4.3.1 Slices of Categories
We begin by discussing the slice construction in a special case.
Construction 4.3.1.1 (Slice Categories over Objects). Let $\operatorname{\mathcal{C}}$ be a category containing an object $S$. We define a category $\operatorname{\mathcal{C}}_{/S}$ as follows:
The objects of $\operatorname{\mathcal{C}}_{/S}$ are pairs $(X, f)$, where $X$ is an object of $\operatorname{\mathcal{C}}$ and $f: X \rightarrow S$ is a morphism in $\operatorname{\mathcal{C}}$.
If $(X,f)$ and $(Y, g)$ are objects of $\operatorname{\mathcal{C}}_{/S}$, then a morphism from $(X,f)$ to $(Y,g)$ in the category $\operatorname{\mathcal{C}}_{/S}$ is a morphism $u: X \rightarrow Y$ in the category $\operatorname{\mathcal{C}}$ satisfying $f = g \circ u$. In other words, morphisms from $(X,f)$ to $(Y,g)$ are given by commutative diagrams
\[ \xymatrix@R =50pt@C=50pt{ X \ar [rr]^{u} \ar [dr]_-{f} & & Y \ar [dl]^-{g} \\ & S & } \]
in the category $\operatorname{\mathcal{C}}$.
Composition of morphisms in the category $\operatorname{\mathcal{C}}_{/S}$ is given by composition of morphisms in the category $\operatorname{\mathcal{C}}$.
We will refer to $\operatorname{\mathcal{C}}_{/S}$ as the slice category of $\operatorname{\mathcal{C}}$ over $S$.
Example 4.3.1.2. Let $\operatorname{Set}$ denote the category of sets, and let $S \in \operatorname{Set}$ be a set. Then the construction
\[ (f: X \rightarrow S) \mapsto \{ X_{s} = f^{-1} \{ s\} \} _{s \in S} \]
induces an equivalence of categories $\operatorname{Set}_{/S} \rightarrow \prod _{s \in S} \operatorname{Set}$.
Variant 4.3.1.4 (Coslice Categories under Objects). Let $\operatorname{\mathcal{C}}$ be a category containing an object $S$. We define a category $\operatorname{\mathcal{C}}_{S/}$ as follows:
The objects of $\operatorname{\mathcal{C}}_{S/}$ are pairs $(X, f)$, where $X$ is an object of $\operatorname{\mathcal{C}}$ and $f: S \rightarrow X$ is a morphism in $\operatorname{\mathcal{C}}$.
If $(X,f)$ and $(Y, g)$ are objects of $\operatorname{\mathcal{C}}_{S/}$, then a morphism from $(X,f)$ to $(Y,g)$ in the category $\operatorname{\mathcal{C}}_{S/}$ is a morphism $u: X \rightarrow Y$ in the category $\operatorname{\mathcal{C}}$ satisfying $g = f \circ u$. In other words, morphisms from $(X,f)$ to $(Y,g)$ are given by commutative diagrams
\[ \xymatrix@R =50pt@C=50pt{ & S \ar [dl]_-{f} \ar [dr]^-{g} & \\ X \ar [rr]^-{u} & & Y } \]
in the category $\operatorname{\mathcal{C}}$.
Composition of morphisms in the category $\operatorname{\mathcal{C}}_{S/}$ is given by composition of morphisms in the category $\operatorname{\mathcal{C}}$.
We will refer to $\operatorname{\mathcal{C}}_{S/}$ as the coslice category of $\operatorname{\mathcal{C}}$ under $S$.
For many applications it is useful to consider a generalization of Construction 4.3.1.1, which associates a slice category $\operatorname{\mathcal{C}}_{/F}$ to an arbitrary diagram $F: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ (instead of a single object $S \in \operatorname{\mathcal{C}}$).
Construction 4.3.1.8 (Slice Categories over Diagrams). Let $\operatorname{\mathcal{K}}$ and $\operatorname{\mathcal{C}}$ be categories. For each object $C \in \operatorname{\mathcal{C}}$, we let $\underline{C}: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ denote the associated constant functor (carrying each object of $\operatorname{\mathcal{K}}$ to the object $C$ and each morphism of $\operatorname{\mathcal{K}}$ to the identity morphism $\operatorname{id}_{C}$). The construction $C \mapsto \underline{C}$ determines a functor $\operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(\operatorname{\mathcal{K}}, \operatorname{\mathcal{C}})$.
For every functor $F: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$, we let $\operatorname{\mathcal{C}}_{/F}$ denote the fiber product $\operatorname{\mathcal{C}}\times _{ \operatorname{Fun}(\operatorname{\mathcal{K}}, \operatorname{\mathcal{C}})} \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{C}})_{/F}$, where $\operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{C}})_{/F}$ is the slice category of Construction 4.3.1.1. Similarly, we let $\operatorname{\mathcal{C}}_{F/}$ denote the fiber product $\operatorname{\mathcal{C}}\times _{ \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{C}}) } \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{C}})_{F/}$, where $\operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{C}})_{F/}$ denotes the coslice category of Variant 4.3.1.4. We will refer to $\operatorname{\mathcal{C}}_{/F}$ as the slice category of $\operatorname{\mathcal{C}}$ over $F$, and to $\operatorname{\mathcal{C}}_{F/}$ as the coslice category of $\operatorname{\mathcal{C}}$ under $F$.
Example 4.3.1.10. Let $[0]$ denote the category having a single object and a single morphism. For any category $\operatorname{\mathcal{C}}$, the diagonal map
\[ \delta : \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( [0], \operatorname{\mathcal{C}}) \quad \quad S \mapsto \underline{S} \]
is an isomorphism of categories. It follows that, for any object $S \in \operatorname{\mathcal{C}}$, we have canonical isomorphisms
\[ \operatorname{\mathcal{C}}_{/S} \simeq \operatorname{\mathcal{C}}_{/ \underline{S}} \quad \quad \operatorname{\mathcal{C}}_{S/} \simeq \operatorname{\mathcal{C}}_{ \underline{S} / }. \]
Consequently, we can view Construction 4.3.1.1 and Variant 4.3.1.4 as special cases of Construction 4.3.1.8.