Corollary 3.1.3.2. Let $f: X_{} \rightarrow S_{}$ be a Kan fibration of simplicial sets. Then, for every simplicial set $B_{}$, composition with $f$ induces a Kan fibration $\operatorname{Fun}( B_{}, X_{} ) \rightarrow \operatorname{Fun}( B_{}, S_{} )$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$