Proposition 3.3.7.6. Let $f: X \rightarrow S$ be a Kan fibration of simplicial sets. The following conditions are equivalent:
- $(1)$
The morphism $f$ is a trivial Kan fibration.
- $(2)$
The morphism $f$ is a homotopy equivalence.
- $(3)$
The morphism $f$ is a weak homotopy equivalence.
- $(4)$
For every vertex $s \in S$, the fiber $X_{s} = \{ s\} \times _{S} X$ is a contractible Kan complex.