$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Bibliography
A
- Adámek, J. and Rosický, J., On sifted colimits and generalized varieties.
- Adámek, Jiří and Rosický, Jiří, Locally presentable and accessible categories.
- Arone, Greg and Ching, Michael, Operads and chain rules for the calculus of functors.
- Arone, Greg and Mahowald, Mark, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres.
- Artin, M. and Mazur, B., Etale homotopy.
- Atiyah, M. F., Characters and cohomology of finite groups.
- Atiyah, M. F. and Segal, G. B., Equivariant $K$-theory and completion.
B
- Bénabou, Jean, Introduction to bicategories.
- Baez, John C. and Shulman, Michael, Lectures on $n$-categories and cohomology.
- Barratt, M. G. and Gugenheim, V. K. A. M. and Moore, J. C., On Semisimplicial Fibre-Bundles.
- Barwick, Clark and Glasman, Saul and Nardin, Denis, Dualizing cartesian and cocartesian fibrations.
- Bergner, Julia E., A model category structure on the category of simplicial categories.
- Bergner, Julia E., A survey of $(\infty ,1)$-categories.
- Bergner, Julia E., Rigidification of algebras over multi-sorted theories.
- Berkovich, Vladimir G., Spectral theory and analytic geometry over non-Archimedean fields.
- Besser, Amnon, A simple approach to geometric realization of simplicial and cyclic sets.
- Beĭlinson, A. A. and Bernstein, J. and Deligne, P., Faisceaux pervers.
- Boardman, J. M. and Vogt, R. M., Homotopy invariant algebraic structures on topological spaces.
- Bohmann, Anna Marie, Global orthogonal spectra.
- Bourn, Dominique, Sur les ditopos.
- Bousfield, A. K., The localization of spaces with respect to homology.
- Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations.
- Breen, Lawrence, On the classification of $2$-gerbes and $2$-stacks.
- Brown, Kenneth S., Abstract homotopy theory and generalized sheaf cohomology.
- Brown, R., Groupoids and van Kampen's theorem.
C
- Campbell, Alexander, A counterexample in quasi-category theory.
- Chapman, T. A., Lectures on Hilbert cube manifolds.
- Ching, Michael, A chain rule for Goodwillie derivatives of functors from spectra to spectra.
- Ching, Michael, Bar constructions for topological operads and the Goodwillie derivatives of the identity.
- Ching, Michael, Bar-cobar duality for operads in stable homotopy theory.
- Cohen, Paul, The independence of the continuum hypothesis.
- Cohen, Paul J., The independence of the continuum hypothesis. II.
- Cordier, Jean-Marc, Sur la notion de diagramme homotopiquement cohérent.
- Cordier, Jean-Marc and Porter, Timothy, Homotopy coherent category theory.
- Cordier, Jean-Marc and Porter, Timothy, Vogt's theorem on categories of homotopy coherent diagrams.
D
- Deligne, P., Action du groupe des tresses sur une catégorie.
- Deligne, Pierre, Équations différentielles à points singuliers réguliers.
- Dold, Albrecht, Homology of symmetric products and other functors of complexes.
- Dowker, C. H., Topology of metric complexes.
- Drinfeld, Vladimir, On the notion of geometric realization.
- Dugger, Daniel, Combinatorial model categories have presentations.
- Dugger, Daniel and Hollander, Sharon and Isaksen, Daniel C., Hypercovers and simplicial presheaves.
- Duskin, John W., Simplicial matrices and the nerves of weak $n$-categories. I. Nerves of bicategories.
- Dwyer, W. G. and Kan, D. M., Homotopy theory and simplicial groupoids.
- Dwyer, W. G. and Kan, D. M., Realizing diagrams in the homotopy category by means of diagrams of simplicial sets.
- Dwyer, W. G. and Kan, D. M., Simplicial localizations of categories.
- Dwyer, William G. and Hirschhorn, Philip S. and Kan, Daniel M. and Smith, Jeffrey H., Homotopy limit functors on model categories and homotopical categories.
- Dydak, Jerzy and Segal, Jack, Shape theory.
E
- Edwards, David A. and Hastings, Harold M., Čech and Steenrod homotopy theories with applications to geometric topology.
- Ehlers, Philip John and Porter, Timothy, Ordinal subdivision and special pasting in quasicategories.
- Eilenberg, Samuel and Mac Lane, Saunders, On the groups $H(\Pi ,n)$. I.
- Eilenberg, Samuel and Steenrod, Norman E., Axiomatic approach to homology theory.
- Eilenberg, Samuel and Zilber, J. A., On products of complexes.
- Eilenberg, Samuel and Zilber, J. A., Semi-simplicial complexes and singular homology.
- Engelking, Ryszard, Dimension theory.
F
- Faonte, Giovanni, Simplicial nerve of an $\mathcal A_\infty $-category.
- Freitag, Eberhard and Kiehl, Reinhardt, Étale cohomology and the Weil conjecture.
- Fresnel, Jean and van der Put, Marius, Rigid analytic geometry and its applications.
- Freyd, Peter and Heller, Alex, Splitting homotopy idempotents II.
- Friedlander, Eric M., Étale homotopy of simplicial schemes.
- Fukaya, Kenji, Floer homology and mirror symmetry. II.
G
- Gödel, Kurt, The Consistency of the Continuum Hypothesis.
- Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory.
- Gagna, Andrea and Harpaz, Yonatan and Lanari, Edoardo, On the equivalence of all models for $(\infty ,2)$-categories.
- Gaitsgory, Dennis and Rozenblyum, Nick, Crystals and D-modules.
- Giever, John B., On the equivalence of two singular homology theories.
- Giraud, Jean, Cohomologie non abélienne.
- Glasman, Saul, Day convolution for ∞-categories.
- Goerss, Paul G. and Jardine, John F., Simplicial homotopy theory.
- Goodwillie, Thomas G., Calculus. I. The first derivative of pseudoisotopy theory.
- Goodwillie, Thomas G., Calculus. II. Analytic functors.
- Goodwillie, Thomas G., Calculus. III. Taylor series.
- Gordon, R. and Power, A. J. and Street, Ross, Coherence for tricategories.
- Grayson, Daniel, Algebraic K-theory.
- Greenlees, J. P. C. and May, J. P., Localization and completion theorems for $M\rm U$-module spectra.
- Grothendieck, A., Crystals and the de Rham cohomology of schemes.
- Grothendieck, A., On the de Rham cohomology of algebraic varieties.
- Grothendieck, Alexander, Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à 11.
- Grothendieck, Alexander, Sur quelques points d'algèbre homologique.
- Günther, Bernd, The use of semisimplicial complexes in strong shape theory.
H
- Haver, William E., Mappings between $\rm ANR$s that are fine homotopy equivalences.
- Herrera, M. and Lieberman, D., Duality and the de Rham cohomology of infinitesimal neighborhoods.
- Heuts, Gijs and Moerdijk, Ieke, Left fibrations and homotopy colimits.
- Hirschhorn, Philip S., Model categories and their localizations.
- Hopkins, Michael J. and Kuhn, Nicholas J. and Ravenel, Douglas C., Generalized group characters and complex oriented cohomology theories.
- Hovey, Mark, Model categories.
I
- Isbell, J. R., Adequate subcategories.
J
- Jardine, J. F., Simplicial presheaves.
- Johnson, Brenda, The derivatives of homotopy theory.
- Johnstone, Peter T., Stone spaces.
- Joyal, A., Quasi-categories and Kan complexes.
- Joyal, André, Notes on quasi-categories..
- Joyal, André, The Theory of Quasi-Categories and its Applications..
- Joyal, André and Tierney, Myles, Strong stacks and classifying spaces.
K
- Körschgen, Alexander, A comparison of two models of orbispaces.
- Kan, Daniel M., A combinatorial definition of homotopy groups.
- Kan, Daniel M., Adjoint functors.
- Kan, Daniel M., Functors involving c.s.s. complexes.
- Kan, Daniel M., On c. s. s. complexes.
- Kan, Daniel M., On c.s.s. Complexes.
- Kapulkin, Chris and Lumsdaine, Peter LeFanu and Voevodsky, Vladimir, Univalence in Simplicial Sets.
- Kashiwara, M., Faisceaux constructibles et systèmes holonômes d'équations aux dérivées partielles linéaires à points singuliers réguliers.
- Kashiwara, Masaki, The Riemann-Hilbert problem for holonomic systems.
- Kashiwara, Masaki and Schapira, Pierre, Sheaves on manifolds.
- Kock, Joachim, Elementary remarks on units in monoidal categories.
L
- Lazard, Daniel, Sur les modules plats.
- Leinster, Tom, A survey of definitions of $n$-category.
- Leinster, Tom, Higher operads, higher categories.
- Leitch, R. D., The homotopy commutative cube.
- Lurie, Jacob, Higher topos theory.
M
- Mac Lane, Saunders, Categories for the working mathematician.
- Mac Lane, Saunders, Natural associativity and commutativity.
- Mac Lane, Saunders and Moerdijk, Ieke, Sheaves in geometry and logic.
- Makkai, Michael and Paré, Robert, Accessible categories: the foundations of categorical model theory.
- Mardešić, Sibe and Segal, Jack, Shape theory.
- Mather, Michael, Pull-backs in homotopy theory.
- May, J. P., Equivariant homotopy and cohomology theory.
- May, J. P. and Sigurdsson, J., Parametrized homotopy theory.
- May, J. Peter, Simplicial objects in algebraic topology.
- McCord, M. C., Classifying spaces and infinite symmetric products.
- Mebkhout, Z., Une équivalence de catégories.
- Mebkhout, Z., Une autre équivalence de catégories.
- Mebkhout, Zoghman, Sur le problème de Hilbert-Riemann.
- Miller, Haynes, The Sullivan conjecture on maps from classifying spaces.
- Milnor, John, Construction of universal bundles. I.
- Milnor, John, The geometric realization of a semi-simplicial complex.
- Moerdijk, I. and Vermeulen, J. J. C., Proper maps of toposes.
- Munkres, James R., Topology: a first course.
N
- Nichols-Barrer, Joshua Paul, On quasi-categories as a foundation for higher algebraic stacks.
P
- Polesello, Pietro and Waschkies, Ingo, Higher monodromy.
- Prasma, Matan and Schlank, Tomer M., Sylow theorems for ∞-groups.
Q
- Quillen, Daniel, Higher algebraic $K$-theory. I.
- Quillen, Daniel G., Homotopical algebra.
R
- Rezk, Charles, A model for the homotopy theory of homotopy theory.
- Rezk, Charles, Free colimit completion in ∞-categories.
- Rezk, Charles and Schwede, Stefan and Shipley, Brooke, Simplicial structures on model categories and functors.
- Rosický, J., On homotopy varieties.
S
- Saavedra Rivano, Neantro, Catégories Tannakiennes.
- Sattler, Christian, The Equivalence Extension Property and Model Structures.
- Schwartz, Lionel, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture.
- Schwede, Stefan, Global homotopy theory.
- Segal, Graeme, Categories and cohomology theories.
- Segal, Graeme, Classifying spaces and spectral sequences.
- Segal, Graeme, Equivariant $K$-theory.
- Serre, Jean-Pierre, Cohomologie galoisienne.
- Serre, Jean-Pierre, Géométrie algébrique et géométrie analytique.
- Serre, Jean-Pierre, Trees.
- Shah, Jay, Parametrized higher category theory.
- Shulman, Michael, All $(\infty ,1)$-toposes have strict univalent universes..
- Simpson, Carlos, Homotopy over the complex numbers and generalized de Rham cohomology.
- Spaltenstein, N., Resolutions of unbounded complexes.
- Stapleton, Nathaniel, Transchromatic generalized character maps.
- Stapleton, Nathaniel, Transchromatic twisted character maps.
- Stasheff, James Dillon, Homotopy associativity of $H$-spaces. I, II.
- Street, Ross, The algebra of oriented simplexes.
- Street, Ross, Two-dimensional sheaf theory.
T
- Tamsamani, Zouhair, Sur des notions de $n$-catégorie et $n$-groupoïde non strictes via des ensembles multi-simpliciaux.
- Toën, Bertrand, Vers une interprétation galoisienne de la théorie de l'homotopie.
- Toën, Bertrand, Vers une axiomatisation de la théorie des catégories supérieures.
- Toën, Bertrand and Vezzosi, Gabriele, Homotopical algebraic geometry. I. Topos theory.
V
- van den Dries, Lou, Tame topology and o-minimal structures.
- Verdier, Jean-Louis, Des catégories dérivées des catégories abéliennes.
- Verity, D. R. B., Weak complicial sets. I. Basic homotopy theory.
- Verity, Dominic, Complicial sets characterising the simplicial nerves of strict ω-categories.
- Verity, Dominic, Weak complicial sets. II. Nerves of complicial Gray-categories.
- Vogt, Rainer M., Homotopy limits and colimits.
W
- Wall, C. T. C., Finiteness conditions for $\rm CW$-complexes.
- Whitehead, J. H. C., Combinatorial homotopy. I.