Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 3.4.2.7 (Symmetry). A commutative diagram of simplicial sets

\[ \xymatrix@R =50pt@C=50pt{ A \ar [r] \ar [d] & A_0 \ar [d] \\ A_1 \ar [r] & A_{01} } \]

is a homotopy pushout square if and only if the transposed diagram

\[ \xymatrix@R =50pt@C=50pt{ A \ar [r] \ar [d] & A_1 \ar [d] \\ A_0 \ar [r] & A_{01} } \]

is a homotopy pushout square.

Proof. Apply Proposition 3.4.1.9. $\square$