Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 3.4.2.9 (Homotopy Invariance). Suppose we are given a commutative diagram of simplicial sets

\[ \xymatrix@C =50pt{ A \ar [rr] \ar [dd] \ar [dr]^-{w} & & A_{0} \ar [dd] \ar [dr]^-{ w_0 } & \\ & B \ar [rr] \ar [dd] & & B_0 \ar [dd] \\ A_{1} \ar [rr] \ar [dr]^-{ w_1} & & A_{01} \ar [dr]^-{w_{01}} & \\ & B_1 \ar [rr] & & B_{01}, } \]

where the morphisms $w$, $w_{0}$, and $w_{1}$ are weak homotopy equivalences. Then any two of the following three conditions imply the third:

$(1)$

The back face

\[ \xymatrix@R =50pt@C=50pt{ A \ar [r] \ar [d] & A_0 \ar [d] \\ A_1 \ar [r] & A_{01} } \]

is a homotopy pushout square.

$(2)$

The front face

\[ \xymatrix@R =50pt@C=50pt{ B \ar [r] \ar [d] & B_0 \ar [d] \\ B_1 \ar [r] & B_{01} } \]

is a homotopy pushout square.

$(3)$

The morphism $w_{01}$ is a weak homotopy equivalence.