4.1.1 Inner Fibrations of Simplicial Sets
We now introduce the primary objects of interest in this section.
Definition 4.1.1.1. Let $q: X_{} \rightarrow S_{}$ be a morphism of simplicial sets. We say that $q$ is an inner fibration if, for every pair of integers $0 < i < n$, every lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{n}_{i} \ar [r]^-{\sigma _0} \ar [d] & X_{} \ar [d]^{q} \\ \Delta ^{n} \ar@ {-->}[ur]^-{\sigma } \ar [r]^-{ \overline{\sigma } } & S_{} } \]
admits a solution (as indicated by the dotted arrow). That is, for every map of simplicial sets $\sigma _0: \Lambda ^{n}_{i} \rightarrow X_{}$ and every $n$-simplex $\overline{\sigma }: \Delta ^ n \rightarrow S_{}$ extending $q \circ \sigma _0$, we can extend $\sigma _0$ to an $n$-simplex $\sigma : \Delta ^{n} \rightarrow X_{}$ satisfying $q \circ \sigma = \overline{\sigma }$.
Example 4.1.1.2. Let $X_{}$ be a simplicial set. Then the projection map $X_{} \rightarrow \Delta ^0$ is an inner fibration if and only if $X_{}$ is an $\infty $-category.
Proposition 4.1.1.10. Let $\operatorname{\mathcal{C}}$ be a category, and let $q: X \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be a morphism of simplicial sets. Then $q$ is an inner fibration if and only if $X$ is an $\infty $-category.
Proof.
If $q$ is an inner fibration, then Remark 4.1.1.9 guarantees that $X$ is an $\infty $-category. Conversely, suppose that $X$ is an $\infty $-category and that we are given a lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{n}_{i} \ar [r]^-{\sigma _0} \ar [d] & X_{} \ar [d]^{q} \\ \Delta ^{n} \ar@ {-->}[ur]^-{\sigma } \ar [r]^-{ \overline{\sigma } } & \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \]
for integers $0 < i < n$. Our assumption that $X$ is an $\infty $-category guarantees that $\sigma _0$ can be extended to an $n$-simplex $\sigma : \Delta ^ n \rightarrow X$. The equality $q \circ \sigma = \overline{\sigma }$ is automatic by virtue of Proposition 1.3.4.1.
$\square$
Corollary 4.1.1.11. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between ordinary categories. Then the induced map $\operatorname{N}_{\bullet }(F): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{D}})$ is an inner fibration of simplicial sets.
Example 4.1.1.12. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ denote its homotopy category (Construction 1.4.5.1). Then the canonical map $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}} )$ is an inner fibration.
The equivalence $(1) \Leftrightarrow (2)$ is immediate from the definition, and the equivalence $(2) \Leftrightarrow (3)$ follows from Proposition 4.1.1.10.