Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.1.2.6 (Pullbacks of Subcategories). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\infty $-categories, and let $\operatorname{\mathcal{D}}'$ be a subcategory of $\operatorname{\mathcal{D}}$. Then the inverse image $F^{-1}(\operatorname{\mathcal{D}}') \subseteq \operatorname{\mathcal{C}}$ is a subcategory of $\operatorname{\mathcal{C}}$ (see Remark 4.1.1.5).