Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 11.10.7.8. Suppose we given a commutative diagram of simplicial sets

\[ \xymatrix@R =50pt@C=50pt{ X \ar [rr]^{f} \ar [dr] & & Y \ar [dl] \\ & S. & } \]

If $f$ is either a covariant or contravariant equivalence relative to $S$, then it is a weak homotopy equivalence. This follows by combining Remark 11.10.7.7 with Example 11.10.7.4.