Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 4.1.2.8. Let $f: X_{} \rightarrow Y_{}$ be a morphism of simplicial sets. Then $f$ can be factored as a composition $X_{} \xrightarrow {f'} Q_{}(f) \xrightarrow {f''} Y_{}$, where $f''$ is a right fibration and $f'$ is right anodyne. Moreover, the simplicial set $Q_{}(f)$ (and the morphisms $f'$ and $f''$) can be chosen to depend functorially on $f$, in such a way that the functor

\[ \operatorname{Fun}( [1], \operatorname{Set_{\Delta }}) \rightarrow \operatorname{Set_{\Delta }}\quad \quad (f: X_{} \rightarrow Y_{} ) \rightarrow Q_{}(f) \]

commutes with filtered colimits.