Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Exercise 3.3.1.2. Let $\operatorname{\mathcal{C}}$ be a category. Show that the nerve $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is braced if and only if $\operatorname{\mathcal{C}}$ satisfies the following condition:

$(\ast )$

For every pair of morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow X$ in $\operatorname{\mathcal{C}}$ satisfying $g \circ f = \operatorname{id}_{X}$, we have $X = Y$ and $f = g = \operatorname{id}_{X}$.

In particular, for any partially ordered set $Q$, the nerve $\operatorname{N}_{\bullet }(Q)$ is braced.