Proposition 1.1.2.10. Let $S_{\bullet }$ be a simplicial set and let $\tau \in S_{n}$ be an $n$-simplex of $S_{\bullet }$ for some $n > 0$, which we will identify with a map of simplicial sets $\tau : \Delta ^{n} \rightarrow S_{\bullet }$. The following conditions are equivalent:
- $(1)$
The simplex $\tau $ belongs to the image of the degeneracy operator $s^{n-1}_{i}: S_{n-1} \rightarrow S_{n}$ for some $0 \leq i < n$ (see Construction 1.1.2.1).
- $(2)$
The map $\tau $ factors as a composition $\Delta ^{n} \xrightarrow {f} \Delta ^{n-1} \rightarrow S_{\bullet }$, where $f$ corresponds to a surjective map of linearly ordered sets $[n] \twoheadrightarrow [n-1]$.
- $(3)$
The map $\tau $ factors as a composition $\Delta ^{n} \xrightarrow {f} \Delta ^{m} \rightarrow S_{\bullet }$, where $m < n$ and $f$ corresponds to a surjective map of linearly ordered sets $[n] \twoheadrightarrow [m]$.
- $(4)$
The map $\tau $ factors as a composition $\Delta ^{n} \rightarrow \Delta ^{m} \rightarrow S_{\bullet }$, where $m < n$.
- $(5)$
The map $\tau $ factors as a composition $\Delta ^{n} \xrightarrow {\tau '} \Delta ^{m} \rightarrow S_{\bullet }$, where $\tau '$ is not injective on vertices.