Proposition 3.1.6.1. Let $f: X_{} \rightarrow Y_{}$ be a morphism of simplicial sets. Then $f$ can be factored as a composition $X_{} \xrightarrow {f'} Q_{}(f) \xrightarrow {f''} Y_{}$, where $f''$ is a Kan fibration and $f'$ is anodyne (hence a weak homotopy equivalence, by virtue of Proposition 3.1.5.12). Moreover, the simplicial set $Q_{}(f)$ (and the morphisms $f'$ and $f''$) can be chosen to depend functorially on $f$, in such a way that the functor

\[ \operatorname{Fun}( [1], \operatorname{Set_{\Delta }}) \rightarrow \operatorname{Set_{\Delta }}\quad \quad (f: X_{} \rightarrow Y_{} ) \rightarrow Q_{}(f) \]

commutes with filtered colimits.

**Proof of Proposition 3.1.6.1.**
Let $f: X_{} \rightarrow Y_{}$ be a morphism of simplicial sets. We construct a sequence of simplicial sets $\{ X(m)_{} \} _{m \geq 0}$ and morphisms $f(m): X(m)_{} \rightarrow Y_{}$ by recursion. Set $X(0)_{} = X_{}$ and $f(0) = f$. Assuming that $f(m): X(m)_{} \rightarrow Y_{}$ has been defined, let $S(m)$ denote the set of all commutative diagrams $\sigma :$

\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^ n_ i \ar [r] \ar [d] & X(m)_{} \ar [d]^{f(m)} \\ \Delta ^ n \ar [r]^-{u_{\sigma }} & Y_{}, } \]

where $0 \leq i \leq n$, $n > 0$, and the left vertical map is the inclusion. For every such commutative diagram $\sigma $, let $C_{\sigma } = \Lambda ^ n_{i}$ denote the upper left hand corner of the diagram $\sigma $, and $D_{\sigma } = \Delta ^ n$ the lower left hand corner. Form a pushout diagram

\[ \xymatrix@R =50pt@C=50pt{ \coprod _{\sigma \in S(m)} C_{\sigma } \ar [r] \ar [d] & X(m)_{} \ar [d] \\ \coprod _{\sigma \in S(m)} D_{\sigma } \ar [r] & X(m+1)_{} } \]

and let $f(m+1): X(m+1)_{} \rightarrow Y_{}$ be the unique map whose restriction to $X(m)_{}$ is equal to $f(m)$ and whose restriction to each $D_{\sigma }$ is equal to $u_{\sigma }$. By construction, we have a direct system of anodyne morphisms

\[ X_{} = X(0)_{} \hookrightarrow X(1)_{} \hookrightarrow X(2)_{} \hookrightarrow \cdots \]

Set $Q_{}(f) = \varinjlim _{m} X(m)_{}$. Then the natural map $f': X_{} \rightarrow Q_{}(f)$ is anodyne (since the collection of anodyne maps is closed under transfinite composition), and the system of morphisms $\{ f(m) \} _{m \geq 0}$ can be amalgamated to a single map $f'': Q_{}(f) \rightarrow Y_{}$ satisfying $f = f'' \circ f'$. It is clear from the definition that the construction $f \mapsto Q_{}(f)$ is functorial and commutes with filtered colimits. To complete the proof, it will suffice to show that $f''$ is a Kan fibration: that is, that every lifting problem $\sigma :$

\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{n}_{i} \ar [r]^-{v} \ar [d] & Q_{}(f) \ar [d]^{f''} \\ \Delta ^ n \ar [r] \ar@ {-->}[ur] & Y_{} } \]

admits a solution (provided that $n > 0$). Let us abuse notation by identifying each $X(m)_{}$ with its image in $Q_{}(f)$. Since $\Lambda ^{n}_{i}$ is a finite simplicial set, its image under $v$ is contained in $X(m)_{}$ for some $m \gg 0$. In this case, we can identify $\sigma $ with an element of the set $S(m)$, so that the lifting problem

\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{n}_{i} \ar [r]^-{v} \ar [d] & X(m+1)_{} \ar [d]^{f(m+1)} \\ \Delta ^ n \ar [r] \ar@ {-->}[ur] & Y_{} } \]

admits a solution by construction.
$\square$