Definition 9.2.1.3. Let $\kappa \leq \lambda $ be regular cardinals. We will say that an $\infty $-category $\operatorname{\mathcal{C}}$ is $(\kappa ,\lambda )$-cocomplete if it admits $\operatorname{\mathcal{K}}$-indexed colimits for every $\infty $-category $\operatorname{\mathcal{K}}$ which is $\lambda $-small and $\kappa $-filtered.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$