Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 3.2.2.6. Let $(X,x)$ be a pointed Kan complex. Then $\pi _{0}(X,x)$ can be identified with the set $\pi _0(X)$ of connected components of $X$ (Definition 1.1.6.8). Beware that, unlike the higher homotopy groups $\{ \pi _{n}(X,x) \} _{n \geq 1}$, there is no naturally defined group structure on $\pi _{0}(X,x)$.