Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 4.2.2.7. Let $\operatorname{\mathcal{E}}$ be a category, let $[0]$ denote the category having a single object and a single morphism, and let $U: \operatorname{\mathcal{E}}\rightarrow [0]$ be the unique functor. The following conditions are equivalent:

  • The functor $U$ is a fibration in groupoids.

  • The functor $U$ is an opfibration in groupoids.

  • The category $\operatorname{\mathcal{E}}$ is a groupoid.