Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 1.5.3.4. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be categories. Then there is a canonical isomorphism of categories

\[ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \xrightarrow {\sim } \mathrm{h} \mathit{\operatorname{Fun}}( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), \operatorname{N}_{\bullet }(\operatorname{\mathcal{D}}) ). \]