Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 3.3.3.3. Let $X$ be a simplicial set. Then there exists another simplicial set $\operatorname{Sd}(X)$ and a morphism $u: X \rightarrow \operatorname{Ex}( \operatorname{Sd}(X) )$ which exhibits $\operatorname{Sd}(X)$ as a subdivision of $X$, in the sense of Notation 3.3.3.2.

Proof. By virtue of Remark 3.3.2.6, this is a special case of Proposition 1.2.3.15. $\square$