Proposition 2.3.1.9. Let $\operatorname{\mathcal{C}}$ be a $2$-category and let $n$ be a nonnegative integer. Suppose we are given the following data:
- $(0)$
A collection of objects $\{ X_ i \} _{ 0 \leq i \leq n}$ of the $2$-category $\operatorname{\mathcal{C}}$.
- $(1')$
A collection of $1$-morphisms $\{ f_{j,i}: X_ i \rightarrow X_ j \} _{0 \leq i < j \leq n }$ in the $2$-category $\operatorname{\mathcal{C}}$
- $(2')$
A collection of $2$-morphisms $\{ \mu _{k,j,i}: f_{k,j} \circ f_{j,i} \Rightarrow f_{k,i} \} _{0 \leq i < j < k \leq n}$ in the $2$-category $\operatorname{\mathcal{C}}$.
This data can be extended uniquely to an $n$-simplex of the Duskin nerve $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{C}})$ (as described in Remark 2.3.1.8) if and only if the following condition is satisfied:
- $(c')$
For $0 \leq i < j < k < \ell \leq n$, we have a commutative diagram
\[ \xymatrix@R =50pt@C=50pt{ f_{\ell , k} \circ (f_{k,j} \circ f_{j,i} ) \ar@ {=>}[rr]^-{\alpha _{f_{\ell ,k}, f_{k,j}, f_{j,i} } } \ar@ {=>}[d]_{ \operatorname{id}_{ f_{\ell ,k}} \circ \mu _{k,j,i} } & & ( f_{\ell ,k} \circ f_{k,j} ) \circ f_{j,i} \ar@ {=>}[d]^{ \mu _{\ell ,k,j} \circ \operatorname{id}_{ f_{j,i} }} \\ f_{\ell , k} \circ f_{k,i} \ar@ {=>}[dr]_{ \mu _{\ell ,k,i} } & & f_{\ell , j} \circ f_{j,i} \ar@ {=>}[dl]^{ \mu _{\ell , j, i} } \\ & f_{\ell , i} & } \]in the category $\underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}( X_ i, X_{\ell } )$.