Proposition 1.1.5.5. Let $\operatorname{\mathcal{C}}$ be a category and let $C$ be an object of $\operatorname{\mathcal{C}}$. For any simplicial object $X_{\bullet }$ of $\operatorname{\mathcal{C}}$, evaluation at the object $[0] \in \operatorname{{\bf \Delta }}^{\operatorname{op}}$ induces a bijection
Proof. Let $f: C \rightarrow X_0$ be a morphism in $\operatorname{\mathcal{C}}$; we wish to show that $f$ can be promoted uniquely to a map of simplicial objects $f_{\bullet }: \underline{C}_{} \rightarrow X_{\bullet }$. The uniqueness of $f_{\bullet }$ is clear. For existence, we define $f_{\bullet }$ to be the natural transformation whose value on an object $[n] \in \operatorname{{\bf \Delta }}^{\operatorname{op}}$ is given by the composite map
where $\alpha (n)$ denotes the unique morphism in $\operatorname{{\bf \Delta }}$ from $[n]$ to $[0]$. To prove the naturality of $f_{\bullet }$, we observe that for any nondecreasing map $\beta : [m] \rightarrow [n]$ we have a commutative diagram
where the commutativity of the square on the right follows from the observation that $\alpha (m)$ is equal to the composition $[m] \xrightarrow {\beta } [n] \xrightarrow { \alpha (n) } [0]$. $\square$