Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 2.1.4.4. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be nonunital monoidal categories, and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor from $\operatorname{\mathcal{C}}$ to $\operatorname{\mathcal{D}}$. A nonunital monoidal structure on $F$ is a lax nonunital monoidal structure $\mu = \{ \mu _{X,Y} \} _{X,Y \in \operatorname{\mathcal{C}}}$ on $F$ with the property that each of the tensor constraints $\mu _{X,Y}: F(X) \otimes F(Y) \rightarrow F(X \otimes Y)$ is an isomorphism.

A nonunital monoidal functor from $\operatorname{\mathcal{C}}$ to $\operatorname{\mathcal{D}}$ is a pair $(F, \mu )$, where $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a functor and $\mu $ is a nonunital monoidal structure on $F$.