Remark 1.5.7.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ denote its homotopy category (Definition 1.4.5.3). Then the canonical map $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}} )$ is an epimorphism of simplicial sets: that is, it induces a surjection on $n$-simplices for each $n \geq 0$. To prove this, we note that there is a commutative diagram
where the left vertical map is surjective (Example 1.5.7.7) and the right vertical map is bijective (Remark 1.5.7.8). It therefore suffices to show that the bottom horizontal map is surjective: that is, every sequence of composable morphisms
in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ can be lifted to a sequence of composable morphisms in $\operatorname{\mathcal{C}}$, which is immediate from the definition of $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$.