Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 3.1.5.14. We will later prove a (partial) convere to Proposition 3.1.5.13: if a monomorphism of simplicial sets $f: A_{} \hookrightarrow B_{}$ is a weak homotopy equivalence, then $f$ is anodyne (see Corollary 3.3.7.5).