Corollary 9.2.1.16. Let $\kappa $ and $\lambda $ be small regular cardinals satisfying $\kappa \trianglelefteq \lambda $. Then an $\infty $-category $\operatorname{\mathcal{C}}$ admits small $\kappa $-filtered colimits if and only if it admits small $\lambda $-filtered colimits and is $(\kappa ,\lambda )$-cocomplete.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$