Lemma 4.3.2.9. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be categories, and let $\iota _{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\hookrightarrow \operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}$ and $\iota _{\operatorname{\mathcal{D}}}: \operatorname{\mathcal{D}}\hookrightarrow \operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}$ denote the inclusion maps. Then:
- $(1)$
The inclusion functor $\iota _{\operatorname{\mathcal{C}}}$ factors uniquely as a composition
\[ \operatorname{\mathcal{C}}\xrightarrow { \overline{\iota }_{\operatorname{\mathcal{C}}} } (\operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}})_{/ \iota _{\operatorname{\mathcal{D}}} } \rightarrow \operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}. \]- $(2)$
The inclusion functor $\iota _{\operatorname{\mathcal{D}}}$ factors uniquely as a composition
\[ \operatorname{\mathcal{D}}\xrightarrow { \overline{\iota }_{\operatorname{\mathcal{D}}} } (\operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}})_{ \iota _{\operatorname{\mathcal{C}}} / } \rightarrow \operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}. \]