×C+

F op×id // Cop
+ ×C+

(8.40)

which exhibits λ as corepresented by F , and a morphism of couplings

045NTw(D+) G̃ //

��

D

µ

��
Dop

+ ×D+
Gop×id // Dop

− ×D+

(8.41)

which exhibits µ as represented by G.
Let E : Tw(Fun(C+,D+))→ Fun±(Tw(C+),Tw(D+)) be the comparison map of Example

8.2.4.8. Precomposition with (8.40) and postcomposition with (8.41) determines a functor
E′ : Fun±(Tw(C+),Tw(D+))→ Fun±(C,D) for which the diagram

Tw(Fun(C+,D+)) E′◦E //

��

Fun±(C,D)

��
Fun(C+,D+)op × Fun(C+,D+) Hop×id // Fun(C−,D−)op × Fun(C+,D+)

is commutative. We will complete the proof by showing that this diagram exhibits the
coupling Φ as represented by H.

Fix a functor T+ : C+ → D+; we wish to show that the composite functor

Tw(Fun(C+,D+)) E−→ Fun±(Tw(C+),Tw(D+)) E′−→ Fun±(C,D)
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carries idT+ to a universal object of Fun±(C,D). Unwinding the definitions, we see that the
image of idT+ is given by the triple (G ◦ T+ ◦ F, G̃ ◦ Tw(T+) ◦ F̃ , T+) ∈ Fun±(C,D). Using
the criterion of Theorem 8.2.2.11, we are reduced to showing that the composite functor

C F̃−→ Tw(C+) Tw(T+)−−−−−→ Tw(D+) G̃−→ D

carries every couniversal object X ∈ C to a universal object of D. Proposition 8.2.3.7
guarantees that F̃ (X) ∈ Tw(C+) corresponds to an isomorphism in C+, so its image under
Tw(T+) corresponds to an isomorphism in D+; the desired result now follows from our
hypothesis that the functor G̃ carries isomorphisms in D+ to universal objects of D.

We close this section by recording an alternative formulation of Definition 8.2.4.1:

Proposition 8.2.4.9.045P Let λ = (λ−, λ+) : C → Cop
− ×C+ be a coupling of ∞-categories, let

G : C+ → C− be a functor, and suppose we are given a morphism of couplings

045Q Tw(C+) G̃ //

µ

��

C

λ

��
Cop

+ ×C+
Gop×id // Cop

− ×C+

(8.42)

where µ = (µ−, µ+) is the twisted arrow coupling of Example 8.2.0.2. The following conditions
are equivalent:

(1) The diagram (8.42) exhibits λ as represented by G, in the sense of Definition 8.2.4.1.
That is, the functor G̃ carries isomorphisms of C+ to universal objects of C.

(2) The functor G̃ is left cofinal.

Proof. By virtue of Proposition 8.2.1.7, the functors λ+ and µ+ are cocartesian fibrations,
and the functor G̃ carries µ+-cocartesian morphisms of Tw(C+) to λ+-cocartesian morphisms
of C. By virtue of Corollary 7.2.3.15, the functor G̃ is left cofinal if and only if, for every
object C ∈ C+, the induced map G̃C : Tw(C+)×C+ {C} → C ×C+{C} is left cofinal. It will
therefore suffice to show that the following conditions are equivalent, for each object C ∈ C+.

(1C) The image G̃(idC) is a universal object of C: that is, it is initial when viewed as an
object of the ∞-category C ×C+{C}.

(2C) The functor G̃C is left cofinal.

The equivalence (1C)⇔ (2C) is a special case of Corollary 7.2.1.9, since idC is initial when
viewed as an object of the ∞-category Tw(C+)×C+ {C} (see Proposition 8.1.2.1).
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8.2.5 Adjunctions as Couplings

045RLet λ : C → Cop
− ×C+ be a coupling of ∞-categories which is both representable and

corepresentable. Using Theorem 8.2.3.4 (and its dual), we can choose a functor G : C+ → C−
which represents λ and a functor F : C− → C+ which corepresents λ. Either of these
functors determines the pairing λ up to equivalence, and therefore determines the other up
to isomorphism. Our goal in this section is to establish the following more precise result:

Theorem 8.2.5.1. 045SLet λ : C → Cop
− ×C+ be a coupling of∞-categories which is representable

by a functor G : C+ → C−. Then a functor F : C− → C+ corepresents the coupling λ if and
only if it is left adjoint to G.

We first establish a weaker version of Theorem 8.2.5.1.

Proposition 8.2.5.2. 045TLet λ = (λ−, λ+) : C → Cop
− ×C+ be coupling of ∞-categories which

is representable by a functor G : C+ → C−. The following conditions are equivalent:

(1) The coupling λ is corepresentable.

(2) The functor G admits a left adjoint.

Proof. By virtue of the criterion of Corollary 6.2.4.2, it will suffice to show that for each
object X ∈ C−, the following conditions are equivalent:

(1X) There exists a couniversal object X̃ ∈ C satisfying λ−(X̃) = X.

(2X) The ∞-category (C−)X/ ×C− C+ has an initial object.

Note that Proposition 8.1.2.9 supplies an equivalence (C−)X/ ↪→ {X} ×Cop
−

Tw(C−) of ∞-
categories which are left-fibered over C−. Restricting along the functor G, we obtain an
equivalence of ∞-categories

(C−)X/ ×C− C+ ↪→ {X} ×op
C− Tw(C−)×C− C+ .

Since λ is representable by G, there exists a categorical pullback square

C G̃ //

λ

��

Tw(C−)

��
Cop
− ×C+

id×G // Cop
− ×C−

which induces an equivalence of ∞-categories

{X} ×Cop
−
C → {X} ×op

C− Tw(C−)×C− C+ .

The equivalence of (1X) and (2X) now follows from Corollary 4.6.7.21.
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Proof of Theorem 8.2.5.1. Let λ : C → Cop
− ×C+ be a coupling of ∞-categories which is

representable by a functor G : Cop
− → C+. By virtue of Proposition 8.2.5.2, the functor

G admits a left adjoint if and only if the coupling λ is corepresentable. If this condition
is satisfied, then there exists a functor F : C− → C+ which corepresents the coupling λ;
moreover, F is uniquely determined up to isomorphism (Theorem 8.2.0.4). We will complete
the proof by showing that F is a left adjoint of G.

Choose a diagram

045U C G̃ //

λ

��

Tw(C−)

��
Cop
− ×C+

id×G // Cop
− ×C−,

(8.43)

which exhibits λ as represented by G (see Definition 8.2.3.5). Then, for each universal object
C ∈ C, the image G̃(C) ∈ Tw(C−) corresponds to an isomorphism in the ∞-category C−
(Proposition 8.2.3.7). Using Proposition 8.2.4.3, we can choose a commutative diagram

045V Tw(C−) F̃ //

��

C

λ

��
Cop
− ×C−

id×F // Cop
− ×C+

(8.44)

which exhibits λ as corepresented by F (see Variant 8.2.4.5). It follows that the composite
functor F̃ ◦ G̃ : C → C carries universal objects of C to couniversal objects of C. Applying
Theorem 8.2.4.6, we deduce that the diagram

C F̃◦G̃ ////

λ

��

C

λ

��
Cop
− ×C+

id×(F◦G) // Cop
− ×C+

is couniversal when viewed as an object of the ∞-category Fun±(C, C).
In particular, there exists an (essentially unique) morphism

ϵ̃ : (idC− , F̃ ◦ G̃, F ◦G)→ (idC− , idC , idC+)

https://kerodon.net/tag/045U
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in the ∞-category {idC−} ×Fun(C−,C−)op Fun±(C, C). Let ϵ : F ◦G→ idC+ denote the image
of ϵ̃ under the forgetful functor Fun±(C, C)→ Fun(C+, C+). We will show that ϵ is the counit
of an adjunction between F and G.

Using Example 8.2.2.12, we see that the diagram

Tw(C−) id //

��

Tw(C−)

��
Cop
− ×C−

id× id // Cop
− ×C−

is couniversal when viewed as an object of the ∞-category Fun±(Tw(C−),Tw(C−)). In
particular, there exists an (essentially unique) morphism

η̃ : (idCop
−
, idTw(C−), idC−)→ (idCop

−
, G̃ ◦ F̃ , G ◦ F )

in the∞-category {idC−}×Fun(C−,C−)op Fun±(Tw(C−),Tw(C−)). Let η : idC+ → G◦F denote
the image of η̃ under the forgetful functor Fun±(Tw(C−),Tw(C−))→ Fun(C−, C−). We will
complete the proof by showing that η is compatible with ϵ up to homotopy, in the sense of
Definition 6.2.1.1. For this, we must verify the following:

(Z1) The identity isomorphism idF is a composition of the natural transformations

F = F ◦ idC−
id ◦η−−−→ F ◦G ◦ F ϵ◦id−−→ idC+ ×F = F

in the ∞-category Fun(C−, C+).

(Z2) The identity isomorphism idG is a composition of the natural transformations

G = idC− ◦G
η◦id−−→ G ◦ F ◦G id ◦ϵ−−→ G× idC+ = G

in the ∞-category Fun(C+, C−).

Using Theorem 8.2.4.6, we deduce that the diagram (8.43) is a couniversal object
of Fun±(C,Tw(C−): that is, it is initial when viewed as an object of the ∞-category
E = {idC−} ×Fun(C−,C−)op Fun±(C,Tw(C−)). It follows that the diagram

(idC− , G̃ ◦ F̃ ◦ G̃,G ◦ F ◦G)

id ◦ϵ̃

((
(idC− , G̃, G)

η̃◦id

66

id // (idC− , G̃, G)
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commutes up to homotopy in E . Assertion (Z2) follows by applying the forgetful functor
Fun±(C,Tw(C−))→ Fun(C+, C−). Assertion (Z1) follows by a similar argument, using the
observation that the diagram (8.44) is a couniversal object of Fun±(Tw(C−), C) (Theorem
8.2.2.11).

8.2.6 Balanced Couplings

045W Let λ : C → Cop
− ×C+ be a coupling of ∞-categories. In this section, we formulate a

concrete criterion to determine if λ is representable (or corepresentable) by an equivalence
of ∞-categories.

Definition 8.2.6.1.045X Let λ = (λ−, λ+) : C → Cop
− → C+ be a coupling of ∞-categories. We

say that λ is balanced if it satisfies the following conditions:

(1) The coupling λ is representable. That is, for each object C+ ∈ C+, there exists a
universal object C ∈ C satisfying λ+(C) = C+.

(2) The coupling λ is corepresentable. That is, for each object C− ∈ C−, there exists a
couniversal object C ∈ C satisfying λ−(C) = C−.

(3) An object C ∈ C is universal if and only if it is couniversal.

Example 8.2.6.2.045Y For every ∞-category C, the twisted arrow coupling Tw(C)→ Cop → C
of Example 8.2.0.2 is balanced. See Example 8.2.1.5.

Example 8.2.6.3.04AV Let X be a Kan complex, let λ− : Fun(∆1, X)→ X be the morphism
given by evaluation at the vertex 0 ∈ ∆1, and let λ+ : Fun(∆1, X)→ X be the morphism
given by evaluation at the vertex 1 ∈ ∆1. It follows from Corollary 3.1.3.3 that the map

λ = (λ−, λ+) : Fun(∆1, X)→ X ×X

is a Kan fibration; in particular, we can view it as a coupling of X with itself. For each
vertex x ∈ X, the path spaces λ−1

− {x} = {x} ×̃X X and λ−1
+ {x} = X ×̃X{x} are contractible

Kan complexes (Example 3.4.1.13), so that every object of Fun(∆1, X) is both universal
and couniversal for the coupling λ. In particular, λ is a balanced coupling.

Remark 8.2.6.4.04AW Suppose we are given a morphism of couplings

C F //

λ

��

D

µ

��
Cop
− ×C+

F op
− ×F+ // Dop

− ×D+

https://kerodon.net/tag/045W
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which is an equivalence (in the sense of Exercise 8.2.2.7). Then λ is balanced if and only if
µ is balanced. See Remark 8.2.2.8.

We can now formulate the main result of this section.

Theorem 8.2.6.5. 045ZLet λ : C → Cop
− ×C+ be a coupling of ∞-categories. The following

conditions are equivalent:

(1) The coupling λ is balanced.

(2) The coupling λ is representable by an equivalence of ∞-categories G : C+ → C−.

(3) The coupling λ is corepresentable by an equivalence of ∞-categories F : C− → C+.

Corollary 8.2.6.6. 04AXLet C− and C+ be ∞-categories. Then C− and C+ are equivalent if and
only if there exists a balanced coupling λ : C → Cop

− ×C+.

Corollary 8.2.6.7. 0460Let λ : C → Cop
− ×C+ be a coupling of ∞-categories. Then λ is balanced

if and only if there exists an equivalence of couplings

C

λ

��

F // Tw(D)

��
Cop
− ×C+

F op
− ×F+ // Dop×D .

Proof. Suppose that λ is balanced. By virtue of Theorem 8.2.6.5, the coupling λ is corep-
resentable by a functor F− : C− → C+ which is an equivalence of ∞-categories. We can
therefore choose a categorical pullback square

C

λ

��

F // Tw(C+)

��
Cop
− ×C+

F op
− ×id

// Cop
+ ×C+

which exhibits λ as corepresented by F−. Since F− is an equivalence of ∞-categories, it
follows that F is also an equivalence of ∞-categories (Proposition 4.5.2.21). The reverse
implication is an immediate consequence of Example 8.2.6.2 (and Remark 8.2.6.4).

We will deduce Theorem 8.2.6.5 from the following more general result.

https://kerodon.net/tag/045Z
https://kerodon.net/tag/04AX
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Proposition 8.2.6.8.0461 Let λ : C → Cop
− ×C+ be a coupling of ∞-categories which is repre-

sentable by a functor G : C+ → C−. The following conditions are equivalent:

(1) Every universal object of C is couniversal.

(2) The functor G is fully faithful.

Proof. Using Proposition 8.2.4.3, we can choose a commutative diagram

0462 Tw(C+) G̃′ //

��

C G̃ //

λ

��

Tw(C−)

��
Cop

+ ×C+
Gop×id // Cop

− ×C+
id×G // Cop

− ×C−,

(8.45)

where the left square exhibits λ as represented by G in the sense of Definition 8.2.4.1, and
the right square exhibits λ as represented by G in the sense of Definition 8.2.3.5. Invoking
(the dual of) Lemma 8.2.3.6, we see that (1) is equivalent to the following:

(1′) The left square of (8.45) is a categorical pullback diagram.

For each object C ∈ C+, Proposition 8.2.3.7 guarantees that the composite functor
G̃ ◦ G̃′ carries idC to an isomorphism of C− (regarded as an object of Tw(C−)). It follows
from Theorem 8.2.2.11 that (G, G̃′ ◦ G̃,G) and (G,Tw(G), G) are isomorphic when viewed
as objects of Fun±(Tw(C+),Tw(C−)) (since both are initial objects of the ∞-category
Fun±(Tw(C+),Tw(C−))×Fun(C+,C−) {G}). In particular, for every pair of objects X,Y ∈ C+,
the diagram of Kan complexes

HomC+(X,Y )

G

��

// {X} ×Cop
+

Tw(C+)×C+ {Y }

G̃′◦G̃

����
HomC−(G(X), G(Y )) // {G(X)} ×Cop

−
Tw(C−)×C− {G(Y )}

commutes up to homotopy, where the horizontal maps are the homotopy equivalences of
Notation 8.1.2.14. Using Corollary 5.1.7.15, we see that (2) is equivalent to the following:

(2′) The outer rectangle of (8.45) is a categorical pullback diagram.

The equivalence of (1′) and (2′) is a special case of Proposition 4.5.2.18, since the right
square of (8.45) is a categorical pullback square by assumption.

https://kerodon.net/tag/0461
https://kerodon.net/tag/0462
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Proof of Theorem 8.2.6.5. We will prove the equivalence (1)⇔ (2); the equivalence (1)⇔ (3)
follows by a similar argument. Let λ : C → Cop

− ×C+ is a coupling of ∞-categories which
is representable by a functor G : C+ → C−. Combining Theorem 8.2.5.1 with Proposition
8.2.6.8, we see that λ is balanced if and only if the following conditions are satisfied:

• The functor G is fully faithful.

• The functor G admits a left adjoint F : C− → C+.

• The functor F is fully faithful.

It follows from Corollary 6.2.2.19 that these conditions are satisfied if and only if G is an
equivalence of ∞-categories.

We close this section by describing an example of a balanced coupling which will play an
important role in §8.6.

Proposition 8.2.6.9. 04AYLet C be an ∞-category and let ev0, ev1 : Fun(∆1, C) → C be the
evaluation functors. Let L be the collection of all morphisms u in Fun(∆1, C) such that
ev0(u) is an isomorphism in C, and let R be the collection of all morphisms u in Fun(∆1, C)
such that ev1(u) is an isomorphism in C. Then the maps Cospan(ev0) and Cospan(ev1)
determine a balanced coupling

λ : CospanL,R(Fun(∆1, C))→ Funiso,all(C)× Funall,iso(C).

The proof of Proposition 8.2.6.9 will require some preliminaries. The first step is to
establish the following:

Lemma 8.2.6.10. 04AZLet C be an ∞-category. Then the morphism

λ : CospanL,R(Fun(∆1, C))→ Funiso,all(C)× Funall,iso(C)

is a left fibration of ∞-categories.

The proof of Lemma 8.2.6.10 is straightforward but somewhat tedious; we therefore defer
the argument to §8.6.6, where we prove a more a general statement (Lemma 8.6.5.14). It
follows from Lemma 8.2.6.10 that we can view the map

λ : CospanL,R(Fun(∆1, C))→ Funiso,all(C)× Funall,iso(C)

as a coupling of the ∞-category Funall,iso(C) ≃ Funiso,all(C)op with itself (see Remark
8.1.6.2). To deduce Proposition 8.2.6.9, we will compare λ with the twisted arrow coupling
Tw(C)→ Cop×C of Example 8.2.0.2.

https://kerodon.net/tag/04AY
https://kerodon.net/tag/04AZ
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Construction 8.2.6.11.04B0 Let Q be a partially ordered set and let Qop denote the opposite
partially ordered set. To avoid confusion, for each element q ∈ Q, we write qop for the
corresponding element of Qop. Let Tw(Q) denote the twisted arrow category of Q (Example
8.1.0.5), which we identify with the partially ordered subset of Qop × Q consisting of
those pairs (pop, q) satisfying p ≤ q. We then have a morphism of partially ordered sets
ξQ : Tw(Q)× [1]→ Qop ⋆ Q, given concretely by the formulae

ξQ(pop, q, i) =

pop if i = 0
q if i = 1.

Let C be a simplicial set. For every nonempty finite linearly ordered set Q, we obtain a
map

HomSet∆(N•(Q),Tw(C)) ≃ HomSet∆(N•(Qop ⋆ Q), C)
◦ξQ−−→ HomSet∆(N•(Tw(Q)× [1]), C)
≃ HomSet∆(Tw(N•(Q))×∆1, C)
≃ HomSet∆(Tw(N•(Q)),Fun(∆1, C))
≃ HomSet∆(N•(Q),Cospan(Fun(∆1, C))).

This construction depends functorially on Q, and therefore determines a morphism of
simplicial sets Ξ : Tw(C)→ Cospan(Fun(∆1, C)).

Remark 8.2.6.12.04B1 Let C be a simplicial set. Then the morphism Ξ of Construction 8.2.6.11
can be described concretely on low-dimensional simplices as follows:

• On vertices, Ξ is given by the formula Ξ(f) = f . Here we abuse notation by identifying
vertices of Tw(C) and Cospan(Fun(∆1, C)) with edges of the simplicial set C.

• Let e : f0 → f1 be an edge of the simplicial set Tw(C), which we identify with a
3-simplex σ of C displayed informally in the diagram

X0

f0

��

X1
goo

f1

��
Y0

h // Y1.

Then Ξ(e) is the cospan from f0 to f1 in the simplicial set Fun(∆1, C) depicted

https://kerodon.net/tag/04B0
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informally in the diagram

X0

f0

��

id // X0

��

X1

f1

��

goo

Y0
h // Y1 Y1.

idoo

Let C be an ∞-category. It follows from Remark 8.2.6.12 that the morphism Ξ :
Tw(C)→ Cospan(Fun(∆1, C)) of Construction 8.2.6.11 factors through the simplicial subset
CospanL,R(Fun(∆1, C)) ⊆ Cospan(Fun(∆1, C)) appearing in the statement of Proposition
8.2.6.9. Unwinding the definitions, we obtain a morphism of couplings

04B2Tw(C) Ξ //

��

CospanL,R(C)

λ

��
Cop×C

ρ−×ρ+ // Cospaniso,all(C)× Cospanall,iso(C)

(8.46)

where the vertical maps are the left fibrations of Proposition 8.1.1.11 and Lemma 8.2.6.10,
and ρ+ and ρ− are given by Construction 8.1.7.1 and Variant 8.1.7.14. By virtue of Remark
8.2.6.4, Proposition 8.2.6.9 is a consequence of the following more precise result:

Proposition 8.2.6.13. 04B3Let C be an ∞-category. Then the diagram (8.46) is an equivalence
of couplings (in the sense of Exercise 8.2.2.7)

Proof. It follows from Proposition 8.1.7.6 that the inclusion maps

ρ− : Cop ↪→ Cospaniso,all(C) ρ+ : C ↪→ Cospanall,iso(C)

are equivalences of ∞-categories. By virtue of Corollary 5.1.7.15, it will suffice to show that
for every pair of objects X,Y ∈ C, the morphism Ξ induces a homotopy equivalence of Kan
complexes

ΞX,Y : {X} ×Cop Tw(C)×C {Y } → Cospan(HomC(X,Y )).

We complete the proof by observing that ΞX,Y fits into a commutative diagram of Kan
complexes

HomL
C (X,Y ) //

��

HomC(X,Y )

��
{X} ×Cop Tw(C)×C {Y }

ΞX,Y // Cospan(HomC(X,Y ))

https://kerodon.net/tag/04B2
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where the left vertical map is the homotopy equivalence of Corollary 8.1.2.10, the right
vertical map is the homotopy equivalence of Example 8.1.7.7, and the upper horizontal map
is the homotopy equivalence of Proposition 4.6.5.10.

Corollary 8.2.6.14.04B4 Let C be an ∞-category and let f be a morphism of C. Then f is an
isomorphism if and only if it is universal with respect to the balanced coupling

λ : CospanL,R(Fun(∆1, C))→ Funiso,all(C)× Funall,iso(C)

of Proposition 8.2.6.9 (where we abuse notation by identifying f with an object of the
∞-category CospanL,R(Fun(∆1, C))).

Proof. Let us abuse notation further by identifying f with an object of the twisted arrow
∞-category Tw(C), so that the comparison functor Ξ : Tw(C)→ CospanL,R(Fun(∆1, C)) of
Construction 8.2.6.11 satisfies Ξ(f) = f (Remark 8.2.6.12). By virtue of Proposition 8.2.6.13
and Remark 8.3.2.8, we are reduced to showing that f is an isomorphism if and only if it is
universal with respect to the twisted arrow coupling Tw(C)→ Cop×C, which follows from
Example 8.2.1.5.

8.3 The Yoneda Embedding

03LZ Let C be a category. For every object X ∈ C, we let hX : C → Set denote the functor
corepresented by X, given on objects by the formula hX(Y ) = HomC(X,Y ). The construction
X 7→ hX determines a functor from Cop to the functor category Fun(C,Set), which we refer
to as the (contravariant) Yoneda embedding. This terminology is justified by the following:

Proposition 8.3.0.1 (Yoneda’s Lemma, Weak Form).03M0 For any (locally small) category C,
the Yoneda embedding

Cop → Fun(C, Set) X 7→ hX

is fully faithful.

The goal of this section is to extend Proposition 8.3.0.1 to the setting of ∞-categories.
Our first step is to construct an analogue of the functor X 7→ hX . For every pair of objects
X,Y ∈ C, the morphism space HomC(X,Y ) is a Kan complex (Proposition 4.6.1.10), which
we can regard as an object of the ∞-category S. In §8.3.3, we show that the construction
(X,Y ) 7→ HomC(X,Y ) can be upgraded to a functor from the product Cop×C to the
∞-category S. More precisely, every locally small ∞-category C admits a Hom-functor
H : Cop×C → S, which is characterized (up to isomorphism) by the requirement that it
is a covariant transport representation for the twisted arrow fibration Tw(C)→ Cop×C of

https://kerodon.net/tag/04B4
https://kerodon.net/tag/03LZ
https://kerodon.net/tag/03M0


1774 CHAPTER 8. THE YONEDA EMBEDDING

Proposition 8.3.3.2. This condition guarantees that for every object X ∈ C, the functor
H (X,−) : C → S is corepresentable by X. We can therefore identify H with a functor

h• : Cop → Fun(C,S) X 7→H (X,−)

carrying each object of C to a functor that it corepresents; we will refer to h• as a contravariant
Yoneda embedding for C (Definition 8.3.3.9).

To show that the Yoneda embedding is fully faithful, we will need an additional ingredient.
Let us return to the situation where C is an ordinary category. Proposition 8.3.0.1 asserts that
for every pair of objects X,Y ∈ C, the natural map HomC(Y,X)→ HomFun(C,Set)(hX , hY )
is a bijection. It is easy to see that this map is injective: in fact, it has a left inverse T :
HomFun(C,Set)(hX , hY )→ HomC(Y,X), which carries a natural transformation α : hX → hY

to the element αX(idX) ∈ hY (X) = HomC(Y,X). It will therefore suffice to show that T is
bijective. This is a consequence of the following strong version of Yoneda’s lemma: for every
functor F : C → Set, the evaluation map

HomFun(C,Set)(hX ,F )→ F (X) α 7→ αX(idX)

is a bijection (Proposition 8.3.1.1). This assertion also has a counterpart in the setting of
∞-categories (Proposition 8.3.1.3), which we formulate and prove in §8.3.1.

To exploit the universal mapping property of (co)representable functors, it will be
convenient to introduce some terminology. Let C and D be ∞-categories. We define a
profunctor from D to C to be a functor K : Cop×D → S (Definition 8.3.2.1). We say that
a profunctor K is corepresentable if, for every object X ∈ C, the functor K (X,−) : D → S
is corepresentable. In this case, the construction X 7→ K (X,−) determines a functor from
Cop to the full subcategory Funcorep(D,S) ⊆ Fun(D,S) spanned by the corepresentable
functors. In §8.3.2, we establish a criterion for this functor to be an equivalence of ∞-
categories (Corollary 8.3.2.20). Our∞-categorical version of Yoneda’s lemma then follows by
specializing this criterion to the situation where C = D and K is a Hom-functor (Theorem
8.3.3.13).

Let C and D be ∞-categories. Assume that C is locally small, so that it admits a
Hom-functor Cop×C → S. For every functor G : D → C, the composition

Cop×D id×G−−−→ Cop×C H−→ S,

can be regarded as a profunctor KG from D to C, given informally by the construction
(X,Y ) 7→ HomD(X,G(Y )). In §8.3.4, we show that this construction determines a fully
faithful functor Fun(C,D)op → Fun(Cop×D,S), whose essential image is spanned by the
representable profunctors (Proposition 8.3.4.1). Using the results of §8.2, we give an
alternative characterization of representable profunctors (Proposition 8.3.4.15) and show
that they satisfy a universal mapping property (Corollary 8.3.4.21). As an application, we
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show that morphism spaces in the ∞-category Fun(D, C) can be computed as limits indexed
by the twisted arrow ∞-category Tw(D) (Example 8.3.4.22).

Warning 8.3.0.2.03M1 If C is an ordinary category, the Yoneda embedding

h• : Cop ↪→ Fun(C,Set) X 7→ hX

is given by a completely explicit construction. Beware that in the ∞-categorical setting,
the Yoneda embedding depends on a choice of covariant transport representation for the
twisted arrow fibration Tw(C) → Cop×C, which is well-defined only up to isomorphism.
However, it is sometimes possible to eliminate this ambiguity. Suppose that C = Nhc

• (C0)
is the homotopy coherent nerve of a locally Kan simplicial category C0. In this case, the
simplicial enrichment of C0 determines a functor of simplicial categories

Cop
0 ×C0 → Kan (X,Y ) 7→ HomC0(X,Y )•.

Passing to the homotopy coherent nerve, we obtain a functor of∞-categories H : Cop×C →
S (Construction 8.3.6.1). In §8.3.6, we show that H is a Hom-functor for the ∞-category C
(Proposition 8.3.6.2). Our proof uses a recognition principle for Hom-functors, which we
formulate and prove in §8.3.5.

8.3.1 Yoneda’s Lemma

03M2 Let C be a category. Every object X ∈ C determines a corepresentable functor hX :
C → Set, given on objects by the formula hX(Y ) = HomC(X,Y ). This functor can be
characterized by a universal mapping property:

Proposition 8.3.1.1 (Yoneda’s Lemma, Strong Form).03M3 Let C be a category containing an
object X. For every functor F : C → Set, evaluation on the identity morphism idX ∈ hX(X)
induces a bijection

HomFun(C,Set)(hX ,F )→ F (X).

Proof. Fix an element x ∈ F (X). We wish to show that there is a unique natural transfor-
mation α : hX → F which carries idX ∈ hX(X) to the element x ∈ F (X).

For any object Y ∈ C, every element f ∈ hX(Y ) ∈ HomC(X,Y ) can be obtained by
evaluating the function hX(f) : hX(X) → hX(Y ) on the object idX . It follows that, if
α : hX → F is a natural transformation satisfying αX(idX) = x, then it must satisfy the
identity

αY (f) = αY (hX(f)(idX)) = F (f)(hX(idX)) = F (f)(x).

This proves uniqueness. To establish existence, it will suffice to show that the collection of
functions

αY : HomC(X,Y )→ F (Y ) f 7→ F (f)(x)

https://kerodon.net/tag/03M1
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determine a natural transformation from hX to F . In other words, we must show that for
each morphism g : Y → Z in C, the diagram of sets

HomC(X,Y )

αY

��

g◦ // HomC(X,Z)

αZ

��
F (Y ) F (g) // F (Z)

is commutative. This follows from the observation that, for every morphism f : X → Y of
C, we have an equality F (g ◦ f)(x) = (F (g) ◦F (f))(x) in the set F (Z).

Our goal in this section is prove a generalization of Yoneda’s lemma, where we replace
C by an ∞-category and Set by the ∞-category S of spaces (Proposition 8.3.1.3). In the
∞-categorical setting, the proof is more subtle: to construct a natural transformation α

between functors F ,G : C → S, it is not enough to specify a collection of morphisms
{αY : G (Y )→ F (Y )}Y ∈C and to verify a compatibility condition. To address this difficulty,
we will use the formalism of Kan extensions developed in §7.3 (see Lemma 8.3.1.7).

Notation 8.3.1.2. 03M4Let S denote the ∞-category of spaces (Construction 5.5.1.1). Let C be
an ∞-category and suppose we are given a pair of functors F ,G : C → S. Fix an object
X ∈ C and a vertex η ∈ F (X). We then obtain a comparison morphism

HomFun(C,S)(F ,G ) evX−−→ HomS(F (X),G (X))
◦[η]−−→ HomS(∆0,G (X))
≃ G (X)

in the homotopy category hKan, where the first map is given by evaluation on the object X,
the second by the composition law of Notation 4.6.9.15, and the third is (the inverse of) the
homotopy equivalence of Remark 5.5.1.5.

Proposition 8.3.1.3 (∞-Categorical Yoneda Lemma). 03M5Let C be an ∞-category containing
an object X, let F : C → S be a functor, and let η ∈ F (X) be a vertex which exhibits
the functor F as corepresented by X (see Definition 5.6.6.1). Then, for every functor
G : C → S, the comparison map

HomFun(C,S)(F ,G )→ G (X)

of Notation 8.3.1.2 is an isomorphism in the homotopy category hKan.

Remark 8.3.1.4. 03M6In the special case where C is (the nerve of) an ordinary category and G

is a set-valued functor, Proposition 8.3.1.3 reduces to Proposition 8.3.1.1.
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Remark 8.3.1.5.03M7 Let C be a locally small ∞-category and let X be an object of C. In
§5.6.6, we proved that there exists a functor F : C → S which is corepresented by X, and
that F is uniquely determined up to isomorphism (Theorem 5.6.6.13). Proposition 8.3.1.3
can be regarded as a more refined version of this uniqueness assertion: the functor F is
characterized, up to isomorphism, by the requirement that it corepresents the evaluation
functor

evX : Fun(C,S)→ S G 7→ G (X).

Corollary 8.3.1.6.03M8 Let C be an ∞-category containing an object X. Suppose that, for every
object Y ∈ C, the Kan complex HomC(X,Y ) is essentially small (this condition is satisfied,
for example, if C is small). Let F : C → S be a functor, and let η be a vertex of the Kan
complex F (X). The following conditions are equivalent:

(1) The vertex η exhibits the functor F as corepresented by X, in the sense of Definition
5.6.6.1.

(2) For every functor G : C → S, the comparison map of Notation 8.3.1.2 is a homotopy
equivalence HomFun(C,S)(F ,G )→ G (X).

(3) For every functor F : C → S, the comparison map of Notation 8.3.1.2 induces a bijection
π0(HomFun(C,S)(F ,G ))→ π0(G (X)).

Proof. The implication (1) ⇒ (2) follows from Proposition 8.3.1.3, and the implication
(2) ⇒ (3) is immediate. We will complete the proof by showing that (3) implies (1).
Our assumption that the morphism space HomC(X,Y ) is essentially small for each Y ∈ C
guarantees that there exists a functor F : C → S and a vertex η′ ∈ F ′(X) which exhibits
F ′ as corepresented by X (see Theorem 5.6.6.13). Applying assumption (3), we deduce that
there exists a natural transformation α : F ′ → F such that αX(η′) and η lie in the same
connected component of F ′. Since the pair (F ′, η′) also satisfies condition (3), composition
with α induces a bijection π0(HomFun(C,S)(F ,G ))→ π0(HomFun(C,S)(F ′,G )) for each object
G ∈ Fun(C,S). It follows that α is an isomorphism. Applying Remark 5.6.6.4, we deduce
that αX(η′) ∈ F (X) exhibits the functor F as corepresented by X. Since η and αX(η)
belong to the same connected component of F (X), it follows that η has the same property
(Remark 5.6.6.3).

Proposition 8.3.1.3 is an easy consequence of the following:

Lemma 8.3.1.7.03M9 Let C be an ∞-category containing an object X, let κ be an uncountable
cardinal, let F : C → S<κ be a functor, and let η ∈ F (X) be a vertex. The following
conditions are equivalent:

(1) The vertex η exhibits F as corepresented by the object X, in the sense of Definition
5.6.6.1.
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(2) Let ι : {X} ↪→ C denote the inclusion map and let F0 : {X} → S denote the constant
functor taking the value ∆0, so that η can be regarded as a natural transformation
from F0 to the composite functor F ◦ ι. Then η exhibits F as a left Kan extension
of F0 along ι, in the sense of Variant 7.3.1.5. Moreover, for each object Y ∈ C, the
mapping space HomC(X,Y ) is essentially κ-small.

Proof. Fix an object Y ∈ C and set M = HomC(X,Y ). We may assume without loss of
generality that M is essentially κ-small (this follows immediately from condition (2), and
also follows from (1) since the Kan complex F (Y ) is essentially small). For every Kan
complex K, let KM denote the constant functor M → S taking the value K, so that the
functor F determines a natural transformation γ : F (X)

M
→ F (Y )

M
. We will show that

the following pair of conditions is equivalent:

(1Y ) The composite map

HomC(X,Y )→ HomS(F (X),F (Y )) ◦[η]−−→ HomS(∆0,F (Y ))

is a homotopy equivalence of Kan complexes.

(2Y ) The composite natural transformation

∆0
M

η−→ F (X)
M

γ−→ F (Y )
M

exhibits F (Y ) as a colimit of the constant diagram ∆0|M in the ∞-category S.

The equivalence of (1Y ) and (2Y ) is a special case of Proposition 7.6.2.10 (see Example
7.6.2.12). Lemma 8.3.1.7 follows by allowing the object Y ∈ C to vary.

Proof of Proposition 8.3.1.3. Combine Lemma 8.3.1.7 and 7.3.6.1.

For later use, let us record another consequence of Lemma 8.3.1.7.

Corollary 8.3.1.8. 04B5Let κ be an uncountable cardinal, let T : C → D be a functor between
locally κ-small ∞-categories, let F : C → S<κ and G : D → S<κ be functors, and let
β : F → G ◦ T be a natural transformation of functors from C to S. Fix an object C ∈ C
and a vertex η ∈ F (C) which exhibits the functor F as corepresented by C. The following
conditions are equivalent:

(1) The natural transformation β carries η to a vertex of G (T (C)) which exhibits the functor
G as corepresented by the object T (C) ∈ D.

(2) The natural transformation β exhibits G as a left Kan extension of F along the functor
T (see Variant 7.3.1.5).

https://kerodon.net/tag/04B5
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Proof. Combine Lemma 8.3.1.7 with Proposition 7.3.8.18.

Corollary 8.3.1.9.04B6 Let κ be an uncountable cardinal, let T : C → D be a functor between
locally κ-small ∞-categories and let F : C → S be a functor which is corepresented by an
object C ∈ C. Then a functor G : D → S is a left Kan extension of F along T if and only if
it is corepresentable by the object T (C) ∈ D.

Proof. Assume that G is corepresentable by T (C); we will show that it is a left Kan extension
of F along T (the reverse implication follows immediately from Corollary 8.3.1.8). Fix
a vertex η ∈ F (C) which exhibits F as corepresented by C. It follows from Proposition
8.3.1.3 that evaluation at η induces a homotopy equivalence of Kan complexes

HomFun(C,S)(F ,G ◦ T )→ G (T (C)).

We can therefore choose a natural transformation β : F → G ◦ T which carries η to a
vertex which exhibits G as corepresented by T (C). Applying Corollary 8.3.1.8, we see that
β exhibits G as a left Kan extension of F along T .

8.3.2 Profunctors of ∞-Categories

03MA Let C− and C+ be categories. A profunctor from C+ to C− is a Set-valued functor on
the product category Cop

− ×C+. This notion has an evident ∞-categorical analogue, where
we replace the ordinary category of sets by the ∞-category S of spaces (see Construction
5.5.1.1).

Definition 8.3.2.1.03MB Let C− and C+ be ∞-categories. A profunctor from C+ to C− is a
functor K : Cop

− ×C+ → S.

Example 8.3.2.2.03MC Let C− and C+ be ordinary categories. Then every functor K :
Cop
− ×C+ → Set determines a morphism of simplicial sets

N•(K) : N•(C−)op ×N•(C+)→ N•(Set) ⊂ S .

This construction determines a monomorphism from the collection of profunctors from C+ to
C− (in the sense of classical category theory) to the collection of profunctors from N•(C+) to
N•(C−) (in the sense of Definition 8.3.2.1). Beware that this map is (usually) not bijective:
its image consists of those profunctors

K : N•(C−)op ×N•(C+)→ S

having the property that for every pair of objects X ∈ C− and Y ∈ C+, the Kan complex
K (X,Y ) is a constant simplicial set (see Proposition 1.3.3.1 and Remark 5.5.1.7).
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Remark 8.3.2.3 (Symmetry). 03MDLet C− and C+ be ∞-categories and let K : Cop
− ×C+ → S

be a profunctor from C+ to C−. Then, by transposing its arguments, we can also regard K

as a profunctor from Cop
− to Cop

+ .

Example 8.3.2.4 (From Profunctors to Couplings). 0463Let C− and C+ be ∞-categories, let
K : Cop

− ×C+ → S be a profunctor from C+ to C− (Definition 8.3.2.1). Applying the
construction of Definition 5.6.2.1, we obtain an ∞-category

∫
Cop
− ×C+

K whose objects are
triples (X,Y, η) where X is an object of C−, Y is an object of C+, and η is a vertex of the
Kan complex K (X,Y ). This ∞-category is equipped with a left fibration

λ :
∫
Cop
− ×C+

K → Cop
− ×C+,

given on objects by the construction λ(X,Y, η) = (X,Y ) (see Example 5.6.2.9). The left
fibration λ is a coupling of C+ with C−, in the sense of Definition 8.2.0.1; we will refer to it
as the coupling associated to the profunctor K .

Modulo set-theoretic issues, every coupling can be obtained from the construction of
Example 8.3.2.4:

Remark 8.3.2.5 (From Couplings to Profunctors). 0464Let C− and C+ be ∞-categories. By
virtue of Corollary 5.6.0.6, the construction of Example 8.3.2.4 induces a monomorphism

{Profunctors K : Cop
− ×C+ → S}/Isomorphism

��
{Couplings λ : C → Cop

− ×C+}/Equivalence,

whose image consists of equivalence classes of couplings λ : C → Cop
− ×C+ having essentially

small fibers.
In particular, to every coupling λ : C → Cop

− ×C+ with essentially small fibers, we can
associate a profunctor K : Cop

− ×C+ → S, which is characterized (up to isomorphism) by
the requirement that it is a covariant transport representation for λ (see Definition 5.6.5.1).

Variant 8.3.2.6. 0465Let C− and C+ be ∞-categories, and let κ be an uncountable cardinal.
Then the construction of Example 8.3.2.4 induces a monomorphism

{Profunctors K : Cop
− ×C+ → S<κ}/Isomorphism

��
{Couplings λ : C → Cop

− ×C+}/Equivalence,
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whose image consists of equivalence classes of couplings λ : C → Cop
− ×C+ whose fibers are

essentially κ-small.

Let C− and C+ be ∞-categories. A profunctor K : Cop
− ×C+ → S can be identified with

a functor from Cop
− to the ∞-category Fun(C+,S). Our primary goal in this section is to

formulate a condition which guarantees that this functor is fully faithful. First, it will be
convenient to introduce some terminology.

Definition 8.3.2.7.0466 Let C− and C+ be ∞-categories and let K : Cop
− ×C+ → S be a

profunctor. Let X be an object of C−, let Y be an object of C+, and let η be a vertex
of the Kan complex K (X,Y ). We will say that η is universal if it exhibits the functor
K (−, Y ) : Cop

− → S as represented by the object X ∈ C−. We say that η is couniversal if it
exhibits the functor K (X,−) : C+ → S as corepresented by the object Y ∈ C+.

Remark 8.3.2.8.0467 Let λ : C → Cop
− ×C+ be a coupling of ∞-categories and let K :

Cop
− ×C+ → S be a covariant transport representation for λ. Let C be an object of C and

set λ(C) = (X,Y ). Then the isomorphism class of C (as an object of the fiber λ−1{(X,Y )})
can be identified with a connected component [η] of the Kan complex K (X,Y ). Invoking
Proposition 5.6.6.21, we deduce the following:

• The object C ∈ C is universal (in the sense of Definition 8.2.1.1) if and only if the
vertex η ∈ K (X,Y ) is universal (in the sense of Definition 8.3.2.7).

• The object C ∈ C is couniversal (in the sense of Definition 8.2.1.1) if and only if the
vertex η ∈ K (X,Y ) is couniversal (in the sense of Definition 8.3.2.7).

Definition 8.3.2.9.03ME Let C− and C+ be ∞-categories, and let K : Cop
− ×C+ → S be a

profunctor from C+ to C−. We say that K is representable if, for each object Y ∈ C+, the
functor K (−, Y ) : Cop

− → S is representable (in the sense of Variant 5.6.6.2). We will say
that K is corepresentable if, for each object X ∈ C−, the functor K (X,−) : C+ → S is
corepresentable (in the sense of Definition 5.6.6.1).

Warning 8.3.2.10.03MF The terminology of Definition 8.3.2.9 is potentially confusing. Let
C− and C+ be ∞-categories, let C denote the product Cop

− ×C+, and let K : C → S be a
morphism of simplicial sets. In general, there is no relationship between the corepresentability
of K as a S-valued functor on C (in the sense of Definition 5.6.6.1) and the corepresentability
of K as a profunctor from C+ to C− (in the sense of Definition 8.3.2.9). However, these
notions of corepresentability coincide when C− is a contractible Kan complex (see Example
8.3.2.13).

Remark 8.3.2.11 (Symmetry).03MG Let C− and C+ be ∞-categories and let K : Cop
− ×C+ → S

be a profunctor from C+ to C−. Then K is representable if and only if it is corepresentable
when regarded as a profunctor from Cop

− to Cop
+ (see Remark 8.3.2.3).
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Remark 8.3.2.12. 03MHLet C− and C+ be ∞-categories and let K and K ′ be profunctors from
C+ to C− which are isomorphic (as objects of the ∞-category Fun(Cop

− ×C+,S)). Then K

is representable if and only if K ′ is representable. Similarly, K is corepresentable if and
only if K ′ is corepresentable. See Remark 5.6.6.4.

Example 8.3.2.13. 03MJLet C− and C+ be ∞-categories and let K : Cop
− ×C+ → S be a

profunctor. If C− = ∆0, then the profunctor K is corepresentable (in the sense of Definition
8.3.2.9) if and only if it is corepresentable when regarded as a functor C+ → S (in the sense
of Definition 5.6.6.1). Similarly, if C+ = ∆0, then the profunctor K is representable (in
the sense of Definition 8.3.2.9) if and only if it is representable when viewed as a functor
Cop
− → S (in the sense of Variant 5.6.6.2).

Exercise 8.3.2.14. 03MKLet C− and C+ be ordinary categories. Show that a profunctor

K : N•(C−)op ×N•(C+)→ S

is representable (in the sense of Definition 8.3.2.9) if and only if it it is isomorphic to the
profunctor (X,Y ) 7→ HomC−(X,G(Y )), for some functor G : C+ → C−. See Proposition
8.3.4.1 for a more general result.

Remark 8.3.2.15. 0468Let C− and C+ be ∞-categories and let K : Cop
− ×C+ → S be a

profunctor. Then K is representable if and only if, for every object Y ∈ C+, there exists an
object X ∈ C− and a universal vertex η ∈ K (X,Y ). Similarly, K is corepresentable if and
only if, for every object X ∈ C−, there exists an object Y ∈ C+ and a couniversal vertex
η ∈ K (X,Y ).

Remark 8.3.2.16. 0469Let λ : C → Cop
− ×C+ be a coupling of ∞-categories and let K :

Cop
− ×C+ → S be a covariant transport representation for λ. Using Remark 8.3.2.8, we

deduce the following:

• The coupling λ is representable (in the sense of Definition 8.2.1.3) if and only if the
profunctor K is representable (in the sense of Definition 8.3.2.9).

• The coupling λ is corepresentable (in the sense of Definition 8.2.1.3) if and only if the
profunctor K is corepresentable (in the sense of Definition 8.3.2.9).

The main result of this section is the following variant of Proposition 8.2.6.8:

Proposition 8.3.2.17. 03MLLet C− and C+ be ∞-categories, and let K : Cop
− ×C+ → S be a

corepresentable profunctor from C+ to C−. The following conditions are equivalent:

(1) The profunctor K determines a fully faithful functor

Cop
− → Fun(C+,S) X 7→ K (X,−).
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(2) Let X be an object of C− and let Y be an object of C+. Then every couniversal vertex
η ∈ K (X,Y ) is also universal.

Proof. Choose an object X ∈ C−. Since the functor K (X,−) : C+ → S is corepresentable,
we can choose an object Y ∈ C+ and a couniversal vertex η ∈ K (X,Y ). We will show that
the following conditions are equivalent:

(1X) For every object X ′ ∈ C−, the profunctor K induces a homotopy equivalence

HomCop
−

(X,X ′)→ HomFun(C+,S)(K (X,−),K (X ′,−)).

(2X) The vertex η is universal.

Proposition 8.3.2.17 will then follow by allowing the triple (X,Y, η) to vary.
Condition (2X) is the assertion that, for each object X ′ ∈ C−, the composite map

HomCop
−

(X,X ′) → HomFun(C+,S)(K (X,−),K (X ′,−))
→ HomS(K (X,Y ),K (X ′, Y ))
◦[η]−−→ HomS(∆0,K (X ′, Y ))
≃ K (X ′, Y )

is an isomorphism in the homotopy category hKan. The equivalence of this assertion with
(1X) follows immediately from Proposition 8.3.1.3.

Definition 8.3.2.18 (Balanced Profunctors).03MM Let C− and C+ be ∞-categories. We say that
a profunctor K : Cop

− ×C+ → S is balanced if it satisfies the following conditions:

• The profunctor K is representable and corepresentable (Definition 8.3.2.9).

• Let X be an object of C−, let Y be an object of C+, and let η be a vertex of the Kan
complex K (X,Y ). Then η is universal if and only if it is couniversal.

In other words, K : Cop
− ×C+ → S is balanced if it satisfies the hypotheses of Proposition

8.3.2.17 both when regarded as a profunctor from C+ to C− and when regarded as a profunctor
from Cop

− to Cop
+ .

Remark 8.3.2.19.046A Let λ : C → Cop
− ×C+ be a coupling of ∞-categories and let K :

Cop
− ×C+ → S be a covariant transport representation for λ. Then the coupling λ is balanced

(in the sense of Definition 8.2.6.1) if and only if the profunctor K is balanced (in the sense
of Definition 8.3.2.18). See Remark 8.3.2.8.

Corollary 8.3.2.20.03MN Let C− and C+ be ∞-categories and let K : Cop
− ×C+ → S be a

profunctor from C− to C+. The following conditions are equivalent:
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(1) The profunctor K is balanced (in the sense of Definition 8.3.2.18).

(2) The ∞-category C+ is locally small and K induces a fully faithful functor

Cop
− → Fun(C+,S) X 7→ K (X,−),

whose essential image is spanned by the corepresentable functors C+ → S.

(3) The ∞-category C− is locally small and K induces a fully faithful functor

C+ → Fun(Cop
− ,S) Y 7→ K (−, Y ),

whose essential image is spanned by the representable functors Cop
− → S.

Proof. We will prove the equivalence of (1) and (2); the equivalence of (1) and (3) follows by
a similar argument. Assume first that K : Cop

− ×C+ → S is a balanced profunctor. Invoking
Proposition 8.3.2.17, we see that the functor

Φ : Cop
− → Fun(C+,S) X 7→ K (X,−)

is fully faithful, and that the essential image of Φ consists of corepresentable functors from
C+ to S. Fix an object Y ∈ C+. Since K is representable, there exists an object X ∈ C−
and a universal vertex η ∈ K (X,Y ). Our assumption that K is balanced guarantees that η
is also couniversal. In particular, for every object Y ′ ∈ C+, η induces a homotopy equivalence
HomC+(Y, Y ′) ∼−→ K (X,Y ′), so that the Kan complex HomC+(X,Y ′) is essentially small. If
F : C+ → S is any functor corepresented by Y , then Theorem 5.6.6.13 guarantees that F is
isomorphic to K (X,−) (as an object of the ∞-category Fun(C+,S)), and therefore belongs
to the essential image of Φ. Allowing the object Y to vary, we deduce that the profunctor
K satisfies condition (2).

We now prove the converse. Assume that the functor Φ is fully faithful and that the
essential image of Φ is spanned by the corepresentable functors C+ → S. We wish to
show that the profunctor K is balanced. Since Φ takes values in the full subcategory of
Fun(C+,S) spanned by the corepresentable functors, the profunctor K is corepresentable.
We next show that K is representable. Fix an object Y ∈ C+; we wish to show that the
functor K (−, Y ) : Cop

− → S is representable. Since C− is locally small, there exists a functor
F : C− → S which is corepresentable by Y (Theorem 5.6.6.13). Then F belongs to the
essential image of Φ. We may therefore assume without loss of generality that F = K (X0,−)
for some object X0 ∈ C−. Choose a couniversal vertex η0 ∈ K (X0, Y ) = F (Y ). Since Φ
is fully faithful, Proposition 8.3.2.17 implies that η0 is also universal, so that K (−, Y ) is
representable by X0.

To complete the proof, we must show that the pairing K satisfies the second condition
of Definition 8.3.2.18. Let Y ∈ C+ be as above, let X be any object of C−, and let η be a
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vertex of the Kan complex K (X,Y ). Assume that η is universal; we wish to show that
it is also couniversal (the reverse implication follows from Proposition 8.3.2.17). Choose
η0 ∈ K (X0, Y ) as above. Since η0 is universal, there exists an isomorphism u : X → X0 in the
∞-category C− such that K (u, idY )(η0) and η belong to the same connected component of the
Kan complex K (X,Y ) (Remark 5.6.6.6). We may therefore assume without loss of generality
that η = K (u, idY )(η0) (Remark 5.6.6.3). The desired result now follows by applying Remark
5.6.6.4 to the isomorphism of functors K (u,−) : K (X0,−)→ K (X,−).

Corollary 8.3.2.21.03MP Let C be a locally small ∞-category, and let Funcorep(C,S) denote the
full subcategory of Fun(C,S) spanned by the corepresentable functors. Then the evaluation
map

ev : Funcorep(C,S)× C → S (F,C) 7→ F (C)

is a balanced profunctor.

Remark 8.3.2.22.03MQ Up to equivalence, every balanced profunctor K : Cop
− ×C+ → S can

be obtained from the construction of Corollary 8.3.2.21. More precisely, let Funcorep(C+,S)
denote the full subcategory of Fun(C+,S) spanned by the corepresentable functors. If K is
balanced, then it factors as a composition

Cop
− ×C+

Φ×id−−−→ Funcorep(C+,S)× C+
ev−→ S,

where Φ is an equivalence of ∞-categories by virtue of Corollary 8.3.2.20.

8.3.3 Hom-Functors for ∞-Categories

03MR Let C be an ∞-category. In §4.6.1, we associated to every pair of objects X,Y ∈ C a
Kan complex HomC(X,Y ) parametrizing morphisms from X to Y . In this section, we will
promote the construction (X,Y ) 7→ HomC(X,Y ) to a functor of ∞-categories.

Definition 8.3.3.1.046B Let C be an ∞-category. We say that a profunctor

H : Cop×C → S

is a Hom-functor for C if it is a covariant transport representation for the twisted arrow
coupling λ : Tw(C)→ Cop×C.

Proposition 8.3.3.2 (Existence and Uniqueness).03N2 Let C be an ∞-category. Then C admits
a Hom-functor H : Cop×C → S if and only if it is locally small. If this condition is satisfied,
then H is uniquely determined up to isomorphism.

Proof. Combine Remark 8.3.5.3 with Corollary 5.6.0.6 (applied to the left fibration λ :
Tw(C)→ Cop×C).
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Remark 8.3.3.3. 03MXLet C be an ∞-category and let let H : Cop×C → S be a Hom-functor
for C. Passing to homotopy categories, we obtain a functor H : hCop × hC → hKan. It
follows from Corollary 8.1.2.18 (and Remark 5.6.5.8) that H is isomorphic to the functor
(X,Y ) 7→ HomC(X,Y ) determined by the hKan enrichment of the homotopy category hC
(see Construction 4.6.9.13). See Remark 8.3.5.4 for a more precise statement.

Example 8.3.3.4. 03MWLet C be a category. The construction (X,Y ) 7→ HomC(X,Y ) determines
a functor

H : N•(C)op ×N•(C)→ N•(Set) ⊂ S (X,Y ) 7→ HomC(X,Y ),

which is a Hom-functor for the ∞-category N•(C). For a more general statement, see
Proposition 8.3.6.2.

Variant 8.3.3.5. 03V2Let κ be an uncountable cardinal and let S<κ denote the ∞-category of
κ-small spaces (Variant 5.5.4.12). Then an ∞-category C admits a Hom-functor

H : Cop×C → S<κ

if and only if it is locally κ-small. If this condition is satisfied, then H is uniquely determined
up to isomorphism.

Remark 8.3.3.6 (Duality). 03MYLet C be an ∞-category, let H : Cop×C → S be a functor,
and let H ′ : C ×Cop → S be the functor obtained from H by transposing its arguments. If
H is a Hom-functor for C, then H ′ is a Hom-functor for the opposite ∞-category Cop.

Notation 8.3.3.7. 03N4Let C be a locally small ∞-category. We will often use the notation
HomC(−,−) to denote a Hom-functor H : Cop×C → S. Beware that this convention
introduces a slight potential for confusion. Given a pair of objects X,Y ∈ C, we have two
potentially different definitions of HomC(X,Y ):

(a) The Kan complex {X} ×̃C{Y } of Construction 4.6.1.1, which is well-defined up to
canonical isomorphism.

(b) The Kan complex H (X,Y ), which is only well-defined up to homotopy equivalence
(since it depends on a choice of Hom-functor H ).

However, the danger is slight: Remark 8.3.3.3 guarantees the existence of homotopy equiva-
lences {X} ×̃C{Y } ≃ H (X,Y ), which can be chosen to depend functorially on X and Y

(as morphisms in the homotopy category hKan). Consequently, we can always modify the
choice of Hom-functor H to arrange that definitions (a) and (b) coincide (see Corollary
4.4.5.3).
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Proposition 8.3.3.8.046C Let C be an ∞-category and let H : Cop×C → S be a Hom-functor
for C. Then H is a balanced profunctor (see Definition 8.3.2.18).

Proof. By virtue of Remark 8.3.2.19, it suffices to observe that the twisted arrow coupling
Tw(C)→ Cop×C is balanced; see Example 8.2.6.2.

Definition 8.3.3.9.03NF Let C be an ∞-category and let

h• : C → Fun(Cop,S) Y 7→ hY

be a functor. We say that h• is a covariant Yoneda embedding for C if the construction
(X,Y ) 7→ hY (X) is a Hom-functor for C, in the sense of Definition 8.3.3.1. Similarly, we say
that a functor

h• : Cop → Fun(C,S) X 7→ hX

is a contravariant Yoneda embedding for C if the construction (X,Y ) 7→ hX(Y ) is a Hom-
functor for C.

Remark 8.3.3.10 (Duality).03NG A functor h• : Cop → Fun(C,S) is a contravariant Yoneda
embedding for C if and only if it is a covariant Yoneda embedding for the opposite∞-category
Cop; see Remark 8.3.3.6.

Remark 8.3.3.11.03NH Let C be an ∞-category. By virtue of Proposition 8.3.3.2, the following
conditions are equivalent:

• The ∞-category C is locally small.

• The ∞-category C admits a covariant Yoneda embedding h• : C → Fun(Cop,S).

• The ∞-category C admits a contravariant Yoneda embedding h• : Cop → Fun(C,S).

If these conditions are satisfied, then the functors h• and h• are uniquely determined up to
isomorphism. Moreover, for every object X ∈ C, the functor hX : Cop → S is representable
by X, and the functor hX : C → S is corepresentable by X (Proposition 8.3.5.5).

Variant 8.3.3.12.03V4 Let κ be an uncountable cardinal and let S<κ denote the ∞-category of
κ-small spaces (see Variant 5.5.4.12). For every ∞-category C, the following conditions are
equivalent:

• The ∞-category C is locally κ-small.

• The ∞-category C admits a covariant Yoneda embedding h• : C → Fun(Cop,S<κ).

• The ∞-category C admits a contravariant Yoneda embedding h• : Cop → Fun(C,S<κ).

See Variant 8.3.5.7.
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Theorem 8.3.3.13 (Yoneda’s Lemma for∞-Categories). 03NJLet C be a locally small∞-category.
Then the covariant and contravariant Yoneda embeddings

h• : C → Fun(Cop,S) h• : Cop → Fun(C,S)

are fully faithful functors, whose essential images are the full subcategories

Funrep(Cop,S) ⊆ Fun(Cop,S) Funcorep(C,S) ⊆ Fun(C,S)

spanned by the representable and corepresentable functors, respectively.

Proof. By virtue of Corollary 8.3.2.20, this is a reformulation of Proposition 8.3.3.8.

We close this section by recording a simple observation about the Yoneda embedding.

Proposition 8.3.3.14. 03NPLet C be a locally small ∞-category and let h• : C → Fun(Cop,S) be
a covariant Yoneda embedding for C. Suppose we are given a diagram f : K◁ → C, where K
is a small simplicial set. The following conditions are equivalent:

(1) The morphism f is a limit diagram in C.

(2) The composition h• ◦ f is a limit diagram in the ∞-category Fun(Cop,S).

Following the convention of Remark 4.7.0.5, we can regard Proposition 8.3.3.14 as a
special case of the following more precise assertion (applied in the special case where κ = λ

is a strongly inaccessible cardinal):

Variant 8.3.3.15. 03V5Let λ be an uncountable cardinal, let C be a locally λ-small ∞-category,
and let h• : C → Fun(Cop,S<λ) be a covariant Yoneda embedding for C. Let κ = ecf(λ) be
the exponential cofinality of λ, let K be a κ-small simplicial set, and let f : K◁ → C be a
diagram. Then the following conditions are equivalent:

(1) The morphism f is a limit diagram in C.

(2) The composition h• ◦ f is a limit diagram in the ∞-category Fun(Cop,S<λ).

Proof. Since K is κ-small, the ∞-category S<λ admits K-indexed limits (Example 7.6.7.4).
For each object X ∈ C, let evX : Fun(Cop,S<λ)→ S<λ denote the functor given by evaluation
at X. By virtue of Proposition 7.1.6.1, condition (2) is equivalent to the requirement that
for each object X ∈ C, the composition

K◁ f−→ C h•−→ Fun(Cop,S<λ) evX−−→ S<λ

is a limit diagram in the ∞-category S<λ. Since the composite functor (evX ◦h•) : C → S<λ
is corepresentable by X, the equivalence (1)⇔ (2) follows from Proposition 7.4.5.16 (and
Remark 7.4.5.18).
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Remark 8.3.3.16.03V6 In the situation of Variant 8.3.3.15, suppose that the∞-category C admits
K-indexed limits. Then the ∞-category of representable functors Funrep(Cop,S<λ) also
admits K-indexed limits, which are preserved by the inclusion functor Funrep(Cop,S<λ) ↪→
Fun(Cop,S<λ).

Corollary 8.3.3.17.03Y7 Let C be an ∞-category and let κ be an infinite cardinal. Then there
exists a fully faithful functor F : C → Ĉ, where Ĉ is κ-complete and κ-cocomplete. Moreover,
we can arrange that F preserves the limits of all κ-small diagrams which exist in C.

Proof. Using Remark 4.7.3.19, we can choose an uncountable cardinal λ of exponential
cofinality ≥ κ. Enlarging λ if necessary, we may assume that C is locally λ-small. Let Ĉ
denote the ∞-category Fun(Cop,S<λ) and let F = h• be a covariant Yoneda embedding for
C. Since S<λ is κ-complete and κ-cocomplete (Remark 7.4.5.7 and Variant 7.4.5.8), the
∞-category Ĉ has the same property (Remark 7.6.7.5). Moreover, the functor F is fully
faithful (Theorem 8.3.3.13) and preserves limits of κ-small diagrams (Remark 8.3.3.16).

8.3.4 Representable Profunctors

03NQ Let C and D be categories. There is a fully faithful embedding from the category of
functors Fun(D, C) to the category of profunctors Fun(Cop×D,Set), which assigns to each
functor G : D → C the representable profunctor

Cop×D → Set (X,Y ) 7→ HomC(X,G(Y )).

This construction has an ∞-categorical counterpart:

Proposition 8.3.4.1 (Classification of Representable Profunctors).03NR Let C and D be ∞-
categories. Let κ be an uncountable cardinal for which C is locally κ-small, and let

HomC(−,−) : Cop×C → S<κ

be a Hom-functor for C (see Notation 8.3.3.7). Then the construction G 7→ HomC(−, G(−))
determines a fully faithful functor

Fun(D, C)→ Fun(Cop×D,S<κ),

whose essential image is spanned by the representable profunctors from D to C.

Proof. Let Funrep(Cop,S) denote the full subcategory of Fun(Cop,S) spanned by the rep-
resentable functors. By virtue of Theorem 8.3.3.13, the construction Y 7→ HomC(−, Y )
determines an equivalence of ∞-categories h• : C → Funrep(Cop,S). It follows that postcom-
position with h• induces an equivalence of ∞-categories

Fun(D, C)→ Fun(D,Funrep(Cop,S)),

which is a restatement of Proposition 8.3.4.1.

https://kerodon.net/tag/03V6
https://kerodon.net/tag/03Y7
https://kerodon.net/tag/03NQ
https://kerodon.net/tag/03NR


1790 CHAPTER 8. THE YONEDA EMBEDDING

Definition 8.3.4.2. 03NSLet G : D → C be a functor of ∞-categories. Assume that C is locally
κ-small and let HomC(−,−) : Cop×C → S<κ be a Hom-functor for C. We say that a
profunctor K : Cop×D → S is representable by G if it isomorphic to the composition

Cop×D id×G−−−→ Cop×C HomC(−,−)−−−−−−−→ S (X,Y ) 7→ HomC(X,G(Y ))

as an object of the ∞-category Fun(Cop×D,S<κ). By virtue of Proposition 8.3.3.2, this
condition does not depend on the choice of Hom-functor HomC(−,−).

Example 8.3.4.3. 03NTLet C be a locally κ-small ∞-category, and let F : Cop → S<κ be a
functor. Then F is representable by an object X ∈ C (in the sense of Variant 5.6.6.2) if
and only if, when regarded as a profunctor from ∆0 to C, it is representable by the functor
∆0 → {X} ↪→ C (in the sense of Definition 8.3.4.2).

Interchanging the roles of C and D, we obtain the following dual notion:

Variant 8.3.4.4. 03NULet F : C → D be a functor of ∞-categories. Assume that D is locally
κ-small and let HomD(−,−) : Dop×D → S<κ be a Hom-functor for D. We say that a
profunctor K : Cop×D → S is corepresentable by F if it isomorphic to the composition

Cop×D F op×id−−−−→ Dop×D HomD(−,−)−−−−−−−→ S (X,Y ) 7→ HomD(F (X), Y )

as an object of the ∞-category Fun(Cop×D,S<κ). By virtue of Proposition 8.3.3.2, this
condition does not depend on the choice of Hom-functor HomC(−,−).

Example 8.3.4.5. 03NVLet C be a locally κ-small ∞-category and let H : Cop×C → S<κ be a
profunctor from C to itself. The following conditions are equivalent:

• The profunctor H is a Hom-functor for C.

• The profunctor H is representable by the identity functor idC : C → C (Definition
8.3.4.2).

• The profunctor H is corepresentable by the identity functor idC : C → C (Variant
8.3.4.4).

Remark 8.3.4.6. 046DLet λ : C → Cop
− ×C+ be a coupling of∞-categories which is essentially κ-

small for some uncountable cardinal κ and let K : Cop
− ×C+ → S<κ be a covariant transport

representation for λ. Then the profunctor K is representable by a functor G : C+ → C− (in
the sense of Definition 8.3.4.2) if and only if the coupling λ is representable by G (in the
sense of Definition 8.2.3.1). Similarly, K is corepresentable by a functor F : C− → C+ if
and only if λ is corepresentable by F .
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Remark 8.3.4.7 (Uniqueness).03NW Let κ be an uncountable cardinal and let K : Cop×D →
S<κ be a profunctor of ∞-categories. If C is locally κ-small small, then Proposition 8.3.4.1
guarantees that K is representable (in the sense of Definition 8.3.2.9 if and only if it is
representable by G, for some functor G : D → C. Moreover, if this condition is satisfied,
then the functor G is determined uniquely to up isomorphism. Similarly, if D is locally
κ-small small, then K is corepresentable if and only if it is corepresentable by some functor
F : C → D. In this case, the functor F is also uniquely determined up to isomorphism.

Example 8.3.4.8.046E Let κ be an uncountable cardinal, let C− and C+ be locally κ-small
∞-categories, and let K : Cop

− ×C+ → S<κ be a profunctor from C+ to C−. The following
conditions are equivalent:

• The profunctor K is balanced (Definition 8.3.2.18).

• The profunctor K is representable by a functor G : C+ → C− which is an equivalence
of ∞-categories.

• The profunctor K is corepresentable by a functor F : C− → C+ which is an equivalence
of ∞-categories.

By virtue of Theorem 8.3.3.13, this is a reformulation of Corollary 8.3.2.20.

Proposition 8.3.4.9 (Adjunctions as Profunctors).03PA Let G : C+ → C− be a functor of ∞-
categories which represents a profunctor K : Cop

− ×C+ → S<κ. Then a functor F : C− → C+
is left adjoint to G if and only if it corepresents the profunctor K . In particular, K is
corepresentable if and only if the functor G admits a left adjoint.

Proof. Choose a realization of K as the covariant transport representation of a coupling
of ∞-categories λ : C → Cop

− ×C+ (see Remark 8.3.2.5). By virtue of Remark 8.3.4.6, the
coupling λ is representable by the functor G. By virtue of Theorem 8.2.5.1, a functor
F : C− → C+ is left adjoint to G if and only if it corepresents the coupling λ. Invoking
Remark 8.3.4.6 again, we see that this is equivalent to the requirement that F corepresents
the profunctor K .

Recall that, if C− and C+ are ∞-categories, then we write LFun(C−, C+) for the full
subcategory of Fun(C−, C+) spanned by those functors F : C− → C+ which are left adjoints
(Notation 6.2.1.3). Similarly, we write RFun(C+, C−) for the full subcategory of Fun(C+, C−)
spanned by those functors G : C+ → C− which are right adjoints.

Corollary 8.3.4.10.04B7 Let C− and C+ be ∞-categories. Let κ be an uncountable cardinal
for which C− and C+ are locally κ-small, and let E ⊆ Fun(Cop

− ×C+,S<κ) denote the full
subcategory spanned by those profunctors K : Cop

− ×C+ → S<κ which are both representable
and corepresentable. Then:
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(1) Composition with the covariant Yoneda embedding C− → Fun(Cop
− ,S<κ) induces an

equivalence of ∞-categories ρ : RFun(C+, C−)→ E.

(2) Composition with the contravariant Yoneda embedding Cop
+ → Fun(C+,S<κ) induces an

equivalence of ∞-categories λ : LFun(C−, C+)→ Eop.

(3) The composition [ρ]−1 ◦ [λop] determines a canonical isomorphism LFun(C−, C+)op ≃
RFun(C+, C−) in the homotopy category hQCat, which carries each functor F ∈
LFun(C−, C+) to a functor G ∈ RFun(C+, C−) which is right adjoint to F .

Proof. Assertion (1) follows by combining Propositions 8.3.4.1 and 8.3.4.9, and assertion
(2) follows by a similar argument. Assertion (3) follows by combining (1) and (2) with
Proposition 8.3.4.9.

For many applications, Definition 8.3.4.2 is insufficiently precise. Given a functor of
∞-categories G : D → C, we would like to be able to consider not only profunctors which
are representable by G (meaning that they are abstractly isomorphic to the profunctor
(X,Y ) 7→ HomC(X,G(Y ))) but profunctors which are represented by G (meaning that
we have chosen an isomorphism with the profunctor (X,Y ) 7→ HomC(X,G(Y )), or some
essentially equivalent datum). Here it is inconvenient that the functor HomC(−,−) is
well-defined only up to isomorphism. To address this point, it is convenient to encode
representability in a different way.

Notation 8.3.4.11. 03MSLet S denote the ∞-category of spaces (Construction 5.5.1.1). We will
regard the contractible Kan complex ∆0 as an object of S. For every ∞-category E , we let
∆0
E denote the constant functor E → S taking the value ∆0.

Definition 8.3.4.12. 03NXLet G : D → C be a functor of ∞-categories, let K : Cop×D → S be
a profunctor from D to C, and let K |Tw(D) denote the composite functor

Tw(D)→ Dop×D Gop×id−−−−→ Cop×D K−→ S .

Suppose we are given a natural transformation β : ∆0
Tw(D) → K |Tw(D), where ∆0

Tw(D)
denotes the constant functor Tw(D)→ S taking the value ∆0. We say that β exhibits the
profunctor K as represented by G if, for every object D ∈ D, the evaluation of β at the
object idD ∈ Tw(D) determines a vertex β(idD) ∈ K (G(D), D) which exhibits the functor
K (−, D) as represented by the object G(D) ∈ C (see Variant 5.6.6.2).

Remark 8.3.4.13. 046FIn the situation of Definition 8.3.4.12, the natural transformation β can
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be identified with a functor G̃ which fits into a commutative diagram

Tw(D) G̃ //

��

{∆0} ×̃S(Cop×D)

λ

��
Dop×D Gop×id // Cop×D .

Moreover, the natural transformation β exhibits K as represented by G (in the sense of
Definition 8.3.4.12) if and only if G̃ exhibits the coupling λ as represented by G (in the sense
of Definition 8.2.4.1).

Example 8.3.4.14.03NY In the situation of Definition 8.3.4.12, suppose that D = ∆0. In this
case, we can identify the profunctor K with a functor K : Cop → S, we can identify the
functor G with an object X ∈ C, and we can identify β with a vertex of the Kan complex
K(X). Then β exhibits the profunctor K as represented by the functor G (in the sense of
Definition 8.3.4.12) if and only if it exhibits the functor K as represented by the object X
(in the sense of Variant 5.6.6.2.

Proposition 8.3.4.15.03P5 Let G : D → C be a functor of ∞-categories, where C is locally
small, and let K : Cop×D → S be a profunctor. The following conditions are equivalent:

(1) The profunctor K : Cop×D → S is representable by G, in the sense of Definition
8.3.4.2.

(2) There exists a natural transformation β : ∆0
Tw(D) → K |Tw(D) which exhibits K as

represented by G, in the sense of Definition 8.3.4.12.

Proof. By virtue of Remarks 8.3.4.6 and 8.3.4.13, this follows by applying Proposition 8.2.4.3
to the coupling

{∆0} ×̃S(Cop×D)→ Cop×D .

Variant 8.3.4.16 (Corepresentable Profunctors).03P8 Let F : C → D be a functor of ∞-
categories and let K : Cop×D → S be a profunctor. We say that a natural transformation
β : ∆0

Tw(C) → K |Tw(C) exhibits K as corepresented by F if, for every object X ∈ C, the
image β(idX) ∈ K (X,F (X)) exhibits the functor K (X,−) : D → S as corepresented
by the object F (X) ∈ D, in the sense of Definition 5.6.6.1. Equivalently, β exhibits K

as corepresented by F if it exhibits K as represented by the opposite functor F op, when
regarded as a profunctor from Cop to Dop (see Remark 8.3.2.3).

https://kerodon.net/tag/03NY
https://kerodon.net/tag/03P5
https://kerodon.net/tag/03P8


1794 CHAPTER 8. THE YONEDA EMBEDDING

Remark 8.3.4.17 (Homotopy Invariance). 03P0In the situation of Definition 8.3.4.12, the
condition that β exhibits K as corepresented by G depends only on the homotopy class [β]
(as a morphism in the homotopy category hFun(Tw(D),S)) (see Remark 5.6.6.3).

Remark 8.3.4.18 (Change of K ). 03P1Let G : D → C be a functor of∞-categories. Suppose we
are given a pair of profunctors K ,K ′ : Cop×D → S, a natural transformation α : K → K ′,
and a commutative diagram

∆0
Tw(D)

β

zz

β′

$$
K |Tw(D)

α|Tw(D) //K ′|Tw(D)

in the ∞-category Fun(Tw(D),S). Then any two of the following conditions imply the third:

• The natural transformation β exhibits the profunctor K as represented by G.

• The natural transformation β′ exhibits the profunctor K ′ as represented by G.

• The natural transformation α is an isomorphism.

See Remark 5.6.6.4.

Proposition 8.3.4.19. 03P2Suppose we are given a functor of ∞-categories G : D → C, a
profunctor K : Cop×D → S, and a natural transformation β : ∆0

Tw(D) → K |Tw(D). Then
β exhibits K as represented by G (in the sense of Definition 8.3.4.12) if and only if the
induced map Tw(D)→ {∆0} ×̃S(Cop×D) is left cofinal.

Proof. By virtue of Remark 8.3.4.13, this is a special case of Proposition 8.2.4.9.

Proposition 8.3.4.20 (Representable Profunctors as Kan Extensions). 03P3Let G : D → C be
a functor of ∞-categories, let K : Cop×D → S be a profunctor, and let β : ∆0

Tw(D) →
K |Tw(D) be a natural transformation which exhibits K as represented by G. Then β exhibits
K as a left Kan extension of the constant diagram ∆0

Tw(D) along the composite map

Tw(D)→ Dop×D Gop×id−−−−→ Cop×D .

Proof. Let E denote the oriented fiber product {∆0} ×̃S(Cop×D) and let µ : E → Cop×D be
the projection onto the second factor, so that we have a tautological natural transformation
β̃ : ∆0

E → K ◦ µ. It follows from Proposition 7.6.2.17 that β̃ exhibits K as a left
Kan extension of ∆0

E along µ. The natural transformation β then determines a functor
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T : Tw(D)→ E such that precomposition with T carries β̃ to β. By the transitivity of the
formation of of Kan extensions (Proposition 7.3.8.18), we are reduced to showing that the
identity transformation id : ∆0

Tw(D) → ∆0
E ◦ T exhibits ∆0

E as a left Kan extension of
Tw(D) along T . This is a special case of Remark 7.6.2.13, since the functor T is left cofinal
(Proposition 8.3.4.19).

Corollary 8.3.4.21 (The Universal Mapping Property of Representable Profunctors).046K046K Let
G : D → C be a functor of ∞-categories. Suppose we are given a pair of profunctors
K ,K ′ : Cop×D → S, and let β : ∆0

Tw(D) → K |Tw(D) be a natural transformation which
exhibits K as represented by G. Then precomposition with β induces a homotopy equivalence
of Kan complexes

HomFun(Cop×D,S)(K ,K ′)→ HomFun(Tw(D),S)(∆0
Tw(D),K

′|Tw(D)).

Proof. Combine Propositions 8.3.4.20 and 7.3.6.1.

Example 8.3.4.22 (Spaces of Natural Transformation).03P7 Let G,G′ : D → C be functors
of ∞-categories and let H be a Hom-functor for C. Combining Corollary 8.3.4.21 with
Proposition 8.3.4.1, we obtain homotopy equivalences of Kan complexes

HomFun(D,C)(G,G′) ≃ HomFun(Cop×D,S)(H ◦ (id×G),H ◦ (id×G′))
≃ HomFun(Tw(D),S)(∆0

Tw(D),H |Tw(D))
≃ lim←−(H |Tw(D)).

Stated more informally, the space of natural transformations from G to G′ can be viewed as
a limit of the diagram

Tw(D)→ S (f : X → Y ) 7→ HomC(G(X), G′(Y )).

8.3.5 Recognition of Hom-Functors

046H Let C be an ∞-category. If C is locally small, then Proposition 8.3.3.2 guarantees that it
admits a Hom-functor H : Cop×C → S, which is uniquely determined up to isomorphism.
Our goal in this section is to formulate a more precise statement, which characterizes the
functor H up to canonical isomorphism (see Proposition 8.3.5.6).

Definition 8.3.5.1.03MT Let C be an ∞-category, let λ : Tw(C) → Cop×C denote the left
fibration of Proposition 8.1.1.11, and let H : Cop×C → S be a profunctor. We say that
a natural transformation α : ∆0

Tw(C) → H |Tw(C) exhibits H as a Hom-functor for C if it
satisfies the following condition:
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(∗) For every pair of objects X,Y ∈ C, the natural transformation α induces a homotopy
equivalence of Kan complexes

αX,Y : {X} ×Cop Tw(C)×C {Y } → HomS(∆0,H (X,Y )).

Remark 8.3.5.2. 03MZLet C be an ∞-category and let H : Cop×C → S be a profunctor.
The datum of a natural transformation α : ∆0

Tw(C) → H |Tw(C) can be identified with a
commutative diagram of ∞-categories

03N0Tw(C) //

��

{∆0} ×̃S S

��
Cop×C H // S .

(8.47)

In this case, the natural transformation α exhibits H as a Hom-functor for C if and only if
the diagram (8.47) is a categorical pullback square (see Corollary 5.1.7.15).

Remark 8.3.5.3. 03N1Let C be an∞-category. A profunctor H : Cop×C → S is a Hom-functor
for C (in the sense of Definition 8.3.3.1) if and only if there exists a natural transformation
α : ∆0

Tw(C) →H |Tw(C) which exhibits H as a Hom-functor for C (in the sense of Definition
8.3.5.1).

Remark 8.3.5.4. 03MVLet C be an ∞-category, let H : Cop×C → S be a profunctor, and let
α : ∆0

Tw(C) → H |Tw(C) be a natural transformation. For every pair of objects X,Y ∈ C,
Notation 8.1.2.14 and Remark 5.5.1.5 supply canonical isomorphisms

HomC(X,Y ) ≃ {X} ×Cop Tw(C)×C {Y } H (X,Y ) ≃ HomS(∆0,H (X,Y ))

in the homotopy category hKan. Consequently, the homotopy class of the morphism αX,Y
appearing in Definition 8.3.5.1 can be identified with a map [αX,Y ] : HomC(X,Y )→H (X,Y )
in hKan, which depends functorially on X and Y (see Corollary 8.1.2.18). The natural
transformation α exhibits H as a Hom-functor for C (in the sense of Definition 8.3.5.1) if
and only if each [αX,Y ] is an isomorphism in the category hKan.

Proposition 8.3.5.5. 03NKLet C be an ∞-category, let H : Cop×C → S be a profunctor, and let
α : ∆0

Tw(C) →H |Tw(C) be a natural transformation. The following conditions are equivalent:

(1) The natural transformation α exhibits H as a Hom-functor for C (in the sense of
Definition 8.3.5.1).
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(2) The natural transformation α exhibits the profunctor H as represented by the identity
functor id : C → C (in the sense of Definition 8.3.4.12). That is, for every object
X ∈ C, the vertex α(idX) ∈ H (X,X) exhibits the functor H (−, X) : Cop → S as
represented by the object X.

(3) The natural transformation α exhibits the profunctor H as corepresented by the identity
functor id : C → C (in the sense of Variant 8.3.4.16). That is, for every object X ∈ C,
the vertex α(idX) ∈H (X,X) exhibits the functor H (X,−) : C → S as corepresented
by the object X.

Proof. We will show that (1)⇔ (3); the proof of the equivalence (1)⇔ (2) is similar. The
natural transformation α can be identified with a functor T : Tw(C)→ {∆0} ×̃S S. For each
object X ∈ C, let TX denote the restriction of B to the simplicial subset {X} ×Cop Tw(C) ⊆
Tw(C), and consider the following condition:

(1X) The diagram of ∞-categories

03NL {X} ×Cop Tw(C) TX //

��

{∆0} ×̃S S

��
C

H (X,−) // S

(8.48)

is a categorical pullback square.

By virtue of Corollary 5.1.7.15, the natural transformation α exhibits H as a Hom-functor
for C if and only if it satisfies condition (1X) for every object X ∈ C. To complete the proof,
it will suffice to show that (1X) is satisfied if and only if α(idX) ∈ H (X,X) exhibits the
functor H (X,−) as corepresented by X. This is a special case of Proposition 5.6.6.21, since
the idX is an initial object of the ∞-category {X} ×Cop Tw(C) (Proposition 8.1.2.1).

Proposition 8.3.5.6.03N3 Let C be a locally small∞-category, let H : Cop×C → S be a functor,
and let α : ∆0

Tw(C) →H |Tw(C) be a natural transformation. The following conditions are
equivalent:

(1) The natural transformation α exhibits H as a Hom-functor for C: that is, it satisfies
condition (∗) of Definition 8.3.5.1.

https://kerodon.net/tag/03NL
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(2) The diagram
Cop×C

H

""

KS

α

Tw(C)

λ

;;

∆0
Tw(C)

// S .

exhibits H as a left Kan extension of the constant functor ∆0
Tw(C) along the left

fibration Tw(C)→ Cop×C.

(3) The pair (H , α) is initial when viewed as an object of the oriented fiber product
{∆0

Tw(C)} ×̃Fun(Tw(C),S) Fun(Cop×C,S)

Proof. The equivalence (1) ⇔ (2) follows from Proposition 7.6.2.17 and Remark 8.3.5.2.
Since C is locally small, Proposition 8.3.3.2 guarantees that the functor ∆0

Tw(C) admits a
left Kan extension along λ, so the equivalence (2)⇔ (3) follows from Corollary 7.3.6.5.

Variant 8.3.5.7. 03V3Let κ be an uncountable cardinal and let C be an ∞-category which is
locally κ-small. Then, in the statement of Proposition 8.3.5.6, we can replace S with the
∞-category S<κ of κ-small spaces (Variant 5.5.4.12).

Corollary 8.3.5.8 (Functoriality of Hom-Functors). 046JLet F : C → D be a functor between
∞-categories. Choose natural transformations

α : ∆0
Tw(C) →HC |Tw(C) β : ∆0

Tw(D) →HD|Tw(D)

which exhibit HC and HD as Hom-functors for C and D, respectively. Then there exists a
natural transformation γ : HC(−,−)→HD(F (−), F (−)) for which the diagram

03PC03PC∆0
Tw(C)

[α]

zz

[β]

$$
HC |Tw(C)

[γ] //HD|Tw(C)

(8.49)

commutes (in the homotopy category hFun(Tw(C),S)). Moreover, the natural transformation
γ is uniquely determined up to homotopy.

Proof. This is a special case of Proposition 7.3.6.1, since α exhibits HC as a left Kan
extension of ∆0

Tw(C) along the left fibration Tw(C)→ Cop×C (Proposition 8.3.5.6).
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Remark 8.3.5.9.03PD In the situation of Corollary 8.3.5.8, suppose that we are given a pair of
objects X,Y ∈ C. The commutativity of (8.49) guarantees that the diagram

HomC(X,Y ) F //

∼

��

HomD(F (X), F (Y ))

∼

��
HC(X,Y ) γ //HD(F (X), F (Y ))

commutes in the homotopy category hKan, where the vertical maps are the isomorphisms of
Remark 8.3.5.4. We can summarize the situation more informally as follows: if F : C → D is
a functor between (locally small) ∞-categories, then the induced map of Kan complexes
HomC(X,Y )→ HomD(F (X), F (Y )) depends functorially on the pair (X,Y ) (as an object
of the ∞-category Cop×C).

8.3.6 Strict Models for Hom-Functors

03N5 Let E be a (locally small) ∞-category. Proposition 8.3.3.2 guarantees the existence of
a Hom-functor H : Eop×E → S, which is well-defined up to isomorphism. Our goal in
this section is to give an explicit construction of a Hom-functor in the special case where
E = Nhc

• (C) arises as the homotopy coherent nerve of a (locally Kan) simplicial category C.

Construction 8.3.6.1.03N6 Let C be a locally Kan simplicial category. Then the construction
(X,Y ) 7→ HomC(X,Y )• determines a simplicial functor Cop×C → Kan. Passing to homotopy
coherent nerves, we obtain a functor of ∞-categories

HC : Nhc
• (C)op ×Nhc

• (C)→ Nhc
• (Kan) = S .

Proposition 8.3.6.2.03N7 Let C be a locally Kan simplicial category. Then the functor HC of
Construction 8.3.6.1 is a Hom-functor for the ∞-category Nhc

• (C).

Remark 8.3.6.3.03N8 Let C be an ordinary category, which we identify with the corresponding
constant simplicial category (see Example 2.4.2.4). In this case, Proposition 8.3.6.2 reduces
to Example 8.3.3.4.

Remark 8.3.6.4.03N9 By combining Proposition 8.3.6.2 with the rectification results of §[?],
we can give an explicit construction of a Hom-functor for an arbitrary (small) ∞-category
E . Let Path[E ]• denote the simplicial path category of E (Definition 2.4.4.1) and let C
be the locally Kan simplicial having the same objects, with morphism spaces given by
HomC(X,Y )• = Ex∞(HomPath[E](X,Y )•) (see Example [?]). It follows from Proposition
3.3.6.7 that the tautological map Path[E ]• → C is a weak equivalence of simplicial categories
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(in the sense of Definition 4.6.8.7), and therefore corresponds to an equivalence of ∞-
categories F : E → Nhc

• (C) (Theorem [?]). Using Proposition 8.3.6.2, we deduce that the
composition

Eop×E F op×F−−−−→ Nhc
• (C)op ×Nhc

• (C) HC−−→ S

is a Hom-functor for E , given on objects by (X,Y ) 7→ Ex∞(HomPath[E](X,Y )).
Beware that, although this construction is completely explicit in principle, it is hard to

use in practice (since the operations E 7→ Path[E ]• and S 7→ Ex∞(S) are both difficult to
control).

Proposition 8.3.6.2 asserts that the functor HC is a covariant transport representation
for the left fibration Tw(Nhc

• (C))→ Nhc
• (C)op ×Nhc

• (C) (Remark 8.3.5.3). We will prove this
by constructing a categorical pullback square of ∞-categories

Tw(Nhc
• (C)) H̃C //

��

S∗

U

��
Nhc
• (C)op ×Nhc

• (C) HC // S .

To define the upper horizontal map, we will use a variant of Construction 8.3.6.1.

Construction 8.3.6.5. 03NALet C be a locally Kan simplicial category, let Nhc
• (C) denote its

homotopy coherent nerve. Let J be a linearly ordered set and let J denote its opposite; for
each element j ∈ J , we write j for the corresponding element of J . Suppose we are given a
morphism of simplicial sets σ : N•(J) → Tw(Nhc

• (C)), which we identify with a simplicial
functor f : Path[J ⋆ J ]• → C (see Warning 8.1.1.9 and Proposition 2.4.4.15). Note that the
composition

N•(J) σ−→ Tw(Nhc
• (C))→ Nhc

• (C)op ×Nhc
• (C) HC−−→ S

can be identified with a simplicial functor Fσ : Path[J ]• → Kan, given on objects by the
formula Fσ(j) = HomC(f(j), f(j))• (see Proposition 2.4.4.15). Let J◁ = {x} ⋆ J denote the
linearly ordered set obtained from J by adding a new smallest element x. We extend Fσ to
a simplicial functor F̃σ : Path[J◁]• → Kan as follows:

(a) The functor F̃σ carries the element x ∈ J◁ to the Kan complex ∆0.

(b) Let j be an element of J . Let us identify HomPath[J◁](x, j)• with the nerve N•(Q),
where Q is the collection of finite subsets I ⊆ J satisfying max(I) = j (partially
ordered by reverse inclusion). Similarly, we identify HomPath[J⋆J ](j, j)• with the nerve
N•(Q′), where Q′ is the collection of finite subsets I ′ ⊆ J ⋆ J satisfying max(I ′) = j

https://kerodon.net/tag/03NA
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and min(I ′) = j (partially ordered by reverse inclusion). Then F̃σ is defined on the
morphism space HomPath[J◁](x, j)• by the composition

HomPath[J◁](x, j)• ≃ N•(Q)
I 7→I∪I−−−−→ N•(Q′)
≃ HomPath[J⋆J ](j, j)•
f−→ HomC(f(j), f(j))•
≃ Fun(F̃σ(x), F̃σ(j)).

In the special case where J is the linearly ordered set [n] = {0 < 1 < · · · < n}, we
can identify F̃σ with an n-simplex of the ∞-category of pointed spaces S∗ = Nhc

• (Kan)∆0/.
The assignment σ 7→ F̃σ depends functorially on [n], and therefore determines a functor
H̃C : Tw(Nhc

• (C))→ S∗. By construction, this functor fits into a commutative diagram

03NB Tw(Nhc
• (C)) H̃C //

��

S∗

U

��
Nhc
• (C)op ×Nhc

• (C) HC // S,

(8.50)

where the left vertical map is the twisted arrow fibration of Proposition 8.1.1.11 and the
right vertical map is the forgetful functor.

Exercise 8.3.6.6.03NC Verify that Construction 8.3.6.5 is well-defined. That is, for every linearly
ordered set J and every morphism σ : N•(J)→ Tw(Nhc

• (C)), show that the simplicial functor
Fσ admits a unique extension F̃σ : Path[J◁]• → Kan which satisfies conditions (a) and (b).

Proposition 8.3.6.2 is an immediate consequence of the following more precise result:

Proposition 8.3.6.7.03ND Let C be a locally Kan simplicial category. Then the diagram (8.50)
is a categorical pullback square.

Proof. Note that the vertical maps in the diagram (8.50) are left fibrations (Propositions
8.1.1.11 and 5.5.3.2). It will therefore suffice to show that, for every pair of objects X,Y ∈ C,
the induced map of fibers

H̃X,Y : {X} ×Eop Tw(E)×E {Y } → {HC(X,Y )} ×S S∗
= HomL

S(∆0,HomC(X,Y )•)
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is a homotopy equivalence of Kan complexes (see Corollary 5.1.7.15). Note that the
coslice inclusion of Construction 8.1.2.7 induces a monomorphism of simplicial sets ι :
HomL

E (X,Y ) ↪→ {X} ×Eop Tw(E) ×E {Y }. Unwinding the definitions, we see that the
composite map

(H̃X,Y ◦ ι) : HomL
E (X,Y )→ HomL

S(∆0,HomC(X,Y )•)

coincides with isomorphism described in Remark 4.6.8.18. It will therefore suffice to show
that ι is a homotopy equivalence, which is a special case of Corollary 8.1.2.10.

8.4 Cocompletion

03V7Let C be a small ∞-category. It is very rare for C to admit small colimits: this is
possible only if C is (equivalent to the nerve of) a partially ordered set (Proposition 7.6.2.16).
However, it is always possible to embed C into a larger ∞-category which admits small
colimits. Our goal in this section is to study the universal example of such an enlargement.

Definition 8.4.0.1. 04B8Let h : C → Ĉ be a functor of ∞-categories. We will say that h exhibits
Ĉ as a cocompletion of C if the following conditions are satisfied:

(1) The ∞-category Ĉ admits small colimits.

(2) Let D be an ∞-category which admits small colimits and let Fun′(Ĉ,D) denote the full
subcategory of Fun(Ĉ,D) spanned by those functors which preserve small colimits. Then
precomposition with h induces an equivalence of∞-categories Fun′(Ĉ,D)→ Fun(C,D).

Remark 8.4.0.2. 04B9Stated more informally, condition (2) of Definition 8.4.0.1 asserts that
if f : C → D is a functor of ∞-categories where D admits small colimits, then f factors
(up to isomorphism) as a composition C h−→ Ĉ F−→ D, where the functor F preserves small
colimits; moreover, this factorization is required to be essentially unique. In other words,
the ∞-category Ĉ should be “freely generated” by C under small colimits.

It follows immediately from the definition that if an∞-category C admits a cocompletion
Ĉ, then Ĉ is determined uniquely up to equivalence. Our primary goal in this section is to
prove the following existence result:

Theorem 8.4.0.3. 03W9Let C be an essentially small ∞-category and let h• : C → Fun(Cop,S)
be a covariant Yoneda embedding for C (Definition 8.3.3.9). Then h• exhibit Fun(Cop,S) as
a cocompletion of C (in the sense of Definition 8.4.0.1).

Example 8.4.0.4. 03WCLet X be a contractible Kan complex, which we identify with a vertex
x of the simplicial set S. Applying Theorem 8.4.0.3 in the special case where C = ∆0, we
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deduce that the map x : ∆0 → S exhibits S as a cocompletion of the 0-simplex ∆0. That is,
for every ∞-category D which admits small colimits, the evaluation map

Fun′(S,D)→ D F 7→ F (X)

is an equivalence of∞-categories, where Fun′(S,D) denotes the full subcategory of Fun(S,D)
spanned by the colimit-preserving functors. Note that this property characterizes the ∞-
category S up to equivalence: it is “freely generated” under small colimits by the object
∆0.

Warning 8.4.0.5.04BA In §8.4.5, we will show that every∞-category C admits a cocompletion Ĉ
(Proposition 8.4.5.3). Beware that, if C is not essentially small, then Ĉ cannot necessarily be
identified with the ∞-category Fun(Cop,S) (Warning 8.4.3.4). However, if C is locally small,
then it can be identified with a full subcategory of Fun(Cop,S) (see Construction 8.4.5.5).

Let f : C → D be a functor of ∞-categories, where C is essentially small and D admits
small colimits. Using the ∞-categorical version of Yoneda’s lemma (Theorem 8.3.3.13), we
see that f factors (up to isomorphism) as a composition

C h•−→ Funrep(Cop,S) F0−→ D,

where Funrep(Cop,S) denotes the full subcategory of Fun(Cop,S) spanned by the representable
functors. Theorem 8.4.0.3 asserts that F0 admits an essentially unique extension to a
functor Fun(Cop,S)→ D which preserves small colimits. To prove this, it will be useful to
characterize this extension in a different way. For any functor F : Fun(Cop,S)→ D, we will
show that the following conditions are equivalent:

(a) The functor F preserves small colimits.

(b) The functor F is left Kan extended from the subcategory Funrep(Cop,S) ⊆ Fun(Cop,S).

Granting this equivalence, the proof of Theorem 8.4.0.3 is reduced to showing that every
functor F0 : Funrep(Cop,S) → D admits an essentially unique left Kan extension F :
Fun(Cop,S)→ D, which follows from the general results of §7.3.

To establish the equivalence of (a) and (b), we will proceed by reduction to an important
special case. Suppose that D = Fun(Cop,S) and that F : Fun(Cop,S) → D is the identity
functor. In this case, condition (a) is automatically satisfied. Condition (b) then asserts
that the full subcategory Funrep(Cop,S) ⊆ Fun(Cop,S) is dense: that is, every object
G ∈ Fun(Cop,S) can be recovered as the colimit of the diagram

Funrep(C op,S)×Fun(Cop,S) Fun(Cop,S)/F → Fun(Cop,S)

of representable functors over G (see Definition 8.4.1.5). In §8.4.1, we discuss dense subcate-
gories in general and provide a concrete criterion can be used to show that a subcategory

https://kerodon.net/tag/04BA
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is dense (Proposition 8.4.1.8). In §8.4.2, we apply this criterion to establish the density of
the full subcategory Funrep(Cop,S) ⊆ Fun(Cop,S) (Corollary 8.4.2.2). In §8.4.3, we use this
result to establish the equivalence of (a) and (b) in general (Theorem 8.4.3.6), and deduce
Theorem 8.4.0.3 as an easy consequence.

Let us now specialize the preceding discussion to the situation where the ∞-category D
is locally small. In this case, we will show that conditions (a) and (b) above are equivalent
to the following:

(c) The functor F : Fun(Cop,S)→ D admits a right adjoint G : D → Fun(Cop,S).

The implication (c) ⇒ (a) is formal (by virtue of Corollary 7.1.3.21, every left adjoint
preserves colimits). In §8.4.4, we prove the reverse implication by giving an explicit
construction of the right adjoint G: it carries each object D ∈ D to the functor

F : Cop → S C 7→ HomD(f(C), D)

where HomD(•, •) is a Hom-functor for the ∞-category D (see Proposition 8.4.4.1). The
equivalence of (a) and (c) is a special case of the ∞-categorical adjoint functor theorem
(Theorem [?]), which we discuss in §[?] .

If C is an essentially small ∞-category, then its cocompletion Fun(Cop,S) is a drastic
enlargement of C, obtained by (freely) adjoining a colimit for every small diagram. In
practice, it will be useful to consider a variant of Definition 8.4.0.1, where we restrict our
attention to diagrams indexed by some collection of simplicial sets K. We say that a functor
of∞-categories h : C → Ĉ exhibits Ĉ as a K-cocompletion of C if Ĉ admits K-indexed colimits
for each K ∈ K, and is universal with respect to this property (see Definition 8.4.5.1). In
§8.4.5, we show that every ∞-category C admits a K-cocompletion Ĉ (Proposition 8.4.5.3).
Our proof proceeds by explicit construction. Assume for simplicity that the ∞-category C
and each of the simplicial sets K ∈ K is essentially small; in this case, we show that we can
take Ĉ to be the smallest full subcategory of Fun(Cop,S) which contains all representable
functors and is closed under K-indexed colimits, for each K ∈ K (Construction 8.4.5.5 and
Proposition 8.4.5.7).

Let us isolate another important feature of the covariant Yoneda embedding h• : C →
Fun(Cop,S) associated to an essentially small ∞-category C. For every pair of objects X ∈ C
and F ∈ Fun(Cop,S), the ∞-categorical analogue of Yoneda’s lemma supplies a homotopy
equivalence

HomFun(Cop,S)(hX ,F ) ∼−→ F (X)

(Proposition 8.3.1.3). It follows that hX is an atomic object of the ∞-category Fun(Cop,S):
that is, it corepresents a functor which preserves small colimits (Definition 8.4.6.1). The
Yoneda embedding is essentially characterized by this property, together with the fact
that it is dense and fully faithful. More precisely, suppose that we are given a functor of
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∞-categories h : C → Ĉ, where C is small and Ĉ admits small colimits. In §8.4.6, we show
that h exhibits Ĉ as a cocompletion of C if and only if it is dense, fully faithful, and carries
each object of C to an atomic object of Ĉ (Proposition 8.4.6.6). In §8.4.7, we apply this
characterization to show that the formation of cocompletions is compatible with the formation
of slice ∞-categories (Proposition 8.4.7.1). In particular, if U : C̃ → C is a right fibration
between essentially small ∞-categories, we show that there is an equivalence of ∞-categories
Fun(C̃op

,S) ≃ Fun(Cop,S)/F , where F denotes a covariant transport representation for the
left fibration Uop (Corollary 8.4.7.2).

8.4.1 Dense Functors

03V8 To study the behavior of a (large) category D, it is often useful to approximate D by
well-chosen (small) subcategory C ⊆ D. The following condition guarantees that, for some
purposes, passage from D to C does not lose too much information:

Definition 8.4.1.1.03V9 Let D be a (locally small) category. We say that a full subcategory
C ⊆ D is dense if the functor

D → Fun(Cop,Set) Y 7→ HomD(•, Y )

is fully faithful.

Remark 8.4.1.2.03VA Definition 8.4.1.1 was introduced by Isbell in [29]. Beware that Isbell
uses the term left adequate subcategory for what we refer to as a dense subcategory.

Example 8.4.1.3.03VB Let Cat denote the ordinary category whose objects are small categories
and whose morphisms are functors, and let ∆ ⊂ Cat be the simplex category. Proposition
1.3.3.1 asserts that the restricted Yoneda embedding

Cat→ Fun(∆op, Set) = Set∆ C 7→ N•(C)

is fully faithful, so that ∆ is a dense subcategory of Cat.

Exercise 8.4.1.4.03VC Let C denote the category of partially ordered sets, and let ∆≤1 denote
the full subcategory of C spanned by the objects [0] and [1]. Show that ∆≤1 is a dense
subcategory of C.

We now introduce an ∞-categorical counterpart of Definition 8.4.1.1.

Definition 8.4.1.5.03VD Let D be an ∞-category. We will say that a full subcategory C ⊆ D is
dense if, for every object X ∈ D, the composition

(C ×D D/X)▷ ↪→ D▷/X → D

is a colimit diagram.

https://kerodon.net/tag/03V8
https://kerodon.net/tag/03V9
https://kerodon.net/tag/03VA
https://kerodon.net/tag/03VB
https://kerodon.net/tag/03VC
https://kerodon.net/tag/03VD


1806 CHAPTER 8. THE YONEDA EMBEDDING

Remark 8.4.1.6. 03VELet D be an ∞-category. Then a full subcategory C ⊆ D is dense if and
only if the identity functor idD is left Kan extended from C.

Example 8.4.1.7. 03VFLet C be an ∞-category. Then C is a dense full subcategory of itself
(see Example 7.3.3.8).

In the situation of Definition 8.4.1.5, suppose that the∞-category D is locally small, and
let h• : D → Fun(Dop,S) be a covariant Yoneda embedding for D (see Definition 8.3.3.9).
Composing with the restriction functor Fun(Dop,S)→ Fun(Cop,S), we obtain a functor

D → Fun(Cop,S) Y 7→ h◦Y

which we will refer to as the restricted Yoneda embedding.

Proposition 8.4.1.8. 03VGLet D be a locally small ∞-category. A full subcategory C ⊆ D is
dense if and only if the restricted Yoneda embedding D → Fun(Cop,S) is fully faithful.

We will deduce Proposition 8.4.1.8 from a more general result (Proposition 8.4.1.22),
which we prove at the end of this section.

Corollary 8.4.1.9. 03VHLet D be a locally small category. Then a full subcategory C ⊆ D is
dense (in the sense of Definition 8.4.1.1) if and only if N•(C) is a dense subcategory of the
∞-category N•(D) (in the sense of Definition 8.4.1.5).

Warning 8.4.1.10. 03VJLet D be an ∞-category. Consider the following conditions on a full
subcategory C ⊆ D:

(1) The ∞-category C ⊆ D is dense, in the sense of Definition 8.4.1.5.

(2) Every object X ∈ D can be realized as the colimit of a diagram taking values in the full
subcategory C ⊆ D.

(3) The ∞-category D is generated by C under colimits. That is, if D0 ⊆ D is a full
subcategory which contains C and is closed under the formation of colimits in D, then
D0 = D.

It follows immediately from the definitions that (1) ⇒ (2)⇒ (3). Beware that neither of
this implications is reversible. See Exercises 8.4.1.11 and 8.4.1.12.

Exercise 8.4.1.11. 03VKLet D denote the category of free abelian groups, and let C ⊆ D denote
the full subcategory spanned by object Z. Show that C is not a dense subcategory of D.
Consequently, the inclusion map N•(C) ⊂ N•(D) satisfies condition (2) of Warning 8.4.1.10,
but does not satisfy condition (1).
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8.4. COCOMPLETION 1807

Exercise 8.4.1.12.03VL Let Cat denote the (ordinary) category of small categories, and let
∆≤1 ⊂ Cat denote the full subcategory spanned by the objects [0] and [1]. Show that:

• The full subcategory ∆≤1 generates Cat under colimits.

• A small category C can be realized as the colimit (in Cat) of a diagram K →∆≤1 if
and only if the category C is free, in the sense of Definition 1.3.7.7.

In particular, the inclusion N•(∆≤1) ⊂ N•(Cat) satisfies condition (3) of Warning 8.4.1.10,
but does not satisfy condition (2).

Warning 8.4.1.13 (Failure of Transitivity).03VM Let E be an ∞-category and let C ⊆ D ⊆ E
be full subcategories. Suppose that C is a dense subcategory of E . Then C is also a dense
subcategory of D, and D is a dense subcategory of E (see Corollary 7.3.8.8). Beware that
the converse is false (Example 8.4.1.14).

Example 8.4.1.14.03VN Let Cat denote the (ordinary) category of small categories. Then the
simplex category ∆ is a dense full subcategory of Cat (Example 8.4.1.3), and ∆≤1 is a dense
full subcategory of ∆ (Exercise 8.4.1.4). However, ∆≤1 is not a dense full subcategory of
Cat (Exercise 8.4.1.12).

For some applications, it will be useful to consider the following generalization of
Definition 8.4.1.5.

Definition 8.4.1.15.03VP Let D be an ∞-category and let F : C → D be a morphism of
simplicial sets. We say that F is dense if the identity transformation idF : F → idD ◦F
exhibits the identity functor idD as a left Kan extension of F along F (see Variant 7.3.1.5).

Example 8.4.1.16.03VQ Let D be an ∞-category. Then a full subcategory C ⊆ D is dense (in
the sense of Definition 8.4.1.5) if and only if the inclusion functor C ↪→ D is dense (in the
sense of Definition 8.4.1.15). See Proposition 7.3.2.6.

Remark 8.4.1.17 (Homotopy Invariance).03VS Let D be an ∞-category, let C be a simplicial
set, and let F, F ′ : C → D be diagrams which are isomorphic (when viewed as objects of
the ∞-category Fun(C,D)). Then F is dense if and only if F ′ is dense. This follows by
combining Remarks 7.3.1.10 and 7.3.1.11.

Remark 8.4.1.18 (Change of Source).03VT Let D be an ∞-category, let F : C → D be a
morphism of simplicial sets, and let G : B → C be a categorical equivalence of simplicial sets.
Then F is dense if and only if F ◦G is dense. See Proposition 7.3.1.14.

Remark 8.4.1.19 (Change of Target).03VU Let G : D → E be a functor of ∞-categories and let
F : C → D be a morphism of simplicial sets. Then:
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• If G is fully faithful and G ◦ F is dense, then F is dense.

• If G is an equivalence of ∞-categories and F is dense, then G ◦ F is dense.

See Remark 7.3.1.13.

Remark 8.4.1.20. 03VVLet D be an ∞-category and let F : C → D be a morphism of simplicial
sets. Then f is dense if and only if, for every object Y ∈ D, the composite map

(C ×D D/Y )▷ → D▷/Y → D

is a colimit diagram in D.

Remark 8.4.1.21. 03VWLet κ be an uncountable regular cardinal and let F : C → D be a
morphism of simplicial sets. Assume that C is essentially κ-small and that D is a locally
κ-small ∞-category. Then, for each object X ∈ D, the fiber product C ×D D/X is also
essentially κ-small (Corollary 5.6.7.7). Let λ be an infinite cardinal satisfying ecf(λ) ≥ κ

(see Definition 4.7.3.16). Then F is dense if and only if, for every representable functor
hY : Dop → S<λ, the identity transformation id : hY ◦ F op → hY ◦ F op exhibits the functor
hY as a right Kan extension of hY ◦ F op along F op. This follows by combining Remark
8.4.1.20 with Proposition 7.4.5.16 (together with Remark 7.4.5.18).

Proposition 8.4.1.22. 03VXLet λ be an uncountable cardinal, let D be an ∞-category which is
locally λ-small, and let

h• : D → Fun(Dop,S<λ) Y 7→ hY

be a covariant Yoneda embedding for D (Definition 8.3.3.9). If C is a simplicial set, then a
diagram F : C → D is dense if and only if the composite functor

D h•−→ Fun(Dop,S<λ) ◦F
op

−−−→ Fun(Cop,S<λ)

is fully faithful.

Proof. Choose an uncountable cardinal κ such that C is essentially κ-small and D is locally
κ-small. Enlarging λ if necessary, we may assume that the exponential cofinality of λ is ≥ κ
(see Remark 4.7.3.19). For each object Y ∈ D, let h◦Y : Cop → S<λ denote the composite
functor hY ◦ F op, given on objects by the construction C 7→ HomD(F (C), Y ). By virtue of
Remark 8.4.1.21, it will suffice to show that the following conditions are equivalent:

(1Y ) The identity transformation id : hY ◦ F op → hY exhibits hY as a right Kan extension
of h◦Y along the functor F op.
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8.4. COCOMPLETION 1809

(2Y ) For each object X ∈ C, the composite map

HomD(X,Y )→ HomFun(Dop,S)(hX , hY )→ HomFun(Cop,S)(h◦X , h◦Y )

is a homotopy equivalence of Kan complexes.

Since the covariant Yoneda embedding X 7→ hX is fully faithful (Theorem 8.3.3.13), we can
reformulate (2Y ) as follows:

(2′Y ) The restriction map

HomFun(Dop,S<λ)(hX , hY )→ HomFun(Cop,S<λ)(h
◦
X , h

◦
Y )

is a homotopy equivalence of Kan complexes.

The inequality κ ≤ ecf(λ) guarantees that the ∞-category S<λ admits κ-small limits
(Corollary 7.4.1.13). Using Proposition 7.6.7.13, we can choose a functor G : Dop → S<λ

and a natural transformation α : G ◦ F op → h◦Y which exhibits G as a right Kan extension
of h◦Y along the functor F op. Invoking the universal mapping property of G (Proposition
7.3.6.1), we see that there exists a natural transformation β : hY → G and a commutative
diagram

03VY G ◦ F op

α

""
hY ◦ F op id //

β

::

h◦Y

(8.51)

in the ∞-category Fun(Cop,S<λ). Using Remark 7.3.1.12, we see that condition (1Y ) is
satisfied if and only if the natural transformation β is an isomorphism: that is, it induces
a homotopy equivalence of Kan complexes βX : hY (X) → G (X) for each object X ∈ D
(Theorem 4.4.4.4). Combining this observation with Proposition 8.3.1.3, we can reformulate
(1Y ) as follows:

(1′Y ) For each object X ∈ C, precomposition with β induces a homotopy equivalence

HomFun(Dop,S<λ)(hX , hY ) ◦[β]−−→ HomFun(Dop,S<λ)(hX ,G ).

Using the commutativity of (8.51), we see that the diagram of Kan complexes

HomFun(Dop,S<λ)(hX ,G )

((
HomFun(Dop,S<λ)(hX , hY ) //

◦[β]

66

HomFun(Cop,S<λ)(h◦X , h◦Y )
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commutes up to homotopy, where the diagonal map on the right is the homotopy equivalence
of Proposition 7.3.6.1. It follows that conditions (1′Y ) and (2′Y ) are equivalent.

Proof of Proposition 8.4.1.8. Let D be a locally small ∞-category and let C ⊆ D be a full
subcategory. By virtue of Example 8.4.1.16, it will suffice to show that the inclusion functor
C ↪→ D is dense if and only if the restricted Yoneda embedding D → Fun(Cop,S) is fully
faithful. Following the convention of Remark 4.7.0.5, this is a special case of Proposition
8.4.1.22.

Proposition 8.4.1.23. 03VZLet D be an ∞-category, let F : C → D be a morphism of simplicial
sets, and let D0 ⊆ D be a full subcategory which contains the image of F . If F is dense,
then the subcategory D0 is dense.

Proof. Using Proposition 4.1.3.2, we can factor F as a composition C F ′−→ C′ F
′′
−−→ D, where

F ′ is inner anodyne and F ′′ is an inner fibration. Using Remark 8.4.1.18, we see that the
functor F ′ is dense. Replacing F by F ′′, we can reduce to proving Proposition 8.4.1.23 in
the special case where C is an ∞-category.

Let γ denote the identity map idF , which we regard as a natural transformation from
F to idD ◦F . Our assumption that F is dense guarantees that γ exhibits idD as a left
Kan extension of F along F . To avoid confusion, let us write F0 to denote the functor F ,
regarded as a functor from C to D0. Let ι : D0 ↪→ D denote the inclusion map, so that
F = ι ◦ F0. We can therefore also regard the identity map idF as a natural transformation
α : F → ι ◦ F0. Our assumption that F is dense also guarantees that α exhibits ι as a left
Kan extension of F along F0. Note that γ = idF is a composition of α = idF with β|C,
where β = idι is the identity transformation from ι to itself. Invoking the transitivity of
Kan extensions (Proposition 7.3.8.18), we deduce that β exhibits the identity functor idD
as a left Kan extension of ι along itself: that is, the functor ι is dense. Applying Example
8.4.1.16, we conclude that D0 is a dense subcategory of D.

Remark 8.4.1.24. 03W0Let D be an∞-category and let F : C → D be a dense diagram. Choose
another diagram q : K → D and set D̃ = D/q, so that the projection map π : D̃ → D is a
right fibration. Then the projection map C ×DD̃ → D̃ is dense. To prove this, it will suffice
to show that for every object Y ∈ D̃, the induced map

θ : (C ×DD̃/Y )▷ → D̃▷/Y → D̃

is a colimit diagram in D̃ (Remark 8.4.1.20). By virtue of Proposition 7.1.3.19, this is
equivalent to the requirement that π ◦ θ is a colimit diagram in D. Unwinding the definitions,
we see that π ◦ θ is given by the composition

(C ×DD̃/Y )▷ → (C ×D D/π(Y ))▷ → D▷/π(Y ) → D .

https://kerodon.net/tag/03VZ
https://kerodon.net/tag/03W0


8.4. COCOMPLETION 1811

Since π is a right fibration, the map D̃/Y → D/π(Y ) is a trivial Kan fibration (Proposition
4.3.7.12). Using Corollary 7.2.2.2, we are reduced to showing that the map (C ×D D/π(Y ))▷ →
D▷/π(Y ) → D is a colimit diagram, which follows from our assumption that F is dense (Remark
8.4.1.20).

8.4.2 Density of Yoneda Embeddings

03W1 Our goal in this section is to prove the following result, which supplies an important
source of examples of dense functors:

Theorem 8.4.2.1.03W2 Let C be a locally small ∞-category, and let h• : C → Fun(Cop,S) be a
covariant Yoneda embedding (Definition 8.3.3.9). Then h• is a dense functor.

Since the covariant Yoneda embedding h• : C → Fun(Cop,S) is fully faithful, Theorem
8.4.2.1 can be reformulated as follows:

Corollary 8.4.2.2.03W3 Let C be a locally small ∞-category and let Funrep(Cop,S) ⊆ Fun(Cop,S)
denote the full subcategory spanned by the representable functors. Then Funrep(Cop,S) is a
dense subcategory of Fun(Cop,S).

Proof. By virtue of Example 8.4.1.16, it will suffice to show that the inclusion map
Funrep(Cop,S) ↪→ Fun(Cop,S) is a dense functor. Since the covariant Yoneda embedding
h• : C → Funrep(Cop,S) is an equivalence of ∞-categories (Theorem 8.3.3.13), this is equiv-
alent to the assertion that h• is a dense functor from C to Fun(Cop,S) (Remark 8.4.1.18),
which follows from Theorem 8.4.2.1.

Example 8.4.2.3.03W4 Let Scont denote the full subcategory of S spanned by the contractible
Kan complexes. Then Scont is a dense subcategory of S. This follows by applying Corollary
8.4.2.2 in the special case C = ∆0. Moreover, the same assertion holds if we replace Scont by
any nonempty subcategory of itself; for example, the full subcategory of S spanned by the
standard 0-simplex ∆0.

By virtue of the convention of Remark 4.7.0.5, Theorem 8.4.2.1 can be regarded as a
special case of the following:

Variant 8.4.2.4.03W5 Let κ be an uncountable cardinal and let C be an ∞-category which is
locally κ-small. Then the covariant Yoneda embedding h• : C → Fun(Cop,S<κ) is a dense
functor.

We will deduce Variant 8.4.2.4 from a more precise result. Recall that, if X is an object of
a (locally small)∞-category C, then the representable functor hX ∈ Fun(Cop,S) corepresents
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the evaluation functor evX : Fun(Cop,S)→ S (Remark 8.3.1.5). That is, for every functor
F : Cop → S, there is a canonical homotopy equivalence

F (X) ∼−→ HomFun(Cop,S)(hX ,F ),

which depends functorially on F . The following result guarantees that this homotopy
equivalence can also be chosen to depend functorially on X:

Proposition 8.4.2.5. 03W6Let κ be an uncountable cardinal and let C be an ∞-category which
is locally κ-small. Then the profunctor

ev : Cop×Fun(Cop,S<κ)→ S<κ (X,F ) 7→ F (X)

is corepresentable by the covariant Yoneda embedding h• : C → Fun(Cop,S<κ).

Proof. Let Tw(C) denote the twisted arrow ∞-category of C, let λ : Tw(C) → Cop×C
be the left fibration of Proposition 8.1.1.11, and let ∆0

Tw(C) denote the constant functor
Tw(C)→ S<κ. Let H : Cop×C → S<κ denote the composition ev ◦(id×h•), so that H is
a Hom-functor for C. We can therefore choose a natural transformation

α : ∆0
Tw(C) →H ◦ λ = ev ◦(id×h•) ◦ λ

which exhibits H as a Hom-functor for C, in the sense of Definition 8.3.5.1. By virtue of
Proposition 8.3.4.15, it will suffice to show that the natural transformation α also exhibits
the profunctor ev as corepresented by the functor h•, in the sense of Variant 8.3.4.16. Fix
an object X ∈ C, so that α carries the object idX ∈ Tw(C) to a vertex η ∈ H (X,X) =
ev(X,hX). We wish to show that η exhibits evaluation functor evX : Fun(Cop,S<κ)→ S<κ
as corepresented by hX . This follows from Proposition 8.3.1.3, since η exhibits the functor
hX as represented by X.

Example 8.4.2.6. 03W7Let C be a locally small category. Then the evaluation profunctor

ev : Cop×Fun(Cop,S)→ S (X,F ) 7→ F (X)

is corepresentable by the covariant Yoneda embedding h• : C → Fun(Cop,S).

Proof of Variant 8.4.2.4. Let κ be an uncountable cardinal and let C be an ∞-category
which is locally κ-small. We wish to show that the covariant Yoneda embedding hC• :
C → Fun(Cop,S<κ) is dense. Choose a cardinal λ ≥ κ for which the ∞-category D =
Fun(Cop,S<κ) is locally λ-small, and let hD• : D → Fun(Dop,S<λ) be a covariant Yoneda
embedding for D. By virtue of Proposition 8.4.1.22, it will suffice to show that the composite
functor

D hD•−−→ Fun(Dop,S<λ) ◦h
C
•−−→ Fun(Cop,S<λ)

is fully faithful. Applying Proposition 8.4.2.5, we see that this functor is isomorphic to the
inclusion of D = Fun(Cop,S<κ) as a full subcategory of Fun(Cop,S<λ).
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Using Proposition 8.4.2.5, we can also give an alternative characterization of the covariant
transport representation associated to a left fibration of ∞-categories.

Corollary 8.4.2.7.04BB Let C be a locally κ-small ∞-category, let U : C̃ → C be a right fibration,
and let F : Cop → S<κ be a functor. The following conditions are equivalent:

(1) The functor F is a covariant transport representation for the left fibration Uop : C̃op →
Cop.

(2) There exists a categorical pullback square

C̃

U

��

//

��

Fun(Cop,S<κ)/F

��
C h• // Fun(Cop,S<κ),

where h• is a covariant Yoneda embedding for C.

Proof. Choose a cardinal λ ≥ κ such that Fun(Cop,S<κ) is locally λ-small, and let H :
Fun(Cop,S<κ)op → S<λ be a functor represented by F ∈ Fun(Cop,S<κ). It follows from
Proposition 5.6.6.21 that H is a covariant transport representation for the left fibration
(Fun(Cop,S<κ)/F )op → Fun(Cop,S<κ)op. Consequently, if condition (2) is satisfied, then
H ◦ hop

• is a covariant transport representation for the left fibration Uop. Proposition 8.4.2.5
implies that H ◦ hop

• is isomorphic to F . This proves the implication (2) ⇒ (1), and the
reverse implication follows from the fact that the equivalence class of a left fibration is
determined by its covariant transport representation (Corollary 5.6.0.6).

8.4.3 Cocompletion via the Yoneda Embedding

03W8 Let C be an essentially small ∞-category. Our goal in this section is to prove Theorem
8.4.0.3, which asserts that the covariant Yoneda embedding h• : C → Fun(Cop,S) exhibits
Fun(Cop,S) as a cocompletion of C. We begin by formulating a slightly more general
assertion.

Notation 8.4.3.1.04BC Let κ be an uncountable regular cardinal. If C and D are κ-cocomplete
∞-categories, we let Funκ(C,D) denote the full subcategory of Fun(C,D) spanned by those
functors F : C → D which preserve κ-small colimits.

Definition 8.4.3.2.04BD Let κ be an uncountable regular cardinal. We say that a functor of
∞-categories h : C → Ĉ exhibits Ĉ as a κ-cocompletion of C if the following conditions are
satisfied:
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(1) The ∞-category Ĉ is κ-cocomplete.

(2) For every κ-cocomplete ∞-category D, precomposition with h induces an equivalence of
∞-categories Funκ(Ĉ,D)→ Fun(C,D).

Following the convention of Remark 4.7.0.5, we can regard Theorem 8.4.0.3 as a special
case of the following more general assertion:

Theorem 8.4.3.3. 04BELet κ be an uncountable regular cardinal, let C be an ∞-category which
is essentially κ-small, and let h• : C → Fun(Cop,S<κ) be a covariant Yoneda embedding for
C. Then h• exhibits Fun(Cop,S<κ) as a κ-cocompletion of C.

Warning 8.4.3.4. 03WFThe conclusion of Theorem 8.4.3.3 is not necessarily satisfied if we
assume only that C is locally κ-small. For example, suppose that C = S is a set of cardinality
κ (regarded as a discrete simplicial set), and let D be (the nerve of) the partially ordered
set {0 < 1}. Then we can identify objects of Fun(Cop,S<κ) with collections of κ-small Kan
complexes {Xs}s∈S . Define a functor λ : Fun(Cop,S<κ)→ D by the formula

λ({Xs}s∈S) =

0 if |{s ∈ S : Xs ̸= ∅}| < κ

1 otherwise,

and let λ0 : Fun(Cop,S<κ)→ D be the constant functor taking the value 0. The functors λ
and λ0 both preserve κ-small colimits and coincide on the image of the Yoneda embedding
h•, but do not coincide in general.

The proof of Theorem 8.4.3.3 will require some preliminaries. Let κ be an uncountable
cardinal, and let C be an ∞-category which is locally κ-small. In what follows, we let
Funrep(Cop,S<κ) denote the full subcategory of Fun(Cop,S<κ) spanned by the representable
functors F : Cop → S<κ. We will need the following elementary observation:

Lemma 8.4.3.5. 03WGLet κ be an uncountable regular cardinal, let C be an ∞-category which is
essentially κ-small, and let F : Cop → S<κ be a functor. Then the ∞-category

Funrep(Cop,S<κ)/F = Funrep(Cop,S<κ)×Fun(Cop,S<κ) Fun(Cop,S<κ)/F

is essentially κ-small.

Proof. The ∞-category Funrep(Cop,S<κ) is equivalent to C (Theorem 8.3.3.13), and is
therefore essentially κ-small. Since κ is regular, it will suffice to show that each fiber of the
right fibration Funrep(Cop,S<κ)/F → Funrep(Cop,S<κ) is an essentially κ-small Kan complex
(Corollary 5.6.7.7). Equivalently, we must show that for each object G ∈ Funrep(Cop,S<κ),
the mapping space X = HomFun(Cop,S<κ)(G ,F ) is essentially κ-small. This follows from
Proposition 8.3.1.3: if G is representable by the object C ∈ C, then X is homotopy equivalent
to the κ-small Kan complex F (C).
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We will deduce Theorem 8.4.3.3 from the following more precise assertion:

Theorem 8.4.3.6.03WH Let κ be an uncountable regular cardinal, let C be an ∞-category which
is essentially κ-small, and let T : Fun(Cop,S<κ) → D be a functor of ∞-categories. The
following conditions are equivalent:

(1) The functor T preserves κ-small colimits.

(2) The functor T is left Kan extended from the full subcategory Funrep(Cop,S<κ) ⊆ Fun(Cop,S<κ).

Proof. We first show that (1) implies (2). Assume that the functor T preserves κ-small
colimits and let F : Cop → S<κ be a functor; we wish to show that the composite functor

Funrep(Cop,S<κ)▷/F → Fun(Cop,S<κ) T−→ D

is a colimit diagram in the ∞-category D. Lemma 8.4.3.5 guarantees that the ∞-category
Funrep(Cop,S<κ)/F is essentially κ-small. Since T preserves κ-small colimits, it will suffice
to show that the map Funrep(Cop,S<κ)▷/F → Fun(Cop,S<κ) is a colimit diagram (Remark
7.6.7.6), which follows from Corollary 8.4.2.2.

We now show that (2) implies (1). Assume that T is left Kan extended from the ∞-
category Funrep(Cop,S<κ); we wish to show that it preserves κ-small colimits. Choose a
cardinal λ such that D is locally λ-small. Enlarging λ if necessary, we may assume that it
has exponential cofinality ≥ κ (Remark 4.7.3.19). By virtue of Proposition 7.4.5.16 (and
Remark 7.4.5.18), it will suffice to show that for every representable functor H : Dop → S<λ,
the composition Hop ◦ T preserves κ-small colimits. Since Hop preserves κ-small colimits
(Proposition 7.4.5.16 and Remark 7.4.5.18), the functor Hop ◦ T is left Kan extended from
Funrep(Cop,S<κ). Consequently, to show that (2) implies (1), we may replace T by Hop ◦ T
and thereby reduce to the case where D = (S<λ)op, for some cardinal λ of exponential
cofinality ≥ κ.

Let h• : C → Fun(Cop,S<κ) be a covariant Yoneda embedding for C, and let F denote
the composite functor

Cop hop
•−−→ Fun(Cop,S<κ)op T op

−−→ S<λ .

Using Remark 4.7.3.19 again, we can choose a cardinal λ′ ≥ λ of exponential cofinality ≥ κ
such that Fun(Cop,S<λ) is locally λ′-small. In what follows, we abuse notation by identifying
T with the composite functor Fun(Cop,S<κ) T−→ (S<λ)op ↪→ (S<λ′)op. Note that, since the
inclusion S<λ ↪→ S<λ′ preserves κ-small limits (see Variant 7.4.5.8), this composite functor
is also left Kan extended from Funrep(Cop,S<κ).

Let H ′ : Fun(Cop,S<λ)op → S<λ′ be a functor represented by F ∈ Fun(Cop,S<λ), and
let U denote the composite functor

Fun(Cop,S<κ) ⊆ Fun(Cop,S<λ) H′ op
−−−→ (S<λ′)op.
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Applying Proposition 8.4.2.5, we see that the composition U ◦ h• is isomorphic to the
functor F = T ◦ h•. Since the covariant Yoneda embedding h• : C → Funrep(Cop,S<κ) is an
equivalence of ∞-categories (Theorem 8.3.3.13), it follows that the functors U and T are
isomorphic when restricted to Funrep(Cop,S<κ). Proposition 7.4.5.16 and Remark 7.4.5.18
guarantee that the functor U preserves κ-small colimits. Invoking the implication (1)⇒ (2),
we see that U is left Kan extended from Funrep(Cop,S<κ). Applying the universal property
of Kan extensions (Corollary 7.3.6.13), we deduce that the functor T is isomorphic to U ,
and therefore also preserves κ-small colimits.

Remark 8.4.3.7. 03WJIn the statement of Theorem 8.4.3.6, it is not necessary to assume that
the ∞-category D admits κ-small colimits (though we will primarily be interested in cases
where this condition is satisfied).

Example 8.4.3.8. 03WKLet C be a small ∞-category and let Funrep(Cop,S) denote the full
subcategory of Fun(Cop,S) spanned by the representable functors. Then a functor of ∞-
categories F : Fun(Cop,S)→ D preserves small colimits if and only if it is left Kan extended
from Funrep(Cop,S).

Proof of Theorem 8.4.3.3. Let κ be an uncountable regular cardinal and let C be an ∞-
category which is essentially κ-small. It follows from Example 7.6.7.8 that the ∞-category
S<κ is κ-cocomplete, so that the functor ∞-category Fun(Cop,S<κ) is also κ-cocomplete
(Remark 7.6.7.5). Let D be an ∞-category which admits κ-small colimits. We wish to show
that that the composite functor

Funκ(Fun(Cop,S<κ),D)→ Fun(Funrep(Cop,S<κ),D) ◦h•−−→ Fun(C,D)

is an equivalence of ∞-categories. Theorem 8.3.3.13 guarantees that the covariant Yoneda
embedding C → Funrep(Cop,S<κ) is an equivalence of∞-categories. We are therefore reduced
to showing that the restriction functor

U : Funκ(Fun(Cop,S<κ),D)→ Fun(Funrep(Cop,S<κ),D) F 7→ F |Funrep(Cop,S<κ)

is an equivalence of ∞-categories. By virtue of Theorem 8.4.3.6, Funκ(Fun(Cop,S<κ),D) is
the full subcategory of Fun(Fun(Cop,S<κ),D) spanned by those functors which are left Kan
extended from Funrep(Cop,S<κ). Applying Corollary 7.3.6.15, we see that U restricts to a
trivial Kan fibration

Funκ(Fun(Cop,S<κ),D)→ Fun′(Funrep(Cop,S<κ),D),

where Fun′(Funrep(Cop,S<κ),D) denotes the full subcategory of Fun(Funrep(Cop,S<κ),D)
spanned by those functors which admit a left Kan extension to Fun(Cop,S<κ).

https://kerodon.net/tag/03WJ
https://kerodon.net/tag/03WK


8.4. COCOMPLETION 1817

We will complete the proof by showing that every functor f : Funrep(Cop,S<κ) → D
admits a left Kan extension to Fun(Cop,S<κ). Fix an object F ∈ Fun(Cop,S<κ) and let
Funrep(Cop,S<κ)/F be as in the statement of Lemma 8.4.3.5. By virtue of Corollary 7.3.5.8,
it will suffice to show the diagram

Funrep(Cop,S<κ)/F → Funrep(Cop,S<κ) f−→ D

admits a colimit in the ∞-category D. Since D admits κ-small colimits, we are reduced to
showing that the ∞-category Funrep(Cop,S<κ)/F is essentially κ-small (see Remark 7.6.7.6),
which follows from Lemma 8.4.3.5.

Corollary 8.4.3.9.03WL Let κ be an uncountable regular cardinal, let C be an ∞-category which
is essentially κ-small, and let h• : C → Fun(Cop,S<κ) be a covariant Yoneda embedding for
C. Then every object F ∈ Fun(Cop,S<κ) can be realized as the colimit of a diagram

K → C h•−→ Fun(Cop,S<κ),

where K is a κ-small ∞-category.

Proof. Let K′ denote the fiber product C ×Fun(Cop,S<κ) Fun(Cop,S)/F . Combining Lemma
8.4.3.5 with Theorem 8.3.3.13, we deduce that K′ is essentially κ-small. We can therefore
choose an equivalence of ∞-categories e : K → K′, where K is κ-small. Applying Theorem
8.4.3.3, we deduce that F is a colimit of the composite functor

K e−→ K′ = C ×Fun(Cop,S<κ) Fun(Cop,S)/F → C
h•−→ Fun(Cop,S<κ).

8.4.4 Example: Extensions as Adjoints

03WM Let f : C → D be a functor of ∞-categories, where C is small and D admits small
colimits. It follows from Theorem 8.4.0.3 that, up to isomorphism, the functor f factors as
a composition

C h•−→ Fun(Cop,S) F−→ D,

where h• denotes a covariant Yoneda embedding for C and F is a functor which preserves
small colimits. The functor F is uniquely determined up to isomorphism: by virtue of
Theorem 8.4.3.6, it can be characterized as a left Kan extension of f along h•. Our goal in
this section is to show that, if the ∞-category D is locally small, then we can give another
characterization of the functor F : it is left adjoint to the functor

D → Fun(Cop,S) D 7→ HomD(f(•), D).
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Proposition 8.4.4.1. 03WNLet f : C → D be a functor of ∞-categories. Assume that C is
essentially small, that D is cocomplete and locally small, and let

hC• : C → Fun(Cop,S) hD• : D → Fun(Dop,S)

be covariant Yoneda embeddings for C and D, respectively. Let G denote the composite
functor

D hD•−−→ Fun(Dop,S) ◦f
op

−−−→ Fun(Cop,S).

Then the functor G admits a left adjoint F : Fun(Cop,S)→ D. Moreover, the composition
F ◦ hC• is isomorphic to f .

Corollary 8.4.4.2. 04BFLet C be an essentially small ∞-category, let D be an ∞-category which
is cocomplete and locally small, and let F : Fun(Cop,S) → D be a functor. The following
conditions are equivalent:

(1) The functor F preserves small colimits.

(2) The functor F admits a right adjoint G : D → Fun(Cop,S).

Proof. Assume that F preserves small colimits; we will show that it admits a right adjoint (the
reverse implication follows from Corollary 7.1.3.21). Choose covariant Yoneda embeddings

hC• : C → Fun(Cop,S) hD• : D → Fun(Dop,S),

set f = F ◦ hC• , and let G denote the composite functor

D hD•−−→ Fun(Dop,S) ◦f
op

−−−→ Fun(Cop,S).

It follows from Proposition 8.4.4.1 that G admits a left adjoint F ′ : Fun(Cop,S)→ D such
that F ′ ◦ hC• is isomorphic to f = F ◦ hC• . Since the functor F ′ also preserves small colimits
(Corollary 7.1.3.21), Theorem 8.4.0.3 implies that it is isomorphic to F . It follows that G is
also a right adjoint of F .

Corollary 8.4.4.3. 04BGLet C be an essentially small ∞-category and let F : Fun(C,S)op → S
be a functor. The following conditions are equivalent:

(1) The functor F admits a left adjoint.

(2) The functor F is representable by an object of Fun(C,S).

(3) The functor F preserves small limits.
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Proof. Since the identity functor id : S → S is corepresentable (by the object ∆0 ∈ S), the
implication (1)⇒ (2) follows from Corollary 6.2.4.2. The implication (2)⇒ (3) is a special
case of Corollary 7.4.5.17, and the implication (3)⇒ (1) follows by applying Corollary 8.4.4.2
to to the opposite functor F op : Fun(C,S)→ Sop.

Following the convention of Remark 4.7.0.5, we will deduce Proposition 8.4.4.1 from the
following more general assertion:

Variant 8.4.4.4.03WP Let κ be an uncountable regular cardinal and let f : C → D be a functor
of ∞-categories. Assume that C is essentially κ-small, that D admits κ-small colimits, and
that the morphism space HomD(f(C), D) is essentially κ-small for every pair of objects
C ∈ C, D ∈ D. Then the functor

G : D → Fun(Cop,S<κ) D 7→ HomD(f(•), D)

admits a left adjoint F : Fun(Cop,S<κ) → D which preserves κ-small colimits. Moreover,
the composite functor C hC•−→ Fun(Cop,S<κ) F−→ D is isomorphic to f .

Proof. We first prove the existence of the functor F . Fix a cardinal λ of exponential cofinality
≥ κ, so that the ∞-category Fun(Cop,S<κ) is locally λ-small (see Corollary 4.7.8.8). By
virtue of Proposition 6.2.4.1, it will suffice to show that for every functor F : Cop → S<κ,
the composite functor

D G−→ Fun(Cop,S<κ)
HomFun(Cop,S<κ)(F ,•)
−−−−−−−−−−−−−−→ S<λ

is corepresentable by an object of D. Since D admits κ-small colimits, the collection of
functors F which satisfy this condition is closed under κ-small colimits (Remark 8.3.3.16).
Using Corollary 8.4.3.9, we can reduce to the case where the functor F is representable by
an object C ∈ C. In this case, the object F ∈ Fun(Cop,S<κ) corepresents the evaluation
functor evC : Fun(Cop,S<κ) (Remark 8.3.1.5). It now follows from the definition of the
functor G that the composition evC ◦G is corepresentable by the object f(C) ∈ D.

Choose functor F : Fun(Cop,S<κ)→ D and a natural transformation ϵ : (F ◦G)→ idD
which exhibits F as a left adjoint to the functor G. It follows from Corollary 7.1.3.21 that
the functor F preserves all colimits which exist in Fun(Cop,S<κ); in particular, it preserves
κ-small colimits. We will complete the proof by showing that F ◦ hC• is isomorphic to f .

For every pair of objects X,Y ∈ C, let αX,Y denote the morphism of Kan complexes

hCY (X) = HomC(X,Y )→ HomD(f(X), f(Y )) = G(f(Y ))(X).

By virtue of Corollary 8.3.5.8, we can promote the construction (X,Y ) 7→ αX,Y to a natural
transformation of functors α : hC• → G ◦ f . Let β denote a composition of the natural
transformations

F ◦ hC•
F (α)−−−→ F ◦G ◦ f ϵ−→ idD ◦f = f.

https://kerodon.net/tag/03WP
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We claim that β is an isomorphism in the ∞-category Fun(C,D). By virtue of Theorem
4.4.4.4, it will suffice to show that β induces an isomorphism βX : F (hCX)→ f(X) for each
object X ∈ C. Fix an object D ∈ D; we wish to show that precomposition with βX induces
a homotopy equivalence of Kan complexes

βX,D : HomD(f(X), D)→ HomD(F (hCX), D) ≃ HomFun(Cop,S<κ)(hCX , G(D))

We conclude by observing that βX,D is left homotopy inverse to the morphism

HomFun(Cop,S<κ)(hCX , G(D))→ G(D)(X) ≃ HomD(f(X), D)

given by evaluation at idX ∈ hCX(X), which is a homotopy equivalence by virtue of Proposition
8.3.1.3

Example 8.4.4.5 (Functoriality of the Presheaf Construction). 03WQLet κ be an uncountable
regular cardinal, let f : C → D be a functor of ∞-categories. Assume that C is essentially
κ-small and that D is locally κ-small, and fix covariant Yoneda embeddings

hC• : C → Fun(Cop,S<κ) hD• : D → Fun(Dop,S<κ).

Let G : Fun(Dop,S<κ) → Fun(Cop,S<κ) be given by precomposition with f . Then the
functor G admits a left adjoint F : Fun(Cop,S<κ)→ Fun(Dop,S<κ). Moreover, the diagram
of ∞-categories

C
hC• //

f

��

Fun(Cop,S<κ)

F

��
D

hD• // Fun(Dop,S<κ).

commutes up to isomorphism. This follows by applying Variant 8.4.4.4 to the composite
functor (hD• ◦ f) : C → Fun(Dop,S<κ).

8.4.5 Adjoining Colimits to ∞-Categories

04BHLet C be an essentially small ∞-category and set Ĉ = Fun(Cop,S). Theorem 8.4.0.3
asserts that the covariant Yoneda embedding h• : C → Ĉ exhibits Ĉ as a cocompletion of
C: that is, it is freely generated from C by adjoining colimits of small diagrams. In this
section, we consider a variant of this construction, where we adjoint colimits of an arbitrary
collection of diagrams (and we drop the assumption that C is essentially small).
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Definition 8.4.5.1.04BJ Let K be a collection of simplicial sets. We say that an∞-category C is
K-cocomplete if it admits K-indexed colimits, for each K ∈ K. If C and D are K-cocomplete
∞-categories, we let FunK(C,D) denote the full subcategory of Fun(C,D) spanned by those
functors which preserve K-indexed colimits, for each K ∈ K. We say that a functor of
∞-categories h : C → Ĉ exhibits Ĉ as a K-cocompletion of C if the following conditions are
satisfied:

• The ∞-category Ĉ is K-cocomplete.

• For every K-cocomplete ∞-category D, precomposition with h induces an equivalence
of ∞-categories FunK(Ĉ,D)→ Fun(C,D).

Example 8.4.5.2.04BK Let κ be an uncountable regular cardinal, and let K denote the collection
of all κ-small simplicial sets. Then an ∞-category C is K-cocomplete if and only if it is
κ-cocomplete, in the sense of Variant 7.6.7.7. A functor of ∞-categories h : C → Ĉ exhibits
Ĉ as a K-cocompletion of C if and only if it exhibits Ĉ as a κ-cocompletion of C, in the sense
of Definition 8.4.3.2.

In particular, if K is the collection of all small simplicial sets, then an ∞-category C
is a K-cocomplete if and only if it is cocomplete, and a functor h : C → Ĉ exhibits Ĉ as a
K-cocompletion of C if and only if it exhibits Ĉ as a cocompletion of C.

Our goal in this section is to prove the following existence result:

Proposition 8.4.5.3.04BL Let K be a collection of simplicial sets and let C be an ∞-category.
Then there exists an ∞-category Ĉ and a functor h : C → Ĉ which exhibits Ĉ as a K-
cocompletion of C. Moreover, the functor h is dense and fully faithful.

Warning 8.4.5.4.04BM Let K be a collection of simplicial sets and let h : C → Ĉ be a functor of
∞-categories which exhibits Ĉ as a K-cocompletion of C. In general, it is not true that every
object of Ĉ can be recovered as the colimit of a diagram

K → C h−→ Ĉ

for some K ∈ K.

Let κ be an uncountable regular cardinal. If K is the collection of all κ-small simplicial
sets and the ∞-category C is essentially κ-small, then Proposition 8.4.5.3 follows from
Theorem 8.4.3.3; in this case, we can take Ĉ to be the ∞-category of functors Fun(Cop,S<κ).
To prove Proposition 8.4.5.3 in general, we will build on this special case.

Construction 8.4.5.5.04BN Let K be a collection of simplicial sets and let C be an ∞-category.
Choose an uncountable regular cardinal κ such that C is locally κ-small and every simplicial set
K ∈ K is essentially κ-small. We let Ĉ denote the smallest full subcategory of Fun(Cop,S<κ)
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which contains all representable functors and is closed under the formation of K-indexed
colimits, for each K ∈ K. Note that covariant Yoneda embedding for C determines a functor
h• : C → Ĉ, which is dense (by virtue of Variant 8.4.2.4 and Remark 8.4.1.19) and fully
faithful (by virtue of Theorem 8.3.3.13).

Remark 8.4.5.6. 04BPIn the situation of Construction 8.4.5.5, the ∞-category Ĉ is independent
of the choice of κ (provided that κ is chosen large enough that C is locally κ-small and each
K ∈ K is essentially κ-small).

Proposition 8.4.5.3 is an immediate consequence of the following more precise result:

Proposition 8.4.5.7. 04BQLet K be a collection of simplicial sets, let C be an ∞-category, and
define Ĉ as in Construction 8.4.5.5. Then the covariant Yoneda embedding h• : C → Ĉ
exhibits Ĉ as a K-cocompletion of C.

The proof of Proposition 8.4.5.7 will require some preliminaries.

Lemma 8.4.5.8. 04BRLet K be a collection of simplicial sets, let C be an ∞-category, and
define Ĉ as in Construction 8.4.5.5. Let f : C → D be a functor of ∞-categories, where
D is K-cocomplete. Then there exists a functor F : Ĉ → D and an isomorphism f → F |C,
where the functor F is left Kan extended from the essential image of the Yoneda embedding
h• : C → Ĉ. Moreover, the functor F preserves K-indexed colimits, for each K ∈ K.

Proof. Fix an uncountable regular cardinal κ such that C is essentially κ-small and each
K ∈ K is essentially κ-small. By virtue of Corollary 8.3.3.17, we may assume without loss of
generality that D is a replete full subcategory of a κ-cocomplete ∞-category D′, and that
the inclusion map D ↪→ D′ preserves all κ-small colimits which exist in D. By virtue of
Theorem 8.4.3.3, we can also assume that f factors as a composition

C h•−→ Fun(Cop,S<κ) F ′−→ D′,

where F ′ preserves κ-small colimits. The full subcategory F ′−1(D) ⊆ Fun(Cop,S<κ) contains
all representable functors and is closed under K-indexed colimits for each K ∈ K, and
therefore contains Ĉ. It follows that F ′ restricts to a functor F : Ĉ → D which preserves K-
indexed colimits for each K ∈ K. Theorem 8.4.3.6 implies that F ′ is left Kan extended from
the full subcategory Funrep(Cop,S<κ), so the functor F = F ′|Ĉ has the same property.

Lemma 8.4.5.9. 04BSLet K be a collection of simplicial sets, let C be an ∞-category, and define
Ĉ as in Construction 8.4.5.5. Let D be a K-cocomplete ∞-category and let F : Ĉ → D be a
functor. The following conditions are equivalent:

(1) The functor F is left Kan extended from the essential image of the Yoneda embedding
h• : C → Ĉ.
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(2) The functor F preserves K-indexed colimits, for each K ∈ K.

Proof. Let F0 denote the restriction of F to the essential image of h•. Applying Lemma
8.4.5.8, we deduce that F0 admits a left Kan extension F ′ : Ĉ → D which preserves K-indexed
colimits for each K ∈ K. Invoking the universal property of Kan extensions (Corollary
7.3.6.9), we see that there is an essentially unique natural transformation α : F ′ → F which
restricts to the identity transformation from F0 to itself. We can then reformulate condition
(1) as follows:

(1′) The natural transformation α is an isomorphism. That is, for each object X ∈ Ĉ, the
induced map αX : F ′(X)→ F (X) is an isomorphism in the ∞-category D.

The implication (1′)⇒ (2) follows from the fact that F ′ preserves K-indexed colimits for
each K ∈ K. To prove the converse, let Ĉ′ ⊆ Ĉ denote the full subcategory spanned by
those objects X for which αX is an isomorphism in the ∞-category D. By construction, Ĉ′

contains all representable functors Cop → S<κ. If condition (2) is satisfied, then Ĉ′ is closed
under the formation of K-indexed colimits for each K ∈ K, and therefore coincides with
Ĉ.

Proof of Proposition 8.4.5.7. Let K be a collection of simplicial sets, let C be an∞-category,
and let Ĉ be as in Construction 8.4.5.5. By construction, the ∞-category Ĉ is K-cocomplete.
To complete the proof, we must show that if D is any K-cocomplete ∞-category, then com-
position with the covariant Yoneda embedding h• : C → Fun(Cop,S) induces an equivalence
of ∞-categories θ : FunK(Ĉ,D)→ Fun(C,D).

Let C′ ⊆ Ĉ be the essential image of h•, so that θ factors as a composition

FunK(Ĉ,D) θ′−→ Fun(C′,D) θ′′−→ Fun(C,D)

where θ′′ is an equivalence of ∞-categories (Theorem 8.3.3.13). Using Lemma 8.4.5.9, we
see that FunK(Ĉ,D) is the full subcategory of Fun(Ĉ,D) spanned by those functors which
are left Kan extended from C′. It follows from Corollary 7.3.6.15 that θ′ is a trivial Kan
fibration onto a full subcategory of Fun(C′,D); in particular, it is fully faithful, so that θ
is fully faithful. Lemma 8.4.5.8 implies that θ is essentially surjective, and therefore an
equivalence of ∞-categories (Theorem 4.6.2.20).

Remark 8.4.5.10.04BT The K-cocompletion construction of this section has been studied in
more detail by Rezk; we refer the reader to [47] for more details.

8.4.6 Recognition of Cocompletions

03WR Let C be an essentially small ∞-category, let Ĉ denote the ∞-category Fun(Cop,S), and
let h : C → Ĉ be a covariant Yoneda embedding for C. Then:

https://kerodon.net/tag/04BT
https://kerodon.net/tag/03WR


1824 CHAPTER 8. THE YONEDA EMBEDDING

(1) The functor h is fully faithful (Theorem 8.3.3.13).

(2) For each object X ∈ C, the functor

HomĈ(h(X), •) : Ĉ → S

preserves small colimits (see Example 8.4.6.2 below).

(3) The ∞-category Ĉ is generated (under small colimits) by the essential image of h (in
fact, the functor h is dense: see Theorem 8.4.2.1).

Our goal in this section is to prove the converse: if h : C → Ĉ is any functor which
satisfies conditions (1) through (3), then h exhibits Ĉ as a cocompletion of C (Proposition
8.4.6.6) and is therefore equivalent to the covariant Yoneda embedding of C. First, let us
introduce a bit of terminology.

Definition 8.4.6.1. 03WSLet D be a locally small ∞-category which admits small colimits. We
say that an object X ∈ D is atomic if the corepresentable functor

hX : D → S Y 7→ HomD(X,Y )

preserves small colimits.

Example 8.4.6.2 (Representable Functors are Atomic). 03WTLet C be an essentially small
∞-category. Then every representable functor F : Cop → S is atomic when regarded as an
object of the ∞-category Ĉ = Fun(Cop,S). To see this, suppose that F is representable by
an object C ∈ C. Using Remark 8.3.1.5, we see that F corepresents the evaluation functor

evC : Ĉ = Fun(Cop,S)→ S G 7→ G (C),

and therefore preserves small colimits by virtue of Proposition 7.1.6.1.

Definition 8.4.6.3. 03WULet Ĉ be an ∞-category. We say that a full subcategory C ⊆ Ĉ is
weakly dense if the following condition is satisfied:

• Let f : Y → Z be a morphism of Ĉ such that, for every object X ∈ C, the induced map

HomĈ(X,Y ) [f ]◦−−→ HomĈ(X,Z)

is a homotopy equivalence of Kan complexes. Then f is an isomorphism.

We say that a collection of objects {Xi}i∈I of Ĉ is weakly dense if it spans a weakly dense
full subcategory of Ĉ.

Remark 8.4.6.4. 03WVLet Ĉ be a locally small ∞-category. A full subcategory C ⊆ Ĉ is weakly
dense if and only if the restricted Yoneda embedding Ĉ → Fun(Cop,S) is conservative.
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Example 8.4.6.5.03WW Let Ĉ be an ∞-category and let C ⊆ Ĉ be a full subcategory which
generates Ĉ under colimits (see Warning 8.4.1.10). Then the full subcategory C is weakly
dense. In particular, every dense subcategory of Ĉ is weakly dense.

Proposition 8.4.6.6.03WX Let f : C → D be a functor of ∞-categories, where C is essentially
small. Then f exhibits D as a cocompletion of C (in the sense of Definition 8.4.0.1) if and
only if the following conditions are satisfied:

(0) The ∞-category D is locally small and cocomplete.

(1) The functor f is fully faithful.

(2) For each object C ∈ C, the image f(C) ∈ D is atomic.

(3) The collection of objects {f(C)}C∈C is weakly dense in D.

Corollary 8.4.6.7.03WY Let D be an ∞-category. The following conditions are equivalent:

(a) There exists an essentially small ∞-category C and a functor h : C → D which exhibits
D as a cocompletion of C.

(b) The ∞-category D is locally small and cocomplete. Moreover, it contains a small
collection of atomic objects {Xi}i∈I which is weakly dense.

Proof. We first show that (a) implies (b). Without loss of generality, we may assume that
D = Fun(Cop,S), where C is a small ∞-category. Since the ∞-category S is cocomplete
(Corollary 7.4.5.6), the ∞-category D is also cocomplete (Remark 7.6.7.5). Corollary 4.7.8.9
guarantees that D is locally small. For each object X ∈ C, let hX ∈ D be a functor
represented by X. The collection of objects {hX}X∈C span a full subcategory of D which
is dense (Corollary 8.4.2.2), and therefore weakly dense (Example 8.4.6.5). We conclude
by observing that each of the representable functors hX is a atomic object of D (Example
8.4.6.2).

We now show that (b) implies (a). Assume that D is locally small and cocomplete. Let
{Xi}i∈I be a small collection of atomic objects of D, and let D0 ⊆ D be the full subcategory
that they span. It follows from Proposition 4.7.8.7 that the ∞-category D0 is essentially
small. If D0 is weakly dense in D, then the inclusion map D0 ↪→ D satisfies the hypotheses
of Proposition 8.4.6.6, and therefore exhibits D as a cocompletion of D0.

Let f : C → D be a functor of ∞-categories, where C is essentially small and D is
cocomplete. Using Theorem 8.4.0.3, we see that f admits an essentially unique factorization
as a composition

C h•−→ Fun(Cop,S) F−→ D,
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where the functor F preserves small colimits. As a first step towards the proof of Proposition
8.4.6.6, we study conditions which guarantee that F is fully faithful. With an eye towards
future applications, we consider a slightly more general situation.

Lemma 8.4.6.8. 03X1Let K be a collection of simplicial sets, let h : C → Ĉ be a functor of
∞-categories which exhibits Ĉ as a K-cocompletion of C, and let F : Ĉ → D a functor which
satisfies the following conditions:

(0) The ∞-category D is K-cocomplete and the functor F preserves K-indexed colimits, for
each K ∈ K.

(1) The functor f = F ◦ h is fully faithful.

(2) Let κ be an uncountable regular cardinal such that D is locally κ-small and each K ∈ K
is essentially κ-small. Then, for each C ∈ C, the corepresentable functor

D → S<κ D 7→ HomD(f(C), D)

preserves K-indexed colimits, for each K ∈ K.

Then F is fully faithful.

Proof. By virtue of Proposition 8.4.5.7, we may assume without loss of generality that Ĉ
is the smallest replete full subcategory of Fun(Cop,S<κ) which contains all representable
functors and is closed under the formation of K-indexed colimits for K ∈ K (see Construction
8.4.5.5). For every pair of objects G ,G ′ ∈ Ĉ, the functor F induces a morphism of Kan
complexes

θG ,G ′ : HomĈ(G ,G
′)→ HomD(F (G ), F (G ′)).

By virtue of Corollary 8.3.5.8 (and Remark 8.3.5.9), we can promote the construction
(G ,G ′) 7→ θG ,G ′ to a functor of ∞-categories

θ : Ĉop × Ĉ → Fun(∆1,S<κ).

We wish to show that, for every pair of objects G ,G ′ ∈ Ĉ, the morphism θG ,G ′ is a
homotopy equivalence. Let us first regard the functor G ′ as fixed. Let Ĉ′ denote the full
subcategory of Ĉ spanned by those objects G for which θG ,G ′ is a homotopy equivalence.
For each K ∈ K, our assumption that F preserves K-indexed colimits guarantees that the
functor G 7→ θG ,G ′ preserves Kop-indexed limits (Proposition 7.4.5.16). Consequently, the
full subcategory Ĉ′ ⊆ Ĉ is closed under the formation of K-indexed colimits. It will therefore
suffice to show that θG ,G ′ is a homotopy equivalence in the special case where G = hC is the
functor represented by some object C ∈ C.
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Let us now regard G = hC as fixed. Combining Example 8.4.6.2 with assumption (2),
we deduce that the functor

Fun(Cop,S<κ)→ Fun(∆1,S<λ) G ′ 7→ θG ,G ′

preserves K-indexed colimits, for each K ∈ K. Invoking Corollary 8.4.3.9 again, we are
reduced to proving that θG ,G ′ is a homotopy equivalence in the special case where G ′ = hC′

for some object C ′ ∈ C. In this case, we have a commutative diagram of Kan complexes

HomC(C,C ′)

xx ''
HomĈ(G ,G

′)
θG ,G ′ // HomD(F (G ), F (G ′)),

where the left vertical map is a homotopy equivalence by virtue of Yoneda’s lemma (Theorem
8.3.3.13) and the right vertical map is a homotopy equivalence by virtue of assumption (1).
It follows that lower horizontal map is also a homotopy equivalence.

Proof of Proposition 8.4.6.6. Let C be an essentially small∞-category, let D be a cocomplete
∞-category, and let f : C → D be a functor. By virtue of Theorem 8.4.0.3, the functor f
admits an essentially unique factorization as a composition

C h•−→ Fun(Cop,S) F−→ D,

where h• is the covariant Yoneda embedding for C and the functor F preserves small colimits.
Moreover, f exhibits D as a cocompletion of C if and only if the functor F is an equivalence
of ∞-categories. If this condition is satisfied, then D is locally small (Corollary 4.7.8.9), the
functor f is fully faithful (Theorem 8.3.3.13), the essential image of f consists of atomic
objects of D (Example 8.4.6.2). We may therefore assume without loss of generality that
f satisfies conditions (0), (1), and (2) of Proposition 8.4.6.6, so that F is fully faithful
(Lemma 8.4.6.8). Using Proposition 8.4.4.1, we see that the functor F admits a right adjoint
G : D → Fun(Cop,S), given on objects by the formula G(D)(C) = HomD(f(C), D). By
virtue of Corollary 6.2.2.19, the functor F is an equivalence if and only if the functor G is
conservative: that is, if and only if the collection of objects {f(C)}C∈C is weakly dense.

Proposition 8.4.6.6 has a counterpart for more general cocompletions:

Variant 8.4.6.9.03WZ Let K be a collection of simplicial sets and let f : C → D be a functor
of ∞-categories. Then f exhibits D as a K-cocompletion of C (in the sense of Definition
8.4.5.1) if and only if the following conditions are satisfied:
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(0) The ∞-category D is K-cocomplete.

(1) The functor f is fully faithful.

(2) Let κ be an uncountable regular cardinal such that D is locally κ-small and each K ∈ K
is essentially κ-small. Then, for each C ∈ C, the corepresentable functor

D → S<κ D 7→ HomD(f(C), D)

preserves K-indexed colimits, for each K ∈ K.

(3) The ∞-category D is generated by the objects {f(C)}C∈C under the formation of
K-indexed colimits for K ∈ K.

Proof. Let κ be as in (2), and let Ĉ ⊆ Fun(Cop,S<κ) denote the smallest replete full
subcategory which contains all representable functors and is closed under the formation of
K-indexed colimits, for each K ∈ K (see Construction 8.4.5.5). By virtue of Proposition
8.4.5.7, the covariant Yoneda embedding h• : C → Ĉ exhibits Ĉ as a K-cocompletion of
C. Assume that D is K-complete, so that f factors (up to isomorphism) as a composition
C h•−→ Ĉ F−→ D, where the functor F preserves K-indexed colimits for each K ∈ K. To
complete the proof, it will suffice to show that if f satisfies conditions (1), (2), and (3),
then the functor F is an equivalence of ∞-categories (the reverse implication follows from
Theorem 8.3.3.13 and Example 8.4.6.2). Applying Lemma 8.4.6.8, we see that the functor F
is fully faithful and therefore restricts to an equivalence of Ĉ with a replete full subcategory
D0 ⊆ D. For each K ∈ K, our assumption that F preserves K-indexed colimits guarantees
that the subcategory D0 ⊆ D is closed under the formation of K-indexed colimits. Since D0
contains the essential image of the functor f , the equality D0 = D follows from assumption
(3).

8.4.7 Slices of Cocompletions

04BULet U : C̃ → C be a functor between essentially small ∞-categories. Using Example
8.4.4.5, we see that U admits an essentially unique extension Fun(C̃op

,S) → Fun(Cop,S)
which preserves small colimits. Our goal in this section is to show that, up to equivalence,
this construction carries right fibrations to right fibrations. More precisely, if U is a right
fibration, we show that Fun(C̃op

,S) is equivalent to the slice ∞-category Fun(C̃op
,S)/F ,

where F : Cop → S is a covariant transport representation for the left fibration Uop

(Corollary 8.4.7.2). This is a consequence of the following:
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Proposition 8.4.7.1.04BV Let h : C → Ĉ be a functor of ∞-categories which exhibits Ĉ as a
cocompletion of C, let F ∈ Ĉ be an object, and let

C̃ h̃ //

��

Ĉ/F

��
C h // Ĉ

be a categorical pullback square of ∞-categories. Then h̃ exhibits Ĉ/F as a cocompletion of
C̃.

Corollary 8.4.7.2.04BW Let U : C̃ → C be a right fibration between essentially small ∞-categories
and let F : Cop → S be a covariant transport representation for the left fibration Uop. Then
there exists an equivalence of ∞-categories T : Fun(C̃op

,S)→ Fun(Cop,S)/F for which the
diagram of ∞-categories

C̃

U

��

hC̃• // Fun(C̃op
,S)

T

��
Fun(Cop,S)/F

��
C

hC• // Fun(Cop,S)

commutes up to isomorphism. Here hC• and hC̃• denote covariant Yoneda embeddings for C
and C̃, respectively.

Proof. Using Corollary 8.4.2.7, we can choose categorical pullback square

C̃ h̃ //

U

��

Fun(Cop,S)/F

��
C

hC• // Fun(Cop,S).
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It follows from Theorem 8.4.0.3 that the functor h̃ factors (up to isomorphism) as a
composition

C̃ hC̃•−→ Fun(C̃op
,S) T−→ Fun(Cop,S)/F ,

where the functor T preserves small colimits. To complete the proof, it will suffice to show
that T is an equivalence of ∞-categories. This is equivalent to the assertion that h̃ exhibits
Fun(Cop,S)/F as a cocompletion of C̃, which is a special case of Proposition 8.4.7.1.

Proposition 8.4.7.1 is a special case of the following more general assertion:

Proposition 8.4.7.3. 04BXLet K be a collection of simplicial sets, let h : C → Ĉ be a functor
which exhibits Ĉ as a K-cocompletion of C, let f : L→ Ĉ be any morphism of simplicial sets,
and let

04BYC̃ h̃ //

��

Ĉ/f

��
C h // Ĉ

(8.52)

be a categorical pullback square of ∞-categories. Then h̃ exhibits Ĉ/f as a K-cocompletion of
C̃.

Proof. We will show that h̃ satisfies the hypotheses of Variant 8.4.6.9:

(0) The ∞-category Ĉ/f is K-cocomplete: that is, it admits K-indexed colimits, for each
K ∈ K. This follows from Corollary 7.1.3.20, since the ∞-category Ĉ is K-cocomplete.

(1) The functor h̃ is fully faithful. This is a special case of Remark 4.6.2.7, since the diagram
(8.52) is a categorical pullback square and the functor h is fully faithful.

(2) Choose an uncountable regular cardinal κ such that Ĉ and Ĉ/f are locally κ-small, and
each simplicial set K ∈ K is essentially κ-small. Choose an object C̃ ∈ C̃ having image
C ∈ C, and let

F : Ĉ → S<κ F̃ : Ĉ/f → S<κ

be functors corepresented by the objects X = h(C) and X̃ = h̃(C̃), respectively. For
every simplicial set K ∈ K, the functor F preserves K-indexed colimits, and we must
showF̃ has the same property. Choose a colimit diagram g̃ : K▷ → Ĉ/f ; we wish
to show that F̃ ◦ g̃ is a colimit diagram in the ∞-category S<κ. Let g : K▷ → Ĉ
denote the composition of g̃ with the projection map. Then g is a colimit diagram in
Ĉ (Corollary 7.1.3.20), so F ◦ g is a colimit diagram in the ∞-category S<κ. Define

E = K▷ ×Ĉ ĈX/ Ẽ = K▷ ×Ĉ ĈX/.
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Using Proposition 5.6.6.21, we see that F ◦ g and F̃ ◦ g̃ are covariant transport
representations for the left fibrations E → K◁ and E → K◁, respectively. Our
assumption that F ◦ g is a colimit diagram guarantees that the inclusion map K ×K◁

E ↪→ E is left cofinal, and we wish to show that the inclusion map K ×K◁ Ẽ ↪→ Ẽ
is also left cofinal (Corollary 7.4.5.15). This follows from Proposition 7.2.3.12, since
the tautological map Ẽ → E is a pullback of the projection map (ĈX/)/f → ĈX/, and
therefore a right fibration (Proposition 4.3.6.1).

(3) Let Ĉ′/f denote the smallest replete full subcategory of Ĉ/f which contains the essential
image of h̃ and is closed under the formation of K-indexed colimits for K ∈ K. We
wish to show that Ĉ′/f = Ĉ/f . Let Ĉ′ ⊆ Ĉ denote the full subcategory spanned by those
objects X ∈ Ĉ having the property that every object X̃ ∈ Ĉ/f lying over X belongs to
Ĉ0
/f . We will complete the proof by showing that Ĉ′ = Ĉ. Since the diagram (8.52) is a

categorical pullback square, Ĉ′ contains the essential image of the functor h. It will
therefore suffice to show that Ĉ′ is closed under the formation of K-indexed colimits,
for each K ∈ K. Fix a colimit diagram g : K▷ → Ĉ carrying the cone point of K▷

to an object X ∈ Ĉ. Assume that g|K factors through Ĉ′; we wish to show that X
also belongs to Ĉ′. Let X̃ be an object of Ĉ/f lying over X. Since the inclusion of the
cone point into K▷ is right anodyne (Example 4.3.7.11), we can lift g to a diagram
g̃ : K▷ → Ĉ/f carrying the cone point to X̃ (Proposition 4.2.4.5). The assumption that
g|K factors through Ĉ′ guarantees that g̃|K factors through Ĉ0

/f . Since g is a colimit
diagram, g̃ is also a colimit diagram (Corollary 7.1.3.20). It follows that X̃ belongs to
Ĉ′/f . Allowing the object X̃ to vary, we conclude that X belongs to Ĉ′, as desired.

8.5 Retracts and Idempotents

03Y9 Let C be a category containing an object X. Recall that an object Y ∈ C is a retract of
X if there exist morphisms i : Y → X and r : X → Y satisfying idY = r ◦ i, so that we have
a commutative diagram

03YA X

r

  
Y

i

??

idY // Y.

(8.53)

In this case, we will refer to (8.53) as a retraction diagram in C.
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Remark 8.5.0.1. 04BZLet X and Y be objects of a category C. Then a retraction diagram
(8.53) can be viewed as a morphism from idX to idY in the twisted arrow category Tw(C) of
Construction 8.1.0.1. In particular, Y is a retract of X if and only if there exists a morphism
idX → idY in Tw(C).

There is a universal example of a retraction diagram:

Construction 8.5.0.2. 03YBWe define a category Ret as follows:

• The category Ret has exactly two objects, which we denote by X̃ and Ỹ .

• The morphisms sets in Ret are given by

HomRet(X̃, X̃) = {id
X̃
, ẽ} HomRet(X̃, Ỹ ) = {r̃}

HomRet(Ỹ , X̃) = {̃i} HomRet(Ỹ , Ỹ ) = {id
Ỹ
}.

• The composition law in Ret is given (on non-identity morphisms) by the formulae

r̃ ◦ ĩ = id
Ỹ

ĩ ◦ r̃ = ẽ

ẽ ◦ ĩ = ĩ ẽ ◦ ẽ = ẽ r̃ ◦ ẽ = r̃.

Exercise 8.5.0.3. 03YCLet C be a category containing a retraction diagram

X

r

  
Y

i

??

idY // Y.

Show that there is a unique functor F : Ret→ C which is given on objects by F (X̃) = X

and F (Ỹ ) = Y , and also satisfies F (̃i) = i and F (r̃) = r. We therefore obtain a bijection

{Functors Ret→ C} ∼−→ {Retraction diagrams in C}.

In particular, an object Y ∈ C is a retract of another object X ∈ C if and only if there
exists a functor F : Ret→ C satisfying F (X̃) = X and F (Ỹ ) = Y .

Our first goal in this section is to extend the theory of retracts to the setting of higher
category theory. Here there are (at least) two ways that we might choose to proceed:

(a) Let C be an ∞-category containing an object X. We could define an object Y ∈ C to
be a retract of X if there exist morphisms i : Y → X and r : X → Y such that the
identity morphism idY is a composition of r with i, in the sense of Definition 1.4.4.1.
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(b) Let C be an ∞-category containing an object X. We could define an object Y ∈ C to
be a retract of X if there exists a functor of ∞-categories F : N•(Ret)→ C satisfying
F (X̃) = X and F (Ỹ ) = Y .

In §8.5.1, we show that these definitions are equivalent. Note that objects X,Y ∈ C satisfy
condition (a) if and only if there exists a 2-simplex σ of C whose boundary is indicated in
the diagram

X

r

  
Y

i

??

idY // Y ;
in this case, we will say that σ is a retraction diagram in C (Definition 8.5.1.19). We will
establish the equivalence of (a) and (b) by showing that every retraction diagram in C can
be extended to a functor F : N•(Ret)→ C (Corollary 8.5.1.28). In contrast with Exercise
8.5.0.3, the functor F is not necessarily unique; however, it is uniquely determined up to
isomorphism (in fact, up to a contractible space of choices).

Our second goal in this section is to address the following:

Question 8.5.0.4.03YD Given an ∞-category C and an object X ∈ C, how can one classify the
retracts of X?

In §8.5.2, we recall the answer to Question 8.5.0.4 in the situation where C is an ordinary
category. We say that an endomorphism e : X → X is idempotent if it satisfies the identity
e ◦ e = e (Definition 8.5.2.1). Every retraction diagram

03YE X

r

  
Y

i

??

idY // Y.

(8.54)

determines an idempotent endomorphism of X, given by the composition e = i ◦ r (Example
8.5.2.3). We say that an idempotent endomorphism is split if it can be obtained in this way
(Example 8.5.2.3). In this case, we can recover the retraction diagram (8.54) up to (unique)
isomorphism from e; for example the object Y can be recovered as the equalizer of the pair
of morphisms (e, idX) : X ⇒ X (see Corollary 8.5.2.5 and its proof). We therefore obtain a
bijection

{Split idempotent endomorphisms of X} ≃ {Retraction Diagrams}/Isomorphism.

We can therefore reformulate Question 8.5.0.4 as follows:
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Question 8.5.0.5. 03YFWhat is the correct ∞-categorical counterpart of the notion of an
idempotent endomorphism?

In §8.5.3, we propose an answer to Question 8.5.0.5. Let Idem denote the full subcategory
of Ret spanned by the object X̃ (Construction 8.5.2.7). We define an idempotent in C to be
a functor of ∞-categories F : N•(Idem)→ C (Definition 8.5.3.1). Every retraction diagram
in C can be extended to a functor F : N•(Ret) → C, which we can restrict to obtain an
idempotent F : N•(Idem) → C. We will say that an idempotent in C is split if it can be
obtained in this way. In this case, we will show that F can be recovered from the idempotent
F up to isomorphism (Corollary 8.5.3.10). Consequently, we obtain a bijection

{Split idempotents in C}/Isomorphism ≃ {Retraction diagrams in C}/Isomorphism.

To fully address Question 8.5.0.4, we also need to provide a criterion to determine when
an idempotent splits. Here we have several closely related results:

• If C is (the nerve of) an ordinary category, then an idempotent endomorphism e :
X → X is split if and only if the pair of morphisms (e, idX) : X ⇒ X admits an
equalizer (or a coequalizer); see Corollary 8.5.2.5. If this condition is satisfied, then
the (co)equalizer is the associated retract of X.

• If C is an ∞-category, then an idempotent F : N•(Idem)→ C is split if and only if it
admits a limit (or a colimit); see Corollary 8.5.3.11. If this condition is satisfied, then
the (co)limit is the associated retract of X = F (X̃).

• Let C be an ∞-category and let F : N•(Idem) → C be an idempotent, carrying the
morphism ẽ : X̃ → X̃ of Idem to a morphism e : X → X of C. Then F is split if and
only if the sequential diagram

· · · → X
e−→ X

e−→ X
e−→ X

e−→ X → · · ·

admits a limit (or a colimit); see Proposition 8.5.4.16. If this condition is satisfied,
then the (co)limit is the associated retract of X.

In §8.5.4, we study ∞-categories C in which every idempotent is split; if this condition
is satisfied, we say that C is idempotent complete (Definition 8.5.4.1). Many ∞-categories
which arise in practice are idempotent complete. For example, an ∞-category which admits
sequential limits or colimits is automatically idempotent complete (Corollary 8.5.4.17).
In §8.5.5, we show that every ∞-category C admits an idempotent completion Ĉ which
is characterized (up to equivalence) by the existence of a functor H : C → Ĉ having the
following properties:

• The ∞-category Ĉ is idempotent complete.
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• The functor H is fully faithful.

• Every object of Ĉ is a retract of H(X), for some object X ∈ C.

Moreover, the idempotent completion Ĉ can be characterized by a universal mapping property:
for every idempotent complete ∞-category D, composition with H induces an equivalence
of ∞-categories Fun(Ĉ,D)→ Fun(C,D) (see Proposition 8.5.5.2).

Let C be an∞-category, let X be an object of C, and let e : X → X be an endomorphism
of X. We will say that e is idempotent if there exists a functor F : N•(Idem)→ C satisfying
F (X̃) = X and F (ẽ) = e. If C is (the nerve of) an ordinary category, then the functor F is
completely determined by the pair (X, e). In general, this need not be true: the simplicial
set N•(Idem) contains a nondegenerate simplex of every dimension (Remark 8.5.3.3), so the
specification of F requires an infinite quantity of data. Nevertheless, we prove in §8.5.6 that
F is determined by the pair (X, e) up to (canonical) isomorphism (Corollary 8.5.6.5). This
motivates the following:

Question 8.5.0.6.03YG Let C be an ∞-category and let e : X → X be an endomorphism in C.
How can one determine if e is idempotent?

Let us first record a necessary condition. We say that an endomorphism e : X → X

is homotopy idempotent if the homotopy class [e] is an idempotent endomorphism in the
homotopy category hC (Definition 8.5.7.1). It follows immediately from the definitions that
every idempotent endomorphism in C is homotopy idempotent. In §8.5.7, we show that the
converse is false in general (Proposition 8.5.7.15), though it is true in some important special
cases (see Corollary 8.5.7.6 and Exercise 8.5.7.8).

For every integer n ≥ 0, let N≤n(Idem) denote the n-skeleton of the simplicial set
N•(Idem) (Variant 1.3.1.6). Note that an endomorphism e : X → X in C can be identified
with a diagram F : N≤1(Idem)→ C (Example 8.5.8.2), and that e is homotopy idempotent
if and only if F admits an extension to N≤2(Idem) (Example 8.5.8.3). In §8.5.8, we
address Question 8.5.0.6 by showing that e is idempotent if and only if F admits an
extension to N≤3(Idem) (Corollary 8.5.8.8). As an application, we show that the construction
C 7→ Fun(N•(Idem), C) commutes with filtered colimits, up to equivalence (Corollary 8.5.8.9).

8.5.1 Retracts in ∞-Categories

03YH The notion of retract has an obvious counterpart in the setting of ∞-categories.

Definition 8.5.1.1.03YJ Let C be an∞-category containing an object X. We say that an object
Y ∈ C is a retract of X if there exist morphisms i : Y → X and r : X → Y for which the
identity morphism idY is a composition of i and r, in the sense of Definition 1.4.4.1.
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Remark 8.5.1.2. 03YKLet C be an ∞-category containing an object X. Then an object Y ∈ C
is a retract of X (in the sense of Definition 8.5.1.1) if and only if it is a retract of X when
viewed as an object of the homotopy category hC.

Variant 8.5.1.3. 04K9Let C be an∞-category containing morphisms f : X → X ′ and g : Y → Y ′.
The following conditions are equivalent:

(1) The morphism g is a retract of f in the ∞-category Fun(∆1, C).

(2) The homotopy class [g] is a retract of [f ] in the ordinary category Fun([1],hC).

The implication (1)⇒ (2) is immediate. Conversely, suppose that (2) is satisfied. Then we
can choose a commutative diagram

Y
[i] //

[g]

��

X
[r] //

[f ]

��

Y

[g]

��
Y ′

[i′] // X ′
[r′] // Y ′

in the homotopy category hC, where the horizontal compositions are the identity morphisms
[idY ] and [idY ′ ], respectively. By virtue of Exercise 1.5.2.10, the squares on the left and right
of this diagram can be lifted to commutative diagrams in the ∞-category C, which we can
identify with morphisms α : g → f and β : f → g in the ∞-category Fun(∆1, C). Beware
that the composition (β ◦ α) : g → g need not be homotopic to the identity morphism
idg. However, the criterion of Theorem 4.4.4.4 guarantees that β ◦ α is an isomorphism in
Fun(∆1, C). In particular, α admits a left homotopy inverse, and therefore exhibits g as a
retract of f .

Remark 8.5.1.4. 03YLLet C be a category containing an object X. Then an object Y ∈ C is
retract of X if and only if it is a retract of X when viewed as an object of the ∞-category
N•(C) (in the sense of Definition 8.5.1.1). Consequently, Definition 8.5.1.1 can be viewed as
a generalization of the classical notion of retract.

Example 8.5.1.5. 03YMLet C be an ∞-category containing an object X. If an object Y ∈ C is
isomorphic to X, then Y is a retract of X. In particular, the object X is a retract of itself.

Remark 8.5.1.6 (Transitivity). 03YNLet C be an ∞-category containing objects X, Y , and Z.
If Y is a retract of X and Z is a retract of Y , then Z is a retract of X. To prove this, it
suffices to establish the analogous result for the homotopy category hC (Remark 8.5.1.2),
which follows immediately from Remark 8.5.0.1.
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In practice, many important properties of an object X of an ∞-category C are inherited
by any retract of X. We record a few examples of this phenomenon which will be useful
later.

Proposition 8.5.1.7 (Retracts of Isomorphisms).03YP Let C be an ∞-category containing
morphisms f : X → X ′ and g : Y → Y ′. Suppose that g is a retract of f (when regarded
as objects of the arrow ∞-category Fun(∆1, C)). If f is an isomorphism, then g is also an
isomorphism.

Proof. By virtue of Variant 8.5.1.3, we may assume that C is (the nerve of) an ordinary
category. Choose a commutative diagram

Y

g

��

i // X
r //

f

��

Y

g

��
Y ′

i′ // X ′
r′ // Y ′,

where the horizontal compositions are the identity morphisms idY and idY ′ , respectively. If
f is an isomorphism, then g is also an isomorphism, with inverse given by the composition
Y ′

i′−→ X ′
f−1
−−→ X

r−→ Y . This follows from the calculations

g ◦ r ◦ f−1 ◦ i′ = r′ ◦ f ◦ f−1 ◦ i′ = r′ ◦ idX′ ◦i′ = r′ ◦ i′ = idY ′

r ◦ f−1 ◦ i′ ◦ g = r ◦ f−1 ◦ f ◦ i = r ◦ idX ◦i = r ◦ i = idY .

Proposition 8.5.1.8.03YQ Let F : C → D be a functor of ∞-categories, and let C0 ⊆ C be a full
subcategory. Suppose that every object Y ∈ C is a retract of some object X ∈ C0. Then F is
left and right Kan extended from C0.

Proof. We will show that F is left Kan extended from C0; the assertion that F is right Kan
extended from C0 follows by a similar argument. Choose a regular cardinal κ for which C is
essentially κ-small. Using Corollary 8.3.3.17, we can choose a fully faithful functor D → D̂,
where D̂ admits κ-small colimits. By virtue of Remark 7.3.1.13, we can replace D by D̂ and
thereby reduce to proving Proposition 8.5.1.8 in the special case where D admits κ-small
colimits.

Set F 0 = F |C0 . Using Proposition 7.6.7.13, we can extend F 0 to a functor F ′ : C → D
which is left Kan extended from C0. Invoking the universal mapping property of Corollary
7.3.6.9, we deduce that there is a natural transformation α : F ′ → F which restricts to
the identity transformation from F 0 to itself. The natural transformation α carries each

https://kerodon.net/tag/03YP
https://kerodon.net/tag/03YQ


1838 CHAPTER 8. THE YONEDA EMBEDDING

object Y ∈ C to a morphism αY : F ′(Y )→ F (Y ) in the ∞-category D. By assumption, the
object Y is a retract of some object X ∈ C0. It follows that αY is a retract of the morphism
αX = idF (X), and is therefore an isomorphism (Proposition 8.5.1.7). Invoking Theorem
4.4.4.4, we deduce that the natural transformation α is an isomorphism, so that F is left
Kan extended from C0 by virtue of Remark 7.3.3.17.

Proposition 8.5.1.8 immediately implies the following stronger version of Proposition
7.3.3.7:

Corollary 8.5.1.9. 03YRLet F : C → D and U : D → E be functors of ∞-categories, and let
C0 ⊆ C be a full subcategory. Suppose that F is U-left Kan extended from C0 at an object
X ∈ C. If Y ∈ C is a retract of X, then F is also U -left Kan extended from C0 at Y .

Proof. Without loss of generality, we may assume that C is spanned by C0 together with the
objects X and Y . By virtue of Proposition 7.3.8.6, we can further assume that C0 contains
the object X. In this case, Proposition 8.5.1.8 implies that the functors F and U ◦ F are
left Kan extended from C0, so that F is U -left Kan extended from C0 by virtue of Remark
7.3.3.20.

Corollary 8.5.1.10. 03YSLet F : C → D and U : D → E be functors of ∞-categories. Suppose
that F is U -left Kan extended from a full subcategory C0 ⊆ C. Then any functor G : C → D
which is a retract of F (in the ∞-category Fun(C,D)) is also U -left Kan extended from C0.

Proof. Let ev : C ×Fun(C,D) → D denote the evaluation functor. By virtue of Remark
7.3.3.3, the functor F is U -left Kan extended from C0 at an object C ∈ C if and only if
the functor ev is U -left Kan extended from C0×Fun(C,D) at the object (C,F ). If this
condition is satisfied, then Corollary 8.5.1.9 guarantees that ev is also U -left Kan extended
from C0×Fun(C,D) at the object (C,G), so that G is U -left Kan extended from C0 at C.
The desired result now follows by allowing the object C ∈ C to vary.

Corollary 8.5.1.11. 03YTLet U : D → E be a functor of ∞-categories, let K be a simplicial set,
and suppose we are given a pair of diagrams f, g : K▷ → D. If f is a U -colimit diagram and
g is a retract of f (in the ∞-category Fun(K▷,D)), then g is also a U -colimit diagram.

Proof. Using Corollary 4.1.3.3, we can choose an inner anodyne morphism K ↪→ K, where K
is an∞-category. Using Remark 4.3.6.7, we see that the induced map K▷ ↪→ K▷ is also inner
anodyne. We may therefore extend f and g to functors F,G : K▷ → D. Since the restriction
functor Fun(K▷,D)→ Fun(K▷,D) is a trivial Kan fibration (Proposition 1.5.7.6), it follows
that G is a retract of F . By virtue of Corollary 7.2.2.2, we can replace K by K and thereby
reduce to proving Corollary 8.5.1.11 in the special case where K is an ∞-category. In this
case, the desired result is a special case of Corollary 8.5.1.10 (see Example 7.3.3.9).
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Corollary 8.5.1.12.05E6 Let D be an ∞-category and let f, g : K▷ → D be diagrams. If f is a
colimit diagram and g is a retract of f , then g is also a colimit diagram.

Proof. Apply Corollary 8.5.1.11 in the special case E = ∆0.

Corollary 8.5.1.13.04KA Let U : D → E be an inner fibration of ∞-categories and let f be a
U -cocartesian morphism in D. Then any retract of f (in the ∞-category Fun(∆1, C)) is also
U -cocartesian.

Proof. Apply Corollary 8.5.1.11 in the special case K = ∆0 (see Example 7.1.5.9).

Corollary 8.5.1.14.03YU Let K be a simplicial set and let F : C → D be a functor of ∞-
categories which preserves K-indexed colimits. If G : C → D is a retract of F (in the
∞-category Fun(C,D)), then G also preserves K-indexed colimits.

Proposition 8.5.1.15.03YV Let X and Y be ∞-categories and let κ be an uncountable cardinal.
Suppose that Y is a retract of X in the ∞-category QC. If X is essentially κ-small, then Y
is also essentially κ-small.

Proof. By virtue of Proposition 4.7.6.15, we may assume that the ∞-categories X and Y
are minimal, so that X is a κ-small simplicial set (Corollary 4.7.6.12). Choose functors
i : Y → X and r : X → Y such that the composition (r ◦ i) : Y → Y is isomorphic to
the identity functor. Then r ◦ i is an equivalence of ∞-categories. Since Y is minimal, it
follows that r ◦ i is an isomorphism of simplicial sets (Proposition 4.7.6.13). In particular,
the functor i : Y → X is a monomorphism of simplicial sets. It follows that Y is κ-small
(Remark 4.7.4.8), and therefore essentially κ-small.

Remark 8.5.1.16.03YW In the situation of Proposition 8.5.1.15, suppose that the ∞-category
X is a Kan complex. Then Y is also a Kan complex, and is therefore a retract of X in
the homotopy category hKan. To prove this, it will suffice to show that every morphism
f : Y → Y ′ in the ∞-category Y is an isomorphism (Proposition 4.4.2.1). Since X is a Kan
complex, the morphism i(f) : i(Y )→ i(Y ′) is an isomorphism in X (Proposition 1.4.6.10).
It follows that (r ◦ i)(f) is an isomorphism in Y (Remark 1.5.1.6). Since f is isomorphic to
(r ◦ i)(f) (as an object of the ∞-category Fun(∆1,Y)), it is also an isomorphism (Example
4.4.1.14).

Corollary 8.5.1.17.03YX Let X and Y be Kan complexes and let κ be an uncountable cardinal.
Suppose that Y is a retract of X in the ∞-category S. If X is essentially κ-small, then Y is
essentially κ-small.

Warning 8.5.1.18.03YY In the statement of Corollary 8.5.1.17, the uncountability assumption
on κ cannot be omitted. That is, if X is a Kan complex for which there exists a weak
homotopy equivalence K → X for a finite simplicial set K, then a retract of X need not
inherit the same property. See §[?].
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We now make Definition 8.5.1.1 slightly more explicit.

Definition 8.5.1.19. 03YZLet C be an ∞-category. A retraction diagram in C is a 2-simplex
σ : ∆2 → C for which the “long” face d2

1(σ) is an identity morphism of C. In this case, we
indicate σ by a diagram

X

r

��
Y

i

??

idY // Y,

in the ∞-category C, and we say that σ exhibits Y as a retract of X.

Remark 8.5.1.20. 03Z0Let C be an ∞-category containing an object X. Then an object Y ∈ C
is a retract of X (in the sense of Definition 8.5.1.1) if and only if there exists a retraction
diagram which exhibits Y as a retract of X (in the sense of Definition 8.5.1.19).

Warning 8.5.1.21. 03Z1If C is (the nerve of) an ordinary category, then a retraction diagram
in C can be identified with a pair of morphisms i : Y → X and r : X → Y satisfying the
condition r ◦ i = idY . Beware that, if C is a general ∞-category, then a retraction diagram

X

r

��
Y

i

??

idY // Y

generally cannot be recovered (even up to isomorphism) from the morphisms i and r alone:
one also needs a homotopy which witnesses the identity [r] ◦ [i] = [idY ] in the homotopy
category hC.

Remark 8.5.1.22. 03Z2Let C be an ∞-category. A 2-simplex σ of C is a retraction diagram if
and only if it is a retraction diagram when viewed as an object of the opposite ∞-category
Cop. Consequently, if X and Y are objects of C, then Y is a retract of X in C if and only if
it is a retract of X in the ∞-category Cop.

Remark 8.5.1.23 (Lifting Retraction Diagrams). 04KBLet U : E → C be a cartesian fibration of
∞-categories. Suppose we are given a retraction diagram

04KCX

r

��
Y

i

??

idY // Y

(8.55)
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in C and an object Ỹ ∈ E satisfying U(Ỹ ) = Y . Our assumption that U is a cartesian
fibration guarantees the existence of a U -cartesian morphism r̃ : X̃ → Ỹ in E satisfying
U(r̃) = r. Since r̃ is U -cartesian, we can lift (8.55) to a retraction diagram

X̃

r̃

��
Ỹ

ĩ

??

id
Ỹ // Ỹ

In particular, the object Ỹ can be realized as a retract of an object X̃ satisfying U(X̃) = X.

Our goal in this section is carry out an ∞-categorical analogue of Exercise 8.5.0.3.

Notation 8.5.1.24.03Z3 Let Ret denote the category introduced in Construction 8.5.0.2. By
construction, the ∞-category N•(Ret) contains a retraction diagram σ : ∆2 → N•(Ret),
which we depict as

X̃

r̃

��
Ỹ

ĩ

??

id // Ỹ .

We let R denote the image of σ, which we regard as a simplicial subset of N•(Ret).

Remark 8.5.1.25.03Z4 In the situation of Notation 8.5.1.24, the map σ : ∆2 ↠ R is an
epimorphism of simplicial sets, which fits into a pushout square

N•({0 < 2}) //

��

∆0

��
∆2 σ // R.

It follows that, for every ∞-category C, composition with σ induces a bijection from
HomSet∆(R, C) to the set of retraction diagrams in C (in the sense of Definition 8.5.1.19).

Remark 8.5.1.26.03Z5 Let σ : ∆2 ↠ R be the epimorphism of Notation 8.5.1.24. For every ∞-
category C, precomposition with σ induces a fully faithful functor Fun(R, C) ↪→ Fun(∆2, C),
whose essential image is the full subcategory Fun′(∆2, C) ⊆ Fun(∆2, C) spanned by those
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diagrams
X

r

  
Y

i

??

u // Y ′

where u is an isomorphism. This follows by applying Corollary 4.5.2.29 to the pullback
square

Fun(R, C) //

��

Fun′(∆2, C)

��
C // Isom(C),

since the vertical maps are isofibrations (Corollary 4.4.5.3) and the lower horizontal map is
an equivalence of ∞-categories by virtue of Corollary 4.5.3.13.

Our main result can now be stated as follows:

Proposition 8.5.1.27. 03Z6The inclusion map R ↪→ N•(Ret) is an inner anodyne morphism of
simplicial sets.

Corollary 8.5.1.28. 03Z7Let C be an ∞-category. Then composition with the inclusion map
R ↪→ N•(Ret) induces a trivial Kan fibration

Fun(N•(Ret), C)→ Fun(R, C) ≃ Fun(∆2, C)×Fun(N•({0<2}),C) C .

In particular, every retraction diagram in C can be extended to a functor N•(Ret) → C,
which is uniquely determined up to isomorphism.

Proof. Combine Propositions 8.5.1.27 and 1.5.7.6.

Remark 8.5.1.29. 03Z8Exercise 8.5.0.3 is an immediate consequence of Proposition 8.5.1.27
(see Variant 1.5.6.8).

Corollary 8.5.1.30. 03Z9Let C be an ∞-category. Then composition with the retraction diagram
of Notation 8.5.1.24 induces a fully faithful functor Fun(N•(Ret), C)→ Fun(∆2, C), whose
essential image is spanned by those diagrams

X

r

  
Y

i

??

u // Y ′
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where u is an isomorphism.

Proof. Combine Corollary 8.5.1.28 with Remark 8.5.1.26.

Remark 8.5.1.31.04KD Corollary 8.5.1.30 asserts that the map σ : ∆2 → N•(Ret) exhibits
N•(Ret) as a localization of the standard 2-simplex ∆2 with respect to the “long edge” 0→ 2
(see Definition 6.3.1.9).

Corollary 8.5.1.32.03ZA Let {Ci}i∈I be a diagram of simplicial sets indexed by a filtered category
I. Suppose that each Ci is an ∞-category. Then the tautological map

θ : lim−→
i∈I

Fun(N•(Ret), Ci)→ Fun(N•(Ret), lim−→
i∈I
Ci)

is an equivalence of ∞-categories.

Proof. The morphism θ fits into a commutative diagram

lim−→i∈I Fun(N•(Ret), Ci) θ //

��

Fun(N•(Ret), lim−→i∈I Ci)

��
lim−→i∈I Fun(R, Ci) θ′ // Fun(R, lim−→i∈I Ci),

where the vertical maps are trivial Kan fibrations (Corollary 8.5.1.30). It will therefore
suffice to show that θ′ is an equivalence of ∞-categories. In fact, θ′ is an isomorphism of
simplicial sets, since the simplicial set R is finite (Corollary 3.6.1.10).

The proof of Proposition 8.5.1.27 will require the following:

Lemma 8.5.1.33 (Sparse Horns).03ZB Let n ≥ 0 be an integer and let S be a subset of
[n] = {0 < 1 < · · · < n}. Let K ⊆ ∆n be the simplicial subset spanned by those nondegenerate
simplices which do not contain every element of S. Suppose that there exist 0 ≤ i < j < k ≤ n
such that i, k ∈ S, j /∈ S. Then the inclusion K ↪→ ∆n is inner anodyne.

Example 8.5.1.34.03ZC In the situation of Lemma 8.5.1.33, suppose that S = [n] \ {j} for some
0 ≤ j ≤ n. Then K is the horn Λn

j ⊆ ∆n. The hypothesis of Lemma 8.5.1.33 guarantees
that K is an inner horn, so that the inclusion map K ↪→ ∆n is inner anodyne by definition.

Proof of Lemma 8.5.1.33. Let P denote the collection of all subsets S′ ⊆ [n] which contain
S ∪ {j}. Choose a linear ordering

{S(1) ≤ · · · ≤ S(c)}
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of P with the property that if S(a) ⊆ S(b), then a ≤ b. Let For 0 ≤ b ≤ c, let K(b) ⊆ ∆n

denote the union of K with the faces {N•(S(a)) ⊆ ∆n}1≤a≤b. We then have inclusion maps

K = K(0) ⊆ K(1) ⊆ K(2) ⊆ · · · ⊆ K(c− 1) ⊆ K(c) = ∆n.

It will therefore suffice to show that, for every positive integer b ≤ c, the inclusion map
K(b− 1) ↪→ K(b) is inner anodyne.

Let us identify N•(S(b)) with the image of a nondegenerate simplex σ : ∆m ↪→ ∆n. Let
L ⊆ ∆m be the inverse image σ−1(S(b− 1)), so that we have a pushout diagram of simplicial
sets

L //

��

∆m

σ

��
S(b− 1) // S(b).

It will therefore suffice to show that the inclusion map L ⊆ ∆m is inner anodyne. Because
S(b) contains the integers i < j < k, we can write j = σ(j) for some 0 < j < n. We conclude
by observing that L can be identified with the inner horn Λm

j
⊆ ∆m.

Proof of Proposition 8.5.1.27. Let τ be a nondegenerate m-simplex of the simplicial set
N•(Ret). We define the weight w(τ). to be the cardinality of the set {i ∈ [m] : τ(i) = X̃}.
Note that, if τ ′ is any nondegenerate facet of τ , then w(τ ′) ≤ w(τ). For n ≥ 1, the collection
of nondegenerate simplices of weight ≤ n span a simplicial subset R(n) ⊆ N•(Ret). It follows
that we can write N•(Ret) as the union of an increasing sequence

R(1) ↪→ R(2) ↪→ R(3) ↪→ · · · ,

where R(1) coincides with the simplicial set R introduced in Notation 8.5.1.24. We will
complete the proof by showing that, for each n ≥ 2, the inclusion map R(n− 1) ↪→ R(n) is
inner anodyne.

Let σn : ∆2n → N•(Ret) denote the simplex corresponding to the diagram

Ỹ
ĩ−→ X̃

r̃−→ Ỹ
ĩ−→ X̃ → · · · → X̃

r̃−→ Ỹ
ĩ−→ X̃

r̃−→ Ỹ .

Note that σn is a nondegenerate simplex of weight n, and therefore factors through R(n).
Let K ⊆ ∆2n denote the inverse image σ−1

n R(n−1), so that we have a commutative diagram
of simplicial sets

03ZDK //

��

∆2n

σn

��
R(n− 1) // R(n).

(8.56)
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Note that a nondegenerate simplex of ∆2n belongs to K if and only if it does not contain
N•({1 < 3 < · · · < 2n− 1}) ⊆ ∆2n. Applying Lemma 8.5.1.33, we deduce that the inclusion
map K ↪→ ∆2n is inner anodyne. It will therefore suffice to show that the diagram (8.56) is
a pushout square.

Let τ be an m-simplex of N•(Ret) which belongs to R(n), but does not belong to
R(n− 1). We wish to show that τ factors uniquely through σn. We first prove the existence
of the desired factorization. For this, we may assume without loss of generality that τ is
nondegenerate. Then τ has weight n, so we can write

{i ∈ [m] : τ(i) = X} = {d1 < d2 < · · · < dn}.

Let α : ∆m → ∆2n be the unique morphism of simplices which is given on vertices by the
formula α(di) = 2i − 1 for 1 ≤ i ≤ n. We claim that τ = σn ◦ α. Note that τ and σn ◦ α
can both be regarded as functors from the linearly ordered set [m] to the category Ret. By
construction, these functors coincide on objects. It will therefore suffice to show that, for
0 ≤ j < j′ < m, the functors τ and σn ◦α determine the same element of HomRet(τ(j), τ(j′)).
If τ(j) = Ỹ or τ(j′) = Ỹ , this condition is automatic (since the set HomRet(τ(j), τ(j′)) has
only one element). We may therefore assume without loss of generality that τ(j) = X̃ = τ(j′):
that is, we have j = di and j′ = di′ for some i < i′. In this case, the functors τ and σn ◦ α
both carry the pair (j < j′) to the element e ∈ HomRet(X,X).

We now prove uniqueness. Suppose we are given a pair of maps α, β : ∆m → ∆2n

satisfying σn ◦ α = τ = σn ◦ β; we wish to show that α = β. Suppose otherwise. Then there
is some smallest integer j ∈ [m] such that α(j) ̸= β(j). Without loss of generality, we may
assume that α(j) < β(j). Assume first that α(j) is odd. Since τ does not belong to K,
α(j) is contained in the image of β; that is, we can write α(j) = β(i) for some i < j. Then
minimality of j then guarantees that α(i) = α(j), so that σn ◦α carries the pair (i < j) to the
identity morphism id

X̃
in the category Ret. Since σn ◦ β = τ = σn ◦ α, the morphism σn ◦ β

also carries (i < j) to the identity morphism id
X̃

. It follows that β(i) = β(j), contradicting
our assumption that β(i) = α(j) < β(j).

We now treat the case where α(j) is even, so that τ(j) = (σn ◦ α)(j) = Y . Using the
equality σn ◦ β = τ , we deduce that β(j) is also even. Since τ does not belong to K, the
odd number β(j)− 1 belongs to the image of β. We therefore have β(j)− 1 = β(i) for some
integer i < j. We then have

α(i) ≤ α(j) < α(j) + 1 ≤ β(j)− 1 = β(i),

contradicting the minimality of j.

8.5.2 Idempotents in Ordinary Categories

03ZE
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Let M be a monoid. Recall that an element e ∈ M is idempotent if it satisfies the
equation e2 = e. We now consider the special case where M = EndC(X) = HomC(X,X) is
the set of endomorphisms of an object X of some category C.

Definition 8.5.2.1. 03ZFLet C be a category. An idempotent endomorphism in C is a pair (X, e),
where X is an object of C and e : X → X is an endomorphism of X which satisfies the
identity e = e ◦ e, so that we have a commutative diagram

X

e

  
X

e

>>

e // X.

In this situation, we will also say that e is an idempotent endomorphism of X.

Example 8.5.2.2 (Identity Morphisms). 03ZGLet C be a category. For every object X ∈ C,
the identity morphism idX : X → X is an idempotent endomorphism in C. Conversely, if
e : X → X is an idempotent endomorphism in C which is also an isomorphism, then e = idX .

Example 8.5.2.3 (Split Idempotents). 03ZHLet C be a category containing a retraction diagram

03ZJX

r

��
Y

i

??

idY // Y

(8.57)

(see Definition 8.5.1.19). Then e = i ◦ r is an idempotent endomorphism of X. This follows
from the calculation

e ◦ e = (i ◦ r) ◦ (i ◦ r) = i ◦ idY ◦r = i ◦ r = e.

We will say that an idempotent endomorphism e : X → X is split if it can be obtained in
this way (that is, if e = i ◦ r, for some pair of morphisms i : Y → X an r : X → Y satisfying
r ◦ i = idY .

In the situation of Example 8.5.2.3, the diagram (8.57) can be recovered (up to isomor-
phism) from the idempotent endomorphism e : X → X, by virtue of the following:
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Proposition 8.5.2.4.03ZK Let C be a category containing a retraction diagram

X

r

��
Y

i

??

idY // Y,

and let e = i ◦ r be the idempotent endomorphism Example 8.5.2.3. Then:

(1) The morphism i exhibits Y as an equalizer of the pair of morphisms (e, idX) : X ⇒ X.

(2) The morphism r exhibits Y as a coequalizer of the pair of morphisms (e, idX) : X ⇒ X.

Proof. We will prove (1); the proof of (2) is similar. Fix an object Z ∈ C and a morphism
f : Z → X satisfying e ◦ f = idX ◦f ; we wish to show that there is a unique morphism
g : Z → Y satisfying i ◦ g = f . To prove uniqueness, we note that g is determined by the
identity

g = idY ◦g = (r ◦ i) ◦ g = r ◦ (i ◦ g) = r ◦ f.

To establish existence, we observe that the composition g = r ◦ f satisfies the identity

i ◦ g = i ◦ (r ◦ f) = (i ◦ r) ◦ f = e ◦ f = idX ◦f = f.

Corollary 8.5.2.5.03ZL Let C be a category and let e : X → X be an idempotent endomorphism
in C. The following conditions are equivalent:

(1) The idempotent endomorphism e splits. That is, e admits a factorization X
r−→ Y

i−→ X,
where r ◦ i = idY .

(2) The pair of morphisms (e, idX) : X ⇒ X admits an equalizer in C.

(3) The pair of morphisms (e, idX) : X ⇒ X admits a coequalizer in C.

Proof. The implications (1)⇒ (2) and (1)⇒ (3) follow from Proposition 8.5.2.4. We will
show that (2) implies (1); the proof of the implication (3)⇒ (1) is similar. Suppose that
there exists a morphism i : Y → X which exhibits Y as an equalizer of the pair of morphisms
(e, idX) : X ⇒ X. Since e is idempotent, we have e ◦ e = e = idX ◦e. Invoking the universal
property of Y , we deduce that there is a unique morphism r : X → Y satisfying e = i ◦ r.
To complete the proof, it will suffice to show that r ◦ i is the identity morphism from Y to
itself. Since i is a monomorphism, this follows from the calculation

i ◦ (r ◦ i) = (i ◦ r) ◦ i = e ◦ i = idX ◦i = i = i ◦ idY .
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Corollary 8.5.2.6. 03ZMLet C be a category which admits equalizers (or coequalizers). Then
every idempotent endomorphism in C is split.

Construction 8.5.2.7 (The Universal Idempotent). 03ZNWe define a category Idem as follows:

• The category Idem has single object X̃.

• Morphisms in Idem are given by HomIdem(X̃, X̃) = {id
X̃
, ẽ}.

• The composition law on Idem is given (on non-identity morphisms) by ẽ ◦ ẽ = ẽ.

Remark 8.5.2.8. 03ZPLet C be a category and let e : X → X. be an idempotent endomorphism
in C. Then there is a unique functor F : Idem→ C satisfying F (X̃) = X and F (ẽ) = e.

Exercise 8.5.2.9. 03ZQShow that the category Idem is filtered (see Definition 7.2.4.1).

Remark 8.5.2.10. 03ZRLet Ret denote the category introduced in Construction 8.5.0.2. Then
Idem can be identified with the full subcategory of Ret spanned by the object X̃. Let C be
a category and let F : Ret→ C be the functor determined by a retraction diagram in C (see
Exercise 8.5.0.3). Then the restriction F = F |Idem corresponds (under the identification of
Remark 8.5.2.8) to the idempotent endomorphism of Example 8.5.2.3.

8.5.3 Idempotents in ∞-Categories

03ZSWe now consider an ∞-categorical counterpart of Definition 8.5.2.1.

Definition 8.5.3.1. 03ZTLet C be an∞-category. An idempotent in C is a functor of∞-categories
N•(Idem)→ C. Here Idem denotes the category introduced in Construction 8.5.2.7.

Remark 8.5.3.2. 03ZULet C be a category. It follows from Remark 8.5.2.8 (and Proposition
1.3.3.1) that evaluation on the morphism ẽ ∈ HomIdem(X̃, X̃) supplies a bijection from the
set of idempotents in the ∞-category N•(C) (in the sense of Definition 8.5.3.1) to the set of
idempotent endomorphisms (X, e) in the category C (in the sense of Definition 8.5.2.1). We
can therefore view Definition 8.5.3.1 as a generalization of Definition 8.5.2.1.

Remark 8.5.3.3 (The Structure of N•(Idem)). 03ZVFor every integer n ≥ 0, the simplicial set
N•(Idem) contains a unique nondegenerate n-simplex σn, given by the diagram

X̃
ẽ−→ X̃

ẽ−→ X̃
ẽ−→ · · · → X̃

ẽ−→ X̃.

Moreover, the face morphisms of N•(Idem) satisfy dni (σn) = σn−1 for 0 ≤ i ≤ n. Applying
Corollary 3.3.1.8, we obtain an isomorphism of N•(Idem) with the simplicial set (∆0)+

introduced in Construction 3.3.1.6. Here we abuse notation by identifying ∆0 with its
underlying semisimplicial set.
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Remark 8.5.3.4.03ZW The simplicial set N•(Idem) is weakly contractible. This is a special case
of Lemma 3.4.5.9, applied to the (discrete) category [0].

Definition 8.5.3.5 (Split Idempotents).03ZX Let C be an ∞-category and let F : N•(Idem)→ C
be an idempotent in the ∞-category C. A splitting of F is a functor F : N•(Ret) → C
satisfying F |N•(Idem) = F . We say that F is split if there exists a splitting of F .

Example 8.5.3.6.03ZY Let C be a category and let e : X → X be an idempotent endomorphism
in C. Then e is split (in the sense of Example 8.5.2.3) if and only if the induced map
N•(Idem)→ N•(C) is a split idempotent in the ∞-category N•(C) (in the sense of Definition
8.5.3.5).

Remark 8.5.3.7.03ZZ Let C be an ∞-category and let F, F ′ : N•(Idem)→ C be idempotents
which are isomorphic (when regarded as objects of the∞-category Fun(N•(Idem), C)). Then
F is split if and only if F ′ is split. See Corollary 4.4.5.3.

Let C be an ∞-category and let F : N•(Idem)→ C be an idempotent in C. If F is split,
then the splitting is essentially unique.

Proposition 8.5.3.8.0400 Let C be an ∞-category and let F : N•(Ret)→ C be a functor. Then
F is both left and right Kan extended from the full subcategory N•(Idem) ⊂ N•(Ret).

Proof. This is a special case of Proposition 8.5.1.8.

Remark 8.5.3.9.0401 The category Ret of Construction 8.5.0.2 contains an initial object Ỹ .
It follows that the inclusion map Idem ↪→ Ret has a unique extension T : Idem◁ → Ret
carrying the cone point of Idem◁ to the object Ỹ . Unwinding the definitions, we see that a
functor of ∞-categories F : N•(Ret)→ C is right Kan extended from N•(Idem) if and only
if the composition

N•(Idem)◁ N•(T )−−−−→ N•(Ret) F−→ C

is a limit diagram. Proposition 8.5.3.8 asserts that this condition is automatically satisfied.
In particular, the object F (Ỹ ) is a limit of the underlying diagram F = F |N•(Idem). Similarly,
F (Ỹ ) is a colimit of the diagram F .

Corollary 8.5.3.10 (Uniqueness of Splittings).0402 Let C be an∞-category. Then the restriction
functor

Fun(N•(Ret), C)→ Fun(N•(Idem), C)

is fully faithful, and its essential image is the full subcategory consists of the split idempotents
in C.

Proof. Combine Proposition 8.5.3.8 with Corollary 7.3.6.15.
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Corollary 8.5.3.11. 0403Let C be an ∞-category and let F : N•(Idem)→ C be an idempotent
in C. The following conditions are equivalent:

(1) The idempotent F is split: that is, it can be extended to a functor N•(Ret)→ C.

(2) The diagram F admits a limit in C.

(3) The diagram F admits a colimit in C.

Proof. The implications (1)⇒ (2) and (1)⇒ (3) follow from Remark 8.5.3.9, and the reverse
implications follow from Corollary 7.3.5.8.

Corollary 8.5.3.12. 0404Let C be an ∞-category and let F : N•(Idem)→ C be an idempotent in
C. If F admits a limit (or colimit) in C, then it is preserved by any functor of ∞-categories
G : C → D.

Proof. Suppose that F admits a limit in C. Then F splits (Corollary 8.5.3.11): that is, it
extends to a diagram F : N•(Ret)→ C. Let T : Idem◁ → Ret be as in Remark 8.5.3.9, so
that (F ◦N•(T )) : N•(Idem)◁ → C is a limit diagram in the ∞-category C. We wish to show
that the functor (G ◦ F ◦N•(T )) : N•(Idem)◁ → D is a limit diagram in the ∞-category D.
By virtue of Proposition 8.5.3.8, this is automatic (Remark 8.5.3.9).

8.5.4 Idempotent Completeness

0405We now study ∞-categories in which every idempotent splits.

Definition 8.5.4.1. 0406Let C be an ∞-category. We say that C is idempotent complete if every
idempotent N•(Idem)→ C splits (see Definition 8.5.3.5).

Example 8.5.4.2. 0407Let C be a category. If C admits equalizers (or coequalizers), then the
∞-category N•(C) is idempotent complete (this is a restatement of Corollary 8.5.2.6). In
particular, if C admits finite limits or finite colimits, then N•(C) is idempotent complete.

Warning 8.5.4.3. 0408An ∞-category which admits finite limits (or colimits) need not be
idempotent complete. See Example [?].

Example 8.5.4.4. 0409Let X be a Kan complex. Since the simplicial set N•(Idem) is weakly
contractible (Remark 8.5.3.4), every morphism of simplicial sets N•(Idem)→ X is homotopic
to a constant map. It follows that X is idempotent complete when viewed as an ∞-category.

Remark 8.5.4.5. 040ALet C be an ∞-category. Then C is idempotent complete if and only if
the opposite ∞-category Cop is idempotent complete.
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Proposition 8.5.4.6.040B Let C be an idempotent complete ∞-category and let C0 ⊆ C be a
full subcategory. Suppose that, for every object X ∈ C0 and every object Y ∈ C which is a
retract of X, there exists an object Y ′ ∈ C0 which is isomorphic to Y . Then C0 is idempotent
complete.

Proof. Let Ret denote the category of Construction 8.5.0.2. Suppose we are given an
idempotent F : N•(Idem)→ C0, carrying the object X̃ ∈ Idem to an object X = F (X̃) ∈ C0.
We wish to show that F is a split idempotent in C0. Since C is idempotent complete, we can
extend F to a functor F : N•(Ret)→ C, carrying the object Ỹ ∈ Ret to an object Y = F (Ỹ )
which is a retract of X. By assumption, we can choose an isomorphism α0 : Y → Y ′,
where Y ′ belongs to C0. Using Corollary 4.4.5.3, we can lift α0 to an isomorphism of
functors α : F → F

′ in Fun(N•(Ret), C), whose image in Fun(N•(Idem), C) is the identity
transformation from F to itself. Then F

′ : N•(Ret)→ C0 is a splitting of the idempotent
F .

Proposition 8.5.4.7.040C Let C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C is idempotent complete.

(2) The ∞-category C admits limits indexed by N•(Idem).

(3) The ∞-category C admits colimits indexed by N•(Idem).

Proof. This is an immediate consequence of Corollary 8.5.3.11.

Remark 8.5.4.8.040D Let C be an ∞-category. Then C is idempotent complete if and only if
the restriction functor

Fun(N•(Ret), C)→ Fun(N•(Idem), C)

is an equivalence of ∞-categories. This is an immediate consequence of Corollary 8.5.3.10.

Corollary 8.5.4.9.040E Let C and D be ∞-categories which are equivalent. Then C is idempotent
complete if and only if D is idempotent complete.

Corollary 8.5.4.10.040F Let C be an∞-category and let K be a simplicial set. If C is idempotent
complete, then Fun(K, C) is idempotent complete.

Proof. Combine Propositions 8.5.4.7 and 7.1.6.1.

Corollary 8.5.4.11.040G Let C be an ∞-category and let f : K → C be a morphism of simplicial
sets. If C is idempotent complete, then the slice and coslice ∞-categories C/f and Cf/ are
idempotent complete.

Proof. Combine Proposition 8.5.4.7 with Corollary 7.1.3.20.
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To apply the criterion of Proposition 8.5.4.7, it is often useful to replace N•(Idem) by a
simpler simplicial set.

Notation 8.5.4.12. 040HLet Spine[Z] denote the 1-dimensional simplicial set associated to the
directed graph

· · · → −2→ −1→ 0→ 1→ 2→ · · ·

We let Q : Spine[Z] → N•(Idem) be the morphism of simplicial sets corresponding to the
diagram

· · · → X
e−→ X

e−→ X
e−→ X

e−→ X → · · ·

in the category Idem.

Remark 8.5.4.13. 040JSince the simplicial set Spine[Z] is 1-dimensional, the morphism Q

of Notation 8.5.4.12 factors (uniquely) through the 1-skeleton of N•(Idem), which we can
identify with the simplicial circle ∆1/ ∂∆1. Under this identification, Q corresponds to a
morphism of simplicial sets q : Spine[Z]→ ∆1/ ∂∆1. This is a covering map (see Definition
3.1.4.1), which exhibits the simplicial circle ∆1/ ∂∆1 as the quotient of Spine[Z] by a free
action of the group (Z,+) by translations. The induced map of geometric realizations
|Spine[Z]| → |∆1/ ∂∆1 | can be identified with the standard covering map R → S1 in the
category of topological spaces.

Remark 8.5.4.14. 040KIn the situation of Notation 8.5.4.12, we can regard Spine[Z] as a
simplicial subset of the nerve N•(Z), where we regard the set of integers Z = {· · · < −2 <
−1 < 0 < 1 < 2 < · · · } as equipped with its usual linear ordering. Moreover, the inclusion
Spine[Z] ↪→ N•(Z) is inner anodyne (this is a special case of Proposition 1.5.7.3).

Remark 8.5.4.15. 040LThe simplicial set Spine[Z] is weakly contractible. This follows from
Remark 8.5.4.14, since the ∞-category N•(Z) is filtered and therefore weakly contractible
(Proposition 7.2.4.9). Alternatively, it can be deduced from Example 3.6.4.4, since the
geometric realization | Spine[Z]| is homeomorphic to the set of real numbers R (endowed
with its usual topology).

Proposition 8.5.4.16. 040MThe morphism Q : Spine[Z] → N•(Idem) of Notation 8.5.4.12 is
both left and right cofinal.

Proof. We will show that Q is left cofinal; a similar argument will show that it is right
cofinal. By virtue of Theorem 7.2.3.1, it will suffice to show that the simplicial set K =
Spine[Z]×N•(Idem) N•(Idem)

/X̃
is weakly contractible. Let us identify the vertices of K with

pairs (n, f), where n is an integer and f : X̃ → X̃ is a morphism in the category Idem.
Unwinding the definitions, we see that K is the 1-dimensional simplicial set associated to
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the direct graph given in the diagram

· · ·

""

// (−1, ẽ)

$$

// (0, ẽ)

##

// (1, ẽ)

""

// · · ·

· · · (−1, id
X̃

) (0, id
X̃

) (1, id
X̃

) · · · .

The inclusion of the upper part of the diagram determines a monomorphism of simplicial
sets Spine[Z] ↪→ K which is left anodyne (since it is a pushout of a coproduct of countably
many copies of the inclusion map {0} ↪→ ∆1), and therefore a weak homotopy equivalence
(Proposition 3.1.6.14). The desired result now follows from the weak contractibility of the
simplicial set Spine[Z] (Remark 8.5.4.15).

Corollary 8.5.4.17.040N Let C be an ∞-category which admits sequential limits (or colimits).
Then C is idempotent complete.

Proof. It follows from Proposition 8.5.4.16 (and Corollary 7.2.2.12) that the ∞-category C
admits limits (or colimits) indexed by the∞-category N•(Idem), and is therefore idempotent
complete by virtue of Proposition 8.5.4.7.

Remark 8.5.4.18.040P Broadly speaking, Proposition 8.5.4.16 will be useful to us because it
shows that the ∞-category N•(Idem) admits a (left and right) cofinal diagram Q : K →
N•(Idem), where the simplicial set K is finite-dimensional. Beware that it is not possible to
arrange that the simplicial set K is finite, since an ∞-category which admits finite colimits
need not be idempotent complete (Warning 8.5.4.3). In particular, there does not exist a
categorical equivalence K → N•(Idem), where K is a finite simplicial set.

Example 8.5.4.19.040Q Let QC denote the ∞-category of (small) ∞-categories. Then QC is
idempotent complete. More generally, for every uncountable cardinal κ, the ∞-category
QC<κ of κ-small∞-categories is idempotent complete. To prove this, we can use Propositions
8.5.4.6 and 8.5.1.15 to reduce to the case where κ has uncountable cofinality. In this case,
the ∞-category QC<κ admits sequential colimits (Example 7.6.7.8), so the desired result
follows from Corollary 8.5.4.17.

Example 8.5.4.20.040R Let S denote the∞-category of spaces. Then S is idempotent complete.
More generally, for every uncountable cardinal κ, the ∞-category S<κ of κ-small spaces is
idempotent complete. This follows from Example 8.5.4.19 and Proposition 8.5.4.6, since the
full subcategory S<κ ⊆ QC<κ is closed under the formation of retracts (Remark 8.5.1.16).

https://kerodon.net/tag/040N
https://kerodon.net/tag/040P
https://kerodon.net/tag/040Q
https://kerodon.net/tag/040R


1854 CHAPTER 8. THE YONEDA EMBEDDING

Warning 8.5.4.21. 040SLet C be an∞-category. If C is idempotent complete, then its homotopy
category hC need not be idempotent complete. For example, the ∞-category of spaces S is
idempotent complete (Example 8.5.4.20), but its homotopy category hS = hKan is not (see
Proposition 8.5.7.15).

8.5.5 Idempotent Completion

040TLet C be an ∞-category. It follows from Corollary 8.3.3.17 (together with the criterion
of Proposition 8.5.4.7) that we can choose a fully faithful functor H : C → Ĉ, where Ĉ is
idempotent complete. Our goal in this section is to show that there is a canonical choice for
the ∞-category Ĉ, which is characterized (up to equivalence) by the requirement that it is
as small as possible.

Definition 8.5.5.1. 040ULet C be an ∞-category. We say that a functor of ∞-categories
H : C → Ĉ exhibits Ĉ as an idempotent completion of C if it satisfies the following conditions:

(1) The functor H is fully faithful.

(2) The ∞-category Ĉ is idempotent complete.

(3) For every object Y ∈ Ĉ, there exists an object X ∈ C such that Y is a retract of H(X).

We will say that an ∞-category Ĉ is an idempotent completion of C if there exists a functor
H : C → Ĉ which exhibits Ĉ as an idempotent completion of C.

Our first goal is to show that the idempotent completion of an ∞-category C is uniquely
determined up to equivalence. To prove this, we reformulate Definition 8.5.5.1 as a universal
mapping property:

Proposition 8.5.5.2. 0411Let H : C → Ĉ be a functor of ∞-categories, where Ĉ is idempotent
complete. The following conditions are equivalent:

(a) The functor H exhibits Ĉ as an idempotent completion of C, in the sense of Definition
8.5.5.1.

(b) For every idempotent complete ∞-category D, precomposition with H induces an equiva-
lence of ∞-categories Fun(Ĉ,D)→ Fun(C,D).

Proof. By virtue of Proposition 8.5.4.7, an ∞-category D is idempotent complete if and
only if it admits N•(Idem)-indexed colimits: that is, if and only if it is K-cocomplete, where
K = {N•(Idem)} (see Definition 8.4.5.1). Moreover, every functor of∞-categories F : Ĉ → D
automatically preserves N•(Idem)-indexed colimits (Corollary 8.5.3.12). We can therefore
restate (b) as follows:
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(b′) The functor H exhibits Ĉ as a K-cocompletion of C, in the sense of Definition 8.4.5.1.

Using Variant 8.4.6.9, we see that this condition is satisfied if and only if H satisfies conditions
(1) and (2) of Definition 8.5.5.1, together with the following variant of (3):

(3′) The ∞-category Ĉ is generated by the essential image of H under the formation of
N•(Idem)-indexed colimits. That is, if Ĉ′ ⊆ Ĉ is a replete full subcategory which
contains the essential image of H and is closed under retracts, then Ĉ′ = Ĉ.

The implication (3) ⇒ (3′) is immediate. To prove the converse, let Ĉ′ ⊆ Ĉ be the full
subcategory spanned by those objects Y which are retracts of H(X), for some X ∈ C.
Condition (3) of Definition 8.5.5.1 asserts that Ĉ′ = Ĉ. This is a special case of (3′), since Ĉ′

is closed under the formation of retracts (Remark 8.5.1.6).

Corollary 8.5.5.3 (Existence).040Z Let C be an ∞-category. Then there exists a functor
H : C → Ĉ which exhibits Ĉ as an idempotent completion of C.

Proof. By virtue of Proposition 8.5.5.2 (and its proof), this is a special case of Proposition
8.4.5.3

Using the Yoneda embedding of §8.3, we can give an explicit construction of idempotent
completions. For simplicity, let us assume first that C is an essentially small ∞-category.
We let Funatm(Cop,S) denote the full subcategory of Fun(Cop,S) spanned by those functors
F : Cop → S which are atomic, in the sense of Definition 8.4.6.1.

Proposition 8.5.5.4.040X Let C be an essentially small ∞-category and let h• : C → Fun(Cop,S)
be a covariant Yoneda embedding for C (Definition 8.3.3.9). Then the functor h• exhibits
Funatm(Cop,S) as an idempotent completion of C.

Following the convention of Remark 4.7.0.5, we can regard Proposition 8.3.3.14 as a
special case of the following more general assertion (which is essentially a special case of
Proposition 8.4.5.7):

Proposition 8.5.5.5.040Y Let κ be an uncountable regular cardinal, let C be an ∞-category
which is essentially κ-small, and let Ĉ ⊆ Fun(Cop,S<κ) be the full subcategory spanned by
those functors F for which the corepresentable functor HomFun(Cop,S<κ)(F , •) commutes
with κ-small colimits. Then the covariant Yoneda embedding h• : C → Fun(Cop,S<κ) exhibits
Ĉ as an idempotent completion of C.

Proof. To simplify the notation, set D = Fun(Cop,S<κ). For each object C ∈ C, the
representable functor hC ∈ D corepresents the functor

D → S<κ F 7→ F (C)
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given by evaluation at C, which preserves κ-small colimits by virtue of Proposition 7.1.6.1.
It follows that the covariant Yoneda embedding h• factors through the subcategory Ĉ ⊆ D.
Moreover, the functor h• is fully faithful (Theorem 8.3.3.13).

The ∞-category D admits κ-small colimits, and is therefore idempotent complete by
virtue of Proposition 8.5.4.7. It follows from Corollary 8.5.1.14 that the full category Ĉ ⊆ D is
closed under the formation of retracts, and is therefore also idempotent complete (Proposition
8.5.4.6).

To complete the proof, it will suffice to show that every object F ∈ Ĉ is a retract of hC
for some object C ∈ C. Applying Corollary 8.4.3.9, we deduce that F can be realized as the
colimit of a diagram

K T−→ C h•−→ D,

where K is an essentially κ-small ∞-category. Since the functor HomD(F , •) preserves
κ-small colimits, it follows that the identity map idF ∈ HomD(F ,F ) factors (up to
homotopy) through hT (B) for some B. In particular, F is a retract of the representable
functor hT (B).

Let C be an ∞-category. Proposition 8.5.5.5 supplies an explicit description of its
idempotent completion Ĉ which is somewhat transcendental in nature: it locates Ĉ as a full
subcategory of an ∞-category which is much larger than C. Let us remark that this is not
necessary: the ∞-category Ĉ is essentially of the same size as C itself.

Proposition 8.5.5.6. 0410Let C be an ∞-category, let Ĉ be an idempotent completion of C, and
let κ be an uncountable cardinal. Then:

(1) The ∞-category C is locally κ-small if and only if Ĉ is locally κ-small.

(2) The ∞-category C is essentially κ-small if and only if Ĉ is essentially κ-small.

Proof. Choose a functor H : C → Ĉ which exhibits Ĉ as an idempotent completion of C. We
first prove (1). Assume that C is locally κ-small; we wish to show that Ĉ is locally κ-small
(the reverse implication follows immediately from the definition). Fix a pair of objects
Y, Y ′ ∈ Ĉ; we wish to show that the morphism space HomĈ(Y, Y

′) is essentially κ-small. By
assumption, the object Y ∈ Ĉ is a retract of H(X) for some object X ∈ C. It follows that
HomĈ(Y, Y

′) is a retract of HomĈ(H(X), Y ′) in the homotopy category hKan. By virtue of
Corollary 8.5.1.17, it will suffice to show that the Kan complex HomĈ(H(X), Y ′) is essentially
κ-small. Applying the same argument to Y ′, we are reduced to showing that the mapping
space HomĈ(H(X), H(X ′)) is essentially κ-small for every pair of objects X,X ′ ∈ C. Since
the functor F is fully faithful, the canonical map HomC(X,X ′) → HomĈ(H(X), H(X ′))
is a homotopy equivalence. The desired result now follows from our assumption that the
∞-category C is essentially κ-small.
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We now prove (2). Assume that C is essentially κ-small; we wish to show that Ĉ is also
essentially κ-small (again, the reverse implication follows immediately from the definitions).
Without loss of generality, we may assume that κ is the smallest cardinal for which C is
essentially κ-small, and is therefore regular (Corollary 4.7.6.17). By virtue of the criterion
of Proposition 4.7.8.7, it will suffice to show that the set of isomorphism classes S = π0(Ĉ≃)
is κ-small. For each object X ∈ C, let SX ⊆ S be the collection of isomorphism classes of
objects Y ∈ Ĉ which can be realized as a retract of H(X). Note that we can write S as a
union of the subsets SX , where the X ranges over a set of representatives for the isomorphism
classes in C. Since κ is regular, and the set π0(C≃) is κ-small, it will suffice to show that
each of the sets SX is κ-small. Let us henceforth regard the object X ∈ C as fixed, and let
Y be any retract of H(X) in the ∞-category Ĉ. It follows from Proposition 8.5.2.4 that, as
an object of the homotopy category hC, Y can be identified with the equalizer of a pair of
morphisms (id, e) : H(X)→ H(X). It follows that the cardinality of the set of isomorphism
classes SX is bounded above by the cardinality of the set HomhĈ(H(X), H(X)) of morphisms
e : H(X)→ H(X) in hC, which we can identify with the κ-small set HomhC(X,X).

Let QC denote the ∞-category of (small) ∞-categories (Construction 5.5.4.1), and let
QCic denote the full subcategory of QC spanned by the idempotent complete ∞-categories.
Proposition 8.5.5.2 asserts that a functor F : C → Ĉ exhibits Ĉ as an idempotent completion
of C if and only if exhibits Ĉ as a QCic-reflection of C, in the sense of Definition 6.2.2.1.
Consequently, Proposition 8.5.5.6 is equivalent to the assertion that QCic ⊆ QC is reflective.
Combining this observation with Proposition 6.2.2.11, we obtain the following:

Corollary 8.5.5.7.0414 Then the inclusion functor QCic ↪→ QC admits a left adjoint, which
carries each ∞-category C to an idempotent completion Ĉ.

Corollary 8.5.5.8.0415 Let C be an ∞-category which can be realized as the limit of a small
diagram F : D → QC. Suppose that, for each vertex D ∈ D, the ∞-category F (D) is
idempotent complete. Then C is idempotent complete.

Proof. Combine Corollary 8.5.5.7 with Variant 7.1.3.24.

Corollary 8.5.5.9.0416 Let C and D be ∞-categories. Suppose that D is a retract of C in the
homotopy category hQCat. If C is idempotent complete, then D is also idempotent complete.

Proof. By virtue of Remark 8.5.3.9, we can identifyD with the limit of a diagram N•(Idem)→
QC carrying the unique object of Idem to the idempotent complete ∞-category C. The
desired result is now a special case of Corollary 8.5.5.8.

Exercise 8.5.5.10.0417 Give a direct proof of Corollary 8.5.5.9.
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8.5.6 Idempotent Endomorphisms

0418Let C be an ∞-category and let F : N•(Idem) → C be an idempotent in C. Then F

carries the unique object of Idem to an object X ∈ C, and the unique non-identity morphism
of Idem to an endomorphism e : X → X in C. If C is (the nerve of) an ordinary category,
then the functor F is uniquely determined by the pair (X, e) (Remark 8.5.2.8). In more
general situations, this is false: the simplicial set N•(Idem) contains a nondegenerate simplex
of each dimension (Remark 8.5.3.3), so the specification of the functor F requires an infinite
amount of data. Our goal in this section is to show that, nevertheless, the idempotent
F : N•(Idem)→ C can be recovered up to isomorphism from the underlying endomorphism
(X, e). We begin by introducing some terminology.

Notation 8.5.6.1. 0419Let ∆1/ ∂∆1 denote the simplicial circle (Example 1.5.7.10). For every
∞-category C, we let EndC denote the ∞-category of diagrams Fun(∆1/ ∂∆1, C). Note that
objects of EndC can be identified with pairs (X, e), where X is an object of C and e : X → X

is an endomorphism of X. We will refer to EndC as the ∞-category of endomorphisms in C.

Remark 8.5.6.2. 041ALet C be an ∞-category. Evaluation on the unique vertex of ∆1/ ∂∆1

induces an isofibration of ∞-categories EndC → C. Moreover, for each object X ∈ C, the
fiber {X}×C EndC can be identified with the endomorphism space EndC(X) = HomC(X,X)
of Variant 4.6.1.3.

Definition 8.5.6.3 (Idempotent Endomorphisms). 041BLet C be an ∞-category and let e :
X → X be an endomorphism in C. We will say that e is idempotent if there exists a functor
F : N•(Idem)→ C satisfying F (ẽ) = e; here ẽ denotes the (unique) non-identity morphism
in the category Idem. We let Endidm

C denote the full subcategory of EndC spanned by the
idempotent endomorphisms.

We can now formulate our main result.

Proposition 8.5.6.4. 041CLet C be an ∞-category. Then the restriction functor

Fun(N•(Idem), C)→ Endidm
C

has a left homotopy inverse.

Stated more informally, Proposition 8.5.6.4 asserts that if e : X → X is an endomorphism
in the ∞-category C which can be extended to an idempotent F : N•(Idem)→ C, then F is
uniquely determined up to isomorphism and can be chosen to depend functorially on the
pair (X, e).

Corollary 8.5.6.5. 041DFor every ∞-category C, evaluation on the non-identity morphism of
Idem induces a bijection

θ : π0(Fun(N•(Idem), C)≃)→ π0((Endidm
C )≃).
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Proof. The surjectivity of θ follows from the definition of an idempotent endomorphism, and
the injectivity from Proposition 8.5.6.4.

Warning 8.5.6.6.041E Let C be an ∞-category and let R : Fun(N•(Idem), C)→ Endidm
C be the

restriction functor. Proposition 8.5.6.4 asserts that there exists a functor S : Endidm
C →

Fun(N•(Idem), C) for which the composition

Fun(N•(Idem), C) R−→ Endidm
C

S−→ Fun(N•(Idem), C).

is isomorphic to the identity functor. Let e : X → X be an idempotent endomorphism in C,
so that e can be extended to a morphism F : N•(Idem) → C. Then S(e) = (S ◦ R)(F ) is
isomorphic to F , so there is an isomorphism of (R ◦ S)(e) with e in the category Endidm

C .
Beware that this isomorphism usually cannot be chosen to depend functorially on e. In
general, the functor R is not an equivalence of ∞-categories, so the composition

Endidm
C

S−→ Fun(N•(Idem), C) R−→ Endidm
C

is not isomorphic to the identity functor on Endidm
C .

Example 8.5.6.7.041F For any ∞-category C, we have a commutative diagram

C

yy

δ

!!
Fun(N•(Idem), C) // Endidm

C ,

where the vertical maps are the diagonal embeddings. If C is a Kan complex, then the left
vertical map is a homotopy equivalence of Kan complexes (since the simplicial set N•(Idem)
is weakly contractible; see Remark 8.5.3.4). In this case, Proposition 8.5.6.4 reduces to the
assertion that the diagonal map

δ : C → Endidm
C ⊆ Fun(∆1/ ∂∆1, C) X 7→ (X, idX)

has a left homotopy inverse. This is clear: the map δ has a left inverse in the category of
simplicial sets, given by evaluation at the vertex of ∆1/ ∂∆1. Beware that δ is usually not a
homotopy equivalence, since the simplicial set ∆1/ ∂∆1 is not contractible.

We will give the proof of Proposition 8.5.6.4 at the end of this section. First, let us
introduce an important class of idempotent endomorphisms.

Definition 8.5.6.8.041G Let C be an ∞-category. We say that an endomorphism e : X → X in
C is split idempotent if the homotopy class [e] is a split idempotent in the homotopy category
hC (see Example 8.5.2.3).
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Remark 8.5.6.9. 041HLet C be an ∞-category. Then an endomorphism e : X → X is split
idempotent if and only there exists a retraction diagram

X

r

  
Y

i

??

idY // Y.

in the ∞-category C, where e factors as a composition X
r−→ Y

i−→ X.

Proposition 8.5.6.10 (Lifting Split Idempotents). 041JLet C be an ∞-category and let e : X →
X be an endomorphism in C. Then e is split idempotent endomorphism if and only if it
extends to a split idempotent N•(Idem)→ C, in the sense of Definition 8.5.3.5. In particular,
every split idempotent endomorphism is an idempotent endomorphism.

Proof. Assume that the endomorphism e is split idempotent; we will show that e can
be extended to a split idempotent F : N•(Idem) → C (the reverse implication follows
immediately from the definitions). Choose a retraction diagram

041KX

r

��
Y

i

??

idY // Y

(8.58)

in the ∞-category C, where [e] = [i] ◦ [r] in the homotopy category hC. Using Corollary
8.5.1.28, we can extend the diagram (8.58) to a functor F : N•(Ret)→ C. By construction,
F carries the unique non-identity morphism of Idem to a morphism e′ : X → X of C which
is homotopic to e. Replacing F by an isomorphic functor if necessary, we may assume that
e′ = e (see Corollary 4.4.5.3). Then F = F |N•(Idem) is a split idempotent in C extending
e.

Let C be an∞-category. When restricted to split idempotents, Proposition 8.5.6.4 asserts
every retraction diagram

X

r

��
Y

i

??

idY // Y
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can be recovered (up to canonical isomorphism) from a choice of composition e = (i ◦ r) in
the ∞-category C. To prove this, we will exploit the observation that Y can be realized as
the limit (and colimit) of the diagram

· · · → X
e−→ X

e−→ X
e−→ X

e−→ X → · · · ,

indexed by the 1-dimensional simplicial set Spine[Z] of Notation 8.5.4.12.

Notation 8.5.6.11.041L Let q : Spine[Z]→ ∆1/ ∂∆1 be the covering map of Remark 8.5.4.13.
For every ∞-category C, precomposition with q induces a functor

T : EndC = Fun(∆1/ ∂∆1, C) ↪→ Fun(Spine[Z], C) (X, e) 7→ Te.

More informally, the functor T carries each endomorphism e : X → X in the ∞-category C
to the associated sequential diagram

· · · → X
e−→ X

e−→ X
e−→ X

e−→ X → · · ·

Proposition 8.5.6.12.041M Let C be an ∞-category and let e : X → X be an idempotent
endomorphism in C. Then e splits if and only if the diagram Te : Spine[Z] → C admits a
limit.

Proof. Since e is idempotent, it can be extended to a functor F : N•(Idem) → C. Then
Te = F ◦ Q, where Q : Spine[Z] → N•(Idem) is the left cofinal morphism of Proposition
8.5.4.16. Using Corollary 7.2.2.10, we see that Te has a limit in C if and only if F has a limit
in C. The desired result now follows from the criterion of Corollary 8.5.3.11

Remark 8.5.6.13.041N Let C be an ∞-category and let e : X → X be an split idempotent
endomorphism in C, so that the diagram

· · · → X
e−→ X

e−→ X
e−→ X

e−→ X → · · ·

admits both a limit and colimit in C. The limit and colimit of this diagram are automatically
preserved by any functor of ∞-categories C → D. This follows by combining Corollary
8.5.3.12 with Proposition 8.5.4.16.

Motivated by Proposition 8.5.6.12, we introduce a variant of Definition 8.5.6.8.

Definition 8.5.6.14.041P Let C be an ∞-category and let e : X → X be an endomorphism in
C. We will say that e is weakly split if it satisfies the following conditions:
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(1) The diagram Te of Notation 8.5.6.11 can be extended to a limit diagram in C, which we
depict as

Y

zz ��

i

�� �� $$
· · · // X

e // X
e // X

e // X
e // X

e // · · ·

(2) The diagram Te of Notation 8.5.6.11 can be extended to a colimit diagram in C, which
we depict as

· · · // X
e //

$$

X
e //

��

X
e //

r

��

X
e //

��

X
e //

zz

· · ·

Z.

(3) The composition Y
i−→ X

r−→ Z is an isomorphism in C.

Our next goal is to show that every split idempotent endomorphism is weakly split.

Notation 8.5.6.15. 041QLet Ret denote the category of Construction 8.5.0.2. Then the object
Ỹ ∈ Ret is both initial and final. It follows that the diagram Q : Spine[Z]→ N•(Idem) of
Proposition 8.5.4.16 admits unique extensions

Q− : Spine[Z]◁ → N•(Ret) Q+ : Spine[Z]▷ → N•(Ret)

which carry the cone points to the object Ỹ .

Lemma 8.5.6.16. 041RLet C be an ∞-category and let F : N•(Ret) → C be a functor. Then

the composition Spine[Z]◁ Q−−−→ N•(Ret) F−→ C is a limit diagram in C, and the composition
Spine[Z]▷ Q+

−−→ N•(Ret) F−→ C is a colimit diagram in C.

Proof. Combine Remark 8.5.3.9, Corollary 7.2.2.3, and Proposition 8.5.4.16.

Proposition 8.5.6.17. 041SLet C be an ∞-category and let e : X → X be a split idempotent
endomorphism in C. Then e is weakly split.

Proof. Let Ret denote the category introduced in Construction 8.5.0.2. Using Proposition
8.5.6.10, we can choose a functor F : N•(Ret)→ C satisfying F (X̃) = X and F (ẽ) = e.
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Let Q : Spine[Z]→ N•(Idem) denote the (left and right) cofinal morphism of Proposition
8.5.4.16, and let Q− : Spine[Z]◁ → N•(Ret) and Q+ : Spine[Z]▷ → N•(Ret) be the extensions
of Notation 8.5.6.15. Lemma 8.5.6.16 guarantees that F ◦Q− is a limit diagram in C extending
F ◦Q = Te, so that e satisfies condition (1) of Definition 8.5.6.14. Similarly, F ◦Q+ is a colimit
diagram extending Te, so that e satisfies condition (2) of Definition 8.5.6.14. Condition (3)
follows from the observation that any composition of F (̃i) with F (r̃) is homotopic to the
morphism F (r̃ ◦ ĩ) = F (id

Ỹ
) = id

F (Ỹ ), and is therefore an isomorphism.

Warning 8.5.6.18.041T The converse of Proposition 8.5.6.17 is false. For example, every
isomorphism e : X → X is weakly split, but is split idempotent only if e is homotopic to the
identity morphism idX (see Example 8.5.2.2).

Let C be an ∞-category, and let EndwC denote the full subcategory of EndC spanned by
the weakly split endomorphisms in C. It follows from Proposition 8.5.6.17 that the restriction
functor

Fun(N•(Ret), C)→ EndC F 7→ F (e)

factors through EndwC . We will deduce Proposition 8.5.6.4 from the following:

Proposition 8.5.6.19.041U Let C be an ∞-category. Then the restriction functor

Fun(N•(Ret), C)→ EndwC

admits a left homotopy inverse.

Proof. Let D ⊆ Fun(Spine[Z], C) denote the full subcategory spanned by those diagrams
S : Spine[Z]→ C which admit both a limit and a colimit. Let u and v be auxiliary symbols,
and let D̃ denote the full subcategory of Fun({u} ⋆ Spine[Z] ⋆ {v}, C) spanned by those
diagrams S± : {u} ⋆ Spine[Z] ⋆ {v} → C which satisfy the following conditions:

(1) The restriction S− = S±|{u}⋆Spine[Z] is a limit diagram in C.

(2) The restriction S+ = S±|Spine[Z]⋆{v} is a colimit diagram in C.

Note that the simplicial set Spine[Z] is weakly contractible (Remark 8.5.4.15), so that the
inclusion map Spine[Z] ↪→ {u} ⋆ Spine[Z] is right anodyne (Proposition 4.3.7.9). Applying
Corollary 7.2.2.3, we can replace (2) by the condition that S± is a colimit diagram in C.
Moreover, the functor S− admits a colimit if and only if S = S±|Spine[Z] admits a colimit
(Corollary 7.2.2.10). Invoking Corollary 7.3.6.15 twice, we deduce that the restriction functor

R : D̃ → D S± 7→ S±|Spine[Z]

is a trivial Kan fibration of ∞-categories.
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Let D̃w denote the replete full subcategory of D̃ spanned by those functors S± for which
the composition

∆1 ≃ {u} ⋆ {v} ↪→ {u} ⋆ Spine[Z] ⋆ {v} S±−−→ C

is an isomorphism in C. Let Dw ⊆ D be the essential image of D̃w under R, so that R
restricts to a trivial Kan fibration Rw : D̃w → Dw.

Let T : EndC → Fun(Spine[Z], C) be the functor given by precomposition with the
covering map Spine[Z]→ ∆1/ ∂∆1 (see Notation 8.5.4.12). By definition, and endomorphism
e of C is weakly split if and only if the associated diagram Te : Spine[Z]→ C is an object of
Dw. Consequently, the functor T restricts to a functor Tw : EndC → Dw.

Since the object Ỹ ∈ Ret is both initial and final, the diagram Q : Spine[Z]→ N•(Idem)
admits an unique extension Q± : {u} ⋆ Spine[Z] ⋆ {v} → N•(Ret) carrying both u and v

to the object Ỹ . It follows from Lemma 8.5.6.16 that precomposition with Q± induces a
functor

T̃ : Fun(N•(Ret), C)→ D̃w ⊆ Fun({u} ⋆ Spine[Z] ⋆ {v}, C).

By construction, we have a commutative diagram of ∞-categories

Fun(N•(Ret), C) T̃ //

��

D̃w

Rw∼

��
EndwC

Tw
// Dw,

where the right vertical map is a trivial Kan fibration. Consequently, to show that the left
vertical map has a left homotopy inverse, it will suffice to show that the functor T̃ has a left
homotopy inverse.

Note that precomposition with the map

∆2 ≃ {u} ⋆ {0} ⋆ {v} ↪→ {u} ⋆ Spine[Z] ⋆ {v}

determines an evaluation functor ev : D̃ → Fun(∆2, C). Let Funw(∆2, C) denote the full
subcategory of Fun(∆2, C) spanned by those diagrams

X

r

  
Y

i

??

u // Y ′



8.5. RETRACTS AND IDEMPOTENTS 1865

where u is an isomorphism, so that ev restricts to a functor evw : D̃w → Funw(∆2, C). It
will therefore suffice to show that the composite functor

Fun(N•(Ret), C) T̃−→ D̃w evw

−−→ Funw(∆2, C)

has a left homotopy inverse. We conclude by observing that this composite functor is an
equivalence of ∞-categories, by virtue of Corollary 8.5.1.30.

Proof of Proposition 8.5.6.4. Let C be an ∞-category. We wish to show that the restriction
functor

R : Fun(N•(Idem), C)→ Endidm
C

has a left homotopy inverse. Using Corollary 8.5.5.3, we can choose a fully faithful functor
H : C → C′, where C′ is idempotent complete. Replacing C by the essential image of H,
we may assume without loss of generality that C is a full subcategory of C′ (and H is the
inclusion functor). Then R is the restriction of a functor R′ : Fun(N•(Idem), C′)→ Endidm

C′ .
Since C′ is idempotent complete, every idempotent endomorphism in C′ is split, and therefore
weakly split. Applying Proposition 8.5.6.19, we deduce that the composition

Fun(N•(Ret), C′)→ Fun(N•(Idem), C′) R′−→ Endidm
C′ ⊆ EndwC

admits a left homotopy inverse. The restriction map Fun(N•(Ret), C′)→ Fun(N•(Idem), C′)
is an equivalence of ∞-categories (Remark 8.5.4.8), so R′ admits a left homotopy inverse
S′ : Endidm

C′ → Fun(N•(Idem), C′). Restricting to the full subcategory Endidm
C ⊆ Endidm

C′ , we
obtain a functor S : Endidm

C → Fun(N•(Idem), C) which is left homotopy inverse to R.

8.5.7 Homotopy Idempotent Endomorphisms

041V Let C be an ∞-category and let e : X → X be an endomorphism in C. If e is idempotent
(in the sense of Definition 8.5.6.3), then the homotopy class [e] is an idempotent endomorphism
in the homotopy category hC. One can ask if the converse is true: if the homotopy class [e]
is an idempotent endomorphism in hC, does it follow that e is an idempotent endomorphism
of C? In this section, we will show that this question has a negative answer in general
(Proposition 8.5.7.15), but a positive answer under some additional assumptions (Corollary
8.5.7.5). Let us begin by introducing some terminology.

Definition 8.5.7.1.041W Let C be an ∞-category and let e : X → X be an endomorphism in
C. We say that e is homotopy idempotent if the homotopy class [e] is an idempotent in the
homotopy category hC, in the sense of Definition 8.5.2.1.
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Remark 8.5.7.2. 041XLet C be an ∞-category and let e : X → X be an endomorphism in C.
Then e is homotopy idempotent if and only if there exists a 2-simplex σ of C whose boundary
is indicated in the diagram

X

e

  
X

e

>>

e // X.

Example 8.5.7.3. 041YLet C be an ∞-category and let e : X → X be an endomorphism in C.
If e is idempotent (that is, if it extends to a functor N•(Idem)→ C), then it is homotopy
idempotent.

We now provide a partial converse to Example 8.5.7.3.

Proposition 8.5.7.4. 041ZLet C be an ∞-category and let e : X → X be an endomorphism in
C. The following conditions are equivalent:

(1) The homotopy class [e] is a split idempotent in the homotopy category hC.

(2) The endomorphism e is a split idempotent in C.

(3) The endomorphism e is homotopy idempotent and weakly split (Definition 8.5.6.14).

(4) The endomorphism e is homotopy idempotent and there exists a limit diagram

Y

yy

i(−1)

��

i(0)

��

i(1)

�� %%
· · · // X

e // X
e // X

e // · · ·

in C, where the morphism i(0) has a left homotopy inverse.

Proof. The equivalence (1) ⇔ (2) is tautology, the implication (2) ⇒ (3) follows from
Proposition 8.5.6.17 (and Example 8.5.7.3), and the implication (3) ⇒ (4) is immediate.
We will complete the proof by showing that (4) implies (1). Assume that e is homotopy
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idempotent, so that there exists a 2-simplex σ of C whose boundary is indicated in the
diagram

X

e

  
X

e

>>

e // X.

Let Spine[Z] denote the 1-dimensional simplicial set of Notation 8.5.4.12, and let Tσ :
Spine[Z] → CX/ be the morphism of simplicial sets which carries each vertex of Spine[Z]
to e (regarded as an object of the coslice ∞-category CX/) and each nondegenerate edge
of Spine[Z] to σ (regarded as a morphism of the coslice ∞-category CX/). We will identify
Tσ with a diagram T e : Spine[Z]◁ → C, where the restriction T e|Spine[Z] is the diagram
Te : Spine[Z] → C of Notation 8.5.6.11. Let us further identify T e with an object X of
the slice ∞-category C/Te

, lying over the object X ∈ C. By virtue of assumption (4), the
∞-category C/Te

has a final object Y , lying over a some object Y ∈ C. We can therefore
choose a morphism r : X → Y in the ∞-category C/Te

, having some image r : X → Y in
C. The morphism r can be identified with a diagram ∆1 ⋆ Spine[Z]→ C, which we display
informally as

X

r

��
Y

i(−1)

~~

i(0)

��

i(1)

  
· · · // X

e // X
e // X

e // · · ·

By construction, the restriction of this diagram to the middle column witnesses the equality
[i(0)] ◦ [r] = [e] in the homotopy category hC. To show that the homotopy class [e] is a
split idempotent, it will suffice to show that [r] ◦ [i(0)] is the identity morphism [idY ] in the
homotopy category hC. Since the morphism [i(0)] admits a left inverse, it will suffice to
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show that equality holds after postcomposition with [i(0)]. This follows from the calculation

[i(0)] ◦ ([r] ◦ [i(0)]) = ([i(0)] ◦ [r]) ◦ [i(0)]
= [e] ◦ [i(0)]
= [e] ◦ ([e] ◦ [i(−1)])
= ([e] ◦ [e]) ◦ [i(−1)]
= [e] ◦ [i(−1)]
= [i(0)].

Corollary 8.5.7.5. 0420Let C be an ∞-category which admits sequential limits and colimits, and
let e : X → X be an endomorphism in C. Then e is idempotent if and only if it is homotopy
idempotent and the composite map

lim←−(· · · → X
e−→ X → · · · )→ X → lim−→(· · · → X

e−→ X → · · · )

is an isomorphism (see Definition 8.5.6.14).

Proof. This is a special case of Proposition 8.5.7.4, together with the observation that every
idempotent in C is split (Proposition 8.5.6.12).

Let us now present a sample application of Proposition 8.5.7.4.

Corollary 8.5.7.6. 0421Let X be a connected Kan complex and let x ∈ X be a vertex. Then
every homotopy idempotent endomorphism e : (X,x) → (X,x) in the ∞-category S∗ is
(split) idempotent.

Proof. Without loss of generality, we may assume that the morphism e is obtained from
a morphism (X,x) → (X,x) in the ordinary category of pointed Kan complexes (see
Proposition 5.5.3.8). Then the diagram Te : Spine[Z] → S∗ of Notation 8.5.6.11 lifts to a
functor of ordinary categories F : (Z,≤)→ Kan∗, which we display as

· · · → (X,x) e−→ (X,x) e−→ (X,x) e−→ (X,x) e−→ (X,x)→ · · ·

Let us abuse notation by identifying F with its image in the category of Kan complexes
Kan. Applying Variant 7.5.3.6, we can choose a levelwise homotopy equivalence α : F → G ,
where G : (Z,≤) → Kan is an isofibrant diagram of Kan complexes. Note that we can
also regard G as a diagram of pointed Kan complexes, by equipping each G (n) with the
base point yn = α(n)(x). Let us extend G to a functor G± : (Z∪{−∞,∞},≤)→ Kan∗ by
setting G±(−∞) = lim←−(G ) and G±(∞) = lim−→(G ), where the limit and colimit are formed in
the category of (pointed) simplicial sets; we denote the base points of G±(−∞) and G±(∞)
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by y−∞ and y∞, respectively. Passing to nerves, the functor G± determines a diagram
S : {−∞} ⋆ Spine[Z] ⋆ {∞} → S∗.

Let U : S∗ → S be the forgetful functor (given on objects by U(X,x) = X). Since
the diagram G is isofibrant and the inclusion Spine[Z] ↪→ N•(Z) is left cofinal (Remark
8.5.4.14), the restriction (U ◦ S)|{−∞}⋆Spine[Z] is a limit diagram in the ∞-category S
(Corollary 7.5.4.7). Applying Corollary 7.1.3.20, we see that S|{−∞}⋆Spine[Z] is a limit
diagram in the ∞-category S∗. Since the ∞-category N•(Z) is filtered and the inclusion
Spine[Z] ↪→ N•(Z) is right cofinal, the restriction (U ◦ S)|Spine[Z]⋆{∞} is a colimit diagram
in the ∞-category S (Corollary 7.5.9.3). Since the spine Spine[Z] is weakly contractible
(Remark 8.5.4.15), it follows that S|Spine[Z]⋆{∞} is a colimit diagram in the ∞-category
S∗. Moreover, the natural transformation α induces an isomorphism Te → S|Spine[Z] in the
∞-category Fun(Spine[Z],S∗). It follows that the morphism e is idempotent if and only if
the composition

∆1 ≃ {−∞} ⋆ {∞} ↪→ {−∞} ⋆ Spine[Z] ⋆ {∞} S−→ S∗

is an isomorphism in S∗: that is, if and only if the map of Kan complexes

θ : G±(−∞) = lim←−(G )→ lim−→(G ) = G±(∞)

is a homotopy equivalence of (pointed) Kan complexes (Corollary 8.5.7.6).
Since each G (n) is a connected Kan complex, it follows that the colimit lim−→(G ) is also

connected. By virtue of Theorem 3.2.7.1, it will suffice to show that, for every integer d ≥ 0,
θ induces a bijection πd(lim←−(G ), y−∞)→ πd(lim−→(G ), y∞) (note that, in the case d = 0, this
guarantees that the Kan complex lim←−(G ) is also connected, so that a similar conclusion
holds for any choice of base point). Let ←−G denote the diagram of sets

· · · → πd(G (−1), y−1)→ πd(G (0), y0)→ πd(G (1), y1)→ · · ·

Note that α determines an isomorphism of ←−G with the diagram

· · · → πd(X,x) fd−→ πd(X,x) fd−→ πd(X,x)→ · · ·

where each of the transition maps is induced by e. Since e is homotopic to e ◦ e (in the
homotopy category of pointed Kan complexes), it follows that fd = fd ◦ fd, so that the
tautological map v : lim←−(←−G)→ lim−→(←−G) is a bijection. Unwinding the definition, we see that
πd(θ) factors as a composition

πd(lim←−
n

G (n), y∞) u−→ lim←−
n

πd(G (n), yn)) v−→ lim−→
n

πd(G (n), yn) w−→ πd(G (∞), y∞),

where the map w is also bijective (Remark 3.2.2.16). It will therefore suffice to show that
the map u is bijective. By virtue of the Milnor exact sequence (Proposition [?]), this is
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equivalent to the assertion that the set

lim←−
1(· · · → πd+1(G (−2), y−2)→ πd+1(G (−1), y−1)→ πd+1(G (0), y0))

has a single element. This is a special case of Proposition [?], since the inverse system of
groups

· · · → πd+1(X,x) fd+1−−−→ πd+1(X,x) fd+1−−−→ πd+1(X,x)

is Mittag-Leffler (since fd+1 is idempotent, its image coincides with the image of fnd+1 for
every integer n > 0).

Corollary 8.5.7.7. 0422Let X be a connected Kan complex and let e : X → X be a homotopy
idempotent endomorphism in the ∞-category S. Then e is idempotent if and only if it can
be lifted to a homotopy endomorphism endomorphism ẽ : (X,x)→ (X,x) in the ∞-category
S∗.

Proof. Let ẽ : (X,x) → (X,x) be a lift of e to a morphism in the ∞-category S∗. If ẽ is
homotopy idempotent, then it is idempotent (Corollary 8.5.7.6), so that e is also idempotent.
For the converse, suppose that e is idempotent: that is, it can be extended to a functor
F : N•(Idem)→ C. Since the ∞-category S admits small colimits (Corollary 7.4.5.6), the
idempotent F splits. Consequently, there is a retraction diagram

0423X

r

��
Y

i

??

idY // Y

(8.59)

in the ∞-category of spaces S, where e is homotopic to the composition (i ◦ r) : X → X.
Fix vertices x ∈ X and y ∈ Y . Since X is connected, we can lift i to a morphism
ĩ : (Y, y)→ (X,x) in the ∞-category S∗ (see Example 5.5.3.4). Since the forgetful functor
S∗ → S is a left fibration, we can lift (8.59) to a retraction diagram

(X,x)

r̃

""
(Y, y)

ĩ

<<

id // (Y, y)

in the ∞-category S∗. It follows that e can be lifted to a (split) homotopy idempotent in
S∗, given by any composition of r̃ with ĩ.
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Exercise 8.5.7.8.0424 Let (X,x) be a pointed Kan complex and let e : X → X be a morphism
from X to itself. Show that:

• If X is connected, then e can be lifted to a morphism ẽ : (X,x) → (X,x) in the
∞-category S∗.

• If X is simply connected, then e is homotopy idempotent (in the ∞-category S) if and
only if ẽ is homotopy idempotent (in the ∞-category S∗).

In particular, if X is simply connected, then every homotopy idempotent e : X → X is
(split) idempotent (Corollary 8.5.7.7).

In the situation of Exercise 8.5.7.8, the simple connectivity assumption on X cannot be
omitted. That is, not every homotopy idempotent in the ∞-category S is split. We present
a counterexample, due originally to Freyd and Heller (see [21]).

Definition 8.5.7.9 (Dyadic Homeomorphisms).0425 Recall that a dyadic rational number is
a real number of the form a

2n , where a and n are integers. Let s, t ≥ 0 be dyadic rational
numbers. We say that a homeomorphism f : [0, s] ∼−→ [0, t] is dyadic if it satisfies the following
conditions:

• The function f is piecewise linear; in particular, it is differentiable away from finitely
many points of the closed interval [0, s].

• If x ∈ [0, s] is a point where f is not differentiable, then x is a dyadic rational number.

• For every point x ∈ [0, s] where f is differentiable, the derivative f ′(x) is equal to 2n
for some integer n.

Note that the third condition implies that the homeomorphism f is strictly increasing, so
that f(0) = 0 and f(s) = t.

Exercise 8.5.7.10 (Inverses of Dyadic Homeomorphisms).0426 Let s, t ≥ 0 be dyadic rational
numbers and let f : [0, s] ∼−→ [0, t] be a dyadic homeomorphism. Show that the inverse
homeomorphism f−1 : [0, t] ∼−→ [0, s] is also dyadic.

Exercise 8.5.7.11 (Composition of Dyadic Homeomorphisms).0427 Let s, t, u ≥ 0 be dyadic
rational numbers and let f : [0, s] ∼−→ [0, t] and g : [0, t] ∼−→ [0, u] be dyadic homeomorphisms.
Show that the composition (g ◦ f) : [0, s] ∼−→ [0, u] is also a dyadic homeomorphism.

Definition 8.5.7.12 (The Thompson Group).0428 Let AutDy([0, 1]) denote the collection of
all dyadic homeomorphisms from the unit interval [0, 1] to itself. It follows from Exercises
8.5.7.10 and 8.5.7.11 that AutDy([0, 1]) has the structure of a group (where the group law is
given by composition of homeomorphisms). We will refer to AutDy([0, 1]) as the Thompson
group.
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Construction 8.5.7.13 (Speeding Up). 0429Let f : [0, 1]→ [0, 1] be an orientation-preserving
homeomorphism. We define α(f) : [0, 1]→ [0, 1] by the formula

α(f)(x) =

f(2x)/2 if 0 ≤ x ≤ 1/2
x if 1/2 ≤ x ≤ 1.

Then α(f) is also an orientation-preserving homeomorphism of [0, 1] with itself. Moreover, if
f is dyadic, then α(f) is also dyadic. It follows that the construction f 7→ α(f) determines
a group homomorphism α from the Thompson group AutDy([0, 1]) to itself.

Proposition 8.5.7.14. 042ALet AutDy([0, 1]) be the Thompson group of Definition 8.5.7.12 and
let X = B•AutDy([0, 1]) denote its classifying simplicial set (Construction 1.3.2.5). Then the
homomorphism α of Construction 8.5.7.13 induces a homotopy idempotent endomorphism
e : X → X in the ∞-category S.

Proof. We wish to show that the diagram of Kan complexes

X

e

  
X

e

>>

e // X

commutes up to homotopy. By virtue of Proposition 1.5.3.3, this is equivalent to the assertion
that the homomorphisms α, α2 : AutDy([0, 1])→ AutDy([0, 1]) are conjugate: that is, there
exists an element g ∈ AutDy([0, 1]) satisfying the identity α(f) ◦ g = g ◦ α2(f) for every
element f ∈ AutDy([0, 1]). Concretely, we can take g to be any dyadic homeomorphism
satisfying the identity g(x) = 2x for 0 ≤ x ≤ 1/4.

We now show that the homotopy idempotent of Proposition 8.5.7.14 cannot be refined
to an idempotent in the ∞-category S.

Proposition 8.5.7.15. 042BLet X = B•AutDy([0, 1]). Then homotopy idempotent endomor-
phism e : X → X of Proposition 8.5.7.14 is not idempotent.

Proof. Let x denote the unique vertex of X. Suppose, for a contradiction, that e is
idempotent. Then we can lift e to a homotopy idempotent morphism ẽ : (X,x) → (X,x)
in the ∞-category S∗ (Corollary 8.5.7.7). Passing to fundamental groups, we obtain an
idempotent homomorphism β from the Thompson group Aut(Dy([0, 1]) = π1(X,x) to itself.
Since the forgetful functor S∗ → S carries ẽ to e, β is conjugate to the homomorphism α of
Construction 8.5.7.13. Since α is a monomorphism, it follows that β is also a monomorphism.
The equation β2 = β then implies that β is the identity map. This is a contradiction, since
β is conjugate to the homomorphism α (which is not the identity morphism).
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8.5.8 Partial Idempotents

042C Let Idem denote the category introduced in Construction 8.5.2.7. For each integer n ≥ 0,
we let N≤n(Idem) denote the n-skeleton of the simplicial set N•(Idem) (see Variant 1.3.1.6).
If C is an ∞-category, we will refer to a morphism N≤n(Idem)→ C as a partial idempotent
in C.

Example 8.5.8.1.042D The simplicial set N≤0(Idem) is isomorphic to the standard simplex ∆0.
Consequently, if C is an ∞-category, then a morphism N≤0(Idem) → C can be identified
with an object X ∈ C.

Example 8.5.8.2.042E The simplicial set N≤1(Idem) can be identified with the simplicial circle
∆1/ ∂∆1, obtained from the standard simplex ∆1 by identifying its endpoints. Consequently,
if C is an ∞-category, then a morphism N≤1(Idem)→ C can be identified with a pair (X, e),
where X is an object of C and e is an endomorphism of X.

Example 8.5.8.3.042F Let C be an ∞-category. Then a morphism N≤2(Idem) → C can be
identified with a triple (X, e, σ), where X is an object of C, e : X → X is an endomorphism
of X, and σ is a 2-simplex of C with boundary indicated in the diagram

X

e

  
X

e

??

e // X,

so that σ witnesses the identity [e] = [e] ◦ [e] in the homotopy category hC.

Let C be an ∞-category and let e : X → X be an endomorphism in C, which we identify
with a morphism F≤1 : N≤1(Idem)→ C. The endomorphism e is homotopy idempotent (in
the sense of Definition 8.5.7.1) if and only if F≤1 admits an extension F≤2 : N≤2(Idem)→ C.
Proposition 8.5.7.15 shows that this condition does not guarantee the existence of an
idempotent F : N•(Idem) → C extending F≤1. Our goal in this section is to show that a
slightly stronger condition does suffice: namely, it is enough to assume that F≤1 can be
extended to a diagram F≤3 : N≤3(Idem)→ C. This is a consequence of the following:

Theorem 8.5.8.4.042G Let n ≥ 3 be an integer. The inclusion map N≤n(Idem) ↪→ N•(Idem)
admits a factorization

N≤n(Idem) ι−→ E U−→ N•(Idem),

where E is an ∞-category, ι is an inner anodyne morphism which is bijective on simplices
of dimension < n, and the functor U admits a right inverse V : N•(Idem)→ E.
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Remark 8.5.8.5. 042HIn the situation of Theorem 8.5.8.5, we can regard ι and V |N≤n(Idem) as
morphisms from N≤n(Idem) to E . By construction, these morphisms coincide after composing
with the functor U : E → N•(Idem). Since U is bijective on simplices of dimensions < n, it
follows that ι and V |N≤n(Idem) coincide when on the (n− 1)-skeleton of N•(Idem). Beware
that ι and V do not coincide on the nondegenerate n-simplex of N•(Idem). In fact, we claim
that ι and V |N≤n(Idem) are not even isomorphic when viewed as an object of the ∞-category
Fun(N≤n(Idem), E). Assume, for a contradiction, that there exists an isomorphism α of
ι = idE ◦ι with V |N≤n(Idem) = (V ◦ U) ◦ ι. Since ι is inner anodyne, we could then lift
α to an isomorphism α̃ : idE → V ◦ U in the ∞-category Fun(N•(Idem), C). It would
follow that U is an equivalence of ∞-categories (with homotopy inverse given by V ). Then
(U ◦ ι) : N≤n(Idem)→ N•(Idem) would be a categorical equivalence of simplicial sets, which
contradicts Remark 8.5.4.18.

We will give the proof of Theorem 8.5.8.4 at the end of this section. First, let us record
some consequences.

Corollary 8.5.8.6. 042JLet n ≥ 3 be an integer, and let C be an ∞-category equipped with a
partial idempotent F<n : N≤n−1(Idem)→ C. The following conditions are equivalent:

(1) The morphism F<n extends to an idempotent F : N•(Idem)→ C.

(2) The morphism F<n extends to a partial idempotent F≤n : N≤n(Idem)→ C.

Proof. The implication (1) ⇒ (2) is immediate. To prove the converse, suppose that
F≤n : N≤n(Idem)→ C is an extension of F<n. Let ι : N≤n(Idem) ↪→ E , U : E → N•(Idem),
and V : N•(Idem)→ E be as in Theorem 8.5.8.4. Since ι is inner anodyne, we can choose a
functor F : E → C satisfying F ◦ ι = F≤n. Then F = F ◦ V is a functor from N•(Idem) to C,
and Remark 8.5.8.5 shows that F coincides with F<n on the (n−1)-skeleton of N•(Idem).

Warning 8.5.8.7. 042KLet C be an ∞-category and let F≤n : N≤n(Idem) → C be a partial
idempotent in C. Corollary 8.5.8.6 asserts that, if n ≥ 3, then we can choose an idempotent
F : N•(Idem)→ C such that F and F≤n coincide on the (n− 1)-skeleton N•(Idem). Beware
that we generally cannot arrange that F |N≤n(Idem) coincides with F≤n. For example, this
always fails in the (universal) case F≤n is the inner anodyne morphism ι : N≤n(Idem) ↪→ E
of Theorem 8.5.8.4 (see Remark 8.5.8.5).

Corollary 8.5.8.8. 042LLet C be an ∞-category and let e : X → X be an endomorphism in C.
Then e is idempotent if and only if it can be extended to a diagram N≤3(Idem)→ C.

Corollary 8.5.8.9. 042MLet {Ci}i∈I be a diagram of simplicial sets indexed by a filtered category
I. Suppose that each Ci is an ∞-category. Then the tautological map

θ : lim−→
i∈I

Fun(N•(Idem), Ci)→ Fun(N•(Idem), lim−→
i∈I
Ci)
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is an equivalence of ∞-categories.

Proof. Choose any integer n ≥ 3, and let ι : N≤n(Idem) ↪→ E , U : E → N•(Idem), and
V : N•(Idem) → E be as in Theorem 8.5.8.4. We then have a commutative diagram of
∞-categories

lim−→Fun(N•(Idem), Ci) ◦V //

θ

��

lim−→Fun(E , Ci)

θ′

��

◦U // lim−→Fun(N•(Idem), Ci)

θ

��
Fun(N•(Idem), lim−→Ci)

◦V // Fun(E , lim−→Ci)
◦U // Fun(N•(Idem), lim−→Ci),

where the horizontal compositions are identity morphisms. Consequently, to show that θ is
an equivalence of∞-categories, it will suffice to show that θ′ is an equivalence of∞-categories
(Proposition 8.5.1.7). The functor θ′ fits into a commutative diagram

lim−→Fun(E , Ci) ◦ι //

θ′

��

lim−→Fun(N≤n(Idem), Ci)

θ′′

��
Fun(E , lim−→Ci)

◦ι // Fun(N≤n(Idem), lim−→(Ci)).

Since ι is inner anodyne, the horizontal maps are trivial Kan fibrations (Proposition 1.5.7.6).
We conclude by observing that θ′′ is an isomorphism of simplicial sets, since the simplicial
set N≤n(Idem) is finite (Corollary 3.6.1.10).

Corollary 8.5.8.10.042N Let {Ci}i∈I be a diagram of simplicial sets indexed by a filtered category
I. Suppose that each Ci is an idempotent complete ∞-category. Then the colimit C = lim−→i

Ci
is idempotent complete.

Proof. For each object i ∈ I, our assumption that Ci is idempotent complete guarantees
that the restriction functor Ri : Fun(N•(Ret), Ci)→ Fun(N•(Idem), Ci) is an equivalence of
∞-categories (Remark 8.5.4.8). Passing to filtered colimits, we deduce that the induced map
lim−→Fun(N•(Ret), Ci)→ Fun(N•(Idem), Ci) is also an equivalence of ∞-categories (Corollary
4.5.7.2). This map fits into a commutative diagram

lim−→Fun(N•(Ret), Ci) //

��

Fun(N•(Ret), C)

R

��
lim−→Fun(N•(Idem), Ci) // Fun(N•(Idem), C),
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where the horizontal maps are equivalences of ∞-categories (Corollaries 8.5.8.9 and 8.5.1.32).
It follows that the restriction functor R : Fun(N•(Ret), C) → Fun(N•(Idem), C) is also an
equivalence of ∞-categories, so that C is idempotent complete (Remark 8.5.4.8).

Corollary 8.5.8.11. 042PLet C be a small filtered ∞-category and let F : C → QC be a functor.
Suppose that, for every object C ∈ C, the ∞-category F (C) is idempotent complete. Then
the colimit lim−→(F ) (formed in the ∞-category QC) is also idempotent complete.

Proof. Using Theorem 7.2.7.2, we can choose a directed partially ordered set (A,≤) and
a right cofinal functor N•(A) → C. Using Corollary 7.2.2.3 we can replace C by N•(A)
and thereby reduce to the case where C is (the nerve of) a directed partially ordered set.
Replacing F by an isomorphic functor if necessary, we can assume that it obtained from
an A-indexed diagram in the ordinary category QCat (Corollary 5.6.5.16). In this case,
the colimit lim−→(F ) in the ∞-category QC can be identified with its colimit in the ordinary
category QCat ⊂ Set∆ (Corollary 7.5.9.3), so the desired result follows from Corollary
8.5.8.10.

We now turn to the proof of Theorem 8.5.8.4. The existence of an inner anodyne
morphism ι : N≤n(Idem)→ E which is bijective on simplices of dimension < n is essentially
formal, by virtue of the following variant of Corollary 4.1.3.3:

Lemma 8.5.8.12. 042QLet n ≥ 0 be an integer and let K be a simplicial set which satisfies the
following condition for 0 ≤ m ≤ n:

(∗m) For every integer 0 < i < m, every morphism of simplicial sets σ : Λm
i → K can be

extended to an m-simplex of K.

Then there exists an inner anodyne morphism ι : K ↪→ E, where E is an ∞-category and ι is
bijective on simplices of dimension < n.

Proof. We construct E as the colimit of a sequence of inner anodyne maps

K = K(0) ↪→ K(1) ↪→ K(2) ↪→ K(3) ↪→ · · ·

Assume that K(t) has been constructed for some t ≥ 0, and let S be the collection of all
maps σ : Λmi → K(t) where 0 < i < m and m > n. For every σ ∈ S, let us write Cσ for the
simplicial set Λmi which is the source of σ, and Dσ for the simplex ∆m. We then construct a
pushout diagram of simplicial sets∐

σ∈S Cσ
//

��

K(t)

��∐
σ∈S Dσ

// K(t+ 1).
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By construction, the morphism K(t)→ K(t+ 1) is inner anodyne and bijective on simplices
of dimension < n. To complete the proof, it will suffice to show that the colimit E = lim−→t

K(t)
is an ∞-category. Fix a pair of integers 0 < i < m and a morphism σ : Λmi → E ; we wish to
show that σ can be extended to an m-simplex of E . Since Λm

i is a finite simplicial set, σ
factors (uniquely) through K(t) for some integer t≫ 0. By construction, if m > n then σ

can be extended to an m-simplex of K(t+ 1). We may therefore assume that m ≤ n. In
this case, we can take k = 0, in which case the existence of the desired extension follows
from assumption (∗m).

Example 8.5.8.13.042R Let C be an ∞-category. For every integer n ≥ 0, the skeleton skn(C)
satisfies condition (∗m) of Lemma 8.5.8.12 for 0 ≤ m ≤ n. We can therefore choose an inner
anodyne morphism ι : skn(C) ↪→ E , where E is an ∞-category and f is bijective on simplices
of dimension < n.

In what follows, we will write X for the unique object of the category Idem, and
e : X → X for the unique non-identity morphism. The main content of Theorem 8.5.8.4 is
contained in the following result:

Proposition 8.5.8.14.042S Let E be an ∞-category and let ι : N≤3(Idem)→ E be a morphism
of simplicial sets which is bijective on simplices of dimension ≤ 2. Then ι(ẽ) is an idempotent
morphism of E.

Proof. Let us regard the linearly ordered set Z = {· · · < −2 < −1 < 0 < 1 < 2 < · · · } as a
category. Let X ∈ Fun(Z, Idem) denote the constant functor taking the value X, and let
Y ∈ Fun(Z, Idem) denote the functor which carries each non-identity morphism of Z to the
morphism ẽ of Idem. We then have natural transformations

eX : X → X i : Y → X r : X → Y eY : Y → Y

which carry each element of Z to the morphism ẽ. Note that the linearly ordered set (Z,≤) can
be identified with the homotopy category of the simplicial set Spine[Z] of Notation 8.5.4.12.
Let G : Fun(Spine[Z],N≤3(Idem)) → Fun(Spine[Z], E) be the morphism of simplicial sets
given by composition with ι. Since the simplicial set Spine[Z] is 1-dimensional, the inclusion
map

Fun(Spine[Z],N≤3(Idem)) ↪→ Fun(Spine[Z],N•(Idem)) ≃ N•(Fun(Z, Idem))

is bijective on simplices of dimension ≤ 2, and therefore induces an equivalence of homotopy
categories. It follows that G induces a functor of homotopy categories hG : Fun(Z, Idem)→
hFun(Spine[Z], E).

In what follows, we will identify the morphisms X and Y with vertices of the simplicial set
Fun(Spine[Z],N≤3(Idem)), and the morphisms i, r, eX , and eY with edges of the simplicial
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1878 CHAPTER 8. THE YONEDA EMBEDDING

set Fun(Spine[Z],N≤3(Idem)). Let δE : E → Fun(Spine[Z], E) be the diagonal map, so that
we have G(X) = δC(ι(X̃)) and G(eX) = δC(ι(ẽ)). We will deduce Proposition 8.5.8.14 from
the following:

(∗) There exists an ∞-category C and a functor T : Fun(Spine[Z], E) → C such that
(T ◦ δE) : E → C is fully faithful and (T ◦G)(eY ) is an isomorphism in C.

Let us first assume (∗), and show that it implies Proposition 8.5.8.14. We wish to show
that ι(ẽ) is an idempotent endomorphism in the ∞-category E . Since T ◦ δE is fully faithful,
this is equivalent to the statement that (T ◦ δC)(ι(ẽ)) = (T ◦ G)(eX)) is an idempotent
endomorphism in the ∞-category C. By virtue of Proposition 8.5.6.10, it will suffice to
show that the homotopy class [T (G(eX))] = (hT ◦ hG)(eX) is a split idempotent in the
homotopy category hC. By construction, the morphism eX factors as a composition i ◦ r in
the category Fun(Z, Idem). It will therefore suffice to show that the functor hT ◦ hG carries
the commutative diagram

X

r

��
Y

i

??

eY // Y

to a retraction diagram in hC: that is, that (hT ◦ hG)(eY ) is an identity morphism. This
follows from Remark 8.5.2.2, since the morphism (hT ◦hG)(eY ) is both idempotent (since eY
is an idempotent in the category Fun(Z, Idem)) and an isomorphism (by virtue of assumption
(∗)).

We now prove (∗). Using Corollary 8.3.3.17, we can choose a fully faithful functor of
∞-categories H : E → C, where the ∞-category C admits sequential colimits. Let D denote
the full subcategory of Fun(Spine[Z]▷, C) spanned by the colimit diagrams. Our assumption
that C admits sequential colimits guarantees that the restriction functor

D → Fun(Spine[Z], C) U 7→ U |Spine[Z]

is a trivial Kan fibration of ∞-categories (Corollary 7.3.6.15). Let δC : C ↪→ Fun(Spine[Z], C)
and δ̃C : C ↪→ Fun(Spine[Z]▷, C) be the diagonal embeddings. Since the simplicial set
Spine[Z] is weakly contractible, the morphism δ̃C factors through D (Corollary 7.2.3.5). Let
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s : Fun(Spine[Z], C)→ D be a solution to the lifting problem

C

δC

��

δ̃C // D

U 7→U |Spine[Z]

��
Fun(Spine[Z], C) id //

s

77

Fun(Spine[Z], C).

Let ev : D → C be the functor given by evaluation at the cone point of Spine[Z]▷. We let
T : Fun(Spine[Z], E)→ C denote the functor given by the composition

Fun(Spine[Z], E) H◦−−→ Fun(Spine[Z], C) s−→ Fun(Spine[Z]▷, C) ev−→ C .

Stated more informally, the functor T carries a diagram

· · · → C−2 → C−1 → C0 → C1 → C2 → · · ·

in the ∞-category E to a colimit of the diagram

· · · → H(C−2)→ H(C−1)→ H(C0)→ H(C1)→ H(C2)→ · · ·

in the ∞-category C. By construction, T ◦ δE coincides with the fully faithful functor H.
We now complete the proof by showing that the functor T carriesG(eY ) to an isomorphism

in C. Let us regard G(Ỹ ) as a diagram Spine[Z]→ E . Since the inclusion Spine[Z] ↪→ N•(Z)
is inner anodyne (Remark 8.5.4.14), we can extend G(Y ) to a functor C : N•(Z)→ E . Let
a : {0 < 1} × Z → Z be the morphism of partially ordered sets given by a(i, n) = i + n.
Passing to nerves, we obtain a morphism of simplicial sets A : ∆1 ×N•(Z)→ N•(Z). The
composition M = C ◦A then corresponds to a diagram in E which we display informally as

· · · // ι(X̃) ι(ẽ) //

ι(ẽ)

��

ι(X̃) ι(ẽ) //

ι(ẽ)

��

ι(X̃) ι(ẽ) //

ι(ẽ)

��

· · ·

· · · // ι(X̃) ι(ẽ) // ι(X̃) ι(ẽ) // ι(X̃) ι(ẽ) // · · ·

Let f denote the restriction M |∆1×Spine[Z], which we regard as a morphism in the∞-category
Fun(Spine[Z], E). Since ι is bijective on simplices of dimension ≤ 2 and the simplicial set
Spine[Z] has dimension ≤ 1, the morphism G is bijective on simplices of dimension ≤ 1. We
can therefore write f = G(f0) for a unique edge f0 of Fun(Spine[Z],N≤3(Idem)). It follows
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by inspection that f0 must coincide with e
Ỹ

. We are therefore reduced to showing that T (f)
is an isomorphism in the ∞-category C.

Since the ∞-category C admits sequential colimits, we can extend (H ◦ C) : N•(Z)→ C
to a colimit diagram C : N•(Z)▷ → C. Note that A extends uniquely to a morphism of
simplicial sets A : ∆1 ×N•(Z)▷ → N•(Z)▷ (given on vertices by A(i, v) = v, where v is the
cone point of N•(Z)▷). Let us identify the restriction (C ◦A)|∆1×Spine[Z]▷ with a morphism
f : D → D′ in the ∞-category Fun(Spine[Z]▷, C). Since the inclusion Spine[Z] ↪→ N•(Z)
is right cofinal (Proposition 7.2.1.3), both D and D′ are colimit diagrams in D (Corollary
7.2.2.3). Consequently, we can view f as a morphism in the ∞-category D. By construction,
the restriction functor D → Fun(Spine[Z], C) carries f to H(f). It follows that T (f) =
(ev ◦s ◦H)(f) is isomorphic to ev(f) as an object of the ∞-category Fun(∆1, C). We are
therefore reduced to showing that ev(f) is an isomorphism in C. This is clear: the morphism
ev(f) is an identity morphism in C, since the functor A carries ∆1 × {v} to a degenerate
edge of N•(Z)▷.

Proof of Theorem 8.5.8.4. Fix an integer n ≥ 0. Using Example 8.5.8.13, we can choose an
∞-category E and an inner anodyne morphism ι : N≤n(Idem) ↪→ E which is bijective on
simplices of dimension < n. Since ι is inner anodyne, there is a unique functor U : E →
N•(Idem) for which U ◦ ι is coincides with the inclusion map N≤n(Idem) ↪→ N•(Idem). If
n ≥ 3, then Proposition 8.5.8.14 guarantees that ι(ẽ) is an idempotent endomorphism in
E : that is, there exists a functor V : N•(Idem) → E satisfying V (ẽ) = ι(ẽ). To complete
the proof, it will suffice to show that the composition N•(Idem) V−→ E U−→ N•(Idem) is the
identity functor. This follows from the universal property of Remark 8.5.2.8 (together with
Proposition 1.3.3.1), it since the functor U ◦ V carries the morphism e to itself.

8.5.9 The Thompson Groupoid

042TIn §8.5.7, we constructed an example of a homotopy idempotent endomorphism e : X →
X which is not idempotent. Our construction (following Heller and Freyd) involved the
Thompson group AutDy([0, 1]). Our goal in this section is to show that this is no coinci-
dence: there is a universal example of an ∞-category C containing a homotopy idempotent
endomorphism, whose structure can be described explicitly in terms of AutDy([0, 1]). We
begin with a variant of Definition 8.5.7.12.

Definition 8.5.9.1 (The Thompson Groupoid). 042UWe define a category Dy as follows:

• The objects of Dy are closed intervals of the form [0, s], where s ≥ 0 is a dyadic rational
number.

• If s, t ≥ 0 are dyadic rational numbers, then a morphism from [0, s] to [0, t] in the
category Dy is a dyadic homeomorphism [0, s] ∼−→ [0, t] (see Definition 8.5.7.9).
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• The composition law on Dy is given by composition of dyadic homeomorphisms (which
is well-defined by virtue of Exercise 8.5.7.11).

It follows from Exercise 8.5.7.10 that the category Dy is a groupoid. We will refer to Dy as
the Thompson groupoid.

Remark 8.5.9.2.042V The Thompson groupoid Dy contains exactly two isomorphism classes:

• The isomorphism class of the degenerate interval [0, 0] = {0}, whose automorphism
group is the trivial group.

• The isomorphism class of the unit interval [0, 1], whose automorphism group is the
Thompson group AutDy([0, 1]) of Definition 8.5.7.12.

By virtue of Remark 8.5.9.2, the Thompson groupoid Dy is equivalent to the full
subcategory spanned by the objects {0} and [0, 1], which can be described explicitly in terms
of the Thompson group AutDy([0, 1]). However, allowing a larger class of intervals in the
definition reveals some additional structure.

Construction 8.5.9.3 (Concatenation).042W Let Dy denote the Thompson groupoid. We define
a functor ⊛ : Dy×Dy→ Dy as follows:

• On objects, the functor ⊛ is given by the formula

[0, s] ⊛ [0, t] = [0, s+ t].

• On morphisms, the functor ⊛ is given by the formula

(f ⊛ g)(x) =

g(x) if 0 ≤ x ≤ t
f(x− t) + s if t ≤ x ≤ s+ t.

We will refer to ⊛ : Dy × Dy → Dy as the concatenation functor on the Thompson
groupoid Dy. Note that the operation ⊛ is strictly associative, and admits a (strict) unit
given by the degenerate interval {0} = [0, 0]. Consequently, ⊛ determines a strict monoidal
structure on the category Dy (in the sense of Definition 2.1.2.1).

Notation 8.5.9.4.042X Let BDy denote the (strict) 2-category obtained by delooping Dy (see
Example 2.2.0.8). Since Dy is a groupoid, BDy is a (2, 1)-category. It follows that the Duskin
nerve ND

• (BDy) is an ∞-category (Theorem 2.3.2.1). We can describe the low-dimensional
simplices of ND

• (BDy) explicitly as follows:

• The ∞-category ND
• (BDy) has a unique object, which we will denote by X.
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• Morphisms from X to itself in the ∞-category ND
• (BDy) can be identified with

nonnegative dyadic rational numbers s (corresponding to the closed interval [0, s],
regarded as an object of the Thompson groupoid Dy).

• Suppose we are given dyadic rational numbers s, t, u ≥ 0. Then 2-simplices of ND
• (BDy)

with boundary indicated in the diagram

X

s

��
X

t

??

u // X

can be identified with dyadic homeomorphisms [0, s+ t] ∼−→ [0, u].

Let e : X → X denote the morphism in ND
• (BDy) corresponding to the object [0, 1] ∈ Dy,

and let σ be the 2-simplex of ND
• (BDy) corresponding to the dyadic homeomorphism

[0, 1] ⊛ [0, 1] = [0, 2] ∼−→ [0, 1] x 7→ x/2.

Then the triple (X, e, σ) can then be viewed as a partial idempotent ι : N≤2(Idem) →
ND
• (BDy) (see Example 8.5.8.3).

We can now formulate our main result:

Theorem 8.5.9.5. 042YThe partial idempotent ι : N≤2(Idem)→ ND
• (BDy) of Notation 8.5.9.4

is a categorical equivalence of simplicial sets.

Corollary 8.5.9.6. 042ZLet C be an ∞-category. Then composition with the partial idempotent
ι of Notation 8.5.9.4 induces a trivial Kan fibration of ∞-categories

Fun(ND
• (BDy), C)→ Fun(N≤2(Idem), C).

Proof. Combine Theorem 8.5.9.5 with Corollary 4.5.5.19 (noting that ι is a monomorphism
of simplicial sets).

Corollary 8.5.9.7. 0430Let C be an ∞-category containing an endomorphism e : X → X. Then
e is homotopy idempotent if and only if there is a functor of ∞-categories F : ND

• (BDy)→ C
satisfying F (e) = e.

Example 8.5.9.8. 0431Let Dy>0 denote the full subcategory of the Thompson groupoid Dy
spanned by the intervals [0, s] where s > 0. Note that the action of Dy on itself (via
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concatenation) restricts to an action of Dy on the groupoid Dy>0, and therefore determines
a (strict) functor of 2-categories

BDy→ {Groupoids} X 7→ Dy>0.

Passing to nerves, we obtain a functor of ∞-categories

ND
• (BDy)→ S X 7→ N•(Dy>0),

which carries the 1-morphism e of BDy to the homotopy idempotent endomorphism

N•(Dy>0)→ N•(Dy>0) [0, s] 7→ [0, 1] ⊛ [0, s] = [0, 1 + s].

Note that, up to isomorphism, this coincides with the homotopy idempotent endomorphism
constructed in Proposition 8.5.7.14; this follows from the observation that the diagram of
categories

BAutDy([0, 1]) α //

∼

��

BAutDy([0, 1])

∼

��
Dy>0

[0,1]⊛ // Dy>0

commutes up to isomorphism (where the vertical maps are the inclusion functors and α is
the homomorphism of Construction 8.5.7.13).

Our first goal is to reduce Theorem 8.5.9.5 to a more concrete statement about simplicial
monoids.

Notation 8.5.9.9.0432 Let N≤2(Idem) denote the simplicial set described in Example 8.5.8.3.
By virtue of Proposition 2.4.4.3, we can choose a simplicial category C and a morphism
of simplicial sets u : N≤2(Idem) → Nhc

• (C) which exhibits C as a simplicial path category
for N≤2(Idem). The morphism u carries the unique vertex X̃ of N≤2(Idem) to an object
X ∈ C. Set E• = HomC(X,X)•, which we regard as a simplicial monoid. Evaluating the
morphism u on the nondegenerate edge ẽ of N≤2(Idem), we obtain a morphism e : X → X

in the category C, which we can view as a vertex of the simplicial set E•. Evaluating the
morphism u on the nondegenerate 2-simplex of N≤2(Idem), we obtain an edge h : e2 → e in
the simplicial monoid E•.

Let N•(Dy) denote the nerve of the Thompson groupoid. The concatenation functor of
Notation 8.5.9.4 endows N•(Dy) with the structure of a simplicial monoid. We let BN•(Dy)
denote the simplicial category given by delooping N•(Dy) (Example 2.4.2.3), so that the
homotopy coherent nerve of BN•(Dy) can be identified with the Duskin nerve of the strict
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2-category BDy (see Example 2.4.3.11). It follows that the partial idempotent ι of Notation
8.5.9.4 can be identified with a morphism from N≤2(Idem) to Nhc

• (BN•(Dy)), which factors
unique as a composition

N≤2(Idem) u−→ Nhc
• (C) Nhc

• (F )−−−−→ Nhc
• (BN•(Dy))

for some simplicial functor F : C → BN•(Dy), which we can identify with a homomorphism
of simplicial monoids

φ : E• = HomC(X,X)• F−→ HomBN•(Dy)(F (X), F (X))• = N•(Dy).

By construction, the homomorphism φ carries the vertex e to the object [0, 1] ∈ Dy, and the
edge h : e2 → e to the dyadic homeomorphism

[0, 1] ⊛ [0, 1] = [0, 2] ∼−→ [0, 1] x 7→ x/2.

Remark 8.5.9.10. 0433Using the universal property of the path category C = Path[N≤2(Idem)]•,
it is not difficult to see that E• is freely generated (as a simplicial monoid) by the vertex e and
the edge h : e2 → e. In particular, the homomorphism of simplicial monoids φ : E• → N•(Dy)
is uniquely determined by the requirement that it carries e to the unit interval [0, 1] ∈ Dy
and h to the dyadic homeomorphism x 7→ x/2.

We will deduce Theorem 8.5.9.5 from the following:

Proposition 8.5.9.11. 0434The homomorphism φ : E• → N•(Dy) is a weak homotopy equiva-
lence of simplicial sets.

Proof of Theorem 8.5.9.5 from Proposition 8.5.9.11. We wish to show that the partial idem-
potent

ι : N≤2(Idem)→ ND
• (BDy) ≃ Nhc

• (BN•(Dy))

is a categorical equivalence of simplicial sets. Since the category Dy is a groupoid, the
simplicial monoid N•(Dy) is a Kan complex (Proposition 1.3.5.2). It follows that the simplicial
category BN•(Dy) is locally Kan. Invoking Theorem [?], we are reduced to showing that
ι induces a weak equivalence of simplicial categories F : Path[N≤2(Idem)]• → BN•(Dy),
in the sense of Definition 4.6.8.7. Write X for the unique object of the path category
Path[N≤2(Idem)]•, so that F (X) is the unique object of BN•(Dy). We are then reduced to
showing that F induces a weak homotopy equivalence of simplicial monoids

φ : E• = HomPath[N≤2(Idem)](X,X)• → HomBN•(Dy)(F (X), F (X)) = N•(Dy),

which follows from Proposition 8.5.9.11.
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We will deduce Proposition 8.5.9.11 from a more refined result, which characterizes the
simplicial monoid E• up to categorical equivalence (rather than merely up to weak homotopy
equivalence).

Notation 8.5.9.12.0435 Let m and n be nonnegative integers. We will say that a homeo-
morphism f : [0,m] ∼−→ [0, n] is a dyadic contraction if, for every integer 0 ≤ k < m, the
restriction of f to the closed interval [k, k + 1] is given by the formula f(x) = (x+ a)/2b for
some integers a and b with b ≥ 0.

We let Dy+ denote the subcategory of the Thompson groupoid Dy whose objects are
intervals of the form [0,m], where m is a nonnegative integer, and whose morphisms are
dyadic contractions.

Exercise 8.5.9.13.0436 Show that the subcategory Dy+ ⊂ Dy is well-defined: that is, the
collection of dyadic contractions is closed under composition.

Warning 8.5.9.14.0437 The category Dy+ of Notation 8.5.9.12 is not a groupoid. In fact, every
isomorphism in the category Dy+ is an identity morphism.

Proposition 8.5.9.15.0438 The homomorphism φ : E• → N•(Dy) factors as a composition

E•
φ+−−→ N•(Dy+) ⊂ N•(Dy),

where φ+ is inner anodyne.

Proof of Proposition 8.5.9.11 from Proposition 8.5.9.15. By virtue of Proposition 8.5.9.15,
it will suffice to show that the inclusion of categories Dy+ ↪→ Dy induces a weak homotopy
equivalence of simplicial sets U : N•(Dy+) ↪→ N•(Dy). Using Quillen’s Theorem A (Example
7.2.3.3), we are reduced to proving the following: for every object [0, s] ∈ Dy, the category
A = Dy+ ×Dy Dy[0,s]/ has weakly contractible nerve. We can describe the category A more
concretely as follows:

• The objects of A are dyadic homeomorphisms f : [0, s] ∼−→ [0,m], where m is an integer.

• Let f : [0, s] ∼−→ [0,m] and g : [0, s] ∼−→ [0, n] be dyadic homeomorphisms. Then there
is a morphism from f to g (in the category A) if and only if the homeomorphism
(g ◦ f−1) : [0,m]→ [0, n] is a dyadic contraction. If this condition is satisfied, then the
morphism is unique.

It follows that the category A can be viewed as a partially ordered set. Moreover, every
finite subset of A has a lower bound, given by the dyadic homeomorphism

[0, s] ∼−→ [0, 2ks] x 7→ 2kx

for some integer k ≫ 0. It follows that the category Aop is filtered (Exercise 7.2.4.2), so that
N•(A) is weakly contractible by virtue of Proposition 7.2.4.9.
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The proof of Proposition 8.5.9.15 will require some preliminaries.

Notation 8.5.9.16. 0439Let n ≥ 0 be an integer and let J be a subset of {1, 2, · · · , n}. We
let bJ : [0, n] ∼−→ [0, n + |J |] be the dyadic homeomorphism which is characterized by the
following requirement: for every integer 1 ≤ j ≤ n, the function bI is differentiable at every
point x ∈ (j − 1, j), with derivative given by the formula

b′J(x) =

1 if j /∈ J
2 if j ∈ J .

Note that, if this condition is satisfied, then the inverse homeomorphism b−1
J : [0, n+ |J |] ∼−→

[0, n] is a dyadic contraction. We say that a dyadic contraction is elementary if it has the
form b−1

J , for some integer n ≥ 0 and some subset J ⊆ {1, 2, · · · , n}.

Remark 8.5.9.17. 043ALet f : [0,m] ∼−→ [0, n] be a dyadic contraction. The following conditions
are equivalent:

• The dyadic contraction f is elementary, in the sense of Notation 8.5.9.16.

• For every point x ∈ [0,m] where f is differentiable, the derivative f ′(x) is either 1 or
1/2.

• The dyadic contraction f can be written as a concatenation f1 ⊛ f2 ⊛ · · ·⊛ fn, where
each fi is either the identity function id : [0, 1] ∼−→ [0, 1] or the homeomorphism

H : [0, 2] ∼−→ [0, 1] x 7→ x/2.

Lemma 8.5.9.18. 043BThe collection of elementary dyadic contractions is a class of short
morphisms for the ∞-category N•(Dy+), in the sense of Definition 6.2.5.4.

Proof. Let S denote the collection of all elementary dyadic contractions. We verify that S
satisfies conditions (1) through (4) of Definition 6.2.5.4:

(1) For every integer n ≥ 0, the identity morphism id : [0, n] ∼−→ [0, n] is an elementary
dyadic contraction. This is immediately from the definitions.

(2) Suppose we are given a commutative diagram of dyadic contractions

[0,m]

g

""
[0, k]

f

<<

h // [0, n].
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Assume that g and h are elementary; we wish to show that f is also elementary (in
fact, the assumption that g is elementary will not be needed). Choose a point x ∈ [0, k]
at which f is differentiable; we wish to show that f ′(x) ≥ 1/2 (see Remark 8.5.9.17).
Replacing x by a nearby point if necessary, we may assume that g is differentiable at
the point y = f(x). Since g is a dyadic contraction and h is an elementary dyadic
contraction, we have g′(y) ≤ 1 and h′(x) ≥ 1/2. Applying the chain rule, we obtain
inequalities f ′(x) ≥ f ′(x) · g′(y) = h′(x) ≥ 1/2.

(3) Let f : [0,m] ∼−→ [0, n] be a dyadic contraction. We wish to show that f admits
an S-optimal factorization (in the sense of Definition 6.2.5.1). Let P denote the
collection of all subsets {1, 2, · · · , n} having the property that the composition (bJ ◦f) :
[0,m]→ [0, n+ |J |] is a dyadic contraction; here bJ denotes the dyadic homeomorphism
introduced in Notation 8.5.9.16. Unwinding the definitions, we can identify P with
the set of factorizations f = s ◦ g, where g is a dyadic contraction and s is an
elementary dyadic contraction (the identification carries a set J ∈ P to the pair
(s, g) = (b−1

J , bJ ◦ f)). Under this identification, a factorization f = s ◦ g is S-optimal
if and only if J is a largest element of P . We conclude by observing that P has a
largest element Jmax, given by the collection of those integers j ∈ {1, 2, · · · , n} having
the property that the inverse homeomorphism f−1 has derivative ≥ 2 at every point
x ∈ [j − 1, j] where f−1 is differentiable (alternatively, Jmax can be described as the
set of integers 1 ≤ j ≤ n which satisfy f−1(j) > f−1(j − 1) + 1).

(4) Let f : [0,m]→ ∼[0, n] be a dyadic contraction. Let us define the length of f to be the
smallest nonnegative integer k such that f ′(x) ≥ 1/2k for every point x ∈ [0,m] where
f is differentiable. We claim that, if this condition is satisfied, then f can be written
as a composition s1 ◦ s2 ◦ · · · ◦ sk, where each si is an elementary dyadic contraction.
Our proof proceeds by induction on k. If k = 0, then f is an identity morphism and
there is nothing to prove. Let us therefore assume that k > 0, and let f = s1 ◦ g be
an S-optimal factorization of f . We claim that g can be written as a composition of
elementary contractions s2 ◦ · · · ◦ sk. By virtue of our inductive hypothesis, it will
suffice to show that g has length k − 1, which follows from the proof of (3).

Proof of Proposition 8.5.9.15. Let N•(Dy+)short denote the simplicial subset of N•(Dy+)
whose m-simplices are diagrams of dyadic contractions σ :

[0, n0] ∼−→ [0, n1] ∼−→ · · · ∼−→ [0, nm]

for which the composite map [0, n0] ∼−→ [0, nm] is an elementary dyadic contraction (note that
this guarantees that each intermediate composition [0, ni] ∼−→ [0, nj ] is also elementary). It
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follows from Lemma 8.5.9.18 and Theorem 6.2.5.10 that the inclusion map N•(Dy+)short ↪→
N•(Dy+) is inner anodyne. We will complete the proof by showing that the morphism
φ : E• → N•(Dy) induces of Notation 8.5.9.9 induces an isomorphism of E• with the
simplicial subset N•(Dy+)short ⊆ N•(Dy).

Fix an integer m ≥ 0, so that φ induces a monoid homomorphism φm : Em → Nm(Dy).
We wish to show that φm is a monomorphism, whose image is the subset Nm(Dy+)short ⊆
Nm(Dy). Note that Nm(Dy+)short is closed under concatenation, and therefore inherits the
structure of a monoid. Let us say that an m-simplex σ of N•(Dy+)short is indecomposable if
it corresponds to a diagram of dyadic contractions

[0, n0] ∼−→ [0, n1] ∼−→ · · · ∼−→ [0, nm]

with nm = 1. In this case, we define the index of σ to be the smallest integer k such
that nk = 1. For every integer 0 ≤ k ≤ m, the simplicial set N•(Dy+)short has a unique
indecomposable m-simplex σk of index k, which can be described explicitly as follows:

• If k = 0, then σk is the diagram of identity morphisms

[0, 1] id−→ [0, 1] id−→ [0, 1] id−→ · · · id−→ [0, 1].

• If k > 0, then the diagram σk has the form

[0, 2] id−→ · · · id−→ [0, 2] x 7→x/2−−−−→ [0, 1] id−→ · · · id−→ [0, 1].

Moreover, every m-simplex of N•(Dy+)short can be written uniquely as a concatenation of
indecomposable m-simplices of N•(Dy+)short: that is, Nm(Dy+)short can be identified with
the free monoid generated by the set {σ0, σ1, · · · , σm}.

Let C• = Path[N≤2(Idem)]• denote the simplicial path category of N≤2(Idem). Theorem
2.4.4.10 supplies an identification of Cm with the path category Path[G], where G is a
directed graph having a single vertex X (corresponding to the unique vertex of the simplicial
set N≤2(Idem). It follows that Em = HomCm(X,X) can be identified with the free monoid
generated by the set of edges Edge(G) (Example 1.3.7.3). It will therefore suffice to prove
the following:

(∗m) The monoid homomorphism φm induces a bijection from the set Edge(G) to the
collection {σ0, σ1, · · · , σm} of indecomposable m-simplices of N•(Dy+)short.

To prove (∗m), we recall that Edge(G) can be identified with the set of pairs (τ,−→I ), where
τ is a nondegenerate simplex of N≤2(Idem) of dimension n > 0 and −→I = (I0 ⊇ I1 ⊇ · · · ⊇
Im−1 ⊇ Im) is a chain of subsets of [n] = {0 < 1 < · · · < n} satisfying I0 = [n] and
Im = {0, n}. We consider two possibilities:
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• The simplex τ has dimension n = 1. In this case, both τ and −→I are uniquely determined.
We claim that the homomorphism φm carries (τ,−→I ) to the indecomposable m-simplex
σ0. To prove this, we can invoke our assumption that φ is a morphism of simplicial
monoids to reduce to the casem = 0, in which case it reduces to the identity φ(e) = [0, 1]
of Remark 8.5.9.10.

• The simplex τ has dimension n = 2. In this case, τ is again uniquely determined,
and the chain −→I is determined by a single integer 1 ≤ k ≤ m, given by the formula
k = min{j : Ij = {0, 2}}. We claim that the homomorphism φm carries (τ,−→I ) to the
indecomposable m-simplex σk. To prove this, we can again invoke our assumption
that φ is a morphism of simplicial monoids to reduce to the case m = 1, in which
case it reduces to the assertion that φ carries the edge h : e2 → e of E• to the dyadic
contraction

[0, 2] ∼−→ [0, 1] x 7→ x/2;

see Remark 8.5.9.10.

8.6 Conjugate and Dual Fibrations

04C0 Let U : E → C be a cocartesian fibration of ∞-categories. For each object C ∈ C, we let
EC denote the the fiber U−1{C} = {C} ×C E . In §5.2.5, we showed that this construction
determines a functor

hTrE / C : hC → hQCat C 7→ EC ,

which we refer to as the (covariant) homotopy transport representation of the cocartesian
fibration U (Construction 5.2.5.2). Similarly, if U ′ : E ′ → C′ is a cartesian fibration of
∞-categories, then the assignment C 7→ E ′C determines a functor

hTrE ′ / C′ : hC′op → hQCat C 7→ E ′C

which we refer to as the (contravariant) homotopy transport representaiton of the cartesian
fibration U (Construction 5.2.5.7). There is an obvious relationship between these construc-
tions. If U : E → C is a cocartesian fibration, then the opposite map Uop : Eop → Cop is a
cartesian fibration, and the homotopy transport representations hTrE / C and hTrEop / Cop are
interchanged by composing with the automorphism

σ : hQCat→ hQCat A 7→ Aop .

In this section, we show that the passage from a cocartesian fibration U : E → C to the
opposite cartesian fibration Uop : Eop → Cop can be broken into two steps:

https://kerodon.net/tag/04C0
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• To every cocartesian fibration U : E → C, we will associate another cocartesian
fibration U∨ : E∨ → C which we refer to as the cocartesian dual of U , whose (covariant)
homotopy transport representation is given (up to isomorphism) by the construction

hTrE∨ / C : hC → hQCat C 7→ Eop
C .

In particular, each fiber of U∨ is equivalent to the opposite of the corresponding fiber
of U .

• To every cocartesian fibration U : E → C, we will associate a cartesian fibration
U † : E† → Cop which we refer to as the cartesian conjugate of U , whose (contravariant)
homotopy transport representation is given (up to isomorphism) by the construction

hTrE† / Cop : hC → hQCat C 7→ EC .

In particular, each fiber of U † is equivalent to the corresponding fiber of U .

For a fixed∞-category (or simplicial set) C, the relationships between these constructions
is summarized by the following diagram:

04C1{Cocartesian fibrations U : E → C} ks U←→U
op
+3

ck

U←→U∨

#+

KS

U←→U†

��

{Cartesian fibrations U ′ : E → Cop}
KS

V †←→V

��
{Cartesian fibrations V ′ : E → C} ks V op←→V +3 {Cocartesian fibrations V : E → Cop}

(8.60)
If U : E → C is a cocartesian fibration of ∞-categories, then the opposite fibration

Uop : Eop → Cop is easy to describe at the level of simplicial sets (see §1.4.2). For the dual
and conjugate fibrations U∨ and U †, this is somewhat more subtle. For example, the passage
from a simplicial set E to its opposite Eop is involutive, in the sense that there is a canonical
isomorphism E ≃ (Eop)op (in fact, if we adherre strictly to the convention of Construction
1.4.2.2, then the simplicial sets E and (Eop)op are identical). It is therefore natural to hope
for the passage from a cocartesian fibration U : E → C to its dual U∨ : E∨ → C to have a
similar property: heuristically, E∨ is obtained from E by applying the preceding construction
to each fiber of U . Unfortunately, it does not seem possible to give a construction where this
property is visible at the level of simplicial sets: the best we can expect is that cocartesian

https://kerodon.net/tag/04C1
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duality is involutive up to equivalence, in the sense that the double dual (U∨)∨ : (E∨)∨ → C
is equivalent to the original cocartesian fibration U : E → C in some natural way. To address
this point, it will be convenient to view duality as a relationship which can exist between
cocartesian fibrations U : E → C and U∨ : E∨ → C over the same base, rather than as an
operation which takes U as input and produces U∨ as an output. Similarly, we will view
conjugacy as a relationship which can exist between a cocartesian fibration U : E → C and a
cartesian fibration U † : E† → Cop over the opposite base. Our first goal will be to describe
these relationships more precisely:

• Let U : E → C be a cocartesian fibration of simplicial sets. We will say that a cartesian
fibration U † : E† → Cop is a cartesian conjugate of U if there exists a commutative
diagram

E†×Cop Tw(C)

$$

T // E

U

��
C

satisfying two axioms (Definition 8.6.1.1), one of which requires that T restricts to
an equivalence of ∞-categories TC : E†C → EC for each vertex C ∈ C. In §8.6.1, we
develop the properties of this definition and give some examples.

• Let U : E → C be a cocartesian fibration of simplicial sets. We say that a cocartesian
fibration U∨ : E∨ → C is a cocartesian dual of U if there exists a left fibration of
simplicial sets λ : Ẽ → E∨×C E satisfying two axioms (Definition 8.6.3.1), one of which
requires that for each vertex C ∈ C, the induced map λC : ẼC → E∨C ×EC is a balanced
coupling of ∞-categories (Definition 8.2.6.1). This guarantees in particular that E∨C is
equivalent to the opposite ∞-category Eop

C (Corollary 8.2.6.6). In §8.6.3, we develop
the properties of this definition and give some examples.

Our next goal is to show that, if U : E → C is a cocartesian fibration of simplicial sets,
then it admits a cartesian conjugate U † : E† → Cop and a cocartesian dual U∨ : E∨ → C,
which are uniquely determined up to equivalence. In each case, we will prove existence
(and ultimately uniqueness) using explicit constructions at the level of simplicial sets. To
fix ideas, let us first assume that C = ∆0. In this case, constructing a dual of cocartesian
fibration U : E → C is tantamount to constructing an ∞-category E∨ which is equivalent to
the opposite of E . We consider three different solutions to this problem:

(a) We can take E∨ to be the opposite∞-category Eop itself, given concretely by Construction
1.4.2.2.
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(b) We can take E∨ to be the ∞-category of corepresentable functors Funcorep(E ,S). This is
equivalent to Eop by virtue of the ∞-categorical version of Yoneda’s lemma (Theorem
8.3.3.13), at least if E is locally small.

(c) We can take E∨ to be the ∞-category Cospaniso,all(E) of Variant 8.1.7.14, whose mor-
phisms are given by cospans X f−→ B

g←− Y in the ∞-category E where f is required
to be an isomorphism. By virtue of Proposition 8.1.7.6, this is also equivalent to the
∞-category Eop.

Each of these approaches can be adapted to more general situations. Let U : E → C be a
cocartesian fibration of simplicial sets.

• Assume that C is an ∞-category. In §8.6.2, we define a fibration

FunCCart
/ C (Tw(C)/ Cop, E)→ Cop

and show that it is a cartesian conjugate of U (Proposition 8.6.2.3). In the special
case C = ∆0, this definition reproduces the original ∞-category E ; consequently, after
passing to opposite ∞-categories, it can be viewed as a relative version of construction
(a).

• Assume that, for each vertex C ∈ C, the ∞-category EC is locally small. In §8.6.4,
we define a fibration Funcorep(E / C,S)→ C and show that it is a cocartesian dual of
U (Proposition 8.6.4.8). In the special case C = ∆0, this definition reproduces the
∞-category of corepresentable functors Funcorep(E ,S); consequently, it can be viewed
as a relative version of construction (b).

• Let CospanCCart(E / C) denote the fiber product C ×Cospan(C) CospanW,all(E), where W
denotes the collection of all U -cocartesian edges of E . In §8.6.5, we show that the
projection map CospanCCart(E / C)→ C is a cocartesian dual of U (Theorem 8.6.5.6).
In the special case C = ∆0, this definition reproduces the ∞-category Cospaniso,all(E);
consequently, it can be viewed as a relative version of construction (c).

Remark 8.6.0.1. 04C2Ultimately, each of the constructions described above gives rise to
essentially the same object. However, it will be useful to consider all three, since each reveals
different facets of the overall picture. Fix a cocartesian fibration of simplicial sets U : E → C.

• The construction of §8.6.2 can be used to show that U admits a cartesian conjugate
U † : E† → Cop (Corollary 8.6.2.4), which is unique up to equivalence if C is an ∞-
category (Corollary 8.6.2.9). However, it is not obvious that the opposite fibration
U †,op : E†,op → C is a cocartesian dual of U (in the sense of Definition 8.6.3.1).
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• The construction of §8.6.4 can be used to show that U admits a cocartesian dual
U∨ : E∨ → C, which is uniquely determined up to equivalence (Theorem 8.6.4.1).
However, it is not obvious that the opposite fibration U∨,op : E∨,op → Cop is a cartesian
conjugate of U (in the sense of Definition 8.6.1.1).

• The construction of §8.6.5 produces a specific example of a fibration U∨ : E∨ → C which
is a cocartesian dual of U . From this perspective, it is not obvious that the cocartesian
dual is unique. However, it enjoys another form of uniqueness: in §8.6.6, we show
that every cartesian conjugate of U is equivalent to the fibration U∨,op (Proposition
8.6.6.6). Combining this with the existence of cartesian conjugates (obtained from
§8.6.2) and the uniqueness of cocartesian duals (obtained from §8.6.4), we deduce that
the diagram (8.60) is commutative: that is, a fibration U † : E† → Cop is a cartesian
conjugate of U if and only if U †,op : E†,op → C is a cocartesian dual of U (Proposition
8.6.6.1).

Remark 8.6.0.2 (Duality via Transport Representations).04C3 Let QC denote the∞-category of
small∞-categories (Construction 5.5.4.1). ThenQC admits an autoequivalence σ : QC → QC,
given on objects by the formula σ(A) = Aop (see Construction 8.6.7.6). Recall that an
(essentially small) cocartesian fibrations U : E → C is determined, up to equivalence, by
a functor TrE / C : C → QC, which we refer to as the covariant transport representation of
U (Definition 5.6.5.1). In §8.6.7, we show that a cocartesian fibration U∨ : E∨ → C is a
cocartesian dual of U if and only if its covariant transport representation is isomorphic to
the composition C

TrE / C−−−−→ QC σ−→ QC (Proposition 8.6.7.12). This gives another construction
of the cocartesian dual of U (albeit one which is cumbersome to work with).

Remark 8.6.0.3.04C4 The commutativity of the diagram (8.60) is not immediately obvious:
the notions of cartesian conjugacy and cocartesian duality have separate definitions that
are a priori unrelated to one another. We will maintain this separation in our exposition:
the portions of this section which discuss conjugate fibrations (§8.6.1 and §8.6.2) can be
read independently of those which discuss dual fibrations (§8.6.3, §8.6.4, §8.6.5, and §8.6.7).
Only in §8.6.6 will we consider both notions simultaneously.

Remark 8.6.0.4.04C5 Let U : E → C be a cocartesian fibration of simplicial sets. The
construction of the dual fibration U∨ : CospanCCart(E / C)→ C studied in §8.6.5 appears in
work of Barwick, Glasman, and Nardin; see [3].

8.6.1 Conjugate Fibrations

04C6 Let C be a simplicial set, let U : E → C be a cocartesian fibration, and let U † : E† → Cop

be a cartesian fibration. Our goal in this section is to formalize the requirement that U and U †
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have “the same fibers”: that is, that there exists a family of equivalences {TC : E†C → EC}C∈C
which in some sense depend functorially on the vertex C ∈ C.

Definition 8.6.1.1 (Conjugate Fibrations). 04C7Let C be a simplicial set, let U : E → C be a
cocartesian fibration, and let U † : E† → Cop be a cartesian fibration. Let λ− : Tw(C)→ Cop

and λ+ : Tw(C)→ C be the projection maps of Notation 8.1.1.6. We say that a morphism
of simplicial sets T : E†×Cop Tw(C) → E exhibits U † as a cartesian conjugate of U if the
following conditions are satisfied:

(0) The diagram

E†×Cop Tw(C) T //

��

E

U

��
Tw(C) λ+ // C

is commutative.

(1) For every vertex C ∈ C, restricting T to the inverse image of the vertex idC ∈ Tw(C)
determines an equivalence of ∞-categories TC : E†C → EC .

(2) Let e be an edge of the simplicial set E†×Cop Tw(C). If the image of e in E† is U †-cartesian,
then T (e) is a U -cocartesian edge of E .

We say that U † is a cartesian conjugate of U if there exists a morphism T : E†×Cop Tw(C)→ E
which exhibits U † as a cartesian conjugate of U .

Warning 8.6.1.2 (Symmetry). 04C8Let C be a simplicial set, let U : E → C be a cocartesian
fibration, and let U † : E† → Cop be a cartesian fibration. In §8.6.6, we will show that U † is a
cartesian conjugate of U if and only if Uop is a cocartesian conjugate of U †,op (Corollary
8.6.6.2). Beware that this is not obvious from Definition 8.6.1.1.

Example 8.6.1.3. 04C9Let E and E† be ∞-categories. Set C = ∆0 and let U : E → Cop and
U † : E† → C denote the projection maps. Then a functor

T : E† ≃ E†×Cop Tw(C)→ E

exhibits U † are a cartesian conjugate of U if and only if it an equivalence of ∞-categories.
In particular, U † is a cartesian conjugate of U if and only if the ∞-category E† is equivalent
to E .
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Remark 8.6.1.4 (Base Change).04CA Let F : C′ → C be a morphism of simplicial sets. Suppose
we are given pullback squares

E ′† U ′† //

��

C′ op

F op

��

E ′ U ′ //

��

C′

F

��
E† U† // Cop E U // C,

where U † is a cartesian fibration and U is a cocartesian fibration. If T : E†×Cop Tw(C)→ E
is a morphism which exhibits U † as a cartesian conjugate of U , then the induced map
T ′ : E ′†×C′ op Tw(C′)→ E ′ exhibits U ′† as a cartesian conjugate of U ′.

In the situation of Definition 8.6.1.1, we can regard condition (2) as a formulation of the
requirement that the functor TC : E†C → EC depends functorially on the vertex C ∈ C. This
heuristic can be articulated more precisely as follows:

Proposition 8.6.1.5.04CB Let C be a simplicial set, let U : E → C be a cocartesian fibration,
and let U † : E† → Cop be a cartesian fibration. Let e : C → C ′ be an edge of C, and let

e∗ : E†C → E
†
C′ e! : EC → EC′

be functors given by contravariant and covariant transport along e for the fibrations U † and
U , respectively. If T : E†×Cop Tw(C)→ E is a morphism which satisfies conditions (0) and
(2) of Definition 8.6.1.1, then the diagram of ∞-categories

E†C

TC

��

e∗ // E†C′

TC′

��
EC

e! // EC′

commutes up to isomorphism.

Proof. The restriction of T to the inverse image of the vertex {e} ⊆ Tw(C) determines a
functor of ∞-categories Te : E†C → EC′ . To complete the proof, it will suffice to verify the
following pair of assertions:

(a) The functor Te is isomorphic to the composition TC′ ◦ e∗.

(b) The functor Te is isomorphic to the composition e! ◦ TC .
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We begin by proving (a). Choose a diagram

E†C ×∆1 H //

��

E†

U†

��
∆1 e // Cop

which witnesses e∗ = HE†C ×{0}
as given by contravariant transport along e (see Definition

5.2.2.14). Let eL : idC → e and eR : idC′ → e denote the edges of Tw(C) described in
Example 8.1.3.6, and let H̃ denote the product morphism

E†C ×∆1 H×eR−−−−→ E†×Cop Tw(C).

Then the composition T ◦ H̃ can be regarded as a natural transformation from the functor
TC′ ◦ e∗ to Te. For each object X of the ∞-category E†C , the restriction H|{X}×∆1 is
a U †-cartesian edge of E†. Using condition (2) of Definition 8.6.1.1, we conclude that
(T ◦ H̃)|{X}×∆1 is a U -cocartesian edge of E lying over the degenerate edge idC′ of C, and is
therefore an isomorphism in the ∞-category EC′ (Proposition 5.1.4.11). Applying Theorem
4.4.4.4, we conclude that T ◦ H̃ is an isomorphism of functors from TC′ ◦ e∗ to Te.

We now prove (b). Let H ′ denote the composite map

E†C ×∆1 id×eL−−−−→ E†×Cop Tw(C) T−→ E ,

We then have a commutative diagram

E†C ×∆1 H′ //

��

E

U

��
∆1 e // C .

Condition (2) of Definition 8.6.1.1 guarantees that, for each object X ∈ E†C , the restriction
H ′|{X}×∆1 is a U -cocartesian edge of E . It follows that H ′ determines an isomorphism of
Te = H ′|E†C ×{1} with the composition e! ◦ (H ′|E†C ×{0}) = e! ◦ TC .

Corollary 8.6.1.6. 04CCLet C be a simplicial set, let U : E → C be a cocartesian fibration
having homotopy transport representation hTrE / C : hC → hQCat (Construction 5.2.5.2),
and let U † : E† → Cop be a cartesian fibration having homotopy transport representation
hTrE† / Cop : hC → hQCat (Construction 5.2.5.7). If T : E†×Cop Tw(C)→ E exhibits U † as a
cartesian conjugate of U , then T induces an isomorphism of functors hTrE† / Cop

∼−→ hTrE / C,
carrying each vertex C ∈ C to (the isomorphism class of) the equivalence TC : E†C → EC .
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Corollary 8.6.1.7.04CD Let C be a simplicial set, let U : E → C be a cocartesian fibration, and
let U † : E† → Cop be a cartesian fibration. If U † is a cartesian conjugate of U , then the
homotopy transport representations

hTrE† / Cop , hTrE / C : hC → hQCat

are isomorphic.

We now give some concrete examples of conjugate fibrations.

Proposition 8.6.1.8 (Conjugates of Left Fibrations).04CE Let U : E → C be a left fibration of
simplicial sets. Then:

(a) The map H : Tw(E)→ Eop×Cop Tw(C) is a trivial Kan fibration of simplicial sets.

(b) Let T0 be a section of H, and let T : Eop×Cop Tw(C)→ E be the composition of T0 with
the projection map Tw(E)→ E. Then T exhibits the opposite fibration Uop : Eop → Cop

as a cartesian conjugate of U .

Proof. Note that the morphism H factors as a composition

Tw(E)→ Eop×Cop Tw(C)×C E → Eop×Cop Tw(C),

where the map on the left is a left fibration by virtue of Proposition 8.1.1.15, and the map
on the right is pullback of U (and is therefore also a left fibration). It follows that H is a
left fibration (Remark 4.2.1.11). To prove (a), it will suffice to show that every fiber of H is
a contractible Kan complex (Proposition 4.4.2.14). For this, we may assume without loss of
generality that C = ∆0. In this case, E is a Kan complex (Proposition 4.4.2.1) and we can
identify H with the projection map Tw(E)→ Eop, which is a trivial Kan fibration by virtue
of Corollary 8.1.2.3.

Let T : Eop×Cop Tw(C) → E be as in (b); we wish to show that T satisfies conditions
(0), (1), and (2) of Definition 8.6.1.1. Condition (0) follows from the commutativity of the
diagram

Tw(E) //

H

��

E

U

��
Eop×Cop Tw(C) // Tw(C) // C,

and condition (2) is vacuous (our assumption that U is a left fibration guarantees that every
edge of E is U -cocartesian; see Example 5.1.1.3). To verify condition (1), we may again
assume that C = ∆0, in which case the desired result follows from the observation that
the projection maps Eop ← Tw(E)→ E are homotopy equivalences of Kan complexes (see
Corollary 8.1.2.3).
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Construction 8.6.1.9 (Conjugacy for Categories of Elements). 04CFLet C be a category, let
Cat denote the 2-category of (small) categories, and let F : C → Cat be a functor of
2-categories. Let ∫ Cop

F
∫
C
F

denote the contravariant and covariant categories of elements of F , respectively (see Def-
initions 5.6.1.4 and 5.6.1.1). Recall that objects of either category can be identified with
pairs (C,X), where C is an object of C and X is an object of the category F (C). However,
morphisms are defined differently:

• A morphism from (C,X) to (D,Y ) in the category
∫
CF is a pair (f, u) where f : C → D

is a morphism in the category C and u : F (f)(X)→ Y is a morphism in the category
F (D).

• A morphism from (C,X) to (D,Y ) in the category
∫ Cop

F is a pair (g, v), where
g : D → C is a morphism in the category C, and v : X → F (g)(Y ) is a morphism in
the category F (C).

Let us identify the objects of the fiber product (
∫ Cop

F )×CopTw(C) with pairs (s : C ′ → C,X),
where s : C ′ → C is a morphism in C and X is an object of the category F (C ′). We define
a functor We define a functor

T : (
∫ Cop

F )×Cop Tw(C)→
∫
C
F

as follows:

• On objects, T is given by the formula T (s : C ′ → C,X) = (C,F (s)(X)).

• Let (s : C ′ → C,X) and (t : D′ → D,Y ) be objects of the category (
∫ Cop

F ) ×Cop

Tw(C). Unwinding the definitions, we see that a morphism from (s : C ′ → C,X)
to (t : D′ → D,Y ) can be identified with triples (f, f ′, u), where f : C → D and
f ′ : D′ → C ′ are morphisms in C satisfying t = f ◦ s ◦ f ′, and u : X → F (f ′)(Y )
is a morphism in the category F (C ′). In this case, we define T (f, f ′, u) to be the
morphism (f, v) : (C,F (s)(X))→ (D,F (t)(Y )), where v is the morphism in F (D)
given by the composition

(F (f) ◦F (s))(X) (F (f)◦F (s))(u)−−−−−−−−−−→ (F (f) ◦F (s) ◦F (f ′))(Y )
≃ F (f ◦ s ◦ f ′)(Y )
= F (t)(Y ),

where the unlabeled isomorphism is supplied by the composition constraints for the
functor F .
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Proposition 8.6.1.10.04CG Let C be a category and let F : C → Cat be a functor. Then, after
passing to nerves, the functor

T : (
∫ Cop

F )×Cop Tw(C)→
∫
C
F

of Construction 8.6.1.9 exhibits the forgetful functor U † :
∫ Cop

F → Cop as a cartesian
conjugate of the forgetful functor U :

∫
CF → C.

Proof. Condition (0) of Definition 8.6.1.1 follows immediately from the construction. To
verify condition (1), we observe that for each object C ∈ C, the functor

TC : (
∫ Cop

F )×Cop {C} → {C} ×C (
∫
C
F )

can be identified with the functor F (idC) : F (C) → F (C). The identity constraint of
F supplies an isomorphism of functors idF (C)

∼−→ TC , so that TC is an equivalence of
categories. To verify condition (2), suppose we are given a morphism e in the category
(
∫ Cop

F )×Cop Tw(C). We wish to show that, if the image of e in the category
∫ Cop

F is U †-
cartesian, then T (e) is a U -cocartesian morphism in the category

∫
CF . Writing e = (f, f ′, u)

and T (e) = (f, v) as in Construction 8.6.1.9, we are reduced to showing that if u is an
isomorphism, then v is also an isomorphism (Proposition 5.6.1.15), which is immediate from
the construction.

Construction 8.6.1.11 (Conjugacy for Weighted Nerves).04CH Let QCat denote the category
of ∞-categories (which we regard as a full subcategory of the category of simplicial sets).
Let C be a category equipped with a functor F : C → QCat, and let E = NF

• (C) denote the
weighted nerve of Definition 5.3.3.1. We will identify n-simplices of E with pairs (σ+, τ+),
where σ+ = (C0 → C1 → · · · → Cn) is an n-simplex of the simplicial set N•(C) and
τ+ = (τ0, τ1, · · · , τn) is the datum of a commutative diagram

∆0

τ0

��

� � // ∆1

τ1

��

� � // ∆2 � � //

τ2

��

· · ·

��

� � // ∆n

τn

��
F (C0) // F (C1) // F (C2) // · · · // F (Cn).

Let U : E → N•(C) be the cocartesian fibration of Corollary 5.3.3.16, given on n-simplices
by the formula U(σ+, τ+) = σ+.

Let F op : C → QCat denote the functor given by the formula F op(C) = F (C)op, and
let E† denote the ∞-category NF op

• (C)op. Unwinding the definitions, we see that n-simplices
of E† can be identified with pairs (σ−, τ−), where σ− = (C ′n → C ′n−1 → · · · → C ′0) is
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an n-simplex of the simplicial set N•(C)op and τ− = (τ ′n, τ ′n−1, · · · , τ ′0) is the datum of a
commutative diagram

{n}

τ ′n

��

� � // N•({n− 1 < n})

τ ′n−1

��

� � // · · · �
� // ∆n

τ ′0

��
F (C ′n) // F (C ′n−1) // · · · // F (C ′0).

Corollary 5.3.3.16 supplies a cartesian fibration U † : E† → N•(C)op, given on n-simplices by
the formula U †(σ−, τ−) = σ−.

Let us identify n-simplices of the fiber product E†×N•(C)op Tw(N•(C)) with quadruples
(σ−, τ−, σ+, e), where σ− = (C ′n → · · · → C ′0) is an n-simplex of N•(C)op, τ− = (τ ′n, · · · , τ ′0)
is as above, σ+ = (C0 → · · · → Cn) is an n-simplex of N•(C), and e : C ′0 → C0 is a morphism
in the category C. For 0 ≤ i ≤ n, we let τi denote the i-simplex of F (Ci) given by the
composition

∆i ↪→ ∆n τ ′0−→ F (C ′0) F (e)−−−→ F (C0)→ F (Ci).

Set τ+ = (τ0, · · · , τn), so that the pair (σ+, τ+) determines an n-simplex of the simplicial
set E . The construction (σ−, τ−, σ+, e) 7→ (σ+, τ+) is compatible with face and degeneracy
operators, and therefore determines a functor of ∞-categories

T : E†×N•(C)op Tw(N•(C))→ E .

Proposition 8.6.1.12. 04CJLet C be a category equipped with a functor F : C → QCat, let
U : NF

• (C) → N•(C) denote the cocartesian fibration of Corollary 5.3.3.16, and define
U † : NF op

• (C)op → N•(C)op similarly. Then the functor

T : NF op
• (C)op ×N•(C)op Tw(N•(C))→ NF

• (C)

of Construction 8.6.1.11 exhibits U † as a cartesian conjugate of U .

Proof. Condition (0) of Definition 8.6.1.1 follows immediately from the construction. Condi-
tion (1) follows from the observation that, for each object C ∈ C, the induced map

TC : NF op
• (C)op ×N•(C)op {C} → {C} ×N•(C) NF

• (C)

is an isomorphism of simplicial sets (under the identifications supplied by Example 5.3.3.8,
it corresponds to the identity functor from the ∞-category F (C) to itself). Condition (2)
follows from the characterization of U -cocartesian and U †,op-cocartesian morphisms given in
Corollary 5.3.3.16.
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We close this section with a technical result, which will be convenient for verifying
hypothesis (2) of Definition 8.6.1.1. If C is a simplicial set and e : C → D is an edge of C, we
write eL : idC → e and eR : idD → e for the edges of Tw(C) described in Example 8.1.3.6.

Proposition 8.6.1.13.04CK Let C be a simplicial set, let U : E → C be a cocartesian fibration,
and let U † : E† → Cop be a cartesian fibration, and suppose we are given a commutative
diagram

E†×Cop Tw(C) T //

��

E

U

��
Tw(C) λ+ // C .

Then T satisfies condition (2) of Definition 8.6.1.1 if and only if it satisfies both of the
following conditions:

(2′) For every object Y ∈ E† having image Y = U †(Y ) and every edge e : Y → X of C, the
morphism T carries (idY , eL) : (Y, idY )→ (Y, e) to a U -cocartesian edge of E.

(2′′) Let f : X → Y be a U †-cartesian edge of E†. Set X = U †(X) and Y = U †(Y ), so that
U †(f) can be identified with an edge e : Y → X of the simplicial set C. Then T carries
(f, eR) : (X, idX)→ (Y, e) to an isomorphism in the ∞-category EY .

Proof. The implication (2) ⇒ (2′) is immediate from the definitions, and the implication
(2)⇒ (2′′) follows from Proposition 5.1.4.11. For the converse, suppose that conditions (2′)
and (2′′) are satisfied. Let f : X → Y be a U †-cartesian edge of E†, and let us identify U †(f)
with an edge e : Y → X of the simplicial set C. Suppose we are given a lift of e to an edge
ẽ : u→ v of Tw(C), which we identify with a 3-simplex σ : ∆3 → C depicted in the diagram

X

u

��

Y
eoo

v

��

X
′ // Y

′
.

We wish to show that T (f, ẽ) is a U -cocartesian edge of E .
Let σ′ denote the degenerate 5-simplex of C given by γ∗(σ), where γ : [5]→ [3] is given

by γ(0) = 0, γ(1) = γ(2) = γ(3) = 1, γ(4) = 2, and γ(5) = 3. Let us abuse notation by
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identifying σ′ with the 2-simplex of Tw(C) depicted in the diagram

04CLX

id

��

X
idoo

u

��

Y
eoo

v

��

X
u // X

′ // Y
′
.

(8.61)

Evaluating T on the pair (s1
0(f), σ′), we obtain a 2-simplex of E depicted in the diagram

T (X,u)

T (f,ẽ)

##
T (X, idX)

T (idX ,uL)

::

// T (Y, v),

where the left diagonal map is U -cocartesian by virtue of assumption (2′). Consequently,
to show that the T (f, ẽ) is U -cocartesian, it will suffice to show that the horizontal edge
is U -cocartesian (Proposition 5.1.4.12). Note that, in the special case where σ = s2

0(σ0)
for some 2-simplex σ0 of C, the horizontal edge coincides with T (idX , vL), which is also
U -cocartesian by virtue of (2′).

To handle the general case, we can replace σ by the 3-simplex of C given by the outer
rectangle of the diagram (8.61) (that is, by the 3-simplex σ′|N•({0<2<3<5}), and thereby
reduce to the special case where σ = s2

1(σ1), for some 2-simplex σ1 of C (so that X = X
′

and u is a degenerate edge of C). In this case, we let σ′′ denote the 5-simplex of C given
by β∗(σ1), where β : [5] → [2] is given by β(0) = β(1) = 0, β(2) = β(3) = β(4) = 1, and
β(5) = 2. Let us view σ′′ as a 2-simplex of Tw(C) depicted in the diagram

X

u

��

Y
eoo Y

idoo

X
′ id // X

′ // Y
′
.

Evaluating T on the pair (s1
1(f), σ′′), we obtain a 2-simplex of E depicted in the diagram

T (Y, e)

##
T (X,u)

T (f,eR)

;;

T (f,ẽ) // T (Y, v).
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Here the left diagonal edge is U -cocartesian by virtue of assumption (2′′) and the right
diagonal edge is U -cocartesian by virtue of the special case treated above. Applying
Proposition 5.1.4.12, we conclude that T (f, ẽ) is also U -cocartesian.

8.6.2 Existence of Conjugate Fibrations

04CM Let U : E → C be a cocartesian fibration of ∞-categories. Our goal in this section is
to show that U admits a cartesian conjugate U † : E† → Cop (Corollary 8.6.2.4), which is
uniquely determined up to equivalence (Corollary 8.6.2.9). For this purpose, we will need to
construct a commutative diagram

E†×Cop Tw(C)

$$

// E

U

��
C .

We begin by considering the universal example of such a diagram.

Notation 8.6.2.1.04CN Let D be a simplicial set equipped with a morphism λ = (λ−, λ+) : D →
Dop
− ×D+. For every simplicial set E , we let Fun(D /Dop

− , E) denote the relative exponential
of Construction 4.5.9.1. For n ≥ 0, we will identify n-simplices of Fun(D /Dop

− , E) with pairs
(σ, f), where σ is an n-simplex of Dop

− and f : ∆n ×Dop
−
D → E is a morphism of simplicial

sets. Suppose that we are also given a morphism of simplicial sets U : E → D+. In this case,
we let Fun/D+(D /Dop

− , E) denote the simplicial subset of Fun(D /Dop
− , E) whose n-simplices

are pairs (σ, f) which satisfy the additional condition that the diagram

∆n ×Dop
−
D f //

��

E

U

��
D

λ+ // D+

is commutative.

Construction 8.6.2.2.04CP Let U : E → C be a cocartesian fibration of simplicial sets, and
let Fun/ C(Tw(C)/ Cop, E) be the simplicial set given in Notation 8.6.2.1. Unwinding the
definitions, we see that vertices of Fun/ C(Tw(C)/ Cop, E) can be identified with pairs (C, fC),
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where C is an object of C and fC is a morphism which fits into a commutative diagram

{C} ×Cop Tw(C)

%%

fC // E

U

��
C .

We let FunCCart
/ C (Tw(C)/ Cop, E) denote the full simplicial subset of Fun/ C(Tw(C)/ Cop, E),

spanned by those pairs (C, fC) where the morphism fC carries each edge of {C} ×Cop Tw(C)
to a U -cocartesian edge of E . By construction, the simplicial set Fun/ C(Tw(C)/ Cop, E) is
equipped with a projection map V : E† → Cop and an evaluation map ev : E†×Cop Tw(C)→ E ,
given on vertices by the construction (C, fC , u : C → C ′) 7→ fC(u).

We can now formulate the main result of this section:

Proposition 8.6.2.3. 04CQLet U : E → C be a cocartesian fibration of ∞-categories. Then the
projection map V : FunCCart

/ C (Tw(C)/ Cop, E) → Cop of Construction 8.6.2.2 is a cartesian
fibration of ∞-categories, and the evaluation functor

ev : FunCCart
/ C (Tw(C)/ Cop, E)×Cop Tw(C)→ E (C, fC , u : C → C ′) 7→ fC(u)

exhibits V as a cartesian conjugate of U .

Corollary 8.6.2.4. 04CREvery cocartesian fibration of simplicial sets U : E → C admits a
cartesian conjugate.

Proof. Using Corollary 5.6.7.3, we can choose a pullback diagram

E

U

��

// E ′

U ′

��
C // C′,

where U ′ is a cocartesian fibration of∞-categories. By virtue of Remark 8.6.1.4, it will suffice
to show that U ′ admits a cartesian conjugate, which follows from Proposition 8.6.2.3.

Warning 8.6.2.5. 04CSLet U : E → C be a cocartesian fibration of simplicial sets. If C is not
an ∞-category, then the morphism V : Fun/ C(Tw(C)/ Cop, E)→ Cop given by Construction
8.6.2.2 need not be a cartesian conjugate of U . In §8.6.6, we will give an alternative
construction of a cartesian conjugate which works in complete generality (Corollary 8.6.6.7).
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The proof of Proposition 8.6.2.3 will require some preliminaries.

Lemma 8.6.2.6.04CT Let λ = (λ−, λ+) : D → Dop
− ×D+ be a coupling of ∞-categories and let

U : E → D+ be an isofibration. Then:

(1) The projection map V : Fun/D+(D /Dop
− , E) → Dop

− is a cartesian fibration of ∞-
categories.

(2) Let ẽ be a morphism in the∞-category Fun/D+(D /Dop
− , E), corresponding to a morphism

e of Dop
− and a functor fe : ∆1 ×Dop

−
D → E. Then ẽ is V -cartesian if and only if, for

every morphism u of ∆1 ×Dop
−
D whose image in D+ is an isomorphism, the image

fe(u) is an isomorphism in E.

Proof. Unwinding the definitions, we have a pullback diagram of simplicial sets

Fun/D+(D /Dop
− , E) //

V

��

Fun(D /Dop
− , E)

V
′

��
Dop
− // Fun(D /Dop

− ,D+),

where the lower horizontal map classifies the morphism λ+ : D → D+ and V
′ is given by

composition with U . The functor λ− : D → Dop
− is a cocartesian fibration (Proposition

8.2.1.7) and therefore exponentiable (Proposition 5.3.6.1). It follows from Proposition
4.5.9.17 guarantees that V ′ is an isofibration, so that V is also an isofibration.

Let us say that a morphism ẽ in the∞-category Fun/D+(D /Dop
− , E) is special if it satisfies

the condition described in (2). Let us identify ẽ with a pair (e, fe), where e : D′ → D is
a morphism in the ∞-category Dop

− and fe : ∆1 ×Dop
−
D → E is a functor of ∞-categories.

Let π : ∆1 ×Dop
−
D → ∆1 be given by the projection map onto the first factor. Then π is

a cocartesian fibration, and a morphism u of ∆1 ×Dop
−
D is π-cocartesian if and only if its

image in D+ is an isomorphism (see Proposition 8.2.1.7). If this condition is satisfied, the
assumption that ẽ is special guarantees that fe(u) is an isomorphism in the ∞-category E ,
and is therefore U -cartesian (Proposition 5.1.1.8). Applying Lemma 5.3.6.11, we deduce
that ẽ is V ′-cartesian when regarded as a morphism of Fun(D /Dop

− , E), and therefore also
V -cartesian when regarded as a morphism of Fun/D+(D /Dop

− , E).
To show that V is a cartesian fibration, it will suffice to show that if (D, fD) is an object

of Fun/D+(D /Dop
− , E), then every morphism e : C → D in the∞-category Dop

− can be lifted
to a special morphism ẽ : (C, fC)→ (D, fD) in Fun/D+(D /Dop

− , E). We first claim that the
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lifting problem

{D} ×Cop
−
C fD //

��

E

U

��
∆1 ×Dop

−
D

fe

<<

// D+

admits a solution fe which is U -right Kan extended from {D}×Dop
−
D. Using the criterion of

Corollary 7.3.5.9, we are reduced to showing that if u : X ′ → X is a π-cocartesian morphism
of ∆1 ×Dop

−
D lying over the nondegenerate edge of ∆1, then its image in D+ can be lifted

to a U -cartesian morphism E → fD(X) in E . Since the image of u in D+ is an isomorphism
(Proposition 8.2.1.7), this follows from our assumption that U is an isofibration. Note that
the functor fe carries every π-cocartesian morphism u of ∆1 ×Dop

−
D to an isomorphism

in D (if the image of u in ∆1 is degenerate, then u is an isomorphism and this condition
is automatically satisfied), so that ẽ = (e, fe) is a special morphism of Fun/D+(D /Dop

− , E)
having target (D, fD). This completes the proof of (1).

To complete the proof of (2), it will suffice to show that every V -cartesian morphism
ẽ = (C, fC)→ (D, fD) of Fun/D+(D /Dop

− , E) is special. Let e : C → D denote the image of
ẽ in the ∞-category Dop

− . Using the preceding argument, we can lift e to a special morphism
ẽ′ : (C, f ′C) → (D, fD) of Fun/D+(D /Dop

− , E) Write ẽ = (e, fe) and ẽ′ = (e, f ′e). Since ẽ′
is also V -cartesian, Remark 5.1.3.8 guarantees that the functors fe and f ′e are isomorphic.
In particular, if u is a morphism of ∆1 ×Dop

−
D such that f ′e(u) is an isomorphism in E ,

then fe(u) is also an isomorphism in E . It follows that the morphism ẽ is also special, as
desired.

Lemma 8.6.2.7. 04CULet U : E → C be a cocartesian fibration of ∞-categories and let V :
Fun/ C(Tw(C)/ Cop, E)→ Cop be the cartesian fibration of Lemma 8.6.2.6. Then:

(1) Let ẽ : (C, fC)→ (D, fD) be a V -cartesian morphism of Fun/ C(Tw(C)/ Cop, E). If (D, fD)
belongs to the simplicial subset FunCCart

/ C (Tw(C)/ Cop, E) of Construction 8.6.2.2, then
(C, fC) also belongs to FunCCart

/ C (Tw(C)/ Cop, E).

(2) The morphism V restricts to a cartesian fibration of ∞-categories

V : FunCCart
/ C (Tw(C)/ Cop, E)→ Cop .

(3) A morphism in the ∞-category FunCCart
/ C (Tw(C)/ Cop, E) is V -cartesian if and only if it

is V -cartesian when regarded as a morphism of Fun/ C(Tw(C)/ Cop, E).
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Proof. We will prove assertion (1); assertions (2) and (3) then follow as formal consequences
(see Proposition 5.1.4.16). Let us identify ẽ with a pair (e, fe), where e : C → D is a
morphism in the ∞-category Cop and fe : ∆1 ×Cop Tw(C)→ E is a functor. Let u : C̃ → C̃ ′

be a morphism in the fiber {C} ×Cop Tw(C); we wish to show that fC(u) is a U -cocartesian
morphism of E . Since the projection map ∆1 ×Cop Tw(C)→ ∆1 is a cocartesian fibration,
we can choose a diagram

C̃

u

��

// D̃

v

��
C̃ ′ // D̃′

in the ∞-category ∆1 ×Cop Tw(C), where v is a morphism of {D} ×Cop Tw(C) and the
horizontal maps are π-cocartesian. Applying the functor fe, we obtain a diagram

fC(C̃)

fC(u)

��

// fD(D̃)

fD(v)

��
fC(C̃ ′) // fD(D̃′)

in the ∞-category E , where the horizontal maps are isomorphisms (by virtue of our assump-
tion that ẽ is V -cartesian; see Lemma 8.6.2.6). It will therefore suffice to show that fD(v)
is U -cocartesian (Corollary 5.1.2.5), which follows from our assumption that (D, fD) is an
object of FunCCart

/ C (Tw(C)/ Cop, E).

We will deduce Proposition 8.6.2.3 from the following more precise result:

Proposition 8.6.2.8.04CV Let C be an ∞-category, let U : E → C be a cocartesian fibration, and
let U † : E† → Cop be a cartesian fibration. Suppose we are given a commutative diagram

E†×Cop Tw(C) T //

$$

E

U

��
C,

which we identify with a functor F : E† → Fun/ C(Tw(C)/ Cop, E). The following conditions
are equivalent:

https://kerodon.net/tag/04CV
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(a) The functor T exhibits U † as a cartesian conjugate of U (in the sense of Definition
8.6.1.1).

(b) The functor F restricts to an equivalence of E† with the full subcategory

FunCCart
/ C (Tw(C)/ Cop, E) ⊆ Fun/ C(Tw(C)/ Cop, E)

introduced in Construction 8.6.2.2.

Proof. Let λ = (λ−, λ+) : Tw(C)→ Cop×C denote the twisted arrow fibration of Example
8.2.0.2. Recall that (a) is equivalent to the following pair of conditions:

(a1) For every object C ∈ C, the restriction of T to the fiber over the vertex {idC} ⊆ Tw(C)
determines an equivalence of ∞-categories TC : E†×Cop{C} → {C} ×C E .

(a2) Let (e′, e) be an edge of the fiber product E†×Cop Tw(C). If e′ is a U †-cartesian
morphism of E†, then T (e′, e) is a U -cocartesian morphism of E .

Unwinding the definitions, we see that F factors through FunCCart
/ C (Tw(C)/ Cop, E) if and

only if T satisfies the following weaker version of (a2):

(b0) Let (e′, e) be an edge of the fiber product E†×Cop Tw(C). If e′ is a degenerate edge of
E†, then T (e′, e) is a U -cocartesian morphism of E .

If this condition is satisfied, then we have a commutative diagram

E† F //

U†

  

FunCCart
/ C (Tw(C)/ Cop, E)

V

xx
Cop,

where the vertical maps are cartesian fibrations (Lemma 8.6.2.7). Using Theorem 5.1.6.1,
we see that F is an equivalence if and only if it satisfies the following further conditions:

(b1) For each object C ∈ C, the functor F restricts to an equivalence of ∞-categories

FC : E†C = E†×Cop{C} → FunCCart
/ C (Tw(C)/ Cop, E)×Cop {C}.

(b2) The functor F carries U †-cartesian morphisms of E† to V -cartesian morphisms of
FunCCart

/ C (Tw(C)/ Cop, E).
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Let C be an object of C. Unwinding the definitions, we can identify the fiber

FunCCart
/ C (Tw(C)/ Cop, E)×Cop {C}

with the ∞-category FunCCart
/ C ({C} ×Cop Tw(C), E). Since idC is initial when viewed as

an object of the ∞-category {C} ×Cop Tw(C) (Proposition 8.1.2.1), Proposition 5.3.1.21
guarantees that the evaluation map

FunCCart
/ C ({C} ×Cop Tw(C), E)→ {C} ×C E

is a trivial Kan fibration. Moreover, the composition of this evaluation map with the functor
FC coincides with the functor TC appearing in condition (a1). It follows that conditions (a1)
and (b1) are equivalent.

Using the characterization of V -cartesian morphisms supplied by Lemmas 8.6.2.6 and
8.6.2.7, we can reformulate (b2) more concretely as follows:

(b′2) Let (e′, e) be an edge of the fiber product E†×Cop Tw(C). If e′ is a U †-cartesian
morphism of E† and λ+(e) is an isomorphism in C, then T (e′, e) is an isomorphism in
the ∞-category E .

To complete the proof, it will suffice to show that the functor T satisfies (a2) if and only if it
satisfies both (b0) and (b′2). The implication (a2)⇒ (b0) is immediate, and the implication
(a2)⇒ (b′2) follows from Corollary 5.1.1.8. The reverse implication follows from Proposition
8.6.1.13.

Proof of Proposition 8.6.2.3. Let U : E → C be a cocartesian fibration of ∞-categories. It
follows from Lemma 8.6.2.7 that the projection map V : FunCCart

/ C (Tw(C)/ Cop, E)→ Cop is a
cartesian fibration. We wish to show that the evaluation map

ev : FunCCart
/ C (Tw(C)/ Cop, E)×Cop Tw(C)→ E

exhibits V as a cartesian conjugate of U . This follows from Proposition 8.6.2.8, since the
identity automorphism of FunCCart

/ C (Tw(C)/ Cop, E) is an equivalence of ∞-categories.

Corollary 8.6.2.9 (Uniqueness).04CW Let U : E → C be a cocartesian fibration of ∞-categories.
Then U admits a cartesian conjugate, which is uniquely determined up to equivalence.

Proof. By virtue of Proposition 8.6.2.8, a cartesian fibration is conjugate to U if and only if
it is equivalent to the cartesian fibration V : FunCCart

/ C (Tw(C)/ Cop, E)→ Cop of Construction
8.6.2.2.

Remark 8.6.2.10.04CX The conclusion of Corollary 8.6.2.9 does not require the assumption
that C is an ∞-category; see Corollary 8.6.6.8.

https://kerodon.net/tag/04CW
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Let C be an ∞-category, let U : E → C be a cocartesian fibration, and let U † : E† → Cop

be a cartesian fibration. It follows from Proposition 8.6.2.8 that if there exists a functor

T : E†×Cop Tw(C)→ E

which exhibits U † as a cartesian conjugate of U , then U † can be recovered from U up to
equivalence. We close this section by showing that, in the same situation, we can also recover
U from the cartesian fibration U †.

Proposition 8.6.2.11. 04CYLet U : E → C be a cocartesian fibration of ∞-categories, let U † :
E† → Cop be a cartesian fibration of ∞-categories, and suppose we are given a commutative
diagram

E†×Cop Tw(C) T //

��

E

U

��
Tw(C) // C

which exhibits U † as a cartesian conjugate of U . Then T also exhibits E as a localization of
E†×Cop Tw(C) with respect to W , where W is the collection of all morphisms w = (w′, w′′)
where w′ is a U ′-cartesian morphism of E† and w′′ is a morphism of Tw(C) whose image in
C is degenerate.

Remark 8.6.2.12. 04CZThe converse of Proposition 8.6.2.11 is also true; see Corollary 8.6.6.3.

Proof of Proposition 8.6.2.11. Let λ = (λ−, λ+) : Tw(C) → Cop×C denote the twisted
arrow coupling of Example 8.2.0.2, and let V : E†×Cop Tw(C)→ C denote the composition
of λ+ with projection onto the second factor. Note that V factors as a composition

E†×Cop Tw(C) id×λ−−−→ E†×Cop(Cop×C) ≃ E†×C → C,

where the first map is a left fibration (since it is a pullback of λ, which is a left fibration
by virtue of Proposition 8.1.1.15), and the last map is a cocartesian fibration (since it is
a pullback of the projection map E† → ∆0). It follows that V is a cocartesian fibration,
and that a morphism of E†×Cop Tw(C) is V -cocartesian if and only if its image in E† is an
isomorphism. In particular, our hypotheses on T guarantees that it carries V -cocartesian
morphisms of E†×Cop Tw(C) to U -cocartesian morphisms of E .

Fix an object C ∈ C. Let E†(C) denote the fiber V −1{C} = E ′×Cop Tw(C)×C {C}, so that
projection onto the middle factor gives a map U †C : E†(C)→ Tw(C)×C {C}. Note that U †C is
a pullback of U †. It follows that U †C is a cartesian fibration, and that a morphism of E†(C) is
U †C-cartesian if and only if its image in E† is U †-cartesian (Remark 5.1.4.6). Let WC denote

https://kerodon.net/tag/04CY
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the collection of morphisms of E†(C) which satisfy this condition, so that W = ⋃
C∈CWC .

Note that T restricts to a functor TC : E†(C)→ EC . By virtue of Proposition 6.3.5.2, it will
suffice to verify the following (for each object C ∈ C):

(∗C) The functor TC exhibits the ∞-category EC as a localization of E†(C) with respect to
WC .

Let K denote the full subcategory of Tw(C) ×Cop {C} whose objects are isomorphisms
D → C. By virtue of Proposition 8.1.2.1, K can also be described as the full subcategory of
Tw(C)×Cop {C} spanned by its initial objects. It follows that K is a coreflective subcategory
of Tw(C) ×Cop {C} (Example 6.2.2.5). Let E†0(C) ⊆ E†(C) denote the inverse image of K
under U †C , so that E†0(C) is a coreflective subcategory of E†(C) (Proposition 6.2.2.22). Using
Lemma 6.2.2.14, we can choose a functor L : E†(C)→ E†0(C) and a natural transformation
ϵ : L → idE†(C) which exhibits L as a E†0(C)-coreflection functor. Our assumption on T

guarantees that the functor TC carries each element of WC to an isomorphism in E†0(C), so
that ϵ induces an isomorphism of functors (TC |E†0(C) ◦L)→ TC . Since the Kan complex K is
contractible (Corollary 4.6.7.14), the inclusion map {idC} ↪→ K is a homotopy equivalence of
Kan complexes, and therefore induces an equivalence of∞-categories E†(C)×Cop{C} ≃ E†0(C)
(Corollary 4.5.2.29). Since the composition

E†×Cop{C} ↪→ E†0(C) TC

−−→ EC

is an equivalence of∞-categories, we conclude that the functor TC |E†0(C) is also an equivalence
of ∞-categories. To complete the proof of (2C), it will suffice to show that the functor L
exhibits E†0(C) as a localization of E†(C) with respect to WC (see Remark 6.3.1.19). Let
W+
C denote the collection of morphisms v of E†(C) such that L(v) is an isomorphism in
E†0(C). By virtue of the preceding arguments, this is equivalent to the requirement that T (v)
is an isomorphism in the ∞-category EC ; in particular, assumption (1) guarantees that WC

is contained in W+
C . Conversely, if u : Y → Z is a morphism of E†(C) which belongs to W+

C ,
then we can choose a commutative diagram

Y

v

��
X

u

??

w // Z

where u and w exhibit X as E†0(C)-coreflections of the objects Y and Z, respectively, and
therefore belong to WC . We are therefore reduced to showing that the functor L exhibits
E†0(C) as a localization of E†(C) with respect to W+

C , which is a special case of Example
6.3.3.7.
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8.6.3 Dual Fibrations

04D0Let U : E → C be a cocartesian fibration of ∞-categories. By virtue of Corollary
8.6.2.9, U admits a cartesian conjugate U † : E† → Cop, which is uniquely determined up to
equivalence. Setting E∨ = E†,op and U∨ = U †,op, we obtain another cocartesian fibration
U∨ : E∨ → C. Our goal in this section is to give a direct characterization of the relationship
between U and U∨, which does not rely on the theory of conjugate fibrations developed
in §8.6.1 and §8.6.2. To fix ideas, let us begin by considering the case C = ∆0. In this
case, the conjugate fibration U † : E† → Cop is characterized by the requirement that the
∞-category E† is equivalent to E . Consequently, the cocartesian fibration U∨ : E∨ → C is
characterized by the requirement that E∨ is equivalent to the opposite of E . By virtue of
Corollary 8.2.6.6, this is equivalent to the existence of a balanced coupling λ : Ẽ → E∨×E :
that is, a left fibration which satisfies the following addition conditions:

• For every object X ∈ E , there exists an object X̃ ∈ Ẽ satisfying λ+(X̃) = X which is
universal: that is, it is an initial object of the ∞-category Ẽ ×E {X}.

• For every object X∨ ∈ E∨, there exists an object X̃ ∈ Ẽ satisfying λ−(X̃) = X∨ which
is couniversal: that is, it is an initial object of the ∞-category {X∨} ×E∨ Ẽ .

• An object of Ẽ is universal if and only if it is couniversal.

We now extend the notion of balanced coupling to the relative setting.

Definition 8.6.3.1. 04D1Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets, and let λ = (λ−, λ+) : Ẽ → E∨×C E be a left fibration of simplicial sets. We will say
that λ exhibits U∨ as a cocartesian dual of U if the following conditions are satisfied:

(a) For every vertex C ∈ C, the left fibration

λC : ẼC → E∨C ×EC

is a balanced coupling of ∞-categories.

(b) Let Ũ : Ẽ → C denote the projection map U∨ ◦ λ− = U ◦ λ+, f : X̃ → X̃ ′ be a
Ũ -cocartesian edge of Ẽ , and let e : C → C ′ be its image Ũ(f) in the simplicial set
C. If the object X̃ ∈ ẼC is universal for the coupling λC , then the object X̃ ′ ∈ ẼC′ is
universal for the coupling λC′ .

We say that U∨ is a cocartesian dual of U if there exists a left fibration λ : Ẽ → E∨×C E
which exhibits U∨ as a cocartesian dual of U .

Example 8.6.3.2. 04D2Let E and E∨ be ∞-categories, and let U : E → ∆0 and U∨ : E∨ → ∆0

denote the projection maps. Then a left fibration Ẽ → E∨×∆0 E = E∨×E exhibits U∨
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as a cocartesian dual of U if and only if it is a balanced coupling. In particular, U∨ is
a cocartesian dual of U if and only if E∨ is equivalent to the opposite ∞-category Eop

(Corollary 8.2.6.6).

Remark 8.6.3.3 (Symmetry).04D3 Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of
simplicial sets. Then a left fibration λ = Ẽ → E∨×C E exhibits U∨ as a cocartesian dual of
U if and only if it exhibits U as a cocartesian dual of U∨, after identifying E∨×C E with
E ×C E∨. In particular, U∨ is a cocartesian dual of U if and only if U is a cocartesian dual
of U∨.

Remark 8.6.3.4 (Base Change).04D4 Let U : E → C and U∨ : E∨ → C be cocartesian fibrations
of simplicial sets and λ : Ẽ → E∨×C E be a left fibration. The following conditions are
equivalent:

(a) The left fibration λ exhibits U∨ as a cocartesian dual of U (in the sense of Definition
8.6.3.1).

(b) For every morphism of simplicial sets C0 → C, form a diagram of pullback squares

E∨0

��

U∨0 // C′

��

E0
U0oo

��
E U∨ // C E .Uoo

Then the induced map
λ0 : (C0×C Ẽ)→ E∨0 ×C0 E0

exhibits U∨0 as a cocartesian dual of U0.

Moreover, it suffices to verify condition (b) in the special case where C0 = ∆1 is the standard
1-simplex.

Remark 8.6.3.5.04D5 Let U : E → C be a cocartesian fibration of simplicial sets, and let
U∨ : E∨ → C be a cocartesian dual of U . Then, for every morphism of simplicial sets
C0 → C, the projection map U∨0 : C0×C E∨ → C0 is a cocartesian dual of the projection map
U0 : C0×C E → C0. In particular, for every object C ∈ C, the ∞-category E∨C = {C} ×C E∨
is equivalent to the opposite of the ∞-category EC = {C} ×C E (Example 8.6.3.2).

Remark 8.6.3.6.04D6 Let U : E → C and U∨ : E∨ → C. In §8.6.6, we will show that U∨ is a
cocartesian dual of U (in the sense of Definition 8.6.3.1) if and only if the opposite fibration
U∨,op : E∨,op → Cop is a cartesian conjugate of U (in the sense of Definition 8.6.1.1). See
Proposition 8.6.6.1.
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Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial sets, and let
λ : Ẽ → E∨×C E be a left fibration. Condition (a) of Definition 8.6.3.1 guarantees that, for
each vertex C ∈ C, the coupling λC : ẼC → E∨C ×C EC is representable by an equivalence of
∞-categories GC : EC → (E∨C)op (Theorem 8.2.6.5). Heuristically, one can think of condition
(b) as requiring that the equivalence GC depends functorially on C. We can articulate this
heuristic more precisely as follows:

Proposition 8.6.3.7. 04D7Let U : E → ∆1 and U∨ : E∨ → ∆1 be cocartesian fibrations of
∞-categories, and let F : E0 → E1 and F∨ : E∨0 → E∨1 be functors given by covariant
transport along the nondegenerate edge of ∆1. Let λ = (λ−, λ+) : Ẽ → E∨×∆1 E be a left
fibration, and suppose that the associated couplings

λ0 : Ẽ0 → E∨0 ×E0 λ1 : Ẽ1 → E∨1 ×E1

are representable by functors G0 : E0 → (E∨0 )op and G1 : E1 → (E∨1 )op, respectively. If λ
satisfies condition (b) of Definition 8.6.3.1, then the diagram of ∞-categories

04D8E0
F //

G0

��

E1

G1

��
(E∨0 )op (F∨)op

// (E∨1 )op

(8.62)

commutes up to isomorphism.

Proof. Let Ũ denote the composite map

Ẽ λ−→ E∨×∆1 E → ∆1.

Using Proposition 5.1.4.13, we see that λ is a cocartesian fibration, and that an edge e of Ẽ is
Ũ -cocartesian if and only if λ+(e) is a U -cocartesian edge of E and λ−(e) is a U∨-cocartesian
edge of E∨. Let F̃ : Ẽ0 → Ẽ1 be given by covariant transport along the nondegenerate edge
of ∆1. Using Remark 5.2.8.5, we see that the diagram of ∞-categories

04D9Ẽ0
F̃ //

λ0

��

Ẽ1

λ1

��
E∨0 ×E0

F∨×F // E∨1 ×E1

(8.63)

commutes up to isomorphism. Since λ1 is an isofibration, we can replace F̃ by an isomorphic
functor to arrange that the diagram (8.63) is strictly commutative (see Corollary 4.4.5.6).
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Condition (b) of Definition 8.6.3.1 guarantees that the functor F̃ carries universal objects of
Ẽ0 (for the coupling λ0) to universal objects of Ẽ1 (for the coupling λ1). The commutativity
of the diagram (8.62) now follows from Corollary 8.2.4.4.

Corollary 8.6.3.8.04DA Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets having homotopy transport representations

hTrE / C ,hTrE∨ / C : hC → hQCat,

and let hTrop
E∨ / C denote the functor C 7→ hTrE∨ / C(C)op = (E∨C)op. Let λ : Ẽ → E∨×C E

be a left fibration such that, for each vertex C ∈ C, the coupling λC : ẼC → E∨C ×EC is
representable by a functor GC : EC → (E∨C)op. if λ satisfies condition (b) of Definition
8.6.3.1, then the construction C 7→ [GC ] determines a natural transformation of functors
hTrE / C → hTrop

E∨ / C.

Corollary 8.6.3.9.04DB Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets having homotopy transport representations

hTrE / C ,hTrE∨ / C : hC → hQCat.

Let λ : Ẽ → E∨×C E be a left fibration which exhibits U∨ as a cocartesian dual of U .
Then λ induces an isomorphism of functors hTrE / C

∼−→ hTrop
E∨ / C, which carries each vertex

C ∈ C to (the isomorphism class of) a functor which represents the balanced coupling
λC : ẼC → E∨C ×EC .

Proof. Combine Corollary 8.6.3.8 with Theorem 8.2.6.5.

Corollary 8.6.3.10.04DC Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets having homotopy transport representations

hTrE / C ,hTrE∨ / C : hC → hQCat.

If U∨ is a cocartesian dual of U , then hTrE∨ / C is isomorphic to the functor

hTrop
E / C : hC → hQCat C 7→ Eop

C .

Remark 8.6.3.11.04DD In §8.6.7, we will prove a stronger version of Corollary 8.6.3.10, which
gives a reformulation of cocartesian duality in the language of transport representations (see
Proposition 8.6.7.12).

For some applications, it will be convenient to work with a reformulation of Definition
8.6.3.1.
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Definition 8.6.3.12. 04DELet U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets. We say that a morphism of simplicial sets K : E∨×C E → S exhibits U∨ as a cocartesian
dual of U if the following conditions are satisfied:

(a) For each vertex C ∈ C, the induced map KC : E∨C ×EC → S is a balanced profunctor
(see Definition 8.3.2.18).

(b) Let f : X → Y be a U -cocartesian edge of E and let f∨ : X∨ → Y ∨ be a U∨-cocartesian
edge of E∨ having the same image e : C → D in C. Then the map of Kan complexes

K (f∨, f) : KC(X∨, X)→ KD(Y ∨, Y )

carries universal vertices of KC(X∨, X)) to universal vertices of KD(Y ∨, Y ) (see
Definition 8.3.2.7).

Variant 8.6.3.13. 04DFLet U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets. In the formulation of Definition 8.6.3.12, we have implicitly assumed that for each
vertex C ∈ C, the ∞-categories EC and C∨C are locally small (if this condition is not
satisfied, then a balanced profunctor KC : E∨C ×EC → S cannot exist). However, we will
sometimes apply the theory of cocartesian duality in situations where this condition is not
satisfied. If κ is an uncountable cardinal (not necessarily small), we will say that a morphism
K : E∨×C E → S<κ exhibits U∨ as a cocartesian dual of U if it satisfies conditions (a) and
(b) of Definition 8.6.3.12. In this case, we can take κ to be any uncountable cardinal having
the property that, for each vertex C ∈ C, the ∞-categories EC and E∨C are locally κ-small.

Remark 8.6.3.14. 04DGLet U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets, let λ : Ẽ → E∨×C E be a left fibration, and let K : E∨×C E → S<κ be a covariant
transport representation for λ. Then λ exhibits U∨ as a cocartesian dual of U (in the sense
of Definition 8.6.3.1) if and only if K exhibits U∨ as a cocartesian dual of U (in the sense
of Variant 8.6.3.13). See Remarks 8.3.2.19 and 8.3.2.8.

Combining Remark 8.6.3.14 with the classification of left fibrations (Corollary 5.6.0.6),
we obtain the following:

Proposition 8.6.3.15. 04DHLet U : E → C and U∨ : E∨ → C be cocartesian fibrations of
∞-categories. Let κ be an uncountable cardinal with the property that, for each vertex C ∈ C,
the ∞-categories EC and E∨C are locally κ-small. Then U∨ is a cocartesian dual of U if and
only if there exists a morphism K : E∨×C E → S<κ which exhibits U∨ as a cocartesian dual
of U , in the sense of Definition 8.6.3.12.

We now give some examples of cocartesian duality.

https://kerodon.net/tag/04DE
https://kerodon.net/tag/04DF
https://kerodon.net/tag/04DG
https://kerodon.net/tag/04DH


8.6. CONJUGATE AND DUAL FIBRATIONS 1917

Proposition 8.6.3.16.04DJ Let U : E → C be a left fibration of simplicial sets, and set
Ẽ = C ×Fun(∆1,E) Fun(∆1, E). Then the evaluation maps ev0, ev1 : Ẽ → E determine a left
fibration λ : Ẽ → E ×C E which exhibits U as a cocartesian dual of itself.

Proof. The morphism λ is a pullback of the restriction map

Fun(∆1, E)→ Fun(∂∆1, E)×Fun(∂∆1,C) Fun(∆1, C),

and is therefore a left fibration by virtue of Proposition 4.2.5.1. For every vertex C ∈ C, we
can identify λC with the coupling

Fun(∆1, EC)→ Fun({0}, EC)× Fun({1}, EC).

It follows from Example 8.2.6.3 that each λC is a balanced coupling, so that λ satisfies
condition (a) of Definition 8.6.3.1. Moreover, every object of Fun(∆1, EC) is universal for
the coupling λC , so that condition (b) of Definition 8.6.3.1 is vacuous.

Corollary 8.6.3.17.04DK Let U : E → C be a left fibration of simplicial sets. Then U is a
cocartesian dual of itself.

Example 8.6.3.18.04DL In the special case C = ∆0, Corollary 8.6.3.17 asserts that every
Kan complex X = E is homotopy equivalent to the opposite Kan complex Xop. This can
also be deduced from Theorem 3.6.0.1, since the geometric realizations |X| and |Xop| are
homeomorphic.

Proposition 8.6.3.19.04DM Let C be a category, let F : C → Cat be a functor of 2-categories,
and let F ′ : C → Cat be the functor given on objects by C 7→ F (C)op. Then (the nerves of)
the fibrations ∫

C
F → C

∫
C
F ′ → C

are cocartesian dual to one another.

We will deduce Proposition 8.6.3.19 from a more precise result. To formulate it, we need
to introduce a bit of notation.

Construction 8.6.3.20.04DN Let C be a category, let F : C → Cat be a functor of 2-categories,
and let

∫
CF denote the category of elements of F (Definition 5.6.1.1); we identify objects

of
∫
CF with pairs (C,X), where C is an object of B and X is an object of the category

F (C). Let F ′ : C → Cat denote the functor given on objects by F ′(C) = F (C)op. We
define a functor

K :
∫
C
F ′ ×C

∫
C
F → Set

as follows:
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• On objects, K is given by the formula K ((C,X ′), (C,X)) = HomF (C)(X ′, X).

• Let f : (C,X)→ (D,Y ) be a morphism in the category
∫
CF and let f ′ : (C,X ′)→

(D,Y ′) be a morphism in the category
∫
CF ′ having the same image u : C → D

in B. Let us identify f and f ′ with morphisms g : F (u)(X) → Y and g′ : Y ′ →
F (u)(Y ) in the category F (D). Then the function K (f ′, f) : K ((C,X ′), (C,X))→
K ((D,Y ′), (D,Y )) is given by the composition

HomF (C)(X ′, X) F (u)−−−→ HomF (D)(F (u)(X ′),F (u)(X)) g◦•◦g′−−−−→ HomF (D)(Y ′, Y ).

Proposition 8.6.3.21. 04DPLet C be a category and let F : C → Cat be a functor of 2-categories.
Then the functor

N•(K ) : N•(
∫
C
F ′)×N•(C) N•(

∫
C
F )→ N•(Set) ⊂ S

of Construction 8.6.3.20 exhibits the projection map U ′ : N•(
∫
CF ′)→ N•(C) as a cocartesian

dual of the projection map U : N•(
∫
CF )→ N•(C).

Proof. For each object C ∈ C, the restriction of K to the fiber over C is given concretely
by the functor

KC : F (C)op ×F (C)→ Set (X ′, X) 7→ HomF (C)(X ′, X).

Example 8.3.3.4 implies that N•(KC) is a Hom-functor for the ∞-category N•(F (C)) and
is therefore a balanced profunctor (Proposition 8.3.3.8). Let u : C → D be a morphism in
the category C, and let f : (C,X)→ (D,Y ) and f ′ : (C,X ′)→ (D,Y ′) be lifts of u to the
categories

∫
CF and

∫
CF ′, respectively. We wish to show that, if f is U -cocartesian and f ′

is U ′-cocartesian, then the induced map

K (f, f ′) : KC(X ′, X)→ KD(Y ′, Y )

carries universal elements of KC(X ′, X) to universal elements of KD(Y ′, Y ). Let us identify
f and f ′ with morphisms g : F (u)(X)→ Y and g′ : Y ′ → F (u)(Y ) in the category F (D),
so that K (f ′, f) is given by the composition

HomF (C)(X ′, X) F (u)−−−→ HomF (D)(F (u)(X ′),F (u)(X)) g◦−◦g′−−−−→ HomF (D)(Y ′, Y ).

Our assumption that f is U -cocartesian guarantees that g is an isomorphism in the category
F (D), and our assumption that f ′ is a U ′-cocartesian guarantees that g′ is an isomorphism in
the category F (D). The desired result now follows from the observation that if e : X ′ → X

is an isomorphism in the category F (C), then the composition g ◦ F (u)(e) ◦ g′ is an
isomorphism in the category F (D).
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Proof of Proposition 8.6.3.19. Combine Propositions 8.6.3.15 and 8.6.3.21.

Let QCat be the (ordinary) category of ∞-categories, which we regard as a full subcat-
egory of Set∆. If F : C → QCat is a functor of ordinary categories, we let NF

• (C) denote
the weighted nerve of Definition 5.3.3.1. According to Corollary 5.3.3.16, the projection
map U : NF

• (C)→ N•(C) is a cocartesian fibration, whose fiber over an object C ∈ C can be
identified with the ∞-category F (C). In this situation, it is easy to construct a cocartesian
dual of U :

Proposition 8.6.3.22.04DQ Let F : C → QCat be a functor of ordinary categories, and let
F ′ : C → QCat denote the functor given on objects by C 7→ F (C)op. Then the fibrations

NF
• (C)→ N•(C)← NF ′

• (C)

are cocartesian dual to one another.

Proposition 8.6.3.22 is an immediate consequence of the following more precise result:

Proposition 8.6.3.23.04DR Let F : C → QCat be a functor of ordinary categories and let
F ′,Tw(F ) : C → QCat be the functors given on objects by the formulae F ′(C) = F (C)op

and Tw(F )(C) = Tw(F (C)). Then the tautological map

λ = (λ−, λ+) : NTw(F )
• (C)→ NF op

• (C)×N•(C) NF
• (C)

exhibits the fibration U∨ : NF ′
• (C)→ N•(C) as a cocartesian dual of the fibration U : NF

• (C)→
N•(C).

Proof. For each object C ∈ C, Proposition 8.1.1.11 guarantees that the morphism

λC : Tw(F (C))→ F (C)op ×F (C)

is a left fibration of ∞-categories, which is a balanced coupling by virtue of Example 8.2.6.2.
Applying Corollary 5.3.3.18, we deduce that λ is a left fibration of ∞-categories. Let
U : NTw(F )

• (C)→ N•(C) denote the projection map, and let f : X → Y be a morphism in
the ∞-category NTw(F )

• (C) having image u : C → D in C. To complete the proof, it will
suffice to show that if X is universal for the coupling λC and f is U -cocartesian, then Y is
universal for the coupling λD. Our assumption that f is U -cocartesian guarantees that Y is
isomorphic to the image of X under the functor Tw(F (u)) : Tw(F (C))→ Tw(F (D)). The
desired result now follows from Example 8.2.1.5, since the functor F (u) carries isomorphisms
in the ∞-category F (C) to isomorphisms in the ∞-category F (D).
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8.6.4 Existence of Dual Fibrations

04DSThe goal of this section is to prove the following:

Theorem 8.6.4.1. 04DTLet U : E → C be a cocartesian fibration of simplicial sets. Then U

admits a cocartesian dual U∨ : E∨ → C, which is uniquely determined up to equivalence.

We will give the proof of Theorem 8.6.4.1 at the end of this section.

Corollary 8.6.4.2. 04DUFor every simplicial set C, the formation of cocartesian duals induces a
bijection

{Cocartesian fibrations U : E → C}/Equivalence

θ

��
{Cocartesian fibrations U∨ : E∨ → C}/Equivalence.

Proof. Theorem 8.6.4.1 implies that θ is well-defined, and Remark 8.6.3.3 implies that θ ◦ θ
is the identity; in particular, θ is a bijection.

Variant 8.6.4.3 (Cartesian Duality). 04DVLet U : E → C and U ′ : E ′ → C be cartesian fibrations
of simplicial sets. We say that U ′ is a cartesian dual of U if the cocartesian fibration
U ′ op : E ′ op → Cop is a cocartesian dual of Uop : Eop → Cop. It follows from Theorem 8.6.4.1
that every cartesian fibration U : E → C admits a cartesian dual U ′ : E → C which is uniquely
determined up to equivalence. Moreover, Corollary 8.6.3.10 implies that the (contravariant)
homotopy transport representation of U ′ is given by the composition

hCop hTrE / C−−−−−→ hQCat A7→A
op

−−−−−→ hQCat.

In particular, for every vertex C ∈ C, the fiber E ′C{C} ×C E ′ is equivalent to the opposite of
the ∞-category EC = {C} ×C E .

Warning 8.6.4.4. 04DWLet U : E → C be a morphism of simplicial sets which is both a cartesian
fibration and a cocartesian fibration. Then U admits a both a cocartesian dual U ′ : E ′ → C
and a cartesian dual U ′′ : E ′′ → C. For every vertex C ∈ C, there are equivalences of
∞-categories E ′C ≃ E

op
C ≃ E

′′
C . Beware that the fibrations U ′ and U ′′ are generally not

equivalent to one another (see Example 8.6.4.5).

Example 8.6.4.5. 04DXLet U : E → ∆1 be a cocartesian fibration of ∞-categories. By virtue
of Remark 5.2.4.3, the cocartesian fibration U can be recovered (up to equivalence) from
its homotopy transport representation, which we can identify with the functor F : E0 → E1
given by covariant transport along the nondegenerate edge of ∆1. The fibration U then a
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cocartesian dual U ′ : E ′ → ∆1, whose covariant transport functor can be identified with the
composition

E ′0 ≃ E
op
0

F op
−−→ Eop

1 ≃ E
′
1

(Corollary 8.6.3.10). Applying Proposition 6.2.3.5, we deduce the following:

(a) The cocartesian fibration U is a cartesian fibration if and only if the functor F : E0 → E1
admits a right adjoint.

(b) The cocartesian fibration U ′ is a cartesian fibration if and only if the functor F op : Eop
0 →

Eop
1 admits a right adjoint: that is, if and only if the functor F admits a left adjoint.

Note that conditions (a) and (b) are not equivalent. If (a) is satisfied and (b) is not, then
U admits a cartesian dual U ′′ : E ′′ → ∆1 which cannot be equivalent to U ′ (since U ′′ is a
cartesian fibration and U ′ is not).

Let U : E → C be a cocartesian fibration of simplicial sets. Theorem 8.6.4.1 implies that
U admits a cocartesian dual U∨ : E∨ → C. To prove this, it will be convenient to use the
formulation of cocartesian duality supplied by Definition 8.6.3.12. In the special case where
C = ∆0 and E is locally small, we wish to show that there exists an ∞-category E∨ and a
balanced profunctor K : E∨×E → S. This is a special case of Corollary 8.3.2.21: in fact,
we can take E∨ to be the ∞-category Funcorep(E ,S) of corepresentable functors from E to S,
and K to be the evaluation functor

ev : Funcorep(E ,S)× E → S (F , X) 7→ F (X).

To handle the general case we will use a variant of this construction, defined using the
relative exponential introduced in §4.5.9.

Construction 8.6.4.6.04DY Let U : E → C be a cocartesian fibration of simplicial sets, let κ be an
uncountable cardinal, and let let S<κ denote the∞-category of essentially κ-small spaces. We
let Fun(E / C,S<κ) denote the relative exponential of Construction 4.5.9.1. By construction,
we can identify vertices of Fun(E / C,S<κ) with pairs (C,FC), where C is a vertex of C and
FC : EC → S<κ is a functor of ∞-categories. We let Funcorep(E / C,S<κ) denote the full
simplicial subset of Fun(E / C,S<κ) spanned by those vertices (C,FC) where the functor
FC is corepresentable by an object of the ∞-category EC . In what follows, we will generally
write π : Fun(E / C,S<κ)→ C for the projection map, and πcorep : Funcorep(E / C,S<κ)→ C
for the restriction of π to the simplicial subset Funcorep(E / C,S<κ) ⊆ Fun(E / C,S<κ).

Remark 8.6.4.7.04DZ Construction 8.6.4.6 is independent of the choice of the cardinal κ,
provided that each of the∞-categories EC is locally κ-small. If this condition is satisfied and
λ ≥ κ, then every corepresentable functor F : EC → S<λ factors through S<κ. It follows
that Funcorep(E / C,S<κ) = Funcorep(E / C,S<λ).
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The existence assertion of Theorem 8.6.4.1 is a consequence of the following more precise
result:

Proposition 8.6.4.8. 04E0Let κ be an uncountable cardinal and let U : E → C be a cocartesian
fibration of simplicial sets which is locally κ-small (Variant 4.7.9.2). Then the evaluation
map

ev : Funcorep(E / C,S<κ)×C E → S<κ ((C,FC), X) 7→ FC(X)
exhibits the projection map πcorep : Funcorep(E / C,S<κ)→ C as a cocartesian dual of U (in
the sense of Variant 8.6.3.13).

Our first goal is to show that, in the situation of Proposition 8.6.4.8, the projection map
πcorep is a cocartesian fibration of simplicial sets. We begin with some more general remarks.

Proposition 8.6.4.9. 04E1Let κ be an uncountable regular cardinal, let U : E → C be a cocartesian
fibration of simplicial sets which is essentially κ-small, and let D be an ∞-category which is
κ-cocomplete. Then the projection map π : Fun(E / C,D)→ C is a cocartesian fibration of
simplicial sets.

Proof. It follows from Corollary 5.3.6.8 that π is a cartesian fibration of simplicial sets. Let
e : C → C ′ be an edge of the simplicial set C, and let e! : EC → EC′ be the functor given by
covariant transport along e (for the cocartesian fibration U). Then precomposition with e!
determines a functor

e∗ : {C ′} ×C Fun(E / C,D) = Fun(EC′ ,D) ◦e!−−→ Fun(EC ,D) = {C} ×C Fun(E / C,D).

Proposition 5.3.6.9 guarantees that the functor e∗ is given by contravariant transport along
e (for the cartesian fibration π). Using Proposition 6.2.3.5, we see that π is a cocartesian
fibration if and only if the functor e∗ has a left adjoint (for every edge e of C). By virtue of
Corollary 7.3.6.3, it will suffice to show that every functor F : EC → D admits a left Kan
extension along the functor e! : EC → EC′ . This is a special case of Proposition 7.6.7.13, by
virtue of our assumptions on the cardinal κ.

Remark 8.6.4.10. 04E2In the situation of Proposition 8.6.4.9, let e : C → C ′ be an edge of C
and let

e! : EC → EC′ e′! : Fun(EC ,D)→ Fun(EC′ ,D)
be functors given by covariant transport along e (for the cocartesian fibrations U and π,
respectively). Then the functor e′! is given by left Kan extension along e!.

Variant 8.6.4.11. 04E3Let κ be an uncountable regular cardinal, let U : E → C be an expo-
nentiable inner fibration which is essentially κ-small, and let D be an ∞-category which
is κ-cocomplete. Then the projection map π : Fun(E / C,D)→ C is a cocartesian fibration.
Moreover, an edge ẽ of Fun(E / C,D) is π-cocartesian if and only if satisfies the following
condition:
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(∗) Write ẽ = (e, Fe), where e is an edge of C and Fe : ∆1 ×C E → D is a functor of
∞-categories. Then Fe is left Kan extended from the full subcategory {0} ×C E .

Proof. Corollary 4.5.9.18 guarantees that π is an isofibration, and Corollary 7.3.7.9 guarantees
that every edge of Fun(E / C,D) which satisfies condition (∗) is π-cocartesian. Suppose we
are given a vertex C̃ = (C,FC) of Fun(E / C,D), where C is a vertex of C and FC : EC → D is
a functor of∞-categories. If e : C → C ′ is an edge of C, then Proposition 7.6.7.13 guarantees
that FC admits a left Kan extension Fe : ∆1 ×C E → D, which we can identify with an edge
ẽ of Fun(E / C,D) satisfying π(ẽ) = e. By construction, the morphism ẽ satisfies condition
(∗), and is therefore π-cocartesian by virtue of Corollary 7.3.7.9. Allowing C̃ and e to vary,
we conclude that π is a cocartesian fibration. To complete the proof, it will suffice to show
that every π-cocartesian edge ẽ′ of Fun(E / C,D) satisfies condition (∗). Let us identify ẽ′
with a pair (e, F ′e), where e is an edge of B and F ′e : ∆1 ×C E → D is a functor. Using
the preceding argument, we see that the restriction F ′e|{0}×CE admits a left Kan extension
Fe : ∆1 ×C E → D, corresponding to another edge ẽ of Fun(E / C,D). By construction, ẽ
satisfies condition (∗) and is therefore π-cocartesian. Invoking the uniqueness of cocartesian
lifts (Remark 5.1.3.8), we deduce that the functors Fe and F ′e are isomorphic. It follows that
F ′e is also left Kan extended from {0} ×C E (Remark 7.3.3.17), so that ẽ′ satisfies condition
(∗) as desired.

Proposition 8.6.4.12.04E4 Let κ be an uncountable regular cardinal and let U : E → C be a
cocartesian fibration of simplicial sets which is essentially κ-small. Then:

(1) The projection map π : Fun(E / C,S<κ)→ C is both a cartesian fibration and a cocartesian
fibration.

(2) Let ẽ be a π-cocartesian edge of the simplicial set Fun(E / C,S<κ). If the source of ẽ
belongs to the simplicial subset Funcorep(E / C,S<κ), then the target of ẽ also belongs
to the simplicial subset Funcorep(E / C,S<κ).

(3) The morphism π restricts to a cocartesian fibration πcorep : Funcorep(E / C,S<κ) → C.
Moreover, an edge of Funcorep(E / C,S<κ) is πcorep-cocartesian if and only if it is
π-cocartesian.

Proof. Assertion (1) follows from Corollary 5.3.6.8 and Proposition 8.6.4.9 (since the ∞-
category S<κ admits κ-small colimits; see Remark 7.4.5.7). We will prove (2). Let ẽ :
(C,FC)→ (C ′,FC′) be an edge of the simplicial set Fun(E / C,S<κ) having image e : C → C ′

in C. Let e! : EC → EC′ be given by covariant transport along e for the cocartesian fibration
U . If ẽ is π-cocartesian, then we can identify FC′ with a left Kan extension of FC along the
functor e! (Remark 8.6.4.10). In particular, if the functor FC : EC → S is corepresentable
by an object X ∈ EC , then FC′ is corepresentable by the image e!(X) ∈ CC′ (Corollary
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8.3.1.9). This proves assertion (2), and assertion (3) is a formal consequence (see Proposition
5.1.4.16).

Let U : E → C be a cocartesian fibration of simplicial sets. To show that the projection
map πcorep : Funcorep(E / C,S<κ)→ C is a cocartesian fibration (at least for κ≫ 0), we used
the fact that the collection of corepresentable functors is closed under the formation of left
Kan extensions. To prove Proposition 8.6.4.8, we will need to characterize the collection of
πcorep-cocartesian edges of the simplicial set Funcorep(E / C,S<κ) more explicitly.

Lemma 8.6.4.13. 04E5Let κ be an uncountable cardinal, let E be an ∞-category which is locally
κ-small, and let F : E → S<κ be a functor. Suppose we are given a full subcategory E0 ⊆ E,
an object X ∈ E0, and a vertex η ∈ F (X). Then η exhibits the F as corepresented by the
object X if and only if the following conditions are satisfied:

(a) The vertex η exhibits F0 = F |E0 as corepresented by the object X.

(b) The functor F is left Kan extended from E0.

Proof. It follows immediately from the definition that if η exhibits F as corepresented by
X, then it also exhibits F0 as corepresented by X. We may therefore assume without loss
of generality that condition (a) is satisfied. In this case, the desired equivalence follows
immediately by combining the criterion of Lemma 8.3.1.7 with the transitivity property of
Kan extensions (Proposition 7.3.8.18).

Lemma 8.6.4.14. 04E6Let κ be an uncountable cardinal, let E be an ∞-category which is locally
κ-small, and let F : E → S<κ be a functor. Suppose we are given a functor U : E → ∆1

and a U -cocartesian morphism e : X → Y of E satisfying U(X) = 0 and U(Y ) = 1. Write
E0 = {0}×∆1 E and E1 = {1}×∆1 E, and let η ∈ F (X) be a vertex which exhibits the functor
F0 = F |E0 as corepresented by the object X. The following conditions are equivalent:

(1) The functor F is left Kan extended from E0.

(2) The vertex η exhibits the functor F as corepresented by X.

(3) The vertex F (e)(η) ∈ F (Y ) exhibits the functor F1 = F |E1 as corepresented by the
object Y ∈ E1.

Proof. The equivalence of (1) and (2) follows from Lemma 8.6.4.13. We will show that (2)
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and (3) are equivalent. Fix an object Z ∈ E1. Then the diagram of Kan complexes

HomE1(Y, Z) ◦[e] //

$$

HomE(X,Z)

zz
F (Z)

commutes up to homotopy, where the right vertical map is determined by ηF (X) and the
left vertical map is determined by F (e)(η) ∈ F (Y ). Our assumption that e is U -cocartesian
guarantees that the horizontal map is a homotopy equivalence (Corollary 5.1.2.3). It follows
that the left vertical map is a homotopy equivalence if and only if the right vertical map is a
homotopy equivalence. The desired result now follows by allowing the object Z to vary.

Lemma 8.6.4.15.04E7 Let U : E → C be a cocartesian fibration of ∞-categories, let κ be an
uncountable cardinal such that each fiber of U is locally κ-small. Let ẽ be an edge of the
simplicial set Funcorep(E / C,S<κ) corresponding to a pair (e,F ), where e : C → D is an
edge of C and F : ∆1 ×C E → S<κ is a functor. The following conditions are equivalent:

(1) The edge ẽ is πcorep-cocartesian (where πcorep : Funcorep(E / C,S<κ) → C denotes the
projection map).

(2) There exists an object X ∈ EC , a vertex η ∈ F (X) which exhibits F |EC
as corepresented

by the object X, and a U -cocartesian morphism e : X → Y such that U(e) = e and the
vertex F (e)(η) ∈ F (Y ) exhibits F |ED

as corepresented by the object Y .

(3) For every object X ∈ EC , every vertex η ∈ F (X) which exhibits F |EC
as corepresented

by the object X, and every U-cocartesian morphism e : X → Y satisfying U(e) = e,
the vertex F (e)(η) ∈ F (Y ) exhibits F |ED

as corepresented by the object Y .

Proof. By virtue of Remark 8.6.4.7, we are free to enlarge the cardinal κ; we may therefore
assume without loss of generality that κ is regular and that the ∞-category ∆1 ×C E is
essentially κ-small. In this case, Variant 8.6.4.11 shows that (1) is equivalent to the following:

(1′) The functor F is left Kan extended from the full subcategory EC ⊆ ∆1 ×C E .

The equivalences (1′)⇔ (2)⇔ (3) now follow from Lemma 8.6.4.14.

Proof of Proposition 8.6.4.8. Let U : E → C be a cocartesian fibration of simplicial sets,
and let κ be an uncountable cardinal such that each fiber of U is locally κ-small. It follows
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from Proposition 8.6.4.12 that the projection map πcorep : Funcorep(E / C,S<κ) → C is a
cocartesian fibration of simplicial sets. We wish to show that the evaluation map

ev : Funcorep(E / C,S<κ)×C E → S<κ ((C,FC), X) 7→ FC(X)

satisfies conditions (a) and (b) of Definition 8.6.3.12. Condition (a) asserts that, for each
vertex C ∈ C, the evaluation map

evC : Funcorep(EC ,S<κ)× EC → S<κ (F , X) 7→ F (X)

is a balanced profunctor; this follows from Corollary 8.3.2.21. Assertion (b) is a restatement
of the implication (1)⇒ (3) of Lemma 8.6.4.15.

Proposition 8.6.4.8 immediately implies the existence assertion of Theorem 8.6.4.1. To
establish uniqueness, it will be convenient to introduce some terminology.

Definition 8.6.4.16. 04E8Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simplicial
sets and let κ be an uncountable cardinal. We will say that a morphism K : E∨×C E → S<κ
is a weak C-family of corepresentable profunctors if, for every vertex C ∈ C, the induced map

KC : E∨C ×EC → S<κ

is a corepresentable profunctor (Definition 8.3.2.9). We say that K is a C-family of
corepresentable profunctors if it is a weak C-family of corepresentable profunctors and
satisfies the following additional condition:

(∗) Let f : X → Y be a U -cocartesian edge of E and let f∨ : X∨ → Y ∨ be a U∨-cocartesian
edge of E∨ having the same image u : C → D in C. Then the map of Kan complexes

K (f∨, f) : KC(X∨, X)→ KD(Y ∨, Y )

carries couniversal vertices of KC(X∨, X) to couniversal vertices of KD(Y ∨, Y ).

Example 8.6.4.17. 04E9In the situation of Definition 8.6.4.16, the morphism K exhibits U∨
as a cocartesian dual of U (in the sense of Variant 8.6.3.13) if and only if it is a C-family of
corepresentable profunctors having the further property that each of the profunctors KC is
balanced: that is, it is corepresentable by an equivalence of ∞-categories (E∨C)op → EC (see
Corollary 8.3.2.20).

Let U : E → C be a morphism of simplicial sets, let κ be an uncountable cardinal, and
let π : Fun(E / C,S<κ) → C denote the projection map. For any morphism of simplicial
sets U∨ : E∨ → C, we can identify morphisms K : E∨×C E → S<κ with morphisms
F : E∨ → Fun(E / C,S<κ) satisfying π ◦ F = U .
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Proposition 8.6.4.18.04EA Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of simpli-
cial sets. Let κ be an uncountable cardinal such that U is locally κ-small. Fix a morphism
K : E∨×C E → S<κ, which we identify with a morphism F : E∨ → Fun(E / C,S<κ). Then:

(1) The morphism K is a weak C-family of corepresentable profunctors if and only if F
factors through the simplicial subset Funcorep(E / C,S<κ) ⊆ Fun(E / C,S<κ).

(2) The morphism K is a C-family of corepresentable profunctors if and only if F fac-
tors through Funcorep(E / C,S<κ) and carries U∨-cocartesian edges of E∨ to πcorep-
cocartesian edges of Funcorep(E / C,S<κ). Here πcorep : Funcorep(E / C,S<κ) → C de-
notes the cocartesian fibration of Proposition 8.6.4.12.

(3) The morphism K exhibits U∨ as a cocartesian dual of U if and only if F : E∨ →
Funcorep(E / C,S<κ) is an equivalence of cocartesian fibrations over C.

Proof. Assertion (1) is immediate from the definitions and assertion (2) follows from Lemma
8.6.4.15. Assertion (3) follows by combining (2) with Example 8.6.4.17 (see Proposition
5.1.7.14).

Proof of Theorem 8.6.4.1. Let U : E → C be a cocartesian fibration of simplicial sets. Fix
an uncountable cardinal κ such that U is locally κ-small. Proposition 8.6.4.8 implies that the
projection map πcorep : Funcorep(E / C,S<κ)→ C is a cocartesian dual of U , and Proposition
8.6.4.18 implies that any other cocartesian dual U∨ : E∨ → C is equivalent to πcorep.

Using Proposition 8.6.4.18, we can characterize the dual of a fibration by a universal
mapping property.

Corollary 8.6.4.19.04EB Let U : E → C, U∨ : E∨ → C, and V : D → C be cocartesian fibrations
of simplicial sets, let κ be an uncountable cardinal, and let K : E∨×C E → S<κ exhibit U∨

as a cocartesian dual of U . Then:

(1) Composition with K induces a fully faithful functor

Fun/ C(D, E∨)→ Fun(D×C E∨,S<κ).

The essential image is spanned by the weak C-families of corepresentable profunctors.

(2) A morphism F ∈ Fun/ C(D, E∨) carries V -cocartesian edges of D to U∨-cocartesian edges
of E∨ if and only if the composite map

D×C E
F×id−−−→ E∨×C E

K−→ S<κ

is a C-family of corepresentable profunctors.
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(3) A morphism F ∈ Fun/ C(D, E∨) is an equivalence of cocartesian fibrations over C if and
only if the composite map

D×C E
F×id−−−→ E∨×C E

K−→ S<κ

exhibits V as a cocartesian dual of U

Proof. We can identify K with a morphism G ∈ Fun/ C(E∨,Funcorep(E / C,S<κ)). It fol-
lows from Proposition 8.6.4.18 that G is an equivalence of cocartesian fibrations over
C. We can therefore replace E∨ by Funcorep(E / C,S<κ) and K by the evaluation map
ev : Funcorep(E / C,S<κ) ×C E → S<κ. In this case, assertions (1), (2), and (3) follow
immediately from the corresponding assertions of Proposition 8.6.4.18.

8.6.5 Cocartesian Duality via Cospans

04ECLet U : E → C be a cocartesian fibration of simplicial sets. Theorem 8.6.4.1 asserts that U
admits a cocartesian dual U∨ : E∨ → C, which is uniquely determined up to equivalence. In
this section, we describe an alternative construction of U∨ due to Barwick-Glasman-Nardin
([3]), which uses the restricted cospan construction of §8.1.6.

Notation 8.6.5.1. 04EDLet C be a simplicial set, and let ρ+ : C ↪→ Cospan(C) be the inclusion
map of Construction 8.1.7.1. For every morphism of simplicial sets U : E → C, we let
Cospan(E / C) denote the fiber product C ×Cospan(C) Cospan(E).

Suppose that U is a cocartesian fibration, and let L be the collection of all U -cocartesian
morphisms of E . In this case, we define CospanCCart(E / C) to be the fiber product
C ×Cospan(C) CospanL,all(E), which we regard as a simplicial subset of Cospan(E / C).

Remark 8.6.5.2. 04EELet U : E → C be a morphism of simplicial sets. Low-dimensional
simplices of the simplicial set Cospan(E / C) can be described as follows:

• Vertices of the simplicial set Cospan(E / C) can be identified with vertices of the
simplicial set E .

• Let X and Y be vertices of Cospan(E / C). Then edges e : X → Y of Cospan(E / C)
can be identified with pairs of edges X f−→ B

g←− Y in the simplicial set E having the
property that U(g) is a degenerate edge of C. If U is a cocartesian fibration, then the
edge e belongs to CospanCCart(E / C) if and only if f is U -cocartesian.

Example 8.6.5.3. 04EFLet U : E → C be a morphism of simplicial sets. If C = ∆0, then
Cospan(E / C) can be identified with the simplicial set Cospan(E). If, in addition, U is a
cocartesian fibration, then E is an ∞-category and CospanCCart(E / C) can be identified
with the simplicial subset Cospaniso,all(E) ⊆ Cospan(E) of Variant 8.1.7.14. In this case,
Proposition 8.1.7.6 guarantees that CospanCCart(E / C) is an ∞-category which is equivalent
to Eop.
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Remark 8.6.5.4 (Base Change).04EG Suppose we are given a pullback diagram of simplicial sets

E ′

U ′

��

// E

U

��
C′ F // C .

Then we have a canonical isomorphism Cospan(E ′ / C′) ≃ C′×C Cospan(E / C). If U is
a cocartesian fibration, then U ′ is also a cocartesian fibration, and we also obtain an
isomorphism CospanCCart(E ′ / C′) ≃ C′×C CospanCCart(E / C). In particular, for each vertex
C ∈ C, the fiber {C}×CCospanCCart(E / C) is isomorphic to the∞-category Cospaniso,all(EC),
which is equivalent to the ∞-category Eop

C .

Example 8.6.5.5 (Path Fibrations).04EH Let C be an ∞-category, and let

ev0, ev1 : Fun(∆1, C)→ C

denote the functors given by evaluation at the vertices 0, 1 ∈ ∆1. Then ev0 is a cartesian
fibration, and ev1 is a cocartesian fibration (Example 5.3.7.4). Let L denote the collection
of ev1-cartesian morphisms of Fun(∆1, C) (that is, the collection of morphisms f such that
ev0(f) is an isomorphism of C), and let R denote the collection of ev0-cocartesian morphisms
of C (that is, the collection of morphisms f such that ev1(f) is an isomorphism in C).
Applying the construction of Notation 8.6.5.1 to the cocartesian fibration ev1, we obtain
an ∞-category CospanCCart(Fun(∆1, C)/ C). The morphism Ξ of Construction 8.2.6.11
determines a morphism Tw(C)→ CospanCCart(Fun(∆1, C)/ C) which fits into a commutative
diagram

Tw(C) Ξ //

��

CospanCCart(Fun(∆1, C)/ C)

��

// CospanL,R(Fun(∆1, C))

ev0,ev1

��
Cop×C // Cospaniso,all(C)× C // Cospaniso,all(C)× Cospanall,iso(C).

Here the right half of the diagram is a pullback square, the vertical maps are left fibrations
(Proposition 8.1.1.11 and Lemma 8.2.6.10), the lower horizontal maps are equivalences of ∞-
categories (Proposition 8.1.7.6). Applying Proposition 8.2.6.13 (and Corollary 4.5.2.29), we
deduce that the Ξ : Tw(C)→ CospanCCart(Fun(∆1, C)/ C) is an equivalence of ∞-categories.

We can now state our main result.
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Theorem 8.6.5.6. 04EJLet U : E → C be a cocartesian fibration of simplicial sets. Then the
projection map CospanCCart(E / C)→ C is also a cocartesian fibration, which is a cocartesian
dual of U .

We will give the proof of Theorem 8.6.5.6 at the end of this section.

Corollary 8.6.5.7 (The Dual of a Path Fibration). 04EKLet C be an ∞-category. Then the
projection map λ+ : Tw(C)→ C of Notation 8.1.1.6 is a cocartesian dual of the evaluation
functor ev1 : Fun(∆1, C)→ C.

Proof. Combine Theorem 8.6.5.6 with Example 8.6.5.5.

The proof of Theorem 8.6.5.6 will require some preliminaries. Our first goal is to show
that if U : E → C is a cocartesian fibration, then the projection map CospanCCart(E / C)→ C
is also a cocartesian fibration.

Lemma 8.6.5.8. 04ELLet U : E → C be a cocartesian fibration of ∞-categories, let L de-
note the collection of all U-cocartesian morphisms of E, and let R denote the collec-
tion of all morphisms e : X → Y of E such that U(e) is an isomorphism in C. Then
Cospan(U) : Cospan(E) → Cospan(C) restricts to a cocartesian fibration of ∞-categories
V : CospanL,R(E) → Cospanall,iso(C). Moreover, an edge e : X → Y of CospanL,R(E) is
V -cocartesian if and only if it satisfies the following condition:

(∗) The edge e corresponds to a cospan X
ℓ−→ B

r←− Y in E, where ℓ is U -cocartesian and r is
an isomorphism.

Proof. Let L0 be the collection of all morphisms in C, and let R0 be the collection of all
morphisms of C. Then L0 and R0 are pushout-compatible, in the sense of Definition 8.1.6.5
(Example 8.1.6.6). Moreover, U is a Beck-Chevalley fibration relative to (R0, L0) (Example
8.1.10.8). Since CospanL0,R0(C) = Cospaniso,all(C) is an ∞-category, the desired result
follows from (the duals of) Theorem 8.1.10.9 and Remark 8.1.10.11.

Remark 8.6.5.9. 04EMLet U : E → C be a cocartesian fibration of ∞-categories, let L denote
the collection of all U -cocartesian morphisms of E , and let R denote the collection of all
morphisms g of E such that U(g) is an isomorphism in C. We then have a commutative
diagram of pullback squares

CospanCCart(E / C)

��

// CospanL,R(E) //

��

CospanL,all(E)

��
C

ρ+ // Cospanall,iso(C) // Cospan(C),
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where the vertical map in the middle is a cocartesian fibration (Lemma 8.6.5.8), and the
horizontal map on the lower left is an equivalence of ∞-categories (Proposition 8.1.7.6).
It follows that the projection map CospanCCart(E / C) → C is a cocartesian fibration of
∞-categories. Moreover, Corollary 4.5.2.29 implies that the inclusion CospanCCart(E / C) ↪→
CospanL,R(E) is an equivalence of ∞-categories.

Lemma 8.6.5.10.04EN Let U : E → C be a cocartesian fibration of simplicial sets. Then the
projection map U∨ : CospanCCart(E / C)→ C is also a cocartesian fibration. Moreover, an
edge X → Y of CospanCCart(E / C) is U∨-cocartesian if and only if it corresponds to a cospan
X

ℓ−→ B
r←− Y in E, where ℓ is U-cocartesian and r is an isomorphism in the ∞-category

{U(Y )} ×C E.

Proof. Using Proposition 5.1.4.7 and Remark 8.6.5.4, we can reduce to the case where
C = ∆n is a standard simplex. In particular, C is an ∞-category. In this case, the desired
result follows by combining Remark 8.6.5.9 with Lemma 8.6.5.8.

To show that U∨ : CospanCCart(E / C)→ C is a cocartesian dual of U , we will need an
auxiliary construction.

Notation 8.6.5.11.04EP Let U : E → C be a cocartesian fibration of ∞-categories, let L denote
the collection of all U -cocartesian morphisms of E , and let R denote the collection of all
morphisms f of E such that U(f) is an isomorphism in C. We let

Fun(C ×∆1/ C, E) = C ×Fun(∆1,C) Fun(∆1, E)

denote the relative exponential of Construction 4.5.9.1. Evaluation at the vertices 0, 1 ∈ ∆1

determines evaluation functors ev0, ev1 : Fun(C ×∆1/ C, E)→ E . Let L̃ denote the collection
of all morphisms f of Fun(C ×∆1/ C, E) such that ev0(f) is U -cocartesian, and let R̃ denote
the collection of all morphisms f of Fun(C ×∆1/ C, E) such that ev1(f) is an isomorphism.
The evaluation maps ev0 and ev1 then induce a functor

V : CospanL̃,R̃(Fun(C ×∆1/ C, E))→ CospanL,R(E)×Cospanall,iso(C) Cospanall,iso(E).

We will prove the following:

Proposition 8.6.5.12.04EQ Let U : E → C be a cocartesian fibration of ∞-categories, let
V− : CospanL,R(E)→ Cospanall,iso(C) be the cocartesian fibration of Lemma 8.6.5.8, and let
V+ : Cospanall,iso(E)→ Cospanall,iso(C) be the cocartesian fibration of Remark 8.1.9.3. Then
the functor

V : CospanL̃,R̃(Fun(C ×∆1/ C, E))→ CospanL,R(E)×Cospanall,iso(C) Cospanall,iso(E)

of Notation 8.6.5.11 is a left fibration, which exhibits V− as a cocartesian dual of V+ (in the
sense of Definition 8.6.3.1).
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Example 8.6.5.13. 04ERIn the special case C = ∆0, Proposition 8.6.5.12 reduces to the assertion
that the map

CospanL̃,R̃(Fun(∆1, E))→ Cospaniso,all(E)× Cospanall,iso(E)

is a balanced coupling of ∞-categories, which is the content of Proposition 8.2.6.9.

Proof of Theorem 8.6.5.6 from Proposition 8.6.5.12. Let U : E → C be a cocartesian fibra-
tion of simplicial sets and let U∨ : CospanCCart(E / C)→ C be the projection map; we wish
to show that U∨ is a cocartesian dual of U . Using Corollary 5.6.7.3, we can choose a pullback
diagram

E

U

��

// E ′

U ′

��
C // C′,

where U ′ is a cocartesian fibration of ∞-categories. Using Remarks 8.6.3.4 and 8.6.5.4, we
can replace U by U ′ and thereby reduce to the case where C is an ∞-category. In this case,
we have commutative diagrams

CospanCCart(E / C)

U∨

��

// CospanL,R(E)

V−

��

E

U

��

// Cospanall,iso(E)

V+

��
C // Cospanall,iso(C) C // Cospanall,iso(C),

where the vertical maps are cocartesian fibrations, the diagram on the left is a pullback
square, and the diagram on the right is a categorial pullback square (the horizontal maps
are equivalences of ∞-categories by virtue of Proposition 8.1.7.6). Using Remark 8.6.3.4
again, we are reduced to showing that V− is a cocartesian dual of V+, which follows from
Proposition 8.6.5.12.

We now turn to the proof of Proposition 8.6.5.12.

Lemma 8.6.5.14. 04ESLet U : E → C be a cocartesian fibration of ∞-categories. Then the
functor

V : CospanL̃,R̃(Fun(C ×∆1/ C, E))→ CospanL,R(E)×Cospanall,iso(C) Cospanall,iso(E)

of Notation 8.6.5.11 is a left fibration.
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Proof. Let π : E ×C E → E denote the functor given by projection onto the second factor. Let
L′ denote the collection of all π-cocartesian morphisms of E ×C E : that is, morphisms (u, v)
where u is a U -cocartesian morphism in E . Let R′ denote the collection of all morphisms
(u, v) of E ×C E where v is an isomorphism in E . It follows from Proposition 8.1.9.10 (and
Example 8.1.6.6) that the pair (L′, R′) is pushout-compatible, in the sense of Definition
8.1.6.5. Moreover, we have a canonical isomorphism of simplicial sets

CospanL′,R′(E ×C E) ≃ CospanL,R(E)×Cospanall,iso(C) Cospanall,iso(E).

Using Lemma 8.6.5.8, we see that π induces a cocartesian fibration CospanL′,R′(E ×C E)→
Cospanall,iso(E), where the target is an ∞-category (Proposition 8.1.7.5). It follows that the
simplicial set CospanL′,R′(E ×C E) is also an ∞-category.

Let ev0, ev1 : Fun(C ×∆1/ C, E)→ E denote functors given by evaluation at 0, 1 ∈ ∆1, so
that ev0 and ev1 determine a functor

ev : Fun(C ×∆1/ C, E)→ E ×C E .

By construction we have L̃ = ev−1(L′) and R̃ = ev−1(R′). Note that ev is a pullback of the
map Fun(∆1, E) = E ×̃E E → E ×̃C E . Moreover, we can identify V with the map

CospanL̃,R̃(Fun(C ×∆1/ C, E))→ CospanL′,R′(E ×C E)

induced by ev. By virtue of Example 8.1.10.13, to show that V is a left fibration, it will
suffice to verify the following:

(0) Every element of L̃ is ev-cocartesian, and every element of R̃ is ev-cartesian. This
follows from Lemma 5.3.7.1.

(1) Fix an object C ∈ C and a morphism f : X → Y in the∞-category EC , which we identify
with an object of the ∞-category Fun(C ×∆1/ C, E). Let (u, v) : (X ′, Y ′) → (X,Y )
be a morphism of E ×C E which belongs to R′ (so that v is an isomorphism in E).
Then we can write (u, v) = ev(w) for some morphism w : f ′ → f in the ∞-category
Fun(C ×∆1/ C, E) (the morphism w then belongs to R̃ and is therefore automatically
ev-cartesian). To prove this, we note that U(u) = U(v) determines an edge ∆1 → C.
Replacing E by the fiber product ∆1×C E , we can reduce to the situation where C = ∆1

is a standard simplex. In this case, we are reduced to the problem of constructing a
diagram ∆1 ×∆1 → E whose boundary is indicated in the simplex

X ′
f ′ //

u

��

Y ′

v

��
X

f // Y,
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which is possible by virtue of our assumption that v is an isomorphism.

(2) Fix an object C ∈ C and a morphism f : X → Y as above, and let (u, v) : (X,Y ) →
(X ′, Y ′) be a morphism of E ×C E which belongs to L′ (so that u is a U -cocartesian
morphism of E). Then we can write (u, v) = ev(w), for some morphism w : f → f ′ in
the ∞-category Fun(C ×∆1/ C, E) (the morphism w then belongs to L̃ and is therefore
automatically ev-cocartesian). This follows from Proposition 5.3.7.2 (or by a direct
argument similar to the proof of (1)).

Proof of Proposition 8.6.5.12. Let U : E → C be a cocartesian fibration of ∞-categories,
and let

V : CospanL̃,R̃(Fun(C ×∆1/ C, E))→ CospanL,R(E)×Cospanall,iso(C) Cospanall,iso(E)

be the left fibration of Lemma 8.6.5.14. We wish to show that the left fibraiton V exhibits
V− : CospanL,R(E) → Cospanall,iso(C) as a cocartesian dual of V+ : Cospanall,iso(E) →
Cospanall,iso(C). For each object C ∈ C, let EC = {C} ×C E denote the corresponding fiber
of U . Then we have a canonical isomorphism

{C} ×Cospanall,iso(C) CospanL̃,R̃(Fun(C ×∆1/ C, E)) ≃ CospanL̃C ,R̃C (Fun(∆1, EC)),

where L̃C denotes the collection of all morphisms of Fun(∆1, EC) for which the image in
Fun({0}, EC) is an isomorphism, and R̃C denotes the collection of morphisms Fun(∆1, EC)
for which the image in Fun({1}, EC) is an isomorphism. The left fibration V then restricts
to a coupling of ∞-categories

VC : CospanL̃C ,R̃C (EC)→ Cospaniso,all(EC)× Cospanall,iso(EC)

which is balanced by virtue of Proposition 8.2.6.9. Moreover, if f is an object of the
∞-category CospanL̃,R̃(Fun(C ×∆1/ C, E)) satisfying V (f) = C, then f is universal (with
respect to the coupling VC) if and only if it is an isomorphism when regarded as a morphism
in the ∞-category EC (Corollary 8.2.6.14).

Let u : f → g be a morphism in the ∞-category CospanL̃,R̃(Fun(C ×∆1/ C, E)), having
image u : C → D in the ∞-category Cospanall,iso(C). Assume that the image of u in
CospanL,R(E) is V−-cocartesian and that the image of u in Cospanall,iso(E) is V+-cocartesian.
To complete the proof, we must show that if f is an isomorphism in the ∞-category EC ,
then g is an isomorphism in the ∞-category ED. To prove this, let us identify u with a
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commutative diagram
X−

f

��

s− // B−

h

��

Y−
t−oo

g

��
X+

s+ // B+ Y+
t+oo

in the ∞-category E , where s− is U -cocartesian and t+ is an isomorphism. Since the image
of u in Cospanall,iso(E) is V+-cocartesian, the morphism s+ is U -cocartesian. Applying
Corollary 5.1.2.4, we deduce that the morphism h is U -cocartesian. Since the image of u in
CospanL,R(E) is V−-cocartesian, the morphism t− is an isomorphism. Applying Corollary
5.1.2.5, we deduce that g is U -cocartesian when regarded as a morphism of E , and is therefore
an isomorphism in the ∞-category ED (Example 5.1.3.6).

8.6.6 Comparison of Dual and Conjugate Fibrations

04ET In this section, we show that the theory of conjugate fibrations (introduced in §8.6.1)
can be regarded as a reformulation of cocartesian duality (introduced in §8.6.3). Our main
result can be stated as follows:

Proposition 8.6.6.1.04EU Let C be a simplicial set, let U : E → C be a cocartesian fibration,
and let U † : E† → Cop be a cartesian fibration. Then U † is a cartesian conjugate of U (in
the sense of Definition 8.6.1.1) if and only if the opposite fibration U †,op : E†,op → C is a
cocartesian dual of U (in the sense of Definition 8.6.3.1).

Corollary 8.6.6.2.04EV Let C be a simplicial set, let U : E → C be a cocartesian fibration, and
let U † : E† → Cop be a cartesian fibration. Then U † is a cartesian conjugate of U if and only
if Uop is a cartesian conjugate of U †,op.

Proof. Combine Proposition 8.6.6.1 with Remark 8.6.3.3.

Corollary 8.6.6.3.04EW Let U : E → C be a cocartesian fibration of ∞-categories, let U † :
E† → Cop be a cartesian fibration of ∞-categories, and suppose we are given a commutative
diagram

E†×Cop Tw(C) T //

��

E

U

��
Tw(C) // C .

The following conditions are equivalent:
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(1) The functor T exhibits U † as a cartesian conjugate of U (in the sense of Definition
8.6.1.1).

(2) The functor T exhibits E as a localization of E†×Cop Tw(C) with respect to W , where W
is the collection of all morphisms w = (w′, w′′) where w′ is a U ′-cartesian morphism
of E† and w′′ is a morphism of Tw(C) whose image in C is degenerate.

Proof. We will show that (2) implies (1); the reverse implication follows from Proposition
8.6.2.11. Using Corollary 8.6.6.2 and Corollary 8.6.2.4, we can choose a cocartesian fibration
U ′ : E ′ → C and a commutative diagram

E†×Cop Tw(C) T ′ //

��

E ′

U ′

��
Tw(C) // C

which exhibits U † as a cartesian conjugate of U ′. Assume that condition (2) is satisfied, so
that we have a commutative diagram

Fun(E , E ′) T◦ //

U◦

��

Fun((E†×Cop Tw(C))[W−1], E ′)

U ′◦

��
Fun(E , C) T◦ // Fun((E†×Cop Tw(C))[W−1], C),

where the horizontal maps are equivalences of ∞-categories and the vertical maps are
isofibrations (Corollary 4.4.5.6). Applying Corollary 4.5.2.32, we deduce that the map

(◦T ) : Fun/ C(E , E ′)→ Fun/ C(E†×Cop Tw(C), E ′)

is fully faithful, and that its essential image consists of those functors E†×Cop Tw(C)→ E ′
which carry each morphism of W to an isomorphism in E ′. We may therefore assume without
loss of generality that T ′ = F ◦ T for some functor F ∈ Fun/ C(E , E ′). Proposition 8.6.2.11
implies that T ′ exhibits E ′ as a localization of E†×Cop Tw(C) with respect to W . It follows
that F is an equivalence of ∞-categories (Remark 6.3.1.19), so that T also exhibits U † as a
cartesian conjugate of U .

Our proof of Proposition 8.6.6.1 will require some preliminaries.



8.6. CONJUGATE AND DUAL FIBRATIONS 1937

Construction 8.6.6.4.04EX Let C be a simplicial set, and suppose we are given a pair of
morphisms U : E → C and U † : E† → Cop. Let T : E†×Cop Tw(C) → E be a morphism of
simplicial sets for which the diagram

04EY E†×Cop Tw(C) T //

��

E

U

��
Tw(C) // C

(8.64)

is commutative. Let λ+ : Tw(E†)→ E† be the projection map of Notation 8.1.1.6 and let
ι : Tw(Cop) ∼−→ Tw(C) be the isomorphism described in Remark 8.1.1.7. Then we can extend
(8.64) to a commutative diagram

04EZ Tw(E†) (λ+,ι◦Tw(U†))//

Tw(U†)

��

E†×Cop Tw(C) T //

��

E

U

��
Tw(Cop) ι // Tw(C) // C .

(8.65)

Using Proposition 8.1.3.7, we can identify the outer rectangle with a diagram

04F0 E† //

U†

��

Cospan(E)

Cospan(U)

��
Cop // Cospan(C),

(8.66)

where the lower horizontal map is the monomorphism of Variant 8.1.7.14. Passing to opposite
simplicial sets (and invoking Remark 8.1.3.4), we obtain a comparison map

Ψ : E†,op → C×Cospan(C) Cospan(E) = Cospan(E / C),

where Cospan(E / C) is the simplicial set defined in Notation 8.6.5.1.

Remark 8.6.6.5.04F1 In the situation of Construction 8.6.6.4, the comparison map

Ψ : E†,op → Cospan(E / C) ⊆ Cospan(E)

can be described explicitly on low-dimensional simplices as follows:
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• If X is a vertex of E† having image C = U †(X), then Ψ(X) is the vertex of Cospan(E)
corresponding to the vertex T (X, idC) ∈ E .

• Let X and Y be vertices of E†, having images C = U †(X) and D = U †(Y ). Let
f : Y → X be an edge of E†, and let us identify U †(f) with an edge e : C → D

in the simplicial set C. Then Ψ(f) : Ψ(X) → Ψ(Y ) is the edge of Cospan(E / C)
corresponding to the pair of edges T (X, idC) T (idX ,eL)−−−−−−→ T (X, e) T (f,eR)←−−−−− T (Y, idD) in E ;
here eL : idC → e and eR : idD → e denote the edges of Tw(C) described in Example
8.1.3.6.

We will deduce Proposition 8.6.6.1 from the following more precise result:

Proposition 8.6.6.6. 04F2Let C be a simplicial set, let U : E → C be a cocartesian fibration,
and let U † : E† → Cop be a cartesian fibration. Suppose we are given a morphism T :
E†×Cop Tw(C)→ E for which the diagram

E†×Cop Tw(C) T //

��

E

U

��
Tw(C) // C

is commutative. The following conditions are equivalent:

(a) The morphism T exhibits U † as a cartesian conjugate of U+, in the sense of Definition
8.6.1.1.

(b) The comparison map Ψ : E†,op → Cospan(E / C) of Construction 8.6.6.4 factors through
the simplicial subset CospanCCart(E / C) of Notation 8.6.5.1. Moreover, Ψ is an equiv-
alence of cocartesian fibrations over C.

Proof. Using Proposition 5.1.7.14, we see that (b) is equivalent to the following three
conditions:

(b0) The map Ψ factors through the simplicial subset CospanCCart(E / C) ⊆ Cospan(E / C).

(b1) Let U∨ : CospanCCart(E / C)→ C be the cocartesian fibration of Lemma 8.6.5.10. Then
Ψ carries U †-cartesian edges of E† to U∨-cocartesian edges of CospanCCart(E / C).

(b2) For each vertex C ∈ C, the morphism Ψ restricts to an equivalence of ∞-categories

ΨC : (E†C)op → {C} ×C CospanCCart(E / C) = Cospaniso,all(EC).

https://kerodon.net/tag/04F2
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For every edge e : C → D of C, let eL : idC → e and eR : idD → e denote the edges of Tw(C)
described in Example 8.1.3.6. Using Remark 8.6.6.5, we can rewrite condition (b0) as follows:

(b′0) Let X be a vertex of E† having image C = U †(X) in C, and let e : C → D be an edge
of C. Then T (idX , eL) : T (X, idC)→ T (X, e) is a U -cocartesian edge of E .

Similarly, by combining Remark 8.6.6.5 with the characterization of U∨-cartesian edges
supplied by Lemma 8.6.5.10, we can rewrite condition (b1) as follows:

(b′1) Let f : Y → X be a U †-cartesian edge of E†, and let us identify U †(f) with an edge
e : C → D of C. Then T (f, eR) : T (Y, idD) → T (X, e) is an isomorphism in the
∞-category EC .

Unwinding the definitions, we observe that for each vertex C ∈ C, the functor ΨC factors as
a composition

(E†C)op T op
C−−→ Eop

C ↪→ Cospaniso,all(EC),

where the second map is the equivalence of Variant 8.1.7.14. We can therefore rewrite (b2)
as follows:

(b′2) For each vertex C ∈ C, the morphism T restricts to an equivalence of ∞-categories
TC : E†C → EC .

The equivalence of (a) and (b) now follows from Proposition 8.6.1.13.

Corollary 8.6.6.7.04F3 Let U : E → C be a cocartesian fibration of simplicial sets. Then the
projection map CospanCCart(E / C)op → Cop is a cartesian conjugate of U .

Proof. Using Corollary 8.6.2.4, we can choose a cartesian fibration U † : E† → Cop and a
morphism T : E†×Cop Tw(C)→ E which exhibits U † as a cartesian conjugate of U . Applying
Proposition 8.6.6.6, we see that the comparison map of Construction 8.6.6.4 provides a
morphism E† → CospanCCart(E / C)op which is an equivalence of cartesian fibrations over Cop.
It follows that the projection map CospanCCart(E / C)op → Cop is also a cartesian conjugate
of U .

Corollary 8.6.6.8 (Uniqueness).04F4 Let U : E → C be a cocartesian fibration of simplicial sets.
Then U admits a cartesian conjugate, which is uniquely determined up equivalence.

Proof. Combining Proposition 8.6.6.6 with Corollary 8.6.6.7, we see that a cartesian fibration
U † : E† → Cop is conjugate to U if and only if it is equivalent to the projection map
CospanCCart(E / C)op → Cop.
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Example 8.6.6.9. 04F5Let U : E → C be a cocartesian fibration of ∞-categories. Applying
Construction 8.6.6.4 to the evaluation functor

FunCCart
/ C (Tw(C)/ Cop, E)×Cop Tw(C)→ E (C, fC , u : C → C ′) 7→ fC(u),

we obtain a comparison map

Ψ : FunCCart
/ C (Tw(C)/ Cop, E)op → CospanCCart(E / C)

which is an equivalence of ∞-categories (Proposition 8.6.6.6).

Warning 8.6.6.10. 04F6Let U : E → C be a cocartesian fibration of simplicial sets. Corollary
8.6.6.7 guarantees that existence of a morphism T : CospanCCart(E / C)op ×Cop Tw(C)→ E
which exhibits the projection map CospanCCart(E / C)op → Cop as a cartesian conjugate of
U . Beware that the construction of T requires making some auxiliary choices. For example,
if C is an ∞-category, then we can construct the datum T by choosing a homotopy inverse
to the equivalence FunCCart

/ C (Tw(C)/ Cop, E)op → CospanCCart(E / C) of Example 8.6.6.9.

Proof of Proposition 8.6.6.1. Let C be a simplicial set, let U : E → C be a cocartesian
fibration. Let U∨ : CospanCCart(E / C)→ C be the projection map. Then U∨ is a cocartesian
dual of U (Theorem 8.6.5.6), and the opposite fibration U∨,op is a cartesian conjugate of U
(Corollary 8.6.6.7). Let U † : E† → Cop be a cartesian fibration of simplicial sets. Using the
uniqueness assertions of Theorem 8.6.4.1 and Corollary 8.6.6.8, we see that the following
conditions are equivalent:

• The fibration U † is a cartesian conjugate of U .

• The fibration U † is equivalent to U∨,op (as a cartesian fibration over Cop).

• The fibration U †,op is equivalent to U∨ (as a cocartesian fibration over C).

• The fibration U †,op is a cocartesian dual of U .

Remark 8.6.6.11. 04F7Let U : E → C be a cocartesian fibration of simplicial sets, and let
Uop : Eop → Cop be the opposite fibration. By virtue of Theorem 8.6.4.1 and Corollary
8.6.6.8, U admits a cocartesian dual U∨ : E∨ → C and a cartesian conjugate U † : E† → Cop,
which are uniquely determined up to equivalence and opposite to one another (Proposition
8.6.6.1). When C is an ∞-category, all four of these fibrations can be realized as a suitable
restriction of the projection map Cospan(U) : Cospan(E) → Cospan(C). Let L denote
the collection of all U -cocartesian morphisms of E , and let R denote the collection of all
morphisms f of E such that U(f) is an isomorphism in C. Then:
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• Using Proposition 8.1.7.6, we can identify U with the map

Cospanall,L∩R(E) = Cospanall,iso(E)→ Cospanall,iso(C).

• Using Variant 8.1.7.14, we can identify Uop with the map

CospanL∩R,all(E) = Cospaniso,all(E)→ Cospaniso,all(C).

• Using Theorem 8.6.5.6 (and Remark 8.6.5.9), we can identify U∨ with the map
CospanL,R(E)→ Cospanall,iso(C).

• Using Proposition 8.6.6.6 (and Remark 8.6.5.9), we can identify U † with the map
CospanR,L(E)→ Cospaniso,all(C).

8.6.7 The Opposition Functor

04F8 Recall that, for every ∞-category C, the opposite simplicial set Cop is also an ∞-category
(Proposition 1.4.2.6). Our goal in this section is to show that the construction C 7→ Cop can
be promoted to a functor of ∞-categories σ : QC → QC, where QC denotes the ∞-category
of (small) ∞-categories (Construction 5.5.4.1). Beware that this is not completely obvious
from the definition. The ∞-category QC was obtained as the homotopy coherent nerve
Nhc
• (QCat), where QCat denotes the simplicial category whose objects are ∞-categories

and whose morphism spaces are given by the formula HomQCat(C,D)• = Fun(C,D)≃. The
construction C 7→ Cop determines an automorphism of QCat as an ordinary category.
However, this automorphism is not compatible with the simplicial enrichment of QCat: for
∞-categories C and D, the Kan complex HomQCat(Cop,Dop)• = Fun(Cop,Dop)≃ identifies
with the opposite of the Kan complex HomQCat(C,D)• = Fun(C,D)≃. To address this point,
it is convenient to work with a slight variant of Construction 5.5.4.1.

Notation 8.6.7.1.04F9 Let E be a simplicial category. We define a new simplicial category E≍
as follows:

• The objects of E≍ are the objects of E .

• For every pair of objects X,Y ∈ E , the simplicial set HomE≍(X,Y )• is the twisted
arrow construction Tw(HomE(X,Y )•).

• For every triple of objects X,Y, Z ∈ E , the composition law

◦ : HomE≍(Y,Z)• ×HomE≍(X,Y )• → HomE≍(X,Z)•

is obtained by applying the twisted arrow functor Tw to the composition law for the
simplicial category E .
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The simplicial category E≍ is equipped with a simplicial functor π : E≍ → E , which carries
each object to itself and is given on morphism spaces by the projection map

HomE≍(X,Y )• = Tw(HomE(X,Y )•)→ HomE(X,Y )•

described in Notation 8.1.1.6.

Proposition 8.6.7.2. 04FALet E be a locally Kan simplicial category. Then:

(1) The simplicial category E≍ of Notation 8.6.7.1 is locally Kan.

(2) The forgetful functor π : E≍ → E is a weak equivalence of simplicial categories (see
Definition 4.6.8.7).

(3) The functor π induces an equivalence of ∞-categories Nhc
• (E≍)→ Nhc

• (E).

Proof. Assertions (1) and (2) follow immediately from Corollary 8.1.2.3; assertion (3) then
follows from Corollary 4.6.8.8.

Remark 8.6.7.3 (Comparison with the Conjugate). 04FBLet E be a simplicial category. Recall
that the conjugate Ec is a simplicial category having the same objects, with morphism spaces
given by HomEc(X,Y )• = HomE(X,Y )op

• (see Example 2.4.2.12). Then there is a canonical
isomorphism of simplicial categories E≍ ∼−→ (Ec)≍, which is the identity on objects and given
on morphism spaces by the isomorphisms

HomE≍(X,Y )• = Tw(HomE(X,Y )•) ≃ Tw(HomE(X,Y )op
• ) = Hom(Ec)≍(X,Y )•

described in Remark 8.1.1.7. Composing this isomorphism with the forgetful functor
(Ec)≍ → Ec, we obtain a forgetful functor πc : E≍ → Ec. If E is locally Kan, then Proposition
8.6.7.2 guarantees that πc is a weak equivalence of simplicial categories. We therefore obtain
equivalences of ∞-categories

Nhc
• (E) ∼←− Nhc

• (E≍) ∼−→ Nhc
• (Ec).

We now specialize to the case of interest to us.

Construction 8.6.7.4. 04FCLet QCat denote the simplicial category whose objects are (small)∞-
categories, with morphisms spaces given by HomQCat(C,D)• = Fun(C,D)≃ (see Construction
5.5.4.1). We let QCat≍ denote the simplicial category described in Notation 8.6.7.1, and we
let QC≍ denote the homotopy coherent nerve Nhc

• (QCat≍).

Proposition 8.6.7.5. 04FDThe simplicial set QC≍ is an ∞-category. Moreover, the forgetful
functor QCat≍ → QCat of Notation 8.6.7.1 induces an equivalence of ∞-categories π :
QC≍ → QC.

https://kerodon.net/tag/04FA
https://kerodon.net/tag/04FB
https://kerodon.net/tag/04FC
https://kerodon.net/tag/04FD


8.6. CONJUGATE AND DUAL FIBRATIONS 1943

Proof. Apply Proposition 8.6.7.2 to the locally Kan simplicial category E = QCat.

Construction 8.6.7.6 (The Opposite Functor).04FE The simplicial category QCat≍ is equipped
with an automorphism σ̃, given on objects by the construction C 7→ Cop and on morphism
spaces by the composition

HomQCat≍(C,D)• = Tw(Fun(C,D)≃)
≃ Tw((Fun(C,D)≃)op)
≃ Tw(Fun(Cop,Dop)≃)
= HomQCat≍(Cop,Dop),

where the isomorphism on the second line is supplied by Remark 8.1.1.7. It follows from
Proposition 8.6.7.5 that there exists a functor of ∞-categories σ : QC → QC for which the
diagram

QC≍

π

��

Nhc
• (σ̃)
∼

// QC≍

π

��
QC σ // QC

commutes up to isomorphism. Moreover, the functor σ is uniquely deterrmined up to
isomorphism. We will refer to σ as the opposition functor for the ∞-category QC.

The terminology of Construction 8.6.7.6 is justified by the following observation:

Proposition 8.6.7.7.04FF Let σ : QC → QC be the opposition functor of Construction 8.6.7.6.
Then the diagram of ∞-categories

N•(QCat) σ0 //

��

N•(QCat)

��
QC σ // QC

commutes up to isomorphism, where the functor σ0 is given by the construction C 7→ Cop.

Proof. Let QCat◦ denote the underlying category of the simplicial category QCat, and let
us abuse notation by viewing QCat◦ as a constant simplicial category. We can then identify
QCat◦ with a simplicial subcategory of QCat having the same objects, with morphism spaces
given by

HomQCat◦(C,D)• = sk0(HomQCat(C,D)•).
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Note that the inclusion map QCat◦ ↪→ QCat factors as a composition

QCat◦ ι−→ QCat≍ π−→ QCat,

where the functor ι : QCat◦ → QCat≍ carries each ∞-category C to itself and each functor
of ∞-categories F : C → D to the vertex

idF ∈ Tw(Fun(C,D)≃) = HomQCat≍(C,D)•.

We then have a diagram of ∞-categories

N•(QCat) σ0 //

Nhc
• (ι)

��

N•(QCat)

Nhc
• (ι)

��
QC≍

��

Nhc
• (σ̃) // QC≍

��
QC σ // QC,

where the upper square is strictly commutative and the lower square commutes up to
isomorphism. It follows that the outer rectangle also commutes up to isomorphism.

Remark 8.6.7.8. 04FGLet σ : QC → QC be the opposition functor of Construction 8.6.7.6.
Passing to homotopy categories, we obtain a functor σ : hQCat→ hQCat. It follows from
Proposition 8.6.7.7 that, up to isomorphism, σ agrees with the automorphism of hQCat
which is given on objects by the construction C 7→ Cop, and on morphisms by the construction
[F ] 7→ [F op]; here [F ] denotes the isomorphism class of a functor F : C → D and [F op] the
isomorphism class of the opposition functor F op : Cop → Dop.

Proposition 8.6.7.9 (Involutivity). 04FHLet σ : QC → QC be the opposition functor. Then
the composition σ ◦ σ is isomorphic to the identity functor idQC. In particular, σ is an
equivalence of ∞-categories.

Proof. This follows from Proposition 8.6.7.5, since the composition σ̃ ◦ σ̃ is equal to the
identity functor of the ∞-category QC≍.

Remark 8.6.7.10 (Uniqueness). 04FJLet Aut(QC) denote the full subcategory of Fun(QC,QC)
spanned by those functors QC → QC which are equivalences of ∞-categories. A theorem
of Toën ([55]) guarantees that Aut(QC) is a Kan complex having exactly two connected
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components, each of which is contractible (see Corollary [?]). Consequently, the opposition
functor σ : QC → QC of Construction 8.6.7.4 is characterized (up to a contractible space of
choices) by the fact that it is an equivalence of ∞-categories which is not isomorphic to the
identity functor idQC .

Recall that every Kan complex X is homotopy equivalent to its opposite Xop (Example
8.6.3.18). The following is a more precise statement:

Proposition 8.6.7.11.04FK Let σ : QC → QC be the opposition functor of Construction 8.6.7.6.
Then the restriction σ|S is isomorphic to the identity functor from S ⊂ QC to itself.

Proof. For every ∞-category C, the image σ(C) ∈ QC is equivalent to the opposite ∞-
category Cop (Remark 8.6.7.8); in particular, C is a Kan complex if and only if σ(C) is a
Kan complex. It follows that σ restrict a functor σ0 : S → S, which is also an equivalence
of ∞-categories. We wish to show that σ0 is isomorphic to the identity functor idS . This
follows from Example 8.4.0.4, since σ0(∆0) is homotopy equivalent to the Kan complex
(∆0)op ≃ ∆0.

Using the classification of cocartesian fibrations given in §5.6, we can use the opposition
functor σ : QC → QC to give a reformulation of cocartesian duality.

Proposition 8.6.7.12.04FL Let U : E → C and U∨ : E∨ → C be cocartesian fibrations of
simplicial sets having transport representations TrE / C ,TrE∨ / C : C → QC. Then U∨ is a
cocartesian dual of U if and only if TrE∨ / C is isomorphic to σ ◦ TrE / C, where σ : QC → QC
denotes the opposition functor of Construction 8.6.7.6.

Proof. Assume that TrE∨ / C is isomorphic to σ ◦ TrE / C ; we will show that U∨ is cocartesian
dual to U (the reverse implication then follows formally from the fact that cocartesian duals
are unique up to equivalence; see Theorem 8.6.4.1). Let π : QCat≍ → QCat denote the
forgetful functor, and let π′ : QCat≍ → QCat be the composition of π with the automorphism
σ̃ : QCat≍ ≃ QCat≍ described in Construction 8.6.7.6. By virtue of Proposition 8.6.7.5,
we may assume without loss of generality that the covariant transport representation
F+ = TrE / C factors as a composition Nhc

• (π) ◦F for some diagram F : C → QC≍. Set
F− = Nhc

• (π′) ◦ F . Our assumption then guarantees that F− is a covariant transport
representation for U∨. We may therefore assume without loss of generality that U and U∨

coincide with the projection maps
∫
CF+ → C and

∫
CF− → C, respectively.

We now proceed as in the proof of Proposition 8.6.3.23. Define a simplicial functor
τ : QCat≍ → QCat as follows:

• On objects, τ is given by the construction D 7→ Tw(D).
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• On morphism spaces, τ is given by the morphism of simplicial sets

HomQCat≍(D,D′)• = Tw(Fun(D,D′)≃)
→ Fun(Tw(D),Tw(D′))≃

= HomQCat(Tw(D),Tw(D′))•.

which classifies the composition

Tw(D)× Tw(Fun(D,D′)≃) ↪→ Tw(D×Fun(D,D′)) Tw(ev)−−−−→ Tw(D′),

where ev : D×Fun(D,D′)→ D′ is the evaluation map.

Let F̃ : C → QC denote the diagram given by the composition Nhc
• (τ)◦F , and set Ẽ =

∫
C F̃ .

There is a natural transformation of simplicial functors τ → π′ × π, which carries each
∞-category D to the left fibration Tw(D) → Dop×D of Proposition 8.1.1.11. Applying
Corollary [?], see that this natural transformation induces a left fibration

Ẽ =
∫
C
F̃

λ−→
∫
C
(F− ×F+) ≃ E∨×C E .

We will complete the proof by showing that λ exhibits U∨ as a cocartesian dual of U : that
is, it satisfies conditions (a) and (b) of Definition 8.6.3.1.

(a) Fix a vertex C ∈ C; we wish to show that the left fibration

λC : {C} ×C
∫
C
F̃ → ({C} ×C

∫
C
F−)× ({C} ×C

∫
C
F+)

is a balanced coupling. Set D = F̃ (C). Using Example 5.6.2.18, we obtain a
commutative diagram

Tw(D) //

��

{C} ×C
∫
CF

λC

��
Dop×D // ({C} ×C

∫
CF−)× ({C} ×C

∫
CF+),

where the horizontal maps are equivalences of ∞-categories. The desired result now
follows from the observation that the twisted arrow coupling Tw(D) → Dop×D is
balanced (Example 8.2.6.2).

(b) Let U : Ẽ → C denote the projection map, let f : X → X ′ be a U -cocartesian edge of
Ẽ , and let f : C → C ′ denote the image of f in the simplicial set C. The functor F
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carries the vertex C to an ∞-category D, C ′ to an ∞-category D′, and f to a vertex
of the Kan complex Tw(Fun(D,D′)≃), which we can identify with an isomorphism
u : F− → F+ between functors F−, F+ : D → D′. We can then identify X with a
morphism e : D− → D+ in the ∞-category D and X ′ with a morphism e′ : D′− → D′+
in the ∞-category D′, so that f determines a morphism in the ∞-category Tw(D′)
which we depict informally in the diagram D′ which we depict informally in the diagram

F−(D−)

u(e)

��

D′−oo

e′

��
F+(D+) // D′+.

Our assumption that X is universal for the coupling λC guarantees that e is an
isomorphism in the ∞-category D (Example 8.2.1.5), so that the left vertical map
is an isomorphism in the ∞-category D′. Our assumption that f is U -cocartesian
guarantees that the horizontal maps in the diagram are also isomorphisms (Remark
5.6.2.14). It follows that e′ is also an isomorphism in D, so that X ′ is universal for the
coupling λC′ as desired.

Remark 8.6.7.13.04FM Let QCObj denote the ∞-category of pairs (C, X), where C is a small
∞-category and X is an object of C (see Definition 5.5.6.10). Then the identity functor
id : QC → QC is a covariant transport representation for the universal cocartesian fibration

U : QCObj → QC (C, X) 7→ C .

Applying Proposition 8.6.7.12, we deduce that the opposition functor σ : QC → QC is a
covariant transport representation for a cocartesian dual of the fibration U . By virtue of
Corollary 5.6.5.13, this property characterizes the functor σ up to isomorphism.

https://kerodon.net/tag/04FM


Chapter 9

Large ∞-Categories

04KE9.1 Local Objects and Factorization Systems

04KF9.1.1 Local Objects

04KGLet F : C → D be a functor of ∞-categories which exhibits D as a localization of C with
respect to some collection of morphisms W . Recall that F is a reflective localization if it
admits a right adjoint G : D → C. In this case, the functor G is automatically fully faithful
(Proposition 6.3.3.6), and its essential image is a reflective subcategory C′ ⊆ C (Corollary
6.2.2.17). In this situation, we can extract the subcategory C′ directly from W .

Definition 9.1.1.1. 02FZLet C be an ∞-category and let w : X → Y be a morphism of
C. We say that an object C ∈ C is w-local if precomposition with the homotopy class
[w] induces a homotopy equivalence of mapping spaces HomC(Y,C) ◦[w]−−→ HomC(X,C).
We say that C is w-colocal if postcomposition with [w] induces a homotopy equivalence
HomC(C,X) [w]◦−−→ HomC(C, Y ).

If W is a collection of morphisms of C, we say that an object C ∈ C is W -local if it is
w-local for each w ∈ W . Similarly, we say that C is W -colocal if it is w-colocal for each
w ∈W .

Example 9.1.1.2. 04KHLet C be an ∞-category and let w : X → Y be an isomorphism in C.
Then every object of C is w-local.

Remark 9.1.1.3. 02G1Let C be an ∞-category and let W be a collection of morphisms of C,
which we also view as a collection of morphisms in the opposite ∞-category Cop. Then an
object Z ∈ C is W -local (in the sense of Definition 9.1.1.1) if and only if it is W -colocal
when viewed as an object of Cop.

Remark 9.1.1.4. 04KJLet C be an ∞-category containing a morphism w : X → Y . Let
π : CX/ → C denote the projection map, so that w can be identified with an object Ỹ ∈ CX/

1948
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satisfying π(Ỹ ) = Y . Then an object C ∈ C is w-local if and only if, for every object C̃ ∈ CX/
satisfying π(C̃) = C, the morphism space HomCX/

(Ỹ , C̃) is contractible. This follows from
the criterion of Remark 3.4.0.6, since HomCX/

(Ỹ , C̃) can be identified with the homotopy
fiber of the composition map HomC(Y,C)→ HomC(X,C) over the vertex corresponding to
C̃ (see Corollary 4.6.9.18).

Remark 9.1.1.5.02G2 Let C be an ∞-category, let W be a collection of morphisms of C, and
let w : X → Y be a morphism which belongs to W . Then, for every W -local object C
of C, precomposition with the homotopy class [w] induces a bijection HomhC(Y,C) ◦[w]−−→
HomhC(X,C). In particular, if the objects X and Y are W -local, then w is an isomorphism.

Remark 9.1.1.6.04KK Let C be an ∞-category and let W be a collection of morphisms of C. If
C is a W -local object of C, then any retract of C is also W -local. In particular, the condition
that C is W -local depends only on the isomorphism class of C.

Variant 9.1.1.7.04KL Let C be an ∞-category, let w : X → Y be a morphism in C, and let
C ∈ C be an object which is w-local. Then C is w′-local, for any morphism w′ : X ′ → Y ′

which is a retract of w (in the ∞-category Fun(∆1, C)).

Remark 9.1.1.8.04KM Let C be an ∞-category and let W be a collection of morphisms of C.
Then the collection of W -local objects is closed under the formation of all limits which exist
in C (see Corollary 7.4.5.17). Similarly, the collection of W -colocal objects is closed under
the formation of all colimits which exist in C.

Remark 9.1.1.9.04KN Let C be an ∞-category, and let f be a morphism of C which is the
colimit of a diagram

K → Fun(∆1, C) v 7→ fv

which is preserved by the evaluation functors ev0, ev1 : Fun(∆1, C)→ C. If an object C ∈ C
is fv-local for each vertex v ∈ K, then it is also f -local. This follows from Propositions
7.4.5.16 and 7.1.2.13.

Remark 9.1.1.10.04KP Let C be an ∞-category containing a pushout diagram

04KQ X

w

��

// X ′

w′

��
Y // Y ′.

(9.1)

If an object C ∈ C is w-local, then it is also w′-local. This follows immediately from the
observation that the representable functor hC : Cop → S carries pushout diagrams in C to
pullback diagrams in S (Corollary 7.4.5.17).
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Remark 9.1.1.11. 04KRLet C be an ∞-category, let C ∈ C be an object, and let W be the
collection of all morphisms w in C such that C is w-local. Then W contains all isomorphisms
and has the two-out-of-three property. Moreover, it is also closed under retracts (in the
∞-category Fun(∆1, C)).

Remark 9.1.1.12. 04KSLet C be an ∞-category which admits pushouts, let w : X → Y be a
morphism of C, and let γX/Y : Y ∐

X Y → Y be the relative codiagonal of w (see Variant
7.6.3.19). If an object C ∈ C is w-local, then it is also γX/Y -local. This follows by applying
Remark 9.1.1.11 to the diagram

Y
∐
X Y

γX/Y

""
Y

w′

<<

id // Y ;

here w′ is a pushout of w (so that C is w′-local by virtue of Remark 9.1.1.10). For a partial
converse, see Exercise 9.1.3.16.

Proposition 9.1.1.13. 04KTLet F : C → D be a functor of ∞-categories which exhibits D as a
localization of C with respect to some collections of morphisms W , and let C be an object of
C. The following conditions are equivalent:

(1) The object C is W -local, in the sense of Definition 9.1.1.1.

(2) For every object C ′ ∈ C, the functor F induces a homotopy equivalence of mapping
spaces θC′,C : HomC(C ′, C)→ HomD(F (C ′), F (C)).

Proof. Fix an uncountable regular cardinal κ for which both C and D are essentially κ-small.
Precomposition with F determines a functor F ∗ : Fun(Dop,S<κ) → Fun(Cop,S<κ). It
follows from Proposition 7.6.7.13 that the functor F ∗ admits a left adjoint F! (given by left
Kan extension along F op). Let hC• : C → Fun(Cop,S<κ) and hD• : D → Fun(Dop,S<κ) be
covariant Yoneda embeddings for C and D, respectively, so that the diagram of ∞-categories

C

F

��

hC• // Fun(Cop,S<κ)

F!

��
D

hD• // Fun(Dop,S<κ)
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commutes up to isomorphism (Example 8.4.4.5), where the horizontal maps are fully faithful
(Theorem 8.3.3.13). It follows that, for every pair of objects C ′, C ∈ C, we can identify θC′,C
with the comparison map

HomFun(Cop,S<κ)(hCC′ , hCC) → HomFun(Dop,S<κ)(F!h
C
C′ , F!h

C
C)

≃ HomFun(Cop,S<κ)(hCC′ , F ∗F!h
C
C)

given by precomposition with the unit u : hCC → F ∗F!h
C
C . Combining this observation with

Proposition 8.3.1.1, we see that condition (2) can be restated as follows:

(2′) The unit map u : hCC → F ∗F!h
C
C is an isomorphism in the ∞-category Fun(Cop,S<κ).

Our assumption that F exhibits D as a localization of C guarantees that the pullback functor
F ∗ is fully faithful. Using Remark 6.2.2.18, we see that u is an isomorphism if and only
the representable functor hCC belongs to the essential image of F ∗: that is, the collection of
functors Cop → S<κ which carry every morphism of W to an isomorphism in S<κ. This is a
reformulation of (1).

Corollary 9.1.1.14.04KU Let F : C → D be a functor of ∞-categories which exhibits D as a
localization of C with respect to some collection of morphisms W . Suppose that F admits a
right adjoint G : D → C. Then G is fully faithful, and the essential image of G is spanned
by the collection of W -local objects of C.

Proof. The assertion that G is fully faithful follows from Proposition 6.3.3.6. Let η : idC →
G ◦ F be the unit of an adjunction between F and G. Then an object C ∈ C belongs to the
essential image of G if and only if the morphism ηC : C → (G ◦ F )(C) is an isomorphism.
This is equivalent to the requirement that, for every object B ∈ C, composition with ηC
induces a homotopy equivalence of mapping spaces θ : HomC(B,C)→ HomC(B, (G◦F )(C)).
We conclude by observing that θ factors as a composition

HomC(B,C) F−→ HomD(F (B), F (C)) ∼−→ HomC(B, (G ◦ F )(C))

where the second map is the homotopy equivalence of Proposition 6.2.1.17.

Let C be an ∞-category, let W be a collection of morphisms of C, and let C′ ⊆ C be
the full subcategory spanned by the W -local objects. Beware that, in general, C′ is not a
reflective subcategory of C. To ensure this, we need some additional assumptions on W .

Definition 9.1.1.15.02G0 Let C be an ∞-category and let W be a collection of morphisms of C.
We say that W is localizing if the following conditions are satisfied:

(1) Every isomorphism of C is contained in W .

https://kerodon.net/tag/04KU
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(2) The collection of morphisms W satisfies the two-out-of-three property. That is, for every
2-simplex

Y

v

��
X

u

??

w // Z

in C, if any two of the morphisms u, v, and w belongs to W , then so does the third.

(3) For every object X ∈ C, there exists a morphism w : X → Y which belongs to W , where
the object Y is W -local.

We will say that W is colocalizing if it satisfies conditions (1) and (2), together with the
following dual version of (3):

(3′) For every object X ∈ C, there exists a morphism w : Y → X which belongs to W ,
where the object Y is W -colocal.

Proposition 9.1.1.16. 04KVLet F : C → D be a reflective localization functor, and let W be
the collection of all morphisms w of C such that F (w) is an isomorphism in D. Then W is
localizing.

Proof. Conditions (1) and (2) of Definition 9.1.1.15 follow immediately from the definitions
(and do not require any assumptions on F ). We will verify condition (3). Since F is a
reflective localization functor, it admits a fully faithful right adjoint G : D → C. For every
object Y ∈ D, the image G(Y ) ∈ C is W -local (Corollary 9.1.1.14). In particular, if X is
an object of C, then (G ◦ F )(X) is a W -local object of C. Let η : idC → G ◦ F be the unit
of an adjunction between F and G. To complete the proof, it will suffice to show that the
unit map ηX : X → (G ◦ F )(X) belongs to W : that is, that F (ηX) is an isomorphism in D.
Since the functor G is fully faithful, this follows from Remark 6.3.3.5.

Corollary 9.1.1.17. 04KWLet C be an ∞-category, let C′ ⊆ C be a reflective subcategory, and let
L : C → C′ be a left adjoint to the inclusion functor ι : C′ ↪→ C. Let W be the collection of
all morphisms w : X → Y of C for which L(w) is an isomorphism in C′. Then:

(1) The collection W is localizing (Definition 9.1.1.15).

(2) Every object of C′ is W -local (Definition 9.1.1.1).

(3) If C′ is replete, then every W -local object of C belongs to C′.

Proof. Combine Proposition 9.1.1.16 with Corollary 9.1.1.14.
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We now prove the converse of Corollary 9.1.1.17: every localizing collection of morphisms
of an ∞-category C can be obtained from a reflective localization of C.

Proposition 9.1.1.18.02G3 Let C be an∞-category, let W be a localizing collection of morphisms
of C, and let C′ denote the full subcategory of C spanned by the W -local objects. Then:

(1) The full subcategory C′ ⊆ C is reflective (Definition 6.2.2.1).

(2) The inclusion functor C′ ↪→ C admits a left adjoint L : C → C′.

(3) A morphism w of C is contained in W if and only if L(w) is an isomorphism in C′.

(4) The functor L exhibits C′ as a localization of C with respect to W .

Proof. Let X be an object of C. Our assumption that W is localizing guarantees that
there exists a morphism wX : X → X ′ which belongs to W , where X ′ ∈ C′. By definition,
every object C ∈ C′ is W -local, so composition with wX induces a homotopy equivalence
HomC(X ′, C)→ HomC(X,C). It follows that wX exhibits X ′ as a C′-reflection of X, in the
sense of Definition 6.2.2.1. Assertion (1) follows by allowing the object X to vary. The
implication (1)⇒ (2) follows from Proposition 6.2.2.15, and the implication (3)⇒ (4) from
Example 6.3.3.7.

It remains to prove (3). Choose a natural transformation η : idC → L which exhibits L
as a C′-reflection functor (see Definition 6.2.2.12). For each object X ∈ C, the morphism
ηX : X → L(X) exhibits L(X) as a C′-reflection of X, and can therefore be obtained by
composing wX with an isomorphism X ′

∼−→ L(X). Since W contains all isomorphisms and
is closed under composition, it follows that ηX belongs to W .

For every morphism w : X → Y in C, the natural transformation η determines a
commutative diagram

X
w //

ηX

��

Y

ηY

��
L(X) L(w) // L(Y )

where ηX and ηY belong to W . Using the two-out-of-three property, we see that w is
contained in W if and only if L(w) is contained in W . Since L(X) and L(Y ) are W -local,
this is equivalent to the requirement that L(w) is an isomorphism (Remark 9.1.1.5).

https://kerodon.net/tag/02G3
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Corollary 9.1.1.19. 04KXLet C be an ∞-category and suppose we are given a pushout diagram

04KYX
w //

��

Y

��
X ′

w′ // Y ′

(9.2)

in C. If W is a localizing collection of morphisms of C which contains w, then it also contains
w′.

Proof. Let C′ ⊆ C be the full subcategory of W -local objects and let L : C → C′ be a left
adjoint to the inclusion. The assumption w ∈W guarantees that L(w) is an isomorphism in
C′ (Proposition 9.1.1.18). Since L carries the (9.2) to a pushout diagram in the ∞-category
C′ (Corollary 7.1.3.21), it follows that L(w′) is also an isomorphism (Corollary 7.6.3.24).
Applying Proposition 9.1.1.18 again, we conclude that w′ belongs to W .

Notation 9.1.1.20. 02G4Let C be an ∞-category and let W be a localizing collection of
morphisms of C. We will often write C[W−1] for the full subcategory of C spanned by the
W -local objects. By virtue of Proposition 9.1.1.18, this is consistent with Remark 6.3.2.2:
that is, we can regard C[W−1] as a localization of C with respect to W . This convention is
very convenient, since the full subcategory of W -local objects is uniquely determined by C
and W . However, it has the potential to create confusion in some situations: see Warning
9.1.1.23 below.

Corollary 9.1.1.21. 02G8Let C be an ∞-category. Then the construction W 7→ C[W−1] deter-
mines a bijection

{Localizing collections of morphisms of C}

∼

��
{Reflective replete subcategories of C}.

Proof. Combine Proposition 9.1.1.18 with Corollary 9.1.1.17.

Proposition 9.1.1.18 has a counterpart for colocalizing collections of morphisms:

Variant 9.1.1.22. 02G5Let C be an ∞-category, let W be a collection of morphisms of C which
is colocalizing, and let C′ denote the full subcategory of C spanned by the W -colocal objects.
Then:

(1) The full subcategory C′ ⊆ C is coreflective.
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(2) The inclusion functor C′ ↪→ C admits a right adjoint L : C → C′.

(3) A morphism w of C is contained in W if and only if L(w) is an isomorphism in C′.

(4) The functor L exhibits C′ as a localization of C with respect to W .

Warning 9.1.1.23.02G6 Let C be an ∞-category and let W be a collection of morphisms of
C which is both localizing and colocalizing. In this case, Proposition 9.1.1.18 and Variant
9.1.1.22 provide two different concrete realizations of the localization C[W−1], given by
the full subcategories C′ ⊆ C ⊇ C′′ spanned by the W -local and W -colocal objects of C,
respectively. Note that C′ and C′′ are necessarily equivalent as abstract ∞-categories. More
precisely, if F : C → C[W−1] is a functor which exhibits C[W−1] as the localization of C with
respect to W , then the restrictions

C′ F |C′−−→ C[W−1] F |C′′←−−− C′′

are equivalences of ∞-categories. Beware that C′ and C′′ usually do not coincide when
regarded as subcategories of C. See Warning 6.3.3.12.

9.1.2 Digression: Transfinite Composition

04KZ Let C be an ∞-category and let X : N•(Z≥0)→ C be a functor, which we display as a
diagram

X(0) f0−→ X(1) f1−→ X(2) f2−→ X(3)→ · · ·

Suppose that X can be extended to a colimit diagram X : N•(Z≥0)▷ → C, carrying the cone
point to an object Y = lim−→(X). In this case, we can evaluate X on the edge {0}▷ ⊆ N•(Z≥0)▷
to obtain a morphism g : X(0) → Y . Heuristically, we can think of the morphism g as
an “infinite composition” · · · f4 ◦ f3 ◦ f2 ◦ f1 ◦ f0. Our goal in this section is to extend this
heuristic to more general well-ordered diagrams.

In what follows, we assume that the reader is familiar with the theory of ordinals (see
§4.7.1 for a review). For every ordinal α, let Ord≤α denote the linearly ordered set of ordinals
which are less than or equal to α, and let Ord<α denote the subset consisting of ordinals
which are strictly smaller than α.

Definition 9.1.2.1.04L0 Let C be an ∞-category and let W be a collection of morphisms of C.
We will say that a morphism f of C is a transfinite composition of morphisms of W if there
exists an ordinal α and a functor F : N•(Ord≤α)→ C with the following properties:

(a) For every nonzero limit ordinal λ ≤ α, the restriction F |N•(Ord≤λ) is a colimit diagram:
that is, it exhibits F (λ) as a colimit of the restriction F |N•(Ord<λ).

(b) For every ordinal β < α, the morphism F (β)→ F (β + 1) belongs to W .
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(c) The morphism F (0)→ F (α) coincides with f .

In this case, we will say that F exhibits f as a transfinite composition of morphisms of W .
We say that W is closed under transfinite composition if it contains every morphism

which is a transfinite composition of morphisms of W .

Remark 9.1.2.2. 04L1Let C be an ordinary category and let W be a collection of morphisms of
C. Then a morphism f of C is a transfinite composition of morphisms belonging to W (in
the sense of Definition 1.5.4.10) if and only if the corresponding morphism of the∞-category
N•(C) is a transfinite composition of morphisms belonging to W (in the sense of Definition
9.1.2.1).

Variant 9.1.2.3. 04L2Let A be a well-ordered set and let α denote its order type. Then there
is a unique order-preserving bijection Ord<α ≃ A, which determines an isomorphism of
simplicial sets u : N•(Ord≤α) ≃ N•(A)▷. If C is an ∞-category containing a morphism f

and a collection of morphisms W , we will say that a diagram F : N•(A)▷ → C exhibits f as
a transfinite composition of morphisms of W if the composition N•(Ord≤α) ≃ N•(A)▷ F−→ C
exhibits f as a transfinite composition of morphisms of W , in the sense of Definition 9.1.2.1.

Example 9.1.2.4. 006NLet C be an ∞-category and let W be a collection of morphisms of C.
Then every identity morphism of C is a transfinite composition of morphisms of W (take
α = 0 in Definition 9.1.2.1). In particular, if W is closed under transfinite composition, then
it contains every identity morphism of C.

Example 9.1.2.5. 006PLet C be an ∞-category and let W be a collection of morphisms of C.
Then every morphism of W is a transfinite composition of morphisms of W (take α = 1 in
Definition 9.1.2.1).

Example 9.1.2.6. 006QLet C be an ∞-category and let W be a collection of morphisms of C
which contains a pair of composable morphisms f : X → Y and g : Y → Z. Then any
composition of f with g is a transfinite composition of morphisms of W (take α = 2 in
Definition 1.5.4.10). In particular, if W is closed under transfinite composition, then it is
closed under composition.

Example 9.1.2.7. 04L3Let C be an ∞-category and let f : X → Y be an isomorphism in C. Let
F denote the composite map N•(Z≥0)▷ ↠ (∆0)▷ ≃ ∆1 f−→ C, which we display informally as
a diagram

X

f

''

id // X

f

  

id // X

f

��

id // X

f

~~

id // · · ·

Y.
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Since the simplicial set N•(Z≥0) is contractible (Example 3.2.4.2), the functor F is a
colimit diagram (Corollary 7.2.3.5), and therefore exhibits f as a transfinite composition of
morphisms belonging to the singleton {idX}.

Remark 9.1.2.8.04L4 Let C be an ∞-category and let W be a collection of morphisms of C
which is closed under transfinite composition. Combining Examples 9.1.2.4 and 9.1.2.7, we
deduce that W contains every isomorphism of C.

Remark 9.1.2.9.04L5 Let C be an ∞-category and let W be a collection of morphisms of
C which is closed under transfinite composition. Then W is closed under isomorphism:
that is, if f and g are morphisms of C which are isomorphic (as objects of the ∞-category
Fun(∆1, C)), then f belongs to W if and only if g belongs to W . This follows by combining
Example 9.1.2.6 with Remark 9.1.2.8. In particular, the condition that a morphism f of C
belongs to W depends only on the homotopy class [f ].

Example 9.1.2.6 admits a partial converse:

Proposition 9.1.2.10.04L6 Let C be an ∞-category and let W be a collection of morphisms of
C. Assume that:

(1) Every identity morphism of C belongs to W .

(2) The collection W is closed under composition.

(3) The collection W is closed under the formation of colimits in the ∞-category Fun(∆1, C).

Then W is closed under transfinite composition.

Proof. Let f : X → Y be a morphism of C which is a transfinite composition of morphisms
of W ; we wish to show that f ∈W . Choose an ordinal α and a functor F : N•(Ord≤α)→ C
which exhibits f as a transfinite composition of morphisms of W . For each β ≤ α, the
functor F carries the ordered pair (0 ≤ β) to a morphism fβ : F (0) → F (β). We will
complete the proof by showing that each the morphisms fβ belongs to W . The proof
proceeds by transfinite induction on β. If β = 0, then fβ = idX and the desired result follows
from assumption (1). If β is a nonzero limit ordinal, then the desired result follows from
assumption (3). Remark 9.1.1.9. It will therefore suffice to treat the case where β = γ + 1 is
a successor ordinal. In this case, the desired result follows by applying assumption (2) to
the diagram

F (γ)

""
X

fγ

>>

fβ // F (β),
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since fγ belongs to W by virtue of our inductive hypothesis.

Remark 9.1.2.11. 04L7In the statement of Proposition 9.1.2.10, it is not necessary to assume
that W is closed under the formation of all colimits in the∞-category Fun(∆1, C). It suffices
to consider colimits of diagrams indexed by N•(Ord<β) where β is a limit ordinal; moreover,
we can further restrict our attention to colimits which are preserved by the evaluation
functors ev0, ev1 : Fun(∆1, C)→ C.

Corollary 9.1.2.12. 04L8Let C be an ∞-category and let W be the collection of all isomorphisms
in C. Then W is closed under transfinite composition.

Definition 9.1.2.13. 04L9Let C be an ∞-category and let W be a collection of morphisms of C.
The transfinite closure of W is the smallest collection of morphisms of C which contains W
and is closed under transfinite composition.

Example 9.1.2.14. 04LALet C be an∞-category and let W be the collection of all isomorphisms
in C. It follows from Corollary 9.1.2.12 and Example 9.1.2.7 that W is the smallest collection
of morphisms of C which is closed under transfinite composition: that is, it is the transfinite
closure of the empty set.

Warning 9.1.2.15. 04LBLet C be an ∞-category, let W be a collection of morphisms of C, and
let f be a morphism of C. If f is a transfinite composition of morphisms in W , then it
belongs to the transfinite closure of W . Beware that, if we strictly adhere to the terminology
of Definition 9.1.2.1, then the converse need not be true. For example, if W = ∅ and f is an
isomorphism, then f belongs to the transfinite closure of W (Example 9.1.2.14). However,
f is a transfinite composition of morphisms in W if and only if it is an identity morphism
(Example 9.1.2.4).

We can rule out the pathological behavior described in Warning 9.1.2.15 adding a mild
additional assumption.

Proposition 9.1.2.16. 04LCLet C be an ∞-category, let W be a collection of morphisms of
C, and let W be the collection of all morphisms of C which are transfinite compositions of
morphisms belonging to W . If W contains all identity morphisms, then W is closed under
transfinite composition (and is therefore the transfinite closure of W ).

Our proof of Proposition 9.1.2.16 will make use of the following:

Lemma 9.1.2.17. 04LDLet B be a linearly ordered set and let A ⊆ B be a subset which satisfies
the following condition:

(∗) For every element b ∈ B, the set {a ∈ A : a ≤ b} has a largest element b−, and the set
{a ∈ A : b ≤ a} has a smallest element b+.
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Let K(A,B) ⊆ N•(B) be the simplicial subset whose n-simplices are given by tuples (b0 ≤
b1 ≤ b2 ≤ · · · ≤ bn) which satisfy one of the following conditions:

(1) Each of the elements bi belongs to A.

(2) For every element a ∈ A, either a ≤ b0 or a ≥ bn.

Then the inclusion map ι : K(A,B) ↪→ N•(B) is a categorical equivalence of simplicial sets.

Proof. Note that we can identify K(A,B) with the (filtered) colimit of the simplicial subsets
K(A,B′), where B′ ranges over the collection of all subsets of B which are obtained from A

by adjoining finitely many elements. Since the collection of categorical equivalences is stable
under the formation of filtered colimits (Corollary 4.5.7.2), it will suffice to prove Lemma
9.1.2.17 in the special case where B \A is finite.

Let A0 ⊆ A be the collection of elements which have the form b− or b+, where b is
an element of B \ A. Note that, if A′ ⊆ A is a subset which contains A0 and we set
B′ = A′ ∪ (B \ A), then the pair (A′, B′) also satisfies condition (∗). Moreover, we have
K(A′, B′) = K(A,B) ∩N•(B′). It follows that K(A,B) can be written as a filtered colimit
of simplicial subsets K(A′, B′), where A′ ranges over finite subsets of A which contain A0.
Applying Corollary 4.5.7.2 again, we are reduced to proving Lemma 9.1.2.17 under the
additional assumption that A is finite. We will also assume that A is nonempty (otherwise,
B is empty and therefore is nothing to prove).

If B = ∅, there is nothing to prove. We may therefore assume without loss of generality
that B = [n] = {0 < 1 < · · ·n} for some nonnegative integer n, so that N•(B) can be
identified with the standard n-simplex ∆n. Note that the simplicial subset K(A,B) ⊆ ∆n

contains the spine Spine[n] of Example 1.5.7.7. The inclusion Spine[n] ↪→ ∆n is inner
anodyne (Example 1.5.7.7), and therefore a categorical equivalence. It will therefore suffice
to show that the inclusion map Spine[n] ↪→ K(A,B) is also a categorical equivalence. In
fact, we will show that it is inner anodyne.

Write A = {a0 < a1 < · · · < am}, where a0 = 0 and am = n. Then N•(A) is the image
of a nondegenerate m-simplex σ : ∆m → ∆n, given by σ(i) = ai. Let K ′ ⊆ ∆n denote the
simplicial subset consisting of simplices which satisfy condition (1): more concretely, K ′ is
the union of the images of nondegenerate simplices

τi : ∆ai−ai−1 → ∆n k 7→ k + ai−1.

Note that the inverse image σ−1(K ′) identifies with the spine Spine[m], so that we have a
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pushout diagram
Spine[m] //

��

∆m

σ

��
K ′ // K(A,B).

Since the inclusion map Spine[m] ↪→ ∆m is inner anodyne (Example 1.5.7.7), it follows that
the inclusion K ′ ↪→ K(A,B) is also inner anodyne. We are therefore reduced to showing
that the inclusion map Spine[n] ↪→ K ′ is inner anodyne. This follows from the observation
that we also have a pushout diagram∐

1≤i≤m Spine[ai − ai−1] //

��

Spine[n]

��∐
1≤i≤m ∆ai−ai−1

{τi} // K ′,

where the left vertical map is inner anodyne by virtue of Example 1.5.7.7.

Proof of Proposition 9.1.2.16. Let C be an∞-category, let W be a collection of morphisms of
C, and let W be the collection of morphisms which can be written as transfinite compositions
of morphisms belonging to W . Suppose we are given a diagram F : N•(Ord≤α)→ C which
exhibits the underlying map f : F (0)→ F (α) as a transfinite composition of morphisms of
W . We wish to show that f also belongs to W .

For each ordinal β < α, let uβ : F (β)→ F (β + 1) denote the morphism of C obtained by
evaluating F on the pair (β, β+1). By assumption, uβ belongs to W . We can therefore choose
a well-ordered set (B(β),≤β) and a diagram Gβ : N•(B(β))▷ → C which exhibits uβ as a
transfinite composition of morphisms of W , in the sense of Variant 9.1.2.3. Since W contains
all isomorphisms in C, we can assume without loss of generality that each B(β) is nonempty
(see Examples 9.1.2.4 and 9.1.2.5), and therefore contains a smallest element aβ. Let aα
be an auxiliary symbol, set B(α) = {aα}, and let B denote the disjoint union ∐

β≤αB(β).
Given elements b ∈ B(β) and b′ ∈ B(β′), we write b ≤ b′ if either β < β′, or β = β′ and
b ≤β b′. Set A = {aβ}β≤α ⊆ B. The construction β 7→ aβ determines an order-preserving
bijection Ord≤α ∼−→ A, so that the diagram F can be identified with a functor from N•(A) to
C. For each β < α, let us identify Gβ with a functor from N•(B(β)∪{aβ+1}) to C. Then the
functors F and {Gβ}β<α determine a morphism of simplicial sets H0 : K(A,B)→ C, where
K(A,B) ⊆ N•(B) is the simplicial subset appearing in the statement of Lemma 9.1.2.17.
Since the inclusion map K(A,B) ↪→ N•(B) is a categorical equivalence of simplicial sets, we
can extend H0 to a diagram H : N•(B)→ C.
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Note that the linear ordering on B is a well-ordering, with largest element aα. We claim
that H exhibits f as a transfinite composition of morphisms of W , in the sense of Variant
9.1.2.3. It follows immediately from the construction that H carries the pair (a0 ≤ aα) to
the morphism f . Moreover, if an element b ∈ B has an immediate predecessor b′ ∈ B, then
there is a (unique) ordinal β < α such that both b and b′ belong to B(β) ∪ {aβ+1}; our
assumption on Gβ then guarantees that the morphism H(b′) → H(b) belongs to W . To
complete the proof, it will suffice to show that if b ̸= a0 is an element of B which does not
have an immediate predecessor, then the restriction H|N•(B≤b) is a colimit diagram in the
∞-category C. Note that b belongs to B(β) for some unique ordinal 0 ≤ β ≤ α. We consider
three cases:

• Suppose that b is not equal to aβ. In this case, the inclusion map B(β)<b ↪→ B<b is
cofinal (in the sense of Definition 4.7.1.26), and therefore induces a right cofinal mor-
phism of simplicial sets N•(B(β)<b) ↪→ N•(B<b) (Corollary 7.2.3.4). Using Corollary
7.2.2.2, we are reduced to showing that the diagram H|N•(B(β)≤b) is a colimit diagram
in C, which follows from our assumption on Gβ.

• Suppose that b = aβ and that β = γ + 1 is a successor ordinal. In this case, the
inclusion map Bγ ↪→ B<b is cofinal, and therefore induces a right cofinal morphism
of simplicial sets N•(Bβ) ↪→ N•(B<b). The desired result now follows again Corollary
7.2.2.2, since the restriction H|N•(Bγ∪{b}) can be identified with Gγ and is therefore a
colimit diagram in the ∞-category C.

• Suppose that b = aβ, where β is a nonzero limit ordinal. In this case, the inclusion
map A<b ↪→ B<b is cofinal and therefore induces a right cofinal morphism of simplicial
sets N•(A<b) ↪→ N•(B<b). Using Corollary 7.2.2.2, we are reduced to showing that the
restriction H|N•(A≤b) is a colimit diagram in C. We conclude by observing that this
restriction identifies with F |N•(Ord≤β).

Proposition 9.1.2.18.04LE Let C be an ∞-category, let W be a collection of morphisms of C
which is closed under isomorphism, and let f be a morphism of C which is a transfinite
composition of morphisms of W . If f is not an isomorphism, then it is a transfinite
composition of morphisms of W which are not isomorphisms.

Proof. Choose a diagram F : N•(Ord≤α)→ C which exhibits f as a transfinite composition
of morphisms of W . For every pair of ordinals 0 ≤ γ ≤ β ≤ α, let uβ,γ : F (β) → F (γ)
denote the morphism of C obtained by evaluating F on the edge (γ ≤ β) of N•(Ord≤α). We
write β ∼ γ if, for every ordinal λ satisfying γ ≤ λ ≤ β, the morphisms uβ,λ and uλ,γ are
both isomorphisms. It is not difficult to see that this is an equivalence relation on the set

https://kerodon.net/tag/04LE
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Ord≤α. For every ordinal β ≤ α, the equivalence class of β contains a smallest element which
we will denote by β− (since Ord≤α is well-ordered), and a largest element which we will
denote by β+ (since the collection of isomorphisms is closed under transfinite composition;
see Corollary 9.1.2.12).

Choose a subset A ⊆ Ord≤α which contains exactly one representative of each ∼-
equivalence class. Our assumption that f = uα,0 is not an isomorphism guarantees that 0
and α belong to different equivalence classes; we can therefore arrange that both 0 and α are
contained in A. We will complete the proof by showing that the diagram F |N•(A) exhibits f
as a transfinite composition of morphisms of W which are not isomorphisms (in the sense of
Variant 9.1.2.3).

For any pair of ordinals γ < β which belong to A, we have inequalities γ ≤ γ+ < β− ≤ β.
Then uβ,γ factors as a composition

F (γ)
uγ+,γ

−−−→ F (γ+)
uβ−,γ+−−−−→ F (β−)

uβ,β−−−−−→ F (β),

where the maps on the left and right are isomorphisms. In particular, uβ,γ is isomorphic to
uβ−,γ+ as an object of the ∞-category Fun(∆1, C). If β is an immediate successor of γ in A,
then β− is an immediate successor of γ+ in Ord≤α. Our assumption on F then guarantees
that uβ−,γ+ is contained in W . Since W is closed under isomorphism, it follows that uβ,γ is
also contained in W . Moreover, uβ,γ cannot be an isomorphism (otherwise we would have
β ∼ γ, contradicting our assumption that A contains exactly one representative of each
equivalence class).

For each element β ∈ A, set A≤β = {γ ∈ A : γ ≤ β} and A<β = {γ ∈ A : γ < β}. To
complete the proof, it will suffice to show that if β ̸= 0 is not the immediate successor of
another element of A, then the restriction F |N•(A≤β) is a colimit diagram in the ∞-category
C. Since uβ,β− is an isomorphism, it will suffice to show that G = F |N•(A<β∪{β−}) is a colimit
diagram (Corollary 7.1.2.14). Our assumption that β has no immediate predecessor in A

guarantees that β− is a limit ordinal and that A<β is a cofinal subset of in Ord<β− . It
follows that the inclusion map N•(A<β) ↪→ N•(Ord<β) is right cofinal (Corollary 7.2.3.4).
The desired result now follows from Corollary 7.2.2.2, since the restriction F |N•(Ord≤β− ) is a
colimit diagram in C.

Corollary 9.1.2.19. 04LFLet C be an ∞-category and let W be a collection of morphisms of C
which is closed under isomorphism. Then a morphism f of C belongs to the transfinite closure
of W if and only if f is either an isomorphism or a transfinite composition of morphisms of
W .

Proof. Assume that f belongs to the transfinite closure of W ; we will show that f is either
an isomorphism or a transfinite composition of morphisms of W (the converse is clear, since
the transfinite closure of W contains all isomorphisms: see Remark 9.1.2.8). Let W+ be the

https://kerodon.net/tag/04LF
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union of W with the collection of all identity morphisms of C. Applying Proposition 9.1.2.16,
we see that f is a transfinite composition of morphisms of W+. If f is not an isomorphism,
then Proposition 9.1.2.18 guarantees that f is a transfinite composition of morphisms which
belong to W+ and are not isomorphism, and therefore belong to W .

9.1.3 Weakly Local Objects

04LG Let C be a category and let W be a collection of morphisms of C. By definition, an object
C ∈ C is W -local (in the sense of Definition 9.1.1.1) if, for every morphism f : X → C in C
and every morphism w : X → Y which belongs to W , there is a unique morphism g : Y → C

satisfying g ◦ w = f , as indicated in the diagram

Y

g

  
X

w

??

f // C.

It will sometimes be useful to consider the following weaker condition:

Definition 9.1.3.1.04LH Let C be a category and let w : X → Y be a morphism of C. We say
that an object C ∈ C is weakly w-local if, for every morphism f : X → C of C, there exists a
morphism g : Y → C satisfying g ◦ w = f . If W is a collection of morphisms of C, we say
that C is weakly W -local if it is weakly w-local for each w ∈W .

Example 9.1.3.2 (Kan Complexes).04LJ Let C = Set∆ be the category of simplicial sets and
let W be the collection of all horn inclusions Λni ↪→ ∆n, where n > 0 and 0 ≤ i ≤ n. Then a
simplicial set is weakly W -local if and only if it is a Kan complex.

Example 9.1.3.3 (∞-Categories).04LK Let C = Set∆ be the category of simplicial sets and
let W be the collection of all inner horn inclusions Λn

i ↪→ ∆n, where 0 < i < n. Then a
simplicial set is weakly W -local if and only if it is an ∞-category.

Example 9.1.3.4 (Contractible Kan Complexes).04LL Let C = Set∆ be the category of simplicial
sets and let W be the collection of inclusion maps ∂∆n ↪→ ∆n. Then a simplicial set is
weakly W -local if and only if it is a contractible Kan complex.

Definition 9.1.3.1 has an obvious counterpart in the setting of ∞-categories:

Definition 9.1.3.5.04LM Let C be an ∞-category and let w : X → Y be a morphism of C. We
say that an object C ∈ C is weakly w-local if, for every morphism f : X → C, there exists a
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2-simplex with boundary indicated in the diagram

Y

  
X

w

??

f // C.

If W is a collection of morphisms of C, we say that an object C ∈ C is weakly W -local if it is
weakly w-local for each w ∈W .

Example 9.1.3.6. 04LNLet C be a category and let W be a collection of morphisms of C. Then
an object C ∈ C is weakly W -local (in the sense of Definition 9.1.3.1) if and only if it
is weakly W -local when regarded as an object of the ∞-category N•(C) (in the sense of
Definition 9.1.3.5).

Remark 9.1.3.7. 04LPLet C be an ∞-category and let W be a collection of morphisms of C.
It follows from Proposition 1.4.4.2 that an object C ∈ C is weakly W -local if and only if,
for every morphism w : X → Y which belongs to W , composition with the homotopy class
[w] induces a surjection HomhC(Y,C) → HomhC(X,C). In other words, the object C is
weakly W -local (in the sense of Definition 9.1.3.5) if and only if it is weakly [W ]-local when
regarded as an object of the homotopy category hC (in the sense of Definition 9.1.3.1). Here
[W ] = {[w] : w ∈ W} denotes the collection of all homotopy classes of morphisms which
belong to W .

Example 9.1.3.8. 04LQLet C be an ∞-category and let W be a collection of morphisms of C. If
an object C ∈ C is W -local (in the sense of Definition 9.1.1.1), then it is weakly W -local.

Example 9.1.3.9. 04LRLet C be an ∞-category and let w : X → Y a morphism of C which
admits a left homotopy inverse r : Y → X. Then every object C ∈ C is weakly w-local. In
particular, if w is an isomorphism, then every object of C is weakly w-local.

Remark 9.1.3.10. 04LSLet C be an ∞-category containing a 2-simplex

Y

v

  
X

u

??

w // Z.

If an object C ∈ C is weakly u-local and weakly v-local, then it is weakly w-local. Conversely,
if C is weakly w-local, then it is weakly u-local.
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Remark 9.1.3.11.04LT Let C be an ∞-category, let W be a collection of morphisms of C, and
let C ∈ C be an object which factors as a product of some collection of objects {Ci}i∈I (see
Definition 7.6.1.3). If each Ci is weakly W -local, then C is weakly W -local. In particular,
any final object of C is weakly W -local.

Remark 9.1.3.12.04LU Let C be an ∞-category, let W be a collection of morphisms of C, and
let C ∈ C be an object. If C is weakly W -local, then any retract of C is also weakly W -local.
In particular, the condition that C is weakly W -local depends only on the isomorphism class
of C.

Variant 9.1.3.13.04LV Let C be an ∞-category, let w : X → Y and w′ : X ′ → Y ′ be morphisms
of C, and suppose that w′ is a retract of w (in the ∞-category Fun(∆1, C)). If an object
C ∈ C is weakly w-local, then it is also weakly w′-local. In particular, if we regard the object
C ∈ C is fixed, then the condition that C is w-local depends only on the isomorphism class
of w (as an object of Fun(∆1, C)).

Proposition 9.1.3.14.04LW Let C be an ∞-category containing a pushout diagram

04LX X

w

��

// X ′

w′

��
Y // Y ′.

(9.3)

If an object C ∈ C is weakly w-local, then it is also weakly w′-local.

Proof. We have a commutative diagram of sets

HomhC(Y ′, C) // HomhC(X ′, C)×HomhC(X,C) HomhC(Y,C) //

��

HomhC(X ′, C)

��
HomhC(Y,C) ◦[w] // HomhC(X,C),

where the square on the right is a pullback. Our assumption that C is weakly w-local
guarantees that the bottom horizontal map is surjective, so that the upper horizontal map
on the right is also surjective. Since Proposition 9.3 is a pushout square, the horizontal map
on the upper left is also surjective (Warning 7.6.3.3). It follows that the composite map
HomhC(Y ′, C) ◦[w

′]−−−→ HomhC(X ′, C) is also surjective.

Example 9.1.3.8 admits the following partial converse:
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Proposition 9.1.3.15. 04LYLet C be an ∞-category and let W be a collection of morphisms
of C. Suppose that every morphism w : X → Y of W admits a relative codiagonal γX/Y :
Y

∐
X Y → Y which also belongs to W (Variant 7.6.3.19). Then an object C ∈ C is W -local

if and only if it is weakly W -local.

Proof. Fix an object C ∈ C, and let hC : Cop → S denote the functor represented by C. We
wish to show that, for every morphism w : X → Y which belongs to W , the image hC(w) is a
homotopy equivalence of Kan complexes. By virtue of Remark 3.5.1.19, it will suffice to show
that hC(w) is n-connective for every integer n ≥ 0. The proof proceeds by induction on n.
In the case n = 0, we wish to show that the composition map HomC(Y,C)→ HomC(X,C)
is surjective on connected components, which follows from our assumption that C is weakly
W -local. Let us therefore assume that n > 0. Using the criterion of Corollary 3.5.1.29
(together with Exercise 7.6.4.13), we are reduced to proving the (n− 1)-connectivity of the
relative diagonal of hC(w) (formed in the ∞-category S). Since the functor hC preserves
limits (Proposition 7.4.5.16), we can identify the relative diagonal of hC(w) with hC(γX/Y ),
where γX/Y : Y ∐

X Y → Y denotes a relative codiagonal of w. By assumption, we can
arrange that γX/Y is also contained in W , so the desired result follows from our inductive
hypothesis.

Exercise 9.1.3.16. 04LZLet C be an ∞-category and let w : X → Y be a morphism of C which
admits a relative codiagonal γX/Y : Y ∐

X Y → Y . Show that an object C ∈ C is w-local if
and only if it is both γX/Y -local and weakly w-local.

We have the following ∞-categorical counterpart of Proposition 1.5.4.11:

Proposition 9.1.3.17. 04M0Let C be an ∞-category, let C ∈ C be an object, and let W be the
collection of morphisms w : X → Y in C such that C is weakly w-local. Then W is closed
under transfinite composition (see Definition 9.1.2.1).

Proof. Let U : C/C → C be the projection map and let f : X → Y be a morphism of C
which can be written as a transfinite composition of morphisms of C. Suppose we are given
a morphism X → C in C, which we identify with an object X̃ ∈ C/C satisfying U(X̃) = X.
We wish to show that there is a morphism f̃ : X̃ → Ỹ of C/C satisfying U(f̃) = f .

Choose an ordinal α and a functor F : N•(Ord≤α)→ C which exhibits f as a transfinite
composition of morphisms of W . Let Q be the collection of all ordered pairs (β, F̃≤β), where
β ≤ α is an ordinal and F̃≤β : N•(Ord≤β) → C/C is a functor satisfying F̃≤β(0) = X̃ and
U ◦ F̃≤β = F |N•(Ord≤β). We regard Q as a partially ordered set, where (β, F̃≤β) ≤ (β′, F̃ ′|≤β′)
if β ≤ β′ and F̃≤β = F̃ ′≤β′ |N•(Ord≤β).

We first claim that Q satisfies the hypotheses of Zorn’s lemma. Let Q0 ⊆ Q be a linearly
ordered subset of Q; we wish to show that Q0 admits an upper bound. If Q0 is empty, we
can take this upper bound be the pair (0, F̃≤0), where F̃≤0 is the constant functor taking the
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value X̃. Without loss of generality, we may assume that Q0 does not contain a maximal
element (otherwise, there is nothing to prove). Write Q0 = {(βi, F̃≤βi

)}i∈I and let β ≤ α be
the supremum of the set {βi}i∈I . The functors F̃≤βi

can then be amalgamated to a single
functor F̃<β : N•(Ord<β)→ C/C . To find an upper bound for Q0, it will suffice to show that
the lifting problem

N•(Ord<β)
F̃<β //

��

C/C

U

��
N•(Ord≤β)

F |N•(Ord≤β)
// C

admits a solution. This follows immediately from our assumption that F |N•(Ord≤β) is a
colimit diagram in C.

Applying Zorn’s lemma, we deduce that Q contains a maximal element (β, F̃≤β). To
complete the proof, it will suffice to show that β = α; we can then take f̃ to be obtained by
applying the functor F̃ to the edge of N•(Ord≤α) given by the pair (0, α). Assume otherwise,
let F≤β denote the restriction F |N•(Ord≤β), and let D denote the coslice ∞-category CF≤β/.
Then F≤β+1 and F̃≤β can be identified with objectsD,D′ ∈ D, and the maximality of (β, F̃≤β)
guarantees that HomD(D,D′) = ∅. Since the inclusion map {β} ↪→ N•(Ord≤β) is right
anodyne (Corollary 4.6.7.24), the restriction map V : D = CF≤β/ → CF (β)/ is a trivial Kan
fibration (Corollary 4.3.6.13). It follows that the mapping space HomCF (β)/

(V (D), V (D′)) is
also empty: that is, there is no 2-simplex of C with boundary indicated in the diagram

F (β + 1)

""
F (β)

;;

// C.

This contradicts our assumption that the morphism F (β)→ F (β + 1) belongs to W .

Variant 9.1.3.18.04M1 Let C be an ∞-category, let C ∈ C be an object, and let W be the
collection of morphisms w : X → Y in C such that C is w-local. Then W is closed under
transfinite composition.

Proof. Let C be an ∞-category, let C ∈ C be an object, and let W be the collection of
morphisms w of C such that C is w-local. Then W contains all identity morphisms, is closed
under composition (Remark 9.1.1.11), and is closed under the formation of colimits in the∞-
category Fun(∆1, C) which are preserved by the evaluation functors ev0, ev1 : Fun(∆1, C)→ C

https://kerodon.net/tag/04M1
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(Remark 9.1.1.9). Applying Proposition 9.1.2.10 (and Remark 9.1.2.11), we conclude that
W is closed under transfinite composition.

We now introduce some terminology which is motivated by the preceding discussion.

Definition 9.1.3.19. 04M2Let C be an ∞-category and let W be a collection of morphisms of C.
We will say that W is weakly saturated if it satisfies the following conditions:

(1) The collection W is closed under pushouts: that is, for every pushout diagram

X

w

��

// X ′

w′

��
Y // Y ′

in the ∞-category C, if w belongs to W , then w′ also belongs to W .

(2) The collection W is closed under the formation of retracts (in the∞-category Fun(∆1, C)).

(3) The collection W is closed under transfinite composition (Definition 9.1.2.1).

Remark 9.1.3.20. 04M3Let C = N•(C0) be the nerve of an ordinary category C0. Then a
collection of morphisms of C is weakly saturated (in the sense of Definition 9.1.3.19) if and
only if is weakly saturated when regarded as a collection of morphisms of C0 (in the sense of
Definition 1.5.4.12).

Example 9.1.3.21. 04M4Let C be an ∞-category, let C ∈ C be an object, and let W be the
collection of all morphisms w : X → Y of C such that C is weakly w-local. Then W is
weakly saturated. This follows from Proposition 9.1.3.14, Variant 9.1.3.13, and Proposition
9.1.3.17.

Variant 9.1.3.22. 04M5Let C be an ∞-category, let C ∈ C be an object, and let W be the
collection of all morphisms w : X → Y of C such that C is w-local. Then W is weakly
saturated. This follows from Remark 9.1.1.10, Remark 9.1.1.11, and Variant 9.1.3.18.

Remark 9.1.3.23. 04M6Let C be an∞-category. Any intersection of weakly saturated collections
of morphisms of C is also weakly saturated. In particular, for any collection W of morphisms
of C, there is a smallest collection W which is weakly saturated and contains W . We will
refer to W as the weakly saturated collection generated by W .
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9.1.4 The Small Object Argument

04M7 In §3.1.7, we showed that every simplicial set X admits an anodyne morphism X ↪→ Q,
where Q is a Kan complex (Corollary 3.1.7.2). The proof is easy to describe: if X is not
a Kan complex, then there is some horn σ0 : Λn

i → X which cannot be extended to an
n-simplex of X. This defect can be remedied by replacing X by the pushout ∆n ∐

Λn
i
X. The

desired Kan complex Q is obtained by a (possibly transfinite) iteration of this procedure. A
similar strategy can be used to prove many related results (see for example Exercise 3.1.7.11,
Proposition 4.1.3.2, and Proposition 4.2.4.8). Following Quillen ([46]), we will refer to this
proof strategy as the small object argument. Our goal in this section is to formalize a version
of this argument in the ∞-categorical setting. First, we need a bit of terminology.

Definition 9.1.4.1.04M8 Let C be an ∞-category, let W be a collection of morphisms of C,
and let W ′ denote the collection of those morphisms w′ : X ′ → Y ′ for which there exists a
pushout square

X

w

��

// X ′

w′

��
Y // Y ′,

where w ∈W . We say that a morphism f of C is a transfinite pushout of morphisms of W if
it is a transfinite composition of morphisms of W ′, in the sense of Definition 9.1.2.1.

Remark 9.1.4.2.04M9 Let C be an ∞-category, let W be a collection of morphisms of C, and let
f : X → Y be a morphism of C which is a transfinite pushout of morphisms which belong to
W . Then:

• If an object C ∈ C is weakly W -local, then it is weakly f -local.

• If an object C ∈ C is W -local, then it is f -local.

The first assertion follows from Propositions 9.1.3.14 and 9.1.3.17; the second follows from
Remark 9.1.1.10 and Variant 9.1.3.18.

We can now formulate the main result of this section:

Theorem 9.1.4.3 (The Small Object Argument).04MA Let C be an ∞-category and let W be a
collection of morphisms of C. Assume that:

• The ∞-category C is locally small and admits small colimits.

• The collection W is small.
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• For each morphism w : X → Y which belongs to W , the object X ∈ C is κ-compact for
some small cardinal κ (see Definition [?]).

For every object C ∈ C, there exists a morphism f : C → C ′ where C ′ is weakly W -local and
f is a transfinite pushout of morphisms of W .

Warning 9.1.4.4. 04MBIf C is (the nerve of) an ordinary category, then the morphism f : C → C ′

of Theorem 9.1.4.3 can be chosen to depend functorially on C. Beware that this is generally
not possible if C is an ∞-category (see Example 9.1.4.5).

Example 9.1.4.5. 04MCFix an integer n ≥ 0. Let C = S be the ∞-category of spaces and
let W be the collection of morphisms of C given by the inclusion maps {Ex∞(∂∆m) ↪→
Ex∞(∆m)}0≤m≤n. Then an object X ∈ C weakly W -local if and only if it is n-connective
(see Definition 3.5.1.1). In this case, Theorem 9.1.4.3 asserts that every Kan complex X

admits a morphism f : X → Y , where Y is an n-connective Kan complex which can be
obtained from X by attaching cells of dimension ≤ n. Beware that, if n > 0, then Y cannot
be chosen to depend functorially on X.

Corollary 9.1.4.6. 04MDLet C be an ∞-category, let W be a collection of morphisms of C, and
let C′ ⊆ C be the full subcategory spanned by the W -local objects. Assume that:

• The ∞-category C is locally small and admits small colimits.

• The collection W is small.

• For each morphism w : X → Y which belongs to W , the objects X and Y are κ-compact
for some small infinite cardinal κ.

Then C′ is a reflective localization of C.

Proof. For each morphism w : X → Y of C, choose a morphism δw : Y ∐
X Y → Y which is

a relative codiagonal of w (see Variant 7.6.3.19). Note that, if X and Y are κ-compact for
some infinite cardinal κ, then the pushout Y ∐

X Y is also κ-compact (Proposition [?]). Let
W ′ be the smallest collection of morphisms of C which contains W and is closed under the
construction w 7→ γw. By virtue of Remark 9.1.1.12, an object of C is W -local if and only if
it is W ′-local. We may therefore replace W by W ′ and thereby reduce to proving Corollary
9.1.4.6 in the special case where W is closed under the formation of relative codiagonals.

Fix an object C ∈ C. Using Theorem 9.1.4.3, we see that there exists a morphism
f : C → C ′, where C ′ is weakly W -local and f is a transfinite pushout of morphisms which
belong to W . Using Proposition 9.1.3.15, we see that C ′ belongs to the subcategory C′ ⊆ C.
To complete the proof, it will suffice to show that f exhibits C ′ as a C′-reflection of C: that
is, every object of C′ is f -local. This follows from Remark 9.1.4.2.
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Our proof of Theorem 9.1.4.3 will require some preliminaries.

Lemma 9.1.4.7.04ME Let C be an∞-category which admits small colimits, let {ws : Xs → Ys}s∈S
be a small collection of morphisms of C indexed by a set S, let {es : Xs → C}s∈S be another
collection of morphisms of C, and let D be a colimit of the diagram

(S ×∆1)
∐

S×{0}
S▷

({ws},{es})−−−−−−−→→ C .

Then the tautological map u : C → D is a transfinite pushout of morphisms belonging to
{ws}s∈S.

Proof. Using the well-ordering theorem (Theorem 4.7.1.34), we can choose an ordinal α and
a bijection ℓ : S → Ord<α. Let Q denote the disjoint union (S × [1]) ∐ Ord≤α. For elements
q, q′ ∈ Q, we write q ≤ q′ if (exactly) one of the following conditions holds:

• There exist an element s ∈ S such that q = (s, i) and q′ = (s, i′), where i ≤ i′.

• We have q = β and q′ = β′ for ordinals β, β′ ∈ Ord≤α satisfying β ≤ β′ (for the usual
ordering of Ord≤α).

• We have q = (s, 0) for some s ∈ S and q′ = β for some β ∈ Ord≤α.

• We have q = (s, 1) and q′ = β for some β ∈ Ord≤α satisfying ℓ(s) < β.

Let Q0 = (S× [1]) ∐
{0}, which we regard as a partially ordered subset of Q. By construction,

the nerve N•(Q0) can be identified with the pushout (S ×∆1) ∐
S×{0} S

▷. Consequently, the
collections {es}s∈S and {ws}s∈S determine a diagram F0 : N•(Q≤0) → C. Since C admits
small colimits, the diagram F0 admits a left Kan extension F : N•(Q) → C (Proposition
7.6.7.13). Then D = F (α) is a colimit of the diagram F0, and we can identify u with the
morphism obtained by evaluating the functor F on the edge of N•(Q) given by the pair
(0 ≤ α). We will show that the restriction F |N•(Ord≤α) exhibits u as a transfinite pushout of
morphisms belonging to {ws}s∈S .

We first claim that that if β ≤ α is a nonzero limit ordinal, then the restriction F |N•(Ord≤β)
is a colimit diagram in C. Set Q≤β = {q ∈ Q : q ≤ β} and Q<β = {q ∈ Q : q < β}. Since
the functor F is left Kan extended from N•(Q0), it is also left Kan extended from larger
∞-category N•((S × [1]) ∐ Ord<β) (see Corollary 7.3.8.8). It follows that F |N•(Q≤β) is a
colimit diagram in C. It will therefore suffice to show that N•(ι) is right cofinal, where
ι denotes the inclusion map Ord<β ↪→ Q<β (Corollary 7.2.2.2). This is a special case of
Corollary 7.2.3.7, since ι admits a left adjoint (given on S× [1] by the construction (s, 0) 7→ 0
and (s, 1) 7→ ℓ(s) + 1).

Now suppose that β = γ + 1 is a successor ordinal. Let s ∈ S be the unique element
satisfying ℓ(s) = γ. We will complete the proof by showing that the morphism F (γ)→ F (β)

https://kerodon.net/tag/04ME
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in C can be realized as a pushout of ws. More precisely, we will show that the functor F
carries the diagram

(s, 0) //

��

(s, 1)

��
γ // β

in N•(Q) to a pushout diagram in the ∞-category C. Arguing as above, we see that the
restriction F |Q≤β

is a colimit diagram. Using Corollary 7.2.2.2 again, we are reduced to
showing that N•(ι) is right cofinal, where ι denotes the inclusion of partially ordered sets
{(s, 1) > (s, 0) < β} ↪→ Q<β . This again follows from Corollary 7.2.3.7, since ι admits a left
adjoint given by the construction

(q ∈ Q<β) 7→

q if q = (s, 0) or q = (s, 1)
β otherwise.

Lemma 9.1.4.8. 04MFLet C be a locally small ∞-category which admits small colimits, and let
W be a small collection of morphisms of C. For every object C ∈ C, there exists a morphism
u : C → D which is a transfinite pushout of morphisms of W with the following property:
for every morphism w : X → Y which belongs to W and every morphism e : X → C, there
exists a commutative diagram

X
w //

e

��

Y

��
C

u // D

in the ∞-category C.

Proof. For each morphism w : X → Y belonging to W , let {fs : X → C}s∈Sw be a set of
representatives for the homotopy classes of morphisms from X to C. Since C is locally small,
the collection Sw is small. Our assumption that W is small then guarantees that the disjoint
union S = ∐

w∈W Sw is small. The desired result now follows by applying Lemma 9.1.4.7 to
the collection of morphisms {fs}s∈S .

Lemma 9.1.4.9. 04MGLet C be an ∞-category which admits small filtered colimits. Let U be a
collection of morphisms with the following property: for every object D ∈ C, there exists a
morphism u : D → E which belongs to U . Then, for every object C ∈ C and every (small)
ordinal α, there exists a diagram F : N•(Ord≤α)→ C satisfying the following conditions:
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(a) For every nonzero limit ordinal λ ≤ α, the restriction F |N•(Ord≤λ) is a colimit diagram.

(b) For every ordinal γ < α, the morphism F (γ)→ F (γ + 1) belongs to U .

(c) The object F (0) coincides with C.

Proof. Let Q denote the collection of all diagrams Fβ : N•(Ord≤β)→ C satisfying conditions
(a), (b), and (c), where β is an ordinal ≤ α. We regard Q as a partially ordered set, where
Fβ ≤ Fβ′ if β ≤ β′ and Fβ = Fβ′ |N•(Ord≤β). Note that Q is nonempty: it has a least
element given by the diagram N•(Ord≤0) ≃ {C} ↪→ C taking the value C. We claim that Q
satisfies the hypothesis of Zorn’s lemma: that is, every linearly ordered set Q′ ⊂ Q admits
an upper bound. Without loss of generality, we may assume that Q′ is nonempty and has
no largest element. In this case, the elements of Q′ can be amalgamated to a diagram
F<λ : N•(Ord<λ)→ C, where λ ≤ α is a nonzero limit ordinal. Our assumption on C then
guarantees that F<λ can be extended to a colimit diagram

Fλ : N•(Ord≤λ) ≃ N•(Ord<λ)▷ → C .

By construction, this diagram satisfies conditions (a), (b), and (c), and is therefore an upper
bound for Q′.

Applying Zorn’s lemma, we deduce that Q has a maximal element Fβ : N•(Ord≤β)→ C.
We will complete the proof by showing that β < α. Assume otherwise, and set X = Fβ(β). By
assumption, we can choose a morphism u : X → Y which belongs to U . Let us identify u with
an object Ỹ of the coslice∞-category CX/. Since the inclusion map {β+ 1} ↪→ N•(Ord≤β+1)
is right anodyne (Example 4.3.7.11), the restriction map CFβ/ → CX/ is a trivial Kan
fibration (Corollary 4.3.6.13). We can therefore lift Ỹ to an object of the ∞-category CFβ/,
which we can identify with an extension of Fβ to a diagram Fβ+1 : N•(Ord≤β+1)→ C. By
construction, this diagram carries the pair (β, β + 1) to the morphism u of C. It follows that
Fβ+1 is also an element of Q, contradicting the maximality of Fβ.

Proof of Theorem 9.1.4.3. Let C be a locally small ∞-category which admits small colimits,
let W be a small collection of morphisms of C, and let κ be a small regular cardinal having
the property that for each morphism w : X → Y which belongs to W , the object X is
κ-compact. Fix an object C ∈ C; we wish to show that there exists a morphism f : C → C ′

where C ′ is weakly W -local and f is a transfinite pushout of morphisms belonging to W .
Without loss of generality, we may assume that C itself is not weakly W -local (otherwise,
we can take f = idC).

Let W ′ be the collection of all morphisms of C which are pushouts of morphisms of W ,
and let W denote the transfinite closure of W ′ (Definition 9.1.2.13). Let U ⊆ W denote
the subcollection consisting of those morphisms u which satisfy the requirement of Lemma
9.1.4.8. Using Lemma 9.1.4.9 we deduce that there exists a diagram F : N•(Ord≤κ) → C
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where F (0) = C and F exhibits the induced map F (0) f−→ F (κ) as a transfinite composition
of morphisms of U .

We first claim that the object C ′ = F (κ) is weakly W -local. Let w : X → Y be a
morphism which belongs to W . We wish to show that every morphism [e] : X → F (κ) in the
homotopy category hC factors through the homotopy class [w]. Since F is a colimit diagram
and the object X is κ-compact, the morphism [e] factors as a composition X [e]−→ F (α)→ F (κ)
for some ordinal α < κ and some morphism e : X → F (α) in the ∞-category C. Since the
transition map F (α)→ F (α+ 1) belongs to U , we can choose a commutative diagram

X

��

w //

e

��

Y

e′

��
F (α) // F (α+ 1).

It follows that [e] factors as a composition X
[w]−−→ Y

[e′]−−→ F (α+ 1)→ F (κ).
To complete the proof, it will suffice to show that f is a transfinite composition of

morphisms belonging to W ′. By construction, f is a transfinite pushout of morphisms of
U ⊆W , and therefore belongs to W . This follows from Corollary 9.1.2.19, since f is not an
isomorphism (otherwise, the object C would also be weakly W -local, contrary to our initial
assumption).

9.1.5 Lifting Problems in ∞-Categories

04MHLet C be a category. Recall that a lifting problem in C is a commutative diagram

04MJA

f

��

u0 // X

g

��
B

u // Y

(9.4)

In this case, a solution to the lifting problem (9.4) is a morphism u : B → X satisfying
u◦f = u0 and q ◦u = u (see Definition 1.5.4.1). This definition has an obvious∞-categorical
counterpart:

Definition 9.1.5.1 (Lifting Problems in ∞-Categories). 04MKLet C be an ∞-category. A lifting
problem in C is a diagram σ : ∆1 ×∆1 → C. In this case, a solution to the lifting problem σ

is a 3-simplex σ : ∆3 → C for which the composition

∆1 ×∆1 α−→ ∆3 σ−→ C

https://kerodon.net/tag/04MH
https://kerodon.net/tag/04MJ
https://kerodon.net/tag/04MK


9.1. LOCAL OBJECTS AND FACTORIZATION SYSTEMS 1975

coincides with σ, where α denotes the map of simplicial sets given on vertices by α(i, j) =
2i+ j.

Remark 9.1.5.2.04ML Let us informally display the standard simplex ∆3 as a diagram

04MM • //

��   

•

��
• //

>>

•.

(9.5)

The morphism α : ∆1 ×∆1 → ∆3 appearing in Definition 9.1.5.1 is a monomorphism of
simplicial sets, whose image is the simplicial subset Q ⊆ ∆3 consisting of those simplices
which do not contain the “inner” edge N•({1 < 2}) which is indicated by the dotted arrow
in the diagram (9.5). Stated more informally, Q is the subset of ∆3 which is “visible from
the top” in the diagram (9.5); in particular, Q contains the inner faces N•({0 < 1 < 3}) and
N•({0 < 2 < 3}), but not the outer faces N•({0 < 1 < 2}) and N•({1 < 2 < 3}).

Notation 9.1.5.3.04MN Let C be an ∞-category. We will often denote a lifting problem σ in C
by a diagram

04MP A

f

��

u0 // X

g

��
B

u //

??

Y.

(9.6)

Here the dotted arrow in the diagram does not indicate part of the data supplied by lifting
problem σ; instead, it indicates part of the data of a hypothetical solution.

Stated more concretely, the lifting problem σ is given by the following data:

• Four objects of C, which are indicated by A, B, X, and Y in the diagram (9.6).

• Five morphisms of C, which we will denote by f : A → B, g : X → Y , u0 : A → X,
u : B → Y , and u0 : A→ Y . Here the first four of these morphisms are indicated as
outer edges of the diagram (9.6), while the fifth is left implicit.

• A pair of 2-simplices τ1 and τ2 of C, whose boundaries are indicated in the diagrams

A

u0

��

u0 // X

g

��

A

f

��

u0

��
Y B

u // Y.
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In other words, τ1 and τ2 exhibit the morphism u0 as a composition u ◦ f and a
composition g ◦ u0, respectively.

A solution to the lifting problem σ is given by the following additional data:

• A morphism u : B → X (indicated by the dotted arrow in the diagram (9.6).

• A pair of 2-simplices τ0 and τ3 of C, whose boundaries are indicated in the diagrams

X

g

��

A

f

��

u0 // X

B

u

??

u // Y B.

u

>>

In other words, τ0 exhibits u as a composition g◦u, and τ3 exhibits u0 as a composition
u ◦ f .

• A 3-simplex of C having boundary (τ0, τ1, τ2, τ3).

Example 9.1.5.4. 04MQLet C0 be a category and let C = N•(C0) denote its nerve. Then lifting
problems σ in the ∞-category C (in the sense of Definition 9.1.5.1) can be identified with
lifting problems σ0 in the ordinary category C0 (in the sense of Definition 1.5.4.1). In this
case, we can also identify solutions to σ with solutions to σ0.

Warning 9.1.5.5. 04MRLet C be an ∞-category. Every lifting problem

04MSA

f

��

u0 // X

g

��
B

u //

??

Y

(9.7)

in C determines a lifting problem in the homotopy category hC, given by the diagram

04MTA

[f ]

��

[u0] // X

[g]

��
B

[u] //

??

Y.

(9.8)

Moreover, every solution to the lifting problem (9.7) determines a solution to the lifting
problem (9.8). Beware that the converse is false: it is possible for the lifting problem (9.8)
to admit a solution when the lifting problem (9.7) does not (Exercise 9.1.5.6).
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Exercise 9.1.5.6.04MU Let g : X → S be Kan fibration between Kan complexes, where S is
connected and X is contractible. Choose a vertex s ∈ S and let Xs denote the fiber {s}×SX,
so that we have a commutative diagram of Kan complexes

04MV Xs
//

��

X

f

��
{s} // S

(9.9)

Show that:

• In the ∞-category of spaces S, the lifting problem determined by (9.9) admits a
solution only if S is contractible.

• In the homotopy category hS, the lifting problem determined by (9.9) always has a
solution.

Remark 9.1.5.7.04MW Let C be an∞-category. Fix a morphism u0 : A→ Y of C, and let CA//Y
denote the ∞-category of Remark 4.6.6.2. The datum of an extension of u0 to a lifting
problem σ :

04MX A

��

// X

��
B //

??

Y

(9.10)

can be identified with a pair of objects B̃, X̃ ∈ CA//Y . In this case, a solution to the lifting
problem (9.10) is a morphism from B̃ to X̃ in the ∞-category CA//Y .

Definition 9.1.5.8.04MY Let C be an ∞-category, and let f : A → B and g : X → Y be
morphisms of C. We will say that f is weakly left orthogonal to g if every lifting problem

A

f

��

// X

g

��
B //

>>

Y

in the ∞-category C admits a solution. In this case, we will also say that g is weakly right
orthogonal to f .
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Example 9.1.5.9. 04MZIn the situation of Definition 9.1.5.8, suppose that C is the nerve of a
category C0. Then f is weakly left orthogonal to g (in the sense of Definition 9.1.5.8) if and
only if it is weakly left orthogonal to g when regarded as a morphism of the category C0 (in
the sense of Definition 1.5.4.3).

Warning 9.1.5.10. 04N0Let C be an ∞-category containing a pair of morphisms f : A → B

and g : X → Y . If f is weakly left orthogonal to g in the ∞-category C, then the homotopy
class [f ] is weakly left orthogonal to [g] in the homotopy category hC (see Exercise 1.5.2.10).
Beware that the converse is false in general (see Warning 9.1.5.5 and Exercise 9.1.5.6).

Variant 9.1.5.11. 04N1Let C be an ∞-category and let S and T be collections of morphisms
of C. We say that S is weakly left orthogonal to T if every morphism f ∈ S is weakly
left orthogonal to every morphism g ∈ T . In this case, we also say that T is weakly right
orthogonal to S. In the special case where S = {f} is a singleton, we abbreviate this
condition by saying that f is weakly left orthogonal to T , or T is weakly right orthogonal to
f . In the special case T = {g} is a singleton, we abbreviate this condition by saying that g
is weakly right orthogonal to S, or S is weakly left orthogonal to g.

Remark 9.1.5.12. 04N2Let C be an ∞-category containing a morphism g : X → Y , which we
identify with an object X̃ of the slice ∞-category C/Y . Let S be a collection of morphisms
of C, and let S̃ denote its inverse image in C/Y . The following conditions are equivalent:

• The morphism g is weakly right orthogonal to S (in the sense of Variant 9.1.5.11).

• The object X̃ is weakly S̃-local (in the sense of Definition 9.1.3.5).

Example 9.1.5.13. 04N3Let C be an∞-category containing a morphism g : X → Y . Then every
isomorphism f of C is weakly left orthogonal to g. This follows from the criterion of Remark
9.1.5.12, since every lift of f to the ∞-category C/Y is also an isomorphism (Proposition
4.4.2.11).

We now record a few consequences of Remark 9.1.5.12.

Proposition 9.1.5.14. 04N4Let C be an ∞-category and let g : X → Y be a morphism of C. If
another morphism f : A→ B is weakly left orthogonal to g, then any retract of f (in the
∞-category Fun(∆1, C)) is also weakly left orthogonal to g.

Proof. Let f ′ : A′ → B′ be a retract of f (in the ∞-category Fun(∆1, C)); we will show that
f ′ is weakly left orthogonal to g. Let π : C/Y → C be the projection map, and let us identify g
with an object X̃ ∈ C/Y satisfying π(X̃) = X. By virtue of Remark 9.1.5.12, it will suffice to
show that for any morphism f̃ ′ of C/Y satisfying π(f̃ ′) = f ′, the object X̃ is weakly f̃ ′-local.
It follows from Corollary 4.2.5.2 that π induces a right fibration Fun(∆1, C/Y )→ Fun(∆1, C).
Applying Remark 8.5.1.23, we deduce that f̃ ′ is a retract of a morphism f̃ of C/Y satisfying
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U(f̃) = f . By virtue of Variant 9.1.3.13, it will suffice to show that the object X̃ is weakly
f̃ -local, which follows from our assumption that f is weakly left orthogonal to g (Remark
9.1.5.12).

Proposition 9.1.5.15.04N5 Let C be an ∞-category containing a pushout diagram

04N6 A //

f

��

A′

f ′

��
B // B′.

(9.11)

If f is weakly left orthogonal to a morphism g : X → Y of C, then f ′ is also weakly left
orthogonal to g.

Proof. Let π : C/Y → C be the projection map, and let us identify g with an object X̃ ∈ C/Y
satisfying π(X̃) = X. By virtue of Remark 9.1.5.12, it will suffice to show that for any
morphism f̃ ′ of C/Y satisfying π(f̃ ′) = f ′, the object X̃ is weakly f̃ ′-local. Since π is a right
fibration, we can lift (9.11) to a diagram

Ã //

f̃

��

Ã′

f̃ ′

��
B̃ // B̃′

in the ∞-category C/Y , which is also a pushout square (Proposition 7.1.3.19). By virtue of
Proposition 9.1.3.14, it will suffice to show that X̃ is weakly f̃ -local, which follows from our
assumption that f is weakly left orthogonal to g (Remark 9.1.5.12).

Proposition 9.1.5.16.04N7 Let C be an ∞-category containing a morphism g : X → Y , and let
S be the collection of all morphisms of C which are weakly left orthogonal to g. Then S is
closed under transfinite composition (see Definition 9.1.2.1).

Proof. Let f : A→ B be a transfinite composition of morphisms of S; we wish to show that
f is weakly left orthogonal to g. Let π : C/Y → C be the projection map, and let us identify
g with an object X̃ ∈ C/Y satisfying π(X̃) = X. By virtue of Remark 9.1.5.12, it will suffice
to show that for every morphism f̃ : Ã → B̃ of C/Y satisfying π(f̃) = f , the object X̃ is
weakly f̃ -local.

Choose an ordinal α and a diagram F : N•(Ord≤α)→ C which exhibits f as a transfinite
composition of morphisms of S (see Definition 9.1.2.1). We will assume that α > 0 (otherwise,
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f is an identity morphism and the desired result follows from Example 9.1.5.13). In this
case, Lemma 4.3.7.8 guarantees that the inclusion map N•({0 < α}) ↪→ N•(Ord≤α) is right
anodyne. Since π is a right fibration (Proposition 4.3.6.1), we can lift F to a diagram
F̃ : N•(Ord≤α) → C for which the associated morphism F̃ (0) → F̃ (α) coincides with f̃ .
For every nonzero limit ordinal λ ≤ α, Proposition 7.1.3.19 guarantees that the restriction
F̃ |N•(Ord≤λ) is a colimit diagram in the ∞-category C/Y . Using Remark 9.1.5.12, we see
that F̃ exhibits f̃ as a transfinite composition of morphisms of C/Y with respect to which
X̃ is weakly local. Applying Proposition 9.1.3.17, we conclude that X̃ is weakly f̃ -local, as
desired.

Corollary 9.1.5.17. 04N8Let C be an ∞-category, let T be a collection of morphisms of C, and
let S be the collection of all morphisms of C which are weakly left orthogonal to T . Then S

is weakly saturated.

Proof. Combine Propositions 9.1.5.14, 9.1.5.15, and 9.1.5.16 with Remark 9.1.3.23.

9.1.6 Weak Factorization Systems

04N9Throughout this text, we have frequently made use of the fact that every morphism
of simplicial sets h : X → Z admits a factorization X

f−→ Y
g−→ Z, where g is some sort of

fibration and the morphism f has innocuous properties. In this section, we develop a general
framework for results of this type.

Definition 9.1.6.1. 04NALet C be an ∞-category. A weak factorization system on C is a pair
(SL, SR), where SL and SR are collections of morphisms of C which satisfy the following
conditions:

(1) For every morphism h : X → Z of C, there exists a 2-simplex

Y

g

��
X

f

??

h // Z

where f belongs to SL and g belongs to SR.

(2) Every lifting problem
A

f

��

// X

g

��
B //

??

Y
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in C admits a solution, provided that f ∈ SL and g ∈ SR.

(3) The collections SL and SR are closed under retracts (in the ∞-category Fun(∆1, C)).

Example 9.1.6.2.04NB Let C = Set∆ be the category of simplicial sets. We have already
encountered several examples of weak factorization systems (SL, SR) on C:

• We can take SR to be the collection of Kan fibrations and SL the collection of anodyne
morphisms (Proposition 3.1.7.1).

• We can take SR to be the collection of inner anodyne morphisms and SL the collection
of inner fibrations (Proposition 4.1.3.2).

• We can take SR to be the collection of left fibrations and SL the collection of left
anodyne morphisms (Proposition 4.2.4.8).

• We can take SR to be the collection of right fibrations and SL the collection of left
anodyne morphisms (Variant 4.2.4.9).

• We can take SR to be the collection of trivial Kan fibrations and SL the collection of
monomorphisms (Exercise 3.1.7.11).

Remark 9.1.6.3 (Symmetry).04NC Let C be an ∞-category and let (SL, SR) be a weak factor-
ization system on C. Then the pair (SR, SL) is a weak factorization system on the opposite
∞-category Cop.

Remark 9.1.6.4.04ND Let C be an ∞-category. For every collection of morphisms S of C, let
[S] be the collection of homotopy classes of morphisms which belong to S. If (SL, SR) is
a weak factorization system on C, then ([SL], [SR]) is a weak factorization system on (the
nerve of) the homotopy category hC. See Warning 9.1.5.5 and Variant 8.5.1.3.

In the situation of Definition 9.1.6.1, the collections SL and SR are determined by one
another.

Proposition 9.1.6.5.04NE Let C be an ∞-category, let (SL, SR) be a weak factorization system
on C, and let h : X → Z be a morphism of C. Then h belongs to SL if and only if it is weakly
left orthogonal to SR, and h belongs to SR if and only if it is weakly right orthogonal to SL.

Proof. We will prove the first assertion; the second follows by a similar argument. Assume
that h is weakly left orthogonal to SR; we wish to show that h belongs to SL (the reverse
implication is immediate from the definition). By virtue of Remark 9.1.6.4, we may assume
that C is (the nerve of) an ordinary category. The morphism h admits a factorization
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X
f−→ Y

g−→ Z, where f ∈ SL and g ∈ SR. Since h is weakly left orthogonal to g, the lifting
problem

X

h

��

f // Y

g

��
Z

i

??

id // Z

admits a solution. We then have a commutative diagram

X
id //

h

��

X

f

��

id // X

h

��
Z

i // Y
g // Z

which exhibits h as a retract of f , so that h also belongs to SL.

Corollary 9.1.6.6. 04NFLet C be an ∞-category and let (SL, SR) be a weak factorization system
on C. Then SL is a weakly saturated collection of morphisms of C (see Definition 9.1.3.19).

Proof. Combine Proposition 9.1.6.5 with Corollary 9.1.5.17.

Using the small object argument of §9.1.4, we can produce many examples of weak
factorization systems.

Theorem 9.1.6.7 (Existence of Weak Factorization Systems). 04NGLet C be an ∞-category and
let W be a collection of morphisms of C. Assume that:

(1) The ∞-category C is locally small and admits small colimits.

(2) The collection W is small.

(3) For every morphism w : X → Y in W , the object X is κ-compact for some small cardinal
κ.

Then C admits a weak factorization system (SL, SR), where SL is the weakly saturated
collection of morphisms generated by W (Remark 9.1.3.23) and SR is the collection of
morphisms which are weakly right orthogonal to W .

Remark 9.1.6.8. 04NHLet C be an ∞-category, let W be a collection of morphisms of C, let
W⊥ denote the collection of morphisms of C which are weakly right orthogonal to every
morphism of W , and let W denote the collection of all morphisms which are weakly left
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orthogonal to every morphism of W⊥. Then W is always a weakly saturated collection of
morphisms which contains W (Corollary 9.1.5.17). If the hypotheses of Theorem 9.1.6.7 are
satisfied, then W is the weakly saturated collection generated by W , in the sense of Remark
9.1.3.23.

Proof of Theorem 9.1.6.7. The collection SL is closed under retracts by construction, and
SR is closed under retracts by virtue of Proposition 9.1.5.14. Corollary 9.1.5.17 guarantees
that SL is weakly left orthogonal to SR. It will therefore suffice to show that every morphism
h : X → Z of C factors as a composition X f−→ Y

g−→ Z, where f belongs to SL and g belongs
to SR.

Let C̃ denote the slice ∞-category C/Z , and let π : C̃ → C denote the projection map.
Our assumption that C is locally small guarantees that C̃ is also locally small (Example
4.7.8.11), and our assumption that C admits small colimits guarantees that C̃ admits small
colimits (Corollary 7.1.3.20). Let W̃ denote a set of representatives for the collection of
isomorphism classes of morphisms w̃ of C/Z satisfying π(w̃) ∈W . Since W is small and C
is locally small, the set W̃ is also small. For every morphism w̃ : Ã→ B̃ which belongs to
W̃ , the image A = π(Ã) is a κ-compact object of C̃ for some small cardinal κ, so that Ã
is a κ-compact object of C̃ (Remark [?]). Let us identify the morphism h with an object
X̃ ∈ C̃ satisfying π(X̃) = X. Applying Theorem 9.1.4.3, we deduce that there is a morphism
f̃ : X̃ → Ỹ in the ∞-category C̃ which is a transfinite pushout of morphisms of W̃ , where Ỹ
is W̃ -local. Set f = π(f̃), so that f̃ can be identified with a diagram

Y

g

��
X

f

??

h // Z

in the ∞-category C. Since the functor π preserves small colimits (Corollary 7.1.3.20),
the morphism f is a transfinite pushout of morphisms belonging to W , and therefore
belongs to SL. Our assumption that Ỹ is W̃ -local guarantees that g belongs to SR (Remark
9.1.5.12).

9.1.7 Orthogonality

04NJ In the ∞-categorical setting, it will often be useful to view the collection of solutions to
a lifting problem as a space, rather than a set.
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Construction 9.1.7.1. 04NKSuppose we are given a lifting problem

A

f

��

// X

g

��
B //

??

Y.

in an ∞-category C, given by a morphism σ : ∆1 × ∆1 → C. We let Sol(σ) denote the
simplicial set {σ} ×Fun(Q,C) Fun(∆3, C), where Q ⊂ ∆3 is the simplicial subset described in
Remark 9.1.5.2. We will refer to Sol(σ) as the space of solutions to the lifting problem σ.

Remark 9.1.7.2. 04NLIn the situation of Construction 9.1.7.1, vertices of the simplicial set
Sol(σ) can be identified with solutions to the lifting problem σ (in the sense of Definition
9.1.5.1). In particular, the lifting problem σ admits a solution if and only if Sol(σ) is
nonempty.

Remark 9.1.7.3. 04NMIn the situation of Construction 9.1.7.1, the restriction map Fun(∆3, C)→
Fun(Q, C) is an isofibration of ∞-categories (Corollary 4.4.5.3). Moreover, since Q contains
every vertex of ∆3, it is also conservative (Theorem 4.4.4.4). It follows that the solution
space Sol(σ) is a Kan complex (Corollary 4.4.3.21).

Definition 9.1.7.4. 04NNLet C be an ∞-category, and let f : A → B and g : X → Y be
morphisms of C. We will say that f is left orthogonal to g if, for every lifting problem σ :

A

f

��

// X

g

��
B //

>>

Y

in the ∞-category C, the solution space Sol(σ) is a contractible Kan complex. In this case,
we will also say that g is right orthogonal to f .

Example 9.1.7.5. 04NPLet C be an ordinary category. Then a morphism f : A → B is left
orthogonal to a morphism g : X → Y in the ∞-category N•(C) if and only if every lifting
problem

A

f

��

u0 // X

g

��
B

u //

>>

Y

admits a unique solution: that is, there is a unique morphism u : B → X satisfying u◦f = u0
and g ◦ u = u.
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Remark 9.1.7.6.04NQ Let f and g be morphisms in an ∞-category C. Then f is left orthogonal
to g in C if and only if it is right orthogonal to g when regarded as a morphism of the
opposite ∞-category Cop.

Remark 9.1.7.7.04NR Let f and g be morphisms in an ∞-category C. If f is left orthogonal to
g (in the sense of Definition 9.1.7.4), then it is weakly left orthogonal to g (in the sense of
Definition 9.1.5.8). Beware that the converse is false (Exercise 9.1.7.8).

Exercise 9.1.7.8.04NS Let f : A↠ B be a surjective function between sets, and let g : X ↪→ Y

be an injective function between sets. Show that:

• The morphism f is left orthogonal to g (in the category of sets).

• The morphism g is weakly left orthogonal to f .

• Unless either f or g is a bijection, the morphism g is not left orthogonal to f .

Variant 9.1.7.9.04NT Let C be an ∞-category and let S and T be collections of morphisms of
C. We say that S is left orthogonal to T if every morphism f ∈ S is weakly left orthogonal
to every morphism g ∈ T . In this case, we also say that T is right orthogonal to S. In the
special case where S = {f} is a singleton, we abbreviate this condition by saying that f is
left orthogonal to T , or T is right orthogonal to f . In the special case T = {g} is a singleton,
we abbreviate this condition by saying that g is right orthogonal to S, or S is left orthogonal
to g.

To establish some elementary properties of Definition 9.1.7.4, it will be convenient to
give an alternative description of the solution spaces Sol(σ).

Construction 9.1.7.10.04NU Let C be an ∞-category and let σ :

A

f

��

// X

g

��
B //

??

Y

be a lifting problem in C. Then σ determines a pair of objects B̃, X̃ in the ∞-category
CA//Y (see Remark 9.1.5.7). Let K denote the morphism space HomCA/ /Y

(B̃, X̃). We
then have a tautological map K × ∆1 → CA//Y , which we can identify with a diagram
{A} ⋆ (K ×∆1) ⋆ {Y } → C. Composing with the quotient map

K ×∆3 ≃ K × ({A} ⋆∆1 ⋆ {Y }) ↠ {A} ⋆ (K ×∆1) ⋆ {Y },

we obtain a morphism K → Fun(∆3, C), which factors through the simplicial subset
Sol(σ) ⊆ Fun(∆3, C) of Construction 9.1.7.1. We therefore obtain a comparison map
θ : HomCA/ /Y

(B̃, X̃)→ Sol(σ).
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Proposition 9.1.7.11. 04NVLet C be an ∞-category and let σ :

04NWA

��

// X

��
B //

??

Y

(9.12)

be a lifting problem in C. Then the comparison map

θ : HomCA/ /Y
(B̃, X̃)→ Sol(σ)

of Construction 9.1.7.10 is a homotopy equivalence of Kan complexes.

Proof. Corollary 4.6.6.9 supplies a categorical pullback diagram of ∞-categories

Fun(∆1, CA//Y ) //

��

Fun({A} ⋆∆1 ⋆ {Y }, C)

��
Fun(∂∆1, CA//Y ) // Fun({A} ⋆ ∂∆1 ⋆{Y }, C),

where the vertical maps are isofibrations (Corollary 4.4.5.3). Unwinding the definitions,
we see that the comparison map θ is obtained by taking vertical fibers over the vertex
corresponding to the pair (B̃, X̃). Corollary 4.5.2.31 guarantees that θ is an equivalence of
∞-categories. Since the source and target of θ are Kan complexes (Remark 9.1.7.3), it is a
homotopy equivalence (Example 4.5.1.13).

Warning 9.1.7.12. 04NXIn the situation of Proposition 9.1.7.11, the comparison map θ need not
be an isomorphism of simplicial sets. However, it is always bijective on 0-simplices: vertices
of both HomCA/ /Y

(B̃, X̃) and Sol(σ) can be identified with solutions to the lifting problem
σ.

Corollary 9.1.7.13. 04NYLet C be an ∞-category containing morphisms f : A → B and
g : X → Y . Let π : C/Y → C denote the projection map, so that g can be identified with an
object X̃ ∈ C/Y satisfying π(X̃) = X. The following conditions are equivalent:

(1) The morphism g is right orthogonal to f (in the sense of Definition 9.1.7.4).

(2) For every morphism f̃ : Ã → B̃ of C/Y satisfying π(f̃) = f , the object X̃ ∈ C/Y is
f̃ -local (in the sense of Definition 9.1.1.1).

Proof. Combine Proposition 9.1.7.11 with Remark 9.1.1.4.
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Corollary 9.1.7.14.04NZ Let C be an ∞-category containing morphisms f : A → B and
g : X → Y . If either f or g is an isomorphism, then f is left orthogonal to g.

Proof. Without loss of generality, we may assume that f is an isomorphism. Let π : C/Y → C
be the projection map, so that we can identify g with an object X̃ ∈ C/Y satisfying π(X̃) = X.
By virtue of Corollary 9.1.7.13, it will suffice to show that X̃ is f̃ -local for every morphism
f̃ of C/Y satisfying π(f̃) = f . This is a special case of Example 9.1.1.2, since f̃ is an
isomorphism (Proposition 4.4.2.11).

Corollary 9.1.7.15.04P0 Let C be an ∞-category containing a morphism g : X → Y and a
2-simplex

04P1 B

f ′′

  
A

f ′

??

f // C.

(9.13)

Assume that f ′ is left orthogonal to g. Then f is left orthogonal to g if and only if f ′′ is left
orthogonal to g.

Proof. Assume that f ′′ is left orthogonal to g; we will show that f is left orthogonal to g
(the proof of the converse is similar). Let π : C/Y → C be the projection map, so that we
can identify g with an object X̃ ∈ C/Y satisfying π(X̃) = X. By virtue of Corollary 9.1.7.13,
it will suffice to show that the object X̃ is f̃ -local, for every morphism f̃ of C/Y satisfying
π(f̃) = f . Since π is a right fibration (Proposition 4.3.6.1), we can lift (9.13) to a diagram

B̃

f̃ ′′

��
Ã

f̃ ′

??

f̃ // C̃

in the ∞-category C/Y . Corollary 9.1.7.13 guarantees that the object X̃ is both f̃ ′-local and
f̃ ′′-local, so the desired result follows from Remark 9.1.1.11.

Warning 9.1.7.16.04P2 In the situation of Corollary 9.1.7.15, if the morphisms f and f ′′ are
left orthogonal to g, then f ′ need not be left orthogonal to g.

Corollary 9.1.7.17.04P3 Let C be an ∞-category and let g : X → Y be a morphism of C. If
another morphism f : A→ B is left orthogonal to g, then any retract of f (in the ∞-category
Fun(∆1, C)) is also left orthogonal to g.
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Proof. We proceed as in the proof of Proposition 9.1.5.14. Let f ′ : A′ → B′ be a retract
of f (in the ∞-category Fun(∆1, C)); we will show that f ′ is left orthogonal to g. Let
π : C/Y → C be the projection map, and let us identify g with an object X̃ ∈ C/Y satisfying
π(X̃) = X. By virtue of Corollary 9.1.7.13, it will suffice to show that for any morphism
f̃ ′ of C/Y satisfying π(f̃ ′) = f ′, the object X̃ is f̃ ′-local. It follows from Corollary 4.2.5.2
that π induces a right fibration Fun(∆1, C/Y ) → Fun(∆1, C). Applying Remark 8.5.1.23,
we deduce that f̃ ′ is a retract of a morphism f̃ of C/Y satisfying U(f̃) = f . By virtue of
Variant 9.1.1.7, it will suffice to show that the object X̃ is f̃ -local, which follows from our
assumption that f is left orthogonal to g (Corollary 9.1.7.13).

Corollary 9.1.7.18. 04P4Let C be an ∞-category containing a pushout diagram

04P5A //

f

��

A′

f ′

��
B // B′.

(9.14)

If f is left orthogonal to a morphism g : X → Y of C, then f ′ is also left orthogonal to g.

Proof. We proceed as in the proof of Proposition 9.1.5.15. Let π : C/Y → C be the projection
map, and let us identify g with an object X̃ ∈ C/Y satisfying π(X̃) = X. By virtue
of Corollary 9.1.7.13, it will suffice to show that for any morphism f̃ ′ of C/Y satisfying
π(f̃ ′) = f ′, the object X̃ is weakly f̃ ′-local. Since π is a right fibration, we can lift (9.14) to
a diagram

Ã //

f̃

��

Ã′

f̃ ′

��
B̃ // B̃′

in the ∞-category C/Y , which is also a pushout square (Proposition 7.1.3.19). By virtue of
Remark 9.1.1.10, it will suffice to show that X̃ is f̃ -local, which follows from our assumption
that f is left orthogonal to g (Corollary 9.1.7.13).

Corollary 9.1.7.19. 04P6Let C be an ∞-category, and let f be a morphism of C which is the
colimit of a diagram

Q0 : K → Fun(∆1, C) v 7→ fv

which is preserved by the evaluation functors ev0, ev1 : Fun(∆1, C)→ C. Let g : X → Y be a
morphism which is right orthogonal to each of the morphisms fv. Then g is right orthogonal
to f .
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Proof. Let π : C/Y → C be the projection map, and let us identify g with an object X̃ ∈ C/Y
satisfying π(X̃) = X. By virtue of Corollary 9.1.7.13, it will suffice to show that if f̃
is a morphism in C/Y satisfying π(f̃) = f , then X̃ is f̃ -local. Choose a colimit diagram
Q : K▷ → Fun(∆1, C) which satisfies Q|K = Q0 and carries the cone point of K▷ to f .
Since the inclusion of the cone point into K▷ is right anodyne (Example 4.3.7.11) and the
projection map Fun(∆1, C/Y )→ Fun(∆1, C) is a right fibration (Corollary 4.2.5.2) we can
lift Q to a diagram Q̃ : K▷ → Fun(∆1, C) carrying the cone point to f̃ . Using Corollary
7.1.3.20 and Proposition 7.1.6.1, we see that Q̃ is a colimit diagram which is preserved by the
evaluation functors ev0, ev1 : Fun(∆1, C/Y )→ C/Y . For each vertex v ∈ K, let f̃v = Q̃(v) is
a morphism of C/Y satisfying π(f̃v) = fv. Our assumption that fv is left orthogonal to g
guarantees that X̃ is a f̃v-local object of the ∞-category C/Y (Corollary 9.1.7.13). Applying
Remark 9.1.1.9, we deduce that X̃ is also f̃ -local.

Corollary 9.1.7.20.04P7 Let C be an ∞-category, let g : X → Y be a morphism of C, and
let S be the collection of morphisms of C which are left orthogonal to g. Then S is weakly
saturated.

Proof. Combining Corollaries 9.1.7.14, 9.1.7.15, and 9.1.7.19 with Proposition 9.1.2.10 (and
Remark 9.1.2.11), we see that S is closed under transfinite composition. Since S is also
closed under retracts (Corollary 9.1.7.17) and pushouts (Corollary 9.1.7.18), it is weakly
saturated.

Corollary 9.1.7.21.04P8 Let C be an ∞-category, let S be a collection of morphisms of C, and
let g : X → Y be a morphism of C which is weakly right orthogonal to S. Assume that every
morphism f : A→ B which belongs to S admits a relative codiagonal γA/B : B∐

AB → B

which also belongs to S (see Variant 7.6.3.19). Then g is right orthogonal to S.

Proof. Let π : C/Y → C be the projection map, and let us identify g with an object X̃ ∈ C/Y
satisfying π(X̃) = X. Let S̃ denote the collection of those morphisms f̃ in C/Y which satisfy
π(f̃) ∈ S. Our assumption that g is weakly right orthogonal to S guarantees that X̃ is
weakly S̃-local (Remark 9.1.5.12). It follows from Proposition 7.1.3.19 that every morphism
of S̃ admits a relative codiagonal which also belongs to S̃, so that X̃ is S̃-local (Proposition
9.1.3.15). Invoking Corollary 9.1.7.13, we conclude that g is right orthogonal to S.

Proposition 9.1.7.22.04P9 Let U : E → C be an inner fibration of ∞-categories, let σ :

04PA A

f

��

// X

g

��
B //

??

Y

(9.15)
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be a lifting problem in the ∞-category E, and let σ = U ◦ σ denote the associated lifting
problem in the ∞-category C. If the morphism f is U-cocartesian or the morphism g̃ is
U -cartesian, then U induces a homotopy equivalence of solution spaces Sol(σ)→ Sol(σ).

Proof. Let us identify the diagram (9.15) with a pair of objects B̃, X̃ ∈ EA//Y . Note that U
induces a functor Ũ : EA//Y → CU(A)/ /U(Y ), and we have a commutative diagram

HomEA/ /Y
(B̃, X̃) //

��

Sol(σ)

��
HomCU(A)/ /U(Y )(Ũ(B̃), Ũ(X̃)) // Sol(σ),

where the horizontal maps are the homotopy equivalences supplied by Proposition 9.1.7.11.
It will therefore suffice to show that the left vertical map is a homotopy equivalence.
Without loss of generality, we may assume that the morphism f is U -cocartesian. In this
case, we will complete the proof by showing that the object B̃ ∈ EA//Y is Ũ -initial. Let
U/Y : E/Y → C/U(Y ) be the inner fibration induced by U ; by virtue of Example 7.1.5.9, it
will suffice to show that the lower left of the diagram (9.15) is U/Y -cocartesian when viewed
as a morphism in E/Y . This follows from our assumption that f is U -cocartesian (Corollary
5.1.1.14).

Corollary 9.1.7.23. 04PBLet U : E → C be an inner fibration of ∞-categories and let f and g
be morphisms of E. Assume either that f is U -cocartesian or that g is U -cartesian. Then:

• If U(f) is left orthogonal to U(g) in the ∞-category C, then f is left orthogonal to g
in the ∞-category E.

• If U(f) is weakly left orthogonal to U(g) in the ∞-category C, then f is weakly left
orthogonal to g in the ∞-category E.

9.1.8 Uniqueness of Factorizations

04PQLet C be an ∞-category, let SL and SR be collections of morphisms of C, and let
f : X → Z be a morphism which factors as a composition

X
fL−→ Y

fR

Z

where fL belongs to SL and fR belongs to SR. Our goal in this section is to show that, if
SL is left orthogonal to SR, then this factorization is essentially unique (Theorem 9.1.8.2).

https://kerodon.net/tag/04PB
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Notation 9.1.8.1.04PS Let C be an∞-category and let SL and SR be collections of morphisms of
C. We let FunL(∆2, C) denote the full subcategory of Fun(∆2, C) spanned by those diagrams

Y

fR

��
X

fL

??

f // Z

where f belongs to SL, and FunR(∆2, C) the full subcategory of Fun(∆2, C) spanned by
those diagrams where g belongs to SR. We let FunLR(∆2, C) denote the intersection
FunL(∆2, C) ∩ FunR(∆2, C).

We can now formulate our main result.

Theorem 9.1.8.2.04QC Let C be an ∞-category and let SL and SR be collections of morphisms
of C. If SL is left orthogonal to SR, then the restriction functor

D : FunLR(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)

is fully faithful. The converse holds if SL and SR contain all identity morphisms of C.

The proof of Theorem 9.1.8.2 will require some preliminaries. We begin by giving another
description of the space of solutions to a lifting problem.

Notation 9.1.8.3.04PW Let C be an∞-category containing morphisms f : A→ B and g : X → Y .
We let f Fun(∆3, C)g denote the the iterated fiber product

{f} ×Fun(N•({0<1}) Fun(∆3, C)×FunN•({2<3}) {g},

whose objects can be identified with diagrams

A

f

��

// X

g

��
B

??

// Y

in the ∞-category C.

Lemma 9.1.8.4.04PX Let C be an ∞-category containing morphisms f : A→ B and g : X → Y .
Then precomposition with the inclusion map N•({1 < 2}) ↪→ ∆3 induces a trivial Kan
fibration of simplicial sets f Fun(∆3, C)g → HomC(B,X). In particular, the simplicial set
f Fun(∆3, C)g is a Kan complex.
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Proof. By construction, we have a pullback diagram of simplicial sets

f Fun(∆3, C)g

��

// Fun(∆3, C)

��
HomC(B,X) // Fun(Spine[3], C),

where the right vertical map is a trivial Kan fibration (see Example 1.5.7.7).

Notation 9.1.8.5. 04PYLet C be an∞-category containing morphisms f : A→ B and g : X → Y .
We let f̃ = s1

1(f) and g̃ = s1
0(g) denote the degenerate 2-simplices of C depicted in the

diagram
A

f−→ B
id−→ B X

id−→ X
g−→ Y.

Let β : ∆2 × ∆1 → ∆3 denote the morphism of simplicial sets given on vertices by the
formulae

β(0, 0) = 0 β(1, 0) = 1 = β(2, 0) β(0, 1) = 2 = β(1, 1) β(2, 1) = 3.

Then precomposition with β determines a functor Fun(∆3, C) → Fun(∆2 ×∆1, C), which
restricts to a map of Kan complexes T : f Fun(∆3, C)g → HomFun(∆2,C)(f̃ , g̃). Concretely, T
carries a 3-simplex

A

f

��

u // X

g

��
B

v

??

w // Y

to the morphism in Fun(∆2, C) depicted in the diagram

A
f //

u

��

B

v

��

idB // B

w

��
X

idX // X
g // Y.

Lemma 9.1.8.6. 04PZLet C be an ∞-category containing morphisms f : A→ B and g : X → Y .
Then the comparison map

T : f Fun(∆3, C)g → HomFun(∆2,C)(f̃ , g̃)

of Notation 9.1.8.5 is a homotopy equivalence.

https://kerodon.net/tag/04PY
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Proof. By construction, the diagram f̃ : ∆2 → C is left Kan extended from the simplicial
subset ∆1 ⊂ ∆2. Applying Corollary 7.3.6.9, we deduce that the restriction functor
Fun(∆2, C) → Fun(∆1, C) determines a trivial Kan fibration R : HomFun(∆2,C)(f̃ , g̃) →
HomFun(∆1,C)(f, idX). Similarly, the 1-simplex idX can be viewed as a diagram ∆1 → C
which is right Kan extended from the vertex {1} ⊂ ∆2, so the evaluation functor ev1 :
Fun(∆1, C) → C induces a trivial Kan fibration Q : HomFun(∆1,C)(f, idX) → HomC(B,X).
We are therefore reduced to showing that the composite map

f Fun(∆3, C)g T−→ HomFun(∆2,C)(f̃ , g̃) R−→ HomFun(∆1,C)(f, idX) Q−→ HomC(B,X)

is a homotopy equivalence, which follows from Lemma 9.1.8.4.

In the situation of Lemma 9.1.8.6, restriction to the “long edge” of ∆2 determines an
inner fibration of ∞-categories Fun(∆2, C)→ Fun(∆1, C) (Corollary 4.1.4.2), and therefore
induces a Kan fibration of mapping spaces

HomFun(∆2,C)(f̃ , g̃)→ HomFun(∆1,C)(f, g).

Lemma 9.1.8.7.04Q0 Let C be an ∞-category containing a lifting problem σ :

04Q1 A

f

��

// X

g

��
B //

s

??

Y,

(9.16)

which we identify with a morphism from f to g in the ∞-category Fun(∆1, C). Then the
comparison map T : f Fun(∆3, C)g → HomFun(∆2,C)(f̃ , g̃) of Notation 9.1.8.5 restricts to a
homotopy equivalence of Kan complexes

T0 : Sol(σ)→ HomFun(∆2,C)(f̃ , g̃)×HomFun(∆1,C)(f,g) {σ}.

Proof. Let α : ∆1 × ∆1 ↪→ ∆3 be the morphism of simplicial sets given on vertices by
the formula α(i, j) = 2i+ j (see Definition 9.1.5.1). Then precomposition with α induces
an isofibration of ∞-categories U : Fun(∆3, C) → Fun(∆1 ×∆1, C), which restricts to an
isofibration U0 : f Fun(∆3, C)g → HomFun(∆1,C)(f, g). Since the source and target of U0 are
Kan complexes, it is a Kan fibration (Corollary 4.4.3.10). The desired result now follows by

https://kerodon.net/tag/04Q0
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applying Corollary 3.3.7.5 to the diagram of Kan complexes

f Fun(∆3, C)g

U0

''

T // HomFun(∆2,C)(f̃ , g̃)

ww
HomFun(∆1,C)(f, g),

since T is a homotopy equivalence (Lemma 9.1.8.6).

Corollary 9.1.8.8. 04Q2Let C be an ∞-category containing 2-simplices σ and τ . Suppose that
the initial edge f = d2

2(σ) is left orthogonal to the final edge g = d2
0(τ). Then the restriction

map θ : HomFun(∆2,C)(σ, τ)→ HomFun(∆1,C)(f, g) is a trivial Kan fibration.

Proof. By virtue of Proposition 3.3.7.6, it will suffice to show that every fiber of θ is a
contractible Kan complex. Let D : Fun(∆2, C)→ Fun(∆1, C) denote the functor given by
precomposition with the inclusion map ∆1 ≃ N•({0 < 2}) ↪→ ∆2, and let E : Fun(∆1, C)→ C
be given by evaluation at the final vertex 1 ∈ ∆1. Let γ : ∆2 ×∆1 → ∆2 be the morphism

of simplicial sets given on vertices by the formula γ(i, j) =

1 if (i, j) = (0, 2)
i otherwise.

. Then the

composition
∆2 ×∆1 γ−→ ∆2 σ−→ C

can be regarded as a morphism e : f̃ → σ in the ∞-category Fun(∆2, C). It follows from
Corollary 5.3.7.5 that the morphism e is (E ◦D)-cocartesian and that D(e) is E-cocartesian.
Consequently, the morphism e is D-cocartesian (Corollary 5.1.2.6). Using Proposition 5.1.2.1,
we deduce that every fiber of θ is homotopy equivalent to a fiber of the restriction map
θ′ : HomFun(∆2,C)(f̃ , τ) → HomFun(∆1,C)(f, g). It will therefore suffice to prove Corollary
9.1.8.8 in the special case where σ = f̃ . By a similar argument, we may also assume that τ
is the degenerate 2-simplex g̃ = s1

0(g). In this case, Lemma 9.1.8.7 guarantees that every
fiber of θ is homotopy equivalent to the space of solutions to some lifting problem

A

f

��

// X

g

��
B //

s

??

Y,

which is contractible by virtue of our assumption that f is left orthogonal to g.

https://kerodon.net/tag/04Q2
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Proof of Theorem 9.1.8.2. Let C be an ∞-category and let SL and SR be collections of
morphisms of C. Suppose first that SL is left orthogonal to SR. In this case Corollary 9.1.8.8
guarantees that the restriction map

θ : HomFun(∆2,C)(σ, σ′)→ HomFun(∆1,C)(d2
1(σ), d2

1(σ′))

is a homotopy equivalence whenever σ belongs to FunL(∆2, C) and σ′ belongs to FunR(∆2, C).
It follows that the functor

D : FunLR(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)

is fully faithful.
We now prove the converse. Assume that D is fully faithful and that SL and SR contain

all identity morphisms of C; we wish to show that SL is left orthogonal to SR. Suppose we
are given a lifting problem τ :

A

f

��

// X

g

��
B //

s

??

Y

in the ∞-category C, where f belongs to SL and g belongs to SR. We wish to show that the
solution space Sol(τ) is contractible. Let f̃ = s1

1(f) and g̃ = s1
0(g) denote the degenerate

2-simplices of C defined in Notation 9.1.8.3. Since SL and SR contain all identity morphisms,
we can view f̃ and g̃ as objects of the ∞-category FunLR(∆2, C). Assumption (1) guarantees
that the Kan fibration HomFun(∆2,C)(f̃ , g̃)→ HomFun(∆1,C)(f, g) is a homotopy equivalence.
Lemma 9.1.8.7 supplies a homotopy equivalence of Sol(τ) with the fiber HomFun(∆2,C)(f̃ , g̃)τ ,
which is contractible by virtue of Proposition 3.3.7.6.

9.1.9 Factorization Systems

04PC Motivated by Theorem 9.1.8.2, we introduce the following variant of Definition 9.1.6.1:

Definition 9.1.9.1.04PD Let C be an∞-category. A factorization system on C is a pair (SL, SR),
where SL and SR are collections of morphisms of C which satisfy the following conditions:

(1) For every morphism f : X → Z of C, there exists a 2-simplex

Y

fR

��
X

fL

??

f // Z

where fL belongs to SL and fR belongs to SR.

https://kerodon.net/tag/04PC
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(2) Every morphism of SL is left orthogonal to every morphism of SR (Definition 9.1.7.4).

(3) The collections SL and SR are closed under isomorphism (in the∞-category Fun(∆1, C)).

Remark 9.1.9.2 (Symmetry). 04PELet C be an ∞-category and let (SL, SR) be a factorization
system on C. Then the pair (SR, SL) is a weak factorization system on the opposite
∞-category Cop.

Example 9.1.9.3 (Trivial Factorization Systems). 04PFLet C be an ∞-category, let W be the
collection of all isomorphisms in C, and let A denote the collection of all morphisms in C.
Then the pairs (W,A) and (A,W ) are factorization systems on C (see Corollary 9.1.7.14).

We now give some more interesting examples of factorization systems. Recall that a
functor of ∞-categories F : C → D is categorically n-connective if it is m-full for every
nonnegative integer m ≤ n (Definition 4.8.7.1), and essentially (n − 1)-categorical if it is
m-full for m > n (Definition 4.8.6.1). Let QC denote the∞-category of (small)∞-categories
(Construction 5.5.4.1).

Proposition 9.1.9.4. 05E7Let n be an integer, let SL denote the collection of all categorically
n-connective functors, and let SR denote the collection of all essentially (n− 1)-categorical
functors. Then the pair (SL, SR) is a factorization system on the ∞-category QC.

Proof. We first observe that SR is closed under the formation of relative diagonals: that
is, if a functor G : C → D is essentially (n − 1)-categorical, then the relative diagonal of
G (formed in the ∞-category QC) has the same property. Using Exercise 7.6.4.13, we can
identify the relative diagonal of G with the inclusion map ι : C ↪→ C×h

D C. For n ≥ 1, it
follows from Variant 4.8.6.15 that ι is essentially (n − 2)-categorical, and therefore also
essentially (n− 1)-categorical (Remark 4.8.6.6). If n ≤ 0, then the functor G is fully faithful,
so ι is an equivalence of ∞-categories.

It follows from Remarks 4.8.5.16, 4.8.5.17, and 4.8.5.18 that SL and SR are invariant under
isomorphism. Theorem 4.8.8.3 asserts that every functor F : C → E admits a factorization
C FL−−→ D FR−−→ E , where FL belongs to SL and FR belongs to SR. We will complete the proof
by showing that SL is left orthogonal to SR. By virtue of (the dual of) Corollary 9.1.7.21, it
will suffice to show that SL is weakly left orthogonal to SR: that is, every lifting problem

05E8A //

F
��

C

G
��

B //

>>

D

(9.17)

in the ∞-category QC admits a solution, provided that F is categorically n-connective and
G is essentially (n − 1)-categorical. By virtue of Corollary 5.6.5.16, we may assume that
(9.17) arises from a commutative diagram in the category of simplicial sets. Using Corollary
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4.5.2.23, we can further assume that F is a monomorphism of simplicial sets and that G
is an isofibration. In this case, the lifting problem (9.17) already admits a solution in the
category of simplicial sets: see Corollary 4.8.7.18 and Remark 4.8.7.19.

Corollary 9.1.9.5.05E9 Let n be an integer, let SL denote the collection of all n-connective
morphisms between Kan complexes, and let SR denote the collection of all (n− 1)-truncated
morphisms between Kan complexes. Then the pair (SL, SR) determines a factorization system
on the ∞-category S.

Proof. Recall that a morphism of Kan complexes is n-connective if and only if it is categori-
cally n-connective (Example 4.8.7.3), and (n− 1)-truncated if and only if it is essentially
(n− 1)-categorical (Example 4.8.6.3). It follows immediately from Proposition 9.1.9.4 that
SL and SR are closed under isomorphism, and that SL is left orthogonal to SR. To complete
the proof, it suffices to show that every morphism of Kan complexes f : X → Z admits a
factorization X fL−→ Y

fR−→ Z, where fL is n-connective and fR is (n− 1)-truncated. This is
the content of Corollary 4.8.8.9.

Proposition 9.1.9.6.04QD Let C be an ∞-category, let (SL, SR) be a factorization system on
C, and let FunLR(∆2, C) ⊆ Fun(∆2, C) be the full subcategory of Notation 9.1.8.1. Then the
restriction map

D : FunLR(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)

is a trivial Kan fibration.

Proof. Condition (1) of Definition 9.1.9.1 guarantees that D is surjective on objects, and
condition (2) guarantees that D is fully faithful (Theorem 9.1.8.2). Applying the criterion
Theorem 4.6.2.20, we deduce that D is an equivalence of ∞-categories. Condition (3) of
Definition 9.1.9.1 guarantees that the full subcategory FunLR(∆2, C) ⊆ Fun(∆2, C) is replete,
so that D is an isofibration of ∞-categories (see Corollary 4.4.5.3). Applying Proposition
4.5.5.20, we conclude that D is a trivial Kan fibration.

Corollary 9.1.9.7.04QE Let C be an ∞-category and let (SL, SR) be a factorization system on
C. Then every isomorphism in C is contained in both SL and SR.

Proof. Let W be the collection of all isomorphisms in C, and set S+
L = SL ∪ W and

S+
R = SR ∪W . Using Corollary 9.1.7.14, we deduce that S+

L is left orthogonal to S+
R , so that

(S+
L , S

+
R ) is also a factorization system on C. Let FunLR(∆2, C) be as in Notation 9.1.8.1 and
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define Fun+
LR(∆2, C) similarly. We then have a commutative diagram

FunLR(∆2, C)

D

%%

// Fun+
LR(∆2, C)

D+

yy
Fun(∆1, C)

where both of the vertical maps are trivial Kan fibrations (Proposition 9.1.9.6). It follows that
the inclusion map FunLR(∆2, C) ↪→ Fun+

LR(∆2, C) is an equivalence of ∞-categories. Since
FunLR(∆2, C) is a replete full subcategory of Fun+

LR(∆2, C), we must have FunLR(∆2, C) =
Fun+

LR(∆2, C). In particular, if f : X → Y is an isomorphism in C, then the degenerate
2-simplices s1

0(f) and s1
1(f) are both contained in FunLR(∆2, C), so that f is contained in

both SL and SR.

Corollary 9.1.9.8. 04QFLet C be an ∞-category and let (SL, SR) be a factorization system on
C. Then SL and SR are closed under retracts (in the ∞-category Fun(∆1, C)).

Proof. We will show that SL is closed under retracts; the analogous statement for SR follows
by a similar argument. By virtue of Proposition 9.1.9.6, the restriction map

D : FunLR(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)

is a trivial Kan fibration. It therefore admits a section Fun(∆1, C)→ FunLR(∆2, C), which
carries each morphism f : X → Z of C to a 2-simplex σf :

Y

fR

��
X

fL

??

f // Z,

where fL ∈ SL and fR ∈ SR. We will complete the proof by showing that f belongs to SL
if and only if fR is an isomorphism in C. One direction is clear: if fR is an isomorphism,
then f is isomorphic to fL in the ∞-category Fun(∆1, C), and therefore belongs to SL by
virtue of our assumption that SL is closed under isomorphism. For the converse, assume
that f belongs to SL. Since idZ belongs to SR (Corollary 9.1.9.7), the degenerate 2-simplex
f̃ = s1

1(f) can be regarded as an object of FunLR(∆2, C) satisfying D(f̃) = f = D(σf ). Since
D is an equivalence of ∞-categories, the 2-simplex σf is isomorphic to f̃ as an object of the
∞-category FunLR(∆2, C). It follows that fR = d2

0(σf ) is isomorphic to idZ = d2
0(f̃) as an

object of the ∞-category Fun(∆1, C), so that fR is an isomorphism (Example 4.4.1.14).
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Corollary 9.1.9.9.04QG Let C be an ∞-category and let (SL, SR) be a factorization system on
C. Then (SL, SR) is a weak factorization system on C.

Proof. The only nontrivial point is to verify that SL and SR are closed under retracts, which
follows from Corollary 9.1.9.8.

Beware that the converse of Corollary 9.1.9.9 is false in general:

Exercise 9.1.9.10.04PH Let Set denote the category of sets and let C = N•(Set) be the associated
∞-category. Let S be the collection of surjective functions, and let I be the collection of
injective functions. Show that:

• The pair (S, I) is a factorization system on C.

• The pair (I, S) is a weak factorization system on C.

• The pair (I, S) is not a factorization system on C.

In the situation of Definition 9.1.9.1, either of the collections SL and SR can be recovered
from the other.

Proposition 9.1.9.11.04PJ Let C be an ∞-category, let (SL, SR) be a factorization system on
C, and let f be a morphism of C. The following conditions are equivalent:

(1) The morphism f belongs to SL.

(2) The morphism f is left orthogonal to SR.

(3) The morphism f is weakly left orthogonal to SR.

Proof. The implication (1)⇒ (2) is immediate from the definition, the implication (2)⇒ (3)
follows from Remark 9.1.7.7, and the implication (3)⇒ (1) follows from Proposition 9.1.6.5
(together with Corollary 9.1.9.9).

Corollary 9.1.9.12.04PK Let C be an ∞-category which admits pushouts and let (SL, SR) be a
weak factorization system on C. The following conditions are equivalent:

(1) The pair (SL, SR) is a factorization system on C.

(2) For every 2-simplex
Y

g

��
X

f

??

h // Z

of C, if f and h belong to SL, then g also belongs to SL.
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(3) For every morphism f : X → Y which belongs to SL, the relative codiagonal γX/Y :
Y

∐
X Y → Y also belongs to SL.

Proof. We first show that (1) ⇒ (2). Assume that (SL, SR) is a factorization system and
consider a 2-simplex

Y

g

��
X

f

??

h // Z

of C. If f and h belong to SL, then they are left orthogonal to SR. Applying Corollary
9.1.7.15, we deduce that g is also left orthogonal to SR, so that g ∈ SL by virtue of
Proposition 9.1.9.11.

We now show that (2) implies (3). Let f : X → Y be a morphism which belongs to SL.
Then the relative codiagonal γX/Y fits into a commutative diagram

Y
∐
X Y

γX/Y

""
Y

idY //

f ′

<<

Y,

where f ′ is a pushout of f . Since SL is weakly saturated (Corollary 9.1.6.6), it contains the
morphisms f ′ and idY . If condition (2) is satisfied, then γX/Y also contains γX/Y .

We now complete the proof by showing that (3) implies (1). Let g be a morphism of
C which belongs to SR. Then g is weakly right orthogonal to SL, and we wish to show
that g is right orthogonal to SL. This follows by combining assumption (3) with Corollary
9.1.7.21.

Proposition 9.1.9.13 (Lifting Factorization Systems). 04PLLet U : E → C be a cocartesian
fibration of ∞-categories and let (SL, SR) be a weak factorization system on C. Let S̃L denote
the collection of all U -cocartesian morphisms f̃ in E satisfying U(f̃) ∈ SL, and let S̃R be the
collection of all morphisms g̃ in E satisfying U(g̃) ∈ SR. Then the pair (S̃L, S̃R) is a weak
factorization system on E. If (SL, SR) is a factorization system on C, then (S̃L, S̃R) is a
factorization system on E.

Proof. By assumption, the collection SL is weakly left orthogonal to SR. Applying Corollary
9.1.7.23, we see that S̃L is weakly left orthogonal to S̃R (and left orthogonal if the pair
(SL, SR) is a factorization system on C). Since SL and SR are closed under isomorphism, the
collections S̃L and S̃R have the same property (see Corollary 8.5.1.13). We will complete
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the proof by showing that the pair (S̃L, S̃R) satisfies condition (1) of Definition 9.1.6.1. Let
h̃ : X̃ → Z̃ be a morphism in the ∞-category E , and let h : X → Z denote its image in the
∞-category C. Since (SL, SR) is a weak factorization system, we can choose a 2-simplex σ :

Y

g

��
X

f

??

h // Z

of C, where f belongs to SL and g belongs to SR. Our assumption that U is a cocartesian
fibration guarantees that we can lift f to a U -cocartesian morphism f̃ : X̃ → Ỹ in the
∞-category E . Since f̃ is U -cocartesian, we can lift σ to a 2-simplex σ̃ :

Ỹ

g̃

��
X̃

f̃

??

h̃ // Z̃

in the ∞-category E . By construction, we have f̃ ∈ S̃L and g̃ ∈ S̃R.

Corollary 9.1.9.14.04PM Let U : E → C be a cocartesian fibration of ∞-categories, let S be the
collection of all U -cocartesian morphisms of E, and let T be the collection of all morphisms
f of E such that U(f) is an isomorphism in C. Then the pair (S, T ) is a factorization system
on E.

Proof. Combine Proposition 9.1.9.13 with Example 9.1.9.3.

One can produce many examples of factorization systems using the small object argument
of §9.1.4.

Theorem 9.1.9.15 (Existence of Factorization Systems).04PN Let C be an ∞-category and let
W be a collection of morphisms of C. Assume that:

(1) The ∞-category C is locally small and admits small colimits.

(2) The collection W is small.

(3) For every morphism w : X → Y in W , the objects X and Y are κ-compact for some
small cardinal κ.
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Then C admits a factorization system (SL, SR), where SR is the collection of morphisms of
C which are right orthogonal to W .

Proof. By virtue of Corollary 9.1.7.21 (and Proposition [?]), we can enlarge W to arrange
that every morphism w : A→ B which belongs to W admits a relative codiagonal γA/B :
B

∐
AB → B which also belongs to W . Applying Theorem 9.1.6.7, we conclude that C

admits a weak factorization system (SL, SR), where SL is the weakly saturated class of
morphisms generated by W and SR is the collection of morphisms which are weakly right
orthogonal to W . Using Corollary 9.1.7.21, we see that a morphism g : X → Y of C belongs
to SR if and only if it is right orthogonal to W . If this condition is satisfied, then Corollary
9.1.7.20 guarantees that g is right orthogonal to W . Allowing g to vary, we conclude that
(SL, SR) is a factorization system.

Remark 9.1.9.16. 04PPIn the situation of Theorem 9.1.9.15, the collection SL is characterized
by the fact that it is the smallest weakly saturated collection of morphisms which contains W
and also satisfies the equivalent conditions of Corollary 9.1.9.12. Beware that it is generally
larger than the weakly saturated collection of morphisms generated by W .

We close this section by recording a converse to Proposition 9.1.9.6:

Theorem 9.1.9.17. 04PTLet C be an ∞-category, let SL and SR be collections of morphisms
of C, and let FunLR(∆2, C) ⊆ Fun(∆2, C) be the full subcategory of Notation 9.1.8.1. Then
(SL, SR) is a factorization system on C if and only if it satisfies the following conditions:

(1) The restriction map

D : FunLR(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)

is an equivalence of ∞-categories.

(2) Every identity morphism of C is contained in both SL and SR.

(3) The collections SL and SR are closed under isomorphism (in the ∞-category Fun(∆1, C)).

Proof. The necessity of (3) is immediate from the definitions, and the necessity of (1) and (2)
follow from Proposition 9.1.9.6 and Corollary 9.1.9.7, respectively. For the converse, assume
that conditions (1), (2), and (3) are satisfied. Combining (1) and (3) with Theorem 9.1.8.2,
we deduce that SL is left orthogonal to SR. We are therefore reduced to proving that the
functor D is surjective on objects. Assumption (3) guarantees that the full subcategory
FunLR(∆2, C) ⊆ Fun(∆2, C) is replete, so that D is an isofibration (see Corollary 4.4.5.3). It
will therefore suffice to show that D is essentially surjective, which follows from assumption
(1).
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Corollary 9.1.9.18 (Exponentiation of Factorization Systems).04PV Let C be an ∞-category
equipped with a factorization system (SL, SR) and let K be a simplicial set. Then the ∞-
category Fun(K, C) admits a factorization system (SKL , SKR ), where SKL denotes the collection
of all morphisms f in Fun(K, C) such that f(v) ∈ SL for each vertex v of K, and SKR is
defined similarly.

Proof. Since SL and SR contain identity morphisms and are closed under isomorphism, the
collections SKL and SKR have the same properties. By virtue of Theorem 9.1.9.17, it will
suffice to show that the restriction map

DK : FunLR(∆2,Fun(K, C))→ Fun(∆1,Fun(K, C)) σ 7→ d2
1(σ)

is an equivalence of∞-categories. This follows from Remark 4.5.1.16, since DK is obtained by
applying the functor Fun(K, •) to the restriction map D : FunLR(∆2, C)→ Fun(∆1, C).

9.2 Truncated Objects of ∞-Categories

05EA 9.2.1 Truncated Objects

05EB Let n be an integer. Recall that a Kan complex X is n-truncated if, for every integer
m ≥ n + 2, every morphism ∂∆m → X can be extended to an m-simplex of X. We now
introduce a counterpart of this condition for objects of an arbitrary ∞-category.

Definition 9.2.1.1.05EC Let C be an ∞-category and let n be an integer. We say that an object
X ∈ C is n-truncated if, for every object Y ∈ C, the morphism space HomC(Y,X) is an
n-truncated Kan complex.

Remark 9.2.1.2.05ED In the formulation of Definition 9.2.1.1, we can replace M = HomC(Y,X)
by any Kan complex which is homotopy equivalent M . For example, we can replace M by
the pinched morphism spaces HomL

C (Y,X) and HomR
C (Y,X) (see Proposition 4.6.5.10).

Example 9.2.1.3.05EE Let C be an ∞-category. For n ≤ −2, an object X ∈ C is n-truncated
if and only if it is a final object of C (Definition 4.6.7.1). In particular, this condition is
independent of n, so long as n ≤ −2. Consequently, in the setting of Definition 9.2.1.1, there
is no loss of generality in assuming that n ≥ −2.

Example 9.2.1.4.05EF Let X be a Kan complex and let n be an integer. The following conditions
are equivalent:

(1) The Kan complex X is n-truncated, in the sense of Definition 3.5.7.1.

(2) For every Kan complex Y , the Kan complex Fun(Y,X) is n-truncated.
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(3) For every simplicial set Y , the Kan complex Fun(Y,X) is n-truncated.

(4) The Kan complex X is n-truncated when regarded as an object of the ∞-category S (in
the sense of Definition 9.2.1.1).

The implications (3) ⇒ (2) ⇒ (1) are immediate, the implication (1) ⇒ (3) follows from
Corollary 3.5.9.27, and the equivalence (2) ⇔ (4) follows from the homotopy equivalence
Fun(Y,X)→ HomS(Y,X) of Remark 5.5.1.5.

Remark 9.2.1.5. 05EGLet C be an ∞-category, and let X and Y be objects of C. If X is
n-truncated and Y is a retract of X, then Y is also n-truncated. In particular, if X and Y

are isomorphic, then X is n-truncated if and only if Y is n-truncated.

Remark 9.2.1.6. 05EHLet F : C → D be a functor of ∞-categories, let n be an integer, and let
X ∈ C be an object whose image F (X) is an n-truncated object of D. If the functor F is
essentially (n+ 1)-categorical (Definition 4.8.6.1), then X is an n-truncated object of C (see
Proposition 3.5.9.13). In particular, if F is fully faithful, then X is an n-truncated object of
C.

Remark 9.2.1.7. 05EJLet F : C → D be an equivalence of ∞-categories. Then an object X ∈ C
is n-truncated if and only if the image Y = F (X) is an n-truncated object of D. The “if”
direction follows from Remark 9.2.1.6. For the converse, suppose that X is n-truncated
and let G : D → C be a homotopy inverse to F . Then G(Y ) ∈ C is isomorphic to X, and
is therefore an n-truncated object of C (Remark 9.2.1.5). Since G is fully faithful, Remark
9.2.1.6 guarantees that Y is an n-truncated object of D.

Remark 9.2.1.8. 05EKLet C be an ∞-category and let n be an integer. Then C is locally n-
truncated (in the sense of Definition 4.8.2.1) if and only if every object X ∈ C is n-truncated
(in the sense of Definition 9.2.1.1).

Remark 9.2.1.9 (Monotonicity). 05ELLet C be an ∞-category and let m ≤ n be integer. If an
object X ∈ C is m-truncated, then it is also n-truncated (see Remark 3.5.9.6).

Remark 9.2.1.10. 05EMLet C be an ∞-category, let X be an object of C, and let n ≥ −2 be an
integer. The following conditions are equivalent:

(1) The object X ∈ C is n-truncated, in the sense of Definition 9.2.1.1.

(2) The constant map ∂∆n+2 → {idX} ↪→ HomC(X,X) exhibits X as a power of itself by
∂∆n+2, in the sense of Definition 7.6.2.1.

(3) The constant map
(∂∆n+2)▷ ≃ Λn+3

n+3 → {X} ↪→ C

is a limit diagram in C, in the sense of Definition 7.1.2.4.
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The equivalence (1) ⇔ (2) follows from Corollary 3.5.9.22, and the equivalence (2) ⇔ (3)
from Remark 7.6.2.6.

Remark 9.2.1.11.05EN In the formulation of Remark 9.2.1.10, we can replace ∂∆n+2 by any
simplicial set K of the same weak homotopy type (that is, any simplicial set K for which
the geometric realization |K| is homotopy equivalent to a sphere of dimension n+ 1). For
example, we can take K to be the subdivision Sd(∆n+1) (see Proposition 3.3.4.8).

Remark 9.2.1.12.05EP Let F : C → D be a functor of∞-categories which preserves finite limits.
Then, for every n-truncated object X ∈ C, the image F (X) is an n-truncated object of D.
This follows from the criterion of Remark 9.2.1.10.

Remark 9.2.1.13.05EQ Let C be an ∞-category and let n ≥ −1 be an integer. Then an object
X ∈ C is n-truncated if and only if the right fibration C/X → C is a locally (n− 1)-truncated
functor. This follows from the criterion of Corollary 5.1.5.18 (together with Remark 9.2.1.2).

Proposition 9.2.1.14 (Limits of Truncated Objects).05ER Let C be an ∞-category and let n be
an integer. Then the collection of n-truncated objects of C is closed under limits. That is, if
F : A◁ → C is a limit diagram in C having the property that F (a) is n-truncated for each
vertex a ∈ A, then F carries the cone point of A◁ to an n-truncated object of C.

Proof. Fix an object C ∈ C and let hC : C → S denote the functor corepresented by C. We
wish to show that the composition

A◁
F−→ C hC

−−→ S

carries the cone point of A◁ to an n-truncated Kan complex. This follows from Remark
7.4.5.9, since hC ◦ F is a limit diagram in the ∞-category S (Corollary 7.4.5.17).

Remark 9.2.1.15.05ES Let C be an ∞-category, let X be an object of C, and let C′ ⊆ C be
the full subcategory of C spanned by those objects Y ∈ C for which the morphism space
HomC(Y,X) is n-truncated. Since the representable functor

hX : Cop → S Y 7→ HomC(Y,X)

carries colimits in the ∞-category C to limits in the ∞-category of spaces S, (Corollary
7.4.5.17), Remark 7.4.5.9 guarantees that the subcategory C′ ⊆ C is closed under the
formation of colimits. Consequently, if C is generated (under the formation of small colimits)
by some full subcategory C0 ⊆ C, then the object X is n-truncated if and only if the
morphism space HomC(Y,X) is n-truncated for each object Y ∈ C0.

Definition 9.2.1.1 can be reformulated as a filling condition:
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Proposition 9.2.1.16. 05ETLet C be an ∞-category, let X be an object of C, and let n ≥ −2 be
an integer. Then X is n-truncated if and only if it satisfies the following condition for each
m ≥ n+ 3:

(∗m) Every morphism σ : ∂∆m → C satisfying σ(m) = X can be extended to an m-simplex
of C.

Proof. This is a special case of Proposition 4.8.6.19, since the object X is n-truncated if and
only if the right fibration C/X → C is essentially (n+ 1)-categorical (Remark 9.2.1.13).

We close this section by classifying the truncated objects of the∞-category QC of (small)
∞-categories (Construction 5.5.4.1).

Proposition 9.2.1.17. 05EULet C be an ∞-category and let n be an integer. The following
conditions are equivalent:

(1) The ∞-category C is n-truncated when viewed as an object of QC, in the sense of
Definition 9.2.1.1.

(2) The Kan complex Fun(∆1, C)≃ is n-truncated.

(3) The core C≃ is an n-truncated Kan complex. Moreover, for every pair of objects X,Y ∈ C,
the morphism space HomC(X,Y ) is also an n-truncated Kan complex.

Proof. By virtue of Proposition [?], the ∞-category QC is generated under colimits by the
object ∆1 ∈ QC. The equivalence (1) ⇔ (2) now follows by combining Remarks 9.2.1.15
and 5.5.4.5. We next show that, if condition (2) is satisfied, then the core C≃ is an n-
truncated Kan complex. Let Isom(C) denote the full subcategory of Fun(∆1, C) spanned by
the isomorphisms of C. Then the diagonal map

C ↪→ Isom(C) X 7→ idX

is an equivalence of ∞-categories (Corollary 4.5.3.13), and therefore restricts to a homotopy
equivalence of Kan complexes C≃ ↪→ Isom(C)≃. We are therefore reduced to showing that the
Kan complex Isom(C)≃ is n-truncated. Since Isom(C)≃ is a summand of the Kan complex
Fun(∆1, C)≃, this follows immediately from assumption (2) if n ≥ −1. The case n ≤ −2
then follows from the additional observation that if Fun(∆1, C)≃ is nonempty, then the
∞-category C is nonempty, so Isom(C)≃ is nonempty.

We now complete the proof by showing that (2) and (3) are equivalent. By virtue of
the preceding argument, we may assume that the core C≃ is n-truncated, so the product
C≃×C≃ is n-truncated (Remark 3.5.7.6). Using Proposition 3.5.9.13, we see that condition
(2) is satisfied if and only if the map of Kan complexes

U : Fun(∆1, C)≃ → C≃×C≃ (f : X → Y ) 7→ (X,Y )
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is n-truncated. Since U is a Kan fibration (Corollary 4.4.5.4), this is equivalent to the
requirement that each fiber of U is an n-truncated Kan complex (Proposition 3.5.9.8), which
is a restatement of (3).

Remark 9.2.1.18.05EV If n ≥ −1, we can reformulate condition (3) of Proposition 9.2.1.17 as
follows:

(3′) For every pair of objects X,Y ∈ C, the morphism space HomC(X,Y ) is n-truncated.
Moreover, the summand IsomC(X,Y ) ⊆ HomC(X,Y ) spanned by the isomorphisms
from X to Y is (n− 1)-truncated.

See Example 3.5.9.18.

Corollary 9.2.1.19.05EW Let C be an ∞-category and let n be an integer. Then:

• If C is an n-truncated object of QC (in the sense of Definition 9.2.1.1), then it is locally
n-truncated (in the sense of Definition 4.8.2.1).

• If n ≥ −1 and C is locally (n− 1)-truncated, then it is an n-truncated object of QC.

Warning 9.2.1.20.05EX In general, neither implication of Corollary 9.2.1.19 is reversible. See
Example 9.2.2.9.

9.2.2 Example: Discrete and Subterminal Objects

04UX We now consider some important special cases of Definition 9.2.1.1.

Definition 9.2.2.1.05EY Let C be an ∞-category. We will say that an object X ∈ C is discrete
if, for every object C ∈ C, every connected component of the morphism space HomC(C,X)
is contractible.

Definition 9.2.2.2.04UY Let C be an∞-category. We will say that an object X ∈ C is subterminal
if, for every object C ∈ C, the morphism space HomC(C,X) is either empty or contractible.

Remark 9.2.2.3.05EZ Let C be an ∞-category. Then:

• An object X ∈ C is discrete (in the sense of Definition 9.2.2.1) if and only if is
0-truncated (in the sense of Definition 9.2.2.1).

• An object X ∈ C is subterminal (in the sense of Definition 9.2.2.2) if and only if it is
(−1)-truncated.

See Examples 3.5.7.4 and 3.5.7.5.

Example 9.2.2.4.04V0 Let C be an ∞-category. Then every final object of C is subterminal,
and every subterminal object of C is discrete.
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Example 9.2.2.5. 04V1Let X be a Kan complex, which we regard as an object of the∞-category
of spaces S (Construction 5.5.1.1). Then:

• The Kan complex X is a discrete object of the∞-category S (in the sense of Definition
9.2.2.1) if and only if every connected component of X is contractible: that is, the
projection map X → π0(X) is a homotopy equivalence.

• The Kan complex X is a subterminal object of the ∞-category S (in the sense of
Definition 9.2.2.2) if and only if X is either empty or contractible.

See Example 9.2.1.4.

Example 9.2.2.6. 05F0Let C = N•(C0) be the nerve of an ordinary category C0. Then:

• Every object of C is discrete.

• An object X ∈ C is subterminal (in the sense of Definition 9.2.2.2) if and only if it is
subterminal in the sense of classical category theory: that is, for every object Y ∈ C,
there is at most one morphism from Y to X.

We now record a partial converse to Example 9.2.2.6.

Definition 9.2.2.7. 05F1Let C be an ∞-category. We say that C is locally discrete if every
object X ∈ C is discrete.

Note that an ∞-category C is locally discrete if and only if it is locally 0-truncated, in
the sense of Definition 4.8.2.1. Invoking Corollary 4.8.2.15, we obtain the following:

Remark 9.2.2.8. 05F2Let C be an ∞-category. The following conditions are equivalent:

• The ∞-category C is locally discrete.

• The comparison map C → N•(hC) is a trivial Kan fibration.

• There exists an ordinary category C0 and an equivalence of ∞-categories C → N•(C0).

Example 9.2.2.9. 05F3Let QC be the∞-category of (small)∞-categories (Construction 5.5.4.1).
Then an object C ∈ QC is discrete (in the sense of Definition 9.2.2.1) if and only if it satisfies
the following pair of conditions:

• The ∞-category C is locally discrete: that is, there exists an equivalence C → N•(C0),
where C0 is an ordinary category (Remark 9.2.2.8).

• For every object X ∈ C0, the automorphism group Aut(X) is trivial.

See Proposition 9.2.1.17. Beware that the second condition cannot be omitted.
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Remark 9.2.2.10.04V2 Let C be an ∞-category, let X ∈ C be an object, and let Y ∈ C be a
retract of X. If X is discrete, then Y is also discrete. If X is subterminal, then Y is also
subterminal. See Remark 9.2.1.5.

Remark 9.2.2.11.04V3 Let F : C → D be a fully faithful functor of ∞-categories, and let X be
an object of C. Then:

• If F (X) is a discrete object of D, then X is a discrete object of C.

• If F (X) is a subterminal object of D, then X is a subterminal object of C.

In both cases, the converse holds if F is an equivalence of ∞-categories.

Remark 9.2.2.12.04V4 Let C be an ∞-category. Then an object X ∈ C is discrete if and only if
it satisfies the following condition for every integer m ≥ 3:

(∗m) Every morphism σ : ∂∆m → C satisfying σ(m) = X can be extended to an m-simplex
of C.

In this case, X is subterminal if and only if it also satisfies condition (∗2). See Proposition
9.2.1.16.

Remark 9.2.2.13.05F4 Let C be an ∞-category. An object X ∈ C is subterminal if and only if
the diagram

X
idX←−− X idX−−→ X

exhibits X as a product of X with itself. See Remark 9.2.1.10.

Remark 9.2.2.14.05F5 Let F : C → D be a functor of ∞-categories. Then:

• If F preserves finite limits, then it carries discrete objects of C to discrete objects of D
(see Remark 9.2.1.12).

• If F preserves pairwise products, then it carries subterminal objects of C to subterminal
objects of D (see Remark 9.2.2.13).

Notation 9.2.2.15 (The Heart of an ∞-Category).05F6 Let C be an ∞-category. We let C♡
denote the full subcategory of C spanned by the discrete objects of C. We will refer to C♡ as
the heart of the ∞-category C.

Let Disc(C) denote the homotopy category of C♡. By construction, the ∞-category C♡ is
locally discrete, so Remark 9.2.2.8 guarantees that the comparison map C → N•(hC) restricts
to a trivial Kan fibration

C♡ → N•(Disc(C)).

For this reason, we will often abuse terminology by identifying the heart C♡ with the ordinary
category Disc(C), which we also refer to as the heart of C.
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Notation 9.2.2.16. 04V9Let C be an ∞-category. We let Sub(C) denote the collection of
isomorphism classes of subterminal objects of C. If X is a subterminal object of C, we let
[X] ∈ Sub(C) denote its isomorphism class. Given a pair of subterminal objects X and X ′,
we write [X] ⊆ [X ′] if there exists a morphism f : X → X ′ in the ∞-category C. Note that
the relation ⊆ is a partial ordering on the set Sub(C).

Remark 9.2.2.17. 05F7Let C be an ∞-category and let C′ ⊆ C be the full subcategory spanned
by the subterminal objects of C. Then the construction X 7→ [X] induces a trivial Kan
fibration of ∞-categories C′ → N•(Sub(C)). Stated more informally, the partially ordered
set Sub(C) can be identified with the full subcategory C′ ⊆ C.

Remark 9.2.2.18. 04VALet C be an ∞-category.

• If C has a final object, then the partially ordered set Sub(C) has a largest element:
namely, the isomorphism class [X], where X is any final object of C.

• If C admits finite products, then Sub(C) is a lower semilattice: that is, every finite
subset of Sub(C) has a greatest lower bound. In particular, every pair of elements
[X], [Y ] ∈ Sub(C) have a greatest lower bound which we will denote by [X]∩ [Y ], given
by the isomorphism class of the product X × Y .

9.2.3 Truncated Morphisms

05F8We now introduce a relative version of Definition 9.2.1.1.

Definition 9.2.3.1. 05F9Let C be an∞-category and let n be an integer. We say that a morphism
f : X → Y of C is n-truncated if, for every object C ∈ C, composition with the homotopy
class [f ] induces an n-truncated morphism of Kan complexes HomC(C,X) [f ]◦−−→ HomC(C, Y ).

Remark 9.2.3.2. 05FAIn the situation of Definition 9.2.3.1, the composition map

θ : HomC(C,X) [f ]◦−−→ HomC(C, Y )

is only well-defined up to homotopy (see Notation 4.6.9.15). However, the condition that θ
is n-truncated depends only on its homotopy class (Remark 3.5.9.5).

Remark 9.2.3.3. 05FBLet f : X → Y be a morphism in an ∞-category C. The condition that
f is n-truncated depends only on the homotopy class [f ], regarded as a morphism in the
homotopy category hC.

Remark 9.2.3.4 (Monotonicity). 05FCLet C be an ∞-category and let m ≤ n be integers. If
f : X → Y is an m-truncated morphism of C, then it is also n-truncated.
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Example 9.2.3.5.05FD Let C be an ∞-category. For n ≤ −2, a morphism f : X → Y of C is
n-truncated if and only if it is an isomorphism. See Example 3.5.9.2.

Example 9.2.3.6.05FE Let f : X → Y be a morphism of Kan complexes and let n be an integer.
The following conditions are equivalent:

(1) The morphism f is n-truncated, in the sense of Definition 3.5.9.1.

(2) For every Kan complex K, composition with f induces an n-truncated morphism
Fun(K,X)→ Fun(K,Y ).

(3) For every simplicial set K, composition with f induces an n-truncated morphism
Fun(K,X)→ Fun(K,Y ).

(4) The morphism f is n-truncated when regarded as a morphism in the ∞-category S of
spaces, in the sense of Definition 9.2.3.1.

The implications (3) ⇒ (2) ⇒ (1) are immediate, the implication (1) ⇒ (3) follows from
Corollary 3.5.9.26, and the equivalence (2)⇔ (4) follows from Remark 5.5.1.5.

Proposition 9.2.3.7.05FF Let C be an ∞-category, let n be an integer, and let f : X → Y be a
morphism of C. Then the morphism f is n-truncated (in the sense of Definition 9.2.3.1) if
and only if it is n-truncated when regarded as an object of the slice ∞-category C/Y (in the
sense of Definition 9.2.1.1).

Proof. By definition, f is n-truncated as an object of C/Y if and only if, for every morphism
g : C → Y of C, the morphism space K = HomC/Y

(g, f) is n-truncated. Using Corollary

4.6.9.18, we can identify K with the homotopy fiber of the composition map HomC(C,X) [f ]◦−−→
HomC(C, Y ) over the vertex g ∈ HomC(C, Y ). The desired result now follows from Corollary
3.5.9.12.

Corollary 9.2.3.8 (Homotopy Invariance).05FG Let F : C → D be an equivalence of∞-categories
and let f : X → Y be a morphism of C. Then f is n-truncated if and only if the image
F (f) : F (X)→ F (Y ) is n-truncated.

Proof. Using Corollary 4.6.4.19, we see that F induces an equivalence of ∞-categories
C/Y → D/F (Y ). The desired result now follows by combining Proposition 9.2.3.7 with
Remark 9.2.1.7.

Corollary 9.2.3.9.05FH Let C be an ∞-category, let n ≥ 0 be an integer, let n+ 1 denote the
simplicial cube of dimension n+ 1 (Notation 2.4.5.2), and let y ∈ n+ 1 be the final vertex.
Let Q : n+ 1→ ∆1 be the morphism given on vertices by

Q(v) =

1 if v = y

0 otherwise.
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Then a morphism f : X → Y of C is (n− 2)-truncated if and only if the composite map

n+ 1 Q−→ ∆1 f−→ C

is a limit diagram in C.

Proof. Let us identify n+ 1 with the iterated join {x} ⋆ Sd(∂∆n) ⋆ {y}, where Sd(∂∆n)
denotes the subdivision of ∂∆n (see Proposition 3.3.3.16). Using Remark 7.1.2.11, we see
that f ◦Q is a limit diagram in C if and only if the constant map

{x} ⋆ Sd(∂∆n)→ {f} ↪→ C/Y

is a limit diagram in the slice ∞-category C/Y . The desired result now follows by combining
Proposition 9.2.3.7 with Remark 9.2.1.11.

Corollary 9.2.3.10. 05FJLet U : C → D be a right fibration of ∞-categories, let n be an integer,
and let f : X → Y be a morphism of C. Then f is n-truncated if and only if U(f) is an
n-truncated morphism of D.

Proof. Combine Corollaries 9.2.3.9 and 7.1.5.17.

Corollary 9.2.3.11. 05FKLet C be an ∞-category and let n be an integer. Then the collection
of n-truncated morphisms of C is closed under retracts (in the ∞-category Fun(∆1, C)).

Proof. Combine Corollaries 9.2.3.9 and 8.5.1.12.

Corollary 9.2.3.12. 05FLLet C be an ∞-category, let f : X → Y be a morphism of C, and let
n ≥ −2 be an integer. Then f is n-truncated if and only if it satisfies the following condition
for every positive integer m ≥ n+ 4:

(∗m) If σ : Λmm → C is a diagram having the property that the composite map

∆1 ≃ N•({m− 1 < m}) ↪→ Λmm
σ−→ C

is equal to f , then σ can be extended to an m-simplex of C.

Proof. Combine Propositions 9.2.3.7 and 9.2.1.16.

Proposition 9.2.3.13. 05FMLet C be an ∞-category, let n be an integer, and let f : X → Y be
a morphism of C. Then:

(1) If Y is an n-truncated morphism and f is an n-truncated morphism, then X is an
n-truncated object.

(2) If X is an n-truncated object and Y is an (n+1)-truncated object, then f is an n-truncated
morphism.
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Proof. Let C ∈ C be an object and let θ : HomC(C,X) → HomC(C, Y ) be given by
composition with the homotopy class [f ]. Invoking Proposition 3.5.9.13, we obtain:

(1C) If the morphism space HomC(C, Y ) is n-truncated and θ is n-truncated, then the
morphism space HomC(C,X) is n-truncated.

(2C) If the morphism space HomC(C,X) is n-truncated and the morphism space HomC(C, Y )
is (n+ 1)-truncated, then θ is n-truncated.

Proposition 9.2.3.13 follows by allowing the object C to vary.

Corollary 9.2.3.14.05FN Let C be an∞-category, let n be an integer, and let Y be an n-truncated
object of C. Then a morphism f : X → Y is n-truncated if and only if the object X is
n-truncated.

Proof. Combine Proposition 9.2.3.13 with Remark 9.2.3.4.

Example 9.2.3.15.05FP Let C be an ∞-category which contains a final object Y . Then every
object X ∈ C admits a morphism f : X → Y which is uniquely determined up to homotopy.
In this case, the object X is n-truncated (in the sense of Definition 9.2.1.1) if and only if
the morphism f is n-truncated (in the sense of Definition 9.2.3.1).

Corollary 9.2.3.16 (Composition).05FQ Let C be an ∞-category containing a 2-simplex

Y

g

��
X

f

??

h // Z,

and let n be an integer. Then:

(1) If the morphisms f and g are n-truncated, then the morphism h is n-truncated.

(2) If the morphism h is n-truncated and the morphism g is (n + 1)-truncated, then the
morphism f is n-truncated.

Proof. Apply Proposition 9.2.3.13 to the slice ∞-category C/Z (see Proposition 9.2.3.7).

Proposition 9.2.3.17 (Pullbacks of Truncated Morphisms).05FR Let C be an ∞-category
containing a pullback diagram

X ′

f ′

��

// X

f

��
Y ′ // Y
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and let n be an integer. If f is n-truncated, then f ′ is also n-truncated.

Proof. Let C ∈ C be an object. Applying Proposition 7.4.5.16, we obtain a pullback diagram

HomC(C,X ′) //

θ′

��

HomC(C,X)

θ

��
HomC(C, Y ′) // HomC(C, Y )

in the ∞-category of spaces. Corollary 7.6.4.11 guarantees that if θ is n-truncated, then θ′

is also n-truncated. Proposition 9.2.3.17 now follows by allowing the object C to vary.

Proposition 9.2.3.18. 05FSLet C be an ∞-category, let n ≥ −1 be an integer, and let X be an
object of C for which there exists a product X ×X. Then X is n-truncated if and only if the
diagonal map δX : X → X ×X is (n− 1)-truncated.

Proof. For each object C ∈ C, Example 3.5.9.18 shows that the mapping space HomC(C,X)
is n-truncated if and only if the diagonal map

HomC(C,X)→ HomC(C,X)×HomC(C,X)

is (n− 1)-truncated. The desired result now follows by allowing the object C to vary.

Corollary 9.2.3.19. 05FTLet C be an ∞-category, let n ≥ −1 be an integer, and let f : X → Y

be a morphism of C for which there exists a fiber product X ×Y X. Then f is n-truncated if
if and only if the relative diagonal δX/Y : X → X ×Y X is (n− 1)-truncated (see Notation
7.6.3.18).

Proof. Let us identify the morphism f with an object X of the slice ∞-category C/Y . By
virtue of Proposition 7.6.3.14, there exists a product X ×X in the ∞-category C/Y , whose
image in C is the fiber product X ×Y X. Moreover, the relative diagonal δX/Y can be
identified with the image of the diagonal map δX : X → X ×X under the forgetful functor
C/Y → C. Applying Corollary 9.2.3.10, we see that δX/Y is an (n− 1)-truncated morphism
of C if and only if δX is an (n− 1)-truncated morphism of C/Y . By virtue of Proposition
9.2.3.18, this is equivalent to the requirement that X is n-truncated as an object of C/Y .
The desired result now follows from the criterion of Proposition 9.2.3.7.

Corollary 9.2.3.20. 05FULet F : C → D be a functor of ∞-categories. Suppose that C admits
pullbacks and that the functor F preserves pullbacks. Then, for every integer n, the functor
F carries n-truncated morphisms of C to n-truncated morphisms of D.

Proof. For n ≤ −2, a morphism is n-truncated if and only if it is an isomorphism (Example
9.2.3.5), so the desired result follows from Remark 1.5.1.6. The general case follows by
induction on n, using Corollary 9.2.3.19.
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9.2.4 Monomorphisms

04VD Let C be a category. Recall that a morphism f : X0 → X of C is a monomorphism if, for
every object C of C, the composition map

HomC(C,X0) f◦−→ HomC(C,X)

is injective. This notion has an obvious counterpart in the setting of ∞-categories.

Definition 9.2.4.1.04VE Let C be an ∞-category and let f : X0 → X be a morphism of C. We
say that f is a monomorphism if, for every object C ∈ C, the composition map

HomC(C,X0) [f ]◦−−→ HomC(C,X)

induces a homotopy equivalence of HomC(C,X0) with a summand of HomC(C,X).

Warning 9.2.4.2.04VF Let f : X0 → X be a morphism of Kan complexes. The assertion that f
is a monomorphism can be given two different interpretations:

(1) The map f is a monomorphism in the ordinary category of Set∆ of simplicial sets.

(2) The map f is a monomorphism in the ∞-category S of spaces.

Beware that these conditions are unrelated to one another. Condition (2) is homotopy
invariant: it is the requirement that f restricts to a homotopy equivalence of X0 with a
summand of X (Example 9.2.4.10). Condition (1) is very far from being homotopy invariant:
we can always arrange that it is satisfied by replacing X by a homotopy equivalent Kan
complex (see Exercise 3.1.7.11).

Notation 9.2.4.3.04VG Let C be an ∞-category and let f be a morphism of C having source
X0 and target X. If f is a monomorphism, we will sometimes visually emphasize this by
denoting f with a hooked arrow (that is, we will write f : X0 ↪→ X in place of f : X0 → X).
Beware that this convention can be ambiguous in some situations (for example if C = S is
the ∞-category of spaces; see Warning 9.2.4.2).

Variant 9.2.4.4.04VS Let C be an ∞-category and let f : X → Y be a morphism of C. We will
say that f is an epimorphism if it is a monomorphism when viewed as a morphism of the
∞-category Cop: that is, if the induced map

HomC(Y,C) ◦[f ]−−→ HomC(X,C)

induces a homotopy equivalence of HomC(Y,C) with a summand of HomC(X,C), for each
object C ∈ C. We will generally avoid this terminology, to avoid confusion with the notion
of quotient morphism which we introduce in §10.2.2 (see Warning 10.2.2.10).
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Remark 9.2.4.5. 05FVLet C be an ∞-category. Then a morphism f : X0 → X is a monomor-
phism (in the sense of Definition 9.2.4.1) if and only if it is (−1)-truncated (in the sense of
Definition 9.2.3.1). See Example 3.5.9.3.

Example 9.2.4.6. 04VHLet C be a category and let f : X0 → X be a morphism in C. Then f is
a monomorphism in the ∞-category N•(C) (in the sense of Definition 9.2.4.1) if and only if
it is a monomorphism in the usual category-theoretic sense.

Example 9.2.4.7. 04VJLet C be an ∞-category and let f : X0 → X be a morphism of C. Then:

• If the object X is subterminal and f is a monomorphism, then the object X0 is also
subterminal.

• If the object X0 is subterminal and the object X is discrete, then f is a monomorphism.

In particular, if X is subterminal, then f is a monomorphism if and only if X0 is subterminal.
See Proposition 9.2.3.13.

Example 9.2.4.8. 04VKLet C be an ∞-category containing a final object 1, and let X be an
object of C. Then there is a morphism f : X → 1, which is uniquely determined up to
homotopy. It follows from Example 9.2.4.7 that f is a monomorphism if and only if X is
subterminal.

Example 9.2.4.9. 04VLLet C be an ∞-category. Then every isomorphism in C is a monomor-
phism.

Example 9.2.4.10. 05FWLet f : X0 → X be a map of Kan complexes. Then f is a monomorphism
in the ∞-category of spaces S if and only if it induces a homotopy equivalence of X0 with a
summand of X. See Example 9.2.1.4.

Warning 9.2.4.11. 04VMLet C be an ∞-category and let i : X0 → X be a morphism of C which
admits a left homotopy inverse r : X → X0. If C is (the nerve of) an ordinary category, then
i is automatically a monomorphism. In general, this is not necessarily true. For example, let
(X,x) be a pointed Kan complex, and regard the inclusion map i : {x} → X as a morphism
in the ∞-category S of spaces. Then i has a left homotopy inverse (given by the constant
map X → {x}). However, i is a monomorphism in the ∞-category S only if x belongs to a
contractible connected component of X (Example 9.2.4.10).

Remark 9.2.4.12. 04VNLet C be an ∞-category and let f : X0 → X be a morphism in C. If
f is a monomorphism, then the homotopy class [f ] : X0 → X is a monomorphism in the
ordinary category hC. Beware that the converse is false in general.

Remark 9.2.4.13. 04VQLet F : C → D be a functor of ∞-categories and let f : X0 → X be a
morphism of C.
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• If F is fully faithful and F (f) is a monomorphism in D, then f is a monomorphism in
C.

• If F is an equivalence of ∞-categories, then F (f) is a monomorphism in D if and only
if f is a monomorphism in C.

Remark 9.2.4.14.04VP Let C be an ∞-category and let f : X0 → X be a morphism of
C. The condition that f is a monomorphism depends only on the homotopy class [f ] ∈
HomhC(X0, X).

Remark 9.2.4.15.04VR Let C be an ∞-category, and suppose that we are given a commutative
diagram

Y

g

��
X

f

??

h // Z

in C, where g is a monomorphism. Then f is a monomorphism if and only if h is a
monomorphism. In particular, the collection of monomorphisms is closed under composition.
See Corollary 9.2.3.16.

Remark 9.2.4.16.05FX Let C be an ∞-category and let f : X0 → X be a morphism of C.
Then f is a monomorphism if and only if it is subterminal when viewed as an object of the
∞-category C/X . See Proposition 9.2.3.7.

Remark 9.2.4.17.05FY Let C be an ∞-category and let f : X0 → X be a morphism of C. Then
f is a monomorphism if and only if it satisfies the following condition for each m ≥ 3:

(∗m) Let σ : Λmm → C be a morphism of simplicial sets for which the composition

∆1 ≃ N•({m− 1 < m}) ⊂ Λmm
σ−→ C

coincides with f . Then σ can be extended to an m-simplex of C.

This follows by combining Remarks 9.2.2.12 and 9.2.4.16.

Remark 9.2.4.18.05FZ Let C be an ∞-category, let f : X0 → X be a morphism of C, and let σ
denote the composite map

∆1 ×∆1 (i,j)7→ij−−−−−→ ∆1 u−→ C,
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which we depict as a diagram
X0

id //

id

��

X0

f

��
X0

f // X.

Then f is a monomorphism if and only if σ is a pullback square in C. This follows by
combining Remarks 9.2.4.16 and 9.2.2.13 (see Proposition 7.6.3.14).

Remark 9.2.4.19. 04VXLet C be an∞-category which admits pullbacks. Stated more informally,
Remark 9.2.4.18 asserts that a morphism f : X0 → X of C is a monomorphism if and only if
the relative diagonal δX0/X : X0 → X0 ×X X0 is an isomorphism.

From the criterion of Remark 9.2.4.18, we immediately obtain the following:

Proposition 9.2.4.20. 05G0Let F : C → D be a functor of ∞-categories which preserves
pullbacks. Then F carries monomorphisms in C to monomorphisms in D.

Remark 9.2.4.21. 04W1In the statement of Proposition 9.2.4.20, it is not necessary to assume
that the ∞-categories C and D admit pullbacks (we only need to know that F preserves
those pullback squares which exist in C).

Example 9.2.4.22. 04W2Let F : C → D be a functor of ∞-categories which admits a left
adjoint. Then F carries subterminal objects of C to subterminal objects of D, and carries
monomorphisms in C to monomorphisms in D. This follows from Proposition 9.2.4.20 and
Remark 9.2.2.14, since F preserves limit diagrams (Corollary 7.1.3.21).

Remark 9.2.4.23. 05G1Let F : C → D be a right fibration of ∞-categories and let f be a
morphism in C. Then f is a monomorphism if and only if F (f) is a monomorphism in the
∞-category D. See Corollary 9.2.3.10.

Remark 9.2.4.24. 05G2Let C be an ∞-category and let f : X ↪→ Y be a monomorphism
in C. If f ′ : X ′ → Y ′ is a retract of f (in the ∞-category Fun(∆1, C)), then f ′ is also a
monomorphism. See Corollary 9.2.3.11.

Definition 9.2.4.25. 04W8Let C be an ∞-category and let X be an object of C. A subobject of
X is a subterminal object of the slice ∞-category C/X : that is, an object which is given by a
monomorphism f : X0 ↪→ X in the∞-category C (see Remark 9.2.4.16). In this situation, we
will sometimes abuse terminology by referring to X0 as a subobject of X and writing X0 ⊆ X;
in this case, we implicitly assume that a monomorphism X0 ↪→ X has been specified.
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Notation 9.2.4.26.04W9 Let C be an ∞-category and let X be an object of C. We let Sub(X)
denote the set Sub(C/X) of isomorphism classes of subterminal objects of C/X (see Notation
9.2.2.16). If f : X0 ↪→ X is a monomorphism, we write [X0] ∈ Sub(X) for the isomorphism
class of f . We will sometimes abuse notation by identifying the isomorphism class [X0] with
the object X0 itself: by virtue of Remark 9.2.2.17, this identification is essentially harmless
provided that X0 is understood as an object of the slice ∞-category C/X (that is, provided
that we remember the data of the monomorphism f). We will refer to Sub(X) as the set of
subobjects of X, and we endow it with the partial ordering described in Notation 9.2.2.16:
that is, if f0 : X0 ↪→ X and f1 : X1 ↪→ X are monomorphisms, we write [X0] ⊆ [X1] if there
exists a 2-simplex

X0

f0

  

g // X1

f1

~~
Y

in the∞-category C. In this case, g is automatically a monomorphism (see Remark 9.2.4.15).

Example 9.2.4.27.04WA Let X be a Kan complex, which we regard as an object of the ∞-
category S. Using Example 9.2.4.10, we can identify Sub(X) with the partially ordered
collection of all summands of X. Alternatively, we can identify Sub(X) with the collection
of all subsets of the set π0(X) (see Exercise 1.2.1.16).

Remark 9.2.4.28.04WB Let C be an ∞-category. For every object X ∈ C, the identity morphism
idX : X → X is a monomorphism (Example 9.2.4.9), so we can regard X as a subobject of
itself. Moreover, the isomorphism class [X] is a largest element of the partially ordered set
Sub(X) (see Remark 9.2.2.18).

Remark 9.2.4.29.04WC Let C be an ∞-category which admits fiber products. Then, for every
object X ∈ C, the slice ∞-category C/X admits finite products (Corollary 7.6.3.20). It
follows that the partially ordered set Sub(X) is a lower semilattice (see Remark 9.2.2.18). In
particular, every pair of objects [X0], [X1] ∈ Sub(X) have a greatest lower bound [X0]∩ [X1]
in Sub(X), given concretely by the isomorphism class of the fiber product [X0 ×X X1].

Remark 9.2.4.30 (Pullbacks of Monomorphisms).04WD Let C be an ∞-category containing a
commutative diagram

04WE X0

i

��

// Y0

j

��
X

f // Y,

(9.18)
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where j : Y0 → Y is a monomorphism. Then (9.18) is a pullback square if and only if the
following conditions are satisfied:

• The morphism i : X0 → X is also a monomorphism.

• The diagram (9.18) determines a pullback square in the homotopy category hC. That
is, a morphism g : C → X0 factors (up to homotopy) through i if and only if the f ◦ g
factors (up to homotopy) through j.

In particular, the collection of monomorphisms in C is closed under pullbacks.

Construction 9.2.4.31 (Inverse Images). 04WFLet C be an ∞-category which admits fiber
products. Then every morphism f : X → Y in C determines a pullback functor

f∗ : C/Y → C/X Y ′ 7→ X ×Y Y ′

(see Proposition 7.6.3.16). The functor f∗ has a left adjoint, and therefore carries subterminal
objects of C/X to subterminal objects of C/Y . Passing to isomorphism classes, we obtain
a map of partially ordered sets f−1 : Sub(Y )→ Sub(X), given concretely by the formula
f−1[Y0] = [Y0 ×Y X]. Since the functor f∗ preserves products, f−1 is a homomorphism of
lower semilattices: that is, it satisfies the identities

f−1([Y0] ∩ [Y1]) = f−1([Y0]) ∩ f−1([Y1]) f−1([Y ]) = [X].

We close this section with a discussion of monomorphisms in the ∞-category QC of
(small) ∞-categories.

Proposition 9.2.4.32. 04W5Let F : C → D be a functor of ∞-categories. The following
conditions are equivalent:

(1) The functor F is a monomorphism in the ∞-category QC.

(2) For every pair of objects X,Y ∈ C, the functor F induces a homotopy equivalence from
HomC(X,Y ) to a summand of HomD(F (X), F (Y )) which contains every isomorphism
from F (X) to F (Y ).

(3) The functor F induces an equivalence from C to a replete subcategory D0 ⊆ D.

Proof. We first show that (1) implies (2). By virtue of Corollary 4.5.2.23, we may assume
without loss of generality that F is an isofibration of ∞-categories. In this case, it follows
from Exercise 7.6.4.13 that the diagonal inclusion δ : C ↪→ C×D C (formed in the ordinary
category of simplicial sets) can be identified with the relative diagonal of F in the∞-category
QC. Combining this observation with Remark 9.2.4.18, we deduce that F is a monomorphism
(in the ∞-category QC) if and only if δ is an equivalence of ∞-categories. In particular, if F
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is a monomorphism, then δ is fully faithful: that is, for every pair of objects X,Y ∈ C, the
induced map

HomC(X,Y )→ HomC ×D C(δ(X), δ(Y )) ≃ HomC(X,Y )×HomD(F (X),F (Y )) HomC(X,Y )

is a homotopy equivalence. Our assumption that F is an isofibration guarantees that the
map FX,Y : HomC(X,Y ) → HomD(F (X), F (Y )) is Kan fibration (Proposition 4.6.1.21).
Applying Corollary 3.5.1.31, we deduce that FX,Y restricts to a homotopy equivalence of
HomC(X,Y ) with a summand of HomD(F (X), F (Y )). To complete the proof, it will suffice
to show that this summand contains every isomorphism from F (X) to F (Y ). In fact, we
will prove something more precise: the induced map of cores F≃ : C≃ → D≃ is a trivial Kan
fibration from C≃ to a summand of D≃. This follows again from Corollary 3.5.1.31, since
F≃ is a Kan fibration (Proposition 4.4.3.7).

We now show that (2) implies (3). As above, we may assume that F is an isofibration.
Let hC and hD denote the homotopy categories of C and D, respectively. We define a
subcategory hD0 ⊆ hD as follows:

• An object X of hD belongs to the subcategory hD0 if and only if it is the image of an
object X of hC.

• A morphism u : X → Y of hD belongs to the subcategory hD0 if and only if it is the
image of a morphism u of hC.

We first claim that the subcategory hD0 is well-defined: that is, if u : X → Y and v : Y → Z

are composable morphisms of hD which can be lifted to morphisms u : X → Y and
v : Y ′ → Z of hC, then the composite morphism v ◦ u has the same property. Assumption
(2) guarantees that the identity morphism idY belongs to the image of the map

HomhC(Y, Y ′) = π0(HomC(Y, Y ′))→ π0(HomD(Y , Y )) ≃ HomhD(Y , Y ).

That is, there exists a morphism e : Y → Y ′ in hC satisfying F (e) = idY . Replacing v by
the composition v ◦ e, we can arrange that Y = Y ′: that is, that u and v are composable
morphisms in the category hC. It then follows that v ◦ u = F (v ◦ u) is also morphism of
hD0, as desired.

By virtue of Proposition 4.1.2.10, the subcategory hD0 ⊆ hD is the homotopy category
of a (unique) subcategory D0 ⊆ D. Using condition (2), we see that the subcategory D0

is replete. By construction, the functor F factors as a composition C F0−→ D0 ↪→ D. For
every pair of objects X,Y ∈ C, we can identify HomD0(F (X), F (Y )) with the summand of
HomD(F (X), F (Y )) given by the essential image of FX,Y . Invoking assumption (2), we see
that the functor F0 is fully faithful. By construction, F0 is also surjective on objects, and is
therefore an equivalence of ∞-categories (Theorem 4.6.2.20). This completes the proof of
the implication (2)⇒ (3).
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We now show that (3) implies (1). Assume that F induces an equivalence from C to
a replete subcategory D0 ⊆ C; we wish to show that F is a monomorphism. By virtue
of Remark 9.2.4.15 (and Example 9.2.4.9), it will suffice to show that the inclusion map
ι : D0 ↪→ D is a monomorphism in QC. Fix an ∞-category B, so that composition with the
homotopy class [ι] induces a map of Kan complexes θ : HomQC(B,D0)→ HomQC(B,D). We
wish to show that θ induces a homotopy equivalence from HomQC(B,D0) to a summand of
HomQC(B,D). By virtue of Remark 5.5.4.5, it will suffice to prove the analogous assertion for
the inclusion map Fun(B,D0)≃ ↪→ Fun(B,D)≃, which follows immediately from Corollary
4.4.3.13.

Corollary 9.2.4.33. 04W6Let F : C → D be a fully faithful functor of ∞-categories. Then F is
a monomorphism in the ∞-category QC.

Proof. Let D0 ⊆ D be the essential image of F . By virtue of Proposition 9.2.4.32, it will
suffice to show that F induces an equivalence from C to D0, which is a reformulation of the
requirement that F is fully faithful (Corollary 4.6.2.22).

Warning 9.2.4.34. 04W7Let C be an ∞-category and let C0 ⊆ C be a subcategory. Beware
that, if we do not assume that C0 is replete (or full), then the inclusion functor C0 ↪→ C
need not be a monomorphism in QC. For example, suppose that C = N•(D) is the nerve
of a category D. Then the 0-skeleton C0 = sk0(C) is always subcategory of C (namely, the
subcategory spanned by the identity morphisms of C). However, the inclusion C0 ↪→ C is a
monomorphism in QC if and only if every isomorphism in D is an identity morphism.
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Chapter 10

Exactness and Animation

04QH 10.1 Simplicial Objects of ∞-Categories

04QJ Let C be a category. Recall that a simplicial object of C is a functor ∆op → C, where
∆ is the simplex category introduced in Definition 1.1.0.2. This notion has an obvious
counterpart in the setting of ∞-categories:

Definition 10.1.0.1 (Simplicial Objects).04QK Let C be an ∞-category. A simplicial object of C
is a functor from the ∞-category N•(∆op) to C. A cosimplicial object of C is a functor from
N•(∆) to C.

Notation 10.1.0.2.04QL Let C be an ∞-category. We will often use the notation X• to indicate
a simplicial object of C. In this case, we write Xn for the value of the functor X• on the
object [n] ∈ ∆op. Similarly, we often use an expression like X• to indicate a cosimplicial
object of C, and Xn for its value on the object [n] ∈∆.

Example 10.1.0.3.04QM Let C be a category. Then (co)simplicial objects of the ∞-category
N•(C) (in the sense of Definition 10.1.0.1) can be identified with (co)simplicial objects of C
(in the sense of Definition 1.1.0.4).

Notation 10.1.0.4 (Face and Degeneracy Operators).04QN Let X• be a simplicial object of
an ∞-category C. For every pair of integers 0 ≤ i ≤ n, we let sni : Xn → Xn+1 denote
the morphism induced by the surjection σin : [n+ 1] ↠ [n] of Construction 1.1.2.1; we will
refer to sni as the ith degeneracy operator for the simplicial object X•. If n > 0, we let
dni : Xn → Xn−1 denote the morphism induced by the inclusion of linearly ordered sets
δin : [n − 1] ↪→ [n] introduced in Construction 1.1.1.4. We will refer to dni as the ith face
operator of X•.

Warning 10.1.0.5.04QP If C is an ordinary category, then a simplicial object X• of C is completely
determined by the collection of objects {Xn}n≥0, together with the face and degeneracy

2023
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operators
dni : Xn → Xn−1 sni : Xn → Xn+1

(see Proposition 1.1.2.14). In the setting of ∞-categories, this is no longer true.

10.1.1 Geometric Realization

04QQLet S be a simplicial set. Recall that the geometric realization of S is a topological space
|S| which corepresents the functor

(X ∈ Top) 7→ HomSet∆(S, Sing•(X));

here Top denotes the category whose objects are topological spaces and whose morphisms are
continuous functions (Definition 1.2.3.1). This property determines the topological space |S|
up to homeomorphism: that is, up to isomorphism in the category Top. We now formulate a
homotopy-invariant counterpart of this universal property, which determines the topological
space |S| up to homotopy equivalence (rather than homeomorphism). In what follows, we
regard Top as a simplicially enriched category (see Example 2.4.1.5), and we let Nhc

• (Top)
denote its homotopy coherent nerve.

Proposition 10.1.1.1. 04QRLet S be a simplicial set. Then the geometric realization |S| is a
colimit of the diagram

N•(∆op) S−→ N•(Set) ⊂ Nhc
• (Top).

Proposition 10.1.1.1 admits a more combinatorial formulation:

Variant 10.1.1.2. 04QSLet S = S• be a simplicial set. Then the Kan complex Sing•(|S|) is a
colimit of the diagram

N•(∆op) S−→ N•(Set) ⊂ S .

Proof of Variant 10.1.1.2. Let Kan denote the ordinary category of Kan complexes, and let
F : ∆op → Kan be the functor which carries each object [n] ∈∆op to the set of n-simplices
Sn (regarded as a constant simplicial set). Let holim

−→
(F ) denote the homotopy colimit

of the diagram F (Construction 5.3.2.1). By virtue of Proposition 7.5.7.1 (and Example
1.4.2.5), it will suffice to show that there is a weak homotopy equivalence of simplicial sets
v : holim

−→
(F )op → Sing•(|S|). Using Example 5.3.2.5 (and Example 5.2.6.4), we can identify

holim
−→

(F )op with the nerve of the category of simplices ∆S (see Construction 1.1.3.9). We
complete the proof by taking v to be the composition

N•(∆S) ψ−→ S
u−→ Sing•(|S|),

where u is the weak homotopy equivalence of Theorem 3.6.4.1 and ψ : N•(∆S) → S is
the comparison map of Construction 3.3.3.9. By virtue of Variant 6.3.7.4, the morphism
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ψ is universally localizing, and is therefore also a weak homotopy equivalence (Remark
6.3.6.5).

Proof of Proposition 10.1.1.1. Let T be the ∞-category Nhc
• (Top), and let T 0 ⊆ T be the

full subcategory spanned by those topological spaces which have the homotopy type of a
CW complex. It follows from Example 6.2.2.7 that T 0 is a coreflective subcategory of T ; in
particular, the inclusion map T 0 ↪→ T preserves colimits (Variant 7.1.3.24). It will therefore
suffice to show that for every simplicial set S, the geometric realization |S| is a colimit of
the diagram N•(∆op) S−→ N•(Set) ⊂ T 0. This is a reformulation of Variant 10.1.1.2, since
the functor X 7→ Sing•(X) determines an equivalence of ∞-categories T 0 → S (Remark
5.5.1.9).

Motivated by Proposition 10.1.1.1, we introduce the following terminology:

Definition 10.1.1.3 (Geometric Realization).04QT Let X• be a simplicial object of an ∞-
category C. We will say that an object X ∈ C is a geometric realization of X• if it is a
colimit of the diagram X• : N•(∆op)→ C.

Warning 10.1.1.4.04QU Let S = S• be a simplicial set. Proposition 10.1.1.1 asserts that the
topological space |S| introduced in §1.2.3 is a geometric realization of S (in the sense of
Definition 10.1.1.3), provided that we regard S as a simplicial object of the ∞-category
Nhc
• (Top) (by equipping each of the sets Sn with the discrete topology). Beware that |S•|

is usually not a geometric realization of S (in the sense of Definition 10.1.1.3) if we regard
S as a simplicial object of the ∞-category N•(Set). The latter is a colimit of the diagram
∆op S−→ Set, which identifies with the set of connected components π0(S) (see Remark
1.2.1.20), or equivalently with the set of path components of the topological space |S| (see
Corollary 1.2.3.19).

Notation 10.1.1.5.04QV Let X• be a simplicial object of an ∞-category C. It follows from
Proposition 7.1.1.12 that, if X• admits a geometric realization X, then the isomorphism
class of X is uniquely determined. To emphasize this, we will often denote X by |X•| and
refer to it as the geometric realization of X•. Beware that, in the case where C is (the nerve
of) the category of sets, this is incompatible with the convention of Notation 1.2.3.3 (see
Warning 10.1.1.4).

Exercise 10.1.1.6.04QW Let X• be a simplicial object of an ordinary category C. Show that an
object X ∈ C is a geometric realization of X• (in the ∞-category N•(C)) if and only if it is a
coequalizer of the face operators d1

0, d
1
1 : X1 ⇒ X0. For a slightly more general statement,

see Corollary 10.1.2.12.

Example 10.1.1.7 (Simplicial Abelian Groups).04QX Let Ab denote the category of abelian
groups. By virtue of the Dold-Kan correspondence (Theorem 2.5.6.1), there is an equivalence
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of categories Fun(∆op,Ab)→ Ch(Z)≥0, which carries each simplicial abelian group A• to
its normalized Moore complex

N∗(A) = (· · · → N2(A) ∂−→ N1(A) ∂−→ N0(A)).

Under this equivalence, the coequalizer of the pair of face operators d1
0, d

1
1 : A1 ⇒ A0 can

be identified with the 0th homology group H0(N∗(A)) = coker(∂ : N1(A) → N0(A)), or
alternatively with the homotopy group π0(A•) (see Exercise 3.2.2.22). Using Exercise 10.1.1.6
we see that the π0(A) can be regarded as a geometric realization of A• in the category of
abelian groups. In particular, the forgetful functor Ab→ Set commutes with the formation
of geometric realizations (this is a special case of a more general phenomenon, which we will
return to in §[?]).

Remark 10.1.1.8. 04QYLet X• be a simplicial object of a category C. It follows from Exercise
10.1.1.6 that a geometric realization of X• (if it exists) depends only on the pair of face
operators d1

0, d
1
1 : X1 ⇒ X0. Beware that, in the ∞-categorical setting, this is generally not

true: the geometric realization |X•| is sensitive to information about the entire simplicial
object X•.

Variant 10.1.1.9. 04QZLet X• be a cosimplicial object of an ∞-category C. We will say that an
object X ∈ C is a totalization of X• if it is a limit of the diagram X• : N•(∆)→ C. If this
condition is satisfied, then X is uniquely determined up to isomorphism. To emphasize this,
we will often denote X by Tot(X•) and refer to it as the totalization of X•.

For many applications, the language of Definition 10.1.1.3 is insufficiently precise. Given
a simplicial object X• of an ∞-category C, we would like to view its geometric realization
|X•| not abstractly as an object of C, but as an object of the coslice ∞-category CX•/. For
this purpose, it will be convenient to introduce some additional terminology.

Definition 10.1.1.10 (The Augmented Simplex Category). 04R0For each integer n ≥ −1, let
[n] denote the linearly ordered set {0 < 1 < · · · < n}, so that [−1] is the empty set. We let
∆+ denote the category whose objects are the linearly ordered sets {[n]}n≥−1, and whose
morphisms are nondecreasing functions. We will refer to ∆+ as the augmented simplex
category.

Remark 10.1.1.11. 04R1The augmented simplex category ∆+ of Definition 10.1.1.10 contains
the simplex category ∆ of Definition 1.1.0.2 as a full subcategory (spanned by the objects
[n] for n ≥ 0). Moreover, ∆+ can be obtained from ∆ by adjoining a single object [−1],
which is an initial object satisfying Hom∆+([n], [−1]) = ∅ for n ≥ 0. In other words, ∆+
can be identified with the left cone ∆◁ (see Example 4.3.2.5).

Definition 10.1.1.12 (Augmented Simplicial Objects). 04R2Let C be an ∞-category. An
augmented simplicial object of C is a functor from the ∞-category N•(∆op

+ ) to C. An
augmented cosimplicial object is a functor from the ∞-category N•(∆+) to C.
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Notation 10.1.1.13.04R3 Let C be an∞-category. We will often use the notation X• to indicate
an augmented simplicial object of C. In this case, we write Xn for the value of the functor X•
on the object [n] ∈∆op

+ . Similarly, we often use the expression X• to indicate an augmented
cosimplicial object of C, and Xn for its value on the object [n] ∈∆+.

Remark 10.1.1.14.04R4 Let C be an ∞-category. Every augmented simplicial object of C
determines a simplicial object of C, by restriction along the inclusion of full subcategories
∆op ↪→ ∆op

+ . For this reason, we will sometimes use the notation X• to indicate an
augmented simplicial object of C, to distinguish it from the underlying simplicial object
X• = X•|N•(∆op).

Remark 10.1.1.15.04R5 Let C be an ∞-category containing an object X. By virtue of Remark
10.1.1.11, the following data are equivalent:

• Augmented simplicial objects N•(∆op
+ )→ C carrying the object [−1] to X.

• Simplicial objects of the slice ∞-category C/X .

We will often invoke this equivalence implicitly, using the notation X• to indicate both an
augmented simplicial object of C (satisfying X−1 = X) and the associated simplicial object
of C/X .

Definition 10.1.1.16.04R6 Let C be an ∞-category containing an object X, let X• be an
augmented simplicial object of C satisfying X−1 = X, and let X• = X•|N•(∆op) denote its
underlying simplicial object. We will say that X• exhibits X as a geometric realization of
X• if it is a colimit diagram in the ∞-category C, in the sense of Variant 7.1.2.5.

Similarly, if X• is an augmented cosimplicial object of C satisfying X
−1 = X and

X• = X
•|N•(∆) is the underlying cosimplicial object, we say that X• exhibits X as a

totalization of X• if it is a limit diagram in the ∞-category C, in the sense of Definition
7.1.2.4.

Remark 10.1.1.17.04R7 Let C be an ∞-category, let X• be a simplicial object of C, and let
X be an object of C. Then X is a geometric realization of X• (in the sense of Definition
10.1.1.3) if and only if there exists an augmented simplicial object X• which exhibits X as a
geometric realization of X• (in the sense of Definition 10.1.1.16). See Remark 7.1.2.7.

10.1.2 Semisimplicial Objects

04R8 Let ∆ denote the simplex category (Definition 1.1.0.2), and let ∆inj denote the subcate-
gory of ∆ whose morphisms are strictly increasing functions [m] ↪→ [n] (Definition 1.1.1.2).
It will often be useful to consider the following variant of Definition 10.1.0.1:
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Definition 10.1.2.1 (Semisimplicial Objects). 04R9Let C be an ∞-category. A semisimplicial
object of C is a functor N•(∆op

inj)→ C. A cosemisimplicial object of C is a functor N•(∆inj)→
C.

Notation 10.1.2.2. 04RALet C be an ∞-category. We will often use the notation X• to indicate
a semisimplicial object of C. In this case, we write Xn for the value of the functor X• on the
object [n] ∈∆op

inj. Similarly, we often use an expression like X• to indicate a cosemisimplicial
object of C, and Xn for its value on the object [n] ∈∆inj.

Example 10.1.2.3. 04RBLet C be a category. Then (co)semisimplicial objects of the ∞-category
N•(C) (in the sense of Definition 10.1.2.1) can be identified with (co)semisimplicial objects
of C (in the sense of Definition 1.1.1.2).

Example 10.1.2.4. 04RCLet C be an ∞-category and let X• be a simplicial object of C. The
composite functor

N•(∆op
inj) ⊂ N•(∆op) X•−−→ C

is a semisimplicial object of C, which we will refer to as the underlying semisimplicial object
of X•. We will often abuse notation by identifying X• with its underlying semisimplicial
object. Similarly, every cosimplicial object X• of C has an underlying cosemisimplicial object,
given by the composition

N•(∆inj) ⊂ N•(∆) X•−−→ C .

Remark 10.1.2.5 (Face Operators). 04RDLet X• be a semisimplicial object of an ∞-category.
For every pair of integers 0 ≤ i ≤ n with n > 0, we let dni : Xn → Xn−1 denote the morphism
induced by the inclusion of linearly ordered sets δin : [n−1] ↪→ [n] introduced in Construction
1.1.1.4. We will refer to dni as the ith face operator of the semisimplicial object X•.

The utility of Definition 10.1.2.1 stems in part from the fact that, for many purposes,
passage from simplicial to semisimplicial objects does not lose very much information.

Proposition 10.1.2.6. 04REThe inclusion ∆inj ⊂ ∆ determines a left cofinal functor of ∞-
categories N•(∆inj) ↪→ N•(∆).

Proof. By virtue of Theorem 7.2.3.1, it will suffice to show that for every integer n ≥ 0, the
category C = ∆inj×∆ ∆/[n] has weakly contractible nerve. Let C0 ∈ C denote the object
corresponding to the inclusion map [0] ≃ {n} ↪→ [n]. For every object C ∈ C, given by
a nondecreasing function α : [m] → [n], we let F (C) ∈ C denote the object given by the
nondecreasing function α+ : [m+ 1]→ [n] given by the formula

α+(i) =

α(i) if 0 ≤ i ≤ m
n if i = m+ 1.
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Note that we have canonical maps C β−−−→ F (C) β+←−− C0, given by the inclusions

{0 < 1 < · · · < m} ↪→ {0 < 1 < · · · < m+ 1} ←↩ {m+ 1}.

These morphisms depend functorially on C, and therefore furnish natural transformations
of functors idC → F ← C0, where C0 : C → C denotes the constant functor taking the value
C0. It follows that the identity morphism of the simplicial set N•(C) is homotopic to the
constant morphism N•(C) ↠ {C0} ↪→ N•(C), so that the simplicial set N•(C) is contractible
(and, in particular, it is weakly contractible).

Corollary 10.1.2.7.04RF Let C be an ∞-category and let X• be a simplicial object of C. Then
an object X ∈ C is a geometric realization of X• (in the sense of Definition 10.1.1.3) if and
only if it is a colimit of the underlying diagram N•(∆op

inj) ⊂ N•(∆op) X•−−→ C.

Proof. Combine Proposition 10.1.2.6 with Corollary 7.2.2.11.

Example 10.1.2.8.04RG Let S be a simplicial set and let |S| denote its geometric realization
as a topological space (Definition 1.2.3.1). Combining Proposition 10.1.1.1 with Corollary
10.1.2.7, we deduce that the homotopy type of the topological space |S| depends only on the
underlying semisimplicial set of S. Compare with Corollary 3.4.5.5.

Motivated by Corollary 10.1.2.7, we introduce the following terminology:

Definition 10.1.2.9.04RH Let C be an ∞-category and let X• be a semisimplicial object of C.
We say that an object X ∈ C is a geometric realization of X• if it is a colimit of the diagram
X• : N•(∆op

inj)→ C. If X• is a cosemisimplicial object of C, we say that an object X ∈ C is a
totalization of X• if it is a limit of the diagram X• : N•(∆inj)→ C.

Remark 10.1.2.10.04RJ Let X• be a simplicial object of an ∞-category C. Corollary 10.1.2.7
asserts that an object X ∈ C is a geometric realization of X• (in the sense of Definition
10.1.1.3) if and only if it is a geometric realization of the underlying semisimplicial object of
X• (in the sense of Definition 10.1.2.9). In particular, X• admits a geometric realization if
and only if its underlying semisimplicial object admits a geometric realization.

In the setting of classical category theory, the notion of geometric realization can be
made more concrete.

Proposition 10.1.2.11.04RK Let C be a category, let Y be an object of C, and let Y denote the
constant semisimplicial object of C taking the value Y . For every semisimplicial object X•
of C, the evaluation map

HomFun(∆op
inj,C)(X•, Y )→ HomC(X0, Y )

is a monomorphism, whose image is the set of morphisms ϵ : X0 → Y which satisfy the
following condition:
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(∗) The face operators d1
0, d

1
1 : X1 → X0 of the simplicial object X• satisfy ϵ ◦ d1

0 = ϵ ◦ d1
1.

Proof. For every integer n ≥ 0, let ιn denote the inclusion map [0] = {0} ↪→ {0 < 1 < · · · <
n} = [n] and write ι∗n : Xn → X0 for the associated morphism of C. If f• : X• → Y is
a morphism of semisimplicial objects, then we must have fn = f0 ◦ ι∗n for each n ≥ 0; in
particular, f• is uniquely determined by the morphism ϵ = f0. To complete the proof, it will
suffice to show that if a morphism ϵ : X0 → Y satisfies condition (∗), then the collection
{(ϵ ◦ ι∗n) : Xn → Y }n≥0 determines a morphism of semisimplicial objects from X• to Y

(the converse follows immediately from the definitions). Fix a strictly increasing function
α : [m] ↪→ [n]; we wish to show that the diagram

04RLXn

α∗

��

ι∗n // X0

ϵ

��
Xm

ϵ◦ι∗m // Y

(10.1)

commutes. If α(0) = 0, then ιn = α ◦ ιm. It follows that ι∗n = ι∗m ◦ α∗, and the desired
result follows by composing with ϵ on both sides. We may therefore assume without loss
of generality that α(0) > 0. Let β : [1] ↪→ [n] be the strictly increasing function given by
β(0) = 0 and β(1) = α(0). Then (10.1) can be identified with the outer rectangle of the
diagram

Xn

α∗

��

β∗ // X1
d1

1 //

d1
0

��

X0

ϵ

��
Xm

ι∗m // X0
ϵ // Y,

where the left square commutes by the naturality of the construction [k] 7→ Xk, and the
right square commutes by virtue of assumption (∗).

Corollary 10.1.2.12. 04RMLet X• be a semisimplicial object of a category C. Then an object
X ∈ C is a geometric realization of X• (in the ∞-category N•(C)) if and only if it is a
coequalizer of the face operators d1

0, d
1
1 : X1 ⇒ X0.

For some applications, we will need more precise language for discussing geometric
realizations of semisimplicial objects.

Notation 10.1.2.13. 04RNLet ∆+ be the augmented simplex category (Definition 10.1.1.10). We
let ∆inj,+ denote the (non-full) subcategory of ∆+ whose morphisms are strictly increasing
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functions [m] ↪→ [n]. Note that ∆inj,+ can be obtained from the category ∆inj by adjoining
an initial object [−1] satisfying Hom∆+,inj([n], [−1]) = ∅ for n ≥ 0. Consequently, ∆inj,+ can
be identified with the left cone ∆◁

inj (see Example 4.3.2.5).

Proposition 10.1.2.14.04RP The diagram of ∞-categories

N•(∆inj) //

��

N•(∆)

��
N•(∆inj,+) // N•(∆+)

is a categorical pushout square.

Proof. By virtue of Proposition 7.2.2.1, this is a reformulation of Proposition 10.1.2.6.

Definition 10.1.2.15 (Augmented Semisimplicial Objects).04RQ Let C be an ∞-category. An
augmented semisimplicial object of C is a functor from the ∞-category N•(∆op

inj,+) to C. An
augmented cosemisimplicial object is a functor from the ∞-category N•(∆+) to C.

Notation 10.1.2.16.04RR Let C be an∞-category. We will often use the notation X• to indicate
an augmented semisimplicial object of C. In this case, we write Xn for the value of the
functor X• on the object [n] ∈∆op

inj,+. Similarly, we often use the expression X• to indicate
an augmented cosimplicial object of C, and Xn for its value on the object [n] ∈∆inj,+.

Remark 10.1.2.17.04RS Let C be an ∞-category. Every augmented semisimplicial object
of C determines a semisimplicial object of C, by restriction along the inclusion of full
subcategories ∆op

inj ↪→ ∆op
inj,+. For this reason, we will sometimes use the notation X• to

indicate an augmented semisimplicial object of C, to distinguish it from the underlying
simplicial object X• = X•|N•(∆op

inj).

Remark 10.1.2.18.04RT Let C be an ∞-category. It follows from Proposition 10.1.2.14 that
the diagram of ∞-categories

Fun(N•(∆op
+ ), C) //

��

Fun(N•(∆op), C)

��
Fun(N•(∆op

inj,+), C) // Fun(N•(∆op
inj), C)

is a categorical pullback square. In particular, if X• is a simplicial object of C, then the
datum of an augmentation of X• is equivalent to the datum of an augmentation on the
underlying semisimplicial object of X•.
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Remark 10.1.2.19 (Face Operators). 04RUFor every pair of integers 0 ≤ i ≤ n, there is a unique
increasing function δin : [n− 1] ↪→ [n] whose image is the set [n] \ {i}, given concretely by
the formula

δin(j) =

j if j < i

j + 1 if j ≥ i.

If X• is an augmented semisimplicial object of an ∞-category C, then evaluation on the
morphism δin determines a map dni : Xn → Xn−1, which we will refer to as the ith face
operator for the augmented semisimplicial object X•. If n > 0, this recover the face operators
for the underlying semisimplicial object of X• (Remark 10.1.2.5). In the case n = 0, we
obtain a new operator d0

0 : X0 → X−1.

Remark 10.1.2.20. 04RVLet C be an ∞-category containing an object X. By virtue of Remark
10.1.1.11, the following data are equivalent:

• Augmented semisimplicial objects N•(∆op
+ )→ C carrying the object [−1] to X.

• Semisimplicial objects of the slice ∞-category C/X .

We will often invoke this equivalence implicitly, using the notation X• to indicate both an
augmented simplicial object of C (satisfying X−1 = X) and the associated simplicial object
of C/X .

Remark 10.1.2.21 (Augmented Moore Complexes). 04RWLet A• be an augmented semisimplicial
object of the category of abelian groups. For each n ≥ 0, let ∂ : An → An−1 denote the
group homomorphism given by the alternating sum

∂(σ) =
n∑
i=0

(−1)idni (σ).

The diagram
· · · → A2

∂−→ A1
∂−→ A0

∂−→ A−1

is a chain complex of abelian groups which we will denote by Caug
∗ (A) and refer to as the

augmented Moore complex of A•. Note that, when restricted to nonnegative degrees, this
recovers the Moore complex of the underlying semisimplicial abelian group (see Construction
2.5.5.1).

Variant 10.1.2.22. 04RXLet A• be an augmented simplicial object of the category of abelian
groups. Let us abuse notation by identifying A• with the underlying simplicial abelian group,
and let

D∗(A) ⊆ C∗(A) ⊆ Caug
∗ (A)
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be the subcomplex generated by the images of the degeneracy operators (see Proposition
2.5.5.6). We let Naug

∗ (A) denote the quotient complex Caug
∗ (A)/D∗(A), which we will refer to

as the normalized augmented Moore complex of A•. Note that, when restricted to nonnegative
degrees, this recovers the normalized Moore complex of the underlying simplicial abelian
group (Construction 2.5.5.7).

Definition 10.1.2.23.04RY Let C be an ∞-category containing an object X, let X• be an
augmented semisimplicial object of C satisfying X−1 = X, and let X• = X•|N•(∆op

inj) denote
its underlying semisimplicial object. We will say that X• exhibits X as a geometric realization
of X• if it is a colimit diagram in the ∞-category C, in the sense of Variant 7.1.2.5.

Similarly, if X• is an augmented cosemisimplicial object of C satisfying X−1 = X and
X• = X

•|N•(∆inj) is the underlying cosemisimplicial object, we say that X• exhibits X as
a totalization of X• if it is a limit diagram in the ∞-category C, in the sense of Definition
7.1.2.4.

Remark 10.1.2.24.04RZ Let C be an ∞-category, let X• be a semisimplicial object of C, and
let X be an object of C. Then X is a geometric realization of X• (in the sense of Definition
10.1.2.9) if and only if there exists an augmented semisimplicial object X• which exhibits X
as a geometric realization of X• (in the sense of Definition 10.1.2.23). See Remark 7.1.2.7.

By virtue of Example 4.3.2.15, we can formulate Proposition 10.1.2.11 as follows:

Proposition 10.1.2.25.04S0 Let C be a category, let X be an object of C, and let X• be a
semisimplicial object of C. The following data are equivalent:

• Extensions of X• to an augmented semisimplicial object X• satisfying X−1 = X.

• Morphisms ϵ : X0 → X satisfying ϵ ◦ d1
0 = ϵ ◦ d1

1, where d1
0, d

1
1 : X1 ⇒ X0 are the face

operators of the semisimplicial object X•.

Here the equivalence is implemented by taking ϵ to be the face operator d0
0 : X0 → X−1 of

Remark 10.1.2.19.

Remark 10.1.2.26.04S1 In the situation of Proposition 10.1.2.25, the augmented semisimplicial
object X• exhibits X as a geometric realization of X• (in the sense of Definition 10.1.1.16)
if and only if it the morphism ϵ exhibits X as a coequalizer of the face operators d1

0, d
1
1 :

X1 ⇒ X0.

Combining Propositions 10.1.2.25 and 1.1.1.9, we obtain an explicit characterization of
augmented semisimplicial objects of ordinary categories:

Corollary 10.1.2.27.04S2 Let C be a category and let {Xn}n≥−1 be a sequence of objects of
C. Then a system of morphisms {dni : Xn → Xn−1}0≤i≤n arise as the face operators of an
augmented semisimplicial object X• of C if and only if they satisfy the following condition:
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(∗) For all integers n > 0 and 0 ≤ i < j ≤ n, we have an equality dn−1
i ◦ dnj = dn−1

j−1 ◦ dni (as
morphisms from Xn to Xn−2).

If this condition is satisfied, then the augmented semisimplicial object X• is uniquely deter-
mined.

Variant 10.1.2.28. 04S3Let C be a category and let {Xn}n≥−1 be a sequence of objects of C.
Then morphisms

{dni : Xn → Xn−1}0≤i≤n {sni : Xn → Xn+1}0≤i≤n

are the face and degeneracy operators for an augmented simplicial object X• of C if and
only if they satisfy the following conditions:

(1) For all integers n > 0 and 0 ≤ i < j ≤ n, we have an equality dn−1
i ◦ dnj = dn−1

j−1 ◦ dni (as
morphisms from Xn to Xn−2).

(2) For all integers 0 ≤ i ≤ j ≤ n, we have an equality sn+1
i ◦ snj = sn+1

j+1 ◦ sni (as morphisms
from Xn to Xn+2).

(3) For all integers 0 ≤ i, j ≤ n, we have an equality

dn+1
i ◦ snj =


sn−1
j−1 ◦ dni if i < j

idXn if i = j or i = j + 1
sn−1
j ◦ dni−1 if i > j + 1

(as morphisms from Xn to Xn).

If these conditions are satisfied, then the augmented simplicial object X• is uniquely
determined.

Proof. Combine Proposition 1.1.2.14, Remark 10.1.2.18, and Corollary 10.1.2.27.

We close this section with a few remarks concerning the relationship between simplicial
and semisimplicial objects.

Proposition 10.1.2.29. 04S4Let C be an ∞-category which admits finite coproducts and let X•
be a semisimplicial object of C. Then there exists a simplicial object X+

• of C and a natural
transformation of semisimplicial objects f• : X• → X+

• which exhibits X+
• as a left Kan

extension of X• along the inclusion map N•(∆op
inj) ⊆ N•(∆op).

Proof. We will show that X• satisfies the criterion of Proposition 7.3.5.1. Fix an object
[n] ∈∆, let E denote the fiber product ∆inj×∆ ∆[n]/, and let F denote the composite map

N•(Eop)→ N•(∆op
inj)

X•−−→ C .
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We wish to show that F admits a colimit in C.
By definition, objects of the category E can be identified with pairs ([m], α), where [m]

is an object of ∆inj is an integer and α : [n]→ [m] is a nondecreasing function. Let E0 ⊆ E
denote the full subcategory spanned by those objects ([m], α) where α is a surjection. Note
that any morphism α : [n]→ [m] in ∆ factors uniquely as a composition [n] α′−→ [m′] β−→ [m],
where α′ is a surjection and β is an injection. The pair ([m′], α′) is then an object of
the subcategory E0, and the morphism β : ([m′], α′)→ ([m], α) exhibits exhibits ([m′], α′)
as a E0-coreflection of ([m], α) (see Definition 6.2.2.1). It follows that the inclusion map
N•(Eop

0 ) ↪→ N•(Eop) is right cofinal (Corollary 7.2.2.7). Consequently, to show that F admits
a colimit in C, it will suffice to show that the restriction F |N•(Eop

0 ) admits a colimit in C
(Corollary 7.2.2.10). Since the category E0 has finitely many objects and only identity
morphisms, this follows from our assumption that C admits finite coproducts.

Remark 10.1.2.30.04S5 Let C be an ∞-category, let Y• be a simplicial object of C, and suppose
we are given a morphism f• : X• → Y• of semisimplicial objects of C. It follows from the
proof of Proposition 10.1.2.29 that f• exhibits Y• as a left Kan extension of X• along the
inclusion map N•(∆op

inj) ⊆ N•(∆op) if and only if, for every integer n ≥ 0, the following
condition is satisfied:

(∗n) Let E be the collection of all surjections α : [n] ↠ [m] in the category ∆. For each
α ∈ E, let gα : Xm → Yn be a composition of fm : Xm → Ym with the morphism
α∗ : Ym → Yn. Then the collection {gα}α∈E exhibit Yn as a coproduct of the collection
of objects {Xm}(α:[n]↠[m])∈E .

Compare with Construction 3.3.1.6.

10.1.3 Skeletal Simplicial Objects

05G3 Recall that every set S can be regarded as a simplicial set, by identifying it with the
constant functor

S : ∆op → {S} ↪→ Set .

This construction has a counterpart in an ∞-category:

Definition 10.1.3.1.05G4 Let C be an ∞-category. For each object C ∈ C, we let C denote the
simplicial object of C given by the constant functor

N•(∆op)→ {C} ↪→ C .

We say that a simplicial object X• of C is constant if it is equal to C, for some object C ∈ C
(in this case, we must have C = X0). We say that X• is essentially constant it is isomorphic
to a constant simplicial object C, for some C ∈ C.
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Proposition 10.1.3.2. 05G5Let C be an ∞-category and let X• be a simplicial object of C. The
following conditions are equivalent:

(1) The simplicial object X• is essentially constant: that is, there exists an isomorphism of
simplicial objects α : C → X• for some object C ∈ C.

(2) The functor X• : N•(∆op) → C carries each morphism in the category ∆op to an
isomorphism in the ∞-category C.

(3) The functor X• is left Kan extended from the full subcategory {[0]} ⊆ N•(∆op).

(4) For every simplicial object Y• of C, the restriction map

HomFun(N•(∆op),C)(X•, Y•)→ HomC(X0, Y0)

is a homotopy equivalence.

Proof. The equivalences (1)⇔ (2)⇔ (3) are special cases of Corollary 7.3.3.14, since [0] is a
final object of the category ∆. The equivalence (3)⇔ (4) follows from Corollary 7.3.6.13.

We now introduce a generalization of Definition 10.1.3.1.

Notation 10.1.3.3. 05G6Let ∆ denote the simplex category (Definition 1.1.0.2). For every
integer n, we let ∆≤n denote the full subcategory of ∆ spanned by those objects [m] = {0 <
1 < · · · < m} where 0 ≤ m ≤ n (see Construction 1.1.3.9).

Definition 10.1.3.4. 05G7Let C be an ∞-category and let n be an integer. We say that a
simplicial object X• of C is n-skeletal if the functor

N•(∆)op X•−−→ C

is left Kan extended from the full subcategory N•(∆≤n)op ⊆ N•(∆)op.

Example 10.1.3.5. 05G8Let C be an∞-category. A simplicial object X• of C is 0-skeletal (in the
sense of Definition 10.1.3.4) if and only if it is essentially constant (in the sense of Definition
10.1.3.1). See Proposition 10.1.3.2.

Example 10.1.3.6. 05G9Let X• be a simplicial set and let n be an integer. Then X• is n-skeletal
(in the sense of Definition 10.1.3.4) if and only if it has dimension ≤ n (in the sense of
Definition 1.1.3.1) . This is a reformulation of Proposition 1.1.3.11 (see Remark 1.1.3.12).

Exercise 10.1.3.7. 05GALet n be an integer. Show that a simplicial abelian group A• is n-
skeletal (when regarded as a simplicial object of the ∞-category N•(Ab)) if and only if the
normalized Moore complex

· · · → N2(A) ∂−→ N1(A) ∂−→ N0(A)
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is concentrated in degrees ≤ n: that is, the abelian group Nk(A) vanishes for k > n. Beware
that this condition does not guarantee that A• is n-skeletal when regarded as a simplicial
set.

Remark 10.1.3.8 (Monotonicity).05GB Let X• be a simplicial object of an ∞-category C and
let m ≤ n be integers. If X• is m-skeletal, then it is also n-skeletal. See Corollary 7.3.8.8.

Remark 10.1.3.9.05GC In the formulation of Definition 10.1.3.4, we allow n to be an arbitrary
integer. However, for n < 0, the notion becomes degenerate: a simplicial object X• is
n-skeletal if and only if each Xm is an initial object of C. In this case, X• is an initial object
in the ∞-category of simplicial objects Fun(N•(∆)op, C).

To make Definition 10.1.3.4 more explicit, it will be convenient to introduce an auxiliary
construction.

Construction 10.1.3.10 (Degeneracy Cubes).05GD Fix an integer k ≥ 0, set K = {1, 2, · · · , k},
and let k = K denote the simplicial cube of dimension k (Notation 2.4.5.2). Recall that
k can be identified with the nerve of the set P (K) of subsets of K, partially ordered with

respect to inclusion.
For every subset J ⊆ K having cardinality j, let αJ : [k] ↠ [j] denote the nondecreasing

function function which carries an element k′ ∈ [k] to the cardinality of the intersection
J ∩ {1, 2, · · · , k′}. The construction J 7→ αJ then determines a functor from P (K)op to the
coslice category ∆[k]/.

If C is an ∞-category and X• is a simplicial object of C, we let σk : k → C denote the
map given by the composition

k ≃ N•(P (K)) J 7→αJ−−−−→ N•(∆[k]/)op → N•(∆)op X•−−→ C .

We will refer to σk as the kth degeneracy cube of the simplicial object X•.

Example 10.1.3.11.05GE Let X• be a simplicial object of an ∞-category C. For small values
of k, the degeneracy cube σk : k → C of Construction 10.1.3.10 can be described more
concretely:

• The degeneracy cube σ0 can be identified with the object X0 of C.

• The degeneracy cube σ1 can be identified with the degeneracy operator s0
0 : X0 → X1

of Notation 10.1.0.4.
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• The degeneracy cube σ2 is a square diagram

X0
s0

0 //

s0
0

��

X1

s1
0

��
X1

s1
1 // X2

which witnesses the identity [s1
0] ◦ [s0

0] = [s1
1] ◦ [s0

0] in the homotopy category hC.

Notation 10.1.3.12. 05GFLet k be a nonnegative integer. For every integer n, we let ∆≤n[k]/
denote the full subcategory of the coslice category ∆[k]/ spanned by objects which correspond
to nondecreasing functions [k]→ [m], where m ≤ n.

Lemma 10.1.3.13. 05GGLet k ≥ 0 and n be integers, let K = {1, · · · , k}, and let P≤n(K)
denote the partially ordered collection of all subsets J ⊆ K which have cardinality ≤ n.
Then the assignment J 7→ αJ of Construction 10.1.3.10 determines a right cofinal functor
of ∞-categories

α : N•(P≤n(K))→ N•(∆≤n[k]/)
op.

Proof. This is a special case of Corollary 7.2.3.7, since the functor α has a left adjoint (which
carries a morphism f : [k]→ [m] to the subset J = {j ∈ K : f(j−1) < f(j)} ∈ P≤n(K)).

Proposition 10.1.3.14. 05GHLet C be an ∞-category, let X• be a simplicial object of C, and let
n be an integer. The following conditions are equivalent:

(1) The simplicial object X• is n-skeletal, in the sense of Definition 10.1.3.4.

(2) Let k ≥ 0 be a nonnegative integer and set K = {1, 2, · · · , k}. Then the kth degeneracy
cube

σk : k = N•(P (K))→ C

exhibits Xk as a colimit of the diagram σk|N•(P≤n(K)).

(3) For every nonnegative integer k > n, the k-degeneracy cube σk is a colimit diagram in C.

Proof. The equivalence (1)⇔ (2) follows immediately from Lemma 10.1.3.13 (together with
Corollary 7.2.2.3). For each integer k ≥ 0, set K = {1, 2, · · · , k} and consider the following
conditions:

(2k) The degeneracy cube σk : N•(P (K)) → C exhibits Xk as a colimit of the diagram
σk|N•(P≤n(K)).

(3k) The degeneracy cube σk is a colimit diagram in C.
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Note that condition (2k) is automatic for k ≤ n. We will complete the proof by showing
that if k > n and condition (2ℓ) is satisfied for every integer 0 ≤ ℓ < k, then conditions
(2k) and (3k) are equivalent. Our hypothesis that condition (2ℓ) is satisfied for ℓ < k

guarantees that the functor σk|N•(P≤k−1(K)) is left Kan extended from the full subcategory
N•(P≤n(K)) ⊆ N•(P≤k−1(K)). The equivalence of (2k) and (3k) is therefore a special case
of Corollary 7.3.8.2.

Remark 10.1.3.15.05GJ Let C be an ∞-category and let n be an integer. Using Proposition
10.1.3.14, we see that the condition that a simplicial object X• of C is n-skeletal depends only
on the restriction of X• to the (non-full) subcategory N•(∆surj)op ⊂ N•(∆)op (see Notation
1.1.2.12). Stated more informally (and slightly incorrectly), the condition of n-skeletality
depends only on the degeneracy operators of X•, and not on its face operators.

Corollary 10.1.3.16.05GK Let C be an ∞-category and let n ≥ 0 be an integer. Then a
simplicial object X• of C is (n− 1)-skeletal if and only if it is n-skeletal and the degeneracy
cube σn : n → C is a colimit diagram in C.

Corollary 10.1.3.17.05GL Let F : C → D be a functor of ∞-categories and let n ≥ 0 be an
integer. Assume that C admits pushouts and that F preserves pushouts. If X• is an n-skeletal
simplicial object of C, then F (X•) is an n-skeletal simplicial object of D.

Proof. Fix an integer k > n, and let σk : k → C be the kth degeneracy cube of the simplicial
object X•. Set K = {1, 2, · · · , k}, and let P>0(K) denote the collection of all nonempty
subsets of K. Then σk can be identified with a functor σ◦k from N•(P>0(K)) to the coslice
∞-category CX0/. Our assumption that X• is n-skeletal guarantees that σk is a colimit
diagram in C (Proposition 10.1.3.14), or equivalently that σ◦k is a colimit diagram in the
∞-category CX0/ (Remark 7.1.2.11). Since the functor F preserves pushouts, the induced
functor of coslice ∞-categories FX0/ : CX0/ → DF (X0)/ preserves finite colimits (Example
7.6.3.28). In particular, FX0/ ◦ σ◦k is a colimit diagram in the ∞-category DF (X0)/, so that
F ◦ σk is a colimit diagram in D (Remark 7.1.2.11). Allowing k to vary, we conclude that
F (X•) is an n-skeletal simplicial object of D (Proposition 10.1.3.14).

Let X = X• be a simplicial set. Recall that the n-skeleton of X is the largest simplicial
subset skn(X) ⊆ X of dimension ≤ n (see Construction 1.1.4.1 and Corollary 1.1.4.7). This
construction has a counterpart for more general simplicial objects.

Definition 10.1.3.18.05GM Let C be an ∞-category, let u : Y• → X• be a morphism between
simplicial objects of C, and let n be an integer. We will say that u exhibits Y• as an n-skeleton
of X• if the following conditions are satisfied:

• The simplicial object Y• is n-skeletal.
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• For 0 ≤ m ≤ n, the induced map Ym → Xm is an isomorphism in the ∞-category C.

Example 10.1.3.19. 05GNLet X = X• be a simplicial set. For every integer n, the inclusion of
simplicial sets skn(X) ↪→ X exhibits skn(X) as an n-skeleton of X, in the sense of Definition
10.1.3.18: see Proposition 1.1.4.6.

Remark 10.1.3.20 (Uniqueness). 05GPLet C be an ∞-category, let X• be a simplicial object
of C, and let n be an integer. If there exists a morphism of simplicial objects u : Y• → X•
which exhibits Y• as an n-skeleton of X•, then Y• is uniquely determined up to isomorphism
and depends functorially on X•. To emphasize this dependence, we will denote the object
Y• by skn(X) and refer to to it as the n-skeleton of X•. By virtue of Example 10.1.3.19, this
reduces to the standard definition in the special case where C is (the nerve of) the category
of sets.

Using Corollary 7.3.6.13, we see that the n-skeleton of a simplicial object X• is charac-
terized by the following universal mapping property:

• If Z• is any n-skeletal simplicial object of C, then composition with u induces a
homotopy equivalence of mapping spaces

HomFun(N•(∆)op,C)(Z•, skn(X•))→ HomFun(N•(∆)op,C)(Z•, X•).

Example 10.1.3.21. 05GQLet A• be a simplicial abelian group and let N∗(A) denote the
normalized Moore complex of A• (Construction 2.5.5.7). For every integer n ≥ 0, let N≤n(A)
denote the subcomplex of N∗(A) depicted in the diagram

· · · → 0→ Nn(A) ∂−→ Nn−1(A)→ · · · → N1(A) ∂−→ N0(A)→ 0→ · · ·

Then the inclusion map
K(N≤n(A)) ↪→ K(N∗(A)) ≃ A•

exhibits the Eilenberg-MacLane space K(N≤n(A)) as an n-skeleton of A• in the category of
simplicial abelian groups. Beware that the image of this inclusion is usually larger than the
n-skeleton of A• as a simplicial set (see Exercise 10.1.3.7).

Example 10.1.3.22 (0-Skeleta). 05GRLet C be an ∞-category, let X• be a simplicial object of
C, and set C = X0. Then the constant simplicial object C is an n-skeleton of X•. More
precisely, the identity morphism id : C ∼−→ X0 admits an (essentially unique) extension to a
morphism of simplicial objects C → X• which exhibits C as a 0-skeleton of X•.

Proposition 10.1.3.23 (Existence of Skeleta). 05GSLet C be an ∞-category and let n ≥ 0 be an
integer. If C admits pushouts, then every simplicial object X• of C admits an n-skeleton.
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Proof. We will show that the functor

N•(∆≤n)op ↪→ N•(∆)op X•−−→ C

admits a left Kan extension Y• : N•(∆)op → C; Corollary 7.3.6.13 then guarantees that there
is an (essentially unique) morphism of simplicial objects u : Y• → X• which is the identity
when restricted to N•(∆≤n)op. By virtue of Corollary 7.3.5.8, it will suffice to show that for
every integer k > n, the diagram

F : N•(∆≤n[k]/)
op → N•(∆≤n)op X•−−→ C

admits a colimit. Set K = {1, 2, · · · , k}, let P≤n(K) denote the collection of all subsets of
K having cardinality ≤ n, and let F0 denote the composition of F with the right cofinal
functor

N•(P≤n(K))→ N•(∆≤n[k]/)
op

supplied by Lemma 10.1.3.13. Let Q ⊆ P≤n(K) denote the collection of nonempty subsets
of K of cardinality ≤ n, so that F0 can be identified with a functor G : N•(Q)→ CX0/. Since
C admits pushouts, the coslice ∞-category CX0/ admits finite limits (Example 7.6.3.28). In
particular, the functor G admits a colimit in CX0/, which we can identify with a colimit of
F0 in the ∞-category C (Remark 7.1.2.11).

Warning 10.1.3.24.05GT If X = X• is a simplicial set, then the comparison map skn(X)→ X

is a monomorphism of simplicial sets. Beware that the analogous statement is generally
false for simplicial objects of more general ∞-categories.

10.1.4 Coskeletal Simplicial Objects

05GU Let S be a set. For each n ≥ 0, we let Čn(S) = Hom([n], S) denote the collection of
functions from the set [n] = {0 < 1 < · · · < n} into S. The construction [n] 7→ Čn(S)
determines a simplicial set Č•(S), which we will refer to as the Čech nerve of S. In this
section, we study an ∞-categorical counterpart of this construction.

Definition 10.1.4.1.04SW Let C be an∞-category and let X• be a simplicial object of C. We will
say that X• is a Čech nerve if, for every integer n ≥ 0, the following condition is satisfied:

(∗n) For 0 ≤ i ≤ n, let νi : Xn → X0 be the morphism of C induced by the inclusion
[0] ≃ {i} ⊆ [n]. Then the morphisms {νi}0≤i≤n exhibit Xn as a product of (n + 1)-
copies of X0.

Remark 10.1.4.2.04SX Let C be an ∞-category and let C• : N•(∆)op → C be a simplicial
object of C. Then X• is a Čech nerve if and only if it is right Kan extended from the full
subcategory of N•(∆)op spanned by the object [0].
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Definition 10.1.4.3. 04SYLet C be an ∞-category and let X be an object of C. We will say
that a simplicial object X• of C is a Čech nerve of X if X• is a Čech nerve (in the sense of
Definition 10.1.4.1) and X0 = X.

Notation 10.1.4.4. 04SZLet C be an ∞-category and let X be an object of C which admits a
Čech nerve X•. It follows from Corollary 7.3.6.13 that, for every simplicial object Y• of C,
the restriction map

HomFun(∆op,C)(Y•, X•)→ HomC(Y0, X0) = HomC(Y0, X)

is a homotopy equivalence. In particular, the simplicial object X• is unique up to isomorphism
and depends functorially on X. To emphasize this dependence, we will denote X• by Č•(X)
and refer to it as the Čech nerve of the object X.

Proposition 10.1.4.5 (Existence). 04T0Let C be an ∞-category and let X be an object of C.
Then X admits a Čech nerve Č•(X) if and only if, for every nonempty finite set J , there
exists a product of J copies of X in the ∞-category C.

Proof. For every integer n ≥ 0, the category {[0]} ×∆ ∆/[n] is isomorphic to the finite set
{0, 1, · · · , n}, regarded as a category having only identity morphisms. By virtue of Remark
10.1.4.2, the desired result is a special case of the existence criterion for Kan extensions
(Corollary 7.3.5.8).

Corollary 10.1.4.6. 04T1Let C be an ∞-category which admits finite products. Then every
object X ∈ C admits a Čech nerve Č•(X).

Remark 10.1.4.7. 04T2Let F : C → D be a functor of ∞-categories which preserves finite
products. Then the induced functor Fun(N•(∆)op, C) → Fun(N•(∆)op,D) carries Čech
nerves to Čech nerves. In particular, if X is an object of C which admits a Čech nerve
Č•(X), then the image Y = F (X) also admits a Čech nerve, given by Č•(Y ) = F (Č•(X)).

Corollary 10.1.4.8. 04T3Let C be an ∞-category which admits finite products. Then the
evaluation functor

Fun(N•(∆)op, C)→ C X• 7→ X0

admits a right adjoint, given on objects by the Čech nerve X 7→ Č•(X).

Proof. Combine Corollaries 10.1.4.6 and 7.3.6.4.

We now introduce a generalization of Definition 10.1.4.1.

Definition 10.1.4.9. 05GVLet C be an ∞-category and let n be an integer. We say that a
simplicial object X• of C is n-coskeletal if the functor

N•(∆)op X•−−→ C

is right Kan extended from the full subcategory N•(∆≤n)op ⊆ N•(∆)op.
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Example 10.1.4.10.05GW Let C be an ∞-category. A simplicial object X• of C is 0-coskeletal if
and only if it is a Čech nerve (Remark 10.1.4.2).

Example 10.1.4.11.05GX Let X• be a simplicial set and let n be an integer. The following
conditions are equivalent:

• The simplicial set X• is n-coskeletal in the sense of Definition 3.5.3.1: that is, the
restriction map HomSet∆(∆m, X)→ HomSet∆(∂∆m, X) is bijective for m > n.

• The simplicial set X• is n-coskeletal in the sense of Definition 10.1.4.9: that is, it is a
right Kan extension of its restriction to (the opposite of) the subcategory ∆≤n ⊂∆.

This is a restatement of Corollary 3.5.3.13 (see Remark 3.5.3.14).

Remark 10.1.4.12 (Monotonicity).05GY Let X• be a simplicial object of an ∞-category C and
let m ≤ n be integers. If X• is m-coskeletal, then it is also n-coskeletal. See Corollary
7.3.8.8.

Remark 10.1.4.13.05GZ In the formulation of Definition 10.1.4.9, we allow n to be an arbitrary
integer. However, for n < 0, the notion becomes degenerate: a simplicial object X• is
n-coskeletal if and only if each Xm is a final object of C. In this case, X• is a final object of
the ∞-category of simplicial objects Fun(N•(∆)op, C).

Definition 10.1.4.9 has a counterpart for semisimplicial objects.

Variant 10.1.4.14.05H0 For every integer n, we let ∆≤ninj = ∆inj ∩∆≤n denote the category
whose objects are linearly ordered sets [m] = {0 < 1 < · · · < m} for 0 ≤ m ≤ n, and
whose morphisms are strictly increasing functions. If C is an ∞-category, we say that a
semisimplicial object X• : N•(∆inj)op → C is n-coskeletal if it is right Kan extended from
the full subcategory N•(∆≤ninj )op.

Proposition 10.1.4.15.05H1 Let C be an ∞-category, let n be an integer, and let X• be a
simplicial object of C. Then X• is n-coskeletal (in the sense of Definition 10.1.4.9) if and
only if its underlying semisimplicial object is n-coskeletal (in the sense of Variant 10.1.4.14).

Proof. Fix an integer k ≥ 0, ∆≤n/[k] denote the full subcategory of ∆/[k] spanned by those
objects which correspond to nondecreasing functions α : [m] → [k] where m ≤ n, and let
J be the full subcategory of ∆≤n/[k] spanned by those objects where α is strictly increasing.
Unwinding the definitions, we see that X• is n-coskeletal if and only if, for every integer
k ≥ 0, the composite functor

F : N•((∆≤n/[k]))
▷ ↪→ N•(∆▷

/[k])→ N•(∆) X•−−→ Cop
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is a colimit diagram in the ∞-category Cop. Similarly, the underlying semisimplicial object
of X• is n-coskeletal if and only if, for every integer k ≥ 0, the restriction F |N•(J )▷ is a
colimit diagram in Cop. Consequently, to show that these conditions are equivalent, it will
suffice to prove that the inclusion functor N•(J ) ↪→ N•(∆≤n/[k]) is right cofinal (Corollary
7.2.2.3). This is a special case of Corollary 7.2.3.7, since the inclusion functor J ↪→∆≤n/[k]
has a left adjoint (which carries a nondecreasing function α : [m]→ [k] to the inclusion map
im(α) ↪→ [k]; here we abuse notation by identifying im(α) with the corresponding object of
∆).

Corollary 10.1.4.16. 05H2Let F : C → D be a functor of ∞-categories which preserves finite
limits and let n be an integer. Then:

(1) If X• is an n-coskeletal simplicial object of C, then F (X•) is an n-coskeletal simplicial
object of D.

(2) If X• is an n-coskeletal semisimplicial object of C, then F (X•) is an n-coskeletal semisim-
plicial object of D.

Proof. Assertion (2) is immediate from the definitions (since the category J appearing in
the proof of Proposition 10.1.4.15 is a finite partially ordered set). Assertion (1) follows by
combining (2) with Proposition 10.1.4.15.

Recall that a morphism of simplicial sets f : X• → Y• exhibits Y• as an n-coskeleton of
X• if Y• is n-coskeletal and f is bijective on m-simplices for m ≤ n. This notion has an
obvious counterpart for simplicial objects in general:

Definition 10.1.4.17. 05H3Let C be an ∞-category, let u : X• → Y• be a morphism between
simplicial objects of C, and let n be an integer. We will say that u exhibits Y• as an
n-coskeleton of X• if the following conditions are satisfied:

• The simplicial object Y• is n-coskeletal.

• For 0 ≤ m ≤ n, the induced map Xm → Ym is an isomorphism in the ∞-category C.

Remark 10.1.4.18. 05H4Definition 10.1.4.17 has an obvious counterpart for semisimplicial
objects. If u : X• → Y• is a morphism between semisimplicial objects of an ∞-category C,
we say that u exhibits Y• as an n-coskeleton of X• if Y• is n-coskeletal and the morphism u

induces an isomorphism Xm → Ym for 0 ≤ m ≤ n. By virtue of Proposition 10.1.4.15, this
recovers Definition 10.1.4.17 in the case where u arises from a morphism between simplicial
objects of C.
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Remark 10.1.4.19 (Uniqueness).05H5 Let C be an ∞-category, let X• be a simplicial object of
C, and let n be an integer. If there exists a morphism of simplicial objects u : X• → Y• which
exhibits Y• as an n-coskeleton of X•, then Y• is uniquely determined up to isomorphism and
depends functorially on X•. To emphasize this dependence, we will denote the object Y•
by coskn(X)• and refer to to it as the n-skeleton of X•. In the special case where C is (the
nerve of) the category of sets, this recovers the convention of Notation 3.5.3.18.

Using Corollary 7.3.6.13, we see that the n-skeleton of a simplicial object X• is charac-
terized by the following universal mapping property:

• If Z• is any n-coskeletal simplicial object of C, then composition with u induces a
homotopy equivalence of mapping spaces

HomFun(N•(∆)op,C)(coskn(X)•, Z•)→ HomFun(N•(∆)op,C)(X•, Z•).

Example 10.1.4.20.05H6 Let C be an ∞-category and let C• be a simplicial object of C. If
the object X = C0 admits a Čech nerve Č•(X) (Definition 10.1.4.3), then the identity map
C0 → X can be promoted to a morphism of simplicial objects C• → Č•(X) (see Notation
10.1.4.4) which exhibits Č•(X) as a 0-coskeleton of C•.

Proposition 10.1.4.21 (Existence of Coskeleta).05H7 Let C be an ∞-category which admits
finite limits and let n be an integer. Then every (semi)simplicial object X• of C admits an
n-coskeleton coskn(X)•.

Proof. We will prove the assertion for simplicial objects; the analogous statement for
semisimplicial objects is similar (but easier). It will suffice to show that the functor

N•(∆≤n)op ↪→ N•(∆)op X•−−→ C

admits a right Kan extension Y• : N•(∆)op → C; Corollary 7.3.6.13 then guarantees that
there is an (essentially unique) morphism of simplicial objects u : X• → Y• which is the
identity when restricted to N•(∆≤n)op. By virtue of Corollary 7.3.5.8, it will suffice to show
that for every integer k, the diagram

G : N•(∆≤n/[k])
op → N•(∆)op X•−−→ C

admits a limit. As in the proof of Proposition 10.1.4.15, we observe that the inclusion map
N•(J ) ↪→ N•(∆≤n/[k]) is right cofinal, where J ⊆∆≤n/[k] is the full subcategory spanned by the
injective maps [m] ↪→ [k]. We are therefore reduced to showing that G|N•(J )op has a limit in
C (Corollary 7.2.2.10), which follows from our assumption that C admits finite limits (since
J is the category associated to a finite partially ordered set).
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10.1.5 The Čech Nerve of a Morphism

04SVWe now consider a relative version of Definition 10.1.4.1.

Definition 10.1.5.1. 04T4Let C be an ∞-category and let C• be an augmented simplicial object
of C, which we identify with a simplicial object C ′• of the ∞-category C/C−1 (see Remark
10.1.1.15). We will say that C• is a Čech nerve if the simplicial object C ′• is a Čech nerve in
the ∞-category C/C−1 (see Definition 10.1.4.1).

Remark 10.1.5.2. 04T5Let C be an∞-category. Stated more informally, an augmented simplicial
object C• of C is a Čech nerve if, for every integer n ≥ 0, it exhibits Cn as an iterated fiber
product

C0 ×C−1 C0 ×C−1 · · · ×C−1 C0

(where the factor X0 appears n+ 1 times).

Remark 10.1.5.3. 04T6In the augmented simplex category ∆+, there is unique morphism
δ0

0 : [−1] → [0]. This morphism determines a fully faithful functor [1] → ∆+, whose
image is the full subcategory ∆≤0

+ ⊆∆+ spanned by the objects [0] and [−1]. Combining
Remarks 10.1.4.2 and 7.3.2.4, we see that an augmented simplicial object X• of an ∞-
category C is a Čech nerve if and only if it is right Kan extended from the subcategory
N•(∆≤0

+ )op ⊂ N•(∆+)op.

Definition 10.1.5.4. 04T7Let C be an ∞-category and let f : X → Y be a morphism of C. We
will say that an augmented simplicial object C• of C is a Čech nerve of f if C• is a Čech
nerve (in the sense of Definition 10.1.5.1) and the face operator d0

0 : C0 → C−1 coincides
with the morphism f (so that C0 = X and C−1 = Y ).

Notation 10.1.5.5. 04T8Let C be an ∞-category and let f : X → Y be a morphism of C.
It follows from Remarks 10.1.5.3 and 7.3.6.6 that if f admits a Čech nerve C•, then the
augmented simplicial object C• is determined up to isomorphism and depends functorially
on f . To emphasize this dependence, we will denote C• by Č•(X/Y ) and refer to it as the
Čech nerve of the morphism f : X → Y . Alternatively, we can identify Č•(X/Y ) with the
simplicial object of C/Y given by the Čech nerve of f (in the sense of Notation 10.1.4.4).

Proposition 10.1.5.6. 04T9Let C be an ∞-category which admits pullbacks. Then every
morphism f : X → Y in C admits a Čech nerve Č•(X/Y ).

Proof. Apply Corollary 10.1.4.6 to the ∞-category C/Y , which admits finite products by
virtue of our assumption that C admits pullbacks (Corollary 7.6.3.20).

Remark 10.1.5.7. 04TALet F : C → D be a functor of ∞-categories which preserves fiber
products. Then the induced functor of augmented simplicial objects

Fun(N•(∆op
+ ), C)→ Fun(N•(∆op

+ ),D)
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carries Čech nerves to Čech nerves (see Remark 10.1.4.7). In particular, if u : X → Y is a
morphism of C which admits a Čech nerve Č•(X/Y ), then the morphism F (u) : F (X)→
F (Y ) admits a Čech nerve in the ∞-category D, given by F (Č•(X/Y )).

Corollary 10.1.5.8.04TB Let C be an ∞-category which admits pullbacks. Then the forgetful
functor

Fun(N•(∆op
+ ), C)→ Fun(∆1, C) C• 7→ (d0

0 : C0 → C−1)

admits a right adjoint, given on objects by the construction (f : X → Y ) 7→ Č•(X/Y ).

Proof. Combine Proposition 10.1.5.6 with Corollary 7.3.6.4.

It will sometimes be useful to consider a generalization of Definition 10.1.5.1.

Notation 10.1.5.9.05H8 Let ∆+ be the augmented simplex category (Definition 10.1.1.10). For
every integer n, we let ∆≤n+ denote the full subcategory of ∆+ spanned by the collection of
objects {[m]}−1≤m≤n.

Definition 10.1.5.10.05H9 Let C be an ∞-category and let n be an integer. We say that an
augmented simplicial object C• of C is n-coskeletal if the functor

C• : N•(∆+)op → C

is right Kan extended from the full subcategory N•(∆≤n+ )op.

Example 10.1.5.11.05HA Let C be an ∞-category and let C• be an augmented simpicial object
of C. Then C• is 0-coskeletal (in the sense of Definition 10.1.5.10) if and only if it is a Čech
nerve (in the sense of Definition 10.1.5.1). See Remark 10.1.5.3.

Example 10.1.5.12.05HB Let C be an ∞-category. For n ≤ −2, an augmented simplicial object
C• of C is n-coskeletal if and only if each Cm is a final object of C.

Example 10.1.5.13.05HC Let C be an ∞-category and let C• be an augmented simplicial object
of C. The following conditions are equivalent:

(1) The augmented simplicial object C• is (−1)-coskeletal, in the sense of Definition 10.1.5.10.

(2) The augmented simplicial object C• is essentially constant: that is, it is isomorphic to a
constant functor from N•(∆op

+ ) to C.

(3) The functor C• : N•(∆op
+ ) → C carries each morphism in the category ∆op

+ to an
isomorphism in the ∞-category C.

(4) For every augmented simplicial object X• of C, the restriction map

HomFun(N•(∆op
+ ),C)(X•, C•)→ HomC(X−1, C−1)

is a homotopy equivalence.
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The equivalences (1) ⇔ (2) ⇔ (3) are special cases of Corollary 7.3.3.14, since [−1] is an
initial object of the category ∆+. The equivalence (1)⇔ (4) follows from Corollary 7.3.6.13.

Variant 10.1.5.14. 05HDFor every integer n, we let ∆≤n+,inj denote the category whose objects
are linearly ordered sets [m] = {0 < 1 < · · · < n} for −1 ≤ m ≤ n, and whose morphisms
are strictly increasing functions. We say that an augmented semisimplicial object C• of an
∞-category C if the functor

C• : N•(∆+,inj)op → C

is a right Kan extension of its restriction to N•(∆+,inj)op.

Remark 10.1.5.15. 05HELet C be an ∞-category and let C• be an augmented simplicial object
of C, which we identify with a (semi)simplicial object C ′• of the slice ∞-category C/C−1 (see
Remark 10.1.1.15). Then, for n ≥ −1, the augmented simplicial object C• is n-coskeletal (in
the sense of Definition 10.1.5.10) if and only if the simplicial object C ′• is n-coskeletal (in
the sense of Definition 10.1.4.9). Moreover, the analogous statement holds for semisimplicial
objects. See Remark 7.3.2.4.

Warning 10.1.5.16. 05HFLet C be an ∞-category and let C• be an augmented simplicial object
of C. It follow from Remark 10.1.5.15 that if C−1 is a final object of C, then C• is n-coskeletal
if and only if its underlying simplicial object is n-coskeletal. Beware that neither implication
holds in general if we do not assume that C−1 is final.

Remark 10.1.5.17. 05HGLet C be an ∞-category and let C• be an augmented simplicial object
of C. For every integer n, the augmented simplicial object C• is n-coskeletal (in the sense
of Definition 10.1.5.10) if and only if its underlying augmented semisimplicial object is
n-coskeletal (in the sense of Variant 10.1.5.14). For n ≤ −2, this is trivial (see Example
10.1.5.12). For n ≥ −1, it follows by combining Remark 10.1.5.15 with Proposition 10.1.4.15
(applied to the slice ∞-category C/C−1).

To make Definition 10.1.5.10 more concrete, it will be convenient to introduce a dual
version of Construction 10.1.3.10.

Construction 10.1.5.18 (Face Cubes). 05HHFix an integer k ≥ −1, and let k+1 be the
simplicial cube of dimension k + 1 (Notation 2.4.5.2). In what follows, we will identify k+1

with the opposite of the nerve of the partially ordered set P ([k]) of all subsets of [k] = {0 <
1 < · · · < k}. Note that there is an isomorphism of categories P ([k])→ (∆+,inj)/[k], which
carries each subset J ⊆ [k] of cardinality j + 1 to the unique strictly increasing function
[j] ↪→ [k] having image J . If C• is an augmented semisimplicial object of an ∞-category C,
we let τk : k+1 → C denote the composite functor

k+1 ≃ N•((∆+,inj)/[k])op → N•(∆op
+,inj)

C•−→ C .

We will refer to τk as the kth face cube of the augmented semisimplicial object C•.
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Example 10.1.5.19.05HJ Let C• be an augmented semisimplicial object of an ∞-category C.
For small values of k, the face cube τk : k+1 → C of Construction 10.1.5.18 can be described
more explicitly:

• The face cube τ−1 can be identified with the object C−1 of C.

• The face cube τ0 can be identified with the face operator d0
0 : C0 → C−1.

• The face cube τ1 is a square diagram

C1
d1

0 //

d1
1

��

C0

d0
0

��
C0

d0
0 // C−1

which witnesses the identity [d0
0] ◦ [d1

0] = [d0
0] ◦ [d1

1] in the homotopy category hC.

Proposition 10.1.5.20.05HK Let C be an ∞-category, let C• be an augmented semisimplicial
object of C, and let n be an integer. The following conditions are equivalent:

(1) The augmented semisimplicial object C• is (n − 1)-coskeletal, in the sense of Variant
10.1.5.14.

(2) For each k ≥ n, the face cube τk : k+1 → C of Construction 10.1.5.18 is a limit diagram
in C.

Proof. We proceed as in the proof of Proposition 10.1.3.14. Let us identify each τk with a
functor N•(P ([k]))op → C, where P ([k]) denotes the collection of all subsets of {0 < 1 <
· · · < k}. Let P≤n([k]) denote the subset of P ([k]) consisting of subsets of cardinality ≤ n.
Unwinding the definitions, we see that C• is (n− 1)-coskeletal if and only if the following
condition is satisfied for each k ≥ n:

(1k) The functor τk exhibits Ck as a limit of its restriction to N•(P≤n([k]))op.

Similarly, (2) asserts that the following condition is satisfied for each k ≥ n:

(2k) The face cube τk : k+1 → C of Construction 10.1.5.18 is a limit diagram in C.

To complete the proof, it will suffice to show that if condition (1ℓ) is satisfied for n ≤ ℓ < k,
then conditions (1k) and (2k) are equivalent. Our hypothesis that condition (2ℓ) is satisfied
for ℓ < k guarantees that the functor τk|N•(P≤k([k]))op is right Kan extended from the full
subcategory N•(P≤n([k]))op ⊆ N•(P≤k([k]))op. The equivalence of (1k) and (2k) is therefore
a special case of Corollary 7.3.8.2.
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Corollary 10.1.5.21. 05HLLet C be an ∞-category and let n ≥ −1 be an integer. Then an
augmented (semi)simplicial object C• of C is (n− 1)-coskeletal if and only if it is n-coskeletal
and the face cube τn : n+1 → C is a limit diagram in C.

Corollary 10.1.5.22. 05HMLet F : C → D be a functor of ∞-categories, let C• be an augmented
(semi)simplicial object of C, and let n ≥ −1 be an integer. Assume that C admits pullbacks
and that F preserves pullbacks. If C• is n-coskeletal, then the image F (C•) is n-coskeletal.

10.1.6 Split Simplicial Objects

04S6We now introduce a tool which is often useful for computing geometric realizations of
simplicial objects.

Notation 10.1.6.1. 04S7We define a category ∆min as follows:

• The objects of ∆min are linearly ordered sets [n] = {0 < 1 < · · · < n}, where n is a
nonnegative integer.

• A morphism from [m] to [n] in the category ∆min is a nondecreasing function α :
[m]→ [n] satisfying α(0) = 0.

Remark 10.1.6.2. 04S8By construction, the category ∆min is a (non-full) subcategory of the
simplex category ∆ of Definition 1.1.0.2. It can therefore also be regarded as a subcategory
of the augmented simplex category ∆+ of Definition 10.1.1.10. The inclusion functor
∆min ↪→∆+ admits a left adjoint C+ : ∆+ →∆min, given concretely by the construction
C+([n]) = [0] ⋆ [n] ≃ [n + 1]. We will refer to C+ as the concatenation functor. We let
C : ∆→∆min denote the restriction of C+ to the simplex category ∆, which we will also
refer to as the concatenation functor.

Definition 10.1.6.3. 04S9Let C be an ∞-category and let X• be an augmented simplicial object
of C (Definition 10.1.1.12). A splitting of X• is a functor X : N•(∆op

min)→ C for which the
composition

N•(∆op
+ )

Cop
+−−→ N•(∆op

min) X−→ C

is equal to X•; here C+ denotes the concatenation functor [n] 7→ [n] ⋆ [0] of Remark 10.1.6.2.
We will say that the augmented simplicial object X• is split if there exists a splitting of X•.

Remark 10.1.6.4 (Extra Degeneracies). 04SALet C be an ∞-category and let X• be an aug-
mented simplicial object of C. For every integer n ≥ −1, the function

σ0
n+1 : [n+ 2]→ [n+ 1] i 7→

0 if i = 0
i− 1 if i > 0

https://kerodon.net/tag/05HL
https://kerodon.net/tag/05HM
https://kerodon.net/tag/04S6
https://kerodon.net/tag/04S7
https://kerodon.net/tag/04S8
https://kerodon.net/tag/04S9
https://kerodon.net/tag/04SA


10.1. SIMPLICIAL OBJECTS OF ∞-CATEGORIES 2051

belongs to the subcategory ∆min ⊆∆. If X is a splitting of X•, then evaluation on σ0
n+1

determines a morphism

hn : Xn = X([n+ 1])→ X([n+ 2]) = Xn+1.

Heuristically, one can think of the morphisms {hn}n≥−1 as “extra” degeneracy operators on
the augmented simplicial object X•. In the homotopy category hC, these operators satisfy
the identities

04SB dn+1
i ◦ hn ∼

idXn if i = 0
hn−1 ◦ dni−1 otherwise

(10.2)

04SC sn+1
i ◦ hn ∼

hn+1 ◦ hn if i = 0
hn+1 ◦ sni−1 otherwise.

(10.3)

Exercise 10.1.6.5.04SD Let C be an ordinary category and let X• be an augmented simplicial
object of C. Show that the construction of Remark 10.1.6.4 determines a bijection from
the set of splittings of X• (in the sense of Definition 10.1.6.3) to the collection of systems
{hn : Xn → Xn+1}n≥−1 satisfying the identities (10.2) and (10.3).

Example 10.1.6.6.04SE Let A• be an augmented simplicial abelian group, and let

Caug
∗ (A) = (· · · → A2

∂−→ A1
∂−→ A0

∂−→ A−1)

denote its augmented Moore complex (Remark 10.1.2.21). Suppose we are given a splitting of
A•, and let {hn : An → An+1}n≥−1 be the extra degeneracy operators described in Remark
10.1.6.4. Then the collection {hn} is a contracting homotopy for Caug

∗ (A), in the sense of
Definition 2.5.0.5: that is, the homomorphism

(hn−1 ◦ ∂ + ∂ ◦ hn) : An → An

is equal to the identity for each n ≥ −1 (where we adopt the convention that hn ◦ ∂ = 0 for
n = −1). This follows from the calculation

hn−1 ◦ ∂ + ∂ ◦ hn = (
n∑
i=0

(−1)ihn−1 ◦ dni ) + (
n+1∑
j=0

(−1)jdn+1
j ◦ hn)

= (
n∑
i=0

(−1)i(hn−1 ◦ dni − dn+1
i+1 ◦ hn)) + dn+1

0 ◦ hn

= idAn .

where the final equality follows from the identities (10.2).
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Variant 10.1.6.7. 04SFIn the situation of Example 10.1.6.6, let Naug
∗ (A) denote the augmented

normalized Moore complex of A• (Variant 10.1.2.22). It follows from (10.3) that, for every
integer n ≥ 0, the operator

Caug
n (A) = An

hn−→ An+1 = Caug
n+1(A)

carries degenerate n-simplices of A• to degenerate (n + 1)-simplices of A•, and therefore
descends to an operator hn : Naug

n (A)→ Naug
n+1(A). The collection of homomorphisms {hn}

then determine a contracting homotopy for the chain complex Naug
∗ (A).

Warning 10.1.6.8. 04SGLet A• be an augmented simplicial abelian group. In general, not
every contracting homotopy for the chain complex Naug

∗ (A) can be obtained from the
construction of Variant 10.1.6.7. A splitting of A• determines a system of homomorphisms
{hn : An → An+1}n≥0 which satisfy the identity hn+1 ◦ hn = sn+1

0 ◦ hn (Remark 10.1.6.4).
In particular, the composition hn+1 ◦ hn carries every n-simplex of A• to a degenerate
(n+ 2)-simplex of A•. It follows that the composite map

Naug
n (A) hn−→ Naug

n+1(A) hn+1−−−→ Naug
n+2(A)

vanishes; for a general contracting homotopy, the analogous statement need not be true.

The utility of Definition 10.1.6.3 stems from the following:

Proposition 10.1.6.9. 04SHLet C be an ∞-category and let X• be an augmented simplicial
object of C. If X• is split, then it is a colimit diagram in C.

Proof. Let X : N•(∆op
min) → C be a splitting of X•, and let C+ : ∆+ → ∆min denote the

concatenation functor of Remark 10.1.6.2. Let us abuse notation by identifying N•(∆op
+ )

with the cone N•(∆op)▷. We wish to show that the augmented simplicial object

(X• = X ◦N•(Cop
+ )) : N•(∆op)▷ → C

is a colimit diagram in C.
Note that [0] is initial when viewed as an object of the category ∆min, and therefore

final when viewed as an object of the ∞-category N•(∆op
min). Unwinding the definitions, we

see that the functor N•(Cop
+ ) factors as a composition

N•(∆op)▷ N•(C)▷

−−−−→ N•(∆op
min)▷ R−→ N•(∆op

min),

where R is the identity when restricted to N•(∆op
min) and carries the cone point of N•(∆op

min)▷
to [0]. Applying Corollary 7.2.2.6, we deduce that (X ◦ R) : N•(∆op

min)▷ → C is a colimit
diagram. Consequently, to show that X• is a colimit diagram, it will suffice to show that the
functor N•(Cop) : N•(∆op)→ N•(∆op

min) is right cofinal (Corollary 7.2.2.3). This is a special
case of Corollary 7.2.3.7, since the concatenation functor C is left adjoint to the inclusion
∆min ↪→∆ (Remark 10.1.6.2).
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Remark 10.1.6.10.04SJ Let F : C → D be a functor of∞-categories and let X• be an augmented
simplicial object of C, so that F (X•) is an augmented cosimplicial object of D. Composition
with the functor F carries splittings of X• to splittings of F (X•). Consequently, if X• is
split, then F (X•) is also split. In particular, if X• is split, then F (X•) is a colimit diagram
in D (Proposition 10.1.6.9).

Variant 10.1.6.11.04SK Let C be an ∞-category and let X• be a simplicial object of C. A
splitting of X• is a functor X : N•(∆op

min)→ C for which the composition

N•(∆op
+ ) Cop
−−→ N•(∆op

min) X−→ C

is equal to X•; here C denotes the concatenation functor [n] 7→ [n] ⋆ [0] of Remark 10.1.6.2.
We will say that the simplicial object X• is split if there exists a splitting of X•.

Warning 10.1.6.12.04SL The terminology of Variant 10.1.6.11 (and Definition 10.1.6.3) is
potentially confusing. We will use the term split simplicial object to refer to a simplicial
object X• of an ∞-category C for which there exists a splitting X : N•(∆op

min)→ C. Unless
otherwise specified, we do not assume that a particular splitting has been chosen. Beware
that X is not uniquely determined by X•. However, the underlying augmented simplicial
object

N•(∆op
+ )

N•(Cop
+ )

−−−−−→ N•(∆min) X−→ C

is determined up to isomorphism by X•: by virtue of Proposition 10.1.6.9, it is an extension
of X• to a colimit diagram in C.

Corollary 10.1.6.13.04SM Let X• be a split simplicial object of an ∞-category C. Then X•
admits a geometric realization |X•|. Moreover, the geometric realization of X• is preserved
by any functor of ∞-categories F : C → D.

Proof. The first assertion follows from Proposition 10.1.6.9, and the second from Remark
10.1.6.10.

The Čech nerve construction of §10.1.5 provides an abundant supply of split simplicial
objects.

Proposition 10.1.6.14.05HN Let C be an ∞-category and let f : X → Y be a morphism of C
which admits a Čech nerve Č•(X/Y ). Then the augmented simplicial object Č•(X/Y ) splits
if and only if f admits a right homotopy inverse.

Corollary 10.1.6.15.04TL Let C be an ∞-category and let f : X → Y be a morphism of C which
admits a Čech nerve Č•(X/Y ). If f admits a right homotopy inverse, then Č•(X/Y ) is a
colimit diagram: that is, it exhibits Y as a geometric realization of its underlying simplicial
object.
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Proof. Combine Propositions 10.1.6.14 and 10.1.6.9.

Our proof of Proposition 10.1.6.14 will require some preliminaries.

Notation 10.1.6.16. 05HPLet ∆min be the category introduced in Notation 10.1.6.1. For every
integer n, we let ∆≤nmin denote the full subcategory of ∆min spanned by the collection of
objects {[m]}0≤m≤n.

Example 10.1.6.17. 05HQFor n < 0, the category ∆≤nmin is empty. For n = 0, it contains a single
object [0], and no morphisms other than the identity morphism.

Example 10.1.6.18. 05HRLet Ret be the category introduced in Construction 8.5.0.2: that is,
the category which is freely generated by a pair of morphisms i : Y → X and r : X → Y

satisfying the identity r ◦ i = idY . By virtue of Exercise 8.5.0.3, there is a unique functor
Ret → ∆ which carries i to the inclusion map [0] ↪→ [1] and r to the constant function
[1] ↠ [0]. This functor induces an isomorphism from Ret onto the subcategory ∆≤1

min ⊂∆
of Notation 10.1.6.16.

Lemma 10.1.6.19. 04TELet C be an ∞-category, let X• be an augmented simplicial object of C,
and let X : N•(∆op

min) → C be a splitting of X• (in the sense of Definition 10.1.6.3). For
every integer n, the following conditions are equivalent:

(1) The functor X is right Kan extended from the full subcategory N•(∆≤n+1
min ) of Notation

10.1.6.16.

(2) The augmented simplicial object X• is n-coskeletal: that is, it is right Kan extended from
the subcategory N•(∆≤n+ )op (Definition 10.1.5.10).

Proof. For each integer k ≥ −1, we will show that the following conditions are equivalent:

(1k) The functor X is right Kan extended from the subcategory N•(∆≤n+1
min )op at the object

[k + 1].

(2k) The functor X• is right Kan extended from the subcategory N•(∆≤n+ )op at the object
[k].

Let (∆≤n+ )/[k] denote the fiber product (∆+)/[k]×∆+ ∆≤n+ , and define (∆≤n+1
min )/[k+1] similarly.

By virtue of Corollary 7.2.2.3, it will suffice to show that the concatentation functor C+
induces a right cofinal functor

G : N•((∆≤n+ )/[k])→ N•((∆≤n+1
min )/[k+1]).

This follows from Corollary 7.2.3.7, since the functor G admits a left adjoint F (which carries
a morphism α : [m]→ [k + 1] of ∆min to the nondecreasing function

{k ∈ [m] : α(k) > 0} α−→ {1 < 2 < · · · < k} ≃ [k].
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Variant 10.1.6.20.04TF Let n be an integer and let C be an ∞-category which is equipped with
a functor T : N•(∆≤n+1

min )op → C. The following conditions are equivalent:

(1) The functor T admits a right Kan extension F : N•(∆op
min)→ C.

(2) The composite functor

N•(∆≤n+ )op C+−−→ N•(∆≤n+1
min )op T−→ C

can be extended to an n-coskeletal augmented simplicial object of C.

Proof. We maintain the notations from the proof of Lemma 10.1.6.19. By virtue of Corollary
7.3.5.8, it will suffice to show that for every integer k ≥ −1, the following conditions are
equivalent:

(1k) The diagram

N•((∆≤n+1
min )/[k+1])→ N•(∆≤n+1

min ) T−→ Cop

admits a colimit in the ∞-category Cop.

(2k) The diagram

N•((∆≤n+ )/[k])
G−→ N•((∆≤n+1

min )/[k+1])→ N•(∆≤n+1
min ) T−→ Cop

admits a colimit in the ∞-category Cop.

As in the proof of Lemma 10.1.6.19, the functor G is right cofinal, so the equivalence of (1k)
and (2k) is a special case of Corollary 7.2.2.10.

Proposition 10.1.6.21.04TG Let C be an ∞-category, let n be an integer, let Fun′(N•(∆op
+ ), C)

be the full subcategory of Fun(N•(∆op
+ ), C) spanned by the n-coskeletal augmented simplicial

objects of C, and let Fun′(N•(∆op
min), C) ⊆ Fun(N•(∆op

min), C) be its inverse image. Then
precomposition with the concatenation functor C+ induces a trivial Kan fibration

θ : Fun′(N•(∆op
min), C)→ Fun′(N•(∆≤n+1

min )op, C)×Fun(N•(∆≤n
+ )op,C) Fun′(N•(∆op

+ ), C).

Proof. Let Fun′(N•(∆≤n+ )op, C) denote the full subcategory of Fun(N•(∆≤n+ )op, C) spanned
by those functors which can be extended to n-coskeletal augmented simplicial objects of C,
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and define Fun′(N•(∆≤n+1
min )op, C) similarly. We then have a commutative diagram

Fun′(N•(∆op
min), C) //

��

Fun′(N•(∆op
+ ), C)

��
Fun′(N•(∆≤n+1

min )op, C) //

��

Fun′(N•(∆≤n+ )op, C)

��
Fun(N•(∆≤n+1

min )op, C) // Fun(N•(∆≤n+ )op, C).

Combining Lemma 10.1.6.19 with Corollary 7.3.6.15, we deduce that the upper vertical
maps are trivial Kan fibrations; in particular, the upper half of the diagram is a categorical
pullback square (Proposition 4.5.2.21). Variant 10.1.6.20 guarantees that the lower half
of the square is a pullback diagram. Since bottom horizontal map is an isofibration of
∞-categories (Corollary 4.4.5.3), it is a categorical pullback square (Corollary 4.5.2.27). It
follows that the outer rectangle is a categorical pullback square (Proposition 4.5.2.18), so
that θ is an equivalence of ∞-categories (Proposition 4.5.2.26). Corollary 4.4.5.3 guarantees
that θ is also an isofibration, so it is a trivial Kan fibration (Proposition 4.5.5.20).

Proof of Proposition 10.1.6.14. Let C be an ∞-category and let f : X → Y be a morphism
of C which admits a Čech nerve Č•(X/Y ). Applying Proposition 10.1.6.21 (in the case
n = 0), we see that precomposition with the inclusion map

Retop ≃ Ret ≃∆≤1
min ↪→∆min

of Example 10.1.6.18 induces a trivial Kan fibration

{Č•(X/Y )} ×Fun(N•(∆op
+ ),C) Fun(N•(∆op

min), C)→ {f} ×Fun(∆1,C) Fun(N•(Ret), C).

In particular, the left hand side is nonempty if and only if the right hand side is nonempty:
that is, the Čech nerve Č•(X/Y ) splits if and only if f has a right homotopy inverse.

We close this section by describing an important special class of split simplicial objects.

Construction 10.1.6.22 (Decalage). 04SNLet C be an ∞-category and let X• be a simplicial
object of C. We let Dec+(X)• denote the augmented simplicial object of C given by the
composition

N•(∆op
+ )

N•(Cop
+ )

−−−−−→ N•(∆op
min) ⊂ N•(∆op) X•−−→ C,
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where C+ denote the concatenation functor of Remark 10.1.6.2. We will refer to Dec+(X)•
as the augmented decalage of X•. We let Dec(X)• denote the underlying simplicial object of
Dec+(X)•, given by the composition

N•(∆op) N•(Cop)−−−−−→ N•(∆op
min) ⊂ N•(∆op) X•−−→ C .

We will defer to Dec(X)• as the decalage of Dec(X)•.

Remark 10.1.6.23.04SP More informally, the augmented decalage of a simplicial object X• is
given by the formula Dec+(X)n = Xn+1. Moreover, for every pair of integers 0 ≤ i ≤ n, the
face and degeneracy operators

dni : Dec+(X)n → Dec+(X)n−1 sni : Dec+(X)n → Dec+(X)n+1

coincide with the face and degeneracy operators

dn+1
i+1 : Xn+1 → Xn sn+1

i+1 : Xn+1 → Xn+2.

Example 10.1.6.24.04SQ Let X be a simplicial set. Then the decalage Dec(X)• can be identified
with the disjoint union of coslice constructions ∐

xXx/, where the coproduct is indexed by
the collection of all vertices x ∈ X.

Remark 10.1.6.25.04SR Let X• be a simplicial object of an∞-category C. Then the augmented
simplicial object Dec+(X)• is split: it admits a splitting given by the diagram

N•(∆op
min) ⊂ N•(∆op) X•−−→ C .

In particular, Proposition 10.1.6.9 guarantees that Dec+(X)• is a colimit diagram in C: that
is, it exhibits the object X0 ∈ C as a geometric realization of the decalage Dec(X)•.

Remark 10.1.6.26.04SS Let ι : ∆min ↪→∆ denote the inclusion functor, and let

C : ∆→∆min [n] 7→ [0] ⋆ [n] = [n+ 1]

denote the concatenation functor of Remark 10.1.6.2. There is a natural transformation
η : id∆ → ι ◦ C, which carries each object [n] ∈∆ to the inclusion map

[n] ↪→ [n+ 1] i 7→ i+ 1.

If X• is a simplicial object of an∞-category C, then composition with η determines a natural
transformation of simplicial objects T• : Dec(X)• → X•, given termwise by the face operator

Dec(X)n = Xn+1
dn+1

0−−−→ Xn.
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The natural transformation η is the unit of an adjunction between ι and C; it admits a
compatible counit ϵ : C ◦ ι→ id∆min , which carries each object [n] to the quotient map

[n+ 1] ↠ [n] i 7→ max(0, i− 1).

We therefore have a commutative diagram

04STC ◦ ι ◦ C

idC ◦ϵ

""
C

η◦idC

<<

idC // C

(10.4)

in the functor category Fun(∆,∆min). If X is a splitting of the simplicial object X•, then
precomposition with (10.4) determines a commutative diagram

Dec(X)•

T•

""
X•

h•

<<

id // X•

in the ∞-category of simplicial objects Fun(N•(∆op), C). Here h• is given termwise by
the extra degeneracy map hn : Xn → Xn+1 = Dec(X)n appearing in Remark 10.1.6.4. In
particular, if X• is a split simplicial object of C, then it is a retract of the decalage Dec(X)•.

Warning 10.1.6.27. 04SULet X• be a simplicial object of an ∞-category C. It follows from
Remark 10.1.6.26 that every splitting of X• determines a right homotopy inverse to the
comparison map T• : Dec(X)• → X•. Beware that, in general, not every right homotopy
inverse can be obtained in this way. For example, suppose that C is (the nerve of) an ordinary
category. Unwinding the definitions, we see that a morphism of simplicial objects from X•
to Dec(X)• is given by a collection of morphisms hn : Xn → Dec(X)n = Xn+1 which satisfy
the identities

dn+1
i ◦ hn = hn−1 ◦ dni−1 sn+1

i ◦ hn = hn+1 ◦ sni−1

for 0 < i ≤ n+ 1. Moreover, h• is a right inverse of T• if and only if it satisfies the further
identity dn+1

0 ◦hn = idXn for each n ≥ 0. However, h• arises from a splitting of the simplicial
object X• only if it also satisfies the identities sn+1

0 ◦ hn = hn+1 ◦ hn; see Exercise 10.1.6.5
(compare with Warning 10.1.6.8).
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10.2 Regular ∞-Categories

04TM Let X and Y be sets and let f : X → Y be a function. Recall that the image of f
is the subset im(f) ⊆ Y consisting of those elements y ∈ Y satisfying y = f(x) for some
element x ∈ X. Writing i for the inclusion of im(f) into Y , the function f then factors as a
composition

X
f0
↠ im(f) i

↪→ Y.

This factorization admits a more abstract characterization: it is determined (up to unique
isomorphism) by the requirements that i is injective (that is, it is a monomorphism in the
category of sets) and that f0 is surjective (that is, it is an epimorphism in the category of
sets).

The construction f 7→ im(f) has counterparts in many other categories. For example,
every homomorphism of commutative rings f : R→ S has a tautological factorization

R
f0
↠ im(f) i

↪→ S,

which is again characterized (up to unique isomorphism) by the requirements that that i is
injective and that f0 is surjective. Here the first demand is equivalent to the condition that
i is a monomorphism in the category of commutative rings. However, the second demand
is more subtle. Every surjective ring homomorphism is an epimorphism in the category of
commutative rings, but the converse is false in general.

Example 10.2.0.1.04TN Let Q denote the field of rational numbers, let Z ⊆ Q denote the ring of
integers, and let f : Z ↪→ Q denote the inclusion map. Then f is both a monomorphism and
an epimorphism in the category of commutative rings. Consequently, the ring homomorphism
f admits (at least) two factorizations as an epimorphism followed by a monomorphism,
given by the diagrams

Z id−→ Z f−→ Q Z f−→ Q id−→ Q.

To address the phenomenon described in Example 10.2.0.1, it is convenient to modify
the definition of epimorphism.

Definition 10.2.0.2.04TP Let C be a category which admits fiber products. We will say that a
morphism f : X → Y of C is a regular epimorphism if it exhibits Y as a coequalizer of the
pair of projection maps π0, π1 : X ×Y X → X.

Remark 10.2.0.3.04TQ Let C be a category which admits fiber products and let f : X → Y

be a morphism in C. Then f is an epimorphism if and only if, for every object Z ∈ C, the
function

θZ : HomC(Y,Z)→ HomC(X,Z) g 7→ g ◦ f
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is injective. The condition that f is a regular epimorphism is (in general) stronger: it
requires also that the image of θZ is the collection of morphisms h : X → Z which satisfy
the identity h ◦ π0 = h ◦ π1; here π0 and π1 denote the projection maps from X ×Y X to X.

Example 10.2.0.4. 04TRLet C = Set be the category of sets and let f : X ↠ Y be an
epimorphism in C: that is, a surjective function. Then f is a regular epimorphism: that is,
it exhibits Y as a quotient of the equivalence relation ≡f , defined by the requirement

(x ≡f x′)⇔ (f(x) = f(x′)).

Exercise 10.2.0.5. 04TSLet f : R→ S be a homomorphism of commutative rings. Show that f
is a regular epimorphism (in the category of commutative rings) if and only if it is surjective
(as a map of sets). In particular, the inclusion map Z ↪→ Q of Example 10.2.0.1 is an
epimorphism in the category of commutative rings which is not regular.

Let C be a category which admits fiber products and let f : X → Y be a morphism
in C. We will say that an object Y0 ∈ C is an image of f if the morphism f factors as a
composition

X
f0
↠ Y0

i
↪→ Y,

where i is a monomorphism and f0 is a regular epimorphism. It is not difficult to show that
if such a factorization exists, then it is uniquely determined up to (canonical) isomorphism:
for example, the object Y0 can be recovered as the coequalizer of the pair of projection maps
X ×Y X ⇒ X. To emphasize the uniqueness, we will typically denote the object Y0 by im(f)
and refer to it as the image of f . This motivates the following:

Definition 10.2.0.6. 04TTLet C be a category. We say that C is regular if it satisfies the following
conditions:

(1) The category C admits finite limits (in particular, it admits fiber products).

(2) Every morphism f : X → Y of C has an image: that is, we can write f as a composition

X
f0
↠ Y0

i
↪→ Y

where i is a monomorphism and f0 is a regular epimorphism.

(3) The collection of regular epimorphisms is stable under the formation of pullbacks. That
is, for every pullback diagram

X ′

f ′

��

// X

f

��
Y ′ // Y
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in the category C, if f is a regular epimorphism, then f ′ is also a regular epimorphism.

Example 10.2.0.7.04TU The axioms of Definition 10.2.0.6 tend to be satisfied by any category
C whose objects can be described as “sets with algebraic structure.” For example:

• The category of sets is regular.

• The category of groups is regular.

• The category of abelian groups is regular.

• The category of associative rings is regular.

• The category of commutative rings is regular.

Example 10.2.0.8.04TV Let C be the category of partially ordered sets (with morphisms given
by nondecreasing functions). Then C is not regular: it satisfies conditions (1) and (2) of
Definition 10.2.0.6, but does not satisfy condition (3) (see Exercise 10.2.2.16).

Our goal in this section is to extend Definition 10.2.0.6 to the setting of ∞-categories.
The first step is to find an appropriate ∞-categorical counterpart for the notion of regular
epimorphism. Let C be an∞-category which admits fiber products. Then, to every morphism
f : X → Y of C, one can associate a diagram

04TW X ×Y X
π0 //
π1

// X
f // Y. (10.5)

If C is (the nerve of) an ordinary category, then f is a regular epimorphism if and only if
(10.5) is a coequalizer diagram. In the ∞-categorical setting, this condition is almost never
satisfied (even if f is an isomorphism). To guarantee that a morphism g : X → Z factors
(up to homotopy) through f , it is typically not enough to know that g ◦ π0 is homotopic to
g ◦ π1: one needs a homotopy satisfying further coherence conditions, whose formalization
involves iterated fiber products X ×Y X ×Y · · · ×Y X. Recall that the collection of all such
fiber products can be organized into an augmented simplicial object Č•(X/Y ) called the
Čech nerve of f (Definition 10.1.5.4), which we display informally as

· · ·
//
//
//// X ×Y X ×Y X

//
//// X ×Y X

π0 //
π1

// X // Y.

We will say that f is a quotient morphism if Č•(X/Y ) is a colimit diagram in the∞-category
C.

Remark 10.2.0.9.04TX In §10.2.2, we adopt a slightly different definition of quotient morphism
(Definition 10.2.2.1), which makes sense in any ∞-category C (that is, we do not need to
assume that C admits fiber products). Our definition is formulated using the language
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of sieves, which we review in §10.2.1. When C admits fiber products, the sieve-theoretic
definition reduces to the requirement that Č•(X/Y ) is a colimit diagram (see Proposition
10.2.2.4).

Warning 10.2.0.10. 04TYLet C = N•(C0) be the nerve of an ordinary category C0, and let
f : X → Y be a morphism of C. Then f is a quotient morphism if and only if it is a regular
epimorphism in C0, in the sense of Definition 10.2.0.2 (see Corollary 10.2.2.7). In particular,
every quotient morphism in C is an epimorphism. Beware that, if C is not assumed to be the
nerve of an ordinary category, then the analogous statement is false: quotient morphisms
in C are usually not epimorphisms (that is, they are not monomorphisms when viewed as
morphisms in the opposite ∞-category Cop). See Warning 10.2.2.10).

Let C be an ∞-category containing a morphism f : X → Y . We will say that an object
Y0 ∈ C is an image of f if there exists a diagram

Y0

i

��
X

f0

??

f // Y,

where f0 is a quotient morphism and i is a monomorphism (Definition 10.2.3.1). In §10.2.3,
we will show that if such a diagram exists, then it is unique up to isomorphism (in fact, up
to a contractible space of choices: see Proposition 10.2.3.14). Following our discussion of the
classical case, we will typically denote the object Y0 by im(f) and refer to it as the image of
the morphism f (Notation 10.2.3.12).

Let C be an ∞-category which admits fiber products. Beware that, in general, the
collection of quotient morphisms in C is not closed under pullback (see Exercise 10.2.2.16).
We say that a morphism f : X → Y if C is a universal quotient morphism if, for every
pullback diagram

X ′

f ′

��

// X

f

��
Y ′ // Y,

the morphism f ′ is a quotient morphism. In §10.2.4, we extend this definition to the setting
of an ∞-category C which does not necessarily admit pullbacks (see Definition 10.2.4.1 and
Corollary 10.2.4.7) and study its properties. The notion of universal quotient morphism is
in some respects better behaved than the notion of quotient morphism: for example, the
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collection of universal quotient morphisms is always closed under composition (Proposition
10.2.4.12), while the collection of quotient morphisms need not be (Exercise 10.2.2.15).

Armed with a good theory of quotient morphisms, we can formulate an ∞-categorical
analogue of Definition 10.2.0.6. We say that an ∞-category C is regular if it satisfies the
following axioms (Definition 10.2.5.1):

(1) The ∞-category C admits finite limits.

(2) Every morphism f : X → Y of C has an image: that is, we can write f as a composition
of a quotient morphism X ↠ Y0 with a monomorphism Y0 ↪→ Y .

(3) The collection of quotient morphisms in C is stable under pullback: that is, every quotient
morphism is a universal quotient morphism.

In §10.2.5, we discuss various formulations of this definition and give some examples of regular
∞-categories. In particular, we show that the ∞-category of spaces S is regular (Corollary
10.2.5.6) and that the collection of regular ∞-categories is closed under the formation of
slice constructions (Proposition 10.2.5.9) and left exact localization (Proposition 10.2.5.19).

10.2.1 Sieves

04TZ Let C be a category. Recall that a sieve on C is a full subcategory C0 ⊆ C satisfying the
following condition:

• If f : X → Y is a morphism of C and Y belongs to the subcategory C0, then X also
belongs to the subcategory C0.

This condition has a counterpart in the setting of ∞-categories.

Definition 10.2.1.1.04U0 Let C be a simplicial set. A sieve on C is a simplicial subset C0 ⊆ C
for which the inclusion map C0 ↪→ C is a right fibration.

Example 10.2.1.2.04U1 Let C be a simplicial set. Then the simplicial subsets ∅, C ⊆ C are
sieves on C.

Remark 10.2.1.3 (Base Change).04U2 Let F : C → D be a morphism of simplicial sets, and let
D0 ⊆ D be a sieve on D. Then the inverse image C0 = F−1(D0) is a sieve on C.

Remark 10.2.1.4 (Transitivity).04U3 Let C be a simplicial set containing simplicial subsets
C1 ⊆ C0 ⊆ C, where C0 is a sieve on C. Then C1 is a sieve on C0 if and only if it is a sieve on
C.

Proposition 10.2.1.5.04U4 Let C be a simplicial set. Then a simplicial subset C0 ⊆ C is a sieve
if and only if it satisfies the following condition:
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(∗) Let σ : ∆n → C be an n-simplex of C. If the final vertex σ(n) is contained in C0, then σ

is contained in C0.

Proof. For every integer n ≥ 0, the inclusion map {n} ↪→ ∆n is right anodyne (Example
4.3.7.11). If the inclusion map ι : C0 ↪→ C is a right fibration, then condition (∗) is a special
case of Proposition 4.2.4.5. Conversely, suppose that condition (∗) is satisfied, and let
σ : ∆n → C be an n-simplex of C. For every integer 0 < i ≤ n, the horn Λn

i contains the
final vertex {n} ⊆ ∆n. Consequently, if the restriction σ|Λn

i
factors (uniquely) through ι,

then condition (∗) guarantees that σ factors (uniquely) through ι. Allowing n and i to vary,
we conclude that ι is a right fibration.

Corollary 10.2.1.6. 04U5Let C be an ∞-category and let C0 ⊆ C be a simplicial subset. Then
C0 is a sieve on C if and only if it is a full subcategory of C which satisfies the following
condition:

(∗) If f : X → Y is a morphism of C and Y belongs to the subcategory C0, then X also
belongs to the subcategory C0.

Proof. By definition, C0 is a sieve on C if and only if the inclusion map ι : C0 ↪→ C is a
right fibration. In particular, this guarantees that ι is an inner fibration, so that C0 is a
subcategory of C. It also guarantees that a morphism f : X → Y is contained in C0 if and
only if the object Y is contained in C0, so that the subcategory C0 ⊆ C is full and satisfies
(∗). Conversely, if C0 ⊆ C is a full subcategory satisfying condition (∗), then ι satisfies the
criterion of Proposition 10.2.1.5 and is therefore a right fibration.

Example 10.2.1.7. 04U6Let C be a category and let S be a simplicial subset of N•(C). Then S
is a sieve on N•(C) (in the sense of Definition 10.2.1.1) if and only if it has the form N•(C0),
where C0 is sieve on C (in the usual category-theoretic sense).

Corollary 10.2.1.8. 04U7Let C be an ∞-category and let C0 ⊆ C be a sieve. Then C0 is a replete
full subcategory of C. In particular, C0 is an ∞-category.

Remark 10.2.1.9. 04U8Let C be an ∞-category, let C0 ⊆ C be a sieve, and let f : K → C0 be
a diagram. If the simplicial set K is nonempty, then the inclusion map C0

/f ↪→ C/f is an
isomorphism. In particular, an extension f : K◁ → C0 is a limit diagram in the ∞-category
C0 if and only if it is a limit diagram in C.

Example 10.2.1.10. 04U9Let C be an ∞-category, let C0 ⊆ C be a sieve, and let X be an object
of C0. If C• is any simplicial object of C satisfying C0 = X, then C• can also be regarded
as a simplicial object of C0. Applying Remark 10.2.1.9, we deduce that C• is a Čech nerve
of X in the ∞-category C0 if and only if it is a Čech nerve of X in the ∞-category C (see
Definition 10.1.4.1).
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Proposition 10.2.1.11.04UA Let U : E → C be a morphism of simplicial sets. The following
conditions are equivalent:

(1) The morphism U restricts to an isomorphism of E with a sieve C0 ⊆ C.

(2) The morphism U is a right covering map (Definition 4.2.3.8) and, for every vertex
C ∈ C, the fiber U−1{C} has at most one element.

Proof. The implication (1)⇒ (2) follows from Example 4.2.3.12. Conversely, suppose that
condition (2) is satisfied, and let hC denote the homotopy category of C. Our assumption
that U is a right covering map guarantees the existence of a pullback square

E U //

��

N•(
∫ hCF )

��
C // N•(hC)

where F : hCop → Set is the contravariant homotopy transport representation of C, given
concretely by the formula F (C) = U−1{C} (see Corollary 5.2.7.4). Our assumption that
each of the sets F (C) has at most one element guarantees that the right vertical map
induces an isomorphism from

∫ hCF to the sieve D ⊆ hC spanned by those objects C for
which the fiber U−1{C} is nonempty. Condition (1) now follows from Example 10.2.1.7 and
Remark 10.2.1.3.

Corollary 10.2.1.12.04UB Let C be a simplicial set and let D = hC denote its homotopy category.
Then the construction (D0 ⊆ D) 7→ N•(D0)×N•(D) C induces a bijection

{Sieves D0 ⊆ D} → {Sieves C0 ⊆ C}.

Remark 10.2.1.13.04UC Let C be a simplicial set. Then the collection of sieves on C is closed
under the formation of intersections. In particular, for every vertex X ∈ C, there is a
smallest sieve C0 ⊆ C containing X. We will refer to C0 as the sieve generated by X. If C is
an ∞-category, then C0 admits a more explicit description: it is the full subcategory of C
spanned by those objects C for which there exists a morphism f : C → X.

Remark 10.2.1.14.04UZ Let C be an ∞-category, let X be an object of C, and let C0 ⊆ C be
the sieve generated by X (Remark 10.2.1.13): that is, the full subcategory of C spanned
by those objects C for which the morphism space HomC(C,X) is nonempty. Then X is a
subterminal object of C (in the sense of Definition 9.2.2.2) if and only if it is a final object of
C0 (in the sense of Definition 4.6.7.1).
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Remark 10.2.1.15. 04V5Let C be an ∞-category, let X be an object of C, and let C0 ⊆ C be
the sieve generated by X (Remark 10.2.1.13). Then C0 is the essential image of the forgetful
functor U : C/X → C. In particular, U determines a functor U0 : C/X → C0. Moreover, the
following conditions are equivalent:

(1) The object X ∈ C is subterminal (see Definition 9.2.2.2).

(2) The functor U0 is a trivial Kan fibration.

(3) The functor U0 is an equivalence of ∞-categories.

The equivalence (1)⇔ (2) is a reformulation of Remark 9.2.2.12. Note that U0 is a pullback
of U , and therefore a right fibration (Proposition 4.3.6.1). In particular, U0 is an isofibration
(Example 4.4.1.11), so the equivalence (2)⇔ (3) follows from Proposition 4.5.5.20.

Remark 10.2.1.16. 04V6Let C be an ∞-category and let f : X → Y be a morphism of C.
Suppose that C admits finite limits, so that f admits a Čech nerve Č(X/Y )• (Proposition
10.1.5.6). If Y is a subterminal object of C, then the underlying simplicial object of Č(X/Y )•
is also a Čech nerve of the object X. This follows by combining Remark 10.2.1.15 with
Example 10.2.1.10.

Remark 10.2.1.17. 04W3Let C be an ∞-category containing a 2-simplex

04W4Y

g

��
X

f

??

h // Z,

(10.6)

where g is a monomorphism. Suppose that C admits fiber products, so that the morphisms f
and h admit Čech nerves Č•(X/Y ) and Č•(X/Z) (Proposition 10.1.5.6). Then the underlying
simplicial objects of Č•(X/Y ) and Č•(X/Z) are canonically isomorphic. To see this, let
us regard (10.6) as morphism f̃ : X̃ → Ỹ in the slice ∞-category C/Z . Since the forgetful
functor C/Z → C preserves pullbacks (Corollary 7.1.5.18), we can identify Č•(X/Y ) with the
image of Č•(X̃/Ỹ ). The desired result now follows by applying Example 10.2.1.16 to the
object Ỹ ∈ C/Z (which is subterminal by virtue of Remark 9.2.4.16).

It will often be convenient to work with a variant Definition 10.2.1.1.

Definition 10.2.1.18. 04UDLet C be an ∞-category and let Y be an object of C. A sieve on Y

is a sieve on the slice ∞-category C/Y ; that is, a full subcategory C0
/Y ⊆ C/Y satisfying the

following condition:
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(∗) For every 2-simplex
X ′ //

f ′

  

X

f

��
Y

in the ∞-category C, if f is contained in the subcategory C0
/Y ⊆ C/Y , then f ′ is also

contained in C0
/Y ⊆ C/Y .

Example 10.2.1.19.04UE Let C be an ∞-category and let f : X → Y be a morphism of C.
By virtue of Remark 10.2.1.13, there is a smallest sieve C0

/Y ⊆ C/Y on the object Y which
contains the morphism f . We will refer to C0

/Y as the sieve generated by f . Concretely, a
morphism e : C → Y belongs to the sieve C0

/Y if and only if there exists a commutative
diagram

C

e

��

// X

f

��
Y

in the ∞-category C. Stated more informally, a morphism e belongs to the sieve C0
/Y if and

only if it factors through f .

Remark 10.2.1.20.04UF Let C be an ∞-category and let C0
/Y ⊆ C/Y be a sieve on an object Y .

Then C0
/Y coincides with C/Y if and only if it contains the identity morphism idY : Y → Y .

In particular, if C0
/Y is the sieve generated by a morphism f : X → Y (Example 10.2.1.19),

then C0
/Y = C/Y if and only if the morphism f admits a right homotopy inverse s : Y → X.

Remark 10.2.1.21.04UG Let C be an ∞-category, let Y be an object of C, and let C0
/Y ⊆ C/Y be

a sieve on Y . The condition that a morphism f : X → Y belongs to C0
/Y depends only on the

isomorphism class of f as an object of the ∞-category C/Y . In particular, if X is fixed, then
the condition that f belongs to C0

/Y depends only on the homotopy class [f ] ∈ HomhC(X,Y ).

We have the following variant of Corollary 10.2.1.12:

Proposition 10.2.1.22.04UH Let C be an ∞-category, let D = hC be its homotopy category, and
let Y be an object of C (which we also regard as an object of D). Then the construction
(D0

/Y ⊆ D/Y ) 7→ N•(D0
/Y )×N•(D/Y ) C/Y induces a bijection

{Sieves D0
/Y ⊆ D/Y }

∼−→ {Sieves C0
/Y ⊆ C/Y }.
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Warning 10.2.1.23. 04UJProposition 10.2.1.22 is not a special case of Corollary 10.2.1.12,
because the slice category D/Y is usually not equivalent to the homotopy category of C/Y .

Proof of Proposition 10.2.1.22. Let C0
/Y ⊆ C/Y be a sieve on the ∞-category C/Y . We wish

to show that there is a unique sieve D0
/Y ⊆ D/Y with the following property: a morphism

f : X → Y belongs to the sieve C0
/Y if and only if the homotopy class [f ] belongs to the sieve

D0
/Y . The uniqueness assertion is immediate. To prove existence, we define D0

/Y to be the
full subcategory of D/Y spanned by those homotopy classes [f ] : X → Y such that f belongs
to C0

/Y ; by virtue of Remark 10.2.1.21, this condition depends only on the homotopy class
[f ] and not on the choice of representative f . To complete the proof, it will suffice to show
that the subcategory D0

/Y ⊆ D/Y is a sieve. Suppose we are given a commutative diagram

04UKX ′

[f ′]

  

// X

[f ]

��
Y

(10.7)

in the homotopy category D = hC. We wish to show that if [f ] belongs to D0
/Y , then [f ′]

also belongs to D0
/Y . This follows from our assumption that C0

/Y is a sieve on Y , since (10.7)
can be lifted to a 2-simplex in the ∞-category C.

Notation 10.2.1.24 (Pullback Sieves). 04ULLet C be an ∞-category, let f : X → Y be a
morphism of C, and let C0

/Y ⊆ C/Y be a sieve on the object Y . We let f∗(C0
/Y ) denote the

full subcategory of C/X spanned by those objects e : C → X for which the composition
(f ◦ e) : C → Y belongs to C0

/Y . By virtue of Remark 10.2.1.21, this condition is independent
of the choice of composition f ◦ e. The subcategory f∗(C0

/Y ) is a sieve on the object X,
which we will refer to as the pullback of C0

/Y along the morphism f .

Example 10.2.1.25. 04UMLet C be an ∞-category containing a pullback diagram

X ′

f ′

��

// X

f

��
Y ′

u // Y,

and let C0
/Y ⊆ C/Y be the sieve on Y generated by the morphism f . Then the pullback

u∗(C0
/Y ) is the sieve on Y ′ generated by the morphism f ′. In other words, a morphism

[v] : C → X ′ in the homotopy category hC factors through [f ′] if and only if the composite
morphism [u] ◦ [v] factors through [f ] (see Warning 7.6.3.3).
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Let C be an ∞-category. Recall that a full subcategory C0 ⊆ C is dense if the identity
functor idC : C → C is left Kan extended from C0 (Definition 8.4.1.5). We now consider a
slight variant of this condition.

Definition 10.2.1.26.04UN Let C be an ∞-category and let X be an object of C. We say that a
sieve C0

/X ⊆ C/X on X is dense if the forgetful functor C/X → C is left Kan extended from
C0
/X .

Warning 10.2.1.27.04UP The terminology of Definition 10.2.1.26 has the potential to create
confusion. Since the forgetful functor C/X → C creates colimits (Proposition 7.1.3.19), a
sieve C0

/X ⊆ C/X which is dense in the sense of Definition 10.2.1.26 is also dense when
regarded as a full subcategory of C/X (in the sense of Definition 8.4.1.5). Beware that
the converse is false in general (Example 10.2.1.28). However, it is true if C admits finite
products (Proposition 10.2.1.29).

Example 10.2.1.28.04UQ Let C be the 1-dimensional simplicial set associated to the directed
graph depicted in the diagram

A //

��

X

Y B,oo

OO

and let C0
/X ⊆ C/X be the sieve spanned by the objects A and B. Then C0

/X is dense when
regarded as a full category of C/X (in the sense of Definition 8.4.1.5), but not when regarded
as a sieve on X (in the sense of Definition 10.2.1.26).

Proposition 10.2.1.29.04UR Let C be an ∞-category which admits pairwise products and let
X ∈ C. Then a sieve C0

/X ⊆ C/X is dense (in the sense of Definition 10.2.1.26) if and only
if it is dense when regarded as a subcategory of C/X (in the sense of Definition 8.4.1.5).

Proof. Assume that C0
/X is a dense subcategory of C/X ; we will show that it is dense when

regarded as a sieve (for the reverse implication, see Warning 10.2.1.27). By assumption, the
identity functor id : C/X → C/X is left Kan extended from C0

/X . We wish to show that the
forgetful functor U : C/X → C is also left Kan extended from C0

/X . To prove this, it suffices
to show that the functor U preserves colimits. This is a special case of Corollary 7.1.3.21,
since the functor U admits a right adjoint (given on objects by the construction Y 7→ X ×Y ;
see Proposition 7.6.1.12).

Example 10.2.1.30.04US Let C be an ∞-category. For every object X ∈ C, the ∞-category
C/X is a dense sieve on X (see Example 7.3.3.8).
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Remark 10.2.1.31. 04UTLet C be an ∞-category and let C0
/X ⊆ C

1
/X ⊆ C/X be sieves on an

object X. If C0
/X is dense, then C1

/X is also dense. See Proposition 7.3.8.6.

Remark 10.2.1.32. 04UULet C be an ∞-category, let Y be an object of C, and let C0
/Y ⊆ C/Y

be a sieve on X. Let f : X → Y be a morphism of C, which we regard as an object of
C/Y , and let C0

/X = f∗(C0
/Y ) be the pullback sieve (Notation 10.2.1.24). Then the forgetful

functor C/Y → C is left Kan extended from C0
/Y at f if and only if the following condition is

satisfied:

(∗f ) The composite map
(C0
/X)▷ ↪→ C▷/X → C

is a colimit diagram in the ∞-category C.

In particular, the sieve C0
/Y is dense if and only if it satisfies condition (∗f ) for every morphism

f : X → Y of C.

Proposition 10.2.1.33. 04UVLet C be an ∞-category and let f : X → Y be a morphism of C.
For every dense sieve C0

/Y ⊆ C/Y , the pullback sieve f∗ C0
/Y ⊆ C/X is also dense.

Proof. This is an immediate consequence of the criterion of Remark 10.2.1.32.

Proposition 10.2.1.34 (Transitivity). 04UWLet C be an ∞-category, let Y be an object of C,
and let C0

/Y , C
1
/Y ⊆ C/Y be sieves on Y . Assume that:

(1) The sieve C0
/Y is dense.

(2) For each morphism f : X → Y which belongs to C0
/Y , the pullback sieve f∗(C1

/Y ) ⊆ C/X
is dense.

Then C1
/Y is also a dense sieve.

Proof. Let U : C/Y → C denote the projection map; we wish to show that U is left Kan
extended from C1

/Y . Assumption (1) guarantees that U is left Kan extended from C0
/Y . By

virtue of Corollary 7.3.8.8, it will suffice to show that U |C0
/Y

is left Kan extended from
the intersection C01

/Y = C0
/Y ∩C

1
/Y . Fix a morphism f : X → Y which belongs to the sieve

C0
/Y ; we wish to show that U is left Kan extended from C01

/Y at f . This follows from our
assumption that f∗ C01

/Y = f∗ C1
/Y is a dense sieve on X.

10.2.2 Quotient Morphisms

04WGLet X and Y be sets, and let f : X → Y be a function. The function f determines an
equivalence relation ≡f on X, defined by the requirement

(x ≡f x′)⇔ (f(x) = f(x′)).
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If f is surjective, then it induces an bijection from X/ ≡f to Y . Stated in more categorical
terms, this means that for every set S, composition with f induces a bijection

{Functions Y → S}

��
{Functions g : X → S satisfying g(x) = g(x′) when f(x) = f(x′)}.

Our goal in this section is to study an ∞-categorical counterpart of this condition.

Definition 10.2.2.1.04WH Let C be an ∞-category, let f : X → Y be a morphism of C, and let
C0
/Y ⊆ C/Y be the sieve generated by f (see Example 10.2.1.19). We will say that f is a

quotient morphism if the composite map

(C0
/Y )▷ ↪→ (C/Y )▷ → C

is a colimit diagram in the ∞-category C.

Notation 10.2.2.2.04WJ Let C be an ∞-category and let f be a morphism of C having source
X and target Y . If f is a quotient morphism, we will often visually emphasize this by
denoting f with a double-headed arrow (that is, we will write f : X ↠ Y in place of
f : X → Y ). Beware that this notation does not indicate that f is an epimorphism (see
Warning 10.2.2.10).

Exercise 10.2.2.3.04WK Let C be an∞-category. Show that every isomorphism in C is a quotient
morphism (see Example 10.2.4.3 for a stronger statement).

Stated more informally, a morphism f : X → Y is a quotient morphism if the object
Y can be recovered as the colimit lim−→C→Y C, indexed by the ∞-category of morphisms
g : C → Y which factor through f . If the∞-category C admits fiber products, this condition
admits a more concrete formulation.

Proposition 10.2.2.4.04WL Let C be an ∞-category and let f : X → Y be a morphism of C
which admits a Čech nerve Č(X/Y )• : N•(∆op

+ )→ C (see Definition 10.1.5.4). Then f is a
quotient morphism if and only if Č•(X/Y ) is a colimit diagram in C.

Stated more informally, Proposition 10.2.2.4 asserts that f : X → Y is a quotient
morphism if and only if it exhibits Y as a geometric realization of the simplicial object
depicted in the diagram

· · · // //
//
// X ×Y X ×Y X

//
//// X ×Y X // // X.

The proof will require some preliminaries.
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Lemma 10.2.2.5. 04WMLet C be an ∞-category and let X be an object of C which admits a Čech
nerve Č(X)• : N•(∆op)→ C (see Definition 10.1.4.3). Let C0 ⊆ C be the sieve generated by
X (Example 10.2.1.19). Then the functor Č(X)• : N•(∆op)→ C0 is right cofinal.

Proof. Let C be an object of C and let hC : C → S be a functor corepresented by C. Since
hC preserves finite products (Proposition 7.4.5.16), the composition

N•(∆op) Č(X)•−−−−→ C hC

−−→ S

is a simplicial object of S which can be identified with the Čech nerve of the Kan complex
hC(Č(X)0) ≃ HomC(C,X) (Remark 10.1.4.7). If C belongs to the sieve C0, then the
morphism space HomC(C,X) is nonempty. Applying Corollary 10.1.6.15, we conclude that
the geometric realization |hC(Č(X)•)| is contractible. The desired result now follows by
allowing the object C to vary and applying the criterion of Proposition 7.4.5.11.

Variant 10.2.2.6. 04WNLet C be an ∞-category, let f : X → Y be a morphism of C which
admits a Čech nerve Č(X/Y )• : N•(∆op

+ )→ C, and let C0
/Y denote the sieve generated by f .

Then Č(X/Y )• determines a right cofinal functor N•(∆op)→ C0
/Y .

Proof. Apply Lemma 10.2.2.5 to the slice ∞-category C/Y .

Proof of Proposition 10.2.2.4. Let C be an ∞-category and let f : X → Y be a morphism
of C which admits a Čech nerve Č(X/Y )• : N•(∆op

+ ) → C. We wish to show that f is a
quotient morphism if and only if Č(X/Y )• is a colimit diagram in C. Let C0

/Y ⊆ C/Y denote
the sieve generated by X and let Q denote the composite map

(C0
/Y )▷ ↪→ (C/Y )▷ → C .

Let us identify Č(X/Y )• with a functor F : N•(∆op)→ Cop
/Y . Unwinding the definitions, we

wish to show that Q is a colimit diagram if and only if the composite functor

N•(∆op)▷ F ▷

−−→ (C0
/Y )▷ Q−→ C

is a colimit diagram. This is a special case of Corollary 7.2.2.3, since the functor F is right
cofinal (Variant 10.2.2.6).

Corollary 10.2.2.7. 04WPLet C be a category which admits fiber products and let f : X → Y be
a morphism in C. The following conditions are equivalent:

(1) The morphism f is a quotient morphism in the ∞-category N•(C) (in the sense of
Definition 10.2.2.1).

(2) The morphism f is a regular epimorphism: that is, it exhibits Y as a coequalizer of the
projection maps X ×Y X ⇒ X (Definition 10.2.0.2).
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Proof. Combine Proposition 10.2.2.4 with Corollary 10.1.2.12.

Example 10.2.2.8.04WQ Let X and Y be sets. Then a function f : X → Y is a quotient
morphism (in the category of sets) if and only if it is surjective (see Example 10.2.0.4).

Variant 10.2.2.9.04WR Let C be a category and let f : X → Y be a morphism of C. If f is a
quotient morphism (in the sense of Definition 10.2.2.1), then it is an epimorphism.

Proof. Suppose that we are given a pair of morphisms e0, e1 : Y → Z in C satisfying
e0 ◦ f = e1 ◦ f ; we wish to show that e0 = e1. By virtue of our assumption that f is a
quotient morphism, it will suffice to show that e0 ◦ h = e1 ◦ h for every morphism h : C → Y

which belongs to the sieve C0
/Y ⊆ C/Y generated by f . In this case, we can write h = f ◦ g

for some morphism g : C → X; the desired result then follows from the calculation

e0 ◦ h = e0 ◦ (f ◦ g) = (e0 ◦ f) ◦ g = (e1 ◦ f) ◦ g = e1 ◦ (f ◦ g) = e1 ◦ h.

Warning 10.2.2.10.04WS Let f : X → Y be a quotient morphism in an ∞-category C. If C is
not (the nerve of) an ordinary category, then f need not be an epimorphism. For example,
let (X,x) be a pointed Kan complex, and let ι : {x} → X denote the inclusion map, which
we regard as a morphism in the ∞-category S of spaces. Then:

• The morphism ι is an epimorphism (in the∞-category S) if and only if X is contractible.
To see this, we observe that the identity map idX and the constant map c : X →
{x} ι−→ X become homotopic after precomposition with ι; if ι is an epimorphism, it
follows that idX is homotopic to c.

• The morphism ι is a quotient morphism if and only if X is connected (see Proposition
10.2.4.17).

Proposition 10.2.2.11 (Homotopy Invariance).04WT Let F : C → D be an equivalence of
∞-categories and let f : X → Y be a morphism in C. Then f is a quotient morphism if and
only if F (f) is a quotient morphism in the ∞-category D.

Proof. Let C0
/Y ⊆ C/Y be the sieve generated by f , and let D0

/F (Y ) ⊆ D
0
/F (Y ) be the sieve

generated by F (f). Since F is fully faithful, C0
/Y is the inverse image of D0

/F (Y ) under the
functor F/Y : C/Y → D/F (Y ) induced by F . Corollary 4.6.4.19 guarantees that F/Y is an
equivalence of ∞-categories, and therefore induces an equivalence F 0

/Y : C0
/Y → D

0
/F (Y )

(Corollary 4.5.2.29). In particular, F 0
/Y is right cofinal (Corollary 7.2.1.13). Applying

Corollary 7.2.2.3, we deduce that F (f) is a quotient morphism if and only if the composite
functor

(C0
/Y )▷ ↪→ (C/Y )▷ → C F−→ D
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is a colimit diagram in D. By virtue of Proposition 7.1.3.9, this is equivalent to the
requirement that f is a quotient morphism in C.

Corollary 10.2.2.12. 04WULet C be an ∞-category and let f0 and f1 be morphisms of C which
are isomorphic (when viewed as objects of the ∞-category Fun(∆1, C)). Then f0 is a quotient
morphism if and only if f1 is a quotient morphism.

Proof. Let Isom(C) denote the full subcategory of Fun(∆1, C) spanned by the isomorphisms.
By virtue of Corollary 4.4.5.10, the evaluation functors ev0, ev1 : Isom(C)→ C are equiva-
lences of ∞-categories. Our assumption that f0 is isomorphic to f1 guarantees that there
exists a morphism f̃ of Isom(C) satisfying ev0(f̃) = f0 and ev1(f̃) = f1. Using Proposition
10.2.2.11, we see that the condition that f0 is a quotient morphism in C is equivalent to the
condition that f̃ is a quotient morphism in Isom(C), which is also equivalent to the condition
that f1 is a quotient morphism in C.

Example 10.2.2.13. 04WVLet C be an∞-category containing a pair of morphisms f0, f1 : X → Y

which are homotopic. Then f0 is a quotient morphism if and only if f1 is a quotient morphism.
This is a special case of Corollary 10.2.2.12, but can also be deduced immediately from the
definition (since f0 and f1 generate the same sieve on Y ).

Proposition 10.2.2.14. 04WWLet C be an ∞-category, let q : K → C be a diagram, and let
f̃ : X̃ → Ỹ be a morphism in the ∞-category C/q having image f : X → Y in C. If f is a
quotient morphism in C, then f̃ is a quotient morphism in C/q.

Proof. Set C̃ = C/q, so that we have a commutative diagram of forgetful functors

C̃
/Ỹ

Ũ

��

V ′ // C/Y

U

��
C̃ V // C .

Let C0
/Y ⊆ C/Y denote the sieve generated by f , so that C̃0

/Ỹ = V ′−1 C0
/Y is the sieve

generated by f̃ . Note that V is a right fibration (Proposition 4.3.6.1), so that V ′ is a trivial
Kan fibration (Corollary 4.3.7.13). In particular, the induced map C̃0

/Ỹ → C0
/Y is a trivial

Kan fibration, and therefore right cofinal (Corollary 7.2.1.13). Combining our assumption
that f is a quotient morphism with Corollary 7.2.2.3, we deduce that the composite functor

(C̃0
/Ỹ )▷ ↪→ (C̃

/Ỹ
)▷ → C̃ V−→ C

is a colimit diagram in the ∞-category C. Since the functor V is conservative and creates
colimits (Proposition 7.1.3.19), we conclude that f̃ is a quotient morphism.
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We close this section by recording two negative results, highlighting that the collection
of quotient morphisms in an ∞-category C has poor closure properties in general:

• The collection of quotient morphisms need not be closed under composition (Exercise
10.2.2.15).

• The collection of quotient morphisms need not be closed under the formation of
pullbacks (Exercise 10.2.2.16).

Both of these defects can be remedied by working instead with the class of universal
quotient morphisms, which we study in §10.2.4 (see Definition 10.2.4.1).

Exercise 10.2.2.15.04WX Let C be the (nerve of the) ordinary category depicted informally by
the diagram

X̃

e0

��

e1

�� ��

Ỹ

g0

��

g1

�� ��
X

f // Y
h // Z,

so that f ◦ e0 = f ◦ e1 and h ◦ g0 = h ◦ g1. Show that f and h are quotient morphisms in C,
but the composition (h ◦ f) : X → Z is not a quotient morphism.

Exercise 10.2.2.16.04WY Let C be the category of partially ordered sets (where morphisms are
nondecreasing functions). Let Q = {a, b, c, d} be a set with four elements, endowed with the
partial ordering indicated in the diagram

a // b coo // d.

Let f : Q→ [2] = {0 < 1 < 2} be the nondecreasing function given by

f(a) = 0 f(b) = 1 = f(c) f(d) = 2,

so that we have a pullback diagram of partially ordered sets

04WZ {a, d} //

f0

��

Q

f

��
{0 < 2} // [2].

(10.8)

Show that f is a quotient morphism in (the nerve of) the category C, but that f0 is not.
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Variant 10.2.2.17. 04X0In the situation of Exercise 10.2.2.16, we can apply the nerve functor
to (10.8) and obtain a commutative diagram of ∞-categories

{a, d} //

F0

��

N•(Q)

F

��
N•({0 < 2}) // ∆2,

which we can regard as a pullback square in the ∞-category QC. Show that F is a quotient
morphism in QC, but that F0 is not (beware that this is not a formal consequence of Exercise
10.2.2.16: the construction P 7→ N•(P ) does not preserve quotient morphisms in general).

10.2.3 Images

04X1Let X and Y be sets. Recall that the image of a function f : X → Y is defined to be
the subset im(f) = {y ∈ Y : f−1{y} ̸= ∅}. More abstractly, the set im(f) is characterized
(up to isomorphism) by the requirement that f factors as a composition

X
q
↠ im(f) i

↪→ Y,

where q is surjective and i is injective. This motivates the following:

Definition 10.2.3.1. 04X2Let C be an ∞-category, let Y be an object of C, and let Y0 ⊆ Y be a
subobject: that is, an object of C equipped with a (specified) monomorphism i : Y0 ↪→ Y

(see Definition 9.2.4.25). We will say that Y0 is an image of a morphism f : X → Y if
the homotopy class [f ] factors as a composition [i] ◦ [q], where q : X ↠ Y0 is a quotient
morphism in C.

Remark 10.2.3.2. 04X3In the situation of Definition 10.2.3.1, our assumption that i is a

monomorphism guarantees that the composition map HomhC(X,Y0) [i]◦−−→ HomhC(X,Y ) is
injective. It follows that if there exists a morphism q : X → Y0 satisfying [f ] = [i] ◦ [q], then
q is uniquely determined up to homotopy. In particular, the condition that q is a quotient
morphism is independent of the choice of q (see Example 10.2.2.13).

Remark 10.2.3.3. 04X4In the situation of Definition 10.2.3.1, Y0 is an image of f if and only if
there exists a 2-simplex

04X5Y0

i

��
X

q

>>

f // Y

(10.9)
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in the ∞-category C, where q is a quotient morphism. If this condition is satisfied, we say
that the 2-simplex (10.9) exhibits Y0 as an image of f .

Example 10.2.3.4 (Images of Sets).04X6 Let f : X → Y be a function between sets, and
set Y0 = {y ∈ Y : f−1{y} ̸= ∅}. Then f determines a surjection from X to Y0, which
is a quotient morphism in the category of sets (Example 10.2.2.8). It follows that the
commutative diagram

Y0

i

��
X

f

>>

f // Y

exhibits Y0 as an image of f .

Example 10.2.3.5 (Images of Monomorphisms).04X7 Let C be an∞-category and let f : X ↪→ Y

be a monomorphism in C. Since the identity map idX is a quotient morphism (Exercise
10.2.2.3), the left-degenerate 2-simplex

X

f

��
X

idX

>>

f // Y

exhibits X as an image of f .

Proposition 10.2.3.6 (Images of Quotient Morphisms).04X8 Let C be an ∞-category and let
f : X → Y be a morphism of C. Then f is a quotient morphism if and only if Y is an image
of f (when regarded as a subobject of itself).

Proof. Assume first that f is a quotient morphism. Since the identity map idY is a
monomorphism (Example 9.2.4.9), the right-degenerate 2-simplex

Y

idY

��
X

f

??

f // Y

exhibits Y as an image of f . Conversely, if Y is an image of f , then f factors as the
composition of a quotient morphism and an isomorphism, and is therefore a quotient
morphism by virtue of Corollary 10.2.2.12.
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Warning 10.2.3.7. 04X9The terminology of Definition 10.2.3.1 is not entirely standard. In
the setting of additive categories, many authors refer to an object Y as the image of a
morphism f : X → Y if it is a kernel of the tautological map Y ↠ coker(f). This agrees
with Definition 10.2.3.1 when C is an abelian category (Proposition [?]), but not in general.

Warning 10.2.3.8 (Essential Images). 04XALet F : C → D be a functor of ∞-categories. Recall
that the essential image of F is the full subcategory D0 ⊆ D spanned by objects D ∈ D
which are isomorphic to F (C), for some object C ∈ C (Definition 4.6.2.11). In this case,
the inclusion map ι : D0 ↪→ D is always a monomorphism in QC (Corollary 9.2.4.33), and
F factors (uniquely) as the composition of ι with a functor F0 : C → D0. Beware that this
factorization generally does not exhibit D0 as an image of F in the ∞-category QC, in the
sense of Definition 10.2.3.1: that is, the functor F0 need not be a quotient morphism in QC.
This fails, for example, if F is the inclusion functor ∂∆1 ↪→ ∆1.

We now show that if f : X → Y is a morphism in C which admits an image Y0, then the
subobject Y0 ⊆ Y is uniquely determined up to isomorphism.

Lemma 10.2.3.9. 04XBLet q : X ↠ Y be a quotient morphism in an ∞-category C. Then every
subterminal object C ∈ C is q-local.

Proof. We wish to show that the composition map HomC(Y,C) ◦[q]−−→ HomC(X,C) is a
homotopy equivalence of Kan complexes. Since C is subterminal, both mapping spaces
are either empty or contractible. It will therefore suffice to show that if HomC(X,C) is
nonempty, then HomC(Y,C) is also nonempty.

Let C0
/Y be the sieve generated by q. Since q is a quotient morphism, Y is a colimit of

the diagram
F : C0

/Y ↪→ C/Y → C;

that is, it can be lifted to an initial object Ỹ of the coslice ∞-category CF/. Since C ∈ C is
subterminal, the projection map U : C/C → C restricts to a trivial Kan fibration from C/C
to a sieve C1 ⊆ C. The assumption that HomC(X,C) is nonempty guarantees that F takes
values in C1 and therefore factors through C/C . A choice of factorization determines a lift
of C to an object C̃ ∈ CF/. Since Ỹ is an initial object of CF/, we can choose a morphism
ũ : Ỹ → C̃ in the ∞-category CF/. Applying the forgetful functor CF/ → C, we obtain a
morphism u : Y → C in C.

Lemma 10.2.3.10. 04XCLet C be an ∞-category and let q : X ↠ Y be a quotient morphism in
C. Then q is left orthogonal to every monomorphism i : C ↪→ D of C.

Proof. Let U : C/D → C denote the projection map, so that the monomorphism i can be
identified with a subterminal object C̃ ∈ C/D satisfying U(C̃) = C (Remark 9.2.4.16). By
virtue of Corollary 9.1.7.13, it will suffice to show that the object C̃ is q̃-local for every
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morphism q̃ of C/D satisfying U(q̃) = q. This follows from Lemma 10.2.3.9, since q̃ is a
quotient morphism in the ∞-category C/D (Proposition 10.2.2.14).

Proposition 10.2.3.11.04XD Let C be an ∞-category containing a 2-simplex

04XE X

q

��

f

��
Y0

i0 // Y

(10.10)

which exhibits Y0 as an image of f . Then, for any monomorphism i1 : Y1 ↪→ Y of C, the
following conditions are equivalent:

(1) The morphism f factors (up to homotopy) through i1. That is, there exists a 2-simplex

04XF X
g //

f

  

Y1

i1

��
Y

(10.11)

in the ∞-category C.

(2) The containment [Y0] ⊆ [Y1] holds (where we regard the isomorphism classes [Y0] and
[Y1] as elements of the partiallly ordered set Sub(Y ); see Notation 9.2.4.26).

Proof. The implication (2) ⇒ (1) follows immediately from the definitions. To prove the
converse, we note that in the situation of (1), we can amalgamate the diagrams (10.10) and
(10.11) to obtain a lifting problem

X

q

��

g // Y1

i1

��
Y0

i0 //

??

Y

in the ∞-category C. Since q is a quotient morphism and i1 is a monomorphism, Lemma
10.2.3.10 guarantees that this lifting problem admits an (essentially unique) solution, which
proves (2).
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Notation 10.2.3.12. 04XGLet C be an ∞-category and let f : X → Y be a morphism in C
which admits an image Y0 ⊆ Y . It follows from Proposition 10.2.3.11 that the isomorphism
class [Y0] is uniquely determined by f (as an object of the partially ordered set Sub(Y ); see
Notation 9.2.4.26). To emphasize this, we will denote the isomorphism class [Y0] by im(f)
and refer to it as the image of f . We will sometimes abuse notation by identifying im(f)
with the object Y0, viewed either as an object of the slice ∞-category C/Y or as an object of
the ∞-category C.

Corollary 10.2.3.13. 05HSLet C be an ∞-category and let f : X → Y be a morphism of C. Then
f is an isomorphism if and only if it is both a monomorphism and a quotient morphism.

Proof. Without loss of generality, we may assume that f is a monomorphism. Applying
Example 10.2.3.5, we see that the isomorphism class [X] ∈ Sub(Y ) is an image of f . It
follows that f is an isomorphism if and only if im(f) = [Y ]. By virtue of Proposition 10.2.3.6,
this is equivalent to the requirement that f is a quotient morphism.

Proposition 10.2.3.14 (Uniqueness of Images). 04XHLet C be an ∞-category and let Fun′(∆2, C)
denote the full subcategory of Fun(∆2, C) spanned by those 2-simplices

Y0

i

��
X

q

>>

f // Y

which exhibit Y0 as an image of f (see Remark 10.2.3.3). Then the restriction functor

D : Fun′(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)

is a trivial Kan fibration from Fun′(∆2, C) to the full subcategory Fun′(∆1, C) ⊆ Fun(∆1, C)
spanned by those morphisms f : X → Y which admit an image in C.

Proof. Combining Lemma 10.2.3.10 with Theorem 9.1.8.2, we deduce that the functor D is
fully faithful, and therefore induces an equivalence from Fun′(∆2, C) to the full subcategory
Fun′(∆1, C) ⊆ Fun(∆1, C). To complete the proof, it will suffice to show that D is an
isofibration (Proposition 4.5.5.20). This follows from Corollary 4.4.5.3, since Fun′(∆2, C) is
a replete subcategory of Fun(∆2, C) (see Corollary 10.2.2.12 and Remark 9.2.4.24).

Remark 10.2.3.15. 04XJLet C be an ∞-category and let f : X → Y be a morphism of C.
Suppose that C admits fiber products, so that f admits a Čech nerve Č•(X/Y ) (Proposition
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10.1.5.6). If f has an image, then im(f) can be identified with the geometric realization of
the underlying simplicial object of Č•(X/Y ). To see this, choose a 2-simplex

Y0

i

��
X

q

>>

f // Y

which exhibits Y0 as an image of f . Since i is a monomorphism, Remark 10.2.1.17 supplies an
isomorphism between the underlying simplicial objects of Č•(X/Y ) and Č•(X/Y0). It will
therefore suffice to show that Č•(X/Y0) is a colimit diagram in C, which is a reformulation
of our assumption that q is a quotient morphism (Proposition 10.2.2.4).

Warning 10.2.3.16.04XK Let C be an ∞-category which admits fiber products, let f : X → Y

be a morphism of C, and let C• denote the underlying simplicial object of the Čech nerve
Č•(X/Y ). Remark 10.2.3.15 asserts that if f has an image, then that image can be identified
with a geometric realization of C•. Beware that the converse is false in general. Suppose
that C• admits a geometric realization |C•|, given by the image on an initial object E of
the coslice ∞-category CC•/. The augmented simplicial object Č•(X/Y ) determines another
object Ỹ ∈ CC•/, so there is an (essentially unique) morphism from E to Ỹ . The forgetful
functor CC•/ → CX/ carries this morphism to a 2-simplex

04XL |C•|

i

  
X

q

>>

f // Y

(10.12)

in the ∞-category C. In this situation, the following conditions are equivalent:

• The morphism i is a monomorphism.

• The diagram (10.12) exhibits |C•| as an image of f .

• The morphism f has an image in C.

Definition 10.2.3.17.04XM Let C be an∞-category. We say that C has images if every morphism
f : X → Y of C has an image im(f) ∈ Sub(Y ).

Remark 10.2.3.18 (Functoriality of Images).04XN Let C be an∞-category and let Fun′(∆2, C) ⊆
Fun(∆2, C) be the full subcategory described in Proposition 10.2.3.14. Then C has images if
and only if the restriction functor

D : Fun′(∆2, C)→ Fun(∆1, C) σ 7→ d2
1(σ)
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is a trivial Kan fibration. If this condition is satisfied, then D admits a section which carries
each morphism f : X → Y of C to a 2-simplex

im(f)

!!
X

==

f // Y

which exhibits im(f) as an image of f . In particular, we can promote the construction
f 7→ im(f) as a functor of ∞-categories Fun(∆1, C)→ C.

Remark 10.2.3.19. 04XPLet C be an ∞-category, let Q denote the collection of all quotient
morphisms in C, and let M denote the collection of all monomorphisms in C. Then Q and
M are closed under isomorphism (see Corollary 10.2.2.12 and Remark 9.2.4.24), and Q is
left orthogonal to M (Lemma 10.2.3.10). It follows that C has images if and only if the pair
(Q,M) is a factorization system on C (Definition 9.1.9.1).

Proposition 10.2.3.20. 04XQLet C be an ∞-category and let f : X → Y be a morphism of C.
If C has images, the following conditions are equivalent:

(1) The morphism f is a quotient morphism.

(2) The morphism f is left orthogonal to every monomorphism in C.

(3) The morphism f is weakly left orthogonal to every monomorphism in C.

Proof. Combine Remark 10.2.3.19 with Proposition 9.1.9.11.

Corollary 10.2.3.21. 04XRLet C be an ∞-category which has images, and let

Y

g

��
X

f

??

h // Z

be a 2-simplex of C, where f is a quotient morphism. Then g is a quotient morphism if
and only if h is a quotient morphism. In particular, the collection of quotient morphisms is
closed under composition.

Proof. Combine Proposition 10.2.3.20 with Corollary 9.1.7.15.
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Corollary 10.2.3.22.04XS Let C be an ∞-category containing a pushout diagram

X

f

��

// X ′

f ′

��
Y // Y ′.

If C is has images and f is a quotient morphism, then f ′ is also a quotient morphism.

Proof. Combine Proposition 10.2.3.20 with Corollary 9.1.7.18.

Corollary 10.2.3.23.04XT Let C be an ∞-category with images. Then the collection of quotient
morphisms in C is closed under retracts (in the ∞-category Fun(∆1, C)).

Proof. Combine Proposition 10.2.3.20 with Corollary 9.1.7.17.

Exercise 10.2.3.24.04XU Show that the conclusion of Corollary 10.2.3.23 holds for every ∞-
category C: that is, it is not necessary to assume that C has images.

10.2.4 Universal Quotient Morphisms

04XV Let C be an∞-category. In §10.2.2, we observed that the collection of quotient morphisms
in C can exhibit some bad behavior: they need not be closed under composition (Exercise
10.2.2.15) or under the formation of pullbacks (Exercise 10.2.2.16). These deficiencies can
be remedied by adopting a more restrictive definition.

Definition 10.2.4.1 (Universal Quotient Morphisms).04XW Let C be an ∞-category, let f :
X → Y be a morphism of C, and let C0

/Y ⊆ C/Y be the sieve generated by f (see Example
10.2.1.19). We say that f is a universal quotient morphism if the sieve C0

/X is dense (in the
sense of Definition 10.2.1.26).

Remark 10.2.4.2.04XX Let C be an ∞-category and let f : X → Y be a morphism of C, and let
C0
/Y ⊆ C/Y be the sieve generated by f . Then f is a quotient morphism if and only if the

forgetful functor C/Y → C is left Kan extended from C0
/Y at the object idY : Y → Y (see

Remark 10.2.1.32). In particular, if f is a universal quotient morphism, then f is a quotient
morphism. Beware that the converse is false in general (see Example 10.2.4.11).

Example 10.2.4.3.04XY Let C be an ∞-category, let f : X → Y be a morphism of C, and let
C0
/Y ⊆ C/Y be the sieve generated by f . If f admits a right homotopy inverse s : Y → X,

then the sieve C0
/Y coincides with C/Y , and is therefore dense. It follows that f is a universal

quotient morphism. In particular, every isomorphism is a universal quotient morphism.
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Remark 10.2.4.4. 04XZLet C be an ∞-category, let Y be an object of C, and let C0
/Y ⊆ C/Y be

a sieve on Y . If C0
/Y contains a universal quotient morphism f : X ↠ Y , then it is dense.

See Remark 10.2.1.31.

Remark 10.2.4.5. 04Y0Let C be an ∞-category containing a 2-simplex

Y

g

  
X

f

??

h // Z.

If h is a universal quotient morphism, then g is also a universal quotient morphism. This is
a special case of Remark 10.2.4.4.

Proposition 10.2.4.6. 04Y1Let C be an ∞-category containing a pullback diagram

04Y2X ′

f ′

��

// X

f

��
Y ′

u // Y.

(10.13)

If f is a universal quotient morphism, then f ′ is also a universal quotient morphism.

Proof. Let C0
/Y ⊆ C/Y be the sieve generated by f . Our assumption that f is a universal

quotient morphism guarantees that C0
/Y is a dense sieve on Y . Applying Proposition 10.2.1.33,

we deduce that the pullback u∗ C0
/Y is a dense sieve on Y ′. Since (10.13) is a pullback square,

the sieve u∗ C0
/Y ′ is generated by f ′, so that f ′ is also a universal quotient morphism.

The terminology of Definition 10.2.4.1 is motivated by the following result:

Corollary 10.2.4.7. 04Y3Let C be an ∞-category which admits fiber products and let f : X → Y

be a morphism of C. The following conditions are equivalent:

(1) The morphism f is a universal quotient morphism.

(2) For every pullback diagram
X ′

f ′

��

// X

f

��
Y ′ // Y

of C, the morphism f ′ is a universal quotient morphism.
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(3) For every pullback diagram
X ′

f ′

��

// X

f

��
Y ′ // Y

of C, the morphism f ′ is a quotient morphism.

Proof. The implication (1)⇒ (2) follows from Proposition 10.2.4.6, the implication (2)⇒ (3)
from Remark 10.2.4.2, and the implication (3)⇒ (1) from the criterion of Remark 10.2.1.32
(together with Example 10.2.1.25).

Corollary 10.2.4.8.04Y4 Let C be an ∞-category which admits fiber products. The following
conditions are equivalent:

(1) Every quotient morphism in C is a universal quotient morphism.

(2) The collection of quotient morphisms in C is closed under pullbacks. That is, for every
pullback diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

where f is a quotient morphism, f ′ is also a quotient morphism.

Corollary 10.2.4.9.04Y5 Let X and Y be sets, and let f : X → Y be a function. The following
conditions are equivalent:

(1) The function f is a universal quotient morphism in the category of sets.

(2) The function f is a quotient morphism in the category of sets.

(3) The function f is surjective.

Proof. The implication (1)⇒ (2) follows from Remark 10.2.4.2 and the equivalence (2)⇔ (3)
follows from Example 10.2.2.8. Since the collection of surjections is closed under pullbacks,
Corollary 10.2.4.7 guarantees that (3)⇒ (1).

Corollary 10.2.4.10.04Y6 Let C be an ∞-category which admits pullbacks, and suppose that
geometric realizations in C are universal (see Definition [?]). Then every quotient morphism
in C is a universal quotient morphism.
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Proof. Combine Corollary 10.2.4.7 and Proposition 10.2.2.4 (together with Remark 10.1.5.7).

Example 10.2.4.11. 04Y7Let C be (the nerve of) the category of partially ordered sets. Then
Exercise 10.2.2.16 supplies an example of a quotient morphism f : Q↠ [2] in C which is not
a universal quotient morphism.

Proposition 10.2.4.12. 04Y8Let C be an ∞-category containing a 2-simplex

Y

g

  
X

f

??

h // Z.

If f and g are universal quotient morphisms, then h is also a universal quotient morphism.

Proof. Let C0
/Z and C1

/Z be the sieves generated by g and h, respectively. By assumption,
the sieve C0

/Z is dense, and we wish to show that C1
/Z is also dense. By virtue of Proposition

10.2.1.34, it will suffice to show that for every morphism u : Z ′ → Z which belongs to C0
/Z ,

the pullback u∗ C1
/Z′ is a dense sieve on Z ′. Using Proposition 10.2.1.33, we can reduce

to the special case where u is the morphism g : Y ↠ Z. In this case, the pullback sieve
u∗(C1

/Y ) ⊆ C/Y contains the universal quotient morphism f : X ↠ Y , and is therefore dense
(Remark 10.2.4.4).

Variant 10.2.4.13. 04Y9Let C be an ∞-category containing a 2-simplex

Y

g

  
X

f

??

h // Z.

If f is a universal quotient morphism and g is a quotient morphism, then h is a quotient
morphism.

Proof. Let C0
/Z and C1

/Z be the sieves on X generated by g and h, respectively. Our
assumption that g is a quotient morphism guarantees that the functor

Q : (C0
/Z)▷ → (C/Z)▷ → C

is a colimit diagram in the ∞-category C, and we wish to show that the restriction Q|(C1
/Z

)▷

is also a colimit diagram. By virtue of Corollary 7.3.8.2, it will suffice to show that the
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restriction Q = Q|C0
/Z

is left Kan extended from the full subcategory C1
/Z . Fix a morphism

u : Z ′ → Z which belongs to the sieve C0
/Z ; we wish to show that Q is left Kan extended

from C1
/Z at u. In fact, we will prove a slightly stronger assertion: the pullback u∗(C1

/Z)
is a dense sieve on Z ′. Using Proposition 10.2.1.33, we are reduced to proving this in the
special case where u is the morphism g : Y → Z. In this case, the sieve u∗(C1

/Z) contains
the quotient morphism f , and is therefore dense by virtue of Remark 10.2.4.4.

Corollary 10.2.4.14.04YA Let C be an ∞-category. Then the collection of universal quotient
morphisms of C is closed under retracts (in the ∞-category Fun(∆1, C)).

Proof. Let f : X ↠ Y be a universal quotient morphism in C and let f ′ : X ′ → Y ′ be a
retract of f , so that we have a commutative diagram

X ′

f ′

��

// X

f

��

rX // X ′

f ′

��
Y ′ // Y

rY // Y ′

where the vertical compositions are homotopic to the identity. We wish to show that f ′ is
also a universal quotient morphism. By virtue of Remark 10.2.4.5, it will suffice to show
that the composition (f ′ ◦ rX) : X → Y ′ is a universal quotient morphism. Using the
commutativity of the diagram, we can write f ′ ◦ rX as a composition of rY with f . Since f
is a universal quotient morphism by assumption and rY is a universal quotient morphism by
virtue of Example 10.2.4.3, the desired result follows from Proposition 10.2.4.12.

Proposition 10.2.4.15.04YB Let C be an ∞-category, let q : K → C be a diagram, and let
f̃ : X̃ → Ỹ be a morphism in the ∞-category C/q having image f : X → Y in C. If f is a
universal quotient morphism in C, then f̃ is a universal quotient morphism in C/q.

Proof. Set C̃ = C/q, so that we have a commutative diagram of forgetful functors

C̃
/Ỹ

Ũ

��

V ′ // C/Y

U

��
C̃ V // C .

Let C0
/Y ⊆ C/Y denote the sieve generated by f . Since f is a universal quotient morphism,

the functor U is left Kan extended from C0
/Y . Note that V is a right fibration (Proposition

https://kerodon.net/tag/04YA
https://kerodon.net/tag/04YB


2088 CHAPTER 10. EXACTNESS AND ANIMATION

4.3.6.1), so that V ′ is a trivial Kan fibration (Corollary 4.3.7.13). In particular, V ′ is a right
fibration, so that the functor U ◦ V ′ = V ◦ Ũ is left Kan extended from the subcategory
C̃0
/Ỹ = V ′−1 C0

/Y (Corollary 7.3.8.5). Since the functor V is conservative and creates colimits
(Proposition 7.1.3.19), it follows that Ũ is also left Kan extended from C̃0

/Ỹ . We conclude by
observing that C̃0

/Ỹ is the sieve generated by f̃ , so that f̃ is a universal quotient morphism
in C̃.

We close this section by characterizing (universal) quotient morphisms in the∞-category
S of spaces.

Lemma 10.2.4.16. 04YCLet C be an ∞-category, let C′ ⊆ C be a dense full subcategory, and
let f : X → Y be a morphism of C. Suppose that, for every object C ∈ C′, postcomposition
with [f ] induces a surjection HomhC(C,X)→ HomhC(C, Y ). Then f is a universal quotient
morphism.

Proof. Our assumption that C′ is dense guarantees that the identity functor C → C is left
Kan extended from C′. Let U : C/Y → C be the projection map and let C′/Y ⊆ C/Y denote
the inverse image of C′. Since U is a right fibration (Proposition 4.3.6.1), the functor U is left
Kan extended from C′/Y . Let C0

/Y ⊆ C/Y denote the sieve generated by f . Our hypothesis
guarantees that C0

/Y contains C′/Y . Applying Corollary 7.3.8.8, we conclude that U is left
Kan extended from C0

/Y : that is, f is a universal quotient morphism.

Proposition 10.2.4.17. 04YDLet f : X → Y be a map of Kan complexes. The following
conditions are equivalent:

(1) The map f is a universal quotient morphism in the ∞-category S (Definition 10.2.4.1).

(2) The map f is a quotient morphism in the ∞-category S (Definition 10.2.2.1).

(3) The map f is 0-connective: that is, it induces a surjection π0(f) : π0(X)→ π0(Y ).

Proof. The implication (1) ⇒ (2) is a special case of Corollary 10.2.4.10. We next show
that (2) implies (3). Assume that f is a quotient morphism, so that Y can be identified
with the geometric realization of the Čech nerve Č(X/Y )• in the ∞-category S (Proposition
10.2.2.4). Note that the functor

S → N•(Set) S 7→ π0(S)

preserves the formation of geometric realizations (since it is left adjoint to the inclusion func-
tor). It follows that π0(Y ) can be identified with the geometric realization of π0(Č(X/Y )•) in
the category of sets: that is, with the coequalizer of the projection maps π0(X×Y X) ⇒ π0(X)
(see Corollary 10.1.2.12). In particular, the tautological map π0(X)→ π0(Y ) is surjective.
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We now show that (3) implies (1). Assume that condition (3) is satisfied. For every
contractible Kan complex C, the composition map HomhC(C,X) [f ]◦−−→ HomhC(C, Y ) can be
identified with π0(f), and is therefore surjective. Since the contractible Kan complexes span
a dense subcategory of S (Example 8.4.2.3), Lemma 10.2.4.16 implies that f is a universal
quotient morphism.

10.2.5 Regular ∞-Categories

04YE We now formulate an ∞-categorical counterpart of Definition 10.2.0.6.

Definition 10.2.5.1.04YF Let C be an ∞-category. We say that C is regular if it satisfies the
following conditions:

(1) The ∞-category C admits finite limits.

(2) The∞-category C has images. That is, every morphism f : X → Y of C can be extended
to a 2-simplex

Y0

i

��
X

q

??

f // Y,

where q is a quotient morphism and i is a monomorphism.

(3) The collection of quotient morphisms in C is closed under pullback. That is, for every
pullback diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

of C, if f is a quotient morphism, then f ′ is also a quotient morphism.

Example 10.2.5.2.04YG Let C be a category. Then C is regular (in the sense of Definition
10.2.0.6) if and only if N•(C) is a regular ∞-category (in the sense of Definition 10.2.5.1).
See Corollary 10.2.2.7.

Definition 10.2.5.1 admits a number of reformulations.

Proposition 10.2.5.3.04YH Let C be an ∞-category which has images and admits finite limits.
The following conditions are equivalent:
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(1) The ∞-category C is regular: that is, the collection of quotient morphisms in C is closed
under pullbacks.

(2) Every quotient morphism in C is a universal quotient morphism.

(3) Every morphism f : X → Y of C can be realized as the composition of a universal
quotient morphism q : X ↠ Y0 and a monomorphism i : Y0 ↪→ Y .

(4) For every pullback diagram

04YJX ′
f ′ //

��

Y ′

u

��
X

f // Y,

(10.14)

the image im(f ′) coincides with u−1(im(f)) (as an element of the set Sub(Y ′)).

Proof. The equivalence of (1)⇔ (2) is a special case of Corollary 10.2.4.8, and the implication
(2) ⇒ (3) is immediate from the definitions. We next show that (3) implies (4). Fix a
diagram of the form (10.14). If condition (3) is satisfied, then we can choose a diagram

Y ′

u

��
X

q // Y0
i // Y

in the ∞-category C where q is a universal quotient morphism, i is a monomorphism, and
the lower vertical composition coincides with f . Since C admits finite limits, this diagram
admits a right Kan extension

04YKY ′ ×Y X
q′ //

��

Y ′ ×Y Y0
i′ //

��

Y ′

u

��
X

q // Y0
i // Y,

(10.15)

so that the right square and outer rectangle are pullback diagrams. By construction, the
inverse image u−1(im(f)) is the isomorphism class of the fiber product Y ′×Y Y0 (regarded as
an object of the ∞-category C/Y ′ via the morphism i′). On the other hand, the uniqueness
of limits guarantees that Y ′ ×Y X is isomorphic to X ′ as an object of C/Y ′ , so the image
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of f ′ coincides with the image of the composite morphism i′ ◦ q′. To prove that this image
coincides with [Y ′×Y Y0], it suffices to show that q′ is a quotient morphism in C. This follows
from Corollary 10.2.4.7, since the left half of (10.15) is also a pullback square (Proposition
7.6.3.25).

We now complete the proof by showing that (4) implies (1). Suppose we are given a
pullback square (10.14), where f is a quotient morphism; we wish to show that f ′ is also a
quotient morphism. By virtue of Proposition 10.2.3.6, the assumption that f is a quotient
morphism guarantees that im(f) = [Y ] is the largest element of Sub(Y ), and we wish to
show that im(f ′) = [Y ′] is the largest element of Sub(Y ′). This follows immediately from
(4), since the inverse image construction u−1 : Sub(Y )→ Sub(Y ′) preserves largest elements
(see Construction 9.2.4.31).

Remark 10.2.5.4.04YL Let C be an ∞-category which has images and admits finite limits.
Then, for every pullback diagram

X ′
f ′ //

��

Y ′

u

��
X

f // Y,

we always have a containment im(f ′) ⊆ u−1(im(f)) in Sub(Y ′); this follows from the
characterization of im(f) supplied by Proposition 10.2.3.11.

Corollary 10.2.5.5.04YM Let C be an ∞-category which admits finite limits. Then C is regular
if and only if every morphism f : X → Y can be obtained by composing a universal quotient
morphism q : X ↠ Y0 with a monomorphism i : Y0 ↪→ Y .

Corollary 10.2.5.6.04YN Let S denote the∞-category of spaces. Then S is a regular∞-category.

Proof. Corollary 7.4.5.6 guarantees that S admits finite limits. By virtue of Corollary
10.2.5.5, it will suffice to show that every map of Kan complexes f : X → Y factors as a
composition i ◦ q, where q : X ↠ Y0 is a universal quotient morphism in S and i : Y0 ↪→ Y is
a monomorphism in S. For this, we can take i : Y0 ↪→ Y to be the inclusion of the essential
image of f (which is a monomorphism by Example 9.2.4.10), and q : X → Y0 to be the
restriction of f (which is a universal quotient morphism by Proposition 10.2.4.17.

Remark 10.2.5.7.04YP Let f : X → Y be a morphism of Kan complexes and let Y0 ⊆ Y be
its essential image. The proof of Corollary 10.2.5.6 shows that Y0 is an image of f in the
∞-category S.
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Warning 10.2.5.8. 04YQLet QC denote the ∞-category of (small) ∞-categories. Then QC
contains quotient morphisms which are not universal quotient morphisms (see Variant
10.2.2.17). In particular, QC is not regular.

Proposition 10.2.5.9. 04YRLet C be a regular ∞-category. Then, for every object Z ∈ C, the
slice ∞-category C/Z is regular.

Proof. It follows from Remark 7.1.2.11 that the ∞-category C/Z admits finite limits. By
virtue of Corollary 10.2.5.5, it will suffice to show that every morphism f̃ : X̃ → Ỹ can be
realized as the composition of a universal quotient morphism X̃ ↠ Ỹ0 with a monomorphism
Ỹ0 ↪→ Ỹ . Let f : X → Y denote the image of f̃ in the ∞-category C. Since C is regular, we
can choose a 2-simplex σ :

Y0

i

��
X

q

>>

f // Y

of C, where q is a universal quotient morphism and i is a monomorphism. The inclusion
map N•({0 < 2}) ↪→ ∆2 is right anodyne (Lemma 4.3.7.8), so we can lift σ to a 2-simplex

Ỹ0

ĩ

��
X̃

q̃

??

f̃ // Ỹ

in the ∞-category C/Z . We conclude by observing that ĩ is a monomorphism (Remark
9.2.4.23) and q̃ is a universal quotient morphism (Proposition 10.2.4.15).

We now study functors between regular ∞-categories.

Definition 10.2.5.10. 04YSLet C and D be regular ∞-categories. We say that a functor
F : C → D is regular if it preserves finite limits and carries quotient morphisms of C to
quotient morphisms of D.

Remark 10.2.5.11. 04YTLet F : C → D be a functor of ∞-categories which preserves pullbacks.
Then F carries monomorphisms in C to monomorphisms in D (Proposition 9.2.4.20). In
particular, for every object Y ∈ C, the functor F carries subobjects of Y to subobjects of
F (Y ), and therefore induces a map of partially ordered sets Sub(Y )→ Sub(F (Y )).
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Proposition 10.2.5.12.04YU Let C and D be∞-categories which have images, and let F : C → D
be a functor which preserves pullback squares. The following conditions are equivalent:

(1) The functor F carries quotient morphisms in C to quotient morphisms in D.

(2) For every 2-simplex σ :
Y0

i

��
X

q

>>

f // Y

in the ∞-category C which exhibit Y0 as an image of f , the 2-simplex F (σ) exhibits
F (Y0) as an image of F (f) in the ∞-category D.

(3) For every morphism f : X → Y in C, the map Sub(Y ) → Sub(F (Y )) of Remark
10.2.5.11 carries im(f) to im(F (f)).

Proof. The implication (1)⇒ (2) follows from the observation that F preserves monomor-
phisms (Proposition 9.2.4.20), and the implication (2)⇒ (3) is immediate from the definitions.
We will complete the proof by showing that (3) implies (1). Let f : X ↠ Y be a quotient
morphism in C; we wish to show that F (f) is a quotient morphism in D. By virtue of
Proposition 10.2.3.6, our hypothesis can be reformulated as an equality im(f) = [Y ] in
the partially ordered set Sub(Y ), and we wish to prove an equality im(F (f)) = [F (Y )] in
the partially ordered set Sub(F (Y )). This is clear, since the map Sub(Y ) → Sub(F (Y ))
preserves largest elements (see Remark 10.2.5.11).

Remark 10.2.5.13.04YV Let C and D be ∞-categories with images, and let F : C → D be a
functor which preserves pullback diagrams. For any morphism f : X → Y of C, we always
have an inclusion F (im(f)) ⊆ im(F (f)) in the partially ordered set Sub(F (Y )).

Corollary 10.2.5.14.04YW Let C and D be regular ∞-categories, and let F : C → D be a functor
which preserves finite limits. Then F is regular if and only if, for every morphism f : X → Y

in the ∞-category C, the map Sub(Y )→ Sub(F (Y )) of Remark 10.2.5.11 carries im(f) to
im(F (f)).

Example 10.2.5.15.04YX Let C be a regular ∞-category. Then, for every object X ∈ C, the
slice ∞-category C/X is also regular (Proposition 10.2.5.9). Moreover, for every morphism
f : X → Y of C, Proposition 7.6.3.16 guarantees that there exists a functor

f∗ : C/Y → C/X Z 7→ X ×Y Z
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given by pullback along f . The functor f∗ is regular: it preserves finite limits since it
right adjoint to the postcomposition functor (f ◦ •) : C/X → C/Y , and preserves quotient
morphisms by virtue of Proposition 10.2.5.3.

Proposition 10.2.5.16. 04YYLet C and D be ∞-categories which admit finite limits and let
F : C → D be a functor which preserves finite limits and geometric realizations of simplicial
objects. Then F carries quotient morphisms of C to quotient morphisms of D. In particular,
if the ∞-categories C and D are regular, then the functor F is regular.

Proof. Let f : X ↠ Y be a quotient morphism in C; we wish to that F (f) is quotient
morphism in D. Let Č•(X/Y ) : N•(∆op

+ ) → C be a Čech nerve of f (Notation 10.1.5.5.
Since f is a quotient morphism (Remark 10.2.4.2), Č•(X/Y ) is a colimit diagram in C
(Proposition 10.2.2.4). Our assumption that F preserves geometric realizations guarantees
that F ◦ Č•(X/Y ) is a colimit diagram in the ∞-category D. Since F preserves finite limits,
F ◦ Č•(X/Y ) is a Čech nerve of the morphism F (f) : F (X)→ F (Y ). Applying Proposition
10.2.2.4 again, we deduce that F (f) is a quotient morphism in D.

We now record some closure properties for the collection of regular ∞-categories.

Proposition 10.2.5.17. 04YZLet C be an ∞-category which admits pullbacks, let C0 ⊆ C be a
full subcategory which is closed under the formation of pullbacks, and let q : X → Y be a
morphism in C0. If q is a quotient morphism in C, then it is also a quotient morphism in C0.
If q is a universal quotient morphism in C, then it is also a universal quotient morphism in
C0.

Proof. Assume that q is a quotient morphism in C; we will show that it is also a quotient
morphism in C0 (the analogous assertion for universal quotient morphisms then follows
from the criterion of Corollary 10.2.4.7). Since C admits pullbacks and C0 is stable under
the formation of pullbacks, it follows that C0 also admits pullbacks. Applying Proposition
10.1.5.6, we deduce that q admits a Čech nerve Č•(X/Y ) : N•(∆op

+ )→ C0, which is also a
Čech nerve of q in the ∞-category C. Since q is a quotient morphism, Č•(Z/Y ) is a colimit
diagram in C (Proposition 10.2.2.4). It follows that Č•(X/Y ) is also a colimit diagram in
C0, so that q is a quotient morphism in C0.

Corollary 10.2.5.18. 04Z0Let C be a regular ∞-category and let C0 ⊆ C be a full subcategory
which is closed under finite limits. Assume that, for every morphism f of C0, the image
im(f) (formed in the ∞-category C) can be chosen to belong to C0. Then C0 is also regular.

Proof. Let f : X → Y be a morphism in C. Since C is regular, f can be factored as the
composition of a universal quotient morphism q : X ↠ Y0 with a monomorphism i : Y0 ↪→ Y .
If X and Y belong to C0, then our assumption guarantees that we can arrange that Y0 is
also contained in C0. In this case, i is also a monomorphism in the ∞-category C0, and
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Proposition 10.2.5.17 guarantees that q is a universal quotient morphism in the subcategory
C0. Allowing f to vary and invoking Corollary 10.2.5.5, we conclude that C0 is regular.

Proposition 10.2.5.19.04Z1 Let F : C → D be a functor of ∞-categories which admits a fully
faithful right adjoint G : D → C. Suppose that the ∞-category C is regular and that F
preserves finite limits. Then the ∞-category D is also regular, and F is a regular functor.

Proof. Since the functor F has a right adjoint, it preserves geometric realizations of simplicial
objects (Corollary 7.1.3.21). Applying Proposition 10.2.5.16, we deduce that the functor
F carries quotient morphisms in C to quotient morphisms in D. It will therefore suffice to
show that D is regular.

It follows from Corollary 7.1.3.27 (together with Corollary 6.2.2.17) that the ∞-category
D admits finite limits. We next show that every morphism v : D → D′ in D has an image.
Let ϵ : (F ◦ G) → idD be the counit of an adjunction between F and G. Since G is fully
faithful, the natural transformation ϵ is an isomorphism. We can therefore replace v by the
morphism (F ◦G)(v), and thereby reduce to the case where v = F (u) for some morphism
u : C → C ′ in C. In this case, our assumption that C has images guarantees that we can factor
u as a composition C

q
↠ C ′0

i
↪→ C ′, where q is a quotient morphism and i is a monomorphism

(in the ∞-category C). It follows that v can be written as the composition of F (q) (which is
a quotient morphism in D, as noted above) with F (i) (which is a monomorphism in D by
virtue of Proposition 9.2.4.20). In particular, the object F ′(C0) is an image of v.

We now complete the proof by showing that if

04Z2 X ′
f ′ //

��

Z ′

g

��
X

f // Z

(10.16)

is a pullback diagram in C where f is a quotient morphism, then f ′ is also a quotient
morphism. Since C is regular, we can choose a 2-simplex

Y

!!
G(X)

q

==

G(f) // G(Z),

which exhibits Y as an image of G(f). It follows that F (σ) exhibits F (Y ) as an image of
the morphism (F ◦ G)(f) in the ∞-category D. Note that (F ◦ G)(f) is isomorphic to f
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(as an object of Fun(∆1,D)), and is therefore a quotient morphism (Corollary 10.2.2.12).
Applying Proposition 10.2.3.6, we conclude that F (i) is an isomorphism in D.

Amalgamating the 2-simplex σ with G(g), we obtain a diagram

G(Z ′)

G(g)

��
G(X) q // Y

i // G(Z)

in the ∞-category C. Since C admits finite limits, this diagram admits a right Kan extension

04Z3G(X)×G(Z) G(Z ′) q′ //

��

Y ×G(Z) G(Z ′) i′ //

��

G(Z ′)

g

��
G(X) q // Y

i // G(Z),

(10.17)

so that the square on the right and the outer rectangle are pullback squares. Note that, after
applying the functor F , the outer rectangle of this diagram is isomorphic to (10.16). We are
therefore reduced to showing that the functor F carries the upper horizontal composition in
(10.17) to a quotient morphism in D. Since F preserves pullback squares, F (i′) is a pullback
of F (i) and is therefore an isomorphism (Corollary 7.6.3.24). Using Corollary 10.2.2.12, we
are reduced to showing that F (q′) is a quotient morphism in D. In fact, we claim that q′
is a pullback morphism of C. This follows from our assumption that C is regular, since q
is a quotient morphism by construction and the left half the diagram (10.17) is a pullback
square (Proposition 7.6.3.25).

Corollary 10.2.5.20. 04Z4Let C be a regular∞-category and let C0 ⊆ C be a reflective subcategory,
so that the inclusion functor C0 ↪→ C admits a left adjoint L : C → C0. If the functor L
preserves finite limits, then C0 is a regular ∞-category and L is a regular functor.

https://kerodon.net/tag/04Z3
https://kerodon.net/tag/04Z4


Bibliography
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