Example 2.1.7.14. Let $\operatorname{\mathcal{A}}$ be a monoidal category, let $A$ be an algebra object of $\operatorname{\mathcal{A}}$, which we can identify with an $\operatorname{\mathcal{A}}$-enriched category $\operatorname{\mathcal{C}}_{A}$ having a single object $X$ (Example 2.1.7.3). For any $\operatorname{\mathcal{A}}$-enriched category $\operatorname{\mathcal{D}}$ containing an object $Y$, we have a canonical bijection
In particular, if $\operatorname{\mathcal{D}}= \operatorname{\mathcal{C}}_{B}$ for some other algebra object $B \in \operatorname{Alg}(\operatorname{\mathcal{A}})$, we obtain a bijection
In other words, the construction $A \mapsto \operatorname{\mathcal{C}}_{A}$ induces a fully faithful embedding $\operatorname{Alg}(\operatorname{\mathcal{A}}) \rightarrow \operatorname{Cat}(\operatorname{\mathcal{A}})$, whose essential image is spanned by those $\operatorname{\mathcal{A}}$-enriched categories having a single object.