Remark 2.5.1.18. Let $(C_{\ast }, \partial )$ and $(D_{\ast }, \partial )$ be chain complexes. The tensor product chain complex $(C_{\ast } \boxtimes D_{\ast }, \partial )$ of Proposition 2.5.1.12 is characterized up to (unique) isomorphism by the universal property of Exercise 2.5.1.15. However, the construction of this tensor product complex (and, by extension, the monoidal structure on $\operatorname{Ch}(\operatorname{\mathbf{Z}})$) depends on auxiliary choices. These choices are ultimately irrelevant in the sense that they do not change the isomorphism class of the monoidal category $\operatorname{Ch}(\operatorname{\mathbf{Z}})$ or, equivalently, of the classifying simplicial set $B_{\bullet } \operatorname{Ch}(\operatorname{\mathbf{Z}})$ of Example 2.3.1.18. This simplicial set can be described concretely (without auxiliary choices): its $n$-simplices can be identified with systems of chain complexes $\{ C(j,i)_{\ast } \} _{0 \leq i < j \leq n}$ together with bilinear maps
for $0 \leq i < j < k \leq n$ which satisfy the Leibniz rule $\partial (yz) = (\partial y)z + (-1)^{q} y(\partial z)$ together with the associative law $x(yz) = (xy)z$ for $x \in C(\ell ,k)_{r}$, $y \in C(k,j)_{q}$, $z \in C(j,i)_{p}$ with $0 \leq i < j < k < \ell \leq n$.