Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Construction 2.5.0.10 (Mapping Complexes). Let $(C_{\ast }, \partial _ C)$ and $(D_{\ast }, \partial _ D)$ be chain complexes with values in an additive category $\operatorname{\mathcal{A}}$. For each integer $d$, we let $[ C, D ]_{d}$ denote the abelian group $\prod _{n \in \operatorname{\mathbf{Z}}} \operatorname{Hom}_{\operatorname{\mathcal{A}}}( C_ n, D_{n+d} )$ consisting of maps from $C_{\ast }$ to $D_{\ast }$ which are homogeneous of degree $d$. These abelian groups can be organized into a chain complex

\[ \cdots \xrightarrow {\partial } [ C, D ]_{2} \xrightarrow {\partial } [ C,D]_{1} \xrightarrow {\partial } [C,D]_{0} \xrightarrow {\partial } [ C,D]_{-1} \xrightarrow { \partial } [ C,D ]_{-2} \xrightarrow {\partial } \cdots , \]

whose boundary operator $\partial : [ C,D]_{d} \rightarrow [ C,D ]_{d-1}$ is given by the formula $\partial \{ f_{n}: C_{n} \rightarrow D_{n+d} \} _{n \in \operatorname{\mathbf{Z}}} = \{ \partial _{D} \circ f_ n - (-1)^{d} f_{n-1} \circ \partial _{C} \} _{n \in \operatorname{\mathbf{Z}}}$. We will refer to $[ C, D]_{\ast }$ as the mapping complex associated to the chain complexes $C_{\ast }$ and $D_{\ast }$.