Corollary 2.3.2.8. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $2$-categories and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a strictly unitary lax functor. Then $F$ is a functor if and only if the induced map of simplicial sets $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{C}}) \Rightarrow \operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{D}})$ carries thin $2$-simplices of $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{C}})$ to thin $2$-simplices of $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{D}})$.
Proof. Let $\sigma $ be a $2$-simplex of $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{C}})$, corresponding to a diagram
in $\operatorname{\mathcal{C}}$. Let $\sigma '$ denote the image of $\sigma $ in $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{D}})$, corresponding to the diagram
where $\gamma '$ is given by the (vertical) composition
Since $\sigma $ is thin, the $2$-morphism $\gamma $ is an isomorphism (Theorem 2.3.2.5). It follows that $\sigma '$ is thin if and only if $\mu _{g,f}$ is an isomorphism. In particular, the strictly unitary lax functor $F$ preserves thin $2$-simplices if and only if $\mu _{g,f}$ is an isomorphism for every pair of composable $1$-morphisms $X \xrightarrow {f} Y \xrightarrow {g} Z$ of $\operatorname{\mathcal{C}}$: that is, if and only if $F$ is a functor. $\square$