$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Notation (The Eilenberg-Zilber Homomorphism). Let $A_{\bullet }$ and $B_{\bullet }$ be simplicial abelian groups. It follows from assertion $(4)$ of Proposition that there is a unique chain map

\[ \mathrm{EZ}: \mathrm{N}_{\ast }(A) \boxtimes \mathrm{N}_{\ast }(B) \rightarrow \mathrm{N}_{\ast }(A \otimes B) \]

satisfying $\mathrm{EZ}( a \boxtimes b) = a \triangledown b$ (see Exercise We will refer to $\mathrm{EZ}$ as the Eilenberg-Zilber homomorphism (see Remark It follows from assertions $(1)$ and $(3)$ of Proposition that the collection of chain maps

\[ \{ \mathrm{EZ}: \mathrm{N}_{\ast }(A) \boxtimes \mathrm{N}_{\ast }(B) \rightarrow \mathrm{N}_{\ast }(A \otimes B) \} _{A_{\bullet }, B_{\bullet } \in \operatorname{ Ab }_{\Delta }} \]

determine a lax monoidal structure (Definition on the normalized Moore complex functor $\mathrm{N}_{\ast }: \operatorname{ Ab }_{\Delta } \rightarrow \operatorname{Ch}(\operatorname{\mathbf{Z}})$, with unit given by the canonical isomorphism of chain complexes $\operatorname{\mathbf{Z}}[0] \simeq \mathrm{N}_{\ast }( \operatorname{\mathbf{Z}}[\Delta ^0] )$ (in fact, it is even a lax symmetric monoidal structure in the sense of Definition : this follows from assertion $(2)$ of Proposition