Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 4.1.2.6. The inclusion map $i_0: \{ 0\} \hookrightarrow \Delta ^1$ is left anodyne (and therefore anodyne). However, it is not right anodyne (and therefore not inner anodyne). This follows from Proposition 4.1.2.5, since the lifting problem

\[ \xymatrix { \{ 0\} \ar [r] \ar [d]^{i_0} & \{ 1\} \ar [d]^{i_1} \\ \Delta ^1 \ar [r]^-{\operatorname{id}} \ar@ {-->}[ur] & \Delta ^1 } \]

does not admit a solution (note that the inclusion map $i_1: \{ 1\} \hookrightarrow \Delta ^1$ is a left fibration; see Warning 4.1.1.6).