Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 1.2.5.3 (Products of Kan Complexes). Let $\{ S_{\alpha } \} _{\alpha \in A}$ be a collection of simplicial sets parametrized by a set $A$, and let $S = \prod _{\alpha \in A} S_{\alpha }$ be their product. If each $S_{\alpha }$ is a Kan complex, then $S$ is a Kan complex. The converse holds provided that each $S_{\alpha }$ is nonempty.