Example 2.1.0.1. Let $k$ be a field and let $U$, $V$, and $W$ be vector spaces over $k$. Recall that a function $b: U \times V \rightarrow W$ is said to be $k$-bilinear if it satisfies the identities
We say that a $k$-bilinear map $b: U \times V \rightarrow W$ is universal if, for any $k$-vector space $W'$, composition with $b$ induces a bijection
If this condition is satisfied, then $W$ is determined (up to unique isomorphism) by $U$ and $V$; we refer to $W$ as the tensor product of $U$ and $V$ and denote it by $U \otimes _{k} V$ . The construction $(U,V) \mapsto U \otimes _{k} V$ then determines a functor
which we will refer to as the tensor product functor. It is associative in the following sense: for every triple of vector spaces $U,V,W \in \operatorname{Vect}_{k}$, there exists a canonical isomorphism