Remark 2.2.5.9 (Functors on Opposite $2$-Categories). Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $2$-categories, and let $\operatorname{\mathcal{C}}^{\operatorname{op}}$ and $\operatorname{\mathcal{D}}^{\operatorname{op}}$ denote their opposites (Construction 2.2.3.1). Then every lax functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ induces a lax functor $F^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}$, given explicitly by the formulae
In this case, $F$ is a functor if and only if $F^{\operatorname{op}}$ is a functor, and a strict functor if and only if $F^{\operatorname{op}}$ is a strict functor. This operation is compatible with composition, and therefore induces equivalences of categories