Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 3.4.5.1. Let $f: X \rightarrow Y$ be a morphism of semisimplicial sets. We will say that $f$ is a weak homotopy equivalence if the induced map of simplicial sets $f^{+}: X^{+} \rightarrow Y^{+}$ is a weak homotopy equivalence, in the sense of Definition 3.1.6.12.