Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 3.1.5.6 (Two-out-of-Six). Let $f: W_{} \rightarrow X_{}$, $g: X_{} \rightarrow Y_{}$, and $h: Y_{} \rightarrow Z_{}$ be morphisms of simplicial sets. If $g \circ f$ and $h \circ g$ are homotopy equivalences, then $f$, $g$, and $h$ are all homotopy equivalences.