Proposition 1.3.7.11. Let $\operatorname{\mathcal{C}}$ be a category. The following conditions on $\operatorname{\mathcal{C}}$ are equivalent:
- $(a)$
The category $\operatorname{\mathcal{C}}$ is free. That is, there exists a directed graph $G$ and an isomorphism of categories $\operatorname{\mathcal{C}}\simeq \operatorname{Path}[G]$.
- $(b)$
The functor $F: \operatorname{Path}[ \mathrm{Gr}_0(\operatorname{\mathcal{C}})] \rightarrow \operatorname{\mathcal{C}}$ is an isomorphism of categories.
- $(c)$
The functor $F: \operatorname{Path}[ \mathrm{Gr}_0(\operatorname{\mathcal{C}})] \rightarrow \operatorname{\mathcal{C}}$ is an equivalence of categories.
- $(d)$
The functor $F: \operatorname{Path}[ \mathrm{Gr}_0(\operatorname{\mathcal{C}})] \rightarrow \operatorname{\mathcal{C}}$ is fully faithful.
- $(e)$
Every morphism $f$ in $\operatorname{\mathcal{C}}$ admits a unique factorization $f = f_{n} \circ f_{n-1} \circ \cdots \circ f_1$, where each $f_{i}$ is an indecomposable morphism of $\operatorname{\mathcal{C}}$.