Remark 2.1.5.20 (Closure under Composition). Let $\operatorname{\mathcal{C}}$, $\operatorname{\mathcal{D}}$, and $\operatorname{\mathcal{E}}$ be monoidal categories and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors equipped with nonunital lax monoidal structures $\mu $ and $\nu $, respectively, so that the composite functor $G \circ F$ inherits a nonunital lax monoidal structure (Construction 2.1.4.17). If $F$ and $G$ admit units
then the composite map
is a unit for the composite functor $G \circ F$. This observation (and its counterpart for monoidal natural transformations) imply that the composition law of Construction 2.1.4.17 restricts to a functor