Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 4.5.1.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\operatorname{\mathcal{C}}^{\simeq }$ denote its core (Construction 4.4.3.1). For every Kan complex $X$, composition with the inclusion map $\iota : \operatorname{\mathcal{C}}^{\simeq } \hookrightarrow \operatorname{\mathcal{C}}$ induces a bijection

\[ \operatorname{Hom}_{ \mathrm{h} \mathit{\operatorname{Kan}} }( X, \operatorname{\mathcal{C}}^{\simeq } ) = \operatorname{Hom}_{ \mathrm{h} \mathit{\operatorname{QCat}} }( X, \operatorname{\mathcal{C}}^{\simeq } ) \rightarrow \operatorname{Hom}_{ \mathrm{h} \mathit{\operatorname{QCat}} }( X, \operatorname{\mathcal{C}}). \]

Proof. By virtue of Proposition 4.4.3.22, postcomposition with $\iota $ induces an isomorphism of Kan complexes $\operatorname{Fun}(X, \operatorname{\mathcal{C}}^{\simeq } ) \rightarrow \operatorname{Fun}(X, \operatorname{\mathcal{C}})^{\simeq }$. Proposition 4.5.1.5 follows by passing to connected components. $\square$