Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Construction 1.1.2.6 (The Boundary of $\Delta ^ n$). Let $n \geq 0$ be an integer. We define a simplicial set $(\operatorname{\partial \Delta }^ n): \operatorname{{\bf \Delta }}^{\operatorname{op}} \rightarrow \operatorname{Set}$ by the formula

\[ ( \operatorname{\partial \Delta }^{n} )( [m] ) = \{ \alpha \in \operatorname{Hom}_{\operatorname{{\bf \Delta }}}( [m], [n] ): \text{$\alpha $ is not surjective} \} . \]

Note that we can regard $\operatorname{\partial \Delta }^ n$ as a simplicial subset of the standard $n$-simplex $\Delta ^ n$ of Construction 1.1.2.1. We will refer to $\operatorname{\partial \Delta }^ n$ as the boundary of $\Delta ^ n$.