Example 2.1.3.2 (Cartesian Products). Let $\operatorname{\mathcal{C}}$ be a category. Assume that every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ admits a product in $\operatorname{\mathcal{C}}$. This product is not unique: it is only unique up to (canonical) isomorphism. However, let us choose an object $X \times Y$ together with a pair of morphisms
which exhibit $X \times Y$ as a product of $X$ and $Y$ in the category $\operatorname{\mathcal{C}}$. Then the construction $(X,Y) \mapsto X \times Y$ determines a functor $\operatorname{\mathcal{C}}\times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$, given on morphisms by the construction
where $f \times g$ is the unique morphism for which the diagram
is commutative.
For every triple of objects $X,Y,Z \in \operatorname{\mathcal{C}}$, there is a canonical isomorphism $\alpha _{X,Y,Z}: X \times (Y \times Z) \xrightarrow {\sim } (X \times Y) \times Z$, which is characterized by the commutativity of the diagram
The category $\operatorname{\mathcal{C}}$ admits a nonunital monoidal structure, with tensor product given by the functor $(X,Y) \mapsto X \times Y$, and associativity constraints given by $(X,Y,Z) \mapsto \alpha _{X,Y,Z}$.
If we assume also that the category $\operatorname{\mathcal{C}}$ has a final object $\mathbf{1}$ (so that $\operatorname{\mathcal{C}}$ admits all finite products), then we can upgrade the nonunital monoidal structure above to a monoidal structure, where the unit object of $\operatorname{\mathcal{C}}$ is $\mathbf{1}$ and the unit constraint $\upsilon $ is the unique morphism from $\mathbf{1} \times \mathbf{1}$ to $\mathbf{1}$ in $\operatorname{\mathcal{C}}$. We refer to this monoidal structure as the cartesian monoidal structure on $\operatorname{\mathcal{C}}$.