Proposition 1.1.6.7. Let $X =X_{\bullet }$ and $Y = Y_{\bullet }$ be simplicial sets, and let $f: X \rightarrow Y$ be a morphism of simplicial sets. Then the induced map
\[ \operatorname{Vert}( \mathrm{Gr}(X) ) \amalg \operatorname{Edge}( \mathrm{Gr}(X) ) \simeq X_1 \xrightarrow {f} Y_1 \simeq \operatorname{Vert}( \mathrm{Gr}(Y) ) \amalg \operatorname{Edge}( \mathrm{Gr}(Y) ) \]
is a morphism of directed graphs from $\mathrm{Gr}( X )$ to $\mathrm{Gr}( Y)$, in the sense of Definition 1.1.6.5.