4.2.6 The Homotopy Extension Lifting Property
We now show that left and right fibrations can be characterized by homotopy lifting properties.
Proposition 4.2.6.1. Let $f: X_{} \rightarrow S_{}$ be a morphism of simplicial sets. Then:
The morphism $f$ is a left fibration if and only if the evaluation map
\[ \operatorname{ev}_{0}: \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}( \{ 0\} , X) \times _{ \operatorname{Fun}( \{ 0\} , S)} \operatorname{Fun}( \Delta ^1, S) \]
is a trivial Kan fibration.
The morphism $f$ is a right fibration if and only if the evaluation map
\[ \operatorname{ev}_{1}: \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}( \{ 1\} , X) \times _{ \operatorname{Fun}( \{ 1\} , S)} \operatorname{Fun}( \Delta ^1, S) \]
is a trivial Kan fibration.
Proof.
We prove the second assertion; the first follows by passing to opposite simplicial sets. If $f$ is a right fibration, then the evaluation map $\operatorname{ev}_1$ is a trivial Kan fibration by virtue of Proposition 4.2.5.4 (since the inclusion $\{ 1\} \hookrightarrow \Delta ^1$ is right anodyne). Conversely, suppose that $\operatorname{ev}_1$ is a trivial Kan fibration. Then every lifting problem
\[ \xymatrix@C =100pt{ ( \Delta ^1 \times \Lambda ^{n}_{i} ) \coprod _{ \{ 1\} \times \Lambda ^ n_ i} (\{ 1\} \times \Delta ^ n ) \ar [r] \ar [d] & X_{} \ar [d]^{f} \\ \Delta ^1 \times \Delta ^ n \ar [r] \ar@ {-->}[ur] & S_{} } \]
admits a solution. In other words, $f$ is weakly right orthogonal to the inclusion map
\[ u: ( \Delta ^1 \times \Lambda ^{n}_{i} ) \coprod _{ \{ 1\} \times \Lambda ^ n_ i} (\{ 1\} \times \Delta ^ n ) \hookrightarrow \Delta ^1 \times \Delta ^ n. \]
If $0 < i \leq n$, then the horn inclusion $u_0: \Lambda ^ n_ i \hookrightarrow \Delta ^ n$ is a retract of $u$ (Lemma 3.1.2.10). It follows that $f$ is also weakly left orthogonal to $u_0$ (Proposition 1.5.4.9): that is, every lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{n}_{i} \ar [r]^-{\sigma _0} \ar [d] & X_{} \ar [d]^{f} \\ \Delta ^{n} \ar@ {-->}[ur]^-{\sigma } \ar [r]^-{ \overline{\sigma } } & S_{} } \]
admits a solution.
$\square$
Corollary 4.2.6.2. Let $f: X_{} \rightarrow S_{}$ be a morphism of simplicial sets. Then $f$ is a Kan fibration if and only if both of the evaluation maps
\[ \operatorname{ev}_{0}: \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}( \{ 0\} , X) \times _{ \operatorname{Fun}( \{ 0\} , S)} \operatorname{Fun}( \Delta ^1, S) \]
\[ \operatorname{ev}_{1}: \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}( \{ 1\} , X) \times _{ \operatorname{Fun}( \{ 1\} , S)} \operatorname{Fun}( \Delta ^1, S) \]
are trivial Kan fibrations.
Proof.
Combine Proposition 4.2.6.1 with Example 4.2.1.5.
$\square$
In the special case where $B_{} = \Delta ^0$ and $A_{} = \emptyset $, each of these assertions reduces to the left path lifting property of $f$.
Exercise 4.2.6.4. Let $f: X \rightarrow S$ be a morphism of simplicial sets. Show that:
The morphism $f$ is a left covering map if and only if the evaluation map
\[ \operatorname{ev}_{0}: \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}( \{ 0\} , X) \times _{ \operatorname{Fun}( \{ 0\} , S)} \operatorname{Fun}( \Delta ^1, S) \]
is an isomorphism of simplicial sets
The morphism $f$ is a right covering map if and only if the evaluation map
\[ \operatorname{ev}_{1}: \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}( \{ 1\} , X) \times _{ \operatorname{Fun}( \{ 1\} , S)} \operatorname{Fun}( \Delta ^1, S) \]
is an isomorphism of simplicial sets.
The morphism $f$ is a covering map if and only if both $\operatorname{ev}_{0}$ and $\operatorname{ev}_{1}$ are isomorphisms.