Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 1.1.9.7. Let $S$ be a set and let $\underline{S}_{\bullet }$ denote the associated constant simplicial set (Construction 1.1.4.2). Then $\underline{S}_{\bullet }$ is a Kan complex (this follows from Remark 1.1.9.6, since each connected component of $\underline{S}_{\bullet }$ is isomorphic to $\Delta ^0$; see Example 1.1.6.10).