Proposition 2.1.5.6. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be monoidal categories with unit objects $\mathbf{1}_{\operatorname{\mathcal{C}}}$ and $\mathbf{1}_{\operatorname{\mathcal{D}}}$, respectively. Let $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be a functor equipped with a nonunital lax monoidal structure, which we will identify with the corresponding nonunital monoidal structure on the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$ (see Proposition 2.1.4.21). Let $\epsilon : \mathbf{1}_{\operatorname{\mathcal{C}}} \rightarrow G( \mathbf{1}_{\operatorname{\mathcal{D}}} )$ be a morphism in $\operatorname{\mathcal{C}}$, and regard the triple $\mathbf{1} = ( \mathbf{1}_{\operatorname{\mathcal{C}}}, \mathbf{1}_{\operatorname{\mathcal{D}}}, \epsilon )$ as an object of $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$. Then:
- $(1)$
The morphism $\epsilon $ is a left unit for $G$ if and only if, for every object $(C, D, \eta )$ of the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$, the left unit constraints $\lambda _{C}: \mathbf{1}_{\operatorname{\mathcal{C}}} \otimes C \simeq C$ and $\lambda _{D}: \mathbf{1}_{\operatorname{\mathcal{D}}} \otimes D \simeq D$ determine an isomorphism $(\lambda _ C, \lambda _ D): \mathbf{1} \otimes (C,D, \eta ) \simeq (C,D,\eta )$ in the category $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$.
- $(2)$
The morphism $\epsilon $ is a right unit for $G$ if and only if, for every object $(C, D, \eta )$ of the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$, the right unit constraints $\rho _{C}: C \otimes \mathbf{1}_{\operatorname{\mathcal{C}}} \simeq C$ and $\rho _{D}: D \otimes \mathbf{1}_{\operatorname{\mathcal{D}}} \simeq D$ determine an isomorphism $(\rho _ C, \rho _ D): (C,D, \eta ) \otimes \mathbf{1} \simeq (C,D,\eta )$ in the category $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$.