Corollary 1.5.6.2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be a composable pair of morphisms in an $\infty $-category $\operatorname{\mathcal{C}}$, so that the tuple $(g, \bullet , f)$ determines a map of simplicial sets $\Lambda ^2_1 \rightarrow \operatorname{\mathcal{C}}$ (see Proposition 1.2.4.7). Then the fiber product
\[ \operatorname{Fun}( \Delta ^2, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}( \Lambda ^2_1, \operatorname{\mathcal{C}}) } \{ (g, \bullet , f) \} \]
is a contractible Kan complex.