Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 2.3.1.4. Let $\operatorname{\mathcal{C}}$ be a $2$-category and let $\operatorname{\mathcal{C}}^{\operatorname{op}}$ denote the opposite $2$-category (see Construction 2.2.3.1). Then we have a canonical isomorphism of simplicial sets $\operatorname{N}^{\operatorname{D}}_{\bullet }( \operatorname{\mathcal{C}}^{\operatorname{op}} ) \simeq \operatorname{N}^{\operatorname{D}}_{\bullet }(\operatorname{\mathcal{C}})^{\operatorname{op}}$, where $\operatorname{N}^{\operatorname{D}}_{\bullet }(\operatorname{\mathcal{C}})^{\operatorname{op}}$ denotes the opposite of the simplicial set $\operatorname{N}^{\operatorname{D}}_{\bullet }(\operatorname{\mathcal{C}})$ (see Notation 1.3.2.1).