Remark 2.4.5.4. Let $n \geq 0$ be a nonnegative integer. For every pair of integers $0 \leq i < j \leq n$, we can identify morphisms from $i$ to $j$ in the path category $\operatorname{Path}[n]$ with subsets $S \subseteq [n]$ having least element $i$ and largest element $j$. The construction $S \mapsto ( \{ i, i+1, \ldots , j-1, j \} \setminus S )$ then induces a bijection $\operatorname{Hom}_{ \operatorname{Path}[n]}(i,j) \simeq P( \{ i+1, i+2, \ldots , j-2, j-1 \} )$, which extends to uniquely to an isomorphism of simplicial sets
In particular, we have a canonical isomorphism of simplicial sets $\operatorname{Hom}_{ \operatorname{Path}[n] }(0,n)_{\bullet } \simeq \operatorname{\raise {0.1ex}{\square }}^{n-1}$.
Under these isomorphisms, the composition law on $\operatorname{Path}[n]_{\bullet }$ is given for $i < j < k$ by the construction